1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 109 /// List of DBG_VALUE that we encountered without the vreg being assigned 110 /// because they were placed after the last use of the vreg. 111 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 112 113 /// Has a bit set for every virtual register for which it was determined 114 /// that it is alive across blocks. 115 BitVector MayLiveAcrossBlocks; 116 117 /// State of a register unit. 118 enum RegUnitState { 119 /// A free register is not currently in use and can be allocated 120 /// immediately without checking aliases. 121 regFree, 122 123 /// A pre-assigned register has been assigned before register allocation 124 /// (e.g., setting up a call parameter). 125 regPreAssigned, 126 127 /// Used temporarily in reloadAtBegin() to mark register units that are 128 /// live-in to the basic block. 129 regLiveIn, 130 131 /// A register state may also be a virtual register number, indication 132 /// that the physical register is currently allocated to a virtual 133 /// register. In that case, LiveVirtRegs contains the inverse mapping. 134 }; 135 136 /// Maps each physical register to a RegUnitState enum or virtual register. 137 std::vector<unsigned> RegUnitStates; 138 139 SmallVector<MachineInstr *, 32> Coalesced; 140 141 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 142 /// Set of register units that are used in the current instruction, and so 143 /// cannot be allocated. 144 RegUnitSet UsedInInstr; 145 RegUnitSet PhysRegUses; 146 SmallVector<uint16_t, 8> DefOperandIndexes; 147 148 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 149 bool isPhysRegFree(MCPhysReg PhysReg) const; 150 151 /// Mark a physreg as used in this instruction. 152 void markRegUsedInInstr(MCPhysReg PhysReg) { 153 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 154 UsedInInstr.insert(*Units); 155 } 156 157 /// Check if a physreg or any of its aliases are used in this instruction. 158 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 159 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 160 if (UsedInInstr.count(*Units)) 161 return true; 162 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 163 return true; 164 } 165 return false; 166 } 167 168 /// Mark physical register as being used in a register use operand. 169 /// This is only used by the special livethrough handling code. 170 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 171 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 172 PhysRegUses.insert(*Units); 173 } 174 175 /// Remove mark of physical register being used in the instruction. 176 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 177 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 178 UsedInInstr.erase(*Units); 179 } 180 181 enum : unsigned { 182 spillClean = 50, 183 spillDirty = 100, 184 spillPrefBonus = 20, 185 spillImpossible = ~0u 186 }; 187 188 public: 189 StringRef getPassName() const override { return "Fast Register Allocator"; } 190 191 void getAnalysisUsage(AnalysisUsage &AU) const override { 192 AU.setPreservesCFG(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 MachineFunctionProperties getRequiredProperties() const override { 197 return MachineFunctionProperties().set( 198 MachineFunctionProperties::Property::NoPHIs); 199 } 200 201 MachineFunctionProperties getSetProperties() const override { 202 return MachineFunctionProperties().set( 203 MachineFunctionProperties::Property::NoVRegs); 204 } 205 206 private: 207 bool runOnMachineFunction(MachineFunction &MF) override; 208 209 void allocateBasicBlock(MachineBasicBlock &MBB); 210 211 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 212 Register Reg) const; 213 214 void allocateInstruction(MachineInstr &MI); 215 void handleDebugValue(MachineInstr &MI); 216 #ifndef NDEBUG 217 bool verifyRegStateMapping(const LiveReg &LR) const; 218 #endif 219 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 220 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 221 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 222 void freePhysReg(MCPhysReg PhysReg); 223 224 unsigned calcSpillCost(MCPhysReg PhysReg) const; 225 226 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 227 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 228 } 229 230 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 231 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 232 } 233 234 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 235 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 236 bool LookAtPhysRegUses = false); 237 void allocVirtRegUndef(MachineOperand &MO); 238 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 239 MCPhysReg Reg); 240 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 241 Register VirtReg); 242 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 243 bool LookAtPhysRegUses = false); 244 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 245 246 MachineBasicBlock::iterator 247 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 248 SmallSet<Register, 2> &PrologLiveIns) const; 249 250 void reloadAtBegin(MachineBasicBlock &MBB); 251 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 252 253 Register traceCopies(Register VirtReg) const; 254 Register traceCopyChain(Register Reg) const; 255 256 int getStackSpaceFor(Register VirtReg); 257 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 258 MCPhysReg AssignedReg, bool Kill); 259 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 260 MCPhysReg PhysReg); 261 262 bool mayLiveOut(Register VirtReg); 263 bool mayLiveIn(Register VirtReg); 264 265 void dumpState() const; 266 }; 267 268 } // end anonymous namespace 269 270 char RegAllocFast::ID = 0; 271 272 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 273 false) 274 275 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 276 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 277 RegUnitStates[*UI] = NewState; 278 } 279 280 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 281 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 282 if (RegUnitStates[*UI] != regFree) 283 return false; 284 } 285 return true; 286 } 287 288 /// This allocates space for the specified virtual register to be held on the 289 /// stack. 290 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 291 // Find the location Reg would belong... 292 int SS = StackSlotForVirtReg[VirtReg]; 293 // Already has space allocated? 294 if (SS != -1) 295 return SS; 296 297 // Allocate a new stack object for this spill location... 298 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 299 unsigned Size = TRI->getSpillSize(RC); 300 Align Alignment = TRI->getSpillAlign(RC); 301 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 302 303 // Assign the slot. 304 StackSlotForVirtReg[VirtReg] = FrameIdx; 305 return FrameIdx; 306 } 307 308 static bool dominates(MachineBasicBlock &MBB, 309 MachineBasicBlock::const_iterator A, 310 MachineBasicBlock::const_iterator B) { 311 auto MBBEnd = MBB.end(); 312 if (B == MBBEnd) 313 return true; 314 315 MachineBasicBlock::const_iterator I = MBB.begin(); 316 for (; &*I != A && &*I != B; ++I) 317 ; 318 319 return &*I == A; 320 } 321 322 /// Returns false if \p VirtReg is known to not live out of the current block. 323 bool RegAllocFast::mayLiveOut(Register VirtReg) { 324 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 325 // Cannot be live-out if there are no successors. 326 return !MBB->succ_empty(); 327 } 328 329 const MachineInstr *SelfLoopDef = nullptr; 330 331 // If this block loops back to itself, it is necessary to check whether the 332 // use comes after the def. 333 if (MBB->isSuccessor(MBB)) { 334 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 335 if (!SelfLoopDef) { 336 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 337 return true; 338 } 339 } 340 341 // See if the first \p Limit uses of the register are all in the current 342 // block. 343 static const unsigned Limit = 8; 344 unsigned C = 0; 345 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 346 if (UseInst.getParent() != MBB || ++C >= Limit) { 347 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 348 // Cannot be live-out if there are no successors. 349 return !MBB->succ_empty(); 350 } 351 352 if (SelfLoopDef) { 353 // Try to handle some simple cases to avoid spilling and reloading every 354 // value inside a self looping block. 355 if (SelfLoopDef == &UseInst || 356 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 357 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 358 return true; 359 } 360 } 361 } 362 363 return false; 364 } 365 366 /// Returns false if \p VirtReg is known to not be live into the current block. 367 bool RegAllocFast::mayLiveIn(Register VirtReg) { 368 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 369 return !MBB->pred_empty(); 370 371 // See if the first \p Limit def of the register are all in the current block. 372 static const unsigned Limit = 8; 373 unsigned C = 0; 374 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 375 if (DefInst.getParent() != MBB || ++C >= Limit) { 376 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 377 return !MBB->pred_empty(); 378 } 379 } 380 381 return false; 382 } 383 384 /// Insert spill instruction for \p AssignedReg before \p Before. Update 385 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 386 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 387 MCPhysReg AssignedReg, bool Kill) { 388 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 389 << " in " << printReg(AssignedReg, TRI)); 390 int FI = getStackSpaceFor(VirtReg); 391 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 392 393 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 394 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 395 ++NumStores; 396 397 // When we spill a virtual register, we will have spill instructions behind 398 // every definition of it, meaning we can switch all the DBG_VALUEs over 399 // to just reference the stack slot. 400 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 401 for (MachineInstr *DBG : LRIDbgValues) { 402 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 403 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 404 (void)NewDV; 405 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 406 // Rewrite unassigned dbg_values to use the stack slot. 407 MachineOperand &MO = DBG->getOperand(0); 408 if (MO.isReg() && MO.getReg() == 0) 409 updateDbgValueForSpill(*DBG, FI); 410 } 411 // Now this register is spilled there is should not be any DBG_VALUE 412 // pointing to this register because they are all pointing to spilled value 413 // now. 414 LRIDbgValues.clear(); 415 } 416 417 /// Insert reload instruction for \p PhysReg before \p Before. 418 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 419 MCPhysReg PhysReg) { 420 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 421 << printReg(PhysReg, TRI) << '\n'); 422 int FI = getStackSpaceFor(VirtReg); 423 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 424 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 425 ++NumLoads; 426 } 427 428 /// Get basic block begin insertion point. 429 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 430 /// instructions marking the begin of a basic block. This means we must insert 431 /// new instructions after such labels... 432 MachineBasicBlock::iterator 433 RegAllocFast::getMBBBeginInsertionPoint( 434 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 435 MachineBasicBlock::iterator I = MBB.begin(); 436 while (I != MBB.end()) { 437 if (I->isLabel()) { 438 ++I; 439 continue; 440 } 441 442 // Most reloads should be inserted after prolog instructions. 443 if (!TII->isBasicBlockPrologue(*I)) 444 break; 445 446 // However if a prolog instruction reads a register that needs to be 447 // reloaded, the reload should be inserted before the prolog. 448 for (MachineOperand &MO : I->operands()) { 449 if (MO.isReg()) 450 PrologLiveIns.insert(MO.getReg()); 451 } 452 453 ++I; 454 } 455 456 return I; 457 } 458 459 /// Reload all currently assigned virtual registers. 460 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 461 if (LiveVirtRegs.empty()) 462 return; 463 464 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 465 MCPhysReg Reg = P.PhysReg; 466 // Set state to live-in. This possibly overrides mappings to virtual 467 // registers but we don't care anymore at this point. 468 setPhysRegState(Reg, regLiveIn); 469 } 470 471 472 SmallSet<Register, 2> PrologLiveIns; 473 474 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 475 // of spilling here is deterministic, if arbitrary. 476 MachineBasicBlock::iterator InsertBefore 477 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 478 for (const LiveReg &LR : LiveVirtRegs) { 479 MCPhysReg PhysReg = LR.PhysReg; 480 if (PhysReg == 0) 481 continue; 482 483 unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 484 if (RegUnitStates[FirstUnit] == regLiveIn) 485 continue; 486 487 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 488 "no reload in start block. Missing vreg def?"); 489 490 if (PrologLiveIns.count(PhysReg)) { 491 // FIXME: Theoretically this should use an insert point skipping labels 492 // but I'm not sure how labels should interact with prolog instruction 493 // that need reloads. 494 reload(MBB.begin(), LR.VirtReg, PhysReg); 495 } else 496 reload(InsertBefore, LR.VirtReg, PhysReg); 497 } 498 LiveVirtRegs.clear(); 499 } 500 501 /// Handle the direct use of a physical register. Check that the register is 502 /// not used by a virtreg. Kill the physreg, marking it free. This may add 503 /// implicit kills to MO->getParent() and invalidate MO. 504 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 505 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 506 bool displacedAny = displacePhysReg(MI, Reg); 507 setPhysRegState(Reg, regPreAssigned); 508 markRegUsedInInstr(Reg); 509 return displacedAny; 510 } 511 512 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 513 bool displacedAny = displacePhysReg(MI, Reg); 514 setPhysRegState(Reg, regPreAssigned); 515 return displacedAny; 516 } 517 518 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 519 /// similar to defineVirtReg except the physreg is reserved instead of 520 /// allocated. 521 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 522 bool displacedAny = false; 523 524 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 525 unsigned Unit = *UI; 526 switch (unsigned VirtReg = RegUnitStates[Unit]) { 527 default: { 528 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 529 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 530 MachineBasicBlock::iterator ReloadBefore = 531 std::next((MachineBasicBlock::iterator)MI.getIterator()); 532 reload(ReloadBefore, VirtReg, LRI->PhysReg); 533 534 setPhysRegState(LRI->PhysReg, regFree); 535 LRI->PhysReg = 0; 536 LRI->Reloaded = true; 537 displacedAny = true; 538 break; 539 } 540 case regPreAssigned: 541 RegUnitStates[Unit] = regFree; 542 displacedAny = true; 543 break; 544 case regFree: 545 break; 546 } 547 } 548 return displacedAny; 549 } 550 551 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 552 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 553 554 unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 555 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 556 case regFree: 557 LLVM_DEBUG(dbgs() << '\n'); 558 return; 559 case regPreAssigned: 560 LLVM_DEBUG(dbgs() << '\n'); 561 setPhysRegState(PhysReg, regFree); 562 return; 563 default: { 564 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 565 assert(LRI != LiveVirtRegs.end()); 566 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 567 setPhysRegState(LRI->PhysReg, regFree); 568 LRI->PhysReg = 0; 569 } 570 return; 571 } 572 } 573 574 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 575 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 576 /// disabled - it can be allocated directly. 577 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 578 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 579 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 580 switch (unsigned VirtReg = RegUnitStates[*UI]) { 581 case regFree: 582 break; 583 case regPreAssigned: 584 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 585 << printReg(PhysReg, TRI) << '\n'); 586 return spillImpossible; 587 default: { 588 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 589 findLiveVirtReg(VirtReg)->LiveOut; 590 return SureSpill ? spillClean : spillDirty; 591 } 592 } 593 } 594 return 0; 595 } 596 597 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 598 Register VirtReg, MCPhysReg Reg) { 599 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 600 if (UDBGValIter == DanglingDbgValues.end()) 601 return; 602 603 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 604 for (MachineInstr *DbgValue : Dangling) { 605 assert(DbgValue->isDebugValue()); 606 MachineOperand &MO = DbgValue->getOperand(0); 607 if (!MO.isReg()) 608 continue; 609 610 // Test whether the physreg survives from the definition to the DBG_VALUE. 611 MCPhysReg SetToReg = Reg; 612 unsigned Limit = 20; 613 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 614 E = DbgValue->getIterator(); I != E; ++I) { 615 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 616 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 617 << '\n'); 618 SetToReg = 0; 619 break; 620 } 621 } 622 MO.setReg(SetToReg); 623 if (SetToReg != 0) 624 MO.setIsRenamable(); 625 } 626 Dangling.clear(); 627 } 628 629 /// This method updates local state so that we know that PhysReg is the 630 /// proper container for VirtReg now. The physical register must not be used 631 /// for anything else when this is called. 632 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 633 MCPhysReg PhysReg) { 634 Register VirtReg = LR.VirtReg; 635 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 636 << printReg(PhysReg, TRI) << '\n'); 637 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 638 assert(PhysReg != 0 && "Trying to assign no register"); 639 LR.PhysReg = PhysReg; 640 setPhysRegState(PhysReg, VirtReg); 641 642 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 643 } 644 645 static bool isCoalescable(const MachineInstr &MI) { 646 return MI.isFullCopy(); 647 } 648 649 Register RegAllocFast::traceCopyChain(Register Reg) const { 650 static const unsigned ChainLengthLimit = 3; 651 unsigned C = 0; 652 do { 653 if (Reg.isPhysical()) 654 return Reg; 655 assert(Reg.isVirtual()); 656 657 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 658 if (!VRegDef || !isCoalescable(*VRegDef)) 659 return 0; 660 Reg = VRegDef->getOperand(1).getReg(); 661 } while (++C <= ChainLengthLimit); 662 return 0; 663 } 664 665 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 666 /// chain of copies to check whether we reach a physical register we can 667 /// coalesce with. 668 Register RegAllocFast::traceCopies(Register VirtReg) const { 669 static const unsigned DefLimit = 3; 670 unsigned C = 0; 671 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 672 if (isCoalescable(MI)) { 673 Register Reg = MI.getOperand(1).getReg(); 674 Reg = traceCopyChain(Reg); 675 if (Reg.isValid()) 676 return Reg; 677 } 678 679 if (++C >= DefLimit) 680 break; 681 } 682 return Register(); 683 } 684 685 /// Allocates a physical register for VirtReg. 686 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 687 Register Hint0, bool LookAtPhysRegUses) { 688 const Register VirtReg = LR.VirtReg; 689 assert(LR.PhysReg == 0); 690 691 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 692 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 693 << " in class " << TRI->getRegClassName(&RC) 694 << " with hint " << printReg(Hint0, TRI) << '\n'); 695 696 // Take hint when possible. 697 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 698 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 699 // Take hint if the register is currently free. 700 if (isPhysRegFree(Hint0)) { 701 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 702 << '\n'); 703 assignVirtToPhysReg(MI, LR, Hint0); 704 return; 705 } else { 706 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 707 << " occupied\n"); 708 } 709 } else { 710 Hint0 = Register(); 711 } 712 713 714 // Try other hint. 715 Register Hint1 = traceCopies(VirtReg); 716 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 717 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 718 // Take hint if the register is currently free. 719 if (isPhysRegFree(Hint1)) { 720 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 721 << '\n'); 722 assignVirtToPhysReg(MI, LR, Hint1); 723 return; 724 } else { 725 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 726 << " occupied\n"); 727 } 728 } else { 729 Hint1 = Register(); 730 } 731 732 MCPhysReg BestReg = 0; 733 unsigned BestCost = spillImpossible; 734 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 735 for (MCPhysReg PhysReg : AllocationOrder) { 736 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 737 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 738 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 739 continue; 740 } 741 742 unsigned Cost = calcSpillCost(PhysReg); 743 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 744 // Immediate take a register with cost 0. 745 if (Cost == 0) { 746 assignVirtToPhysReg(MI, LR, PhysReg); 747 return; 748 } 749 750 if (PhysReg == Hint0 || PhysReg == Hint1) 751 Cost -= spillPrefBonus; 752 753 if (Cost < BestCost) { 754 BestReg = PhysReg; 755 BestCost = Cost; 756 } 757 } 758 759 if (!BestReg) { 760 // Nothing we can do: Report an error and keep going with an invalid 761 // allocation. 762 if (MI.isInlineAsm()) 763 MI.emitError("inline assembly requires more registers than available"); 764 else 765 MI.emitError("ran out of registers during register allocation"); 766 767 LR.Error = true; 768 LR.PhysReg = 0; 769 return; 770 } 771 772 displacePhysReg(MI, BestReg); 773 assignVirtToPhysReg(MI, LR, BestReg); 774 } 775 776 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 777 assert(MO.isUndef() && "expected undef use"); 778 Register VirtReg = MO.getReg(); 779 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 780 781 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 782 MCPhysReg PhysReg; 783 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 784 PhysReg = LRI->PhysReg; 785 } else { 786 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 787 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 788 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 789 PhysReg = AllocationOrder[0]; 790 } 791 792 unsigned SubRegIdx = MO.getSubReg(); 793 if (SubRegIdx != 0) { 794 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 795 MO.setSubReg(0); 796 } 797 MO.setReg(PhysReg); 798 MO.setIsRenamable(true); 799 } 800 801 /// Variation of defineVirtReg() with special handling for livethrough regs 802 /// (tied or earlyclobber) that may interfere with preassigned uses. 803 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 804 Register VirtReg) { 805 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 806 if (LRI != LiveVirtRegs.end()) { 807 MCPhysReg PrevReg = LRI->PhysReg; 808 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 809 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 810 << " (tied/earlyclobber resolution)\n"); 811 freePhysReg(PrevReg); 812 LRI->PhysReg = 0; 813 allocVirtReg(MI, *LRI, 0, true); 814 MachineBasicBlock::iterator InsertBefore = 815 std::next((MachineBasicBlock::iterator)MI.getIterator()); 816 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 817 << printReg(PrevReg, TRI) << '\n'); 818 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 819 TII->get(TargetOpcode::COPY), PrevReg) 820 .addReg(LRI->PhysReg, llvm::RegState::Kill); 821 } 822 MachineOperand &MO = MI.getOperand(OpNum); 823 if (MO.getSubReg() && !MO.isUndef()) { 824 LRI->LastUse = &MI; 825 } 826 } 827 return defineVirtReg(MI, OpNum, VirtReg, true); 828 } 829 830 /// Allocates a register for VirtReg definition. Typically the register is 831 /// already assigned from a use of the virtreg, however we still need to 832 /// perform an allocation if: 833 /// - It is a dead definition without any uses. 834 /// - The value is live out and all uses are in different basic blocks. 835 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 836 Register VirtReg, bool LookAtPhysRegUses) { 837 assert(VirtReg.isVirtual() && "Not a virtual register"); 838 MachineOperand &MO = MI.getOperand(OpNum); 839 LiveRegMap::iterator LRI; 840 bool New; 841 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 842 if (New) { 843 if (!MO.isDead()) { 844 if (mayLiveOut(VirtReg)) { 845 LRI->LiveOut = true; 846 } else { 847 // It is a dead def without the dead flag; add the flag now. 848 MO.setIsDead(true); 849 } 850 } 851 } 852 if (LRI->PhysReg == 0) 853 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 854 else { 855 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 856 "TODO: preassign mismatch"); 857 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 858 << " use existing assignment to " 859 << printReg(LRI->PhysReg, TRI) << '\n'); 860 } 861 862 MCPhysReg PhysReg = LRI->PhysReg; 863 assert(PhysReg != 0 && "Register not assigned"); 864 if (LRI->Reloaded || LRI->LiveOut) { 865 if (!MI.isImplicitDef()) { 866 MachineBasicBlock::iterator SpillBefore = 867 std::next((MachineBasicBlock::iterator)MI.getIterator()); 868 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 869 << LRI->Reloaded << '\n'); 870 bool Kill = LRI->LastUse == nullptr; 871 spill(SpillBefore, VirtReg, PhysReg, Kill); 872 LRI->LastUse = nullptr; 873 } 874 LRI->LiveOut = false; 875 LRI->Reloaded = false; 876 } 877 markRegUsedInInstr(PhysReg); 878 setPhysReg(MI, MO, PhysReg); 879 } 880 881 /// Allocates a register for a VirtReg use. 882 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 883 Register VirtReg) { 884 assert(VirtReg.isVirtual() && "Not a virtual register"); 885 MachineOperand &MO = MI.getOperand(OpNum); 886 LiveRegMap::iterator LRI; 887 bool New; 888 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 889 if (New) { 890 MachineOperand &MO = MI.getOperand(OpNum); 891 if (!MO.isKill()) { 892 if (mayLiveOut(VirtReg)) { 893 LRI->LiveOut = true; 894 } else { 895 // It is a last (killing) use without the kill flag; add the flag now. 896 MO.setIsKill(true); 897 } 898 } 899 } else { 900 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 901 } 902 903 // If necessary allocate a register. 904 if (LRI->PhysReg == 0) { 905 assert(!MO.isTied() && "tied op should be allocated"); 906 Register Hint; 907 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 908 Hint = MI.getOperand(0).getReg(); 909 assert(Hint.isPhysical() && 910 "Copy destination should already be assigned"); 911 } 912 allocVirtReg(MI, *LRI, Hint, false); 913 if (LRI->Error) { 914 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 915 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 916 setPhysReg(MI, MO, *AllocationOrder.begin()); 917 return; 918 } 919 } 920 921 LRI->LastUse = &MI; 922 markRegUsedInInstr(LRI->PhysReg); 923 setPhysReg(MI, MO, LRI->PhysReg); 924 } 925 926 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 927 /// may invalidate any operand pointers. Return true if the operand kills its 928 /// register. 929 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 930 MCPhysReg PhysReg) { 931 if (!MO.getSubReg()) { 932 MO.setReg(PhysReg); 933 MO.setIsRenamable(true); 934 return; 935 } 936 937 // Handle subregister index. 938 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 939 MO.setIsRenamable(true); 940 // Note: We leave the subreg number around a little longer in case of defs. 941 // This is so that the register freeing logic in allocateInstruction can still 942 // recognize this as subregister defs. The code there will clear the number. 943 if (!MO.isDef()) 944 MO.setSubReg(0); 945 946 // A kill flag implies killing the full register. Add corresponding super 947 // register kill. 948 if (MO.isKill()) { 949 MI.addRegisterKilled(PhysReg, TRI, true); 950 return; 951 } 952 953 // A <def,read-undef> of a sub-register requires an implicit def of the full 954 // register. 955 if (MO.isDef() && MO.isUndef()) { 956 if (MO.isDead()) 957 MI.addRegisterDead(PhysReg, TRI, true); 958 else 959 MI.addRegisterDefined(PhysReg, TRI); 960 } 961 } 962 963 #ifndef NDEBUG 964 965 void RegAllocFast::dumpState() const { 966 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 967 ++Unit) { 968 switch (unsigned VirtReg = RegUnitStates[Unit]) { 969 case regFree: 970 break; 971 case regPreAssigned: 972 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 973 break; 974 case regLiveIn: 975 llvm_unreachable("Should not have regLiveIn in map"); 976 default: { 977 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 978 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 979 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 980 if (I->LiveOut || I->Reloaded) { 981 dbgs() << '['; 982 if (I->LiveOut) dbgs() << 'O'; 983 if (I->Reloaded) dbgs() << 'R'; 984 dbgs() << ']'; 985 } 986 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 987 break; 988 } 989 } 990 } 991 dbgs() << '\n'; 992 // Check that LiveVirtRegs is the inverse. 993 for (const LiveReg &LR : LiveVirtRegs) { 994 Register VirtReg = LR.VirtReg; 995 assert(VirtReg.isVirtual() && "Bad map key"); 996 MCPhysReg PhysReg = LR.PhysReg; 997 if (PhysReg != 0) { 998 assert(Register::isPhysicalRegister(PhysReg) && 999 "mapped to physreg"); 1000 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1001 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1002 } 1003 } 1004 } 1005 } 1006 #endif 1007 1008 /// Count number of defs consumed from each register class by \p Reg 1009 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1010 Register Reg) const { 1011 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1012 1013 if (Reg.isVirtual()) { 1014 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1015 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1016 RCIdx != RCIdxEnd; ++RCIdx) { 1017 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1018 // FIXME: Consider aliasing sub/super registers. 1019 if (OpRC->hasSubClassEq(IdxRC)) 1020 ++RegClassDefCounts[RCIdx]; 1021 } 1022 1023 return; 1024 } 1025 1026 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1027 RCIdx != RCIdxEnd; ++RCIdx) { 1028 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1029 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1030 if (IdxRC->contains(*Alias)) { 1031 ++RegClassDefCounts[RCIdx]; 1032 break; 1033 } 1034 } 1035 } 1036 } 1037 1038 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1039 // The basic algorithm here is: 1040 // 1. Mark registers of def operands as free 1041 // 2. Allocate registers to use operands and place reload instructions for 1042 // registers displaced by the allocation. 1043 // 1044 // However we need to handle some corner cases: 1045 // - pre-assigned defs and uses need to be handled before the other def/use 1046 // operands are processed to avoid the allocation heuristics clashing with 1047 // the pre-assignment. 1048 // - The "free def operands" step has to come last instead of first for tied 1049 // operands and early-clobbers. 1050 1051 UsedInInstr.clear(); 1052 1053 // Scan for special cases; Apply pre-assigned register defs to state. 1054 bool HasPhysRegUse = false; 1055 bool HasRegMask = false; 1056 bool HasVRegDef = false; 1057 bool HasDef = false; 1058 bool HasEarlyClobber = false; 1059 bool NeedToAssignLiveThroughs = false; 1060 for (MachineOperand &MO : MI.operands()) { 1061 if (MO.isReg()) { 1062 Register Reg = MO.getReg(); 1063 if (Reg.isVirtual()) { 1064 if (MO.isDef()) { 1065 HasDef = true; 1066 HasVRegDef = true; 1067 if (MO.isEarlyClobber()) { 1068 HasEarlyClobber = true; 1069 NeedToAssignLiveThroughs = true; 1070 } 1071 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1072 NeedToAssignLiveThroughs = true; 1073 } 1074 } else if (Reg.isPhysical()) { 1075 if (!MRI->isReserved(Reg)) { 1076 if (MO.isDef()) { 1077 HasDef = true; 1078 bool displacedAny = definePhysReg(MI, Reg); 1079 if (MO.isEarlyClobber()) 1080 HasEarlyClobber = true; 1081 if (!displacedAny) 1082 MO.setIsDead(true); 1083 } 1084 if (MO.readsReg()) 1085 HasPhysRegUse = true; 1086 } 1087 } 1088 } else if (MO.isRegMask()) { 1089 HasRegMask = true; 1090 } 1091 } 1092 1093 // Allocate virtreg defs. 1094 if (HasDef) { 1095 if (HasVRegDef) { 1096 // Special handling for early clobbers, tied operands or subregister defs: 1097 // Compared to "normal" defs these: 1098 // - Must not use a register that is pre-assigned for a use operand. 1099 // - In order to solve tricky inline assembly constraints we change the 1100 // heuristic to figure out a good operand order before doing 1101 // assignments. 1102 if (NeedToAssignLiveThroughs) { 1103 DefOperandIndexes.clear(); 1104 PhysRegUses.clear(); 1105 1106 // Track number of defs which may consume a register from the class. 1107 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1108 assert(RegClassDefCounts[0] == 0); 1109 1110 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1111 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1112 const MachineOperand &MO = MI.getOperand(I); 1113 if (!MO.isReg()) 1114 continue; 1115 Register Reg = MO.getReg(); 1116 if (MO.readsReg()) { 1117 if (Reg.isPhysical()) { 1118 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1119 << '\n'); 1120 markPhysRegUsedInInstr(Reg); 1121 } 1122 } 1123 1124 if (MO.isDef()) { 1125 if (Reg.isVirtual()) 1126 DefOperandIndexes.push_back(I); 1127 1128 addRegClassDefCounts(RegClassDefCounts, Reg); 1129 } 1130 } 1131 1132 llvm::sort(DefOperandIndexes.begin(), DefOperandIndexes.end(), 1133 [&](uint16_t I0, uint16_t I1) { 1134 const MachineOperand &MO0 = MI.getOperand(I0); 1135 const MachineOperand &MO1 = MI.getOperand(I1); 1136 Register Reg0 = MO0.getReg(); 1137 Register Reg1 = MO1.getReg(); 1138 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1139 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1140 1141 // Identify regclass that are easy to use up completely just in this 1142 // instruction. 1143 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1144 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1145 1146 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1147 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1148 if (SmallClass0 > SmallClass1) 1149 return true; 1150 if (SmallClass0 < SmallClass1) 1151 return false; 1152 1153 // Allocate early clobbers and livethrough operands first. 1154 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1155 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1156 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1157 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1158 if (Livethrough0 > Livethrough1) 1159 return true; 1160 if (Livethrough0 < Livethrough1) 1161 return false; 1162 1163 // Tie-break rule: operand index. 1164 return I0 < I1; 1165 }); 1166 1167 for (uint16_t OpIdx : DefOperandIndexes) { 1168 MachineOperand &MO = MI.getOperand(OpIdx); 1169 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1170 unsigned Reg = MO.getReg(); 1171 if (MO.isEarlyClobber() || MO.isTied() || 1172 (MO.getSubReg() && !MO.isUndef())) { 1173 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1174 } else { 1175 defineVirtReg(MI, OpIdx, Reg); 1176 } 1177 } 1178 } else { 1179 // Assign virtual register defs. 1180 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1181 MachineOperand &MO = MI.getOperand(I); 1182 if (!MO.isReg() || !MO.isDef()) 1183 continue; 1184 Register Reg = MO.getReg(); 1185 if (Reg.isVirtual()) 1186 defineVirtReg(MI, I, Reg); 1187 } 1188 } 1189 } 1190 1191 // Free registers occupied by defs. 1192 // Iterate operands in reverse order, so we see the implicit super register 1193 // defs first (we added them earlier in case of <def,read-undef>). 1194 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1195 MachineOperand &MO = MI.getOperand(I); 1196 if (!MO.isReg() || !MO.isDef()) 1197 continue; 1198 1199 // subreg defs don't free the full register. We left the subreg number 1200 // around as a marker in setPhysReg() to recognize this case here. 1201 if (MO.getSubReg() != 0) { 1202 MO.setSubReg(0); 1203 continue; 1204 } 1205 1206 // Do not free tied operands and early clobbers. 1207 if (MO.isTied() || MO.isEarlyClobber()) 1208 continue; 1209 Register Reg = MO.getReg(); 1210 if (!Reg) 1211 continue; 1212 assert(Reg.isPhysical()); 1213 if (MRI->isReserved(Reg)) 1214 continue; 1215 freePhysReg(Reg); 1216 unmarkRegUsedInInstr(Reg); 1217 } 1218 } 1219 1220 // Displace clobbered registers. 1221 if (HasRegMask) { 1222 for (const MachineOperand &MO : MI.operands()) { 1223 if (MO.isRegMask()) { 1224 // MRI bookkeeping. 1225 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1226 1227 // Displace clobbered registers. 1228 const uint32_t *Mask = MO.getRegMask(); 1229 for (LiveRegMap::iterator LRI = LiveVirtRegs.begin(), 1230 LRIE = LiveVirtRegs.end(); LRI != LRIE; ++LRI) { 1231 MCPhysReg PhysReg = LRI->PhysReg; 1232 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1233 displacePhysReg(MI, PhysReg); 1234 } 1235 } 1236 } 1237 } 1238 1239 // Apply pre-assigned register uses to state. 1240 if (HasPhysRegUse) { 1241 for (MachineOperand &MO : MI.operands()) { 1242 if (!MO.isReg() || !MO.readsReg()) 1243 continue; 1244 Register Reg = MO.getReg(); 1245 if (!Reg.isPhysical()) 1246 continue; 1247 if (MRI->isReserved(Reg)) 1248 continue; 1249 bool displacedAny = usePhysReg(MI, Reg); 1250 if (!displacedAny && !MRI->isReserved(Reg)) 1251 MO.setIsKill(true); 1252 } 1253 } 1254 1255 // Allocate virtreg uses and insert reloads as necessary. 1256 bool HasUndefUse = false; 1257 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1258 MachineOperand &MO = MI.getOperand(I); 1259 if (!MO.isReg() || !MO.isUse()) 1260 continue; 1261 Register Reg = MO.getReg(); 1262 if (!Reg.isVirtual()) 1263 continue; 1264 1265 if (MO.isUndef()) { 1266 HasUndefUse = true; 1267 continue; 1268 } 1269 1270 1271 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1272 // the def block (removing the vreg uses). 1273 mayLiveIn(Reg); 1274 1275 1276 assert(!MO.isInternalRead() && "Bundles not supported"); 1277 assert(MO.readsReg() && "reading use"); 1278 useVirtReg(MI, I, Reg); 1279 } 1280 1281 // Allocate undef operands. This is a separate step because in a situation 1282 // like ` = OP undef %X, %X` both operands need the same register assign 1283 // so we should perform the normal assignment first. 1284 if (HasUndefUse) { 1285 for (MachineOperand &MO : MI.uses()) { 1286 if (!MO.isReg() || !MO.isUse()) 1287 continue; 1288 Register Reg = MO.getReg(); 1289 if (!Reg.isVirtual()) 1290 continue; 1291 1292 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1293 allocVirtRegUndef(MO); 1294 } 1295 } 1296 1297 // Free early clobbers. 1298 if (HasEarlyClobber) { 1299 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1300 MachineOperand &MO = MI.getOperand(I); 1301 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1302 continue; 1303 // subreg defs don't free the full register. We left the subreg number 1304 // around as a marker in setPhysReg() to recognize this case here. 1305 if (MO.getSubReg() != 0) { 1306 MO.setSubReg(0); 1307 continue; 1308 } 1309 1310 Register Reg = MO.getReg(); 1311 if (!Reg) 1312 continue; 1313 assert(Reg.isPhysical() && "should have register assigned"); 1314 1315 // We sometimes get odd situations like: 1316 // early-clobber %x0 = INSTRUCTION %x0 1317 // which is semantically questionable as the early-clobber should 1318 // apply before the use. But in practice we consider the use to 1319 // happen before the early clobber now. Don't free the early clobber 1320 // register in this case. 1321 if (MI.readsRegister(Reg, TRI)) 1322 continue; 1323 1324 freePhysReg(Reg); 1325 } 1326 } 1327 1328 LLVM_DEBUG(dbgs() << "<< " << MI); 1329 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1330 MI.getNumOperands() == 2) { 1331 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1332 Coalesced.push_back(&MI); 1333 } 1334 } 1335 1336 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1337 MachineOperand &MO = MI.getDebugOperand(0); 1338 1339 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1340 // mostly constants and frame indices. 1341 if (!MO.isReg()) 1342 return; 1343 Register Reg = MO.getReg(); 1344 if (!Register::isVirtualRegister(Reg)) 1345 return; 1346 1347 // Already spilled to a stackslot? 1348 int SS = StackSlotForVirtReg[Reg]; 1349 if (SS != -1) { 1350 // Modify DBG_VALUE now that the value is in a spill slot. 1351 updateDbgValueForSpill(MI, SS); 1352 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1353 return; 1354 } 1355 1356 // See if this virtual register has already been allocated to a physical 1357 // register or spilled to a stack slot. 1358 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1359 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1360 setPhysReg(MI, MO, LRI->PhysReg); 1361 } else { 1362 DanglingDbgValues[Reg].push_back(&MI); 1363 } 1364 1365 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1366 // that future spills of Reg will have DBG_VALUEs. 1367 LiveDbgValueMap[Reg].push_back(&MI); 1368 } 1369 1370 #ifndef NDEBUG 1371 bool RegAllocFast::verifyRegStateMapping(const LiveReg &LR) const { 1372 for (MCRegUnitIterator UI(LR.PhysReg, TRI); UI.isValid(); ++UI) { 1373 if (RegUnitStates[*UI] != LR.VirtReg) 1374 return false; 1375 } 1376 1377 return true; 1378 } 1379 #endif 1380 1381 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1382 this->MBB = &MBB; 1383 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1384 1385 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1386 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1387 1388 for (MachineBasicBlock *Succ : MBB.successors()) { 1389 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1390 setPhysRegState(LI.PhysReg, regPreAssigned); 1391 } 1392 1393 Coalesced.clear(); 1394 1395 // Traverse block in reverse order allocating instructions one by one. 1396 for (MachineInstr &MI : reverse(MBB)) { 1397 LLVM_DEBUG( 1398 dbgs() << "\n>> " << MI << "Regs:"; 1399 dumpState() 1400 ); 1401 1402 // Special handling for debug values. Note that they are not allowed to 1403 // affect codegen of the other instructions in any way. 1404 if (MI.isDebugValue()) { 1405 handleDebugValue(MI); 1406 continue; 1407 } 1408 1409 allocateInstruction(MI); 1410 } 1411 1412 LLVM_DEBUG( 1413 dbgs() << "Begin Regs:"; 1414 dumpState() 1415 ); 1416 1417 // Spill all physical registers holding virtual registers now. 1418 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1419 reloadAtBegin(MBB); 1420 1421 // Erase all the coalesced copies. We are delaying it until now because 1422 // LiveVirtRegs might refer to the instrs. 1423 for (MachineInstr *MI : Coalesced) 1424 MBB.erase(MI); 1425 NumCoalesced += Coalesced.size(); 1426 1427 for (auto &UDBGPair : DanglingDbgValues) { 1428 for (MachineInstr *DbgValue : UDBGPair.second) { 1429 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1430 MachineOperand &MO = DbgValue->getOperand(0); 1431 // Nothing to do if the vreg was spilled in the meantime. 1432 if (!MO.isReg()) 1433 continue; 1434 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1435 << '\n'); 1436 MO.setReg(0); 1437 } 1438 } 1439 DanglingDbgValues.clear(); 1440 1441 LLVM_DEBUG(MBB.dump()); 1442 } 1443 1444 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1445 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1446 << "********** Function: " << MF.getName() << '\n'); 1447 MRI = &MF.getRegInfo(); 1448 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1449 TRI = STI.getRegisterInfo(); 1450 TII = STI.getInstrInfo(); 1451 MFI = &MF.getFrameInfo(); 1452 MRI->freezeReservedRegs(MF); 1453 RegClassInfo.runOnMachineFunction(MF); 1454 unsigned NumRegUnits = TRI->getNumRegUnits(); 1455 UsedInInstr.clear(); 1456 UsedInInstr.setUniverse(NumRegUnits); 1457 PhysRegUses.clear(); 1458 PhysRegUses.setUniverse(NumRegUnits); 1459 1460 // initialize the virtual->physical register map to have a 'null' 1461 // mapping for all virtual registers 1462 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1463 StackSlotForVirtReg.resize(NumVirtRegs); 1464 LiveVirtRegs.setUniverse(NumVirtRegs); 1465 MayLiveAcrossBlocks.clear(); 1466 MayLiveAcrossBlocks.resize(NumVirtRegs); 1467 1468 // Loop over all of the basic blocks, eliminating virtual register references 1469 for (MachineBasicBlock &MBB : MF) 1470 allocateBasicBlock(MBB); 1471 1472 // All machine operands and other references to virtual registers have been 1473 // replaced. Remove the virtual registers. 1474 MRI->clearVirtRegs(); 1475 1476 StackSlotForVirtReg.clear(); 1477 LiveDbgValueMap.clear(); 1478 return true; 1479 } 1480 1481 FunctionPass *llvm::createFastRegisterAllocator() { 1482 return new RegAllocFast(); 1483 } 1484