1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "regalloc" 41 42 STATISTIC(NumStores, "Number of stores added"); 43 STATISTIC(NumLoads , "Number of loads added"); 44 STATISTIC(NumCopies, "Number of copies coalesced"); 45 46 static RegisterRegAlloc 47 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 48 49 namespace { 50 class RAFast : public MachineFunctionPass { 51 public: 52 static char ID; 53 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 54 isBulkSpilling(false) {} 55 56 private: 57 MachineFunction *MF; 58 MachineRegisterInfo *MRI; 59 const TargetRegisterInfo *TRI; 60 const TargetInstrInfo *TII; 61 RegisterClassInfo RegClassInfo; 62 63 // Basic block currently being allocated. 64 MachineBasicBlock *MBB; 65 66 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 67 // values are spilled. 68 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 69 70 // Everything we know about a live virtual register. 71 struct LiveReg { 72 MachineInstr *LastUse; // Last instr to use reg. 73 unsigned VirtReg; // Virtual register number. 74 unsigned PhysReg; // Currently held here. 75 unsigned short LastOpNum; // OpNum on LastUse. 76 bool Dirty; // Register needs spill. 77 78 explicit LiveReg(unsigned v) 79 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 80 81 unsigned getSparseSetIndex() const { 82 return TargetRegisterInfo::virtReg2Index(VirtReg); 83 } 84 }; 85 86 typedef SparseSet<LiveReg> LiveRegMap; 87 88 // LiveVirtRegs - This map contains entries for each virtual register 89 // that is currently available in a physical register. 90 LiveRegMap LiveVirtRegs; 91 92 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 93 94 // RegState - Track the state of a physical register. 95 enum RegState { 96 // A disabled register is not available for allocation, but an alias may 97 // be in use. A register can only be moved out of the disabled state if 98 // all aliases are disabled. 99 regDisabled, 100 101 // A free register is not currently in use and can be allocated 102 // immediately without checking aliases. 103 regFree, 104 105 // A reserved register has been assigned explicitly (e.g., setting up a 106 // call parameter), and it remains reserved until it is used. 107 regReserved 108 109 // A register state may also be a virtual register number, indication that 110 // the physical register is currently allocated to a virtual register. In 111 // that case, LiveVirtRegs contains the inverse mapping. 112 }; 113 114 // PhysRegState - One of the RegState enums, or a virtreg. 115 std::vector<unsigned> PhysRegState; 116 117 // Set of register units. 118 typedef SparseSet<unsigned> UsedInInstrSet; 119 120 // Set of register units that are used in the current instruction, and so 121 // cannot be allocated. 122 UsedInInstrSet UsedInInstr; 123 124 // Mark a physreg as used in this instruction. 125 void markRegUsedInInstr(unsigned PhysReg) { 126 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 127 UsedInInstr.insert(*Units); 128 } 129 130 // Check if a physreg or any of its aliases are used in this instruction. 131 bool isRegUsedInInstr(unsigned PhysReg) const { 132 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 133 if (UsedInInstr.count(*Units)) 134 return true; 135 return false; 136 } 137 138 // SkippedInstrs - Descriptors of instructions whose clobber list was 139 // ignored because all registers were spilled. It is still necessary to 140 // mark all the clobbered registers as used by the function. 141 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 142 143 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 144 // completely after spilling all live registers. LiveRegMap entries should 145 // not be erased. 146 bool isBulkSpilling; 147 148 enum : unsigned { 149 spillClean = 1, 150 spillDirty = 100, 151 spillImpossible = ~0u 152 }; 153 public: 154 const char *getPassName() const override { 155 return "Fast Register Allocator"; 156 } 157 158 void getAnalysisUsage(AnalysisUsage &AU) const override { 159 AU.setPreservesCFG(); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 } 162 163 MachineFunctionProperties getSetProperties() const override { 164 return MachineFunctionProperties().set( 165 MachineFunctionProperties::Property::AllVRegsAllocated); 166 } 167 168 private: 169 bool runOnMachineFunction(MachineFunction &Fn) override; 170 void AllocateBasicBlock(); 171 void handleThroughOperands(MachineInstr *MI, 172 SmallVectorImpl<unsigned> &VirtDead); 173 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 174 bool isLastUseOfLocalReg(MachineOperand&); 175 176 void addKillFlag(const LiveReg&); 177 void killVirtReg(LiveRegMap::iterator); 178 void killVirtReg(unsigned VirtReg); 179 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 180 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 181 182 void usePhysReg(MachineOperand&); 183 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 184 unsigned calcSpillCost(unsigned PhysReg) const; 185 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 186 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 187 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 188 } 189 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 190 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 191 } 192 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 193 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 194 unsigned Hint); 195 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 196 unsigned VirtReg, unsigned Hint); 197 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 198 unsigned VirtReg, unsigned Hint); 199 void spillAll(MachineBasicBlock::iterator MI); 200 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 201 }; 202 char RAFast::ID = 0; 203 } 204 205 /// getStackSpaceFor - This allocates space for the specified virtual register 206 /// to be held on the stack. 207 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 208 // Find the location Reg would belong... 209 int SS = StackSlotForVirtReg[VirtReg]; 210 if (SS != -1) 211 return SS; // Already has space allocated? 212 213 // Allocate a new stack object for this spill location... 214 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 215 RC->getAlignment()); 216 217 // Assign the slot. 218 StackSlotForVirtReg[VirtReg] = FrameIdx; 219 return FrameIdx; 220 } 221 222 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 223 /// its virtual register, and it is guaranteed to be a block-local register. 224 /// 225 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 226 // If the register has ever been spilled or reloaded, we conservatively assume 227 // it is a global register used in multiple blocks. 228 if (StackSlotForVirtReg[MO.getReg()] != -1) 229 return false; 230 231 // Check that the use/def chain has exactly one operand - MO. 232 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 233 if (&*I != &MO) 234 return false; 235 return ++I == MRI->reg_nodbg_end(); 236 } 237 238 /// addKillFlag - Set kill flags on last use of a virtual register. 239 void RAFast::addKillFlag(const LiveReg &LR) { 240 if (!LR.LastUse) return; 241 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 242 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 243 if (MO.getReg() == LR.PhysReg) 244 MO.setIsKill(); 245 else 246 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 247 } 248 } 249 250 /// killVirtReg - Mark virtreg as no longer available. 251 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 252 addKillFlag(*LRI); 253 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 254 "Broken RegState mapping"); 255 PhysRegState[LRI->PhysReg] = regFree; 256 // Erase from LiveVirtRegs unless we're spilling in bulk. 257 if (!isBulkSpilling) 258 LiveVirtRegs.erase(LRI); 259 } 260 261 /// killVirtReg - Mark virtreg as no longer available. 262 void RAFast::killVirtReg(unsigned VirtReg) { 263 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 264 "killVirtReg needs a virtual register"); 265 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 266 if (LRI != LiveVirtRegs.end()) 267 killVirtReg(LRI); 268 } 269 270 /// spillVirtReg - This method spills the value specified by VirtReg into the 271 /// corresponding stack slot if needed. 272 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 273 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 274 "Spilling a physical register is illegal!"); 275 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 276 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 277 spillVirtReg(MI, LRI); 278 } 279 280 /// spillVirtReg - Do the actual work of spilling. 281 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 282 LiveRegMap::iterator LRI) { 283 LiveReg &LR = *LRI; 284 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 285 286 if (LR.Dirty) { 287 // If this physreg is used by the instruction, we want to kill it on the 288 // instruction, not on the spill. 289 bool SpillKill = LR.LastUse != MI; 290 LR.Dirty = false; 291 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 292 << " in " << PrintReg(LR.PhysReg, TRI)); 293 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 294 int FI = getStackSpaceFor(LRI->VirtReg, RC); 295 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 296 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 297 ++NumStores; // Update statistics 298 299 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 300 // identify spilled location as the place to find corresponding variable's 301 // value. 302 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 303 LiveDbgValueMap[LRI->VirtReg]; 304 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 305 MachineInstr *DBG = LRIDbgValues[li]; 306 const MDNode *Var = DBG->getDebugVariable(); 307 const MDNode *Expr = DBG->getDebugExpression(); 308 bool IsIndirect = DBG->isIndirectDebugValue(); 309 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0; 310 DebugLoc DL = DBG->getDebugLoc(); 311 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 312 "Expected inlined-at fields to agree"); 313 MachineInstr *NewDV = 314 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) 315 .addFrameIndex(FI) 316 .addImm(Offset) 317 .addMetadata(Var) 318 .addMetadata(Expr); 319 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 320 (void)NewDV; 321 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 322 } 323 // Now this register is spilled there is should not be any DBG_VALUE 324 // pointing to this register because they are all pointing to spilled value 325 // now. 326 LRIDbgValues.clear(); 327 if (SpillKill) 328 LR.LastUse = nullptr; // Don't kill register again 329 } 330 killVirtReg(LRI); 331 } 332 333 /// spillAll - Spill all dirty virtregs without killing them. 334 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 335 if (LiveVirtRegs.empty()) return; 336 isBulkSpilling = true; 337 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 338 // of spilling here is deterministic, if arbitrary. 339 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 340 i != e; ++i) 341 spillVirtReg(MI, i); 342 LiveVirtRegs.clear(); 343 isBulkSpilling = false; 344 } 345 346 /// usePhysReg - Handle the direct use of a physical register. 347 /// Check that the register is not used by a virtreg. 348 /// Kill the physreg, marking it free. 349 /// This may add implicit kills to MO->getParent() and invalidate MO. 350 void RAFast::usePhysReg(MachineOperand &MO) { 351 unsigned PhysReg = MO.getReg(); 352 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 353 "Bad usePhysReg operand"); 354 markRegUsedInInstr(PhysReg); 355 switch (PhysRegState[PhysReg]) { 356 case regDisabled: 357 break; 358 case regReserved: 359 PhysRegState[PhysReg] = regFree; 360 // Fall through 361 case regFree: 362 MO.setIsKill(); 363 return; 364 default: 365 // The physreg was allocated to a virtual register. That means the value we 366 // wanted has been clobbered. 367 llvm_unreachable("Instruction uses an allocated register"); 368 } 369 370 // Maybe a superregister is reserved? 371 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 372 unsigned Alias = *AI; 373 switch (PhysRegState[Alias]) { 374 case regDisabled: 375 break; 376 case regReserved: 377 // Either PhysReg is a subregister of Alias and we mark the 378 // whole register as free, or PhysReg is the superregister of 379 // Alias and we mark all the aliases as disabled before freeing 380 // PhysReg. 381 // In the latter case, since PhysReg was disabled, this means that 382 // its value is defined only by physical sub-registers. This check 383 // is performed by the assert of the default case in this loop. 384 // Note: The value of the superregister may only be partial 385 // defined, that is why regDisabled is a valid state for aliases. 386 assert((TRI->isSuperRegister(PhysReg, Alias) || 387 TRI->isSuperRegister(Alias, PhysReg)) && 388 "Instruction is not using a subregister of a reserved register"); 389 // Fall through. 390 case regFree: 391 if (TRI->isSuperRegister(PhysReg, Alias)) { 392 // Leave the superregister in the working set. 393 PhysRegState[Alias] = regFree; 394 MO.getParent()->addRegisterKilled(Alias, TRI, true); 395 return; 396 } 397 // Some other alias was in the working set - clear it. 398 PhysRegState[Alias] = regDisabled; 399 break; 400 default: 401 llvm_unreachable("Instruction uses an alias of an allocated register"); 402 } 403 } 404 405 // All aliases are disabled, bring register into working set. 406 PhysRegState[PhysReg] = regFree; 407 MO.setIsKill(); 408 } 409 410 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 411 /// virtregs. This is very similar to defineVirtReg except the physreg is 412 /// reserved instead of allocated. 413 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 414 RegState NewState) { 415 markRegUsedInInstr(PhysReg); 416 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 417 case regDisabled: 418 break; 419 default: 420 spillVirtReg(MI, VirtReg); 421 // Fall through. 422 case regFree: 423 case regReserved: 424 PhysRegState[PhysReg] = NewState; 425 return; 426 } 427 428 // This is a disabled register, disable all aliases. 429 PhysRegState[PhysReg] = NewState; 430 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 431 unsigned Alias = *AI; 432 switch (unsigned VirtReg = PhysRegState[Alias]) { 433 case regDisabled: 434 break; 435 default: 436 spillVirtReg(MI, VirtReg); 437 // Fall through. 438 case regFree: 439 case regReserved: 440 PhysRegState[Alias] = regDisabled; 441 if (TRI->isSuperRegister(PhysReg, Alias)) 442 return; 443 break; 444 } 445 } 446 } 447 448 449 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 450 // aliases so it is free for allocation. 451 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 452 // can be allocated directly. 453 // Returns spillImpossible when PhysReg or an alias can't be spilled. 454 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 455 if (isRegUsedInInstr(PhysReg)) { 456 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 457 return spillImpossible; 458 } 459 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 460 case regDisabled: 461 break; 462 case regFree: 463 return 0; 464 case regReserved: 465 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 466 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 467 return spillImpossible; 468 default: { 469 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 470 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 471 return I->Dirty ? spillDirty : spillClean; 472 } 473 } 474 475 // This is a disabled register, add up cost of aliases. 476 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 477 unsigned Cost = 0; 478 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 479 unsigned Alias = *AI; 480 switch (unsigned VirtReg = PhysRegState[Alias]) { 481 case regDisabled: 482 break; 483 case regFree: 484 ++Cost; 485 break; 486 case regReserved: 487 return spillImpossible; 488 default: { 489 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 490 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 491 Cost += I->Dirty ? spillDirty : spillClean; 492 break; 493 } 494 } 495 } 496 return Cost; 497 } 498 499 500 /// assignVirtToPhysReg - This method updates local state so that we know 501 /// that PhysReg is the proper container for VirtReg now. The physical 502 /// register must not be used for anything else when this is called. 503 /// 504 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 505 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 506 << PrintReg(PhysReg, TRI) << "\n"); 507 PhysRegState[PhysReg] = LR.VirtReg; 508 assert(!LR.PhysReg && "Already assigned a physreg"); 509 LR.PhysReg = PhysReg; 510 } 511 512 RAFast::LiveRegMap::iterator 513 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 514 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 515 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 516 assignVirtToPhysReg(*LRI, PhysReg); 517 return LRI; 518 } 519 520 /// allocVirtReg - Allocate a physical register for VirtReg. 521 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 522 LiveRegMap::iterator LRI, 523 unsigned Hint) { 524 const unsigned VirtReg = LRI->VirtReg; 525 526 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 527 "Can only allocate virtual registers"); 528 529 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 530 531 // Ignore invalid hints. 532 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 533 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 534 Hint = 0; 535 536 // Take hint when possible. 537 if (Hint) { 538 // Ignore the hint if we would have to spill a dirty register. 539 unsigned Cost = calcSpillCost(Hint); 540 if (Cost < spillDirty) { 541 if (Cost) 542 definePhysReg(MI, Hint, regFree); 543 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 544 // That invalidates LRI, so run a new lookup for VirtReg. 545 return assignVirtToPhysReg(VirtReg, Hint); 546 } 547 } 548 549 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 550 551 // First try to find a completely free register. 552 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 553 unsigned PhysReg = *I; 554 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 555 assignVirtToPhysReg(*LRI, PhysReg); 556 return LRI; 557 } 558 } 559 560 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 561 << TRI->getRegClassName(RC) << "\n"); 562 563 unsigned BestReg = 0, BestCost = spillImpossible; 564 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 565 unsigned Cost = calcSpillCost(*I); 566 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 567 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 568 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 569 // Cost is 0 when all aliases are already disabled. 570 if (Cost == 0) { 571 assignVirtToPhysReg(*LRI, *I); 572 return LRI; 573 } 574 if (Cost < BestCost) 575 BestReg = *I, BestCost = Cost; 576 } 577 578 if (BestReg) { 579 definePhysReg(MI, BestReg, regFree); 580 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 581 // That invalidates LRI, so run a new lookup for VirtReg. 582 return assignVirtToPhysReg(VirtReg, BestReg); 583 } 584 585 // Nothing we can do. Report an error and keep going with a bad allocation. 586 if (MI->isInlineAsm()) 587 MI->emitError("inline assembly requires more registers than available"); 588 else 589 MI->emitError("ran out of registers during register allocation"); 590 definePhysReg(MI, *AO.begin(), regFree); 591 return assignVirtToPhysReg(VirtReg, *AO.begin()); 592 } 593 594 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 595 RAFast::LiveRegMap::iterator 596 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 597 unsigned VirtReg, unsigned Hint) { 598 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 599 "Not a virtual register"); 600 LiveRegMap::iterator LRI; 601 bool New; 602 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 603 if (New) { 604 // If there is no hint, peek at the only use of this register. 605 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 606 MRI->hasOneNonDBGUse(VirtReg)) { 607 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 608 // It's a copy, use the destination register as a hint. 609 if (UseMI.isCopyLike()) 610 Hint = UseMI.getOperand(0).getReg(); 611 } 612 LRI = allocVirtReg(MI, LRI, Hint); 613 } else if (LRI->LastUse) { 614 // Redefining a live register - kill at the last use, unless it is this 615 // instruction defining VirtReg multiple times. 616 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 617 addKillFlag(*LRI); 618 } 619 assert(LRI->PhysReg && "Register not assigned"); 620 LRI->LastUse = MI; 621 LRI->LastOpNum = OpNum; 622 LRI->Dirty = true; 623 markRegUsedInInstr(LRI->PhysReg); 624 return LRI; 625 } 626 627 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 628 RAFast::LiveRegMap::iterator 629 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 630 unsigned VirtReg, unsigned Hint) { 631 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 632 "Not a virtual register"); 633 LiveRegMap::iterator LRI; 634 bool New; 635 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 636 MachineOperand &MO = MI->getOperand(OpNum); 637 if (New) { 638 LRI = allocVirtReg(MI, LRI, Hint); 639 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 640 int FrameIndex = getStackSpaceFor(VirtReg, RC); 641 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 642 << PrintReg(LRI->PhysReg, TRI) << "\n"); 643 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 644 ++NumLoads; 645 } else if (LRI->Dirty) { 646 if (isLastUseOfLocalReg(MO)) { 647 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 648 if (MO.isUse()) 649 MO.setIsKill(); 650 else 651 MO.setIsDead(); 652 } else if (MO.isKill()) { 653 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 654 MO.setIsKill(false); 655 } else if (MO.isDead()) { 656 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 657 MO.setIsDead(false); 658 } 659 } else if (MO.isKill()) { 660 // We must remove kill flags from uses of reloaded registers because the 661 // register would be killed immediately, and there might be a second use: 662 // %foo = OR %x<kill>, %x 663 // This would cause a second reload of %x into a different register. 664 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 665 MO.setIsKill(false); 666 } else if (MO.isDead()) { 667 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 668 MO.setIsDead(false); 669 } 670 assert(LRI->PhysReg && "Register not assigned"); 671 LRI->LastUse = MI; 672 LRI->LastOpNum = OpNum; 673 markRegUsedInInstr(LRI->PhysReg); 674 return LRI; 675 } 676 677 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 678 // subregs. This may invalidate any operand pointers. 679 // Return true if the operand kills its register. 680 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 681 MachineOperand &MO = MI->getOperand(OpNum); 682 bool Dead = MO.isDead(); 683 if (!MO.getSubReg()) { 684 MO.setReg(PhysReg); 685 return MO.isKill() || Dead; 686 } 687 688 // Handle subregister index. 689 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 690 MO.setSubReg(0); 691 692 // A kill flag implies killing the full register. Add corresponding super 693 // register kill. 694 if (MO.isKill()) { 695 MI->addRegisterKilled(PhysReg, TRI, true); 696 return true; 697 } 698 699 // A <def,read-undef> of a sub-register requires an implicit def of the full 700 // register. 701 if (MO.isDef() && MO.isUndef()) 702 MI->addRegisterDefined(PhysReg, TRI); 703 704 return Dead; 705 } 706 707 // Handle special instruction operand like early clobbers and tied ops when 708 // there are additional physreg defines. 709 void RAFast::handleThroughOperands(MachineInstr *MI, 710 SmallVectorImpl<unsigned> &VirtDead) { 711 DEBUG(dbgs() << "Scanning for through registers:"); 712 SmallSet<unsigned, 8> ThroughRegs; 713 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 714 MachineOperand &MO = MI->getOperand(i); 715 if (!MO.isReg()) continue; 716 unsigned Reg = MO.getReg(); 717 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 718 continue; 719 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 720 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 721 if (ThroughRegs.insert(Reg).second) 722 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 723 } 724 } 725 726 // If any physreg defines collide with preallocated through registers, 727 // we must spill and reallocate. 728 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 729 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 730 MachineOperand &MO = MI->getOperand(i); 731 if (!MO.isReg() || !MO.isDef()) continue; 732 unsigned Reg = MO.getReg(); 733 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 734 markRegUsedInInstr(Reg); 735 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 736 if (ThroughRegs.count(PhysRegState[*AI])) 737 definePhysReg(MI, *AI, regFree); 738 } 739 } 740 741 SmallVector<unsigned, 8> PartialDefs; 742 DEBUG(dbgs() << "Allocating tied uses.\n"); 743 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 744 MachineOperand &MO = MI->getOperand(i); 745 if (!MO.isReg()) continue; 746 unsigned Reg = MO.getReg(); 747 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 748 if (MO.isUse()) { 749 unsigned DefIdx = 0; 750 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 751 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 752 << DefIdx << ".\n"); 753 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 754 unsigned PhysReg = LRI->PhysReg; 755 setPhysReg(MI, i, PhysReg); 756 // Note: we don't update the def operand yet. That would cause the normal 757 // def-scan to attempt spilling. 758 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 759 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 760 // Reload the register, but don't assign to the operand just yet. 761 // That would confuse the later phys-def processing pass. 762 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 763 PartialDefs.push_back(LRI->PhysReg); 764 } 765 } 766 767 DEBUG(dbgs() << "Allocating early clobbers.\n"); 768 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 769 MachineOperand &MO = MI->getOperand(i); 770 if (!MO.isReg()) continue; 771 unsigned Reg = MO.getReg(); 772 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 773 if (!MO.isEarlyClobber()) 774 continue; 775 // Note: defineVirtReg may invalidate MO. 776 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 777 unsigned PhysReg = LRI->PhysReg; 778 if (setPhysReg(MI, i, PhysReg)) 779 VirtDead.push_back(Reg); 780 } 781 782 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 783 UsedInInstr.clear(); 784 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 785 MachineOperand &MO = MI->getOperand(i); 786 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 787 unsigned Reg = MO.getReg(); 788 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 789 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 790 << " as used in instr\n"); 791 markRegUsedInInstr(Reg); 792 } 793 794 // Also mark PartialDefs as used to avoid reallocation. 795 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 796 markRegUsedInInstr(PartialDefs[i]); 797 } 798 799 void RAFast::AllocateBasicBlock() { 800 DEBUG(dbgs() << "\nAllocating " << *MBB); 801 802 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 803 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 804 805 MachineBasicBlock::iterator MII = MBB->begin(); 806 807 // Add live-in registers as live. 808 for (const auto &LI : MBB->liveins()) 809 if (MRI->isAllocatable(LI.PhysReg)) 810 definePhysReg(MII, LI.PhysReg, regReserved); 811 812 SmallVector<unsigned, 8> VirtDead; 813 SmallVector<MachineInstr*, 32> Coalesced; 814 815 // Otherwise, sequentially allocate each instruction in the MBB. 816 while (MII != MBB->end()) { 817 MachineInstr *MI = MII++; 818 const MCInstrDesc &MCID = MI->getDesc(); 819 DEBUG({ 820 dbgs() << "\n>> " << *MI << "Regs:"; 821 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 822 if (PhysRegState[Reg] == regDisabled) continue; 823 dbgs() << " " << TRI->getName(Reg); 824 switch(PhysRegState[Reg]) { 825 case regFree: 826 break; 827 case regReserved: 828 dbgs() << "*"; 829 break; 830 default: { 831 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 832 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 833 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 834 if (I->Dirty) 835 dbgs() << "*"; 836 assert(I->PhysReg == Reg && "Bad inverse map"); 837 break; 838 } 839 } 840 } 841 dbgs() << '\n'; 842 // Check that LiveVirtRegs is the inverse. 843 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 844 e = LiveVirtRegs.end(); i != e; ++i) { 845 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 846 "Bad map key"); 847 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 848 "Bad map value"); 849 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 850 } 851 }); 852 853 // Debug values are not allowed to change codegen in any way. 854 if (MI->isDebugValue()) { 855 bool ScanDbgValue = true; 856 while (ScanDbgValue) { 857 ScanDbgValue = false; 858 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 859 MachineOperand &MO = MI->getOperand(i); 860 if (!MO.isReg()) continue; 861 unsigned Reg = MO.getReg(); 862 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 863 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 864 if (LRI != LiveVirtRegs.end()) 865 setPhysReg(MI, i, LRI->PhysReg); 866 else { 867 int SS = StackSlotForVirtReg[Reg]; 868 if (SS == -1) { 869 // We can't allocate a physreg for a DebugValue, sorry! 870 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 871 MO.setReg(0); 872 } 873 else { 874 // Modify DBG_VALUE now that the value is in a spill slot. 875 bool IsIndirect = MI->isIndirectDebugValue(); 876 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 877 const MDNode *Var = MI->getDebugVariable(); 878 const MDNode *Expr = MI->getDebugExpression(); 879 DebugLoc DL = MI->getDebugLoc(); 880 MachineBasicBlock *MBB = MI->getParent(); 881 assert( 882 cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 883 "Expected inlined-at fields to agree"); 884 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 885 TII->get(TargetOpcode::DBG_VALUE)) 886 .addFrameIndex(SS) 887 .addImm(Offset) 888 .addMetadata(Var) 889 .addMetadata(Expr); 890 DEBUG(dbgs() << "Modifying debug info due to spill:" 891 << "\t" << *NewDV); 892 // Scan NewDV operands from the beginning. 893 MI = NewDV; 894 ScanDbgValue = true; 895 break; 896 } 897 } 898 LiveDbgValueMap[Reg].push_back(MI); 899 } 900 } 901 // Next instruction. 902 continue; 903 } 904 905 // If this is a copy, we may be able to coalesce. 906 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 907 if (MI->isCopy()) { 908 CopyDst = MI->getOperand(0).getReg(); 909 CopySrc = MI->getOperand(1).getReg(); 910 CopyDstSub = MI->getOperand(0).getSubReg(); 911 CopySrcSub = MI->getOperand(1).getSubReg(); 912 } 913 914 // Track registers used by instruction. 915 UsedInInstr.clear(); 916 917 // First scan. 918 // Mark physreg uses and early clobbers as used. 919 // Find the end of the virtreg operands 920 unsigned VirtOpEnd = 0; 921 bool hasTiedOps = false; 922 bool hasEarlyClobbers = false; 923 bool hasPartialRedefs = false; 924 bool hasPhysDefs = false; 925 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 926 MachineOperand &MO = MI->getOperand(i); 927 // Make sure MRI knows about registers clobbered by regmasks. 928 if (MO.isRegMask()) { 929 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 930 continue; 931 } 932 if (!MO.isReg()) continue; 933 unsigned Reg = MO.getReg(); 934 if (!Reg) continue; 935 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 936 VirtOpEnd = i+1; 937 if (MO.isUse()) { 938 hasTiedOps = hasTiedOps || 939 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 940 } else { 941 if (MO.isEarlyClobber()) 942 hasEarlyClobbers = true; 943 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 944 hasPartialRedefs = true; 945 } 946 continue; 947 } 948 if (!MRI->isAllocatable(Reg)) continue; 949 if (MO.isUse()) { 950 usePhysReg(MO); 951 } else if (MO.isEarlyClobber()) { 952 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 953 regFree : regReserved); 954 hasEarlyClobbers = true; 955 } else 956 hasPhysDefs = true; 957 } 958 959 // The instruction may have virtual register operands that must be allocated 960 // the same register at use-time and def-time: early clobbers and tied 961 // operands. If there are also physical defs, these registers must avoid 962 // both physical defs and uses, making them more constrained than normal 963 // operands. 964 // Similarly, if there are multiple defs and tied operands, we must make 965 // sure the same register is allocated to uses and defs. 966 // We didn't detect inline asm tied operands above, so just make this extra 967 // pass for all inline asm. 968 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 969 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 970 handleThroughOperands(MI, VirtDead); 971 // Don't attempt coalescing when we have funny stuff going on. 972 CopyDst = 0; 973 // Pretend we have early clobbers so the use operands get marked below. 974 // This is not necessary for the common case of a single tied use. 975 hasEarlyClobbers = true; 976 } 977 978 // Second scan. 979 // Allocate virtreg uses. 980 for (unsigned i = 0; i != VirtOpEnd; ++i) { 981 MachineOperand &MO = MI->getOperand(i); 982 if (!MO.isReg()) continue; 983 unsigned Reg = MO.getReg(); 984 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 985 if (MO.isUse()) { 986 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 987 unsigned PhysReg = LRI->PhysReg; 988 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 989 if (setPhysReg(MI, i, PhysReg)) 990 killVirtReg(LRI); 991 } 992 } 993 994 // Track registers defined by instruction - early clobbers and tied uses at 995 // this point. 996 UsedInInstr.clear(); 997 if (hasEarlyClobbers) { 998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 999 MachineOperand &MO = MI->getOperand(i); 1000 if (!MO.isReg()) continue; 1001 unsigned Reg = MO.getReg(); 1002 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1003 // Look for physreg defs and tied uses. 1004 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 1005 markRegUsedInInstr(Reg); 1006 } 1007 } 1008 1009 unsigned DefOpEnd = MI->getNumOperands(); 1010 if (MI->isCall()) { 1011 // Spill all virtregs before a call. This serves one purpose: If an 1012 // exception is thrown, the landing pad is going to expect to find 1013 // registers in their spill slots. 1014 // Note: although this is appealing to just consider all definitions 1015 // as call-clobbered, this is not correct because some of those 1016 // definitions may be used later on and we do not want to reuse 1017 // those for virtual registers in between. 1018 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1019 spillAll(MI); 1020 1021 // The imp-defs are skipped below, but we still need to mark those 1022 // registers as used by the function. 1023 SkippedInstrs.insert(&MCID); 1024 } 1025 1026 // Third scan. 1027 // Allocate defs and collect dead defs. 1028 for (unsigned i = 0; i != DefOpEnd; ++i) { 1029 MachineOperand &MO = MI->getOperand(i); 1030 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1031 continue; 1032 unsigned Reg = MO.getReg(); 1033 1034 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1035 if (!MRI->isAllocatable(Reg)) continue; 1036 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1037 continue; 1038 } 1039 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1040 unsigned PhysReg = LRI->PhysReg; 1041 if (setPhysReg(MI, i, PhysReg)) { 1042 VirtDead.push_back(Reg); 1043 CopyDst = 0; // cancel coalescing; 1044 } else 1045 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1046 } 1047 1048 // Kill dead defs after the scan to ensure that multiple defs of the same 1049 // register are allocated identically. We didn't need to do this for uses 1050 // because we are crerating our own kill flags, and they are always at the 1051 // last use. 1052 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1053 killVirtReg(VirtDead[i]); 1054 VirtDead.clear(); 1055 1056 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1057 DEBUG(dbgs() << "-- coalescing: " << *MI); 1058 Coalesced.push_back(MI); 1059 } else { 1060 DEBUG(dbgs() << "<< " << *MI); 1061 } 1062 } 1063 1064 // Spill all physical registers holding virtual registers now. 1065 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1066 spillAll(MBB->getFirstTerminator()); 1067 1068 // Erase all the coalesced copies. We are delaying it until now because 1069 // LiveVirtRegs might refer to the instrs. 1070 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1071 MBB->erase(Coalesced[i]); 1072 NumCopies += Coalesced.size(); 1073 1074 DEBUG(MBB->dump()); 1075 } 1076 1077 /// runOnMachineFunction - Register allocate the whole function 1078 /// 1079 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1080 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1081 << "********** Function: " << Fn.getName() << '\n'); 1082 MF = &Fn; 1083 MRI = &MF->getRegInfo(); 1084 TRI = MF->getSubtarget().getRegisterInfo(); 1085 TII = MF->getSubtarget().getInstrInfo(); 1086 MRI->freezeReservedRegs(Fn); 1087 RegClassInfo.runOnMachineFunction(Fn); 1088 UsedInInstr.clear(); 1089 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1090 1091 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1092 1093 // initialize the virtual->physical register map to have a 'null' 1094 // mapping for all virtual registers 1095 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1096 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1097 1098 // Loop over all of the basic blocks, eliminating virtual register references 1099 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1100 MBBi != MBBe; ++MBBi) { 1101 MBB = &*MBBi; 1102 AllocateBasicBlock(); 1103 } 1104 1105 // All machine operands and other references to virtual registers have been 1106 // replaced. Remove the virtual registers. 1107 MRI->clearVirtRegs(); 1108 1109 SkippedInstrs.clear(); 1110 StackSlotForVirtReg.clear(); 1111 LiveDbgValueMap.clear(); 1112 return true; 1113 } 1114 1115 FunctionPass *llvm::createFastRegisterAllocator() { 1116 return new RAFast(); 1117 } 1118