1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <tuple> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumStores, "Number of stores added"); 55 STATISTIC(NumLoads , "Number of loads added"); 56 STATISTIC(NumCoalesced, "Number of copies coalesced"); 57 58 static RegisterRegAlloc 59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 60 61 namespace { 62 63 class RegAllocFast : public MachineFunctionPass { 64 public: 65 static char ID; 66 67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 68 69 private: 70 MachineFrameInfo *MFI; 71 MachineRegisterInfo *MRI; 72 const TargetRegisterInfo *TRI; 73 const TargetInstrInfo *TII; 74 RegisterClassInfo RegClassInfo; 75 76 /// Basic block currently being allocated. 77 MachineBasicBlock *MBB; 78 79 /// Maps virtual regs to the frame index where these values are spilled. 80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 81 82 /// Everything we know about a live virtual register. 83 struct LiveReg { 84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 85 unsigned VirtReg; ///< Virtual register number. 86 MCPhysReg PhysReg = 0; ///< Currently held here. 87 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 88 bool Dirty = false; ///< Register needs spill. 89 90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 91 92 unsigned getSparseSetIndex() const { 93 return TargetRegisterInfo::virtReg2Index(VirtReg); 94 } 95 }; 96 97 using LiveRegMap = SparseSet<LiveReg>; 98 /// This map contains entries for each virtual register that is currently 99 /// available in a physical register. 100 LiveRegMap LiveVirtRegs; 101 102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 103 104 /// Has a bit set for every virtual register for which it was determined 105 /// that it is alive across blocks. 106 BitVector MayLiveAcrossBlocks; 107 108 /// State of a physical register. 109 enum RegState { 110 /// A disabled register is not available for allocation, but an alias may 111 /// be in use. A register can only be moved out of the disabled state if 112 /// all aliases are disabled. 113 regDisabled, 114 115 /// A free register is not currently in use and can be allocated 116 /// immediately without checking aliases. 117 regFree, 118 119 /// A reserved register has been assigned explicitly (e.g., setting up a 120 /// call parameter), and it remains reserved until it is used. 121 regReserved 122 123 /// A register state may also be a virtual register number, indication 124 /// that the physical register is currently allocated to a virtual 125 /// register. In that case, LiveVirtRegs contains the inverse mapping. 126 }; 127 128 /// Maps each physical register to a RegState enum or a virtual register. 129 std::vector<unsigned> PhysRegState; 130 131 SmallVector<unsigned, 16> VirtDead; 132 SmallVector<MachineInstr *, 32> Coalesced; 133 134 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 RegUnitSet UsedInInstr; 138 139 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 140 141 /// Mark a physreg as used in this instruction. 142 void markRegUsedInInstr(MCPhysReg PhysReg) { 143 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 144 UsedInInstr.insert(*Units); 145 } 146 147 /// Check if a physreg or any of its aliases are used in this instruction. 148 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 150 if (UsedInInstr.count(*Units)) 151 return true; 152 return false; 153 } 154 155 enum : unsigned { 156 spillClean = 50, 157 spillDirty = 100, 158 spillPrefBonus = 20, 159 spillImpossible = ~0u 160 }; 161 162 public: 163 StringRef getPassName() const override { return "Fast Register Allocator"; } 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 170 MachineFunctionProperties getRequiredProperties() const override { 171 return MachineFunctionProperties().set( 172 MachineFunctionProperties::Property::NoPHIs); 173 } 174 175 MachineFunctionProperties getSetProperties() const override { 176 return MachineFunctionProperties().set( 177 MachineFunctionProperties::Property::NoVRegs); 178 } 179 180 private: 181 bool runOnMachineFunction(MachineFunction &MF) override; 182 183 void allocateBasicBlock(MachineBasicBlock &MBB); 184 void allocateInstruction(MachineInstr &MI); 185 void handleDebugValue(MachineInstr &MI); 186 void handleThroughOperands(MachineInstr &MI, 187 SmallVectorImpl<unsigned> &VirtDead); 188 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 189 190 void addKillFlag(const LiveReg &LRI); 191 void killVirtReg(LiveReg &LR); 192 void killVirtReg(unsigned VirtReg); 193 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 194 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 195 196 void usePhysReg(MachineOperand &MO); 197 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 198 RegState NewState); 199 unsigned calcSpillCost(MCPhysReg PhysReg) const; 200 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 201 202 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 203 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 204 } 205 206 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 207 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 208 } 209 210 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 211 void allocVirtRegUndef(MachineOperand &MO); 212 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 213 unsigned Hint); 214 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 215 unsigned Hint); 216 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 217 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 218 219 unsigned traceCopies(unsigned VirtReg) const; 220 unsigned traceCopyChain(unsigned Reg) const; 221 222 int getStackSpaceFor(unsigned VirtReg); 223 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 224 MCPhysReg AssignedReg, bool Kill); 225 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 226 MCPhysReg PhysReg); 227 228 bool mayLiveOut(unsigned VirtReg); 229 230 void dumpState(); 231 }; 232 233 } // end anonymous namespace 234 235 char RegAllocFast::ID = 0; 236 237 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 238 false) 239 240 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 241 PhysRegState[PhysReg] = NewState; 242 } 243 244 /// This allocates space for the specified virtual register to be held on the 245 /// stack. 246 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 247 // Find the location Reg would belong... 248 int SS = StackSlotForVirtReg[VirtReg]; 249 // Already has space allocated? 250 if (SS != -1) 251 return SS; 252 253 // Allocate a new stack object for this spill location... 254 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 255 unsigned Size = TRI->getSpillSize(RC); 256 unsigned Align = TRI->getSpillAlignment(RC); 257 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 258 259 // Assign the slot. 260 StackSlotForVirtReg[VirtReg] = FrameIdx; 261 return FrameIdx; 262 } 263 264 /// Returns false if \p VirtReg is known to not live out of the current block. 265 bool RegAllocFast::mayLiveOut(unsigned VirtReg) { 266 if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) { 267 // Cannot be live-out if there are no successors. 268 return !MBB->succ_empty(); 269 } 270 271 // If this block loops back to itself, it would be necessary to check whether 272 // the use comes after the def. 273 if (MBB->isSuccessor(MBB)) 274 return true; 275 276 // See if the first \p Limit uses of the register are all in the current 277 // block. 278 static const unsigned Limit = 8; 279 unsigned C = 0; 280 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 281 if (UseInst.getParent() != MBB || ++C >= Limit) { 282 MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); 283 // Cannot be live-out if there are no successors. 284 return !MBB->succ_empty(); 285 } 286 } 287 288 return false; 289 } 290 291 /// Insert spill instruction for \p AssignedReg before \p Before. Update 292 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 293 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 294 MCPhysReg AssignedReg, bool Kill) { 295 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 296 << " in " << printReg(AssignedReg, TRI)); 297 int FI = getStackSpaceFor(VirtReg); 298 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 299 300 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 301 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 302 ++NumStores; 303 304 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 305 // identify spilled location as the place to find corresponding variable's 306 // value. 307 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 308 for (MachineInstr *DBG : LRIDbgValues) { 309 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 310 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 311 (void)NewDV; 312 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 313 } 314 // Now this register is spilled there is should not be any DBG_VALUE 315 // pointing to this register because they are all pointing to spilled value 316 // now. 317 LRIDbgValues.clear(); 318 } 319 320 /// Insert reload instruction for \p PhysReg before \p Before. 321 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 322 MCPhysReg PhysReg) { 323 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 324 << printReg(PhysReg, TRI) << '\n'); 325 int FI = getStackSpaceFor(VirtReg); 326 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 327 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 328 ++NumLoads; 329 } 330 331 /// Return true if MO is the only remaining reference to its virtual register, 332 /// and it is guaranteed to be a block-local register. 333 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 334 // If the register has ever been spilled or reloaded, we conservatively assume 335 // it is a global register used in multiple blocks. 336 if (StackSlotForVirtReg[MO.getReg()] != -1) 337 return false; 338 339 // Check that the use/def chain has exactly one operand - MO. 340 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 341 if (&*I != &MO) 342 return false; 343 return ++I == MRI->reg_nodbg_end(); 344 } 345 346 /// Set kill flags on last use of a virtual register. 347 void RegAllocFast::addKillFlag(const LiveReg &LR) { 348 if (!LR.LastUse) return; 349 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 350 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 351 if (MO.getReg() == LR.PhysReg) 352 MO.setIsKill(); 353 // else, don't do anything we are problably redefining a 354 // subreg of this register and given we don't track which 355 // lanes are actually dead, we cannot insert a kill flag here. 356 // Otherwise we may end up in a situation like this: 357 // ... = (MO) physreg:sub1, implicit killed physreg 358 // ... <== Here we would allow later pass to reuse physreg:sub1 359 // which is potentially wrong. 360 // LR:sub0 = ... 361 // ... = LR.sub1 <== This is going to use physreg:sub1 362 } 363 } 364 365 /// Mark virtreg as no longer available. 366 void RegAllocFast::killVirtReg(LiveReg &LR) { 367 addKillFlag(LR); 368 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 369 "Broken RegState mapping"); 370 setPhysRegState(LR.PhysReg, regFree); 371 LR.PhysReg = 0; 372 } 373 374 /// Mark virtreg as no longer available. 375 void RegAllocFast::killVirtReg(unsigned VirtReg) { 376 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 377 "killVirtReg needs a virtual register"); 378 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 379 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 380 killVirtReg(*LRI); 381 } 382 383 /// This method spills the value specified by VirtReg into the corresponding 384 /// stack slot if needed. 385 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 386 unsigned VirtReg) { 387 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 388 "Spilling a physical register is illegal!"); 389 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 390 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 391 "Spilling unmapped virtual register"); 392 spillVirtReg(MI, *LRI); 393 } 394 395 /// Do the actual work of spilling. 396 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 397 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 398 399 if (LR.Dirty) { 400 // If this physreg is used by the instruction, we want to kill it on the 401 // instruction, not on the spill. 402 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 403 LR.Dirty = false; 404 405 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 406 407 if (SpillKill) 408 LR.LastUse = nullptr; // Don't kill register again 409 } 410 killVirtReg(LR); 411 } 412 413 /// Spill all dirty virtregs without killing them. 414 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 415 if (LiveVirtRegs.empty()) 416 return; 417 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 418 // of spilling here is deterministic, if arbitrary. 419 for (LiveReg &LR : LiveVirtRegs) { 420 if (!LR.PhysReg) 421 continue; 422 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 423 continue; 424 spillVirtReg(MI, LR); 425 } 426 LiveVirtRegs.clear(); 427 } 428 429 /// Handle the direct use of a physical register. Check that the register is 430 /// not used by a virtreg. Kill the physreg, marking it free. This may add 431 /// implicit kills to MO->getParent() and invalidate MO. 432 void RegAllocFast::usePhysReg(MachineOperand &MO) { 433 // Ignore undef uses. 434 if (MO.isUndef()) 435 return; 436 437 unsigned PhysReg = MO.getReg(); 438 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 439 "Bad usePhysReg operand"); 440 441 markRegUsedInInstr(PhysReg); 442 switch (PhysRegState[PhysReg]) { 443 case regDisabled: 444 break; 445 case regReserved: 446 PhysRegState[PhysReg] = regFree; 447 LLVM_FALLTHROUGH; 448 case regFree: 449 MO.setIsKill(); 450 return; 451 default: 452 // The physreg was allocated to a virtual register. That means the value we 453 // wanted has been clobbered. 454 llvm_unreachable("Instruction uses an allocated register"); 455 } 456 457 // Maybe a superregister is reserved? 458 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 459 MCPhysReg Alias = *AI; 460 switch (PhysRegState[Alias]) { 461 case regDisabled: 462 break; 463 case regReserved: 464 // Either PhysReg is a subregister of Alias and we mark the 465 // whole register as free, or PhysReg is the superregister of 466 // Alias and we mark all the aliases as disabled before freeing 467 // PhysReg. 468 // In the latter case, since PhysReg was disabled, this means that 469 // its value is defined only by physical sub-registers. This check 470 // is performed by the assert of the default case in this loop. 471 // Note: The value of the superregister may only be partial 472 // defined, that is why regDisabled is a valid state for aliases. 473 assert((TRI->isSuperRegister(PhysReg, Alias) || 474 TRI->isSuperRegister(Alias, PhysReg)) && 475 "Instruction is not using a subregister of a reserved register"); 476 LLVM_FALLTHROUGH; 477 case regFree: 478 if (TRI->isSuperRegister(PhysReg, Alias)) { 479 // Leave the superregister in the working set. 480 setPhysRegState(Alias, regFree); 481 MO.getParent()->addRegisterKilled(Alias, TRI, true); 482 return; 483 } 484 // Some other alias was in the working set - clear it. 485 setPhysRegState(Alias, regDisabled); 486 break; 487 default: 488 llvm_unreachable("Instruction uses an alias of an allocated register"); 489 } 490 } 491 492 // All aliases are disabled, bring register into working set. 493 setPhysRegState(PhysReg, regFree); 494 MO.setIsKill(); 495 } 496 497 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 498 /// similar to defineVirtReg except the physreg is reserved instead of 499 /// allocated. 500 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 501 MCPhysReg PhysReg, RegState NewState) { 502 markRegUsedInInstr(PhysReg); 503 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 504 case regDisabled: 505 break; 506 default: 507 spillVirtReg(MI, VirtReg); 508 LLVM_FALLTHROUGH; 509 case regFree: 510 case regReserved: 511 setPhysRegState(PhysReg, NewState); 512 return; 513 } 514 515 // This is a disabled register, disable all aliases. 516 setPhysRegState(PhysReg, NewState); 517 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 518 MCPhysReg Alias = *AI; 519 switch (unsigned VirtReg = PhysRegState[Alias]) { 520 case regDisabled: 521 break; 522 default: 523 spillVirtReg(MI, VirtReg); 524 LLVM_FALLTHROUGH; 525 case regFree: 526 case regReserved: 527 setPhysRegState(Alias, regDisabled); 528 if (TRI->isSuperRegister(PhysReg, Alias)) 529 return; 530 break; 531 } 532 } 533 } 534 535 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 536 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 537 /// disabled - it can be allocated directly. 538 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 539 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 540 if (isRegUsedInInstr(PhysReg)) { 541 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 542 << " is already used in instr.\n"); 543 return spillImpossible; 544 } 545 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 546 case regDisabled: 547 break; 548 case regFree: 549 return 0; 550 case regReserved: 551 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 552 << printReg(PhysReg, TRI) << " is reserved already.\n"); 553 return spillImpossible; 554 default: { 555 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 556 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 557 "Missing VirtReg entry"); 558 return LRI->Dirty ? spillDirty : spillClean; 559 } 560 } 561 562 // This is a disabled register, add up cost of aliases. 563 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 564 unsigned Cost = 0; 565 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 566 MCPhysReg Alias = *AI; 567 switch (unsigned VirtReg = PhysRegState[Alias]) { 568 case regDisabled: 569 break; 570 case regFree: 571 ++Cost; 572 break; 573 case regReserved: 574 return spillImpossible; 575 default: { 576 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 577 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 578 "Missing VirtReg entry"); 579 Cost += LRI->Dirty ? spillDirty : spillClean; 580 break; 581 } 582 } 583 } 584 return Cost; 585 } 586 587 /// This method updates local state so that we know that PhysReg is the 588 /// proper container for VirtReg now. The physical register must not be used 589 /// for anything else when this is called. 590 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 591 unsigned VirtReg = LR.VirtReg; 592 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 593 << printReg(PhysReg, TRI) << '\n'); 594 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 595 assert(PhysReg != 0 && "Trying to assign no register"); 596 LR.PhysReg = PhysReg; 597 setPhysRegState(PhysReg, VirtReg); 598 } 599 600 static bool isCoalescable(const MachineInstr &MI) { 601 return MI.isFullCopy(); 602 } 603 604 unsigned RegAllocFast::traceCopyChain(unsigned Reg) const { 605 static const unsigned ChainLengthLimit = 3; 606 unsigned C = 0; 607 do { 608 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 609 return Reg; 610 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 611 612 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 613 if (!VRegDef || !isCoalescable(*VRegDef)) 614 return 0; 615 Reg = VRegDef->getOperand(1).getReg(); 616 } while (++C <= ChainLengthLimit); 617 return 0; 618 } 619 620 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 621 /// chain of copies to check whether we reach a physical register we can 622 /// coalesce with. 623 unsigned RegAllocFast::traceCopies(unsigned VirtReg) const { 624 static const unsigned DefLimit = 3; 625 unsigned C = 0; 626 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 627 if (isCoalescable(MI)) { 628 unsigned Reg = MI.getOperand(1).getReg(); 629 Reg = traceCopyChain(Reg); 630 if (Reg != 0) 631 return Reg; 632 } 633 634 if (++C >= DefLimit) 635 break; 636 } 637 return 0; 638 } 639 640 /// Allocates a physical register for VirtReg. 641 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) { 642 const unsigned VirtReg = LR.VirtReg; 643 644 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 645 "Can only allocate virtual registers"); 646 647 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 648 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 649 << " in class " << TRI->getRegClassName(&RC) 650 << " with hint " << printReg(Hint0, TRI) << '\n'); 651 652 // Take hint when possible. 653 if (TargetRegisterInfo::isPhysicalRegister(Hint0) && 654 MRI->isAllocatable(Hint0) && RC.contains(Hint0)) { 655 // Ignore the hint if we would have to spill a dirty register. 656 unsigned Cost = calcSpillCost(Hint0); 657 if (Cost < spillDirty) { 658 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 659 << '\n'); 660 if (Cost) 661 definePhysReg(MI, Hint0, regFree); 662 assignVirtToPhysReg(LR, Hint0); 663 return; 664 } else { 665 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 666 << "occupied\n"); 667 } 668 } else { 669 Hint0 = 0; 670 } 671 672 // Try other hint. 673 unsigned Hint1 = traceCopies(VirtReg); 674 if (TargetRegisterInfo::isPhysicalRegister(Hint1) && 675 MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 676 !isRegUsedInInstr(Hint1)) { 677 // Ignore the hint if we would have to spill a dirty register. 678 unsigned Cost = calcSpillCost(Hint1); 679 if (Cost < spillDirty) { 680 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 681 << '\n'); 682 if (Cost) 683 definePhysReg(MI, Hint1, regFree); 684 assignVirtToPhysReg(LR, Hint1); 685 return; 686 } else { 687 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 688 << "occupied\n"); 689 } 690 } else { 691 Hint1 = 0; 692 } 693 694 MCPhysReg BestReg = 0; 695 unsigned BestCost = spillImpossible; 696 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 697 for (MCPhysReg PhysReg : AllocationOrder) { 698 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 699 unsigned Cost = calcSpillCost(PhysReg); 700 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 701 // Immediate take a register with cost 0. 702 if (Cost == 0) { 703 assignVirtToPhysReg(LR, PhysReg); 704 return; 705 } 706 707 if (PhysReg == Hint1 || PhysReg == Hint0) 708 Cost -= spillPrefBonus; 709 710 if (Cost < BestCost) { 711 BestReg = PhysReg; 712 BestCost = Cost; 713 } 714 } 715 716 if (!BestReg) { 717 // Nothing we can do: Report an error and keep going with an invalid 718 // allocation. 719 if (MI.isInlineAsm()) 720 MI.emitError("inline assembly requires more registers than available"); 721 else 722 MI.emitError("ran out of registers during register allocation"); 723 definePhysReg(MI, *AllocationOrder.begin(), regFree); 724 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 725 return; 726 } 727 728 definePhysReg(MI, BestReg, regFree); 729 assignVirtToPhysReg(LR, BestReg); 730 } 731 732 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 733 assert(MO.isUndef() && "expected undef use"); 734 unsigned VirtReg = MO.getReg(); 735 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg"); 736 737 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 738 MCPhysReg PhysReg; 739 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 740 PhysReg = LRI->PhysReg; 741 } else { 742 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 743 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 744 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 745 PhysReg = AllocationOrder[0]; 746 } 747 748 unsigned SubRegIdx = MO.getSubReg(); 749 if (SubRegIdx != 0) { 750 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 751 MO.setSubReg(0); 752 } 753 MO.setReg(PhysReg); 754 MO.setIsRenamable(true); 755 } 756 757 /// Allocates a register for VirtReg and mark it as dirty. 758 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 759 unsigned VirtReg, unsigned Hint) { 760 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 761 "Not a virtual register"); 762 LiveRegMap::iterator LRI; 763 bool New; 764 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 765 if (!LRI->PhysReg) { 766 // If there is no hint, peek at the only use of this register. 767 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 768 MRI->hasOneNonDBGUse(VirtReg)) { 769 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 770 // It's a copy, use the destination register as a hint. 771 if (UseMI.isCopyLike()) 772 Hint = UseMI.getOperand(0).getReg(); 773 } 774 allocVirtReg(MI, *LRI, Hint); 775 } else if (LRI->LastUse) { 776 // Redefining a live register - kill at the last use, unless it is this 777 // instruction defining VirtReg multiple times. 778 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 779 addKillFlag(*LRI); 780 } 781 assert(LRI->PhysReg && "Register not assigned"); 782 LRI->LastUse = &MI; 783 LRI->LastOpNum = OpNum; 784 LRI->Dirty = true; 785 markRegUsedInInstr(LRI->PhysReg); 786 return LRI->PhysReg; 787 } 788 789 /// Make sure VirtReg is available in a physreg and return it. 790 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 791 unsigned OpNum, 792 unsigned VirtReg, 793 unsigned Hint) { 794 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 795 "Not a virtual register"); 796 LiveRegMap::iterator LRI; 797 bool New; 798 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 799 MachineOperand &MO = MI.getOperand(OpNum); 800 if (!LRI->PhysReg) { 801 allocVirtReg(MI, *LRI, Hint); 802 reload(MI, VirtReg, LRI->PhysReg); 803 } else if (LRI->Dirty) { 804 if (isLastUseOfLocalReg(MO)) { 805 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 806 if (MO.isUse()) 807 MO.setIsKill(); 808 else 809 MO.setIsDead(); 810 } else if (MO.isKill()) { 811 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 812 MO.setIsKill(false); 813 } else if (MO.isDead()) { 814 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 815 MO.setIsDead(false); 816 } 817 } else if (MO.isKill()) { 818 // We must remove kill flags from uses of reloaded registers because the 819 // register would be killed immediately, and there might be a second use: 820 // %foo = OR killed %x, %x 821 // This would cause a second reload of %x into a different register. 822 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 823 MO.setIsKill(false); 824 } else if (MO.isDead()) { 825 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 826 MO.setIsDead(false); 827 } 828 assert(LRI->PhysReg && "Register not assigned"); 829 LRI->LastUse = &MI; 830 LRI->LastOpNum = OpNum; 831 markRegUsedInInstr(LRI->PhysReg); 832 return *LRI; 833 } 834 835 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 836 /// may invalidate any operand pointers. Return true if the operand kills its 837 /// register. 838 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 839 MCPhysReg PhysReg) { 840 bool Dead = MO.isDead(); 841 if (!MO.getSubReg()) { 842 MO.setReg(PhysReg); 843 MO.setIsRenamable(true); 844 return MO.isKill() || Dead; 845 } 846 847 // Handle subregister index. 848 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 849 MO.setIsRenamable(true); 850 MO.setSubReg(0); 851 852 // A kill flag implies killing the full register. Add corresponding super 853 // register kill. 854 if (MO.isKill()) { 855 MI.addRegisterKilled(PhysReg, TRI, true); 856 return true; 857 } 858 859 // A <def,read-undef> of a sub-register requires an implicit def of the full 860 // register. 861 if (MO.isDef() && MO.isUndef()) 862 MI.addRegisterDefined(PhysReg, TRI); 863 864 return Dead; 865 } 866 867 // Handles special instruction operand like early clobbers and tied ops when 868 // there are additional physreg defines. 869 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 870 SmallVectorImpl<unsigned> &VirtDead) { 871 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 872 SmallSet<unsigned, 8> ThroughRegs; 873 for (const MachineOperand &MO : MI.operands()) { 874 if (!MO.isReg()) continue; 875 unsigned Reg = MO.getReg(); 876 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 877 continue; 878 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 879 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 880 if (ThroughRegs.insert(Reg).second) 881 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 882 } 883 } 884 885 // If any physreg defines collide with preallocated through registers, 886 // we must spill and reallocate. 887 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 888 for (const MachineOperand &MO : MI.operands()) { 889 if (!MO.isReg() || !MO.isDef()) continue; 890 unsigned Reg = MO.getReg(); 891 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 892 markRegUsedInInstr(Reg); 893 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 894 if (ThroughRegs.count(PhysRegState[*AI])) 895 definePhysReg(MI, *AI, regFree); 896 } 897 } 898 899 SmallVector<unsigned, 8> PartialDefs; 900 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 901 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 902 MachineOperand &MO = MI.getOperand(I); 903 if (!MO.isReg()) continue; 904 unsigned Reg = MO.getReg(); 905 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 906 if (MO.isUse()) { 907 if (!MO.isTied()) continue; 908 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 909 << ") is tied to operand " << MI.findTiedOperandIdx(I) 910 << ".\n"); 911 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 912 MCPhysReg PhysReg = LR.PhysReg; 913 setPhysReg(MI, MO, PhysReg); 914 // Note: we don't update the def operand yet. That would cause the normal 915 // def-scan to attempt spilling. 916 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 917 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 918 // Reload the register, but don't assign to the operand just yet. 919 // That would confuse the later phys-def processing pass. 920 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 921 PartialDefs.push_back(LR.PhysReg); 922 } 923 } 924 925 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 926 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 927 const MachineOperand &MO = MI.getOperand(I); 928 if (!MO.isReg()) continue; 929 unsigned Reg = MO.getReg(); 930 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 931 if (!MO.isEarlyClobber()) 932 continue; 933 // Note: defineVirtReg may invalidate MO. 934 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 935 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 936 VirtDead.push_back(Reg); 937 } 938 939 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 940 UsedInInstr.clear(); 941 for (const MachineOperand &MO : MI.operands()) { 942 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 943 unsigned Reg = MO.getReg(); 944 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 945 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 946 << " as used in instr\n"); 947 markRegUsedInInstr(Reg); 948 } 949 950 // Also mark PartialDefs as used to avoid reallocation. 951 for (unsigned PartialDef : PartialDefs) 952 markRegUsedInInstr(PartialDef); 953 } 954 955 #ifndef NDEBUG 956 void RegAllocFast::dumpState() { 957 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 958 if (PhysRegState[Reg] == regDisabled) continue; 959 dbgs() << " " << printReg(Reg, TRI); 960 switch(PhysRegState[Reg]) { 961 case regFree: 962 break; 963 case regReserved: 964 dbgs() << "*"; 965 break; 966 default: { 967 dbgs() << '=' << printReg(PhysRegState[Reg]); 968 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 969 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 970 "Missing VirtReg entry"); 971 if (LRI->Dirty) 972 dbgs() << "*"; 973 assert(LRI->PhysReg == Reg && "Bad inverse map"); 974 break; 975 } 976 } 977 } 978 dbgs() << '\n'; 979 // Check that LiveVirtRegs is the inverse. 980 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 981 e = LiveVirtRegs.end(); i != e; ++i) { 982 if (!i->PhysReg) 983 continue; 984 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 985 "Bad map key"); 986 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 987 "Bad map value"); 988 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 989 } 990 } 991 #endif 992 993 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 994 const MCInstrDesc &MCID = MI.getDesc(); 995 996 // If this is a copy, we may be able to coalesce. 997 unsigned CopySrcReg = 0; 998 unsigned CopyDstReg = 0; 999 unsigned CopySrcSub = 0; 1000 unsigned CopyDstSub = 0; 1001 if (MI.isCopy()) { 1002 CopyDstReg = MI.getOperand(0).getReg(); 1003 CopySrcReg = MI.getOperand(1).getReg(); 1004 CopyDstSub = MI.getOperand(0).getSubReg(); 1005 CopySrcSub = MI.getOperand(1).getSubReg(); 1006 } 1007 1008 // Track registers used by instruction. 1009 UsedInInstr.clear(); 1010 1011 // First scan. 1012 // Mark physreg uses and early clobbers as used. 1013 // Find the end of the virtreg operands 1014 unsigned VirtOpEnd = 0; 1015 bool hasTiedOps = false; 1016 bool hasEarlyClobbers = false; 1017 bool hasPartialRedefs = false; 1018 bool hasPhysDefs = false; 1019 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1020 MachineOperand &MO = MI.getOperand(i); 1021 // Make sure MRI knows about registers clobbered by regmasks. 1022 if (MO.isRegMask()) { 1023 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1024 continue; 1025 } 1026 if (!MO.isReg()) continue; 1027 unsigned Reg = MO.getReg(); 1028 if (!Reg) continue; 1029 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1030 VirtOpEnd = i+1; 1031 if (MO.isUse()) { 1032 hasTiedOps = hasTiedOps || 1033 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1034 } else { 1035 if (MO.isEarlyClobber()) 1036 hasEarlyClobbers = true; 1037 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1038 hasPartialRedefs = true; 1039 } 1040 continue; 1041 } 1042 if (!MRI->isAllocatable(Reg)) continue; 1043 if (MO.isUse()) { 1044 usePhysReg(MO); 1045 } else if (MO.isEarlyClobber()) { 1046 definePhysReg(MI, Reg, 1047 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1048 hasEarlyClobbers = true; 1049 } else 1050 hasPhysDefs = true; 1051 } 1052 1053 // The instruction may have virtual register operands that must be allocated 1054 // the same register at use-time and def-time: early clobbers and tied 1055 // operands. If there are also physical defs, these registers must avoid 1056 // both physical defs and uses, making them more constrained than normal 1057 // operands. 1058 // Similarly, if there are multiple defs and tied operands, we must make 1059 // sure the same register is allocated to uses and defs. 1060 // We didn't detect inline asm tied operands above, so just make this extra 1061 // pass for all inline asm. 1062 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1063 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1064 handleThroughOperands(MI, VirtDead); 1065 // Don't attempt coalescing when we have funny stuff going on. 1066 CopyDstReg = 0; 1067 // Pretend we have early clobbers so the use operands get marked below. 1068 // This is not necessary for the common case of a single tied use. 1069 hasEarlyClobbers = true; 1070 } 1071 1072 // Second scan. 1073 // Allocate virtreg uses. 1074 bool HasUndefUse = false; 1075 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1076 MachineOperand &MO = MI.getOperand(I); 1077 if (!MO.isReg()) continue; 1078 unsigned Reg = MO.getReg(); 1079 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 1080 if (MO.isUse()) { 1081 if (MO.isUndef()) { 1082 HasUndefUse = true; 1083 // There is no need to allocate a register for an undef use. 1084 continue; 1085 } 1086 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1087 MCPhysReg PhysReg = LR.PhysReg; 1088 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1089 if (setPhysReg(MI, MO, PhysReg)) 1090 killVirtReg(LR); 1091 } 1092 } 1093 1094 // Allocate undef operands. This is a separate step because in a situation 1095 // like ` = OP undef %X, %X` both operands need the same register assign 1096 // so we should perform the normal assignment first. 1097 if (HasUndefUse) { 1098 for (MachineOperand &MO : MI.uses()) { 1099 if (!MO.isReg() || !MO.isUse()) 1100 continue; 1101 unsigned Reg = MO.getReg(); 1102 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1103 continue; 1104 1105 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1106 allocVirtRegUndef(MO); 1107 } 1108 } 1109 1110 // Track registers defined by instruction - early clobbers and tied uses at 1111 // this point. 1112 UsedInInstr.clear(); 1113 if (hasEarlyClobbers) { 1114 for (const MachineOperand &MO : MI.operands()) { 1115 if (!MO.isReg()) continue; 1116 unsigned Reg = MO.getReg(); 1117 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1118 // Look for physreg defs and tied uses. 1119 if (!MO.isDef() && !MO.isTied()) continue; 1120 markRegUsedInInstr(Reg); 1121 } 1122 } 1123 1124 unsigned DefOpEnd = MI.getNumOperands(); 1125 if (MI.isCall()) { 1126 // Spill all virtregs before a call. This serves one purpose: If an 1127 // exception is thrown, the landing pad is going to expect to find 1128 // registers in their spill slots. 1129 // Note: although this is appealing to just consider all definitions 1130 // as call-clobbered, this is not correct because some of those 1131 // definitions may be used later on and we do not want to reuse 1132 // those for virtual registers in between. 1133 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1134 spillAll(MI, /*OnlyLiveOut*/ false); 1135 } 1136 1137 // Third scan. 1138 // Mark all physreg defs as used before allocating virtreg defs. 1139 for (unsigned I = 0; I != DefOpEnd; ++I) { 1140 const MachineOperand &MO = MI.getOperand(I); 1141 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1142 continue; 1143 unsigned Reg = MO.getReg(); 1144 1145 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) || 1146 !MRI->isAllocatable(Reg)) 1147 continue; 1148 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1149 } 1150 1151 // Fourth scan. 1152 // Allocate defs and collect dead defs. 1153 for (unsigned I = 0; I != DefOpEnd; ++I) { 1154 const MachineOperand &MO = MI.getOperand(I); 1155 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1156 continue; 1157 unsigned Reg = MO.getReg(); 1158 1159 // We have already dealt with phys regs in the previous scan. 1160 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1161 continue; 1162 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1163 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1164 VirtDead.push_back(Reg); 1165 CopyDstReg = 0; // cancel coalescing; 1166 } else 1167 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1168 } 1169 1170 // Kill dead defs after the scan to ensure that multiple defs of the same 1171 // register are allocated identically. We didn't need to do this for uses 1172 // because we are crerating our own kill flags, and they are always at the 1173 // last use. 1174 for (unsigned VirtReg : VirtDead) 1175 killVirtReg(VirtReg); 1176 VirtDead.clear(); 1177 1178 LLVM_DEBUG(dbgs() << "<< " << MI); 1179 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1180 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1181 Coalesced.push_back(&MI); 1182 } 1183 } 1184 1185 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1186 MachineOperand &MO = MI.getOperand(0); 1187 1188 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1189 // mostly constants and frame indices. 1190 if (!MO.isReg()) 1191 return; 1192 unsigned Reg = MO.getReg(); 1193 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1194 return; 1195 1196 // See if this virtual register has already been allocated to a physical 1197 // register or spilled to a stack slot. 1198 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1199 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1200 setPhysReg(MI, MO, LRI->PhysReg); 1201 } else { 1202 int SS = StackSlotForVirtReg[Reg]; 1203 if (SS != -1) { 1204 // Modify DBG_VALUE now that the value is in a spill slot. 1205 updateDbgValueForSpill(MI, SS); 1206 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1207 return; 1208 } 1209 1210 // We can't allocate a physreg for a DebugValue, sorry! 1211 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1212 MO.setReg(0); 1213 } 1214 1215 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1216 // that future spills of Reg will have DBG_VALUEs. 1217 LiveDbgValueMap[Reg].push_back(&MI); 1218 } 1219 1220 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1221 this->MBB = &MBB; 1222 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1223 1224 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1225 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1226 1227 MachineBasicBlock::iterator MII = MBB.begin(); 1228 1229 // Add live-in registers as live. 1230 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1231 if (MRI->isAllocatable(LI.PhysReg)) 1232 definePhysReg(MII, LI.PhysReg, regReserved); 1233 1234 VirtDead.clear(); 1235 Coalesced.clear(); 1236 1237 // Otherwise, sequentially allocate each instruction in the MBB. 1238 for (MachineInstr &MI : MBB) { 1239 LLVM_DEBUG( 1240 dbgs() << "\n>> " << MI << "Regs:"; 1241 dumpState() 1242 ); 1243 1244 // Special handling for debug values. Note that they are not allowed to 1245 // affect codegen of the other instructions in any way. 1246 if (MI.isDebugValue()) { 1247 handleDebugValue(MI); 1248 continue; 1249 } 1250 1251 allocateInstruction(MI); 1252 } 1253 1254 // Spill all physical registers holding virtual registers now. 1255 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1256 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1257 1258 // Erase all the coalesced copies. We are delaying it until now because 1259 // LiveVirtRegs might refer to the instrs. 1260 for (MachineInstr *MI : Coalesced) 1261 MBB.erase(MI); 1262 NumCoalesced += Coalesced.size(); 1263 1264 LLVM_DEBUG(MBB.dump()); 1265 } 1266 1267 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1268 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1269 << "********** Function: " << MF.getName() << '\n'); 1270 MRI = &MF.getRegInfo(); 1271 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1272 TRI = STI.getRegisterInfo(); 1273 TII = STI.getInstrInfo(); 1274 MFI = &MF.getFrameInfo(); 1275 MRI->freezeReservedRegs(MF); 1276 RegClassInfo.runOnMachineFunction(MF); 1277 UsedInInstr.clear(); 1278 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1279 1280 // initialize the virtual->physical register map to have a 'null' 1281 // mapping for all virtual registers 1282 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1283 StackSlotForVirtReg.resize(NumVirtRegs); 1284 LiveVirtRegs.setUniverse(NumVirtRegs); 1285 MayLiveAcrossBlocks.clear(); 1286 MayLiveAcrossBlocks.resize(NumVirtRegs); 1287 1288 // Loop over all of the basic blocks, eliminating virtual register references 1289 for (MachineBasicBlock &MBB : MF) 1290 allocateBasicBlock(MBB); 1291 1292 // All machine operands and other references to virtual registers have been 1293 // replaced. Remove the virtual registers. 1294 MRI->clearVirtRegs(); 1295 1296 StackSlotForVirtReg.clear(); 1297 LiveDbgValueMap.clear(); 1298 return true; 1299 } 1300 1301 FunctionPass *llvm::createFastRegisterAllocator() { 1302 return new RegAllocFast(); 1303 } 1304