1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCopies, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 unsigned VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(unsigned v) : VirtReg(v) {} 92 93 unsigned getSparseSetIndex() const { 94 return TargetRegisterInfo::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 100 /// This map contains entries for each virtual register that is currently 101 /// available in a physical register. 102 LiveRegMap LiveVirtRegs; 103 104 DenseMap<unsigned, SmallVector<MachineInstr *, 4>> LiveDbgValueMap; 105 106 /// Track the state of a physical register. 107 enum RegState { 108 /// A disabled register is not available for allocation, but an alias may 109 /// be in use. A register can only be moved out of the disabled state if 110 /// all aliases are disabled. 111 regDisabled, 112 113 /// A free register is not currently in use and can be allocated 114 /// immediately without checking aliases. 115 regFree, 116 117 /// A reserved register has been assigned explicitly (e.g., setting up a 118 /// call parameter), and it remains reserved until it is used. 119 regReserved 120 121 /// A register state may also be a virtual register number, indication 122 /// that the physical register is currently allocated to a virtual 123 /// register. In that case, LiveVirtRegs contains the inverse mapping. 124 }; 125 126 /// One of the RegState enums, or a virtreg. 127 std::vector<unsigned> PhysRegState; 128 129 SmallVector<unsigned, 16> VirtDead; 130 SmallVector<MachineInstr *, 32> Coalesced; 131 132 /// Set of register units. 133 using UsedInInstrSet = SparseSet<unsigned>; 134 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 UsedInInstrSet UsedInInstr; 138 139 /// Mark a physreg as used in this instruction. 140 void markRegUsedInInstr(MCPhysReg PhysReg) { 141 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 142 UsedInInstr.insert(*Units); 143 } 144 145 /// Check if a physreg or any of its aliases are used in this instruction. 146 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 147 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 148 if (UsedInInstr.count(*Units)) 149 return true; 150 return false; 151 } 152 153 /// This flag is set when LiveRegMap will be cleared completely after 154 /// spilling all live registers. LiveRegMap entries should not be erased. 155 bool isBulkSpilling = false; 156 157 enum : unsigned { 158 spillClean = 1, 159 spillDirty = 100, 160 spillImpossible = ~0u 161 }; 162 163 public: 164 StringRef getPassName() const override { return "Fast Register Allocator"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesCFG(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoPHIs); 174 } 175 176 MachineFunctionProperties getSetProperties() const override { 177 return MachineFunctionProperties().set( 178 MachineFunctionProperties::Property::NoVRegs); 179 } 180 181 private: 182 bool runOnMachineFunction(MachineFunction &Fn) override; 183 void allocateBasicBlock(MachineBasicBlock &MBB); 184 void handleThroughOperands(MachineInstr &MI, 185 SmallVectorImpl<unsigned> &VirtDead); 186 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC); 187 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 188 189 void addKillFlag(const LiveReg &LRI); 190 void killVirtReg(LiveRegMap::iterator LRI); 191 void killVirtReg(unsigned VirtReg); 192 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 193 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 194 195 void usePhysReg(MachineOperand &MO); 196 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 197 RegState NewState); 198 unsigned calcSpillCost(MCPhysReg PhysReg) const; 199 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 200 201 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 206 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 207 } 208 209 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, MCPhysReg PhysReg); 210 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 211 unsigned Hint); 212 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 213 unsigned VirtReg, unsigned Hint); 214 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 215 unsigned VirtReg, unsigned Hint); 216 void spillAll(MachineBasicBlock::iterator MI); 217 bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg); 218 219 void dumpState(); 220 }; 221 222 } // end anonymous namespace 223 224 char RegAllocFast::ID = 0; 225 226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 227 false) 228 229 /// This allocates space for the specified virtual register to be held on the 230 /// stack. 231 int RegAllocFast::getStackSpaceFor(unsigned VirtReg, 232 const TargetRegisterClass &RC) { 233 // Find the location Reg would belong... 234 int SS = StackSlotForVirtReg[VirtReg]; 235 // Already has space allocated? 236 if (SS != -1) 237 return SS; 238 239 // Allocate a new stack object for this spill location... 240 unsigned Size = TRI->getSpillSize(RC); 241 unsigned Align = TRI->getSpillAlignment(RC); 242 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 243 244 // Assign the slot. 245 StackSlotForVirtReg[VirtReg] = FrameIdx; 246 return FrameIdx; 247 } 248 249 /// Return true if MO is the only remaining reference to its virtual register, 250 /// and it is guaranteed to be a block-local register. 251 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 252 // If the register has ever been spilled or reloaded, we conservatively assume 253 // it is a global register used in multiple blocks. 254 if (StackSlotForVirtReg[MO.getReg()] != -1) 255 return false; 256 257 // Check that the use/def chain has exactly one operand - MO. 258 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 259 if (&*I != &MO) 260 return false; 261 return ++I == MRI->reg_nodbg_end(); 262 } 263 264 /// Set kill flags on last use of a virtual register. 265 void RegAllocFast::addKillFlag(const LiveReg &LR) { 266 if (!LR.LastUse) return; 267 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 268 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 269 if (MO.getReg() == LR.PhysReg) 270 MO.setIsKill(); 271 // else, don't do anything we are problably redefining a 272 // subreg of this register and given we don't track which 273 // lanes are actually dead, we cannot insert a kill flag here. 274 // Otherwise we may end up in a situation like this: 275 // ... = (MO) physreg:sub1, implicit killed physreg 276 // ... <== Here we would allow later pass to reuse physreg:sub1 277 // which is potentially wrong. 278 // LR:sub0 = ... 279 // ... = LR.sub1 <== This is going to use physreg:sub1 280 } 281 } 282 283 /// Mark virtreg as no longer available. 284 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) { 285 addKillFlag(*LRI); 286 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 287 "Broken RegState mapping"); 288 PhysRegState[LRI->PhysReg] = regFree; 289 // Erase from LiveVirtRegs unless we're spilling in bulk. 290 if (!isBulkSpilling) 291 LiveVirtRegs.erase(LRI); 292 } 293 294 /// Mark virtreg as no longer available. 295 void RegAllocFast::killVirtReg(unsigned VirtReg) { 296 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 297 "killVirtReg needs a virtual register"); 298 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 299 if (LRI != LiveVirtRegs.end()) 300 killVirtReg(LRI); 301 } 302 303 /// This method spills the value specified by VirtReg into the corresponding 304 /// stack slot if needed. 305 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 306 unsigned VirtReg) { 307 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 308 "Spilling a physical register is illegal!"); 309 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 310 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 311 spillVirtReg(MI, LRI); 312 } 313 314 /// Do the actual work of spilling. 315 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 316 LiveRegMap::iterator LRI) { 317 LiveReg &LR = *LRI; 318 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 319 320 if (LR.Dirty) { 321 // If this physreg is used by the instruction, we want to kill it on the 322 // instruction, not on the spill. 323 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 324 LR.Dirty = false; 325 DEBUG(dbgs() << "Spilling " << printReg(LRI->VirtReg, TRI) 326 << " in " << printReg(LR.PhysReg, TRI)); 327 const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg); 328 int FI = getStackSpaceFor(LRI->VirtReg, RC); 329 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 330 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI); 331 ++NumStores; // Update statistics 332 333 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 334 // identify spilled location as the place to find corresponding variable's 335 // value. 336 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 337 LiveDbgValueMap[LRI->VirtReg]; 338 for (MachineInstr *DBG : LRIDbgValues) { 339 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 340 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 341 (void)NewDV; 342 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 343 } 344 // Now this register is spilled there is should not be any DBG_VALUE 345 // pointing to this register because they are all pointing to spilled value 346 // now. 347 LRIDbgValues.clear(); 348 if (SpillKill) 349 LR.LastUse = nullptr; // Don't kill register again 350 } 351 killVirtReg(LRI); 352 } 353 354 /// Spill all dirty virtregs without killing them. 355 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 356 if (LiveVirtRegs.empty()) return; 357 isBulkSpilling = true; 358 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 359 // of spilling here is deterministic, if arbitrary. 360 for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end(); 361 I != E; ++I) 362 spillVirtReg(MI, I); 363 LiveVirtRegs.clear(); 364 isBulkSpilling = false; 365 } 366 367 /// Handle the direct use of a physical register. Check that the register is 368 /// not used by a virtreg. Kill the physreg, marking it free. This may add 369 /// implicit kills to MO->getParent() and invalidate MO. 370 void RegAllocFast::usePhysReg(MachineOperand &MO) { 371 // Ignore undef uses. 372 if (MO.isUndef()) 373 return; 374 375 unsigned PhysReg = MO.getReg(); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 377 "Bad usePhysReg operand"); 378 379 markRegUsedInInstr(PhysReg); 380 switch (PhysRegState[PhysReg]) { 381 case regDisabled: 382 break; 383 case regReserved: 384 PhysRegState[PhysReg] = regFree; 385 LLVM_FALLTHROUGH; 386 case regFree: 387 MO.setIsKill(); 388 return; 389 default: 390 // The physreg was allocated to a virtual register. That means the value we 391 // wanted has been clobbered. 392 llvm_unreachable("Instruction uses an allocated register"); 393 } 394 395 // Maybe a superregister is reserved? 396 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 397 MCPhysReg Alias = *AI; 398 switch (PhysRegState[Alias]) { 399 case regDisabled: 400 break; 401 case regReserved: 402 // Either PhysReg is a subregister of Alias and we mark the 403 // whole register as free, or PhysReg is the superregister of 404 // Alias and we mark all the aliases as disabled before freeing 405 // PhysReg. 406 // In the latter case, since PhysReg was disabled, this means that 407 // its value is defined only by physical sub-registers. This check 408 // is performed by the assert of the default case in this loop. 409 // Note: The value of the superregister may only be partial 410 // defined, that is why regDisabled is a valid state for aliases. 411 assert((TRI->isSuperRegister(PhysReg, Alias) || 412 TRI->isSuperRegister(Alias, PhysReg)) && 413 "Instruction is not using a subregister of a reserved register"); 414 LLVM_FALLTHROUGH; 415 case regFree: 416 if (TRI->isSuperRegister(PhysReg, Alias)) { 417 // Leave the superregister in the working set. 418 PhysRegState[Alias] = regFree; 419 MO.getParent()->addRegisterKilled(Alias, TRI, true); 420 return; 421 } 422 // Some other alias was in the working set - clear it. 423 PhysRegState[Alias] = regDisabled; 424 break; 425 default: 426 llvm_unreachable("Instruction uses an alias of an allocated register"); 427 } 428 } 429 430 // All aliases are disabled, bring register into working set. 431 PhysRegState[PhysReg] = regFree; 432 MO.setIsKill(); 433 } 434 435 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 436 /// similar to defineVirtReg except the physreg is reserved instead of 437 /// allocated. 438 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 439 MCPhysReg PhysReg, RegState NewState) { 440 markRegUsedInInstr(PhysReg); 441 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 442 case regDisabled: 443 break; 444 default: 445 spillVirtReg(MI, VirtReg); 446 LLVM_FALLTHROUGH; 447 case regFree: 448 case regReserved: 449 PhysRegState[PhysReg] = NewState; 450 return; 451 } 452 453 // This is a disabled register, disable all aliases. 454 PhysRegState[PhysReg] = NewState; 455 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 456 MCPhysReg Alias = *AI; 457 switch (unsigned VirtReg = PhysRegState[Alias]) { 458 case regDisabled: 459 break; 460 default: 461 spillVirtReg(MI, VirtReg); 462 LLVM_FALLTHROUGH; 463 case regFree: 464 case regReserved: 465 PhysRegState[Alias] = regDisabled; 466 if (TRI->isSuperRegister(PhysReg, Alias)) 467 return; 468 break; 469 } 470 } 471 } 472 473 /// \brief Return the cost of spilling clearing out PhysReg and aliases so it is 474 /// free for allocation. Returns 0 when PhysReg is free or disabled with all 475 /// aliases disabled - it can be allocated directly. 476 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 477 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 478 if (isRegUsedInInstr(PhysReg)) { 479 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is already used in instr.\n"); 480 return spillImpossible; 481 } 482 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 483 case regDisabled: 484 break; 485 case regFree: 486 return 0; 487 case regReserved: 488 DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 489 << printReg(PhysReg, TRI) << " is reserved already.\n"); 490 return spillImpossible; 491 default: { 492 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 493 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 494 return I->Dirty ? spillDirty : spillClean; 495 } 496 } 497 498 // This is a disabled register, add up cost of aliases. 499 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 500 unsigned Cost = 0; 501 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 502 MCPhysReg Alias = *AI; 503 switch (unsigned VirtReg = PhysRegState[Alias]) { 504 case regDisabled: 505 break; 506 case regFree: 507 ++Cost; 508 break; 509 case regReserved: 510 return spillImpossible; 511 default: { 512 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 513 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 514 Cost += I->Dirty ? spillDirty : spillClean; 515 break; 516 } 517 } 518 } 519 return Cost; 520 } 521 522 /// \brief This method updates local state so that we know that PhysReg is the 523 /// proper container for VirtReg now. The physical register must not be used 524 /// for anything else when this is called. 525 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 526 DEBUG(dbgs() << "Assigning " << printReg(LR.VirtReg, TRI) << " to " 527 << printReg(PhysReg, TRI) << "\n"); 528 PhysRegState[PhysReg] = LR.VirtReg; 529 assert(!LR.PhysReg && "Already assigned a physreg"); 530 LR.PhysReg = PhysReg; 531 } 532 533 RegAllocFast::LiveRegMap::iterator 534 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) { 535 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 536 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 537 assignVirtToPhysReg(*LRI, PhysReg); 538 return LRI; 539 } 540 541 /// Allocates a physical register for VirtReg. 542 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI, 543 LiveRegMap::iterator LRI, unsigned Hint) { 544 const unsigned VirtReg = LRI->VirtReg; 545 546 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 547 "Can only allocate virtual registers"); 548 549 // Take hint when possible. 550 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 551 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 552 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 553 // Ignore the hint if we would have to spill a dirty register. 554 unsigned Cost = calcSpillCost(Hint); 555 if (Cost < spillDirty) { 556 if (Cost) 557 definePhysReg(MI, Hint, regFree); 558 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 559 // That invalidates LRI, so run a new lookup for VirtReg. 560 return assignVirtToPhysReg(VirtReg, Hint); 561 } 562 } 563 564 // First try to find a completely free register. 565 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC); 566 for (MCPhysReg PhysReg : AO) { 567 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 568 assignVirtToPhysReg(*LRI, PhysReg); 569 return LRI; 570 } 571 } 572 573 DEBUG(dbgs() << "Allocating " << printReg(VirtReg) << " from " 574 << TRI->getRegClassName(&RC) << "\n"); 575 576 unsigned BestReg = 0; 577 unsigned BestCost = spillImpossible; 578 for (MCPhysReg PhysReg : AO) { 579 unsigned Cost = calcSpillCost(PhysReg); 580 DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << "\n"); 581 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 582 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 583 // Cost is 0 when all aliases are already disabled. 584 if (Cost == 0) { 585 assignVirtToPhysReg(*LRI, PhysReg); 586 return LRI; 587 } 588 if (Cost < BestCost) 589 BestReg = PhysReg, BestCost = Cost; 590 } 591 592 if (BestReg) { 593 definePhysReg(MI, BestReg, regFree); 594 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 595 // That invalidates LRI, so run a new lookup for VirtReg. 596 return assignVirtToPhysReg(VirtReg, BestReg); 597 } 598 599 // Nothing we can do. Report an error and keep going with a bad allocation. 600 if (MI.isInlineAsm()) 601 MI.emitError("inline assembly requires more registers than available"); 602 else 603 MI.emitError("ran out of registers during register allocation"); 604 definePhysReg(MI, *AO.begin(), regFree); 605 return assignVirtToPhysReg(VirtReg, *AO.begin()); 606 } 607 608 /// Allocates a register for VirtReg and mark it as dirty. 609 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI, 610 unsigned OpNum, 611 unsigned VirtReg, 612 unsigned Hint) { 613 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 614 "Not a virtual register"); 615 LiveRegMap::iterator LRI; 616 bool New; 617 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 618 if (New) { 619 // If there is no hint, peek at the only use of this register. 620 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 621 MRI->hasOneNonDBGUse(VirtReg)) { 622 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 623 // It's a copy, use the destination register as a hint. 624 if (UseMI.isCopyLike()) 625 Hint = UseMI.getOperand(0).getReg(); 626 } 627 LRI = allocVirtReg(MI, LRI, Hint); 628 } else if (LRI->LastUse) { 629 // Redefining a live register - kill at the last use, unless it is this 630 // instruction defining VirtReg multiple times. 631 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 632 addKillFlag(*LRI); 633 } 634 assert(LRI->PhysReg && "Register not assigned"); 635 LRI->LastUse = &MI; 636 LRI->LastOpNum = OpNum; 637 LRI->Dirty = true; 638 markRegUsedInInstr(LRI->PhysReg); 639 return LRI; 640 } 641 642 /// Make sure VirtReg is available in a physreg and return it. 643 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI, 644 unsigned OpNum, 645 unsigned VirtReg, 646 unsigned Hint) { 647 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 648 "Not a virtual register"); 649 LiveRegMap::iterator LRI; 650 bool New; 651 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 652 MachineOperand &MO = MI.getOperand(OpNum); 653 if (New) { 654 LRI = allocVirtReg(MI, LRI, Hint); 655 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 656 int FrameIndex = getStackSpaceFor(VirtReg, RC); 657 DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 658 << printReg(LRI->PhysReg, TRI) << "\n"); 659 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI); 660 ++NumLoads; 661 } else if (LRI->Dirty) { 662 if (isLastUseOfLocalReg(MO)) { 663 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 664 if (MO.isUse()) 665 MO.setIsKill(); 666 else 667 MO.setIsDead(); 668 } else if (MO.isKill()) { 669 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 670 MO.setIsKill(false); 671 } else if (MO.isDead()) { 672 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 673 MO.setIsDead(false); 674 } 675 } else if (MO.isKill()) { 676 // We must remove kill flags from uses of reloaded registers because the 677 // register would be killed immediately, and there might be a second use: 678 // %foo = OR killed %x, %x 679 // This would cause a second reload of %x into a different register. 680 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 681 MO.setIsKill(false); 682 } else if (MO.isDead()) { 683 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 684 MO.setIsDead(false); 685 } 686 assert(LRI->PhysReg && "Register not assigned"); 687 LRI->LastUse = &MI; 688 LRI->LastOpNum = OpNum; 689 markRegUsedInInstr(LRI->PhysReg); 690 return LRI; 691 } 692 693 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 694 /// may invalidate any operand pointers. Return true if the operand kills its 695 /// register. 696 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum, 697 MCPhysReg PhysReg) { 698 MachineOperand &MO = MI.getOperand(OpNum); 699 bool Dead = MO.isDead(); 700 if (!MO.getSubReg()) { 701 MO.setReg(PhysReg); 702 MO.setIsRenamableIfNoExtraRegAllocReq(); 703 return MO.isKill() || Dead; 704 } 705 706 // Handle subregister index. 707 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 708 MO.setIsRenamableIfNoExtraRegAllocReq(); 709 MO.setSubReg(0); 710 711 // A kill flag implies killing the full register. Add corresponding super 712 // register kill. 713 if (MO.isKill()) { 714 MI.addRegisterKilled(PhysReg, TRI, true); 715 return true; 716 } 717 718 // A <def,read-undef> of a sub-register requires an implicit def of the full 719 // register. 720 if (MO.isDef() && MO.isUndef()) 721 MI.addRegisterDefined(PhysReg, TRI); 722 723 return Dead; 724 } 725 726 // Handles special instruction operand like early clobbers and tied ops when 727 // there are additional physreg defines. 728 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 729 SmallVectorImpl<unsigned> &VirtDead) { 730 DEBUG(dbgs() << "Scanning for through registers:"); 731 SmallSet<unsigned, 8> ThroughRegs; 732 for (const MachineOperand &MO : MI.operands()) { 733 if (!MO.isReg()) continue; 734 unsigned Reg = MO.getReg(); 735 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 736 continue; 737 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 738 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 739 if (ThroughRegs.insert(Reg).second) 740 DEBUG(dbgs() << ' ' << printReg(Reg)); 741 } 742 } 743 744 // If any physreg defines collide with preallocated through registers, 745 // we must spill and reallocate. 746 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 747 for (const MachineOperand &MO : MI.operands()) { 748 if (!MO.isReg() || !MO.isDef()) continue; 749 unsigned Reg = MO.getReg(); 750 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 751 markRegUsedInInstr(Reg); 752 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 753 if (ThroughRegs.count(PhysRegState[*AI])) 754 definePhysReg(MI, *AI, regFree); 755 } 756 } 757 758 SmallVector<unsigned, 8> PartialDefs; 759 DEBUG(dbgs() << "Allocating tied uses.\n"); 760 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 761 const MachineOperand &MO = MI.getOperand(I); 762 if (!MO.isReg()) continue; 763 unsigned Reg = MO.getReg(); 764 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 765 if (MO.isUse()) { 766 if (!MO.isTied()) continue; 767 DEBUG(dbgs() << "Operand " << I << "("<< MO << ") is tied to operand " 768 << MI.findTiedOperandIdx(I) << ".\n"); 769 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 770 MCPhysReg PhysReg = LRI->PhysReg; 771 setPhysReg(MI, I, PhysReg); 772 // Note: we don't update the def operand yet. That would cause the normal 773 // def-scan to attempt spilling. 774 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 775 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 776 // Reload the register, but don't assign to the operand just yet. 777 // That would confuse the later phys-def processing pass. 778 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 779 PartialDefs.push_back(LRI->PhysReg); 780 } 781 } 782 783 DEBUG(dbgs() << "Allocating early clobbers.\n"); 784 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 785 const MachineOperand &MO = MI.getOperand(I); 786 if (!MO.isReg()) continue; 787 unsigned Reg = MO.getReg(); 788 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 789 if (!MO.isEarlyClobber()) 790 continue; 791 // Note: defineVirtReg may invalidate MO. 792 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0); 793 MCPhysReg PhysReg = LRI->PhysReg; 794 if (setPhysReg(MI, I, PhysReg)) 795 VirtDead.push_back(Reg); 796 } 797 798 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 799 UsedInInstr.clear(); 800 for (const MachineOperand &MO : MI.operands()) { 801 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 802 unsigned Reg = MO.getReg(); 803 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 804 DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 805 << " as used in instr\n"); 806 markRegUsedInInstr(Reg); 807 } 808 809 // Also mark PartialDefs as used to avoid reallocation. 810 for (unsigned PartialDef : PartialDefs) 811 markRegUsedInInstr(PartialDef); 812 } 813 814 #ifndef NDEBUG 815 void RegAllocFast::dumpState() { 816 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 817 if (PhysRegState[Reg] == regDisabled) continue; 818 dbgs() << " " << printReg(Reg, TRI); 819 switch(PhysRegState[Reg]) { 820 case regFree: 821 break; 822 case regReserved: 823 dbgs() << "*"; 824 break; 825 default: { 826 dbgs() << '=' << printReg(PhysRegState[Reg]); 827 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 828 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 829 if (I->Dirty) 830 dbgs() << "*"; 831 assert(I->PhysReg == Reg && "Bad inverse map"); 832 break; 833 } 834 } 835 } 836 dbgs() << '\n'; 837 // Check that LiveVirtRegs is the inverse. 838 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 839 e = LiveVirtRegs.end(); i != e; ++i) { 840 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 841 "Bad map key"); 842 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 843 "Bad map value"); 844 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 845 } 846 } 847 #endif 848 849 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 850 this->MBB = &MBB; 851 DEBUG(dbgs() << "\nAllocating " << MBB); 852 853 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 854 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 855 856 MachineBasicBlock::iterator MII = MBB.begin(); 857 858 // Add live-in registers as live. 859 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 860 if (MRI->isAllocatable(LI.PhysReg)) 861 definePhysReg(MII, LI.PhysReg, regReserved); 862 863 VirtDead.clear(); 864 Coalesced.clear(); 865 866 // Otherwise, sequentially allocate each instruction in the MBB. 867 for (MachineInstr &MI : MBB) { 868 const MCInstrDesc &MCID = MI.getDesc(); 869 DEBUG( 870 dbgs() << "\n>> " << MI << "Regs:"; 871 dumpState() 872 ); 873 874 // Debug values are not allowed to change codegen in any way. 875 if (MI.isDebugValue()) { 876 MachineInstr *DebugMI = &MI; 877 MachineOperand &MO = DebugMI->getOperand(0); 878 879 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 880 // mostly constants and frame indices. 881 if (!MO.isReg()) 882 continue; 883 unsigned Reg = MO.getReg(); 884 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 885 continue; 886 887 // See if this virtual register has already been allocated to a physical 888 // register or spilled to a stack slot. 889 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 890 if (LRI != LiveVirtRegs.end()) 891 setPhysReg(*DebugMI, 0, LRI->PhysReg); 892 else { 893 int SS = StackSlotForVirtReg[Reg]; 894 if (SS != -1) { 895 // Modify DBG_VALUE now that the value is in a spill slot. 896 updateDbgValueForSpill(*DebugMI, SS); 897 DEBUG(dbgs() << "Modifying debug info due to spill:" 898 << "\t" << *DebugMI); 899 continue; 900 } 901 902 // We can't allocate a physreg for a DebugValue, sorry! 903 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 904 MO.setReg(0); 905 } 906 907 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 908 // that future spills of Reg will have DBG_VALUEs. 909 LiveDbgValueMap[Reg].push_back(DebugMI); 910 continue; 911 } 912 913 // If this is a copy, we may be able to coalesce. 914 unsigned CopySrcReg = 0; 915 unsigned CopyDstReg = 0; 916 unsigned CopySrcSub = 0; 917 unsigned CopyDstSub = 0; 918 if (MI.isCopy()) { 919 CopyDstReg = MI.getOperand(0).getReg(); 920 CopySrcReg = MI.getOperand(1).getReg(); 921 CopyDstSub = MI.getOperand(0).getSubReg(); 922 CopySrcSub = MI.getOperand(1).getSubReg(); 923 } 924 925 // Track registers used by instruction. 926 UsedInInstr.clear(); 927 928 // First scan. 929 // Mark physreg uses and early clobbers as used. 930 // Find the end of the virtreg operands 931 unsigned VirtOpEnd = 0; 932 bool hasTiedOps = false; 933 bool hasEarlyClobbers = false; 934 bool hasPartialRedefs = false; 935 bool hasPhysDefs = false; 936 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 937 MachineOperand &MO = MI.getOperand(i); 938 // Make sure MRI knows about registers clobbered by regmasks. 939 if (MO.isRegMask()) { 940 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 941 continue; 942 } 943 if (!MO.isReg()) continue; 944 unsigned Reg = MO.getReg(); 945 if (!Reg) continue; 946 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 947 VirtOpEnd = i+1; 948 if (MO.isUse()) { 949 hasTiedOps = hasTiedOps || 950 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 951 } else { 952 if (MO.isEarlyClobber()) 953 hasEarlyClobbers = true; 954 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 955 hasPartialRedefs = true; 956 } 957 continue; 958 } 959 if (!MRI->isAllocatable(Reg)) continue; 960 if (MO.isUse()) { 961 usePhysReg(MO); 962 } else if (MO.isEarlyClobber()) { 963 definePhysReg(MI, Reg, 964 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 965 hasEarlyClobbers = true; 966 } else 967 hasPhysDefs = true; 968 } 969 970 // The instruction may have virtual register operands that must be allocated 971 // the same register at use-time and def-time: early clobbers and tied 972 // operands. If there are also physical defs, these registers must avoid 973 // both physical defs and uses, making them more constrained than normal 974 // operands. 975 // Similarly, if there are multiple defs and tied operands, we must make 976 // sure the same register is allocated to uses and defs. 977 // We didn't detect inline asm tied operands above, so just make this extra 978 // pass for all inline asm. 979 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 980 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 981 handleThroughOperands(MI, VirtDead); 982 // Don't attempt coalescing when we have funny stuff going on. 983 CopyDstReg = 0; 984 // Pretend we have early clobbers so the use operands get marked below. 985 // This is not necessary for the common case of a single tied use. 986 hasEarlyClobbers = true; 987 } 988 989 // Second scan. 990 // Allocate virtreg uses. 991 for (unsigned I = 0; I != VirtOpEnd; ++I) { 992 const MachineOperand &MO = MI.getOperand(I); 993 if (!MO.isReg()) continue; 994 unsigned Reg = MO.getReg(); 995 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 996 if (MO.isUse()) { 997 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg); 998 MCPhysReg PhysReg = LRI->PhysReg; 999 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1000 if (setPhysReg(MI, I, PhysReg)) 1001 killVirtReg(LRI); 1002 } 1003 } 1004 1005 // Track registers defined by instruction - early clobbers and tied uses at 1006 // this point. 1007 UsedInInstr.clear(); 1008 if (hasEarlyClobbers) { 1009 for (const MachineOperand &MO : MI.operands()) { 1010 if (!MO.isReg()) continue; 1011 unsigned Reg = MO.getReg(); 1012 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1013 // Look for physreg defs and tied uses. 1014 if (!MO.isDef() && !MO.isTied()) continue; 1015 markRegUsedInInstr(Reg); 1016 } 1017 } 1018 1019 unsigned DefOpEnd = MI.getNumOperands(); 1020 if (MI.isCall()) { 1021 // Spill all virtregs before a call. This serves one purpose: If an 1022 // exception is thrown, the landing pad is going to expect to find 1023 // registers in their spill slots. 1024 // Note: although this is appealing to just consider all definitions 1025 // as call-clobbered, this is not correct because some of those 1026 // definitions may be used later on and we do not want to reuse 1027 // those for virtual registers in between. 1028 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1029 spillAll(MI); 1030 } 1031 1032 // Third scan. 1033 // Allocate defs and collect dead defs. 1034 for (unsigned I = 0; I != DefOpEnd; ++I) { 1035 const MachineOperand &MO = MI.getOperand(I); 1036 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1037 continue; 1038 unsigned Reg = MO.getReg(); 1039 1040 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1041 if (!MRI->isAllocatable(Reg)) continue; 1042 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1043 continue; 1044 } 1045 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg); 1046 MCPhysReg PhysReg = LRI->PhysReg; 1047 if (setPhysReg(MI, I, PhysReg)) { 1048 VirtDead.push_back(Reg); 1049 CopyDstReg = 0; // cancel coalescing; 1050 } else 1051 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1052 } 1053 1054 // Kill dead defs after the scan to ensure that multiple defs of the same 1055 // register are allocated identically. We didn't need to do this for uses 1056 // because we are crerating our own kill flags, and they are always at the 1057 // last use. 1058 for (unsigned VirtReg : VirtDead) 1059 killVirtReg(VirtReg); 1060 VirtDead.clear(); 1061 1062 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1063 DEBUG(dbgs() << "-- coalescing: " << MI); 1064 Coalesced.push_back(&MI); 1065 } else { 1066 DEBUG(dbgs() << "<< " << MI); 1067 } 1068 } 1069 1070 // Spill all physical registers holding virtual registers now. 1071 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1072 spillAll(MBB.getFirstTerminator()); 1073 1074 // Erase all the coalesced copies. We are delaying it until now because 1075 // LiveVirtRegs might refer to the instrs. 1076 for (MachineInstr *MI : Coalesced) 1077 MBB.erase(MI); 1078 NumCopies += Coalesced.size(); 1079 1080 DEBUG(MBB.dump()); 1081 } 1082 1083 /// Allocates registers for a function. 1084 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1085 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1086 << "********** Function: " << MF.getName() << '\n'); 1087 MRI = &MF.getRegInfo(); 1088 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1089 TRI = STI.getRegisterInfo(); 1090 TII = STI.getInstrInfo(); 1091 MFI = &MF.getFrameInfo(); 1092 MRI->freezeReservedRegs(MF); 1093 RegClassInfo.runOnMachineFunction(MF); 1094 UsedInInstr.clear(); 1095 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1096 1097 // initialize the virtual->physical register map to have a 'null' 1098 // mapping for all virtual registers 1099 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1100 StackSlotForVirtReg.resize(NumVirtRegs); 1101 LiveVirtRegs.setUniverse(NumVirtRegs); 1102 1103 // Loop over all of the basic blocks, eliminating virtual register references 1104 for (MachineBasicBlock &MBB : MF) 1105 allocateBasicBlock(MBB); 1106 1107 // All machine operands and other references to virtual registers have been 1108 // replaced. Remove the virtual registers. 1109 MRI->clearVirtRegs(); 1110 1111 StackSlotForVirtReg.clear(); 1112 LiveDbgValueMap.clear(); 1113 return true; 1114 } 1115 1116 FunctionPass *llvm::createFastRegisterAllocator() { 1117 return new RegAllocFast(); 1118 } 1119