1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <tuple> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumStores, "Number of stores added"); 55 STATISTIC(NumLoads , "Number of loads added"); 56 STATISTIC(NumCoalesced, "Number of copies coalesced"); 57 58 static RegisterRegAlloc 59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 60 61 namespace { 62 63 class RegAllocFast : public MachineFunctionPass { 64 public: 65 static char ID; 66 67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 68 69 private: 70 MachineFrameInfo *MFI; 71 MachineRegisterInfo *MRI; 72 const TargetRegisterInfo *TRI; 73 const TargetInstrInfo *TII; 74 RegisterClassInfo RegClassInfo; 75 76 /// Basic block currently being allocated. 77 MachineBasicBlock *MBB; 78 79 /// Maps virtual regs to the frame index where these values are spilled. 80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 81 82 /// Everything we know about a live virtual register. 83 struct LiveReg { 84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 85 unsigned VirtReg; ///< Virtual register number. 86 MCPhysReg PhysReg = 0; ///< Currently held here. 87 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 88 bool Dirty = false; ///< Register needs spill. 89 90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 91 92 unsigned getSparseSetIndex() const { 93 return TargetRegisterInfo::virtReg2Index(VirtReg); 94 } 95 }; 96 97 using LiveRegMap = SparseSet<LiveReg>; 98 /// This map contains entries for each virtual register that is currently 99 /// available in a physical register. 100 LiveRegMap LiveVirtRegs; 101 102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 103 104 /// State of a physical register. 105 enum RegState { 106 /// A disabled register is not available for allocation, but an alias may 107 /// be in use. A register can only be moved out of the disabled state if 108 /// all aliases are disabled. 109 regDisabled, 110 111 /// A free register is not currently in use and can be allocated 112 /// immediately without checking aliases. 113 regFree, 114 115 /// A reserved register has been assigned explicitly (e.g., setting up a 116 /// call parameter), and it remains reserved until it is used. 117 regReserved 118 119 /// A register state may also be a virtual register number, indication 120 /// that the physical register is currently allocated to a virtual 121 /// register. In that case, LiveVirtRegs contains the inverse mapping. 122 }; 123 124 /// Maps each physical register to a RegState enum or a virtual register. 125 std::vector<unsigned> PhysRegState; 126 127 SmallVector<unsigned, 16> VirtDead; 128 SmallVector<MachineInstr *, 32> Coalesced; 129 130 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 131 /// Set of register units that are used in the current instruction, and so 132 /// cannot be allocated. 133 RegUnitSet UsedInInstr; 134 135 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 136 137 /// Mark a physreg as used in this instruction. 138 void markRegUsedInInstr(MCPhysReg PhysReg) { 139 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 140 UsedInInstr.insert(*Units); 141 } 142 143 /// Check if a physreg or any of its aliases are used in this instruction. 144 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 145 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 146 if (UsedInInstr.count(*Units)) 147 return true; 148 return false; 149 } 150 151 enum : unsigned { 152 spillClean = 50, 153 spillDirty = 100, 154 spillImpossible = ~0u 155 }; 156 157 public: 158 StringRef getPassName() const override { return "Fast Register Allocator"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.setPreservesCFG(); 162 MachineFunctionPass::getAnalysisUsage(AU); 163 } 164 165 MachineFunctionProperties getRequiredProperties() const override { 166 return MachineFunctionProperties().set( 167 MachineFunctionProperties::Property::NoPHIs); 168 } 169 170 MachineFunctionProperties getSetProperties() const override { 171 return MachineFunctionProperties().set( 172 MachineFunctionProperties::Property::NoVRegs); 173 } 174 175 private: 176 bool runOnMachineFunction(MachineFunction &MF) override; 177 178 void allocateBasicBlock(MachineBasicBlock &MBB); 179 void allocateInstruction(MachineInstr &MI); 180 void handleDebugValue(MachineInstr &MI); 181 void handleThroughOperands(MachineInstr &MI, 182 SmallVectorImpl<unsigned> &VirtDead); 183 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 184 185 void addKillFlag(const LiveReg &LRI); 186 void killVirtReg(LiveReg &LR); 187 void killVirtReg(unsigned VirtReg); 188 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 189 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 190 191 void usePhysReg(MachineOperand &MO); 192 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 193 RegState NewState); 194 unsigned calcSpillCost(MCPhysReg PhysReg) const; 195 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 196 197 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 198 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 199 } 200 201 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 206 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 207 unsigned Hint); 208 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 209 unsigned Hint); 210 void spillAll(MachineBasicBlock::iterator MI); 211 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 212 213 int getStackSpaceFor(unsigned VirtReg); 214 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 215 MCPhysReg AssignedReg, bool Kill); 216 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 217 MCPhysReg PhysReg); 218 219 void dumpState(); 220 }; 221 222 } // end anonymous namespace 223 224 char RegAllocFast::ID = 0; 225 226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 227 false) 228 229 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 230 PhysRegState[PhysReg] = NewState; 231 } 232 233 /// This allocates space for the specified virtual register to be held on the 234 /// stack. 235 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 236 // Find the location Reg would belong... 237 int SS = StackSlotForVirtReg[VirtReg]; 238 // Already has space allocated? 239 if (SS != -1) 240 return SS; 241 242 // Allocate a new stack object for this spill location... 243 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 244 unsigned Size = TRI->getSpillSize(RC); 245 unsigned Align = TRI->getSpillAlignment(RC); 246 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 247 248 // Assign the slot. 249 StackSlotForVirtReg[VirtReg] = FrameIdx; 250 return FrameIdx; 251 } 252 253 /// Insert spill instruction for \p AssignedReg before \p Before. Update 254 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 255 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 256 MCPhysReg AssignedReg, bool Kill) { 257 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 258 << " in " << printReg(AssignedReg, TRI)); 259 int FI = getStackSpaceFor(VirtReg); 260 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 261 262 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 263 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 264 ++NumStores; 265 266 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 267 // identify spilled location as the place to find corresponding variable's 268 // value. 269 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 270 for (MachineInstr *DBG : LRIDbgValues) { 271 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 272 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 273 (void)NewDV; 274 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 275 } 276 // Now this register is spilled there is should not be any DBG_VALUE 277 // pointing to this register because they are all pointing to spilled value 278 // now. 279 LRIDbgValues.clear(); 280 } 281 282 /// Insert reload instruction for \p PhysReg before \p Before. 283 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 284 MCPhysReg PhysReg) { 285 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 286 << printReg(PhysReg, TRI) << '\n'); 287 int FI = getStackSpaceFor(VirtReg); 288 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 289 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 290 ++NumLoads; 291 } 292 293 /// Return true if MO is the only remaining reference to its virtual register, 294 /// and it is guaranteed to be a block-local register. 295 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 296 // If the register has ever been spilled or reloaded, we conservatively assume 297 // it is a global register used in multiple blocks. 298 if (StackSlotForVirtReg[MO.getReg()] != -1) 299 return false; 300 301 // Check that the use/def chain has exactly one operand - MO. 302 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 303 if (&*I != &MO) 304 return false; 305 return ++I == MRI->reg_nodbg_end(); 306 } 307 308 /// Set kill flags on last use of a virtual register. 309 void RegAllocFast::addKillFlag(const LiveReg &LR) { 310 if (!LR.LastUse) return; 311 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 312 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 313 if (MO.getReg() == LR.PhysReg) 314 MO.setIsKill(); 315 // else, don't do anything we are problably redefining a 316 // subreg of this register and given we don't track which 317 // lanes are actually dead, we cannot insert a kill flag here. 318 // Otherwise we may end up in a situation like this: 319 // ... = (MO) physreg:sub1, implicit killed physreg 320 // ... <== Here we would allow later pass to reuse physreg:sub1 321 // which is potentially wrong. 322 // LR:sub0 = ... 323 // ... = LR.sub1 <== This is going to use physreg:sub1 324 } 325 } 326 327 /// Mark virtreg as no longer available. 328 void RegAllocFast::killVirtReg(LiveReg &LR) { 329 addKillFlag(LR); 330 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 331 "Broken RegState mapping"); 332 setPhysRegState(LR.PhysReg, regFree); 333 LR.PhysReg = 0; 334 } 335 336 /// Mark virtreg as no longer available. 337 void RegAllocFast::killVirtReg(unsigned VirtReg) { 338 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 339 "killVirtReg needs a virtual register"); 340 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 341 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 342 killVirtReg(*LRI); 343 } 344 345 /// This method spills the value specified by VirtReg into the corresponding 346 /// stack slot if needed. 347 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 348 unsigned VirtReg) { 349 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 350 "Spilling a physical register is illegal!"); 351 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 352 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 353 "Spilling unmapped virtual register"); 354 spillVirtReg(MI, *LRI); 355 } 356 357 /// Do the actual work of spilling. 358 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 359 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 360 361 if (LR.Dirty) { 362 // If this physreg is used by the instruction, we want to kill it on the 363 // instruction, not on the spill. 364 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 365 LR.Dirty = false; 366 367 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 368 369 if (SpillKill) 370 LR.LastUse = nullptr; // Don't kill register again 371 } 372 killVirtReg(LR); 373 } 374 375 /// Spill all dirty virtregs without killing them. 376 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 377 if (LiveVirtRegs.empty()) 378 return; 379 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 380 // of spilling here is deterministic, if arbitrary. 381 for (LiveReg &LR : LiveVirtRegs) { 382 if (!LR.PhysReg) 383 continue; 384 spillVirtReg(MI, LR); 385 } 386 LiveVirtRegs.clear(); 387 } 388 389 /// Handle the direct use of a physical register. Check that the register is 390 /// not used by a virtreg. Kill the physreg, marking it free. This may add 391 /// implicit kills to MO->getParent() and invalidate MO. 392 void RegAllocFast::usePhysReg(MachineOperand &MO) { 393 // Ignore undef uses. 394 if (MO.isUndef()) 395 return; 396 397 unsigned PhysReg = MO.getReg(); 398 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 399 "Bad usePhysReg operand"); 400 401 markRegUsedInInstr(PhysReg); 402 switch (PhysRegState[PhysReg]) { 403 case regDisabled: 404 break; 405 case regReserved: 406 PhysRegState[PhysReg] = regFree; 407 LLVM_FALLTHROUGH; 408 case regFree: 409 MO.setIsKill(); 410 return; 411 default: 412 // The physreg was allocated to a virtual register. That means the value we 413 // wanted has been clobbered. 414 llvm_unreachable("Instruction uses an allocated register"); 415 } 416 417 // Maybe a superregister is reserved? 418 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 419 MCPhysReg Alias = *AI; 420 switch (PhysRegState[Alias]) { 421 case regDisabled: 422 break; 423 case regReserved: 424 // Either PhysReg is a subregister of Alias and we mark the 425 // whole register as free, or PhysReg is the superregister of 426 // Alias and we mark all the aliases as disabled before freeing 427 // PhysReg. 428 // In the latter case, since PhysReg was disabled, this means that 429 // its value is defined only by physical sub-registers. This check 430 // is performed by the assert of the default case in this loop. 431 // Note: The value of the superregister may only be partial 432 // defined, that is why regDisabled is a valid state for aliases. 433 assert((TRI->isSuperRegister(PhysReg, Alias) || 434 TRI->isSuperRegister(Alias, PhysReg)) && 435 "Instruction is not using a subregister of a reserved register"); 436 LLVM_FALLTHROUGH; 437 case regFree: 438 if (TRI->isSuperRegister(PhysReg, Alias)) { 439 // Leave the superregister in the working set. 440 setPhysRegState(Alias, regFree); 441 MO.getParent()->addRegisterKilled(Alias, TRI, true); 442 return; 443 } 444 // Some other alias was in the working set - clear it. 445 setPhysRegState(Alias, regDisabled); 446 break; 447 default: 448 llvm_unreachable("Instruction uses an alias of an allocated register"); 449 } 450 } 451 452 // All aliases are disabled, bring register into working set. 453 setPhysRegState(PhysReg, regFree); 454 MO.setIsKill(); 455 } 456 457 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 458 /// similar to defineVirtReg except the physreg is reserved instead of 459 /// allocated. 460 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 461 MCPhysReg PhysReg, RegState NewState) { 462 markRegUsedInInstr(PhysReg); 463 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 464 case regDisabled: 465 break; 466 default: 467 spillVirtReg(MI, VirtReg); 468 LLVM_FALLTHROUGH; 469 case regFree: 470 case regReserved: 471 setPhysRegState(PhysReg, NewState); 472 return; 473 } 474 475 // This is a disabled register, disable all aliases. 476 setPhysRegState(PhysReg, NewState); 477 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 478 MCPhysReg Alias = *AI; 479 switch (unsigned VirtReg = PhysRegState[Alias]) { 480 case regDisabled: 481 break; 482 default: 483 spillVirtReg(MI, VirtReg); 484 LLVM_FALLTHROUGH; 485 case regFree: 486 case regReserved: 487 setPhysRegState(Alias, regDisabled); 488 if (TRI->isSuperRegister(PhysReg, Alias)) 489 return; 490 break; 491 } 492 } 493 } 494 495 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 496 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 497 /// disabled - it can be allocated directly. 498 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 499 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 500 if (isRegUsedInInstr(PhysReg)) { 501 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 502 << " is already used in instr.\n"); 503 return spillImpossible; 504 } 505 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 506 case regDisabled: 507 break; 508 case regFree: 509 return 0; 510 case regReserved: 511 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 512 << printReg(PhysReg, TRI) << " is reserved already.\n"); 513 return spillImpossible; 514 default: { 515 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 516 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 517 "Missing VirtReg entry"); 518 return LRI->Dirty ? spillDirty : spillClean; 519 } 520 } 521 522 // This is a disabled register, add up cost of aliases. 523 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 524 unsigned Cost = 0; 525 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 526 MCPhysReg Alias = *AI; 527 switch (unsigned VirtReg = PhysRegState[Alias]) { 528 case regDisabled: 529 break; 530 case regFree: 531 ++Cost; 532 break; 533 case regReserved: 534 return spillImpossible; 535 default: { 536 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 537 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 538 "Missing VirtReg entry"); 539 Cost += LRI->Dirty ? spillDirty : spillClean; 540 break; 541 } 542 } 543 } 544 return Cost; 545 } 546 547 /// This method updates local state so that we know that PhysReg is the 548 /// proper container for VirtReg now. The physical register must not be used 549 /// for anything else when this is called. 550 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 551 unsigned VirtReg = LR.VirtReg; 552 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 553 << printReg(PhysReg, TRI) << '\n'); 554 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 555 assert(PhysReg != 0 && "Trying to assign no register"); 556 LR.PhysReg = PhysReg; 557 setPhysRegState(PhysReg, VirtReg); 558 } 559 560 /// Allocates a physical register for VirtReg. 561 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) { 562 const unsigned VirtReg = LR.VirtReg; 563 564 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 565 "Can only allocate virtual registers"); 566 567 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 568 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 569 << " in class " << TRI->getRegClassName(&RC) 570 << " with hint " << printReg(Hint, TRI) << '\n'); 571 572 // Take hint when possible. 573 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 574 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 575 // Ignore the hint if we would have to spill a dirty register. 576 unsigned Cost = calcSpillCost(Hint); 577 if (Cost < spillDirty) { 578 if (Cost) 579 definePhysReg(MI, Hint, regFree); 580 assignVirtToPhysReg(LR, Hint); 581 return; 582 } 583 } 584 585 // First try to find a completely free register. 586 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 587 for (MCPhysReg PhysReg : AllocationOrder) { 588 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 589 assignVirtToPhysReg(LR, PhysReg); 590 return; 591 } 592 } 593 594 MCPhysReg BestReg = 0; 595 unsigned BestCost = spillImpossible; 596 for (MCPhysReg PhysReg : AllocationOrder) { 597 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 598 unsigned Cost = calcSpillCost(PhysReg); 599 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 600 // Immediate take a register with cost 0. 601 if (Cost == 0) { 602 assignVirtToPhysReg(LR, PhysReg); 603 return; 604 } 605 if (Cost < BestCost) { 606 BestReg = PhysReg; 607 BestCost = Cost; 608 } 609 } 610 611 if (!BestReg) { 612 // Nothing we can do: Report an error and keep going with an invalid 613 // allocation. 614 if (MI.isInlineAsm()) 615 MI.emitError("inline assembly requires more registers than available"); 616 else 617 MI.emitError("ran out of registers during register allocation"); 618 definePhysReg(MI, *AllocationOrder.begin(), regFree); 619 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 620 return; 621 } 622 623 definePhysReg(MI, BestReg, regFree); 624 assignVirtToPhysReg(LR, BestReg); 625 } 626 627 /// Allocates a register for VirtReg and mark it as dirty. 628 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 629 unsigned VirtReg, unsigned Hint) { 630 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 631 "Not a virtual register"); 632 LiveRegMap::iterator LRI; 633 bool New; 634 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 635 if (!LRI->PhysReg) { 636 // If there is no hint, peek at the only use of this register. 637 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 638 MRI->hasOneNonDBGUse(VirtReg)) { 639 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 640 // It's a copy, use the destination register as a hint. 641 if (UseMI.isCopyLike()) 642 Hint = UseMI.getOperand(0).getReg(); 643 } 644 allocVirtReg(MI, *LRI, Hint); 645 } else if (LRI->LastUse) { 646 // Redefining a live register - kill at the last use, unless it is this 647 // instruction defining VirtReg multiple times. 648 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 649 addKillFlag(*LRI); 650 } 651 assert(LRI->PhysReg && "Register not assigned"); 652 LRI->LastUse = &MI; 653 LRI->LastOpNum = OpNum; 654 LRI->Dirty = true; 655 markRegUsedInInstr(LRI->PhysReg); 656 return LRI->PhysReg; 657 } 658 659 /// Make sure VirtReg is available in a physreg and return it. 660 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 661 unsigned OpNum, 662 unsigned VirtReg, 663 unsigned Hint) { 664 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 665 "Not a virtual register"); 666 LiveRegMap::iterator LRI; 667 bool New; 668 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 669 MachineOperand &MO = MI.getOperand(OpNum); 670 if (!LRI->PhysReg) { 671 allocVirtReg(MI, *LRI, Hint); 672 reload(MI, VirtReg, LRI->PhysReg); 673 } else if (LRI->Dirty) { 674 if (isLastUseOfLocalReg(MO)) { 675 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 676 if (MO.isUse()) 677 MO.setIsKill(); 678 else 679 MO.setIsDead(); 680 } else if (MO.isKill()) { 681 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 682 MO.setIsKill(false); 683 } else if (MO.isDead()) { 684 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 685 MO.setIsDead(false); 686 } 687 } else if (MO.isKill()) { 688 // We must remove kill flags from uses of reloaded registers because the 689 // register would be killed immediately, and there might be a second use: 690 // %foo = OR killed %x, %x 691 // This would cause a second reload of %x into a different register. 692 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 693 MO.setIsKill(false); 694 } else if (MO.isDead()) { 695 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 696 MO.setIsDead(false); 697 } 698 assert(LRI->PhysReg && "Register not assigned"); 699 LRI->LastUse = &MI; 700 LRI->LastOpNum = OpNum; 701 markRegUsedInInstr(LRI->PhysReg); 702 return *LRI; 703 } 704 705 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 706 /// may invalidate any operand pointers. Return true if the operand kills its 707 /// register. 708 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 709 MCPhysReg PhysReg) { 710 bool Dead = MO.isDead(); 711 if (!MO.getSubReg()) { 712 MO.setReg(PhysReg); 713 MO.setIsRenamable(true); 714 return MO.isKill() || Dead; 715 } 716 717 // Handle subregister index. 718 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 719 MO.setIsRenamable(true); 720 MO.setSubReg(0); 721 722 // A kill flag implies killing the full register. Add corresponding super 723 // register kill. 724 if (MO.isKill()) { 725 MI.addRegisterKilled(PhysReg, TRI, true); 726 return true; 727 } 728 729 // A <def,read-undef> of a sub-register requires an implicit def of the full 730 // register. 731 if (MO.isDef() && MO.isUndef()) 732 MI.addRegisterDefined(PhysReg, TRI); 733 734 return Dead; 735 } 736 737 // Handles special instruction operand like early clobbers and tied ops when 738 // there are additional physreg defines. 739 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 740 SmallVectorImpl<unsigned> &VirtDead) { 741 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 742 SmallSet<unsigned, 8> ThroughRegs; 743 for (const MachineOperand &MO : MI.operands()) { 744 if (!MO.isReg()) continue; 745 unsigned Reg = MO.getReg(); 746 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 747 continue; 748 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 749 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 750 if (ThroughRegs.insert(Reg).second) 751 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 752 } 753 } 754 755 // If any physreg defines collide with preallocated through registers, 756 // we must spill and reallocate. 757 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 758 for (const MachineOperand &MO : MI.operands()) { 759 if (!MO.isReg() || !MO.isDef()) continue; 760 unsigned Reg = MO.getReg(); 761 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 762 markRegUsedInInstr(Reg); 763 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 764 if (ThroughRegs.count(PhysRegState[*AI])) 765 definePhysReg(MI, *AI, regFree); 766 } 767 } 768 769 SmallVector<unsigned, 8> PartialDefs; 770 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 771 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 772 MachineOperand &MO = MI.getOperand(I); 773 if (!MO.isReg()) continue; 774 unsigned Reg = MO.getReg(); 775 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 776 if (MO.isUse()) { 777 if (!MO.isTied()) continue; 778 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 779 << ") is tied to operand " << MI.findTiedOperandIdx(I) 780 << ".\n"); 781 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 782 MCPhysReg PhysReg = LR.PhysReg; 783 setPhysReg(MI, MO, PhysReg); 784 // Note: we don't update the def operand yet. That would cause the normal 785 // def-scan to attempt spilling. 786 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 787 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 788 // Reload the register, but don't assign to the operand just yet. 789 // That would confuse the later phys-def processing pass. 790 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 791 PartialDefs.push_back(LR.PhysReg); 792 } 793 } 794 795 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 796 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 797 const MachineOperand &MO = MI.getOperand(I); 798 if (!MO.isReg()) continue; 799 unsigned Reg = MO.getReg(); 800 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 801 if (!MO.isEarlyClobber()) 802 continue; 803 // Note: defineVirtReg may invalidate MO. 804 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 805 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 806 VirtDead.push_back(Reg); 807 } 808 809 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 810 UsedInInstr.clear(); 811 for (const MachineOperand &MO : MI.operands()) { 812 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 813 unsigned Reg = MO.getReg(); 814 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 815 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 816 << " as used in instr\n"); 817 markRegUsedInInstr(Reg); 818 } 819 820 // Also mark PartialDefs as used to avoid reallocation. 821 for (unsigned PartialDef : PartialDefs) 822 markRegUsedInInstr(PartialDef); 823 } 824 825 #ifndef NDEBUG 826 void RegAllocFast::dumpState() { 827 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 828 if (PhysRegState[Reg] == regDisabled) continue; 829 dbgs() << " " << printReg(Reg, TRI); 830 switch(PhysRegState[Reg]) { 831 case regFree: 832 break; 833 case regReserved: 834 dbgs() << "*"; 835 break; 836 default: { 837 dbgs() << '=' << printReg(PhysRegState[Reg]); 838 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 839 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 840 "Missing VirtReg entry"); 841 if (LRI->Dirty) 842 dbgs() << "*"; 843 assert(LRI->PhysReg == Reg && "Bad inverse map"); 844 break; 845 } 846 } 847 } 848 dbgs() << '\n'; 849 // Check that LiveVirtRegs is the inverse. 850 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 851 e = LiveVirtRegs.end(); i != e; ++i) { 852 if (!i->PhysReg) 853 continue; 854 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 855 "Bad map key"); 856 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 857 "Bad map value"); 858 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 859 } 860 } 861 #endif 862 863 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 864 const MCInstrDesc &MCID = MI.getDesc(); 865 866 // If this is a copy, we may be able to coalesce. 867 unsigned CopySrcReg = 0; 868 unsigned CopyDstReg = 0; 869 unsigned CopySrcSub = 0; 870 unsigned CopyDstSub = 0; 871 if (MI.isCopy()) { 872 CopyDstReg = MI.getOperand(0).getReg(); 873 CopySrcReg = MI.getOperand(1).getReg(); 874 CopyDstSub = MI.getOperand(0).getSubReg(); 875 CopySrcSub = MI.getOperand(1).getSubReg(); 876 } 877 878 // Track registers used by instruction. 879 UsedInInstr.clear(); 880 881 // First scan. 882 // Mark physreg uses and early clobbers as used. 883 // Find the end of the virtreg operands 884 unsigned VirtOpEnd = 0; 885 bool hasTiedOps = false; 886 bool hasEarlyClobbers = false; 887 bool hasPartialRedefs = false; 888 bool hasPhysDefs = false; 889 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 890 MachineOperand &MO = MI.getOperand(i); 891 // Make sure MRI knows about registers clobbered by regmasks. 892 if (MO.isRegMask()) { 893 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 894 continue; 895 } 896 if (!MO.isReg()) continue; 897 unsigned Reg = MO.getReg(); 898 if (!Reg) continue; 899 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 900 VirtOpEnd = i+1; 901 if (MO.isUse()) { 902 hasTiedOps = hasTiedOps || 903 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 904 } else { 905 if (MO.isEarlyClobber()) 906 hasEarlyClobbers = true; 907 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 908 hasPartialRedefs = true; 909 } 910 continue; 911 } 912 if (!MRI->isAllocatable(Reg)) continue; 913 if (MO.isUse()) { 914 usePhysReg(MO); 915 } else if (MO.isEarlyClobber()) { 916 definePhysReg(MI, Reg, 917 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 918 hasEarlyClobbers = true; 919 } else 920 hasPhysDefs = true; 921 } 922 923 // The instruction may have virtual register operands that must be allocated 924 // the same register at use-time and def-time: early clobbers and tied 925 // operands. If there are also physical defs, these registers must avoid 926 // both physical defs and uses, making them more constrained than normal 927 // operands. 928 // Similarly, if there are multiple defs and tied operands, we must make 929 // sure the same register is allocated to uses and defs. 930 // We didn't detect inline asm tied operands above, so just make this extra 931 // pass for all inline asm. 932 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 933 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 934 handleThroughOperands(MI, VirtDead); 935 // Don't attempt coalescing when we have funny stuff going on. 936 CopyDstReg = 0; 937 // Pretend we have early clobbers so the use operands get marked below. 938 // This is not necessary for the common case of a single tied use. 939 hasEarlyClobbers = true; 940 } 941 942 // Second scan. 943 // Allocate virtreg uses. 944 for (unsigned I = 0; I != VirtOpEnd; ++I) { 945 MachineOperand &MO = MI.getOperand(I); 946 if (!MO.isReg()) continue; 947 unsigned Reg = MO.getReg(); 948 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 949 if (MO.isUse()) { 950 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 951 MCPhysReg PhysReg = LR.PhysReg; 952 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 953 if (setPhysReg(MI, MO, PhysReg)) 954 killVirtReg(LR); 955 } 956 } 957 958 // Track registers defined by instruction - early clobbers and tied uses at 959 // this point. 960 UsedInInstr.clear(); 961 if (hasEarlyClobbers) { 962 for (const MachineOperand &MO : MI.operands()) { 963 if (!MO.isReg()) continue; 964 unsigned Reg = MO.getReg(); 965 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 966 // Look for physreg defs and tied uses. 967 if (!MO.isDef() && !MO.isTied()) continue; 968 markRegUsedInInstr(Reg); 969 } 970 } 971 972 unsigned DefOpEnd = MI.getNumOperands(); 973 if (MI.isCall()) { 974 // Spill all virtregs before a call. This serves one purpose: If an 975 // exception is thrown, the landing pad is going to expect to find 976 // registers in their spill slots. 977 // Note: although this is appealing to just consider all definitions 978 // as call-clobbered, this is not correct because some of those 979 // definitions may be used later on and we do not want to reuse 980 // those for virtual registers in between. 981 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 982 spillAll(MI); 983 } 984 985 // Third scan. 986 // Allocate defs and collect dead defs. 987 for (unsigned I = 0; I != DefOpEnd; ++I) { 988 const MachineOperand &MO = MI.getOperand(I); 989 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 990 continue; 991 unsigned Reg = MO.getReg(); 992 993 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 994 if (!MRI->isAllocatable(Reg)) continue; 995 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 996 continue; 997 } 998 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 999 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1000 VirtDead.push_back(Reg); 1001 CopyDstReg = 0; // cancel coalescing; 1002 } else 1003 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1004 } 1005 1006 // Kill dead defs after the scan to ensure that multiple defs of the same 1007 // register are allocated identically. We didn't need to do this for uses 1008 // because we are crerating our own kill flags, and they are always at the 1009 // last use. 1010 for (unsigned VirtReg : VirtDead) 1011 killVirtReg(VirtReg); 1012 VirtDead.clear(); 1013 1014 LLVM_DEBUG(dbgs() << "<< " << MI); 1015 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1016 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1017 Coalesced.push_back(&MI); 1018 } 1019 } 1020 1021 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1022 MachineOperand &MO = MI.getOperand(0); 1023 1024 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1025 // mostly constants and frame indices. 1026 if (!MO.isReg()) 1027 return; 1028 unsigned Reg = MO.getReg(); 1029 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1030 return; 1031 1032 // See if this virtual register has already been allocated to a physical 1033 // register or spilled to a stack slot. 1034 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1035 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1036 setPhysReg(MI, MO, LRI->PhysReg); 1037 } else { 1038 int SS = StackSlotForVirtReg[Reg]; 1039 if (SS != -1) { 1040 // Modify DBG_VALUE now that the value is in a spill slot. 1041 updateDbgValueForSpill(MI, SS); 1042 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1043 return; 1044 } 1045 1046 // We can't allocate a physreg for a DebugValue, sorry! 1047 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1048 MO.setReg(0); 1049 } 1050 1051 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1052 // that future spills of Reg will have DBG_VALUEs. 1053 LiveDbgValueMap[Reg].push_back(&MI); 1054 } 1055 1056 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1057 this->MBB = &MBB; 1058 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1059 1060 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1061 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1062 1063 MachineBasicBlock::iterator MII = MBB.begin(); 1064 1065 // Add live-in registers as live. 1066 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1067 if (MRI->isAllocatable(LI.PhysReg)) 1068 definePhysReg(MII, LI.PhysReg, regReserved); 1069 1070 VirtDead.clear(); 1071 Coalesced.clear(); 1072 1073 // Otherwise, sequentially allocate each instruction in the MBB. 1074 for (MachineInstr &MI : MBB) { 1075 LLVM_DEBUG( 1076 dbgs() << "\n>> " << MI << "Regs:"; 1077 dumpState() 1078 ); 1079 1080 // Special handling for debug values. Note that they are not allowed to 1081 // affect codegen of the other instructions in any way. 1082 if (MI.isDebugValue()) { 1083 handleDebugValue(MI); 1084 continue; 1085 } 1086 1087 allocateInstruction(MI); 1088 } 1089 1090 // Spill all physical registers holding virtual registers now. 1091 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1092 spillAll(MBB.getFirstTerminator()); 1093 1094 // Erase all the coalesced copies. We are delaying it until now because 1095 // LiveVirtRegs might refer to the instrs. 1096 for (MachineInstr *MI : Coalesced) 1097 MBB.erase(MI); 1098 NumCoalesced += Coalesced.size(); 1099 1100 LLVM_DEBUG(MBB.dump()); 1101 } 1102 1103 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1104 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1105 << "********** Function: " << MF.getName() << '\n'); 1106 MRI = &MF.getRegInfo(); 1107 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1108 TRI = STI.getRegisterInfo(); 1109 TII = STI.getInstrInfo(); 1110 MFI = &MF.getFrameInfo(); 1111 MRI->freezeReservedRegs(MF); 1112 RegClassInfo.runOnMachineFunction(MF); 1113 UsedInInstr.clear(); 1114 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1115 1116 // initialize the virtual->physical register map to have a 'null' 1117 // mapping for all virtual registers 1118 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1119 StackSlotForVirtReg.resize(NumVirtRegs); 1120 LiveVirtRegs.setUniverse(NumVirtRegs); 1121 1122 // Loop over all of the basic blocks, eliminating virtual register references 1123 for (MachineBasicBlock &MBB : MF) 1124 allocateBasicBlock(MBB); 1125 1126 // All machine operands and other references to virtual registers have been 1127 // replaced. Remove the virtual registers. 1128 MRI->clearVirtRegs(); 1129 1130 StackSlotForVirtReg.clear(); 1131 LiveDbgValueMap.clear(); 1132 return true; 1133 } 1134 1135 FunctionPass *llvm::createFastRegisterAllocator() { 1136 return new RegAllocFast(); 1137 } 1138