1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 /// Stores assigned virtual registers present in the bundle MI. 109 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 110 111 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 112 /// List of DBG_VALUE that we encountered without the vreg being assigned 113 /// because they were placed after the last use of the vreg. 114 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 115 116 /// Has a bit set for every virtual register for which it was determined 117 /// that it is alive across blocks. 118 BitVector MayLiveAcrossBlocks; 119 120 /// State of a register unit. 121 enum RegUnitState { 122 /// A free register is not currently in use and can be allocated 123 /// immediately without checking aliases. 124 regFree, 125 126 /// A pre-assigned register has been assigned before register allocation 127 /// (e.g., setting up a call parameter). 128 regPreAssigned, 129 130 /// Used temporarily in reloadAtBegin() to mark register units that are 131 /// live-in to the basic block. 132 regLiveIn, 133 134 /// A register state may also be a virtual register number, indication 135 /// that the physical register is currently allocated to a virtual 136 /// register. In that case, LiveVirtRegs contains the inverse mapping. 137 }; 138 139 /// Maps each physical register to a RegUnitState enum or virtual register. 140 std::vector<unsigned> RegUnitStates; 141 142 SmallVector<MachineInstr *, 32> Coalesced; 143 144 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 145 /// Set of register units that are used in the current instruction, and so 146 /// cannot be allocated. 147 RegUnitSet UsedInInstr; 148 RegUnitSet PhysRegUses; 149 SmallVector<uint16_t, 8> DefOperandIndexes; 150 151 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 152 bool isPhysRegFree(MCPhysReg PhysReg) const; 153 154 /// Mark a physreg as used in this instruction. 155 void markRegUsedInInstr(MCPhysReg PhysReg) { 156 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 157 UsedInInstr.insert(*Units); 158 } 159 160 /// Check if a physreg or any of its aliases are used in this instruction. 161 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 162 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 163 if (UsedInInstr.count(*Units)) 164 return true; 165 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 166 return true; 167 } 168 return false; 169 } 170 171 /// Mark physical register as being used in a register use operand. 172 /// This is only used by the special livethrough handling code. 173 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 174 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 175 PhysRegUses.insert(*Units); 176 } 177 178 /// Remove mark of physical register being used in the instruction. 179 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 180 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 181 UsedInInstr.erase(*Units); 182 } 183 184 enum : unsigned { 185 spillClean = 50, 186 spillDirty = 100, 187 spillPrefBonus = 20, 188 spillImpossible = ~0u 189 }; 190 191 public: 192 StringRef getPassName() const override { return "Fast Register Allocator"; } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.setPreservesCFG(); 196 MachineFunctionPass::getAnalysisUsage(AU); 197 } 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoPHIs); 202 } 203 204 MachineFunctionProperties getSetProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 MachineFunctionProperties getClearedProperties() const override { 210 return MachineFunctionProperties().set( 211 MachineFunctionProperties::Property::IsSSA); 212 } 213 214 private: 215 bool runOnMachineFunction(MachineFunction &MF) override; 216 217 void allocateBasicBlock(MachineBasicBlock &MBB); 218 219 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 220 Register Reg) const; 221 222 void allocateInstruction(MachineInstr &MI); 223 void handleDebugValue(MachineInstr &MI); 224 void handleBundle(MachineInstr &MI); 225 226 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 227 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 228 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 229 void freePhysReg(MCPhysReg PhysReg); 230 231 unsigned calcSpillCost(MCPhysReg PhysReg) const; 232 233 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 234 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 235 } 236 237 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 238 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 239 } 240 241 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 242 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 243 bool LookAtPhysRegUses = false); 244 void allocVirtRegUndef(MachineOperand &MO); 245 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 246 MCPhysReg Reg); 247 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 248 Register VirtReg); 249 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 250 bool LookAtPhysRegUses = false); 251 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 252 253 MachineBasicBlock::iterator 254 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 255 SmallSet<Register, 2> &PrologLiveIns) const; 256 257 void reloadAtBegin(MachineBasicBlock &MBB); 258 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 259 260 Register traceCopies(Register VirtReg) const; 261 Register traceCopyChain(Register Reg) const; 262 263 int getStackSpaceFor(Register VirtReg); 264 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 265 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 266 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 267 MCPhysReg PhysReg); 268 269 bool mayLiveOut(Register VirtReg); 270 bool mayLiveIn(Register VirtReg); 271 272 void dumpState() const; 273 }; 274 275 } // end anonymous namespace 276 277 char RegAllocFast::ID = 0; 278 279 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 280 false) 281 282 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 283 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 284 RegUnitStates[*UI] = NewState; 285 } 286 287 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 288 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 289 if (RegUnitStates[*UI] != regFree) 290 return false; 291 } 292 return true; 293 } 294 295 /// This allocates space for the specified virtual register to be held on the 296 /// stack. 297 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 298 // Find the location Reg would belong... 299 int SS = StackSlotForVirtReg[VirtReg]; 300 // Already has space allocated? 301 if (SS != -1) 302 return SS; 303 304 // Allocate a new stack object for this spill location... 305 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 306 unsigned Size = TRI->getSpillSize(RC); 307 Align Alignment = TRI->getSpillAlign(RC); 308 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 309 310 // Assign the slot. 311 StackSlotForVirtReg[VirtReg] = FrameIdx; 312 return FrameIdx; 313 } 314 315 static bool dominates(MachineBasicBlock &MBB, 316 MachineBasicBlock::const_iterator A, 317 MachineBasicBlock::const_iterator B) { 318 auto MBBEnd = MBB.end(); 319 if (B == MBBEnd) 320 return true; 321 322 MachineBasicBlock::const_iterator I = MBB.begin(); 323 for (; &*I != A && &*I != B; ++I) 324 ; 325 326 return &*I == A; 327 } 328 329 /// Returns false if \p VirtReg is known to not live out of the current block. 330 bool RegAllocFast::mayLiveOut(Register VirtReg) { 331 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 332 // Cannot be live-out if there are no successors. 333 return !MBB->succ_empty(); 334 } 335 336 const MachineInstr *SelfLoopDef = nullptr; 337 338 // If this block loops back to itself, it is necessary to check whether the 339 // use comes after the def. 340 if (MBB->isSuccessor(MBB)) { 341 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 342 if (!SelfLoopDef) { 343 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 344 return true; 345 } 346 } 347 348 // See if the first \p Limit uses of the register are all in the current 349 // block. 350 static const unsigned Limit = 8; 351 unsigned C = 0; 352 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 353 if (UseInst.getParent() != MBB || ++C >= Limit) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 // Cannot be live-out if there are no successors. 356 return !MBB->succ_empty(); 357 } 358 359 if (SelfLoopDef) { 360 // Try to handle some simple cases to avoid spilling and reloading every 361 // value inside a self looping block. 362 if (SelfLoopDef == &UseInst || 363 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 364 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 365 return true; 366 } 367 } 368 } 369 370 return false; 371 } 372 373 /// Returns false if \p VirtReg is known to not be live into the current block. 374 bool RegAllocFast::mayLiveIn(Register VirtReg) { 375 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 376 return !MBB->pred_empty(); 377 378 // See if the first \p Limit def of the register are all in the current block. 379 static const unsigned Limit = 8; 380 unsigned C = 0; 381 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 382 if (DefInst.getParent() != MBB || ++C >= Limit) { 383 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 384 return !MBB->pred_empty(); 385 } 386 } 387 388 return false; 389 } 390 391 /// Insert spill instruction for \p AssignedReg before \p Before. Update 392 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 393 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 394 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 395 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 396 << " in " << printReg(AssignedReg, TRI)); 397 int FI = getStackSpaceFor(VirtReg); 398 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 399 400 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 401 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 402 ++NumStores; 403 404 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 405 406 // When we spill a virtual register, we will have spill instructions behind 407 // every definition of it, meaning we can switch all the DBG_VALUEs over 408 // to just reference the stack slot. 409 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 410 for (MachineInstr *DBG : LRIDbgValues) { 411 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 412 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 413 (void)NewDV; 414 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 415 416 if (LiveOut) { 417 // We need to insert a DBG_VALUE at the end of the block if the spill slot 418 // is live out, but there is another use of the value after the 419 // spill. This will allow LiveDebugValues to see the correct live out 420 // value to propagate to the successors. 421 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 422 MBB->insert(FirstTerm, ClonedDV); 423 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 424 } 425 426 // Rewrite unassigned dbg_values to use the stack slot. 427 MachineOperand &MO = DBG->getOperand(0); 428 if (MO.isReg() && MO.getReg() == 0) 429 updateDbgValueForSpill(*DBG, FI); 430 } 431 // Now this register is spilled there is should not be any DBG_VALUE 432 // pointing to this register because they are all pointing to spilled value 433 // now. 434 LRIDbgValues.clear(); 435 } 436 437 /// Insert reload instruction for \p PhysReg before \p Before. 438 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 439 MCPhysReg PhysReg) { 440 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 441 << printReg(PhysReg, TRI) << '\n'); 442 int FI = getStackSpaceFor(VirtReg); 443 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 444 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 445 ++NumLoads; 446 } 447 448 /// Get basic block begin insertion point. 449 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 450 /// instructions marking the begin of a basic block. This means we must insert 451 /// new instructions after such labels... 452 MachineBasicBlock::iterator 453 RegAllocFast::getMBBBeginInsertionPoint( 454 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 455 MachineBasicBlock::iterator I = MBB.begin(); 456 while (I != MBB.end()) { 457 if (I->isLabel()) { 458 ++I; 459 continue; 460 } 461 462 // Most reloads should be inserted after prolog instructions. 463 if (!TII->isBasicBlockPrologue(*I)) 464 break; 465 466 // However if a prolog instruction reads a register that needs to be 467 // reloaded, the reload should be inserted before the prolog. 468 for (MachineOperand &MO : I->operands()) { 469 if (MO.isReg()) 470 PrologLiveIns.insert(MO.getReg()); 471 } 472 473 ++I; 474 } 475 476 return I; 477 } 478 479 /// Reload all currently assigned virtual registers. 480 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 481 if (LiveVirtRegs.empty()) 482 return; 483 484 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 485 MCPhysReg Reg = P.PhysReg; 486 // Set state to live-in. This possibly overrides mappings to virtual 487 // registers but we don't care anymore at this point. 488 setPhysRegState(Reg, regLiveIn); 489 } 490 491 492 SmallSet<Register, 2> PrologLiveIns; 493 494 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 495 // of spilling here is deterministic, if arbitrary. 496 MachineBasicBlock::iterator InsertBefore 497 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 498 for (const LiveReg &LR : LiveVirtRegs) { 499 MCPhysReg PhysReg = LR.PhysReg; 500 if (PhysReg == 0) 501 continue; 502 503 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 504 if (RegUnitStates[FirstUnit] == regLiveIn) 505 continue; 506 507 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 508 "no reload in start block. Missing vreg def?"); 509 510 if (PrologLiveIns.count(PhysReg)) { 511 // FIXME: Theoretically this should use an insert point skipping labels 512 // but I'm not sure how labels should interact with prolog instruction 513 // that need reloads. 514 reload(MBB.begin(), LR.VirtReg, PhysReg); 515 } else 516 reload(InsertBefore, LR.VirtReg, PhysReg); 517 } 518 LiveVirtRegs.clear(); 519 } 520 521 /// Handle the direct use of a physical register. Check that the register is 522 /// not used by a virtreg. Kill the physreg, marking it free. This may add 523 /// implicit kills to MO->getParent() and invalidate MO. 524 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 525 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 526 bool displacedAny = displacePhysReg(MI, Reg); 527 setPhysRegState(Reg, regPreAssigned); 528 markRegUsedInInstr(Reg); 529 return displacedAny; 530 } 531 532 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 533 bool displacedAny = displacePhysReg(MI, Reg); 534 setPhysRegState(Reg, regPreAssigned); 535 return displacedAny; 536 } 537 538 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 539 /// similar to defineVirtReg except the physreg is reserved instead of 540 /// allocated. 541 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 542 bool displacedAny = false; 543 544 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 545 unsigned Unit = *UI; 546 switch (unsigned VirtReg = RegUnitStates[Unit]) { 547 default: { 548 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 549 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 550 MachineBasicBlock::iterator ReloadBefore = 551 std::next((MachineBasicBlock::iterator)MI.getIterator()); 552 reload(ReloadBefore, VirtReg, LRI->PhysReg); 553 554 setPhysRegState(LRI->PhysReg, regFree); 555 LRI->PhysReg = 0; 556 LRI->Reloaded = true; 557 displacedAny = true; 558 break; 559 } 560 case regPreAssigned: 561 RegUnitStates[Unit] = regFree; 562 displacedAny = true; 563 break; 564 case regFree: 565 break; 566 } 567 } 568 return displacedAny; 569 } 570 571 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 572 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 573 574 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 575 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 576 case regFree: 577 LLVM_DEBUG(dbgs() << '\n'); 578 return; 579 case regPreAssigned: 580 LLVM_DEBUG(dbgs() << '\n'); 581 setPhysRegState(PhysReg, regFree); 582 return; 583 default: { 584 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 585 assert(LRI != LiveVirtRegs.end()); 586 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 587 setPhysRegState(LRI->PhysReg, regFree); 588 LRI->PhysReg = 0; 589 } 590 return; 591 } 592 } 593 594 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 595 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 596 /// disabled - it can be allocated directly. 597 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 598 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 599 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 600 switch (unsigned VirtReg = RegUnitStates[*UI]) { 601 case regFree: 602 break; 603 case regPreAssigned: 604 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 605 << printReg(PhysReg, TRI) << '\n'); 606 return spillImpossible; 607 default: { 608 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 609 findLiveVirtReg(VirtReg)->LiveOut; 610 return SureSpill ? spillClean : spillDirty; 611 } 612 } 613 } 614 return 0; 615 } 616 617 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 618 Register VirtReg, MCPhysReg Reg) { 619 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 620 if (UDBGValIter == DanglingDbgValues.end()) 621 return; 622 623 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 624 for (MachineInstr *DbgValue : Dangling) { 625 assert(DbgValue->isDebugValue()); 626 MachineOperand &MO = DbgValue->getOperand(0); 627 if (!MO.isReg()) 628 continue; 629 630 // Test whether the physreg survives from the definition to the DBG_VALUE. 631 MCPhysReg SetToReg = Reg; 632 unsigned Limit = 20; 633 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 634 E = DbgValue->getIterator(); I != E; ++I) { 635 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 636 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 637 << '\n'); 638 SetToReg = 0; 639 break; 640 } 641 } 642 MO.setReg(SetToReg); 643 if (SetToReg != 0) 644 MO.setIsRenamable(); 645 } 646 Dangling.clear(); 647 } 648 649 /// This method updates local state so that we know that PhysReg is the 650 /// proper container for VirtReg now. The physical register must not be used 651 /// for anything else when this is called. 652 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 653 MCPhysReg PhysReg) { 654 Register VirtReg = LR.VirtReg; 655 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 656 << printReg(PhysReg, TRI) << '\n'); 657 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 658 assert(PhysReg != 0 && "Trying to assign no register"); 659 LR.PhysReg = PhysReg; 660 setPhysRegState(PhysReg, VirtReg); 661 662 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 663 } 664 665 static bool isCoalescable(const MachineInstr &MI) { 666 return MI.isFullCopy(); 667 } 668 669 Register RegAllocFast::traceCopyChain(Register Reg) const { 670 static const unsigned ChainLengthLimit = 3; 671 unsigned C = 0; 672 do { 673 if (Reg.isPhysical()) 674 return Reg; 675 assert(Reg.isVirtual()); 676 677 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 678 if (!VRegDef || !isCoalescable(*VRegDef)) 679 return 0; 680 Reg = VRegDef->getOperand(1).getReg(); 681 } while (++C <= ChainLengthLimit); 682 return 0; 683 } 684 685 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 686 /// chain of copies to check whether we reach a physical register we can 687 /// coalesce with. 688 Register RegAllocFast::traceCopies(Register VirtReg) const { 689 static const unsigned DefLimit = 3; 690 unsigned C = 0; 691 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 692 if (isCoalescable(MI)) { 693 Register Reg = MI.getOperand(1).getReg(); 694 Reg = traceCopyChain(Reg); 695 if (Reg.isValid()) 696 return Reg; 697 } 698 699 if (++C >= DefLimit) 700 break; 701 } 702 return Register(); 703 } 704 705 /// Allocates a physical register for VirtReg. 706 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 707 Register Hint0, bool LookAtPhysRegUses) { 708 const Register VirtReg = LR.VirtReg; 709 assert(LR.PhysReg == 0); 710 711 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 712 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 713 << " in class " << TRI->getRegClassName(&RC) 714 << " with hint " << printReg(Hint0, TRI) << '\n'); 715 716 // Take hint when possible. 717 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 718 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 719 // Take hint if the register is currently free. 720 if (isPhysRegFree(Hint0)) { 721 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 722 << '\n'); 723 assignVirtToPhysReg(MI, LR, Hint0); 724 return; 725 } else { 726 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 727 << " occupied\n"); 728 } 729 } else { 730 Hint0 = Register(); 731 } 732 733 734 // Try other hint. 735 Register Hint1 = traceCopies(VirtReg); 736 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 737 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 738 // Take hint if the register is currently free. 739 if (isPhysRegFree(Hint1)) { 740 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 741 << '\n'); 742 assignVirtToPhysReg(MI, LR, Hint1); 743 return; 744 } else { 745 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 746 << " occupied\n"); 747 } 748 } else { 749 Hint1 = Register(); 750 } 751 752 MCPhysReg BestReg = 0; 753 unsigned BestCost = spillImpossible; 754 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 755 for (MCPhysReg PhysReg : AllocationOrder) { 756 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 757 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 758 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 759 continue; 760 } 761 762 unsigned Cost = calcSpillCost(PhysReg); 763 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 764 // Immediate take a register with cost 0. 765 if (Cost == 0) { 766 assignVirtToPhysReg(MI, LR, PhysReg); 767 return; 768 } 769 770 if (PhysReg == Hint0 || PhysReg == Hint1) 771 Cost -= spillPrefBonus; 772 773 if (Cost < BestCost) { 774 BestReg = PhysReg; 775 BestCost = Cost; 776 } 777 } 778 779 if (!BestReg) { 780 // Nothing we can do: Report an error and keep going with an invalid 781 // allocation. 782 if (MI.isInlineAsm()) 783 MI.emitError("inline assembly requires more registers than available"); 784 else 785 MI.emitError("ran out of registers during register allocation"); 786 787 LR.Error = true; 788 LR.PhysReg = 0; 789 return; 790 } 791 792 displacePhysReg(MI, BestReg); 793 assignVirtToPhysReg(MI, LR, BestReg); 794 } 795 796 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 797 assert(MO.isUndef() && "expected undef use"); 798 Register VirtReg = MO.getReg(); 799 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 800 801 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 802 MCPhysReg PhysReg; 803 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 804 PhysReg = LRI->PhysReg; 805 } else { 806 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 807 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 808 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 809 PhysReg = AllocationOrder[0]; 810 } 811 812 unsigned SubRegIdx = MO.getSubReg(); 813 if (SubRegIdx != 0) { 814 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 815 MO.setSubReg(0); 816 } 817 MO.setReg(PhysReg); 818 MO.setIsRenamable(true); 819 } 820 821 /// Variation of defineVirtReg() with special handling for livethrough regs 822 /// (tied or earlyclobber) that may interfere with preassigned uses. 823 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 824 Register VirtReg) { 825 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 826 if (LRI != LiveVirtRegs.end()) { 827 MCPhysReg PrevReg = LRI->PhysReg; 828 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 829 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 830 << " (tied/earlyclobber resolution)\n"); 831 freePhysReg(PrevReg); 832 LRI->PhysReg = 0; 833 allocVirtReg(MI, *LRI, 0, true); 834 MachineBasicBlock::iterator InsertBefore = 835 std::next((MachineBasicBlock::iterator)MI.getIterator()); 836 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 837 << printReg(PrevReg, TRI) << '\n'); 838 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 839 TII->get(TargetOpcode::COPY), PrevReg) 840 .addReg(LRI->PhysReg, llvm::RegState::Kill); 841 } 842 MachineOperand &MO = MI.getOperand(OpNum); 843 if (MO.getSubReg() && !MO.isUndef()) { 844 LRI->LastUse = &MI; 845 } 846 } 847 return defineVirtReg(MI, OpNum, VirtReg, true); 848 } 849 850 /// Allocates a register for VirtReg definition. Typically the register is 851 /// already assigned from a use of the virtreg, however we still need to 852 /// perform an allocation if: 853 /// - It is a dead definition without any uses. 854 /// - The value is live out and all uses are in different basic blocks. 855 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 856 Register VirtReg, bool LookAtPhysRegUses) { 857 assert(VirtReg.isVirtual() && "Not a virtual register"); 858 MachineOperand &MO = MI.getOperand(OpNum); 859 LiveRegMap::iterator LRI; 860 bool New; 861 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 862 if (New) { 863 if (!MO.isDead()) { 864 if (mayLiveOut(VirtReg)) { 865 LRI->LiveOut = true; 866 } else { 867 // It is a dead def without the dead flag; add the flag now. 868 MO.setIsDead(true); 869 } 870 } 871 } 872 if (LRI->PhysReg == 0) 873 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 874 else { 875 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 876 "TODO: preassign mismatch"); 877 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 878 << " use existing assignment to " 879 << printReg(LRI->PhysReg, TRI) << '\n'); 880 } 881 882 MCPhysReg PhysReg = LRI->PhysReg; 883 assert(PhysReg != 0 && "Register not assigned"); 884 if (LRI->Reloaded || LRI->LiveOut) { 885 if (!MI.isImplicitDef()) { 886 MachineBasicBlock::iterator SpillBefore = 887 std::next((MachineBasicBlock::iterator)MI.getIterator()); 888 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 889 << LRI->Reloaded << '\n'); 890 bool Kill = LRI->LastUse == nullptr; 891 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 892 LRI->LastUse = nullptr; 893 } 894 LRI->LiveOut = false; 895 LRI->Reloaded = false; 896 } 897 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 898 BundleVirtRegsMap[VirtReg] = PhysReg; 899 } 900 markRegUsedInInstr(PhysReg); 901 setPhysReg(MI, MO, PhysReg); 902 } 903 904 /// Allocates a register for a VirtReg use. 905 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 906 Register VirtReg) { 907 assert(VirtReg.isVirtual() && "Not a virtual register"); 908 MachineOperand &MO = MI.getOperand(OpNum); 909 LiveRegMap::iterator LRI; 910 bool New; 911 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 912 if (New) { 913 MachineOperand &MO = MI.getOperand(OpNum); 914 if (!MO.isKill()) { 915 if (mayLiveOut(VirtReg)) { 916 LRI->LiveOut = true; 917 } else { 918 // It is a last (killing) use without the kill flag; add the flag now. 919 MO.setIsKill(true); 920 } 921 } 922 } else { 923 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 924 } 925 926 // If necessary allocate a register. 927 if (LRI->PhysReg == 0) { 928 assert(!MO.isTied() && "tied op should be allocated"); 929 Register Hint; 930 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 931 Hint = MI.getOperand(0).getReg(); 932 assert(Hint.isPhysical() && 933 "Copy destination should already be assigned"); 934 } 935 allocVirtReg(MI, *LRI, Hint, false); 936 if (LRI->Error) { 937 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 938 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 939 setPhysReg(MI, MO, *AllocationOrder.begin()); 940 return; 941 } 942 } 943 944 LRI->LastUse = &MI; 945 946 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 947 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 948 } 949 markRegUsedInInstr(LRI->PhysReg); 950 setPhysReg(MI, MO, LRI->PhysReg); 951 } 952 953 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 954 /// may invalidate any operand pointers. Return true if the operand kills its 955 /// register. 956 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 957 MCPhysReg PhysReg) { 958 if (!MO.getSubReg()) { 959 MO.setReg(PhysReg); 960 MO.setIsRenamable(true); 961 return; 962 } 963 964 // Handle subregister index. 965 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 966 MO.setIsRenamable(true); 967 // Note: We leave the subreg number around a little longer in case of defs. 968 // This is so that the register freeing logic in allocateInstruction can still 969 // recognize this as subregister defs. The code there will clear the number. 970 if (!MO.isDef()) 971 MO.setSubReg(0); 972 973 // A kill flag implies killing the full register. Add corresponding super 974 // register kill. 975 if (MO.isKill()) { 976 MI.addRegisterKilled(PhysReg, TRI, true); 977 return; 978 } 979 980 // A <def,read-undef> of a sub-register requires an implicit def of the full 981 // register. 982 if (MO.isDef() && MO.isUndef()) { 983 if (MO.isDead()) 984 MI.addRegisterDead(PhysReg, TRI, true); 985 else 986 MI.addRegisterDefined(PhysReg, TRI); 987 } 988 } 989 990 #ifndef NDEBUG 991 992 void RegAllocFast::dumpState() const { 993 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 994 ++Unit) { 995 switch (unsigned VirtReg = RegUnitStates[Unit]) { 996 case regFree: 997 break; 998 case regPreAssigned: 999 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1000 break; 1001 case regLiveIn: 1002 llvm_unreachable("Should not have regLiveIn in map"); 1003 default: { 1004 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1005 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1006 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1007 if (I->LiveOut || I->Reloaded) { 1008 dbgs() << '['; 1009 if (I->LiveOut) dbgs() << 'O'; 1010 if (I->Reloaded) dbgs() << 'R'; 1011 dbgs() << ']'; 1012 } 1013 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1014 break; 1015 } 1016 } 1017 } 1018 dbgs() << '\n'; 1019 // Check that LiveVirtRegs is the inverse. 1020 for (const LiveReg &LR : LiveVirtRegs) { 1021 Register VirtReg = LR.VirtReg; 1022 assert(VirtReg.isVirtual() && "Bad map key"); 1023 MCPhysReg PhysReg = LR.PhysReg; 1024 if (PhysReg != 0) { 1025 assert(Register::isPhysicalRegister(PhysReg) && 1026 "mapped to physreg"); 1027 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1028 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1029 } 1030 } 1031 } 1032 } 1033 #endif 1034 1035 /// Count number of defs consumed from each register class by \p Reg 1036 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1037 Register Reg) const { 1038 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1039 1040 if (Reg.isVirtual()) { 1041 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1042 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1043 RCIdx != RCIdxEnd; ++RCIdx) { 1044 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1045 // FIXME: Consider aliasing sub/super registers. 1046 if (OpRC->hasSubClassEq(IdxRC)) 1047 ++RegClassDefCounts[RCIdx]; 1048 } 1049 1050 return; 1051 } 1052 1053 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1054 RCIdx != RCIdxEnd; ++RCIdx) { 1055 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1056 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1057 if (IdxRC->contains(*Alias)) { 1058 ++RegClassDefCounts[RCIdx]; 1059 break; 1060 } 1061 } 1062 } 1063 } 1064 1065 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1066 // The basic algorithm here is: 1067 // 1. Mark registers of def operands as free 1068 // 2. Allocate registers to use operands and place reload instructions for 1069 // registers displaced by the allocation. 1070 // 1071 // However we need to handle some corner cases: 1072 // - pre-assigned defs and uses need to be handled before the other def/use 1073 // operands are processed to avoid the allocation heuristics clashing with 1074 // the pre-assignment. 1075 // - The "free def operands" step has to come last instead of first for tied 1076 // operands and early-clobbers. 1077 1078 UsedInInstr.clear(); 1079 BundleVirtRegsMap.clear(); 1080 1081 // Scan for special cases; Apply pre-assigned register defs to state. 1082 bool HasPhysRegUse = false; 1083 bool HasRegMask = false; 1084 bool HasVRegDef = false; 1085 bool HasDef = false; 1086 bool HasEarlyClobber = false; 1087 bool NeedToAssignLiveThroughs = false; 1088 for (MachineOperand &MO : MI.operands()) { 1089 if (MO.isReg()) { 1090 Register Reg = MO.getReg(); 1091 if (Reg.isVirtual()) { 1092 if (MO.isDef()) { 1093 HasDef = true; 1094 HasVRegDef = true; 1095 if (MO.isEarlyClobber()) { 1096 HasEarlyClobber = true; 1097 NeedToAssignLiveThroughs = true; 1098 } 1099 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1100 NeedToAssignLiveThroughs = true; 1101 } 1102 } else if (Reg.isPhysical()) { 1103 if (!MRI->isReserved(Reg)) { 1104 if (MO.isDef()) { 1105 HasDef = true; 1106 bool displacedAny = definePhysReg(MI, Reg); 1107 if (MO.isEarlyClobber()) 1108 HasEarlyClobber = true; 1109 if (!displacedAny) 1110 MO.setIsDead(true); 1111 } 1112 if (MO.readsReg()) 1113 HasPhysRegUse = true; 1114 } 1115 } 1116 } else if (MO.isRegMask()) { 1117 HasRegMask = true; 1118 } 1119 } 1120 1121 // Allocate virtreg defs. 1122 if (HasDef) { 1123 if (HasVRegDef) { 1124 // Special handling for early clobbers, tied operands or subregister defs: 1125 // Compared to "normal" defs these: 1126 // - Must not use a register that is pre-assigned for a use operand. 1127 // - In order to solve tricky inline assembly constraints we change the 1128 // heuristic to figure out a good operand order before doing 1129 // assignments. 1130 if (NeedToAssignLiveThroughs) { 1131 DefOperandIndexes.clear(); 1132 PhysRegUses.clear(); 1133 1134 // Track number of defs which may consume a register from the class. 1135 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1136 assert(RegClassDefCounts[0] == 0); 1137 1138 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1139 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1140 const MachineOperand &MO = MI.getOperand(I); 1141 if (!MO.isReg()) 1142 continue; 1143 Register Reg = MO.getReg(); 1144 if (MO.readsReg()) { 1145 if (Reg.isPhysical()) { 1146 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1147 << '\n'); 1148 markPhysRegUsedInInstr(Reg); 1149 } 1150 } 1151 1152 if (MO.isDef()) { 1153 if (Reg.isVirtual()) 1154 DefOperandIndexes.push_back(I); 1155 1156 addRegClassDefCounts(RegClassDefCounts, Reg); 1157 } 1158 } 1159 1160 llvm::sort(DefOperandIndexes.begin(), DefOperandIndexes.end(), 1161 [&](uint16_t I0, uint16_t I1) { 1162 const MachineOperand &MO0 = MI.getOperand(I0); 1163 const MachineOperand &MO1 = MI.getOperand(I1); 1164 Register Reg0 = MO0.getReg(); 1165 Register Reg1 = MO1.getReg(); 1166 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1167 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1168 1169 // Identify regclass that are easy to use up completely just in this 1170 // instruction. 1171 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1172 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1173 1174 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1175 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1176 if (SmallClass0 > SmallClass1) 1177 return true; 1178 if (SmallClass0 < SmallClass1) 1179 return false; 1180 1181 // Allocate early clobbers and livethrough operands first. 1182 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1183 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1184 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1185 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1186 if (Livethrough0 > Livethrough1) 1187 return true; 1188 if (Livethrough0 < Livethrough1) 1189 return false; 1190 1191 // Tie-break rule: operand index. 1192 return I0 < I1; 1193 }); 1194 1195 for (uint16_t OpIdx : DefOperandIndexes) { 1196 MachineOperand &MO = MI.getOperand(OpIdx); 1197 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1198 unsigned Reg = MO.getReg(); 1199 if (MO.isEarlyClobber() || MO.isTied() || 1200 (MO.getSubReg() && !MO.isUndef())) { 1201 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1202 } else { 1203 defineVirtReg(MI, OpIdx, Reg); 1204 } 1205 } 1206 } else { 1207 // Assign virtual register defs. 1208 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1209 MachineOperand &MO = MI.getOperand(I); 1210 if (!MO.isReg() || !MO.isDef()) 1211 continue; 1212 Register Reg = MO.getReg(); 1213 if (Reg.isVirtual()) 1214 defineVirtReg(MI, I, Reg); 1215 } 1216 } 1217 } 1218 1219 // Free registers occupied by defs. 1220 // Iterate operands in reverse order, so we see the implicit super register 1221 // defs first (we added them earlier in case of <def,read-undef>). 1222 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1223 MachineOperand &MO = MI.getOperand(I); 1224 if (!MO.isReg() || !MO.isDef()) 1225 continue; 1226 1227 // subreg defs don't free the full register. We left the subreg number 1228 // around as a marker in setPhysReg() to recognize this case here. 1229 if (MO.getSubReg() != 0) { 1230 MO.setSubReg(0); 1231 continue; 1232 } 1233 1234 // Do not free tied operands and early clobbers. 1235 if (MO.isTied() || MO.isEarlyClobber()) 1236 continue; 1237 Register Reg = MO.getReg(); 1238 if (!Reg) 1239 continue; 1240 assert(Reg.isPhysical()); 1241 if (MRI->isReserved(Reg)) 1242 continue; 1243 freePhysReg(Reg); 1244 unmarkRegUsedInInstr(Reg); 1245 } 1246 } 1247 1248 // Displace clobbered registers. 1249 if (HasRegMask) { 1250 for (const MachineOperand &MO : MI.operands()) { 1251 if (MO.isRegMask()) { 1252 // MRI bookkeeping. 1253 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1254 1255 // Displace clobbered registers. 1256 const uint32_t *Mask = MO.getRegMask(); 1257 for (LiveRegMap::iterator LRI = LiveVirtRegs.begin(), 1258 LRIE = LiveVirtRegs.end(); LRI != LRIE; ++LRI) { 1259 MCPhysReg PhysReg = LRI->PhysReg; 1260 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1261 displacePhysReg(MI, PhysReg); 1262 } 1263 } 1264 } 1265 } 1266 1267 // Apply pre-assigned register uses to state. 1268 if (HasPhysRegUse) { 1269 for (MachineOperand &MO : MI.operands()) { 1270 if (!MO.isReg() || !MO.readsReg()) 1271 continue; 1272 Register Reg = MO.getReg(); 1273 if (!Reg.isPhysical()) 1274 continue; 1275 if (MRI->isReserved(Reg)) 1276 continue; 1277 bool displacedAny = usePhysReg(MI, Reg); 1278 if (!displacedAny && !MRI->isReserved(Reg)) 1279 MO.setIsKill(true); 1280 } 1281 } 1282 1283 // Allocate virtreg uses and insert reloads as necessary. 1284 bool HasUndefUse = false; 1285 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1286 MachineOperand &MO = MI.getOperand(I); 1287 if (!MO.isReg() || !MO.isUse()) 1288 continue; 1289 Register Reg = MO.getReg(); 1290 if (!Reg.isVirtual()) 1291 continue; 1292 1293 if (MO.isUndef()) { 1294 HasUndefUse = true; 1295 continue; 1296 } 1297 1298 1299 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1300 // the def block (removing the vreg uses). 1301 mayLiveIn(Reg); 1302 1303 1304 assert(!MO.isInternalRead() && "Bundles not supported"); 1305 assert(MO.readsReg() && "reading use"); 1306 useVirtReg(MI, I, Reg); 1307 } 1308 1309 // Allocate undef operands. This is a separate step because in a situation 1310 // like ` = OP undef %X, %X` both operands need the same register assign 1311 // so we should perform the normal assignment first. 1312 if (HasUndefUse) { 1313 for (MachineOperand &MO : MI.uses()) { 1314 if (!MO.isReg() || !MO.isUse()) 1315 continue; 1316 Register Reg = MO.getReg(); 1317 if (!Reg.isVirtual()) 1318 continue; 1319 1320 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1321 allocVirtRegUndef(MO); 1322 } 1323 } 1324 1325 // Free early clobbers. 1326 if (HasEarlyClobber) { 1327 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1328 MachineOperand &MO = MI.getOperand(I); 1329 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1330 continue; 1331 // subreg defs don't free the full register. We left the subreg number 1332 // around as a marker in setPhysReg() to recognize this case here. 1333 if (MO.getSubReg() != 0) { 1334 MO.setSubReg(0); 1335 continue; 1336 } 1337 1338 Register Reg = MO.getReg(); 1339 if (!Reg) 1340 continue; 1341 assert(Reg.isPhysical() && "should have register assigned"); 1342 1343 // We sometimes get odd situations like: 1344 // early-clobber %x0 = INSTRUCTION %x0 1345 // which is semantically questionable as the early-clobber should 1346 // apply before the use. But in practice we consider the use to 1347 // happen before the early clobber now. Don't free the early clobber 1348 // register in this case. 1349 if (MI.readsRegister(Reg, TRI)) 1350 continue; 1351 1352 freePhysReg(Reg); 1353 } 1354 } 1355 1356 LLVM_DEBUG(dbgs() << "<< " << MI); 1357 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1358 MI.getNumOperands() == 2) { 1359 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1360 Coalesced.push_back(&MI); 1361 } 1362 } 1363 1364 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1365 MachineOperand &MO = MI.getDebugOperand(0); 1366 1367 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1368 // mostly constants and frame indices. 1369 if (!MO.isReg()) 1370 return; 1371 Register Reg = MO.getReg(); 1372 if (!Register::isVirtualRegister(Reg)) 1373 return; 1374 1375 // Already spilled to a stackslot? 1376 int SS = StackSlotForVirtReg[Reg]; 1377 if (SS != -1) { 1378 // Modify DBG_VALUE now that the value is in a spill slot. 1379 updateDbgValueForSpill(MI, SS); 1380 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1381 return; 1382 } 1383 1384 // See if this virtual register has already been allocated to a physical 1385 // register or spilled to a stack slot. 1386 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1387 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1388 setPhysReg(MI, MO, LRI->PhysReg); 1389 } else { 1390 DanglingDbgValues[Reg].push_back(&MI); 1391 } 1392 1393 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1394 // that future spills of Reg will have DBG_VALUEs. 1395 LiveDbgValueMap[Reg].push_back(&MI); 1396 } 1397 1398 void RegAllocFast::handleBundle(MachineInstr &MI) { 1399 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1400 ++BundledMI; 1401 while (BundledMI->isBundledWithPred()) { 1402 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1403 MachineOperand &MO = BundledMI->getOperand(I); 1404 if (!MO.isReg()) 1405 continue; 1406 1407 Register Reg = MO.getReg(); 1408 if (!Reg.isVirtual()) 1409 continue; 1410 1411 DenseMap<Register, MCPhysReg>::iterator DI; 1412 DI = BundleVirtRegsMap.find(Reg); 1413 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1414 1415 setPhysReg(MI, MO, DI->second); 1416 } 1417 1418 ++BundledMI; 1419 } 1420 } 1421 1422 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1423 this->MBB = &MBB; 1424 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1425 1426 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1427 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1428 1429 for (MachineBasicBlock *Succ : MBB.successors()) { 1430 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1431 setPhysRegState(LI.PhysReg, regPreAssigned); 1432 } 1433 1434 Coalesced.clear(); 1435 1436 // Traverse block in reverse order allocating instructions one by one. 1437 for (MachineInstr &MI : reverse(MBB)) { 1438 LLVM_DEBUG( 1439 dbgs() << "\n>> " << MI << "Regs:"; 1440 dumpState() 1441 ); 1442 1443 // Special handling for debug values. Note that they are not allowed to 1444 // affect codegen of the other instructions in any way. 1445 if (MI.isDebugValue()) { 1446 handleDebugValue(MI); 1447 continue; 1448 } 1449 1450 allocateInstruction(MI); 1451 1452 // Once BUNDLE header is assigned registers, same assignments need to be 1453 // done for bundled MIs. 1454 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1455 handleBundle(MI); 1456 } 1457 } 1458 1459 LLVM_DEBUG( 1460 dbgs() << "Begin Regs:"; 1461 dumpState() 1462 ); 1463 1464 // Spill all physical registers holding virtual registers now. 1465 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1466 reloadAtBegin(MBB); 1467 1468 // Erase all the coalesced copies. We are delaying it until now because 1469 // LiveVirtRegs might refer to the instrs. 1470 for (MachineInstr *MI : Coalesced) 1471 MBB.erase(MI); 1472 NumCoalesced += Coalesced.size(); 1473 1474 for (auto &UDBGPair : DanglingDbgValues) { 1475 for (MachineInstr *DbgValue : UDBGPair.second) { 1476 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1477 MachineOperand &MO = DbgValue->getOperand(0); 1478 // Nothing to do if the vreg was spilled in the meantime. 1479 if (!MO.isReg()) 1480 continue; 1481 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1482 << '\n'); 1483 MO.setReg(0); 1484 } 1485 } 1486 DanglingDbgValues.clear(); 1487 1488 LLVM_DEBUG(MBB.dump()); 1489 } 1490 1491 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1492 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1493 << "********** Function: " << MF.getName() << '\n'); 1494 MRI = &MF.getRegInfo(); 1495 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1496 TRI = STI.getRegisterInfo(); 1497 TII = STI.getInstrInfo(); 1498 MFI = &MF.getFrameInfo(); 1499 MRI->freezeReservedRegs(MF); 1500 RegClassInfo.runOnMachineFunction(MF); 1501 unsigned NumRegUnits = TRI->getNumRegUnits(); 1502 UsedInInstr.clear(); 1503 UsedInInstr.setUniverse(NumRegUnits); 1504 PhysRegUses.clear(); 1505 PhysRegUses.setUniverse(NumRegUnits); 1506 1507 // initialize the virtual->physical register map to have a 'null' 1508 // mapping for all virtual registers 1509 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1510 StackSlotForVirtReg.resize(NumVirtRegs); 1511 LiveVirtRegs.setUniverse(NumVirtRegs); 1512 MayLiveAcrossBlocks.clear(); 1513 MayLiveAcrossBlocks.resize(NumVirtRegs); 1514 1515 // Loop over all of the basic blocks, eliminating virtual register references 1516 for (MachineBasicBlock &MBB : MF) 1517 allocateBasicBlock(MBB); 1518 1519 // All machine operands and other references to virtual registers have been 1520 // replaced. Remove the virtual registers. 1521 MRI->clearVirtRegs(); 1522 1523 StackSlotForVirtReg.clear(); 1524 LiveDbgValueMap.clear(); 1525 return true; 1526 } 1527 1528 FunctionPass *llvm::createFastRegisterAllocator() { 1529 return new RegAllocFast(); 1530 } 1531