1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads , "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 70 bool ClearVirtRegs_ = true) : 71 MachineFunctionPass(ID), 72 ShouldAllocateClass(F), 73 StackSlotForVirtReg(-1), 74 ClearVirtRegs(ClearVirtRegs_) { 75 } 76 77 private: 78 MachineFrameInfo *MFI; 79 MachineRegisterInfo *MRI; 80 const TargetRegisterInfo *TRI; 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 const RegClassFilterFunc ShouldAllocateClass; 84 85 /// Basic block currently being allocated. 86 MachineBasicBlock *MBB; 87 88 /// Maps virtual regs to the frame index where these values are spilled. 89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 90 91 bool ClearVirtRegs; 92 93 /// Everything we know about a live virtual register. 94 struct LiveReg { 95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 96 Register VirtReg; ///< Virtual register number. 97 MCPhysReg PhysReg = 0; ///< Currently held here. 98 bool LiveOut = false; ///< Register is possibly live out. 99 bool Reloaded = false; ///< Register was reloaded. 100 bool Error = false; ///< Could not allocate. 101 102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 103 104 unsigned getSparseSetIndex() const { 105 return Register::virtReg2Index(VirtReg); 106 } 107 }; 108 109 using LiveRegMap = SparseSet<LiveReg>; 110 /// This map contains entries for each virtual register that is currently 111 /// available in a physical register. 112 LiveRegMap LiveVirtRegs; 113 114 /// Stores assigned virtual registers present in the bundle MI. 115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 116 117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 118 /// List of DBG_VALUE that we encountered without the vreg being assigned 119 /// because they were placed after the last use of the vreg. 120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 121 122 /// Has a bit set for every virtual register for which it was determined 123 /// that it is alive across blocks. 124 BitVector MayLiveAcrossBlocks; 125 126 /// State of a register unit. 127 enum RegUnitState { 128 /// A free register is not currently in use and can be allocated 129 /// immediately without checking aliases. 130 regFree, 131 132 /// A pre-assigned register has been assigned before register allocation 133 /// (e.g., setting up a call parameter). 134 regPreAssigned, 135 136 /// Used temporarily in reloadAtBegin() to mark register units that are 137 /// live-in to the basic block. 138 regLiveIn, 139 140 /// A register state may also be a virtual register number, indication 141 /// that the physical register is currently allocated to a virtual 142 /// register. In that case, LiveVirtRegs contains the inverse mapping. 143 }; 144 145 /// Maps each physical register to a RegUnitState enum or virtual register. 146 std::vector<unsigned> RegUnitStates; 147 148 SmallVector<MachineInstr *, 32> Coalesced; 149 150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 151 /// Set of register units that are used in the current instruction, and so 152 /// cannot be allocated. 153 RegUnitSet UsedInInstr; 154 RegUnitSet PhysRegUses; 155 SmallVector<uint16_t, 8> DefOperandIndexes; 156 // Register masks attached to the current instruction. 157 SmallVector<const uint32_t *> RegMasks; 158 159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 160 bool isPhysRegFree(MCPhysReg PhysReg) const; 161 162 /// Mark a physreg as used in this instruction. 163 void markRegUsedInInstr(MCPhysReg PhysReg) { 164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 165 UsedInInstr.insert(*Units); 166 } 167 168 // Check if physreg is clobbered by instruction's regmask(s). 169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 171 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 172 }); 173 } 174 175 /// Check if a physreg or any of its aliases are used in this instruction. 176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 178 return true; 179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 180 if (UsedInInstr.count(*Units)) 181 return true; 182 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 183 return true; 184 } 185 return false; 186 } 187 188 /// Mark physical register as being used in a register use operand. 189 /// This is only used by the special livethrough handling code. 190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 192 PhysRegUses.insert(*Units); 193 } 194 195 /// Remove mark of physical register being used in the instruction. 196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 198 UsedInInstr.erase(*Units); 199 } 200 201 enum : unsigned { 202 spillClean = 50, 203 spillDirty = 100, 204 spillPrefBonus = 20, 205 spillImpossible = ~0u 206 }; 207 208 public: 209 StringRef getPassName() const override { return "Fast Register Allocator"; } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.setPreservesCFG(); 213 MachineFunctionPass::getAnalysisUsage(AU); 214 } 215 216 MachineFunctionProperties getRequiredProperties() const override { 217 return MachineFunctionProperties().set( 218 MachineFunctionProperties::Property::NoPHIs); 219 } 220 221 MachineFunctionProperties getSetProperties() const override { 222 if (ClearVirtRegs) { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 return MachineFunctionProperties(); 228 } 229 230 MachineFunctionProperties getClearedProperties() const override { 231 return MachineFunctionProperties().set( 232 MachineFunctionProperties::Property::IsSSA); 233 } 234 235 private: 236 bool runOnMachineFunction(MachineFunction &MF) override; 237 238 void allocateBasicBlock(MachineBasicBlock &MBB); 239 240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 241 Register Reg) const; 242 243 void allocateInstruction(MachineInstr &MI); 244 void handleDebugValue(MachineInstr &MI); 245 void handleBundle(MachineInstr &MI); 246 247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 250 void freePhysReg(MCPhysReg PhysReg); 251 252 unsigned calcSpillCost(MCPhysReg PhysReg) const; 253 254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 256 } 257 258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 260 } 261 262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 264 bool LookAtPhysRegUses = false); 265 void allocVirtRegUndef(MachineOperand &MO); 266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 267 MCPhysReg Reg); 268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 269 Register VirtReg); 270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 271 bool LookAtPhysRegUses = false); 272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 273 274 MachineBasicBlock::iterator 275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 276 SmallSet<Register, 2> &PrologLiveIns) const; 277 278 void reloadAtBegin(MachineBasicBlock &MBB); 279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 280 281 Register traceCopies(Register VirtReg) const; 282 Register traceCopyChain(Register Reg) const; 283 284 bool shouldAllocateRegister(const Register Reg) const; 285 int getStackSpaceFor(Register VirtReg); 286 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 287 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 288 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 289 MCPhysReg PhysReg); 290 291 bool mayLiveOut(Register VirtReg); 292 bool mayLiveIn(Register VirtReg); 293 294 void dumpState() const; 295 }; 296 297 } // end anonymous namespace 298 299 char RegAllocFast::ID = 0; 300 301 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 302 false) 303 304 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const { 305 assert(Register::isVirtualRegister(Reg)); 306 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 307 return ShouldAllocateClass(*TRI, RC); 308 } 309 310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 311 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 312 RegUnitStates[*UI] = NewState; 313 } 314 315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 316 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 317 if (RegUnitStates[*UI] != regFree) 318 return false; 319 } 320 return true; 321 } 322 323 /// This allocates space for the specified virtual register to be held on the 324 /// stack. 325 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 326 // Find the location Reg would belong... 327 int SS = StackSlotForVirtReg[VirtReg]; 328 // Already has space allocated? 329 if (SS != -1) 330 return SS; 331 332 // Allocate a new stack object for this spill location... 333 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 334 unsigned Size = TRI->getSpillSize(RC); 335 Align Alignment = TRI->getSpillAlign(RC); 336 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 337 338 // Assign the slot. 339 StackSlotForVirtReg[VirtReg] = FrameIdx; 340 return FrameIdx; 341 } 342 343 static bool dominates(MachineBasicBlock &MBB, 344 MachineBasicBlock::const_iterator A, 345 MachineBasicBlock::const_iterator B) { 346 auto MBBEnd = MBB.end(); 347 if (B == MBBEnd) 348 return true; 349 350 MachineBasicBlock::const_iterator I = MBB.begin(); 351 for (; &*I != A && &*I != B; ++I) 352 ; 353 354 return &*I == A; 355 } 356 357 /// Returns false if \p VirtReg is known to not live out of the current block. 358 bool RegAllocFast::mayLiveOut(Register VirtReg) { 359 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 360 // Cannot be live-out if there are no successors. 361 return !MBB->succ_empty(); 362 } 363 364 const MachineInstr *SelfLoopDef = nullptr; 365 366 // If this block loops back to itself, it is necessary to check whether the 367 // use comes after the def. 368 if (MBB->isSuccessor(MBB)) { 369 // Find the first def in the self loop MBB. 370 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 371 if (DefInst.getParent() != MBB) { 372 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 373 return true; 374 } else { 375 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef)) 376 SelfLoopDef = &DefInst; 377 } 378 } 379 if (!SelfLoopDef) { 380 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 381 return true; 382 } 383 } 384 385 // See if the first \p Limit uses of the register are all in the current 386 // block. 387 static const unsigned Limit = 8; 388 unsigned C = 0; 389 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 390 if (UseInst.getParent() != MBB || ++C >= Limit) { 391 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 392 // Cannot be live-out if there are no successors. 393 return !MBB->succ_empty(); 394 } 395 396 if (SelfLoopDef) { 397 // Try to handle some simple cases to avoid spilling and reloading every 398 // value inside a self looping block. 399 if (SelfLoopDef == &UseInst || 400 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 401 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 402 return true; 403 } 404 } 405 } 406 407 return false; 408 } 409 410 /// Returns false if \p VirtReg is known to not be live into the current block. 411 bool RegAllocFast::mayLiveIn(Register VirtReg) { 412 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 413 return !MBB->pred_empty(); 414 415 // See if the first \p Limit def of the register are all in the current block. 416 static const unsigned Limit = 8; 417 unsigned C = 0; 418 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 419 if (DefInst.getParent() != MBB || ++C >= Limit) { 420 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 421 return !MBB->pred_empty(); 422 } 423 } 424 425 return false; 426 } 427 428 /// Insert spill instruction for \p AssignedReg before \p Before. Update 429 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 430 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 431 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 432 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 433 << " in " << printReg(AssignedReg, TRI)); 434 int FI = getStackSpaceFor(VirtReg); 435 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 436 437 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 438 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 439 ++NumStores; 440 441 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 442 443 // When we spill a virtual register, we will have spill instructions behind 444 // every definition of it, meaning we can switch all the DBG_VALUEs over 445 // to just reference the stack slot. 446 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 447 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 448 SpilledOperandsMap; 449 for (MachineOperand *MO : LRIDbgOperands) 450 SpilledOperandsMap[MO->getParent()].push_back(MO); 451 for (auto MISpilledOperands : SpilledOperandsMap) { 452 MachineInstr &DBG = *MISpilledOperands.first; 453 MachineInstr *NewDV = buildDbgValueForSpill( 454 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 455 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 456 (void)NewDV; 457 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 458 459 if (LiveOut) { 460 // We need to insert a DBG_VALUE at the end of the block if the spill slot 461 // is live out, but there is another use of the value after the 462 // spill. This will allow LiveDebugValues to see the correct live out 463 // value to propagate to the successors. 464 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 465 MBB->insert(FirstTerm, ClonedDV); 466 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 467 } 468 469 // Rewrite unassigned dbg_values to use the stack slot. 470 // TODO We can potentially do this for list debug values as well if we know 471 // how the dbg_values are getting unassigned. 472 if (DBG.isNonListDebugValue()) { 473 MachineOperand &MO = DBG.getDebugOperand(0); 474 if (MO.isReg() && MO.getReg() == 0) { 475 updateDbgValueForSpill(DBG, FI, 0); 476 } 477 } 478 } 479 // Now this register is spilled there is should not be any DBG_VALUE 480 // pointing to this register because they are all pointing to spilled value 481 // now. 482 LRIDbgOperands.clear(); 483 } 484 485 /// Insert reload instruction for \p PhysReg before \p Before. 486 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 487 MCPhysReg PhysReg) { 488 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 489 << printReg(PhysReg, TRI) << '\n'); 490 int FI = getStackSpaceFor(VirtReg); 491 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 492 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 493 ++NumLoads; 494 } 495 496 /// Get basic block begin insertion point. 497 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 498 /// instructions marking the begin of a basic block. This means we must insert 499 /// new instructions after such labels... 500 MachineBasicBlock::iterator 501 RegAllocFast::getMBBBeginInsertionPoint( 502 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 503 MachineBasicBlock::iterator I = MBB.begin(); 504 while (I != MBB.end()) { 505 if (I->isLabel()) { 506 ++I; 507 continue; 508 } 509 510 // Most reloads should be inserted after prolog instructions. 511 if (!TII->isBasicBlockPrologue(*I)) 512 break; 513 514 // However if a prolog instruction reads a register that needs to be 515 // reloaded, the reload should be inserted before the prolog. 516 for (MachineOperand &MO : I->operands()) { 517 if (MO.isReg()) 518 PrologLiveIns.insert(MO.getReg()); 519 } 520 521 ++I; 522 } 523 524 return I; 525 } 526 527 /// Reload all currently assigned virtual registers. 528 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 529 if (LiveVirtRegs.empty()) 530 return; 531 532 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 533 MCPhysReg Reg = P.PhysReg; 534 // Set state to live-in. This possibly overrides mappings to virtual 535 // registers but we don't care anymore at this point. 536 setPhysRegState(Reg, regLiveIn); 537 } 538 539 540 SmallSet<Register, 2> PrologLiveIns; 541 542 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 543 // of spilling here is deterministic, if arbitrary. 544 MachineBasicBlock::iterator InsertBefore 545 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 546 for (const LiveReg &LR : LiveVirtRegs) { 547 MCPhysReg PhysReg = LR.PhysReg; 548 if (PhysReg == 0) 549 continue; 550 551 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 552 if (RegUnitStates[FirstUnit] == regLiveIn) 553 continue; 554 555 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 556 "no reload in start block. Missing vreg def?"); 557 558 if (PrologLiveIns.count(PhysReg)) { 559 // FIXME: Theoretically this should use an insert point skipping labels 560 // but I'm not sure how labels should interact with prolog instruction 561 // that need reloads. 562 reload(MBB.begin(), LR.VirtReg, PhysReg); 563 } else 564 reload(InsertBefore, LR.VirtReg, PhysReg); 565 } 566 LiveVirtRegs.clear(); 567 } 568 569 /// Handle the direct use of a physical register. Check that the register is 570 /// not used by a virtreg. Kill the physreg, marking it free. This may add 571 /// implicit kills to MO->getParent() and invalidate MO. 572 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 573 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 574 bool displacedAny = displacePhysReg(MI, Reg); 575 setPhysRegState(Reg, regPreAssigned); 576 markRegUsedInInstr(Reg); 577 return displacedAny; 578 } 579 580 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 581 bool displacedAny = displacePhysReg(MI, Reg); 582 setPhysRegState(Reg, regPreAssigned); 583 return displacedAny; 584 } 585 586 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 587 /// similar to defineVirtReg except the physreg is reserved instead of 588 /// allocated. 589 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 590 bool displacedAny = false; 591 592 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 593 unsigned Unit = *UI; 594 switch (unsigned VirtReg = RegUnitStates[Unit]) { 595 default: { 596 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 597 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 598 MachineBasicBlock::iterator ReloadBefore = 599 std::next((MachineBasicBlock::iterator)MI.getIterator()); 600 reload(ReloadBefore, VirtReg, LRI->PhysReg); 601 602 setPhysRegState(LRI->PhysReg, regFree); 603 LRI->PhysReg = 0; 604 LRI->Reloaded = true; 605 displacedAny = true; 606 break; 607 } 608 case regPreAssigned: 609 RegUnitStates[Unit] = regFree; 610 displacedAny = true; 611 break; 612 case regFree: 613 break; 614 } 615 } 616 return displacedAny; 617 } 618 619 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 620 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 621 622 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 623 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 624 case regFree: 625 LLVM_DEBUG(dbgs() << '\n'); 626 return; 627 case regPreAssigned: 628 LLVM_DEBUG(dbgs() << '\n'); 629 setPhysRegState(PhysReg, regFree); 630 return; 631 default: { 632 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 633 assert(LRI != LiveVirtRegs.end()); 634 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 635 setPhysRegState(LRI->PhysReg, regFree); 636 LRI->PhysReg = 0; 637 } 638 return; 639 } 640 } 641 642 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 643 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 644 /// disabled - it can be allocated directly. 645 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 646 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 647 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 648 switch (unsigned VirtReg = RegUnitStates[*UI]) { 649 case regFree: 650 break; 651 case regPreAssigned: 652 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 653 << printReg(PhysReg, TRI) << '\n'); 654 return spillImpossible; 655 default: { 656 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 657 findLiveVirtReg(VirtReg)->LiveOut; 658 return SureSpill ? spillClean : spillDirty; 659 } 660 } 661 } 662 return 0; 663 } 664 665 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 666 Register VirtReg, MCPhysReg Reg) { 667 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 668 if (UDBGValIter == DanglingDbgValues.end()) 669 return; 670 671 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 672 for (MachineInstr *DbgValue : Dangling) { 673 assert(DbgValue->isDebugValue()); 674 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 675 continue; 676 677 // Test whether the physreg survives from the definition to the DBG_VALUE. 678 MCPhysReg SetToReg = Reg; 679 unsigned Limit = 20; 680 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 681 E = DbgValue->getIterator(); I != E; ++I) { 682 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 683 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 684 << '\n'); 685 SetToReg = 0; 686 break; 687 } 688 } 689 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 690 MO.setReg(SetToReg); 691 if (SetToReg != 0) 692 MO.setIsRenamable(); 693 } 694 } 695 Dangling.clear(); 696 } 697 698 /// This method updates local state so that we know that PhysReg is the 699 /// proper container for VirtReg now. The physical register must not be used 700 /// for anything else when this is called. 701 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 702 MCPhysReg PhysReg) { 703 Register VirtReg = LR.VirtReg; 704 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 705 << printReg(PhysReg, TRI) << '\n'); 706 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 707 assert(PhysReg != 0 && "Trying to assign no register"); 708 LR.PhysReg = PhysReg; 709 setPhysRegState(PhysReg, VirtReg); 710 711 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 712 } 713 714 static bool isCoalescable(const MachineInstr &MI) { 715 return MI.isFullCopy(); 716 } 717 718 Register RegAllocFast::traceCopyChain(Register Reg) const { 719 static const unsigned ChainLengthLimit = 3; 720 unsigned C = 0; 721 do { 722 if (Reg.isPhysical()) 723 return Reg; 724 assert(Reg.isVirtual()); 725 726 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 727 if (!VRegDef || !isCoalescable(*VRegDef)) 728 return 0; 729 Reg = VRegDef->getOperand(1).getReg(); 730 } while (++C <= ChainLengthLimit); 731 return 0; 732 } 733 734 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 735 /// chain of copies to check whether we reach a physical register we can 736 /// coalesce with. 737 Register RegAllocFast::traceCopies(Register VirtReg) const { 738 static const unsigned DefLimit = 3; 739 unsigned C = 0; 740 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 741 if (isCoalescable(MI)) { 742 Register Reg = MI.getOperand(1).getReg(); 743 Reg = traceCopyChain(Reg); 744 if (Reg.isValid()) 745 return Reg; 746 } 747 748 if (++C >= DefLimit) 749 break; 750 } 751 return Register(); 752 } 753 754 /// Allocates a physical register for VirtReg. 755 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 756 Register Hint0, bool LookAtPhysRegUses) { 757 const Register VirtReg = LR.VirtReg; 758 assert(LR.PhysReg == 0); 759 760 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 761 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 762 << " in class " << TRI->getRegClassName(&RC) 763 << " with hint " << printReg(Hint0, TRI) << '\n'); 764 765 // Take hint when possible. 766 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 767 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 768 // Take hint if the register is currently free. 769 if (isPhysRegFree(Hint0)) { 770 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 771 << '\n'); 772 assignVirtToPhysReg(MI, LR, Hint0); 773 return; 774 } else { 775 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 776 << " occupied\n"); 777 } 778 } else { 779 Hint0 = Register(); 780 } 781 782 783 // Try other hint. 784 Register Hint1 = traceCopies(VirtReg); 785 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 786 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 787 // Take hint if the register is currently free. 788 if (isPhysRegFree(Hint1)) { 789 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 790 << '\n'); 791 assignVirtToPhysReg(MI, LR, Hint1); 792 return; 793 } else { 794 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 795 << " occupied\n"); 796 } 797 } else { 798 Hint1 = Register(); 799 } 800 801 MCPhysReg BestReg = 0; 802 unsigned BestCost = spillImpossible; 803 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 804 for (MCPhysReg PhysReg : AllocationOrder) { 805 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 806 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 807 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 808 continue; 809 } 810 811 unsigned Cost = calcSpillCost(PhysReg); 812 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 813 // Immediate take a register with cost 0. 814 if (Cost == 0) { 815 assignVirtToPhysReg(MI, LR, PhysReg); 816 return; 817 } 818 819 if (PhysReg == Hint0 || PhysReg == Hint1) 820 Cost -= spillPrefBonus; 821 822 if (Cost < BestCost) { 823 BestReg = PhysReg; 824 BestCost = Cost; 825 } 826 } 827 828 if (!BestReg) { 829 // Nothing we can do: Report an error and keep going with an invalid 830 // allocation. 831 if (MI.isInlineAsm()) 832 MI.emitError("inline assembly requires more registers than available"); 833 else 834 MI.emitError("ran out of registers during register allocation"); 835 836 LR.Error = true; 837 LR.PhysReg = 0; 838 return; 839 } 840 841 displacePhysReg(MI, BestReg); 842 assignVirtToPhysReg(MI, LR, BestReg); 843 } 844 845 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 846 assert(MO.isUndef() && "expected undef use"); 847 Register VirtReg = MO.getReg(); 848 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 849 if (!shouldAllocateRegister(VirtReg)) 850 return; 851 852 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 853 MCPhysReg PhysReg; 854 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 855 PhysReg = LRI->PhysReg; 856 } else { 857 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 858 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 859 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 860 PhysReg = AllocationOrder[0]; 861 } 862 863 unsigned SubRegIdx = MO.getSubReg(); 864 if (SubRegIdx != 0) { 865 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 866 MO.setSubReg(0); 867 } 868 MO.setReg(PhysReg); 869 MO.setIsRenamable(true); 870 } 871 872 /// Variation of defineVirtReg() with special handling for livethrough regs 873 /// (tied or earlyclobber) that may interfere with preassigned uses. 874 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 875 Register VirtReg) { 876 if (!shouldAllocateRegister(VirtReg)) 877 return; 878 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 879 if (LRI != LiveVirtRegs.end()) { 880 MCPhysReg PrevReg = LRI->PhysReg; 881 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 882 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 883 << " (tied/earlyclobber resolution)\n"); 884 freePhysReg(PrevReg); 885 LRI->PhysReg = 0; 886 allocVirtReg(MI, *LRI, 0, true); 887 MachineBasicBlock::iterator InsertBefore = 888 std::next((MachineBasicBlock::iterator)MI.getIterator()); 889 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 890 << printReg(PrevReg, TRI) << '\n'); 891 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 892 TII->get(TargetOpcode::COPY), PrevReg) 893 .addReg(LRI->PhysReg, llvm::RegState::Kill); 894 } 895 MachineOperand &MO = MI.getOperand(OpNum); 896 if (MO.getSubReg() && !MO.isUndef()) { 897 LRI->LastUse = &MI; 898 } 899 } 900 return defineVirtReg(MI, OpNum, VirtReg, true); 901 } 902 903 /// Allocates a register for VirtReg definition. Typically the register is 904 /// already assigned from a use of the virtreg, however we still need to 905 /// perform an allocation if: 906 /// - It is a dead definition without any uses. 907 /// - The value is live out and all uses are in different basic blocks. 908 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 909 Register VirtReg, bool LookAtPhysRegUses) { 910 assert(VirtReg.isVirtual() && "Not a virtual register"); 911 if (!shouldAllocateRegister(VirtReg)) 912 return; 913 MachineOperand &MO = MI.getOperand(OpNum); 914 LiveRegMap::iterator LRI; 915 bool New; 916 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 917 if (New) { 918 if (!MO.isDead()) { 919 if (mayLiveOut(VirtReg)) { 920 LRI->LiveOut = true; 921 } else { 922 // It is a dead def without the dead flag; add the flag now. 923 MO.setIsDead(true); 924 } 925 } 926 } 927 if (LRI->PhysReg == 0) 928 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 929 else { 930 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 931 "TODO: preassign mismatch"); 932 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 933 << " use existing assignment to " 934 << printReg(LRI->PhysReg, TRI) << '\n'); 935 } 936 937 MCPhysReg PhysReg = LRI->PhysReg; 938 assert(PhysReg != 0 && "Register not assigned"); 939 if (LRI->Reloaded || LRI->LiveOut) { 940 if (!MI.isImplicitDef()) { 941 MachineBasicBlock::iterator SpillBefore = 942 std::next((MachineBasicBlock::iterator)MI.getIterator()); 943 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 944 << LRI->Reloaded << '\n'); 945 bool Kill = LRI->LastUse == nullptr; 946 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 947 LRI->LastUse = nullptr; 948 } 949 LRI->LiveOut = false; 950 LRI->Reloaded = false; 951 } 952 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 953 BundleVirtRegsMap[VirtReg] = PhysReg; 954 } 955 markRegUsedInInstr(PhysReg); 956 setPhysReg(MI, MO, PhysReg); 957 } 958 959 /// Allocates a register for a VirtReg use. 960 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 961 Register VirtReg) { 962 assert(VirtReg.isVirtual() && "Not a virtual register"); 963 if (!shouldAllocateRegister(VirtReg)) 964 return; 965 MachineOperand &MO = MI.getOperand(OpNum); 966 LiveRegMap::iterator LRI; 967 bool New; 968 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 969 if (New) { 970 MachineOperand &MO = MI.getOperand(OpNum); 971 if (!MO.isKill()) { 972 if (mayLiveOut(VirtReg)) { 973 LRI->LiveOut = true; 974 } else { 975 // It is a last (killing) use without the kill flag; add the flag now. 976 MO.setIsKill(true); 977 } 978 } 979 } else { 980 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 981 } 982 983 // If necessary allocate a register. 984 if (LRI->PhysReg == 0) { 985 assert(!MO.isTied() && "tied op should be allocated"); 986 Register Hint; 987 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 988 Hint = MI.getOperand(0).getReg(); 989 if (Hint.isVirtual()) { 990 assert(!shouldAllocateRegister(Hint)); 991 Hint = Register(); 992 } else { 993 assert(Hint.isPhysical() && 994 "Copy destination should already be assigned"); 995 } 996 } 997 allocVirtReg(MI, *LRI, Hint, false); 998 if (LRI->Error) { 999 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1000 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1001 setPhysReg(MI, MO, *AllocationOrder.begin()); 1002 return; 1003 } 1004 } 1005 1006 LRI->LastUse = &MI; 1007 1008 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1009 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1010 } 1011 markRegUsedInInstr(LRI->PhysReg); 1012 setPhysReg(MI, MO, LRI->PhysReg); 1013 } 1014 1015 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 1016 /// may invalidate any operand pointers. Return true if the operand kills its 1017 /// register. 1018 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1019 MCPhysReg PhysReg) { 1020 if (!MO.getSubReg()) { 1021 MO.setReg(PhysReg); 1022 MO.setIsRenamable(true); 1023 return; 1024 } 1025 1026 // Handle subregister index. 1027 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1028 MO.setIsRenamable(true); 1029 // Note: We leave the subreg number around a little longer in case of defs. 1030 // This is so that the register freeing logic in allocateInstruction can still 1031 // recognize this as subregister defs. The code there will clear the number. 1032 if (!MO.isDef()) 1033 MO.setSubReg(0); 1034 1035 // A kill flag implies killing the full register. Add corresponding super 1036 // register kill. 1037 if (MO.isKill()) { 1038 MI.addRegisterKilled(PhysReg, TRI, true); 1039 return; 1040 } 1041 1042 // A <def,read-undef> of a sub-register requires an implicit def of the full 1043 // register. 1044 if (MO.isDef() && MO.isUndef()) { 1045 if (MO.isDead()) 1046 MI.addRegisterDead(PhysReg, TRI, true); 1047 else 1048 MI.addRegisterDefined(PhysReg, TRI); 1049 } 1050 } 1051 1052 #ifndef NDEBUG 1053 1054 void RegAllocFast::dumpState() const { 1055 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1056 ++Unit) { 1057 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1058 case regFree: 1059 break; 1060 case regPreAssigned: 1061 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1062 break; 1063 case regLiveIn: 1064 llvm_unreachable("Should not have regLiveIn in map"); 1065 default: { 1066 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1067 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1068 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1069 if (I->LiveOut || I->Reloaded) { 1070 dbgs() << '['; 1071 if (I->LiveOut) dbgs() << 'O'; 1072 if (I->Reloaded) dbgs() << 'R'; 1073 dbgs() << ']'; 1074 } 1075 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1076 break; 1077 } 1078 } 1079 } 1080 dbgs() << '\n'; 1081 // Check that LiveVirtRegs is the inverse. 1082 for (const LiveReg &LR : LiveVirtRegs) { 1083 Register VirtReg = LR.VirtReg; 1084 assert(VirtReg.isVirtual() && "Bad map key"); 1085 MCPhysReg PhysReg = LR.PhysReg; 1086 if (PhysReg != 0) { 1087 assert(Register::isPhysicalRegister(PhysReg) && 1088 "mapped to physreg"); 1089 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1090 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1091 } 1092 } 1093 } 1094 } 1095 #endif 1096 1097 /// Count number of defs consumed from each register class by \p Reg 1098 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1099 Register Reg) const { 1100 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1101 1102 if (Reg.isVirtual()) { 1103 if (!shouldAllocateRegister(Reg)) 1104 return; 1105 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1106 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1107 RCIdx != RCIdxEnd; ++RCIdx) { 1108 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1109 // FIXME: Consider aliasing sub/super registers. 1110 if (OpRC->hasSubClassEq(IdxRC)) 1111 ++RegClassDefCounts[RCIdx]; 1112 } 1113 1114 return; 1115 } 1116 1117 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1118 RCIdx != RCIdxEnd; ++RCIdx) { 1119 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1120 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1121 if (IdxRC->contains(*Alias)) { 1122 ++RegClassDefCounts[RCIdx]; 1123 break; 1124 } 1125 } 1126 } 1127 } 1128 1129 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1130 // The basic algorithm here is: 1131 // 1. Mark registers of def operands as free 1132 // 2. Allocate registers to use operands and place reload instructions for 1133 // registers displaced by the allocation. 1134 // 1135 // However we need to handle some corner cases: 1136 // - pre-assigned defs and uses need to be handled before the other def/use 1137 // operands are processed to avoid the allocation heuristics clashing with 1138 // the pre-assignment. 1139 // - The "free def operands" step has to come last instead of first for tied 1140 // operands and early-clobbers. 1141 1142 UsedInInstr.clear(); 1143 RegMasks.clear(); 1144 BundleVirtRegsMap.clear(); 1145 1146 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) { 1147 assert(MO.isTied()); 1148 unsigned TiedIdx = MI.findTiedOperandIdx(Idx); 1149 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1150 return TiedMO.isUndef(); 1151 }; 1152 // Scan for special cases; Apply pre-assigned register defs to state. 1153 bool HasPhysRegUse = false; 1154 bool HasRegMask = false; 1155 bool HasVRegDef = false; 1156 bool HasDef = false; 1157 bool HasEarlyClobber = false; 1158 bool NeedToAssignLiveThroughs = false; 1159 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1160 MachineOperand &MO = MI.getOperand(I); 1161 if (MO.isReg()) { 1162 Register Reg = MO.getReg(); 1163 if (Reg.isVirtual()) { 1164 if (!shouldAllocateRegister(Reg)) 1165 continue; 1166 if (MO.isDef()) { 1167 HasDef = true; 1168 HasVRegDef = true; 1169 if (MO.isEarlyClobber()) { 1170 HasEarlyClobber = true; 1171 NeedToAssignLiveThroughs = true; 1172 } 1173 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || 1174 (MO.getSubReg() != 0 && !MO.isUndef())) 1175 NeedToAssignLiveThroughs = true; 1176 } 1177 } else if (Reg.isPhysical()) { 1178 if (!MRI->isReserved(Reg)) { 1179 if (MO.isDef()) { 1180 HasDef = true; 1181 bool displacedAny = definePhysReg(MI, Reg); 1182 if (MO.isEarlyClobber()) 1183 HasEarlyClobber = true; 1184 if (!displacedAny) 1185 MO.setIsDead(true); 1186 } 1187 if (MO.readsReg()) 1188 HasPhysRegUse = true; 1189 } 1190 } 1191 } else if (MO.isRegMask()) { 1192 HasRegMask = true; 1193 RegMasks.push_back(MO.getRegMask()); 1194 } 1195 } 1196 1197 // Allocate virtreg defs. 1198 if (HasDef) { 1199 if (HasVRegDef) { 1200 // Special handling for early clobbers, tied operands or subregister defs: 1201 // Compared to "normal" defs these: 1202 // - Must not use a register that is pre-assigned for a use operand. 1203 // - In order to solve tricky inline assembly constraints we change the 1204 // heuristic to figure out a good operand order before doing 1205 // assignments. 1206 if (NeedToAssignLiveThroughs) { 1207 DefOperandIndexes.clear(); 1208 PhysRegUses.clear(); 1209 1210 // Track number of defs which may consume a register from the class. 1211 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1212 assert(RegClassDefCounts[0] == 0); 1213 1214 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1215 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1216 const MachineOperand &MO = MI.getOperand(I); 1217 if (!MO.isReg()) 1218 continue; 1219 Register Reg = MO.getReg(); 1220 if (MO.readsReg()) { 1221 if (Reg.isPhysical()) { 1222 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1223 << '\n'); 1224 markPhysRegUsedInInstr(Reg); 1225 } 1226 } 1227 1228 if (MO.isDef()) { 1229 if (Reg.isVirtual() && shouldAllocateRegister(Reg)) 1230 DefOperandIndexes.push_back(I); 1231 1232 addRegClassDefCounts(RegClassDefCounts, Reg); 1233 } 1234 } 1235 1236 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1237 const MachineOperand &MO0 = MI.getOperand(I0); 1238 const MachineOperand &MO1 = MI.getOperand(I1); 1239 Register Reg0 = MO0.getReg(); 1240 Register Reg1 = MO1.getReg(); 1241 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1242 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1243 1244 // Identify regclass that are easy to use up completely just in this 1245 // instruction. 1246 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1247 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1248 1249 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1250 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1251 if (SmallClass0 > SmallClass1) 1252 return true; 1253 if (SmallClass0 < SmallClass1) 1254 return false; 1255 1256 // Allocate early clobbers and livethrough operands first. 1257 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1258 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1259 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1260 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1261 if (Livethrough0 > Livethrough1) 1262 return true; 1263 if (Livethrough0 < Livethrough1) 1264 return false; 1265 1266 // Tie-break rule: operand index. 1267 return I0 < I1; 1268 }); 1269 1270 for (uint16_t OpIdx : DefOperandIndexes) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1273 unsigned Reg = MO.getReg(); 1274 if (MO.isEarlyClobber() || 1275 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) || 1276 (MO.getSubReg() && !MO.isUndef())) { 1277 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1278 } else { 1279 defineVirtReg(MI, OpIdx, Reg); 1280 } 1281 } 1282 } else { 1283 // Assign virtual register defs. 1284 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1285 MachineOperand &MO = MI.getOperand(I); 1286 if (!MO.isReg() || !MO.isDef()) 1287 continue; 1288 Register Reg = MO.getReg(); 1289 if (Reg.isVirtual()) 1290 defineVirtReg(MI, I, Reg); 1291 } 1292 } 1293 } 1294 1295 // Free registers occupied by defs. 1296 // Iterate operands in reverse order, so we see the implicit super register 1297 // defs first (we added them earlier in case of <def,read-undef>). 1298 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) { 1299 MachineOperand &MO = MI.getOperand(I); 1300 if (!MO.isReg() || !MO.isDef()) 1301 continue; 1302 1303 // subreg defs don't free the full register. We left the subreg number 1304 // around as a marker in setPhysReg() to recognize this case here. 1305 if (MO.getSubReg() != 0) { 1306 MO.setSubReg(0); 1307 continue; 1308 } 1309 1310 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1311 "tied def assigned to clobbered register"); 1312 1313 // Do not free tied operands and early clobbers. 1314 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber()) 1315 continue; 1316 Register Reg = MO.getReg(); 1317 if (!Reg) 1318 continue; 1319 if (Reg.isVirtual()) { 1320 assert(!shouldAllocateRegister(Reg)); 1321 continue; 1322 } 1323 assert(Reg.isPhysical()); 1324 if (MRI->isReserved(Reg)) 1325 continue; 1326 freePhysReg(Reg); 1327 unmarkRegUsedInInstr(Reg); 1328 } 1329 } 1330 1331 // Displace clobbered registers. 1332 if (HasRegMask) { 1333 assert(!RegMasks.empty() && "expected RegMask"); 1334 // MRI bookkeeping. 1335 for (const auto *RM : RegMasks) 1336 MRI->addPhysRegsUsedFromRegMask(RM); 1337 1338 // Displace clobbered registers. 1339 for (const LiveReg &LR : LiveVirtRegs) { 1340 MCPhysReg PhysReg = LR.PhysReg; 1341 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1342 displacePhysReg(MI, PhysReg); 1343 } 1344 } 1345 1346 // Apply pre-assigned register uses to state. 1347 if (HasPhysRegUse) { 1348 for (MachineOperand &MO : MI.operands()) { 1349 if (!MO.isReg() || !MO.readsReg()) 1350 continue; 1351 Register Reg = MO.getReg(); 1352 if (!Reg.isPhysical()) 1353 continue; 1354 if (MRI->isReserved(Reg)) 1355 continue; 1356 bool displacedAny = usePhysReg(MI, Reg); 1357 if (!displacedAny && !MRI->isReserved(Reg)) 1358 MO.setIsKill(true); 1359 } 1360 } 1361 1362 // Allocate virtreg uses and insert reloads as necessary. 1363 bool HasUndefUse = false; 1364 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1365 MachineOperand &MO = MI.getOperand(I); 1366 if (!MO.isReg() || !MO.isUse()) 1367 continue; 1368 Register Reg = MO.getReg(); 1369 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1370 continue; 1371 1372 if (MO.isUndef()) { 1373 HasUndefUse = true; 1374 continue; 1375 } 1376 1377 1378 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1379 // the def block (removing the vreg uses). 1380 mayLiveIn(Reg); 1381 1382 1383 assert(!MO.isInternalRead() && "Bundles not supported"); 1384 assert(MO.readsReg() && "reading use"); 1385 useVirtReg(MI, I, Reg); 1386 } 1387 1388 // Allocate undef operands. This is a separate step because in a situation 1389 // like ` = OP undef %X, %X` both operands need the same register assign 1390 // so we should perform the normal assignment first. 1391 if (HasUndefUse) { 1392 for (MachineOperand &MO : MI.uses()) { 1393 if (!MO.isReg() || !MO.isUse()) 1394 continue; 1395 Register Reg = MO.getReg(); 1396 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1397 continue; 1398 1399 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1400 allocVirtRegUndef(MO); 1401 } 1402 } 1403 1404 // Free early clobbers. 1405 if (HasEarlyClobber) { 1406 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1407 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1408 continue; 1409 // subreg defs don't free the full register. We left the subreg number 1410 // around as a marker in setPhysReg() to recognize this case here. 1411 if (MO.getSubReg() != 0) { 1412 MO.setSubReg(0); 1413 continue; 1414 } 1415 1416 Register Reg = MO.getReg(); 1417 if (!Reg) 1418 continue; 1419 if (Reg.isVirtual()) { 1420 assert(!shouldAllocateRegister(Reg)); 1421 continue; 1422 } 1423 assert(Reg.isPhysical() && "should have register assigned"); 1424 1425 // We sometimes get odd situations like: 1426 // early-clobber %x0 = INSTRUCTION %x0 1427 // which is semantically questionable as the early-clobber should 1428 // apply before the use. But in practice we consider the use to 1429 // happen before the early clobber now. Don't free the early clobber 1430 // register in this case. 1431 if (MI.readsRegister(Reg, TRI)) 1432 continue; 1433 1434 freePhysReg(Reg); 1435 } 1436 } 1437 1438 LLVM_DEBUG(dbgs() << "<< " << MI); 1439 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1440 MI.getNumOperands() == 2) { 1441 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1442 Coalesced.push_back(&MI); 1443 } 1444 } 1445 1446 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1447 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1448 // mostly constants and frame indices. 1449 for (Register Reg : MI.getUsedDebugRegs()) { 1450 if (!Register::isVirtualRegister(Reg)) 1451 continue; 1452 if (!shouldAllocateRegister(Reg)) 1453 continue; 1454 1455 // Already spilled to a stackslot? 1456 int SS = StackSlotForVirtReg[Reg]; 1457 if (SS != -1) { 1458 // Modify DBG_VALUE now that the value is in a spill slot. 1459 updateDbgValueForSpill(MI, SS, Reg); 1460 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1461 continue; 1462 } 1463 1464 // See if this virtual register has already been allocated to a physical 1465 // register or spilled to a stack slot. 1466 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1467 SmallVector<MachineOperand *> DbgOps; 1468 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1469 DbgOps.push_back(&Op); 1470 1471 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1472 // Update every use of Reg within MI. 1473 for (auto &RegMO : DbgOps) 1474 setPhysReg(MI, *RegMO, LRI->PhysReg); 1475 } else { 1476 DanglingDbgValues[Reg].push_back(&MI); 1477 } 1478 1479 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1480 // that future spills of Reg will have DBG_VALUEs. 1481 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1482 } 1483 } 1484 1485 void RegAllocFast::handleBundle(MachineInstr &MI) { 1486 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1487 ++BundledMI; 1488 while (BundledMI->isBundledWithPred()) { 1489 for (MachineOperand &MO : BundledMI->operands()) { 1490 if (!MO.isReg()) 1491 continue; 1492 1493 Register Reg = MO.getReg(); 1494 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1495 continue; 1496 1497 DenseMap<Register, MCPhysReg>::iterator DI; 1498 DI = BundleVirtRegsMap.find(Reg); 1499 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1500 1501 setPhysReg(MI, MO, DI->second); 1502 } 1503 1504 ++BundledMI; 1505 } 1506 } 1507 1508 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1509 this->MBB = &MBB; 1510 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1511 1512 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1513 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1514 1515 for (auto &LiveReg : MBB.liveouts()) 1516 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1517 1518 Coalesced.clear(); 1519 1520 // Traverse block in reverse order allocating instructions one by one. 1521 for (MachineInstr &MI : reverse(MBB)) { 1522 LLVM_DEBUG( 1523 dbgs() << "\n>> " << MI << "Regs:"; 1524 dumpState() 1525 ); 1526 1527 // Special handling for debug values. Note that they are not allowed to 1528 // affect codegen of the other instructions in any way. 1529 if (MI.isDebugValue()) { 1530 handleDebugValue(MI); 1531 continue; 1532 } 1533 1534 allocateInstruction(MI); 1535 1536 // Once BUNDLE header is assigned registers, same assignments need to be 1537 // done for bundled MIs. 1538 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1539 handleBundle(MI); 1540 } 1541 } 1542 1543 LLVM_DEBUG( 1544 dbgs() << "Begin Regs:"; 1545 dumpState() 1546 ); 1547 1548 // Spill all physical registers holding virtual registers now. 1549 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1550 reloadAtBegin(MBB); 1551 1552 // Erase all the coalesced copies. We are delaying it until now because 1553 // LiveVirtRegs might refer to the instrs. 1554 for (MachineInstr *MI : Coalesced) 1555 MBB.erase(MI); 1556 NumCoalesced += Coalesced.size(); 1557 1558 for (auto &UDBGPair : DanglingDbgValues) { 1559 for (MachineInstr *DbgValue : UDBGPair.second) { 1560 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1561 // Nothing to do if the vreg was spilled in the meantime. 1562 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1563 continue; 1564 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1565 << '\n'); 1566 DbgValue->setDebugValueUndef(); 1567 } 1568 } 1569 DanglingDbgValues.clear(); 1570 1571 LLVM_DEBUG(MBB.dump()); 1572 } 1573 1574 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1575 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1576 << "********** Function: " << MF.getName() << '\n'); 1577 MRI = &MF.getRegInfo(); 1578 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1579 TRI = STI.getRegisterInfo(); 1580 TII = STI.getInstrInfo(); 1581 MFI = &MF.getFrameInfo(); 1582 MRI->freezeReservedRegs(MF); 1583 RegClassInfo.runOnMachineFunction(MF); 1584 unsigned NumRegUnits = TRI->getNumRegUnits(); 1585 UsedInInstr.clear(); 1586 UsedInInstr.setUniverse(NumRegUnits); 1587 PhysRegUses.clear(); 1588 PhysRegUses.setUniverse(NumRegUnits); 1589 1590 // initialize the virtual->physical register map to have a 'null' 1591 // mapping for all virtual registers 1592 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1593 StackSlotForVirtReg.resize(NumVirtRegs); 1594 LiveVirtRegs.setUniverse(NumVirtRegs); 1595 MayLiveAcrossBlocks.clear(); 1596 MayLiveAcrossBlocks.resize(NumVirtRegs); 1597 1598 // Loop over all of the basic blocks, eliminating virtual register references 1599 for (MachineBasicBlock &MBB : MF) 1600 allocateBasicBlock(MBB); 1601 1602 if (ClearVirtRegs) { 1603 // All machine operands and other references to virtual registers have been 1604 // replaced. Remove the virtual registers. 1605 MRI->clearVirtRegs(); 1606 } 1607 1608 StackSlotForVirtReg.clear(); 1609 LiveDbgValueMap.clear(); 1610 return true; 1611 } 1612 1613 FunctionPass *llvm::createFastRegisterAllocator() { 1614 return new RegAllocFast(); 1615 } 1616 1617 FunctionPass *llvm::createFastRegisterAllocator( 1618 std::function<bool(const TargetRegisterInfo &TRI, 1619 const TargetRegisterClass &RC)> Ftor, bool ClearVirtRegs) { 1620 return new RegAllocFast(Ftor, ClearVirtRegs); 1621 } 1622