1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/IndexedMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "regalloc" 39 40 STATISTIC(NumStores, "Number of stores added"); 41 STATISTIC(NumLoads , "Number of loads added"); 42 STATISTIC(NumCopies, "Number of copies coalesced"); 43 44 static RegisterRegAlloc 45 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 46 47 namespace { 48 class RAFast : public MachineFunctionPass { 49 public: 50 static char ID; 51 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 52 isBulkSpilling(false) {} 53 54 private: 55 MachineFunction *MF; 56 MachineRegisterInfo *MRI; 57 const TargetRegisterInfo *TRI; 58 const TargetInstrInfo *TII; 59 RegisterClassInfo RegClassInfo; 60 61 // Basic block currently being allocated. 62 MachineBasicBlock *MBB; 63 64 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 65 // values are spilled. 66 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 67 68 // Everything we know about a live virtual register. 69 struct LiveReg { 70 MachineInstr *LastUse; // Last instr to use reg. 71 unsigned VirtReg; // Virtual register number. 72 unsigned PhysReg; // Currently held here. 73 unsigned short LastOpNum; // OpNum on LastUse. 74 bool Dirty; // Register needs spill. 75 76 explicit LiveReg(unsigned v) 77 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 78 79 unsigned getSparseSetIndex() const { 80 return TargetRegisterInfo::virtReg2Index(VirtReg); 81 } 82 }; 83 84 typedef SparseSet<LiveReg> LiveRegMap; 85 86 // LiveVirtRegs - This map contains entries for each virtual register 87 // that is currently available in a physical register. 88 LiveRegMap LiveVirtRegs; 89 90 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 91 92 // RegState - Track the state of a physical register. 93 enum RegState { 94 // A disabled register is not available for allocation, but an alias may 95 // be in use. A register can only be moved out of the disabled state if 96 // all aliases are disabled. 97 regDisabled, 98 99 // A free register is not currently in use and can be allocated 100 // immediately without checking aliases. 101 regFree, 102 103 // A reserved register has been assigned explicitly (e.g., setting up a 104 // call parameter), and it remains reserved until it is used. 105 regReserved 106 107 // A register state may also be a virtual register number, indication that 108 // the physical register is currently allocated to a virtual register. In 109 // that case, LiveVirtRegs contains the inverse mapping. 110 }; 111 112 // PhysRegState - One of the RegState enums, or a virtreg. 113 std::vector<unsigned> PhysRegState; 114 115 // Set of register units. 116 typedef SparseSet<unsigned> UsedInInstrSet; 117 118 // Set of register units that are used in the current instruction, and so 119 // cannot be allocated. 120 UsedInInstrSet UsedInInstr; 121 122 // Mark a physreg as used in this instruction. 123 void markRegUsedInInstr(unsigned PhysReg) { 124 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 125 UsedInInstr.insert(*Units); 126 } 127 128 // Check if a physreg or any of its aliases are used in this instruction. 129 bool isRegUsedInInstr(unsigned PhysReg) const { 130 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 131 if (UsedInInstr.count(*Units)) 132 return true; 133 return false; 134 } 135 136 // SkippedInstrs - Descriptors of instructions whose clobber list was 137 // ignored because all registers were spilled. It is still necessary to 138 // mark all the clobbered registers as used by the function. 139 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 140 141 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 142 // completely after spilling all live registers. LiveRegMap entries should 143 // not be erased. 144 bool isBulkSpilling; 145 146 enum : unsigned { 147 spillClean = 1, 148 spillDirty = 100, 149 spillImpossible = ~0u 150 }; 151 public: 152 StringRef getPassName() const override { return "Fast Register Allocator"; } 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.setPreservesCFG(); 156 MachineFunctionPass::getAnalysisUsage(AU); 157 } 158 159 MachineFunctionProperties getRequiredProperties() const override { 160 return MachineFunctionProperties().set( 161 MachineFunctionProperties::Property::NoPHIs); 162 } 163 164 MachineFunctionProperties getSetProperties() const override { 165 return MachineFunctionProperties().set( 166 MachineFunctionProperties::Property::NoVRegs); 167 } 168 169 private: 170 bool runOnMachineFunction(MachineFunction &Fn) override; 171 void AllocateBasicBlock(); 172 void handleThroughOperands(MachineInstr *MI, 173 SmallVectorImpl<unsigned> &VirtDead); 174 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 175 bool isLastUseOfLocalReg(MachineOperand&); 176 177 void addKillFlag(const LiveReg&); 178 void killVirtReg(LiveRegMap::iterator); 179 void killVirtReg(unsigned VirtReg); 180 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 181 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 182 183 void usePhysReg(MachineOperand&); 184 void definePhysReg(MachineInstr &MI, unsigned PhysReg, RegState NewState); 185 unsigned calcSpillCost(unsigned PhysReg) const; 186 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 187 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 188 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 189 } 190 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 191 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 192 } 193 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 194 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 195 unsigned Hint); 196 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 197 unsigned VirtReg, unsigned Hint); 198 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 199 unsigned VirtReg, unsigned Hint); 200 void spillAll(MachineBasicBlock::iterator MI); 201 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 202 }; 203 char RAFast::ID = 0; 204 } 205 206 /// getStackSpaceFor - This allocates space for the specified virtual register 207 /// to be held on the stack. 208 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 209 // Find the location Reg would belong... 210 int SS = StackSlotForVirtReg[VirtReg]; 211 if (SS != -1) 212 return SS; // Already has space allocated? 213 214 // Allocate a new stack object for this spill location... 215 unsigned Size = TRI->getSpillSize(*RC); 216 unsigned Align = TRI->getSpillAlignment(*RC); 217 int FrameIdx = MF->getFrameInfo().CreateSpillStackObject(Size, Align); 218 219 // Assign the slot. 220 StackSlotForVirtReg[VirtReg] = FrameIdx; 221 return FrameIdx; 222 } 223 224 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 225 /// its virtual register, and it is guaranteed to be a block-local register. 226 /// 227 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 228 // If the register has ever been spilled or reloaded, we conservatively assume 229 // it is a global register used in multiple blocks. 230 if (StackSlotForVirtReg[MO.getReg()] != -1) 231 return false; 232 233 // Check that the use/def chain has exactly one operand - MO. 234 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 235 if (&*I != &MO) 236 return false; 237 return ++I == MRI->reg_nodbg_end(); 238 } 239 240 /// addKillFlag - Set kill flags on last use of a virtual register. 241 void RAFast::addKillFlag(const LiveReg &LR) { 242 if (!LR.LastUse) return; 243 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 244 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 245 if (MO.getReg() == LR.PhysReg) 246 MO.setIsKill(); 247 else 248 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 249 } 250 } 251 252 /// killVirtReg - Mark virtreg as no longer available. 253 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 254 addKillFlag(*LRI); 255 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 256 "Broken RegState mapping"); 257 PhysRegState[LRI->PhysReg] = regFree; 258 // Erase from LiveVirtRegs unless we're spilling in bulk. 259 if (!isBulkSpilling) 260 LiveVirtRegs.erase(LRI); 261 } 262 263 /// killVirtReg - Mark virtreg as no longer available. 264 void RAFast::killVirtReg(unsigned VirtReg) { 265 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 266 "killVirtReg needs a virtual register"); 267 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 268 if (LRI != LiveVirtRegs.end()) 269 killVirtReg(LRI); 270 } 271 272 /// spillVirtReg - This method spills the value specified by VirtReg into the 273 /// corresponding stack slot if needed. 274 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 275 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 276 "Spilling a physical register is illegal!"); 277 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 278 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 279 spillVirtReg(MI, LRI); 280 } 281 282 /// spillVirtReg - Do the actual work of spilling. 283 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 284 LiveRegMap::iterator LRI) { 285 LiveReg &LR = *LRI; 286 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 287 288 if (LR.Dirty) { 289 // If this physreg is used by the instruction, we want to kill it on the 290 // instruction, not on the spill. 291 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 292 LR.Dirty = false; 293 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 294 << " in " << PrintReg(LR.PhysReg, TRI)); 295 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 296 int FI = getStackSpaceFor(LRI->VirtReg, RC); 297 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 298 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 299 ++NumStores; // Update statistics 300 301 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 302 // identify spilled location as the place to find corresponding variable's 303 // value. 304 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 305 LiveDbgValueMap[LRI->VirtReg]; 306 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 307 MachineInstr *DBG = LRIDbgValues[li]; 308 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 309 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 310 (void)NewDV; 311 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 312 } 313 // Now this register is spilled there is should not be any DBG_VALUE 314 // pointing to this register because they are all pointing to spilled value 315 // now. 316 LRIDbgValues.clear(); 317 if (SpillKill) 318 LR.LastUse = nullptr; // Don't kill register again 319 } 320 killVirtReg(LRI); 321 } 322 323 /// spillAll - Spill all dirty virtregs without killing them. 324 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 325 if (LiveVirtRegs.empty()) return; 326 isBulkSpilling = true; 327 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 328 // of spilling here is deterministic, if arbitrary. 329 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 330 i != e; ++i) 331 spillVirtReg(MI, i); 332 LiveVirtRegs.clear(); 333 isBulkSpilling = false; 334 } 335 336 /// usePhysReg - Handle the direct use of a physical register. 337 /// Check that the register is not used by a virtreg. 338 /// Kill the physreg, marking it free. 339 /// This may add implicit kills to MO->getParent() and invalidate MO. 340 void RAFast::usePhysReg(MachineOperand &MO) { 341 unsigned PhysReg = MO.getReg(); 342 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 343 "Bad usePhysReg operand"); 344 345 // Ignore undef uses. 346 if (MO.isUndef()) 347 return; 348 349 markRegUsedInInstr(PhysReg); 350 switch (PhysRegState[PhysReg]) { 351 case regDisabled: 352 break; 353 case regReserved: 354 PhysRegState[PhysReg] = regFree; 355 LLVM_FALLTHROUGH; 356 case regFree: 357 MO.setIsKill(); 358 return; 359 default: 360 // The physreg was allocated to a virtual register. That means the value we 361 // wanted has been clobbered. 362 llvm_unreachable("Instruction uses an allocated register"); 363 } 364 365 // Maybe a superregister is reserved? 366 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 367 unsigned Alias = *AI; 368 switch (PhysRegState[Alias]) { 369 case regDisabled: 370 break; 371 case regReserved: 372 // Either PhysReg is a subregister of Alias and we mark the 373 // whole register as free, or PhysReg is the superregister of 374 // Alias and we mark all the aliases as disabled before freeing 375 // PhysReg. 376 // In the latter case, since PhysReg was disabled, this means that 377 // its value is defined only by physical sub-registers. This check 378 // is performed by the assert of the default case in this loop. 379 // Note: The value of the superregister may only be partial 380 // defined, that is why regDisabled is a valid state for aliases. 381 assert((TRI->isSuperRegister(PhysReg, Alias) || 382 TRI->isSuperRegister(Alias, PhysReg)) && 383 "Instruction is not using a subregister of a reserved register"); 384 LLVM_FALLTHROUGH; 385 case regFree: 386 if (TRI->isSuperRegister(PhysReg, Alias)) { 387 // Leave the superregister in the working set. 388 PhysRegState[Alias] = regFree; 389 MO.getParent()->addRegisterKilled(Alias, TRI, true); 390 return; 391 } 392 // Some other alias was in the working set - clear it. 393 PhysRegState[Alias] = regDisabled; 394 break; 395 default: 396 llvm_unreachable("Instruction uses an alias of an allocated register"); 397 } 398 } 399 400 // All aliases are disabled, bring register into working set. 401 PhysRegState[PhysReg] = regFree; 402 MO.setIsKill(); 403 } 404 405 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 406 /// virtregs. This is very similar to defineVirtReg except the physreg is 407 /// reserved instead of allocated. 408 void RAFast::definePhysReg(MachineInstr &MI, unsigned PhysReg, 409 RegState NewState) { 410 markRegUsedInInstr(PhysReg); 411 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 412 case regDisabled: 413 break; 414 default: 415 spillVirtReg(MI, VirtReg); 416 LLVM_FALLTHROUGH; 417 case regFree: 418 case regReserved: 419 PhysRegState[PhysReg] = NewState; 420 return; 421 } 422 423 // This is a disabled register, disable all aliases. 424 PhysRegState[PhysReg] = NewState; 425 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 426 unsigned Alias = *AI; 427 switch (unsigned VirtReg = PhysRegState[Alias]) { 428 case regDisabled: 429 break; 430 default: 431 spillVirtReg(MI, VirtReg); 432 LLVM_FALLTHROUGH; 433 case regFree: 434 case regReserved: 435 PhysRegState[Alias] = regDisabled; 436 if (TRI->isSuperRegister(PhysReg, Alias)) 437 return; 438 break; 439 } 440 } 441 } 442 443 444 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 445 // aliases so it is free for allocation. 446 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 447 // can be allocated directly. 448 // Returns spillImpossible when PhysReg or an alias can't be spilled. 449 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 450 if (isRegUsedInInstr(PhysReg)) { 451 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 452 return spillImpossible; 453 } 454 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 455 case regDisabled: 456 break; 457 case regFree: 458 return 0; 459 case regReserved: 460 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 461 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 462 return spillImpossible; 463 default: { 464 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 465 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 466 return I->Dirty ? spillDirty : spillClean; 467 } 468 } 469 470 // This is a disabled register, add up cost of aliases. 471 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 472 unsigned Cost = 0; 473 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 474 unsigned Alias = *AI; 475 switch (unsigned VirtReg = PhysRegState[Alias]) { 476 case regDisabled: 477 break; 478 case regFree: 479 ++Cost; 480 break; 481 case regReserved: 482 return spillImpossible; 483 default: { 484 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 485 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 486 Cost += I->Dirty ? spillDirty : spillClean; 487 break; 488 } 489 } 490 } 491 return Cost; 492 } 493 494 495 /// assignVirtToPhysReg - This method updates local state so that we know 496 /// that PhysReg is the proper container for VirtReg now. The physical 497 /// register must not be used for anything else when this is called. 498 /// 499 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 500 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 501 << PrintReg(PhysReg, TRI) << "\n"); 502 PhysRegState[PhysReg] = LR.VirtReg; 503 assert(!LR.PhysReg && "Already assigned a physreg"); 504 LR.PhysReg = PhysReg; 505 } 506 507 RAFast::LiveRegMap::iterator 508 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 509 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 510 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 511 assignVirtToPhysReg(*LRI, PhysReg); 512 return LRI; 513 } 514 515 /// allocVirtReg - Allocate a physical register for VirtReg. 516 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr &MI, 517 LiveRegMap::iterator LRI, 518 unsigned Hint) { 519 const unsigned VirtReg = LRI->VirtReg; 520 521 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 522 "Can only allocate virtual registers"); 523 524 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 525 526 // Ignore invalid hints. 527 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 528 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 529 Hint = 0; 530 531 // Take hint when possible. 532 if (Hint) { 533 // Ignore the hint if we would have to spill a dirty register. 534 unsigned Cost = calcSpillCost(Hint); 535 if (Cost < spillDirty) { 536 if (Cost) 537 definePhysReg(MI, Hint, regFree); 538 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 539 // That invalidates LRI, so run a new lookup for VirtReg. 540 return assignVirtToPhysReg(VirtReg, Hint); 541 } 542 } 543 544 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 545 546 // First try to find a completely free register. 547 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 548 unsigned PhysReg = *I; 549 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 550 assignVirtToPhysReg(*LRI, PhysReg); 551 return LRI; 552 } 553 } 554 555 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 556 << TRI->getRegClassName(RC) << "\n"); 557 558 unsigned BestReg = 0, BestCost = spillImpossible; 559 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 560 unsigned Cost = calcSpillCost(*I); 561 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 562 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 563 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 564 // Cost is 0 when all aliases are already disabled. 565 if (Cost == 0) { 566 assignVirtToPhysReg(*LRI, *I); 567 return LRI; 568 } 569 if (Cost < BestCost) 570 BestReg = *I, BestCost = Cost; 571 } 572 573 if (BestReg) { 574 definePhysReg(MI, BestReg, regFree); 575 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 576 // That invalidates LRI, so run a new lookup for VirtReg. 577 return assignVirtToPhysReg(VirtReg, BestReg); 578 } 579 580 // Nothing we can do. Report an error and keep going with a bad allocation. 581 if (MI.isInlineAsm()) 582 MI.emitError("inline assembly requires more registers than available"); 583 else 584 MI.emitError("ran out of registers during register allocation"); 585 definePhysReg(MI, *AO.begin(), regFree); 586 return assignVirtToPhysReg(VirtReg, *AO.begin()); 587 } 588 589 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 590 RAFast::LiveRegMap::iterator RAFast::defineVirtReg(MachineInstr &MI, 591 unsigned OpNum, 592 unsigned VirtReg, 593 unsigned Hint) { 594 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 595 "Not a virtual register"); 596 LiveRegMap::iterator LRI; 597 bool New; 598 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 599 if (New) { 600 // If there is no hint, peek at the only use of this register. 601 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 602 MRI->hasOneNonDBGUse(VirtReg)) { 603 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 604 // It's a copy, use the destination register as a hint. 605 if (UseMI.isCopyLike()) 606 Hint = UseMI.getOperand(0).getReg(); 607 } 608 LRI = allocVirtReg(MI, LRI, Hint); 609 } else if (LRI->LastUse) { 610 // Redefining a live register - kill at the last use, unless it is this 611 // instruction defining VirtReg multiple times. 612 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 613 addKillFlag(*LRI); 614 } 615 assert(LRI->PhysReg && "Register not assigned"); 616 LRI->LastUse = &MI; 617 LRI->LastOpNum = OpNum; 618 LRI->Dirty = true; 619 markRegUsedInInstr(LRI->PhysReg); 620 return LRI; 621 } 622 623 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 624 RAFast::LiveRegMap::iterator RAFast::reloadVirtReg(MachineInstr &MI, 625 unsigned OpNum, 626 unsigned VirtReg, 627 unsigned Hint) { 628 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 629 "Not a virtual register"); 630 LiveRegMap::iterator LRI; 631 bool New; 632 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 633 MachineOperand &MO = MI.getOperand(OpNum); 634 if (New) { 635 LRI = allocVirtReg(MI, LRI, Hint); 636 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 637 int FrameIndex = getStackSpaceFor(VirtReg, RC); 638 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 639 << PrintReg(LRI->PhysReg, TRI) << "\n"); 640 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 641 ++NumLoads; 642 } else if (LRI->Dirty) { 643 if (isLastUseOfLocalReg(MO)) { 644 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 645 if (MO.isUse()) 646 MO.setIsKill(); 647 else 648 MO.setIsDead(); 649 } else if (MO.isKill()) { 650 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 651 MO.setIsKill(false); 652 } else if (MO.isDead()) { 653 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 654 MO.setIsDead(false); 655 } 656 } else if (MO.isKill()) { 657 // We must remove kill flags from uses of reloaded registers because the 658 // register would be killed immediately, and there might be a second use: 659 // %foo = OR %x<kill>, %x 660 // This would cause a second reload of %x into a different register. 661 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 662 MO.setIsKill(false); 663 } else if (MO.isDead()) { 664 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 665 MO.setIsDead(false); 666 } 667 assert(LRI->PhysReg && "Register not assigned"); 668 LRI->LastUse = &MI; 669 LRI->LastOpNum = OpNum; 670 markRegUsedInInstr(LRI->PhysReg); 671 return LRI; 672 } 673 674 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 675 // subregs. This may invalidate any operand pointers. 676 // Return true if the operand kills its register. 677 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 678 MachineOperand &MO = MI->getOperand(OpNum); 679 bool Dead = MO.isDead(); 680 if (!MO.getSubReg()) { 681 MO.setReg(PhysReg); 682 return MO.isKill() || Dead; 683 } 684 685 // Handle subregister index. 686 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 687 MO.setSubReg(0); 688 689 // A kill flag implies killing the full register. Add corresponding super 690 // register kill. 691 if (MO.isKill()) { 692 MI->addRegisterKilled(PhysReg, TRI, true); 693 return true; 694 } 695 696 // A <def,read-undef> of a sub-register requires an implicit def of the full 697 // register. 698 if (MO.isDef() && MO.isUndef()) 699 MI->addRegisterDefined(PhysReg, TRI); 700 701 return Dead; 702 } 703 704 // Handle special instruction operand like early clobbers and tied ops when 705 // there are additional physreg defines. 706 void RAFast::handleThroughOperands(MachineInstr *MI, 707 SmallVectorImpl<unsigned> &VirtDead) { 708 DEBUG(dbgs() << "Scanning for through registers:"); 709 SmallSet<unsigned, 8> ThroughRegs; 710 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 711 MachineOperand &MO = MI->getOperand(i); 712 if (!MO.isReg()) continue; 713 unsigned Reg = MO.getReg(); 714 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 715 continue; 716 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 717 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 718 if (ThroughRegs.insert(Reg).second) 719 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 720 } 721 } 722 723 // If any physreg defines collide with preallocated through registers, 724 // we must spill and reallocate. 725 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 726 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 727 MachineOperand &MO = MI->getOperand(i); 728 if (!MO.isReg() || !MO.isDef()) continue; 729 unsigned Reg = MO.getReg(); 730 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 731 markRegUsedInInstr(Reg); 732 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 733 if (ThroughRegs.count(PhysRegState[*AI])) 734 definePhysReg(*MI, *AI, regFree); 735 } 736 } 737 738 SmallVector<unsigned, 8> PartialDefs; 739 DEBUG(dbgs() << "Allocating tied uses.\n"); 740 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 741 MachineOperand &MO = MI->getOperand(i); 742 if (!MO.isReg()) continue; 743 unsigned Reg = MO.getReg(); 744 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 745 if (MO.isUse()) { 746 unsigned DefIdx = 0; 747 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 748 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 749 << DefIdx << ".\n"); 750 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0); 751 unsigned PhysReg = LRI->PhysReg; 752 setPhysReg(MI, i, PhysReg); 753 // Note: we don't update the def operand yet. That would cause the normal 754 // def-scan to attempt spilling. 755 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 756 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 757 // Reload the register, but don't assign to the operand just yet. 758 // That would confuse the later phys-def processing pass. 759 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0); 760 PartialDefs.push_back(LRI->PhysReg); 761 } 762 } 763 764 DEBUG(dbgs() << "Allocating early clobbers.\n"); 765 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 766 MachineOperand &MO = MI->getOperand(i); 767 if (!MO.isReg()) continue; 768 unsigned Reg = MO.getReg(); 769 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 770 if (!MO.isEarlyClobber()) 771 continue; 772 // Note: defineVirtReg may invalidate MO. 773 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, 0); 774 unsigned PhysReg = LRI->PhysReg; 775 if (setPhysReg(MI, i, PhysReg)) 776 VirtDead.push_back(Reg); 777 } 778 779 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 780 UsedInInstr.clear(); 781 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 782 MachineOperand &MO = MI->getOperand(i); 783 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 784 unsigned Reg = MO.getReg(); 785 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 786 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 787 << " as used in instr\n"); 788 markRegUsedInInstr(Reg); 789 } 790 791 // Also mark PartialDefs as used to avoid reallocation. 792 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 793 markRegUsedInInstr(PartialDefs[i]); 794 } 795 796 void RAFast::AllocateBasicBlock() { 797 DEBUG(dbgs() << "\nAllocating " << *MBB); 798 799 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 800 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 801 802 MachineBasicBlock::iterator MII = MBB->begin(); 803 804 // Add live-in registers as live. 805 for (const auto &LI : MBB->liveins()) 806 if (MRI->isAllocatable(LI.PhysReg)) 807 definePhysReg(*MII, LI.PhysReg, regReserved); 808 809 SmallVector<unsigned, 8> VirtDead; 810 SmallVector<MachineInstr*, 32> Coalesced; 811 812 // Otherwise, sequentially allocate each instruction in the MBB. 813 while (MII != MBB->end()) { 814 MachineInstr *MI = &*MII++; 815 const MCInstrDesc &MCID = MI->getDesc(); 816 DEBUG({ 817 dbgs() << "\n>> " << *MI << "Regs:"; 818 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 819 if (PhysRegState[Reg] == regDisabled) continue; 820 dbgs() << " " << TRI->getName(Reg); 821 switch(PhysRegState[Reg]) { 822 case regFree: 823 break; 824 case regReserved: 825 dbgs() << "*"; 826 break; 827 default: { 828 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 829 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 830 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 831 if (I->Dirty) 832 dbgs() << "*"; 833 assert(I->PhysReg == Reg && "Bad inverse map"); 834 break; 835 } 836 } 837 } 838 dbgs() << '\n'; 839 // Check that LiveVirtRegs is the inverse. 840 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 841 e = LiveVirtRegs.end(); i != e; ++i) { 842 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 843 "Bad map key"); 844 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 845 "Bad map value"); 846 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 847 } 848 }); 849 850 // Debug values are not allowed to change codegen in any way. 851 if (MI->isDebugValue()) { 852 bool ScanDbgValue = true; 853 while (ScanDbgValue) { 854 ScanDbgValue = false; 855 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 856 MachineOperand &MO = MI->getOperand(i); 857 if (!MO.isReg()) continue; 858 unsigned Reg = MO.getReg(); 859 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 860 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 861 if (LRI != LiveVirtRegs.end()) 862 setPhysReg(MI, i, LRI->PhysReg); 863 else { 864 int SS = StackSlotForVirtReg[Reg]; 865 if (SS == -1) { 866 // We can't allocate a physreg for a DebugValue, sorry! 867 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 868 MO.setReg(0); 869 } 870 else { 871 // Modify DBG_VALUE now that the value is in a spill slot. 872 bool IsIndirect = MI->isIndirectDebugValue(); 873 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 874 const MDNode *Var = MI->getDebugVariable(); 875 const MDNode *Expr = MI->getDebugExpression(); 876 DebugLoc DL = MI->getDebugLoc(); 877 MachineBasicBlock *MBB = MI->getParent(); 878 assert( 879 cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 880 "Expected inlined-at fields to agree"); 881 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 882 TII->get(TargetOpcode::DBG_VALUE)) 883 .addFrameIndex(SS) 884 .addImm(Offset) 885 .addMetadata(Var) 886 .addMetadata(Expr); 887 DEBUG(dbgs() << "Modifying debug info due to spill:" 888 << "\t" << *NewDV); 889 // Scan NewDV operands from the beginning. 890 MI = NewDV; 891 ScanDbgValue = true; 892 break; 893 } 894 } 895 LiveDbgValueMap[Reg].push_back(MI); 896 } 897 } 898 // Next instruction. 899 continue; 900 } 901 902 // If this is a copy, we may be able to coalesce. 903 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 904 if (MI->isCopy()) { 905 CopyDst = MI->getOperand(0).getReg(); 906 CopySrc = MI->getOperand(1).getReg(); 907 CopyDstSub = MI->getOperand(0).getSubReg(); 908 CopySrcSub = MI->getOperand(1).getSubReg(); 909 } 910 911 // Track registers used by instruction. 912 UsedInInstr.clear(); 913 914 // First scan. 915 // Mark physreg uses and early clobbers as used. 916 // Find the end of the virtreg operands 917 unsigned VirtOpEnd = 0; 918 bool hasTiedOps = false; 919 bool hasEarlyClobbers = false; 920 bool hasPartialRedefs = false; 921 bool hasPhysDefs = false; 922 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 923 MachineOperand &MO = MI->getOperand(i); 924 // Make sure MRI knows about registers clobbered by regmasks. 925 if (MO.isRegMask()) { 926 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 927 continue; 928 } 929 if (!MO.isReg()) continue; 930 unsigned Reg = MO.getReg(); 931 if (!Reg) continue; 932 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 933 VirtOpEnd = i+1; 934 if (MO.isUse()) { 935 hasTiedOps = hasTiedOps || 936 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 937 } else { 938 if (MO.isEarlyClobber()) 939 hasEarlyClobbers = true; 940 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 941 hasPartialRedefs = true; 942 } 943 continue; 944 } 945 if (!MRI->isAllocatable(Reg)) continue; 946 if (MO.isUse()) { 947 usePhysReg(MO); 948 } else if (MO.isEarlyClobber()) { 949 definePhysReg(*MI, Reg, 950 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 951 hasEarlyClobbers = true; 952 } else 953 hasPhysDefs = true; 954 } 955 956 // The instruction may have virtual register operands that must be allocated 957 // the same register at use-time and def-time: early clobbers and tied 958 // operands. If there are also physical defs, these registers must avoid 959 // both physical defs and uses, making them more constrained than normal 960 // operands. 961 // Similarly, if there are multiple defs and tied operands, we must make 962 // sure the same register is allocated to uses and defs. 963 // We didn't detect inline asm tied operands above, so just make this extra 964 // pass for all inline asm. 965 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 966 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 967 handleThroughOperands(MI, VirtDead); 968 // Don't attempt coalescing when we have funny stuff going on. 969 CopyDst = 0; 970 // Pretend we have early clobbers so the use operands get marked below. 971 // This is not necessary for the common case of a single tied use. 972 hasEarlyClobbers = true; 973 } 974 975 // Second scan. 976 // Allocate virtreg uses. 977 for (unsigned i = 0; i != VirtOpEnd; ++i) { 978 MachineOperand &MO = MI->getOperand(i); 979 if (!MO.isReg()) continue; 980 unsigned Reg = MO.getReg(); 981 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 982 if (MO.isUse()) { 983 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, CopyDst); 984 unsigned PhysReg = LRI->PhysReg; 985 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 986 if (setPhysReg(MI, i, PhysReg)) 987 killVirtReg(LRI); 988 } 989 } 990 991 // Track registers defined by instruction - early clobbers and tied uses at 992 // this point. 993 UsedInInstr.clear(); 994 if (hasEarlyClobbers) { 995 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 996 MachineOperand &MO = MI->getOperand(i); 997 if (!MO.isReg()) continue; 998 unsigned Reg = MO.getReg(); 999 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1000 // Look for physreg defs and tied uses. 1001 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 1002 markRegUsedInInstr(Reg); 1003 } 1004 } 1005 1006 unsigned DefOpEnd = MI->getNumOperands(); 1007 if (MI->isCall()) { 1008 // Spill all virtregs before a call. This serves one purpose: If an 1009 // exception is thrown, the landing pad is going to expect to find 1010 // registers in their spill slots. 1011 // Note: although this is appealing to just consider all definitions 1012 // as call-clobbered, this is not correct because some of those 1013 // definitions may be used later on and we do not want to reuse 1014 // those for virtual registers in between. 1015 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1016 spillAll(MI); 1017 1018 // The imp-defs are skipped below, but we still need to mark those 1019 // registers as used by the function. 1020 SkippedInstrs.insert(&MCID); 1021 } 1022 1023 // Third scan. 1024 // Allocate defs and collect dead defs. 1025 for (unsigned i = 0; i != DefOpEnd; ++i) { 1026 MachineOperand &MO = MI->getOperand(i); 1027 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1028 continue; 1029 unsigned Reg = MO.getReg(); 1030 1031 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1032 if (!MRI->isAllocatable(Reg)) continue; 1033 definePhysReg(*MI, Reg, MO.isDead() ? regFree : regReserved); 1034 continue; 1035 } 1036 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, CopySrc); 1037 unsigned PhysReg = LRI->PhysReg; 1038 if (setPhysReg(MI, i, PhysReg)) { 1039 VirtDead.push_back(Reg); 1040 CopyDst = 0; // cancel coalescing; 1041 } else 1042 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1043 } 1044 1045 // Kill dead defs after the scan to ensure that multiple defs of the same 1046 // register are allocated identically. We didn't need to do this for uses 1047 // because we are crerating our own kill flags, and they are always at the 1048 // last use. 1049 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1050 killVirtReg(VirtDead[i]); 1051 VirtDead.clear(); 1052 1053 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1054 DEBUG(dbgs() << "-- coalescing: " << *MI); 1055 Coalesced.push_back(MI); 1056 } else { 1057 DEBUG(dbgs() << "<< " << *MI); 1058 } 1059 } 1060 1061 // Spill all physical registers holding virtual registers now. 1062 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1063 spillAll(MBB->getFirstTerminator()); 1064 1065 // Erase all the coalesced copies. We are delaying it until now because 1066 // LiveVirtRegs might refer to the instrs. 1067 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1068 MBB->erase(Coalesced[i]); 1069 NumCopies += Coalesced.size(); 1070 1071 DEBUG(MBB->dump()); 1072 } 1073 1074 /// runOnMachineFunction - Register allocate the whole function 1075 /// 1076 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1077 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1078 << "********** Function: " << Fn.getName() << '\n'); 1079 MF = &Fn; 1080 MRI = &MF->getRegInfo(); 1081 TRI = MF->getSubtarget().getRegisterInfo(); 1082 TII = MF->getSubtarget().getInstrInfo(); 1083 MRI->freezeReservedRegs(Fn); 1084 RegClassInfo.runOnMachineFunction(Fn); 1085 UsedInInstr.clear(); 1086 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1087 1088 // initialize the virtual->physical register map to have a 'null' 1089 // mapping for all virtual registers 1090 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1091 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1092 1093 // Loop over all of the basic blocks, eliminating virtual register references 1094 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1095 MBBi != MBBe; ++MBBi) { 1096 MBB = &*MBBi; 1097 AllocateBasicBlock(); 1098 } 1099 1100 // All machine operands and other references to virtual registers have been 1101 // replaced. Remove the virtual registers. 1102 MRI->clearVirtRegs(); 1103 1104 SkippedInstrs.clear(); 1105 StackSlotForVirtReg.clear(); 1106 LiveDbgValueMap.clear(); 1107 return true; 1108 } 1109 1110 FunctionPass *llvm::createFastRegisterAllocator() { 1111 return new RAFast(); 1112 } 1113