1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/RegisterClassInfo.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "regalloc" 40 41 STATISTIC(NumStores, "Number of stores added"); 42 STATISTIC(NumLoads , "Number of loads added"); 43 STATISTIC(NumCopies, "Number of copies coalesced"); 44 45 static RegisterRegAlloc 46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 47 48 namespace { 49 class RegAllocFast : public MachineFunctionPass { 50 public: 51 static char ID; 52 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 53 54 private: 55 MachineFrameInfo *MFI; 56 MachineRegisterInfo *MRI; 57 const TargetRegisterInfo *TRI; 58 const TargetInstrInfo *TII; 59 RegisterClassInfo RegClassInfo; 60 61 /// Basic block currently being allocated. 62 MachineBasicBlock *MBB; 63 64 /// Maps virtual regs to the frame index where these values are spilled. 65 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 66 67 /// Everything we know about a live virtual register. 68 struct LiveReg { 69 MachineInstr *LastUse; ///< Last instr to use reg. 70 unsigned VirtReg; ///< Virtual register number. 71 MCPhysReg PhysReg; ///< Currently held here. 72 unsigned short LastOpNum; ///< OpNum on LastUse. 73 bool Dirty; ///< Register needs spill. 74 75 explicit LiveReg(unsigned v) 76 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 77 78 unsigned getSparseSetIndex() const { 79 return TargetRegisterInfo::virtReg2Index(VirtReg); 80 } 81 }; 82 83 typedef SparseSet<LiveReg> LiveRegMap; 84 85 /// This map contains entries for each virtual register that is currently 86 /// available in a physical register. 87 LiveRegMap LiveVirtRegs; 88 89 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 90 91 /// Track the state of a physical register. 92 enum RegState { 93 /// A disabled register is not available for allocation, but an alias may 94 /// be in use. A register can only be moved out of the disabled state if 95 /// all aliases are disabled. 96 regDisabled, 97 98 /// A free register is not currently in use and can be allocated 99 /// immediately without checking aliases. 100 regFree, 101 102 /// A reserved register has been assigned explicitly (e.g., setting up a 103 /// call parameter), and it remains reserved until it is used. 104 regReserved 105 106 /// A register state may also be a virtual register number, indication 107 /// that the physical register is currently allocated to a virtual 108 /// register. In that case, LiveVirtRegs contains the inverse mapping. 109 }; 110 111 /// One of the RegState enums, or a virtreg. 112 std::vector<unsigned> PhysRegState; 113 114 SmallVector<unsigned, 16> VirtDead; 115 SmallVector<MachineInstr*, 32> Coalesced; 116 117 /// Set of register units. 118 typedef SparseSet<unsigned> UsedInInstrSet; 119 120 /// Set of register units that are used in the current instruction, and so 121 /// cannot be allocated. 122 UsedInInstrSet UsedInInstr; 123 124 /// Mark a physreg as used in this instruction. 125 void markRegUsedInInstr(MCPhysReg PhysReg) { 126 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 127 UsedInInstr.insert(*Units); 128 } 129 130 /// Check if a physreg or any of its aliases are used in this instruction. 131 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 132 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 133 if (UsedInInstr.count(*Units)) 134 return true; 135 return false; 136 } 137 138 /// This flag is set when LiveRegMap will be cleared completely after 139 /// spilling all live registers. LiveRegMap entries should not be erased. 140 bool isBulkSpilling = false; 141 142 enum : unsigned { 143 spillClean = 1, 144 spillDirty = 100, 145 spillImpossible = ~0u 146 }; 147 public: 148 StringRef getPassName() const override { return "Fast Register Allocator"; } 149 150 void getAnalysisUsage(AnalysisUsage &AU) const override { 151 AU.setPreservesCFG(); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 MachineFunctionProperties getRequiredProperties() const override { 156 return MachineFunctionProperties().set( 157 MachineFunctionProperties::Property::NoPHIs); 158 } 159 160 MachineFunctionProperties getSetProperties() const override { 161 return MachineFunctionProperties().set( 162 MachineFunctionProperties::Property::NoVRegs); 163 } 164 165 private: 166 bool runOnMachineFunction(MachineFunction &Fn) override; 167 void allocateBasicBlock(MachineBasicBlock &MBB); 168 void handleThroughOperands(MachineInstr &MI, 169 SmallVectorImpl<unsigned> &VirtDead); 170 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC); 171 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 172 173 void addKillFlag(const LiveReg &LRI); 174 void killVirtReg(LiveRegMap::iterator LRI); 175 void killVirtReg(unsigned VirtReg); 176 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 177 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 178 179 void usePhysReg(MachineOperand &MO); 180 void definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, RegState NewState); 181 unsigned calcSpillCost(MCPhysReg PhysReg) const; 182 void assignVirtToPhysReg(LiveReg&, MCPhysReg PhysReg); 183 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 187 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 188 } 189 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, MCPhysReg PhysReg); 190 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 191 unsigned Hint); 192 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 193 unsigned VirtReg, unsigned Hint); 194 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 195 unsigned VirtReg, unsigned Hint); 196 void spillAll(MachineBasicBlock::iterator MI); 197 bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg); 198 199 void dumpState(); 200 }; 201 char RegAllocFast::ID = 0; 202 } 203 204 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 205 false) 206 207 /// This allocates space for the specified virtual register to be held on the 208 /// stack. 209 int RegAllocFast::getStackSpaceFor(unsigned VirtReg, 210 const TargetRegisterClass &RC) { 211 // Find the location Reg would belong... 212 int SS = StackSlotForVirtReg[VirtReg]; 213 // Already has space allocated? 214 if (SS != -1) 215 return SS; 216 217 // Allocate a new stack object for this spill location... 218 unsigned Size = TRI->getSpillSize(RC); 219 unsigned Align = TRI->getSpillAlignment(RC); 220 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 221 222 // Assign the slot. 223 StackSlotForVirtReg[VirtReg] = FrameIdx; 224 return FrameIdx; 225 } 226 227 /// Return true if MO is the only remaining reference to its virtual register, 228 /// and it is guaranteed to be a block-local register. 229 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 230 // If the register has ever been spilled or reloaded, we conservatively assume 231 // it is a global register used in multiple blocks. 232 if (StackSlotForVirtReg[MO.getReg()] != -1) 233 return false; 234 235 // Check that the use/def chain has exactly one operand - MO. 236 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 237 if (&*I != &MO) 238 return false; 239 return ++I == MRI->reg_nodbg_end(); 240 } 241 242 /// Set kill flags on last use of a virtual register. 243 void RegAllocFast::addKillFlag(const LiveReg &LR) { 244 if (!LR.LastUse) return; 245 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 246 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 247 if (MO.getReg() == LR.PhysReg) 248 MO.setIsKill(); 249 // else, don't do anything we are problably redefining a 250 // subreg of this register and given we don't track which 251 // lanes are actually dead, we cannot insert a kill flag here. 252 // Otherwise we may end up in a situation like this: 253 // ... = (MO) physreg:sub1, physreg <implicit-use, kill> 254 // ... <== Here we would allow later pass to reuse physreg:sub1 255 // which is potentially wrong. 256 // LR:sub0 = ... 257 // ... = LR.sub1 <== This is going to use physreg:sub1 258 } 259 } 260 261 /// Mark virtreg as no longer available. 262 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) { 263 addKillFlag(*LRI); 264 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 265 "Broken RegState mapping"); 266 PhysRegState[LRI->PhysReg] = regFree; 267 // Erase from LiveVirtRegs unless we're spilling in bulk. 268 if (!isBulkSpilling) 269 LiveVirtRegs.erase(LRI); 270 } 271 272 /// Mark virtreg as no longer available. 273 void RegAllocFast::killVirtReg(unsigned VirtReg) { 274 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 275 "killVirtReg needs a virtual register"); 276 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 277 if (LRI != LiveVirtRegs.end()) 278 killVirtReg(LRI); 279 } 280 281 /// This method spills the value specified by VirtReg into the corresponding 282 /// stack slot if needed. 283 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 284 unsigned VirtReg) { 285 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 286 "Spilling a physical register is illegal!"); 287 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 288 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 289 spillVirtReg(MI, LRI); 290 } 291 292 /// Do the actual work of spilling. 293 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 294 LiveRegMap::iterator LRI) { 295 LiveReg &LR = *LRI; 296 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 297 298 if (LR.Dirty) { 299 // If this physreg is used by the instruction, we want to kill it on the 300 // instruction, not on the spill. 301 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 302 LR.Dirty = false; 303 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 304 << " in " << PrintReg(LR.PhysReg, TRI)); 305 const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg); 306 int FI = getStackSpaceFor(LRI->VirtReg, RC); 307 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 308 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI); 309 ++NumStores; // Update statistics 310 311 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 312 // identify spilled location as the place to find corresponding variable's 313 // value. 314 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 315 LiveDbgValueMap[LRI->VirtReg]; 316 for (MachineInstr *DBG : LRIDbgValues) { 317 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 318 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 319 (void)NewDV; 320 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 321 } 322 // Now this register is spilled there is should not be any DBG_VALUE 323 // pointing to this register because they are all pointing to spilled value 324 // now. 325 LRIDbgValues.clear(); 326 if (SpillKill) 327 LR.LastUse = nullptr; // Don't kill register again 328 } 329 killVirtReg(LRI); 330 } 331 332 /// Spill all dirty virtregs without killing them. 333 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 334 if (LiveVirtRegs.empty()) return; 335 isBulkSpilling = true; 336 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 337 // of spilling here is deterministic, if arbitrary. 338 for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end(); 339 I != E; ++I) 340 spillVirtReg(MI, I); 341 LiveVirtRegs.clear(); 342 isBulkSpilling = false; 343 } 344 345 /// Handle the direct use of a physical register. Check that the register is 346 /// not used by a virtreg. Kill the physreg, marking it free. This may add 347 /// implicit kills to MO->getParent() and invalidate MO. 348 void RegAllocFast::usePhysReg(MachineOperand &MO) { 349 // Ignore undef uses. 350 if (MO.isUndef()) 351 return; 352 353 unsigned PhysReg = MO.getReg(); 354 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 355 "Bad usePhysReg operand"); 356 357 markRegUsedInInstr(PhysReg); 358 switch (PhysRegState[PhysReg]) { 359 case regDisabled: 360 break; 361 case regReserved: 362 PhysRegState[PhysReg] = regFree; 363 LLVM_FALLTHROUGH; 364 case regFree: 365 MO.setIsKill(); 366 return; 367 default: 368 // The physreg was allocated to a virtual register. That means the value we 369 // wanted has been clobbered. 370 llvm_unreachable("Instruction uses an allocated register"); 371 } 372 373 // Maybe a superregister is reserved? 374 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 375 MCPhysReg Alias = *AI; 376 switch (PhysRegState[Alias]) { 377 case regDisabled: 378 break; 379 case regReserved: 380 // Either PhysReg is a subregister of Alias and we mark the 381 // whole register as free, or PhysReg is the superregister of 382 // Alias and we mark all the aliases as disabled before freeing 383 // PhysReg. 384 // In the latter case, since PhysReg was disabled, this means that 385 // its value is defined only by physical sub-registers. This check 386 // is performed by the assert of the default case in this loop. 387 // Note: The value of the superregister may only be partial 388 // defined, that is why regDisabled is a valid state for aliases. 389 assert((TRI->isSuperRegister(PhysReg, Alias) || 390 TRI->isSuperRegister(Alias, PhysReg)) && 391 "Instruction is not using a subregister of a reserved register"); 392 LLVM_FALLTHROUGH; 393 case regFree: 394 if (TRI->isSuperRegister(PhysReg, Alias)) { 395 // Leave the superregister in the working set. 396 PhysRegState[Alias] = regFree; 397 MO.getParent()->addRegisterKilled(Alias, TRI, true); 398 return; 399 } 400 // Some other alias was in the working set - clear it. 401 PhysRegState[Alias] = regDisabled; 402 break; 403 default: 404 llvm_unreachable("Instruction uses an alias of an allocated register"); 405 } 406 } 407 408 // All aliases are disabled, bring register into working set. 409 PhysRegState[PhysReg] = regFree; 410 MO.setIsKill(); 411 } 412 413 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 414 /// similar to defineVirtReg except the physreg is reserved instead of 415 /// allocated. 416 void RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, 417 RegState NewState) { 418 markRegUsedInInstr(PhysReg); 419 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 420 case regDisabled: 421 break; 422 default: 423 spillVirtReg(MI, VirtReg); 424 LLVM_FALLTHROUGH; 425 case regFree: 426 case regReserved: 427 PhysRegState[PhysReg] = NewState; 428 return; 429 } 430 431 // This is a disabled register, disable all aliases. 432 PhysRegState[PhysReg] = NewState; 433 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 434 MCPhysReg Alias = *AI; 435 switch (unsigned VirtReg = PhysRegState[Alias]) { 436 case regDisabled: 437 break; 438 default: 439 spillVirtReg(MI, VirtReg); 440 LLVM_FALLTHROUGH; 441 case regFree: 442 case regReserved: 443 PhysRegState[Alias] = regDisabled; 444 if (TRI->isSuperRegister(PhysReg, Alias)) 445 return; 446 break; 447 } 448 } 449 } 450 451 452 /// \brief Return the cost of spilling clearing out PhysReg and aliases so it is 453 /// free for allocation. Returns 0 when PhysReg is free or disabled with all 454 /// aliases disabled - it can be allocated directly. 455 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 456 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 457 if (isRegUsedInInstr(PhysReg)) { 458 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 459 return spillImpossible; 460 } 461 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 462 case regDisabled: 463 break; 464 case regFree: 465 return 0; 466 case regReserved: 467 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 468 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 469 return spillImpossible; 470 default: { 471 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 472 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 473 return I->Dirty ? spillDirty : spillClean; 474 } 475 } 476 477 // This is a disabled register, add up cost of aliases. 478 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 479 unsigned Cost = 0; 480 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 481 MCPhysReg Alias = *AI; 482 switch (unsigned VirtReg = PhysRegState[Alias]) { 483 case regDisabled: 484 break; 485 case regFree: 486 ++Cost; 487 break; 488 case regReserved: 489 return spillImpossible; 490 default: { 491 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 492 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 493 Cost += I->Dirty ? spillDirty : spillClean; 494 break; 495 } 496 } 497 } 498 return Cost; 499 } 500 501 502 /// \brief This method updates local state so that we know that PhysReg is the 503 /// proper container for VirtReg now. The physical register must not be used 504 /// for anything else when this is called. 505 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 506 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 507 << PrintReg(PhysReg, TRI) << "\n"); 508 PhysRegState[PhysReg] = LR.VirtReg; 509 assert(!LR.PhysReg && "Already assigned a physreg"); 510 LR.PhysReg = PhysReg; 511 } 512 513 RegAllocFast::LiveRegMap::iterator 514 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) { 515 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 516 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 517 assignVirtToPhysReg(*LRI, PhysReg); 518 return LRI; 519 } 520 521 /// Allocates a physical register for VirtReg. 522 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI, 523 LiveRegMap::iterator LRI, unsigned Hint) { 524 const unsigned VirtReg = LRI->VirtReg; 525 526 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 527 "Can only allocate virtual registers"); 528 529 // Take hint when possible. 530 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 531 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 532 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 533 // Ignore the hint if we would have to spill a dirty register. 534 unsigned Cost = calcSpillCost(Hint); 535 if (Cost < spillDirty) { 536 if (Cost) 537 definePhysReg(MI, Hint, regFree); 538 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 539 // That invalidates LRI, so run a new lookup for VirtReg. 540 return assignVirtToPhysReg(VirtReg, Hint); 541 } 542 } 543 544 // First try to find a completely free register. 545 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC); 546 for (MCPhysReg PhysReg : AO) { 547 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 548 assignVirtToPhysReg(*LRI, PhysReg); 549 return LRI; 550 } 551 } 552 553 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 554 << TRI->getRegClassName(&RC) << "\n"); 555 556 unsigned BestReg = 0; 557 unsigned BestCost = spillImpossible; 558 for (MCPhysReg PhysReg : AO) { 559 unsigned Cost = calcSpillCost(PhysReg); 560 DEBUG(dbgs() << "\tRegister: " << PrintReg(PhysReg, TRI) << "\n"); 561 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 562 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 563 // Cost is 0 when all aliases are already disabled. 564 if (Cost == 0) { 565 assignVirtToPhysReg(*LRI, PhysReg); 566 return LRI; 567 } 568 if (Cost < BestCost) 569 BestReg = PhysReg, BestCost = Cost; 570 } 571 572 if (BestReg) { 573 definePhysReg(MI, BestReg, regFree); 574 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 575 // That invalidates LRI, so run a new lookup for VirtReg. 576 return assignVirtToPhysReg(VirtReg, BestReg); 577 } 578 579 // Nothing we can do. Report an error and keep going with a bad allocation. 580 if (MI.isInlineAsm()) 581 MI.emitError("inline assembly requires more registers than available"); 582 else 583 MI.emitError("ran out of registers during register allocation"); 584 definePhysReg(MI, *AO.begin(), regFree); 585 return assignVirtToPhysReg(VirtReg, *AO.begin()); 586 } 587 588 /// Allocates a register for VirtReg and mark it as dirty. 589 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI, 590 unsigned OpNum, 591 unsigned VirtReg, 592 unsigned Hint) { 593 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 594 "Not a virtual register"); 595 LiveRegMap::iterator LRI; 596 bool New; 597 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 598 if (New) { 599 // If there is no hint, peek at the only use of this register. 600 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 601 MRI->hasOneNonDBGUse(VirtReg)) { 602 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 603 // It's a copy, use the destination register as a hint. 604 if (UseMI.isCopyLike()) 605 Hint = UseMI.getOperand(0).getReg(); 606 } 607 LRI = allocVirtReg(MI, LRI, Hint); 608 } else if (LRI->LastUse) { 609 // Redefining a live register - kill at the last use, unless it is this 610 // instruction defining VirtReg multiple times. 611 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 612 addKillFlag(*LRI); 613 } 614 assert(LRI->PhysReg && "Register not assigned"); 615 LRI->LastUse = &MI; 616 LRI->LastOpNum = OpNum; 617 LRI->Dirty = true; 618 markRegUsedInInstr(LRI->PhysReg); 619 return LRI; 620 } 621 622 /// Make sure VirtReg is available in a physreg and return it. 623 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI, 624 unsigned OpNum, 625 unsigned VirtReg, 626 unsigned Hint) { 627 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 628 "Not a virtual register"); 629 LiveRegMap::iterator LRI; 630 bool New; 631 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 632 MachineOperand &MO = MI.getOperand(OpNum); 633 if (New) { 634 LRI = allocVirtReg(MI, LRI, Hint); 635 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 636 int FrameIndex = getStackSpaceFor(VirtReg, RC); 637 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 638 << PrintReg(LRI->PhysReg, TRI) << "\n"); 639 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI); 640 ++NumLoads; 641 } else if (LRI->Dirty) { 642 if (isLastUseOfLocalReg(MO)) { 643 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 644 if (MO.isUse()) 645 MO.setIsKill(); 646 else 647 MO.setIsDead(); 648 } else if (MO.isKill()) { 649 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 650 MO.setIsKill(false); 651 } else if (MO.isDead()) { 652 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 653 MO.setIsDead(false); 654 } 655 } else if (MO.isKill()) { 656 // We must remove kill flags from uses of reloaded registers because the 657 // register would be killed immediately, and there might be a second use: 658 // %foo = OR %x<kill>, %x 659 // This would cause a second reload of %x into a different register. 660 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 661 MO.setIsKill(false); 662 } else if (MO.isDead()) { 663 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 664 MO.setIsDead(false); 665 } 666 assert(LRI->PhysReg && "Register not assigned"); 667 LRI->LastUse = &MI; 668 LRI->LastOpNum = OpNum; 669 markRegUsedInInstr(LRI->PhysReg); 670 return LRI; 671 } 672 673 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 674 /// may invalidate any operand pointers. Return true if the operand kills its 675 /// register. 676 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum, 677 MCPhysReg PhysReg) { 678 MachineOperand &MO = MI.getOperand(OpNum); 679 bool Dead = MO.isDead(); 680 if (!MO.getSubReg()) { 681 MO.setReg(PhysReg); 682 return MO.isKill() || Dead; 683 } 684 685 // Handle subregister index. 686 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 687 MO.setSubReg(0); 688 689 // A kill flag implies killing the full register. Add corresponding super 690 // register kill. 691 if (MO.isKill()) { 692 MI.addRegisterKilled(PhysReg, TRI, true); 693 return true; 694 } 695 696 // A <def,read-undef> of a sub-register requires an implicit def of the full 697 // register. 698 if (MO.isDef() && MO.isUndef()) 699 MI.addRegisterDefined(PhysReg, TRI); 700 701 return Dead; 702 } 703 704 // Handles special instruction operand like early clobbers and tied ops when 705 // there are additional physreg defines. 706 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 707 SmallVectorImpl<unsigned> &VirtDead) { 708 DEBUG(dbgs() << "Scanning for through registers:"); 709 SmallSet<unsigned, 8> ThroughRegs; 710 for (const MachineOperand &MO : MI.operands()) { 711 if (!MO.isReg()) continue; 712 unsigned Reg = MO.getReg(); 713 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 714 continue; 715 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 716 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 717 if (ThroughRegs.insert(Reg).second) 718 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 719 } 720 } 721 722 // If any physreg defines collide with preallocated through registers, 723 // we must spill and reallocate. 724 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 725 for (const MachineOperand &MO : MI.operands()) { 726 if (!MO.isReg() || !MO.isDef()) continue; 727 unsigned Reg = MO.getReg(); 728 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 729 markRegUsedInInstr(Reg); 730 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 731 if (ThroughRegs.count(PhysRegState[*AI])) 732 definePhysReg(MI, *AI, regFree); 733 } 734 } 735 736 SmallVector<unsigned, 8> PartialDefs; 737 DEBUG(dbgs() << "Allocating tied uses.\n"); 738 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 739 const MachineOperand &MO = MI.getOperand(I); 740 if (!MO.isReg()) continue; 741 unsigned Reg = MO.getReg(); 742 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 743 if (MO.isUse()) { 744 if (!MO.isTied()) continue; 745 DEBUG(dbgs() << "Operand " << I << "("<< MO << ") is tied to operand " 746 << MI.findTiedOperandIdx(I) << ".\n"); 747 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 748 MCPhysReg PhysReg = LRI->PhysReg; 749 setPhysReg(MI, I, PhysReg); 750 // Note: we don't update the def operand yet. That would cause the normal 751 // def-scan to attempt spilling. 752 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 753 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 754 // Reload the register, but don't assign to the operand just yet. 755 // That would confuse the later phys-def processing pass. 756 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 757 PartialDefs.push_back(LRI->PhysReg); 758 } 759 } 760 761 DEBUG(dbgs() << "Allocating early clobbers.\n"); 762 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 763 const MachineOperand &MO = MI.getOperand(I); 764 if (!MO.isReg()) continue; 765 unsigned Reg = MO.getReg(); 766 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 767 if (!MO.isEarlyClobber()) 768 continue; 769 // Note: defineVirtReg may invalidate MO. 770 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0); 771 MCPhysReg PhysReg = LRI->PhysReg; 772 if (setPhysReg(MI, I, PhysReg)) 773 VirtDead.push_back(Reg); 774 } 775 776 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 777 UsedInInstr.clear(); 778 for (const MachineOperand &MO : MI.operands()) { 779 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 780 unsigned Reg = MO.getReg(); 781 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 782 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 783 << " as used in instr\n"); 784 markRegUsedInInstr(Reg); 785 } 786 787 // Also mark PartialDefs as used to avoid reallocation. 788 for (unsigned PartialDef : PartialDefs) 789 markRegUsedInInstr(PartialDef); 790 } 791 792 #ifndef NDEBUG 793 void RegAllocFast::dumpState() { 794 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 795 if (PhysRegState[Reg] == regDisabled) continue; 796 dbgs() << " " << TRI->getName(Reg); 797 switch(PhysRegState[Reg]) { 798 case regFree: 799 break; 800 case regReserved: 801 dbgs() << "*"; 802 break; 803 default: { 804 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 805 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 806 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 807 if (I->Dirty) 808 dbgs() << "*"; 809 assert(I->PhysReg == Reg && "Bad inverse map"); 810 break; 811 } 812 } 813 } 814 dbgs() << '\n'; 815 // Check that LiveVirtRegs is the inverse. 816 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 817 e = LiveVirtRegs.end(); i != e; ++i) { 818 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 819 "Bad map key"); 820 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 821 "Bad map value"); 822 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 823 } 824 } 825 #endif 826 827 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 828 this->MBB = &MBB; 829 DEBUG(dbgs() << "\nAllocating " << MBB); 830 831 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 832 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 833 834 MachineBasicBlock::iterator MII = MBB.begin(); 835 836 // Add live-in registers as live. 837 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 838 if (MRI->isAllocatable(LI.PhysReg)) 839 definePhysReg(*MII, LI.PhysReg, regReserved); 840 841 VirtDead.clear(); 842 Coalesced.clear(); 843 844 // Otherwise, sequentially allocate each instruction in the MBB. 845 for (MachineInstr &MI : MBB) { 846 const MCInstrDesc &MCID = MI.getDesc(); 847 DEBUG( 848 dbgs() << "\n>> " << MI << "Regs:"; 849 dumpState() 850 ); 851 852 // Debug values are not allowed to change codegen in any way. 853 if (MI.isDebugValue()) { 854 bool ScanDbgValue = true; 855 MachineInstr *DebugMI = &MI; 856 while (ScanDbgValue) { 857 ScanDbgValue = false; 858 for (unsigned I = 0, E = DebugMI->getNumOperands(); I != E; ++I) { 859 MachineOperand &MO = DebugMI->getOperand(I); 860 if (!MO.isReg()) continue; 861 unsigned Reg = MO.getReg(); 862 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 863 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 864 if (LRI != LiveVirtRegs.end()) 865 setPhysReg(*DebugMI, I, LRI->PhysReg); 866 else { 867 int SS = StackSlotForVirtReg[Reg]; 868 if (SS == -1) { 869 // We can't allocate a physreg for a DebugValue, sorry! 870 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 871 MO.setReg(0); 872 } 873 else { 874 // Modify DBG_VALUE now that the value is in a spill slot. 875 bool IsIndirect = DebugMI->isIndirectDebugValue(); 876 if (IsIndirect) 877 assert(DebugMI->getOperand(1).getImm() == 0 && 878 "DBG_VALUE with nonzero offset"); 879 const MDNode *Var = DebugMI->getDebugVariable(); 880 const MDNode *Expr = DebugMI->getDebugExpression(); 881 DebugLoc DL = DebugMI->getDebugLoc(); 882 MachineBasicBlock *MBB = DebugMI->getParent(); 883 assert( 884 cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 885 "Expected inlined-at fields to agree"); 886 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(DebugMI), DL, 887 TII->get(TargetOpcode::DBG_VALUE)) 888 .addFrameIndex(SS) 889 .addImm(0U) 890 .addMetadata(Var) 891 .addMetadata(Expr); 892 DEBUG(dbgs() << "Modifying debug info due to spill:" 893 << "\t" << *NewDV); 894 // Scan NewDV operands from the beginning. 895 DebugMI = NewDV; 896 ScanDbgValue = true; 897 break; 898 } 899 } 900 LiveDbgValueMap[Reg].push_back(DebugMI); 901 } 902 } 903 // Next instruction. 904 continue; 905 } 906 907 // If this is a copy, we may be able to coalesce. 908 unsigned CopySrcReg = 0; 909 unsigned CopyDstReg = 0; 910 unsigned CopySrcSub = 0; 911 unsigned CopyDstSub = 0; 912 if (MI.isCopy()) { 913 CopyDstReg = MI.getOperand(0).getReg(); 914 CopySrcReg = MI.getOperand(1).getReg(); 915 CopyDstSub = MI.getOperand(0).getSubReg(); 916 CopySrcSub = MI.getOperand(1).getSubReg(); 917 } 918 919 // Track registers used by instruction. 920 UsedInInstr.clear(); 921 922 // First scan. 923 // Mark physreg uses and early clobbers as used. 924 // Find the end of the virtreg operands 925 unsigned VirtOpEnd = 0; 926 bool hasTiedOps = false; 927 bool hasEarlyClobbers = false; 928 bool hasPartialRedefs = false; 929 bool hasPhysDefs = false; 930 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 931 MachineOperand &MO = MI.getOperand(i); 932 // Make sure MRI knows about registers clobbered by regmasks. 933 if (MO.isRegMask()) { 934 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 935 continue; 936 } 937 if (!MO.isReg()) continue; 938 unsigned Reg = MO.getReg(); 939 if (!Reg) continue; 940 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 941 VirtOpEnd = i+1; 942 if (MO.isUse()) { 943 hasTiedOps = hasTiedOps || 944 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 945 } else { 946 if (MO.isEarlyClobber()) 947 hasEarlyClobbers = true; 948 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 949 hasPartialRedefs = true; 950 } 951 continue; 952 } 953 if (!MRI->isAllocatable(Reg)) continue; 954 if (MO.isUse()) { 955 usePhysReg(MO); 956 } else if (MO.isEarlyClobber()) { 957 definePhysReg(MI, Reg, 958 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 959 hasEarlyClobbers = true; 960 } else 961 hasPhysDefs = true; 962 } 963 964 // The instruction may have virtual register operands that must be allocated 965 // the same register at use-time and def-time: early clobbers and tied 966 // operands. If there are also physical defs, these registers must avoid 967 // both physical defs and uses, making them more constrained than normal 968 // operands. 969 // Similarly, if there are multiple defs and tied operands, we must make 970 // sure the same register is allocated to uses and defs. 971 // We didn't detect inline asm tied operands above, so just make this extra 972 // pass for all inline asm. 973 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 974 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 975 handleThroughOperands(MI, VirtDead); 976 // Don't attempt coalescing when we have funny stuff going on. 977 CopyDstReg = 0; 978 // Pretend we have early clobbers so the use operands get marked below. 979 // This is not necessary for the common case of a single tied use. 980 hasEarlyClobbers = true; 981 } 982 983 // Second scan. 984 // Allocate virtreg uses. 985 for (unsigned I = 0; I != VirtOpEnd; ++I) { 986 const MachineOperand &MO = MI.getOperand(I); 987 if (!MO.isReg()) continue; 988 unsigned Reg = MO.getReg(); 989 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 990 if (MO.isUse()) { 991 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg); 992 MCPhysReg PhysReg = LRI->PhysReg; 993 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 994 if (setPhysReg(MI, I, PhysReg)) 995 killVirtReg(LRI); 996 } 997 } 998 999 // Track registers defined by instruction - early clobbers and tied uses at 1000 // this point. 1001 UsedInInstr.clear(); 1002 if (hasEarlyClobbers) { 1003 for (const MachineOperand &MO : MI.operands()) { 1004 if (!MO.isReg()) continue; 1005 unsigned Reg = MO.getReg(); 1006 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1007 // Look for physreg defs and tied uses. 1008 if (!MO.isDef() && !MO.isTied()) continue; 1009 markRegUsedInInstr(Reg); 1010 } 1011 } 1012 1013 unsigned DefOpEnd = MI.getNumOperands(); 1014 if (MI.isCall()) { 1015 // Spill all virtregs before a call. This serves one purpose: If an 1016 // exception is thrown, the landing pad is going to expect to find 1017 // registers in their spill slots. 1018 // Note: although this is appealing to just consider all definitions 1019 // as call-clobbered, this is not correct because some of those 1020 // definitions may be used later on and we do not want to reuse 1021 // those for virtual registers in between. 1022 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1023 spillAll(MI); 1024 } 1025 1026 // Third scan. 1027 // Allocate defs and collect dead defs. 1028 for (unsigned I = 0; I != DefOpEnd; ++I) { 1029 const MachineOperand &MO = MI.getOperand(I); 1030 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1031 continue; 1032 unsigned Reg = MO.getReg(); 1033 1034 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1035 if (!MRI->isAllocatable(Reg)) continue; 1036 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1037 continue; 1038 } 1039 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg); 1040 MCPhysReg PhysReg = LRI->PhysReg; 1041 if (setPhysReg(MI, I, PhysReg)) { 1042 VirtDead.push_back(Reg); 1043 CopyDstReg = 0; // cancel coalescing; 1044 } else 1045 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1046 } 1047 1048 // Kill dead defs after the scan to ensure that multiple defs of the same 1049 // register are allocated identically. We didn't need to do this for uses 1050 // because we are crerating our own kill flags, and they are always at the 1051 // last use. 1052 for (unsigned VirtReg : VirtDead) 1053 killVirtReg(VirtReg); 1054 VirtDead.clear(); 1055 1056 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1057 DEBUG(dbgs() << "-- coalescing: " << MI); 1058 Coalesced.push_back(&MI); 1059 } else { 1060 DEBUG(dbgs() << "<< " << MI); 1061 } 1062 } 1063 1064 // Spill all physical registers holding virtual registers now. 1065 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1066 spillAll(MBB.getFirstTerminator()); 1067 1068 // Erase all the coalesced copies. We are delaying it until now because 1069 // LiveVirtRegs might refer to the instrs. 1070 for (MachineInstr *MI : Coalesced) 1071 MBB.erase(MI); 1072 NumCopies += Coalesced.size(); 1073 1074 DEBUG(MBB.dump()); 1075 } 1076 1077 /// Allocates registers for a function. 1078 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1079 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1080 << "********** Function: " << MF.getName() << '\n'); 1081 MRI = &MF.getRegInfo(); 1082 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1083 TRI = STI.getRegisterInfo(); 1084 TII = STI.getInstrInfo(); 1085 MFI = &MF.getFrameInfo(); 1086 MRI->freezeReservedRegs(MF); 1087 RegClassInfo.runOnMachineFunction(MF); 1088 UsedInInstr.clear(); 1089 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1090 1091 // initialize the virtual->physical register map to have a 'null' 1092 // mapping for all virtual registers 1093 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1094 StackSlotForVirtReg.resize(NumVirtRegs); 1095 LiveVirtRegs.setUniverse(NumVirtRegs); 1096 1097 // Loop over all of the basic blocks, eliminating virtual register references 1098 for (MachineBasicBlock &MBB : MF) 1099 allocateBasicBlock(MBB); 1100 1101 // All machine operands and other references to virtual registers have been 1102 // replaced. Remove the virtual registers. 1103 MRI->clearVirtRegs(); 1104 1105 StackSlotForVirtReg.clear(); 1106 LiveDbgValueMap.clear(); 1107 return true; 1108 } 1109 1110 FunctionPass *llvm::createFastRegisterAllocator() { 1111 return new RegAllocFast(); 1112 } 1113