1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 /// Stores assigned virtual registers present in the bundle MI. 109 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 110 111 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 112 /// List of DBG_VALUE that we encountered without the vreg being assigned 113 /// because they were placed after the last use of the vreg. 114 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 115 116 /// Has a bit set for every virtual register for which it was determined 117 /// that it is alive across blocks. 118 BitVector MayLiveAcrossBlocks; 119 120 /// State of a register unit. 121 enum RegUnitState { 122 /// A free register is not currently in use and can be allocated 123 /// immediately without checking aliases. 124 regFree, 125 126 /// A pre-assigned register has been assigned before register allocation 127 /// (e.g., setting up a call parameter). 128 regPreAssigned, 129 130 /// Used temporarily in reloadAtBegin() to mark register units that are 131 /// live-in to the basic block. 132 regLiveIn, 133 134 /// A register state may also be a virtual register number, indication 135 /// that the physical register is currently allocated to a virtual 136 /// register. In that case, LiveVirtRegs contains the inverse mapping. 137 }; 138 139 /// Maps each physical register to a RegUnitState enum or virtual register. 140 std::vector<unsigned> RegUnitStates; 141 142 SmallVector<MachineInstr *, 32> Coalesced; 143 144 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 145 /// Set of register units that are used in the current instruction, and so 146 /// cannot be allocated. 147 RegUnitSet UsedInInstr; 148 RegUnitSet PhysRegUses; 149 SmallVector<uint16_t, 8> DefOperandIndexes; 150 151 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 152 bool isPhysRegFree(MCPhysReg PhysReg) const; 153 154 /// Mark a physreg as used in this instruction. 155 void markRegUsedInInstr(MCPhysReg PhysReg) { 156 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 157 UsedInInstr.insert(*Units); 158 } 159 160 /// Check if a physreg or any of its aliases are used in this instruction. 161 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 162 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 163 if (UsedInInstr.count(*Units)) 164 return true; 165 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 166 return true; 167 } 168 return false; 169 } 170 171 /// Mark physical register as being used in a register use operand. 172 /// This is only used by the special livethrough handling code. 173 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 174 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 175 PhysRegUses.insert(*Units); 176 } 177 178 /// Remove mark of physical register being used in the instruction. 179 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 180 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 181 UsedInInstr.erase(*Units); 182 } 183 184 enum : unsigned { 185 spillClean = 50, 186 spillDirty = 100, 187 spillPrefBonus = 20, 188 spillImpossible = ~0u 189 }; 190 191 public: 192 StringRef getPassName() const override { return "Fast Register Allocator"; } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.setPreservesCFG(); 196 MachineFunctionPass::getAnalysisUsage(AU); 197 } 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoPHIs); 202 } 203 204 MachineFunctionProperties getSetProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 MachineFunctionProperties getClearedProperties() const override { 210 return MachineFunctionProperties().set( 211 MachineFunctionProperties::Property::IsSSA); 212 } 213 214 private: 215 bool runOnMachineFunction(MachineFunction &MF) override; 216 217 void allocateBasicBlock(MachineBasicBlock &MBB); 218 219 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 220 Register Reg) const; 221 222 void allocateInstruction(MachineInstr &MI); 223 void handleDebugValue(MachineInstr &MI); 224 void handleBundle(MachineInstr &MI); 225 226 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 227 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 228 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 229 void freePhysReg(MCPhysReg PhysReg); 230 231 unsigned calcSpillCost(MCPhysReg PhysReg) const; 232 233 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 234 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 235 } 236 237 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 238 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 239 } 240 241 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 242 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 243 bool LookAtPhysRegUses = false); 244 void allocVirtRegUndef(MachineOperand &MO); 245 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 246 MCPhysReg Reg); 247 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 248 Register VirtReg); 249 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 250 bool LookAtPhysRegUses = false); 251 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 252 253 MachineBasicBlock::iterator 254 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 255 SmallSet<Register, 2> &PrologLiveIns) const; 256 257 void reloadAtBegin(MachineBasicBlock &MBB); 258 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 259 260 Register traceCopies(Register VirtReg) const; 261 Register traceCopyChain(Register Reg) const; 262 263 int getStackSpaceFor(Register VirtReg); 264 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 265 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 266 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 267 MCPhysReg PhysReg); 268 269 bool mayLiveOut(Register VirtReg); 270 bool mayLiveIn(Register VirtReg); 271 272 void dumpState() const; 273 }; 274 275 } // end anonymous namespace 276 277 char RegAllocFast::ID = 0; 278 279 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 280 false) 281 282 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 283 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 284 RegUnitStates[*UI] = NewState; 285 } 286 287 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 288 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 289 if (RegUnitStates[*UI] != regFree) 290 return false; 291 } 292 return true; 293 } 294 295 /// This allocates space for the specified virtual register to be held on the 296 /// stack. 297 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 298 // Find the location Reg would belong... 299 int SS = StackSlotForVirtReg[VirtReg]; 300 // Already has space allocated? 301 if (SS != -1) 302 return SS; 303 304 // Allocate a new stack object for this spill location... 305 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 306 unsigned Size = TRI->getSpillSize(RC); 307 Align Alignment = TRI->getSpillAlign(RC); 308 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 309 310 // Assign the slot. 311 StackSlotForVirtReg[VirtReg] = FrameIdx; 312 return FrameIdx; 313 } 314 315 static bool dominates(MachineBasicBlock &MBB, 316 MachineBasicBlock::const_iterator A, 317 MachineBasicBlock::const_iterator B) { 318 auto MBBEnd = MBB.end(); 319 if (B == MBBEnd) 320 return true; 321 322 MachineBasicBlock::const_iterator I = MBB.begin(); 323 for (; &*I != A && &*I != B; ++I) 324 ; 325 326 return &*I == A; 327 } 328 329 /// Returns false if \p VirtReg is known to not live out of the current block. 330 bool RegAllocFast::mayLiveOut(Register VirtReg) { 331 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 332 // Cannot be live-out if there are no successors. 333 return !MBB->succ_empty(); 334 } 335 336 const MachineInstr *SelfLoopDef = nullptr; 337 338 // If this block loops back to itself, it is necessary to check whether the 339 // use comes after the def. 340 if (MBB->isSuccessor(MBB)) { 341 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 342 if (!SelfLoopDef) { 343 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 344 return true; 345 } 346 } 347 348 // See if the first \p Limit uses of the register are all in the current 349 // block. 350 static const unsigned Limit = 8; 351 unsigned C = 0; 352 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 353 if (UseInst.getParent() != MBB || ++C >= Limit) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 // Cannot be live-out if there are no successors. 356 return !MBB->succ_empty(); 357 } 358 359 if (SelfLoopDef) { 360 // Try to handle some simple cases to avoid spilling and reloading every 361 // value inside a self looping block. 362 if (SelfLoopDef == &UseInst || 363 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 364 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 365 return true; 366 } 367 } 368 } 369 370 return false; 371 } 372 373 /// Returns false if \p VirtReg is known to not be live into the current block. 374 bool RegAllocFast::mayLiveIn(Register VirtReg) { 375 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 376 return !MBB->pred_empty(); 377 378 // See if the first \p Limit def of the register are all in the current block. 379 static const unsigned Limit = 8; 380 unsigned C = 0; 381 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 382 if (DefInst.getParent() != MBB || ++C >= Limit) { 383 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 384 return !MBB->pred_empty(); 385 } 386 } 387 388 return false; 389 } 390 391 /// Insert spill instruction for \p AssignedReg before \p Before. Update 392 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 393 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 394 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 395 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 396 << " in " << printReg(AssignedReg, TRI)); 397 int FI = getStackSpaceFor(VirtReg); 398 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 399 400 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 401 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 402 ++NumStores; 403 404 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 405 406 // When we spill a virtual register, we will have spill instructions behind 407 // every definition of it, meaning we can switch all the DBG_VALUEs over 408 // to just reference the stack slot. 409 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 410 SmallDenseMap<MachineInstr *, SmallVector<const MachineOperand *>> 411 SpilledOperandsMap; 412 for (MachineOperand *MO : LRIDbgOperands) 413 SpilledOperandsMap[MO->getParent()].push_back(MO); 414 for (auto MISpilledOperands : SpilledOperandsMap) { 415 MachineInstr &DBG = *MISpilledOperands.first; 416 MachineInstr *NewDV = buildDbgValueForSpill( 417 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 418 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 419 (void)NewDV; 420 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 421 422 if (LiveOut) { 423 // We need to insert a DBG_VALUE at the end of the block if the spill slot 424 // is live out, but there is another use of the value after the 425 // spill. This will allow LiveDebugValues to see the correct live out 426 // value to propagate to the successors. 427 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 428 MBB->insert(FirstTerm, ClonedDV); 429 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 430 } 431 432 // Rewrite unassigned dbg_values to use the stack slot. 433 // TODO We can potentially do this for list debug values as well if we know 434 // how the dbg_values are getting unassigned. 435 if (DBG.isNonListDebugValue()) { 436 MachineOperand &MO = DBG.getDebugOperand(0); 437 if (MO.isReg() && MO.getReg() == 0) { 438 updateDbgValueForSpill(DBG, FI, 0); 439 } 440 } 441 } 442 // Now this register is spilled there is should not be any DBG_VALUE 443 // pointing to this register because they are all pointing to spilled value 444 // now. 445 LRIDbgOperands.clear(); 446 } 447 448 /// Insert reload instruction for \p PhysReg before \p Before. 449 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 450 MCPhysReg PhysReg) { 451 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 452 << printReg(PhysReg, TRI) << '\n'); 453 int FI = getStackSpaceFor(VirtReg); 454 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 455 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 456 ++NumLoads; 457 } 458 459 /// Get basic block begin insertion point. 460 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 461 /// instructions marking the begin of a basic block. This means we must insert 462 /// new instructions after such labels... 463 MachineBasicBlock::iterator 464 RegAllocFast::getMBBBeginInsertionPoint( 465 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 466 MachineBasicBlock::iterator I = MBB.begin(); 467 while (I != MBB.end()) { 468 if (I->isLabel()) { 469 ++I; 470 continue; 471 } 472 473 // Most reloads should be inserted after prolog instructions. 474 if (!TII->isBasicBlockPrologue(*I)) 475 break; 476 477 // However if a prolog instruction reads a register that needs to be 478 // reloaded, the reload should be inserted before the prolog. 479 for (MachineOperand &MO : I->operands()) { 480 if (MO.isReg()) 481 PrologLiveIns.insert(MO.getReg()); 482 } 483 484 ++I; 485 } 486 487 return I; 488 } 489 490 /// Reload all currently assigned virtual registers. 491 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 492 if (LiveVirtRegs.empty()) 493 return; 494 495 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 496 MCPhysReg Reg = P.PhysReg; 497 // Set state to live-in. This possibly overrides mappings to virtual 498 // registers but we don't care anymore at this point. 499 setPhysRegState(Reg, regLiveIn); 500 } 501 502 503 SmallSet<Register, 2> PrologLiveIns; 504 505 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 506 // of spilling here is deterministic, if arbitrary. 507 MachineBasicBlock::iterator InsertBefore 508 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 509 for (const LiveReg &LR : LiveVirtRegs) { 510 MCPhysReg PhysReg = LR.PhysReg; 511 if (PhysReg == 0) 512 continue; 513 514 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 515 if (RegUnitStates[FirstUnit] == regLiveIn) 516 continue; 517 518 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 519 "no reload in start block. Missing vreg def?"); 520 521 if (PrologLiveIns.count(PhysReg)) { 522 // FIXME: Theoretically this should use an insert point skipping labels 523 // but I'm not sure how labels should interact with prolog instruction 524 // that need reloads. 525 reload(MBB.begin(), LR.VirtReg, PhysReg); 526 } else 527 reload(InsertBefore, LR.VirtReg, PhysReg); 528 } 529 LiveVirtRegs.clear(); 530 } 531 532 /// Handle the direct use of a physical register. Check that the register is 533 /// not used by a virtreg. Kill the physreg, marking it free. This may add 534 /// implicit kills to MO->getParent() and invalidate MO. 535 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 536 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 537 bool displacedAny = displacePhysReg(MI, Reg); 538 setPhysRegState(Reg, regPreAssigned); 539 markRegUsedInInstr(Reg); 540 return displacedAny; 541 } 542 543 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 544 bool displacedAny = displacePhysReg(MI, Reg); 545 setPhysRegState(Reg, regPreAssigned); 546 return displacedAny; 547 } 548 549 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 550 /// similar to defineVirtReg except the physreg is reserved instead of 551 /// allocated. 552 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 553 bool displacedAny = false; 554 555 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 556 unsigned Unit = *UI; 557 switch (unsigned VirtReg = RegUnitStates[Unit]) { 558 default: { 559 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 560 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 561 MachineBasicBlock::iterator ReloadBefore = 562 std::next((MachineBasicBlock::iterator)MI.getIterator()); 563 reload(ReloadBefore, VirtReg, LRI->PhysReg); 564 565 setPhysRegState(LRI->PhysReg, regFree); 566 LRI->PhysReg = 0; 567 LRI->Reloaded = true; 568 displacedAny = true; 569 break; 570 } 571 case regPreAssigned: 572 RegUnitStates[Unit] = regFree; 573 displacedAny = true; 574 break; 575 case regFree: 576 break; 577 } 578 } 579 return displacedAny; 580 } 581 582 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 583 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 584 585 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 586 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 587 case regFree: 588 LLVM_DEBUG(dbgs() << '\n'); 589 return; 590 case regPreAssigned: 591 LLVM_DEBUG(dbgs() << '\n'); 592 setPhysRegState(PhysReg, regFree); 593 return; 594 default: { 595 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 596 assert(LRI != LiveVirtRegs.end()); 597 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 598 setPhysRegState(LRI->PhysReg, regFree); 599 LRI->PhysReg = 0; 600 } 601 return; 602 } 603 } 604 605 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 606 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 607 /// disabled - it can be allocated directly. 608 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 609 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 610 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 611 switch (unsigned VirtReg = RegUnitStates[*UI]) { 612 case regFree: 613 break; 614 case regPreAssigned: 615 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 616 << printReg(PhysReg, TRI) << '\n'); 617 return spillImpossible; 618 default: { 619 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 620 findLiveVirtReg(VirtReg)->LiveOut; 621 return SureSpill ? spillClean : spillDirty; 622 } 623 } 624 } 625 return 0; 626 } 627 628 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 629 Register VirtReg, MCPhysReg Reg) { 630 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 631 if (UDBGValIter == DanglingDbgValues.end()) 632 return; 633 634 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 635 for (MachineInstr *DbgValue : Dangling) { 636 assert(DbgValue->isDebugValue()); 637 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 638 continue; 639 640 // Test whether the physreg survives from the definition to the DBG_VALUE. 641 MCPhysReg SetToReg = Reg; 642 unsigned Limit = 20; 643 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 644 E = DbgValue->getIterator(); I != E; ++I) { 645 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 646 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 647 << '\n'); 648 SetToReg = 0; 649 break; 650 } 651 } 652 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 653 MO.setReg(SetToReg); 654 if (SetToReg != 0) 655 MO.setIsRenamable(); 656 } 657 } 658 Dangling.clear(); 659 } 660 661 /// This method updates local state so that we know that PhysReg is the 662 /// proper container for VirtReg now. The physical register must not be used 663 /// for anything else when this is called. 664 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 665 MCPhysReg PhysReg) { 666 Register VirtReg = LR.VirtReg; 667 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 668 << printReg(PhysReg, TRI) << '\n'); 669 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 670 assert(PhysReg != 0 && "Trying to assign no register"); 671 LR.PhysReg = PhysReg; 672 setPhysRegState(PhysReg, VirtReg); 673 674 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 675 } 676 677 static bool isCoalescable(const MachineInstr &MI) { 678 return MI.isFullCopy(); 679 } 680 681 Register RegAllocFast::traceCopyChain(Register Reg) const { 682 static const unsigned ChainLengthLimit = 3; 683 unsigned C = 0; 684 do { 685 if (Reg.isPhysical()) 686 return Reg; 687 assert(Reg.isVirtual()); 688 689 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 690 if (!VRegDef || !isCoalescable(*VRegDef)) 691 return 0; 692 Reg = VRegDef->getOperand(1).getReg(); 693 } while (++C <= ChainLengthLimit); 694 return 0; 695 } 696 697 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 698 /// chain of copies to check whether we reach a physical register we can 699 /// coalesce with. 700 Register RegAllocFast::traceCopies(Register VirtReg) const { 701 static const unsigned DefLimit = 3; 702 unsigned C = 0; 703 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 704 if (isCoalescable(MI)) { 705 Register Reg = MI.getOperand(1).getReg(); 706 Reg = traceCopyChain(Reg); 707 if (Reg.isValid()) 708 return Reg; 709 } 710 711 if (++C >= DefLimit) 712 break; 713 } 714 return Register(); 715 } 716 717 /// Allocates a physical register for VirtReg. 718 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 719 Register Hint0, bool LookAtPhysRegUses) { 720 const Register VirtReg = LR.VirtReg; 721 assert(LR.PhysReg == 0); 722 723 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 724 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 725 << " in class " << TRI->getRegClassName(&RC) 726 << " with hint " << printReg(Hint0, TRI) << '\n'); 727 728 // Take hint when possible. 729 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 730 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 731 // Take hint if the register is currently free. 732 if (isPhysRegFree(Hint0)) { 733 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 734 << '\n'); 735 assignVirtToPhysReg(MI, LR, Hint0); 736 return; 737 } else { 738 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 739 << " occupied\n"); 740 } 741 } else { 742 Hint0 = Register(); 743 } 744 745 746 // Try other hint. 747 Register Hint1 = traceCopies(VirtReg); 748 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 749 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 750 // Take hint if the register is currently free. 751 if (isPhysRegFree(Hint1)) { 752 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 753 << '\n'); 754 assignVirtToPhysReg(MI, LR, Hint1); 755 return; 756 } else { 757 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 758 << " occupied\n"); 759 } 760 } else { 761 Hint1 = Register(); 762 } 763 764 MCPhysReg BestReg = 0; 765 unsigned BestCost = spillImpossible; 766 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 767 for (MCPhysReg PhysReg : AllocationOrder) { 768 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 769 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 770 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 771 continue; 772 } 773 774 unsigned Cost = calcSpillCost(PhysReg); 775 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 776 // Immediate take a register with cost 0. 777 if (Cost == 0) { 778 assignVirtToPhysReg(MI, LR, PhysReg); 779 return; 780 } 781 782 if (PhysReg == Hint0 || PhysReg == Hint1) 783 Cost -= spillPrefBonus; 784 785 if (Cost < BestCost) { 786 BestReg = PhysReg; 787 BestCost = Cost; 788 } 789 } 790 791 if (!BestReg) { 792 // Nothing we can do: Report an error and keep going with an invalid 793 // allocation. 794 if (MI.isInlineAsm()) 795 MI.emitError("inline assembly requires more registers than available"); 796 else 797 MI.emitError("ran out of registers during register allocation"); 798 799 LR.Error = true; 800 LR.PhysReg = 0; 801 return; 802 } 803 804 displacePhysReg(MI, BestReg); 805 assignVirtToPhysReg(MI, LR, BestReg); 806 } 807 808 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 809 assert(MO.isUndef() && "expected undef use"); 810 Register VirtReg = MO.getReg(); 811 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 812 813 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 814 MCPhysReg PhysReg; 815 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 816 PhysReg = LRI->PhysReg; 817 } else { 818 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 819 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 820 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 821 PhysReg = AllocationOrder[0]; 822 } 823 824 unsigned SubRegIdx = MO.getSubReg(); 825 if (SubRegIdx != 0) { 826 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 827 MO.setSubReg(0); 828 } 829 MO.setReg(PhysReg); 830 MO.setIsRenamable(true); 831 } 832 833 /// Variation of defineVirtReg() with special handling for livethrough regs 834 /// (tied or earlyclobber) that may interfere with preassigned uses. 835 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 836 Register VirtReg) { 837 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 838 if (LRI != LiveVirtRegs.end()) { 839 MCPhysReg PrevReg = LRI->PhysReg; 840 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 841 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 842 << " (tied/earlyclobber resolution)\n"); 843 freePhysReg(PrevReg); 844 LRI->PhysReg = 0; 845 allocVirtReg(MI, *LRI, 0, true); 846 MachineBasicBlock::iterator InsertBefore = 847 std::next((MachineBasicBlock::iterator)MI.getIterator()); 848 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 849 << printReg(PrevReg, TRI) << '\n'); 850 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 851 TII->get(TargetOpcode::COPY), PrevReg) 852 .addReg(LRI->PhysReg, llvm::RegState::Kill); 853 } 854 MachineOperand &MO = MI.getOperand(OpNum); 855 if (MO.getSubReg() && !MO.isUndef()) { 856 LRI->LastUse = &MI; 857 } 858 } 859 return defineVirtReg(MI, OpNum, VirtReg, true); 860 } 861 862 /// Allocates a register for VirtReg definition. Typically the register is 863 /// already assigned from a use of the virtreg, however we still need to 864 /// perform an allocation if: 865 /// - It is a dead definition without any uses. 866 /// - The value is live out and all uses are in different basic blocks. 867 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 868 Register VirtReg, bool LookAtPhysRegUses) { 869 assert(VirtReg.isVirtual() && "Not a virtual register"); 870 MachineOperand &MO = MI.getOperand(OpNum); 871 LiveRegMap::iterator LRI; 872 bool New; 873 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 874 if (New) { 875 if (!MO.isDead()) { 876 if (mayLiveOut(VirtReg)) { 877 LRI->LiveOut = true; 878 } else { 879 // It is a dead def without the dead flag; add the flag now. 880 MO.setIsDead(true); 881 } 882 } 883 } 884 if (LRI->PhysReg == 0) 885 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 886 else { 887 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 888 "TODO: preassign mismatch"); 889 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 890 << " use existing assignment to " 891 << printReg(LRI->PhysReg, TRI) << '\n'); 892 } 893 894 MCPhysReg PhysReg = LRI->PhysReg; 895 assert(PhysReg != 0 && "Register not assigned"); 896 if (LRI->Reloaded || LRI->LiveOut) { 897 if (!MI.isImplicitDef()) { 898 MachineBasicBlock::iterator SpillBefore = 899 std::next((MachineBasicBlock::iterator)MI.getIterator()); 900 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 901 << LRI->Reloaded << '\n'); 902 bool Kill = LRI->LastUse == nullptr; 903 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 904 LRI->LastUse = nullptr; 905 } 906 LRI->LiveOut = false; 907 LRI->Reloaded = false; 908 } 909 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 910 BundleVirtRegsMap[VirtReg] = PhysReg; 911 } 912 markRegUsedInInstr(PhysReg); 913 setPhysReg(MI, MO, PhysReg); 914 } 915 916 /// Allocates a register for a VirtReg use. 917 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 918 Register VirtReg) { 919 assert(VirtReg.isVirtual() && "Not a virtual register"); 920 MachineOperand &MO = MI.getOperand(OpNum); 921 LiveRegMap::iterator LRI; 922 bool New; 923 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 924 if (New) { 925 MachineOperand &MO = MI.getOperand(OpNum); 926 if (!MO.isKill()) { 927 if (mayLiveOut(VirtReg)) { 928 LRI->LiveOut = true; 929 } else { 930 // It is a last (killing) use without the kill flag; add the flag now. 931 MO.setIsKill(true); 932 } 933 } 934 } else { 935 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 936 } 937 938 // If necessary allocate a register. 939 if (LRI->PhysReg == 0) { 940 assert(!MO.isTied() && "tied op should be allocated"); 941 Register Hint; 942 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 943 Hint = MI.getOperand(0).getReg(); 944 assert(Hint.isPhysical() && 945 "Copy destination should already be assigned"); 946 } 947 allocVirtReg(MI, *LRI, Hint, false); 948 if (LRI->Error) { 949 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 950 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 951 setPhysReg(MI, MO, *AllocationOrder.begin()); 952 return; 953 } 954 } 955 956 LRI->LastUse = &MI; 957 958 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 959 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 960 } 961 markRegUsedInInstr(LRI->PhysReg); 962 setPhysReg(MI, MO, LRI->PhysReg); 963 } 964 965 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 966 /// may invalidate any operand pointers. Return true if the operand kills its 967 /// register. 968 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 969 MCPhysReg PhysReg) { 970 if (!MO.getSubReg()) { 971 MO.setReg(PhysReg); 972 MO.setIsRenamable(true); 973 return; 974 } 975 976 // Handle subregister index. 977 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 978 MO.setIsRenamable(true); 979 // Note: We leave the subreg number around a little longer in case of defs. 980 // This is so that the register freeing logic in allocateInstruction can still 981 // recognize this as subregister defs. The code there will clear the number. 982 if (!MO.isDef()) 983 MO.setSubReg(0); 984 985 // A kill flag implies killing the full register. Add corresponding super 986 // register kill. 987 if (MO.isKill()) { 988 MI.addRegisterKilled(PhysReg, TRI, true); 989 return; 990 } 991 992 // A <def,read-undef> of a sub-register requires an implicit def of the full 993 // register. 994 if (MO.isDef() && MO.isUndef()) { 995 if (MO.isDead()) 996 MI.addRegisterDead(PhysReg, TRI, true); 997 else 998 MI.addRegisterDefined(PhysReg, TRI); 999 } 1000 } 1001 1002 #ifndef NDEBUG 1003 1004 void RegAllocFast::dumpState() const { 1005 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1006 ++Unit) { 1007 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1008 case regFree: 1009 break; 1010 case regPreAssigned: 1011 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1012 break; 1013 case regLiveIn: 1014 llvm_unreachable("Should not have regLiveIn in map"); 1015 default: { 1016 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1017 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1018 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1019 if (I->LiveOut || I->Reloaded) { 1020 dbgs() << '['; 1021 if (I->LiveOut) dbgs() << 'O'; 1022 if (I->Reloaded) dbgs() << 'R'; 1023 dbgs() << ']'; 1024 } 1025 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1026 break; 1027 } 1028 } 1029 } 1030 dbgs() << '\n'; 1031 // Check that LiveVirtRegs is the inverse. 1032 for (const LiveReg &LR : LiveVirtRegs) { 1033 Register VirtReg = LR.VirtReg; 1034 assert(VirtReg.isVirtual() && "Bad map key"); 1035 MCPhysReg PhysReg = LR.PhysReg; 1036 if (PhysReg != 0) { 1037 assert(Register::isPhysicalRegister(PhysReg) && 1038 "mapped to physreg"); 1039 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1040 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1041 } 1042 } 1043 } 1044 } 1045 #endif 1046 1047 /// Count number of defs consumed from each register class by \p Reg 1048 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1049 Register Reg) const { 1050 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1051 1052 if (Reg.isVirtual()) { 1053 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1054 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1055 RCIdx != RCIdxEnd; ++RCIdx) { 1056 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1057 // FIXME: Consider aliasing sub/super registers. 1058 if (OpRC->hasSubClassEq(IdxRC)) 1059 ++RegClassDefCounts[RCIdx]; 1060 } 1061 1062 return; 1063 } 1064 1065 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1066 RCIdx != RCIdxEnd; ++RCIdx) { 1067 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1068 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1069 if (IdxRC->contains(*Alias)) { 1070 ++RegClassDefCounts[RCIdx]; 1071 break; 1072 } 1073 } 1074 } 1075 } 1076 1077 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1078 // The basic algorithm here is: 1079 // 1. Mark registers of def operands as free 1080 // 2. Allocate registers to use operands and place reload instructions for 1081 // registers displaced by the allocation. 1082 // 1083 // However we need to handle some corner cases: 1084 // - pre-assigned defs and uses need to be handled before the other def/use 1085 // operands are processed to avoid the allocation heuristics clashing with 1086 // the pre-assignment. 1087 // - The "free def operands" step has to come last instead of first for tied 1088 // operands and early-clobbers. 1089 1090 UsedInInstr.clear(); 1091 BundleVirtRegsMap.clear(); 1092 1093 // Scan for special cases; Apply pre-assigned register defs to state. 1094 bool HasPhysRegUse = false; 1095 bool HasRegMask = false; 1096 bool HasVRegDef = false; 1097 bool HasDef = false; 1098 bool HasEarlyClobber = false; 1099 bool NeedToAssignLiveThroughs = false; 1100 for (MachineOperand &MO : MI.operands()) { 1101 if (MO.isReg()) { 1102 Register Reg = MO.getReg(); 1103 if (Reg.isVirtual()) { 1104 if (MO.isDef()) { 1105 HasDef = true; 1106 HasVRegDef = true; 1107 if (MO.isEarlyClobber()) { 1108 HasEarlyClobber = true; 1109 NeedToAssignLiveThroughs = true; 1110 } 1111 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1112 NeedToAssignLiveThroughs = true; 1113 } 1114 } else if (Reg.isPhysical()) { 1115 if (!MRI->isReserved(Reg)) { 1116 if (MO.isDef()) { 1117 HasDef = true; 1118 bool displacedAny = definePhysReg(MI, Reg); 1119 if (MO.isEarlyClobber()) 1120 HasEarlyClobber = true; 1121 if (!displacedAny) 1122 MO.setIsDead(true); 1123 } 1124 if (MO.readsReg()) 1125 HasPhysRegUse = true; 1126 } 1127 } 1128 } else if (MO.isRegMask()) { 1129 HasRegMask = true; 1130 } 1131 } 1132 1133 // Allocate virtreg defs. 1134 if (HasDef) { 1135 if (HasVRegDef) { 1136 // Special handling for early clobbers, tied operands or subregister defs: 1137 // Compared to "normal" defs these: 1138 // - Must not use a register that is pre-assigned for a use operand. 1139 // - In order to solve tricky inline assembly constraints we change the 1140 // heuristic to figure out a good operand order before doing 1141 // assignments. 1142 if (NeedToAssignLiveThroughs) { 1143 DefOperandIndexes.clear(); 1144 PhysRegUses.clear(); 1145 1146 // Track number of defs which may consume a register from the class. 1147 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1148 assert(RegClassDefCounts[0] == 0); 1149 1150 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1151 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1152 const MachineOperand &MO = MI.getOperand(I); 1153 if (!MO.isReg()) 1154 continue; 1155 Register Reg = MO.getReg(); 1156 if (MO.readsReg()) { 1157 if (Reg.isPhysical()) { 1158 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1159 << '\n'); 1160 markPhysRegUsedInInstr(Reg); 1161 } 1162 } 1163 1164 if (MO.isDef()) { 1165 if (Reg.isVirtual()) 1166 DefOperandIndexes.push_back(I); 1167 1168 addRegClassDefCounts(RegClassDefCounts, Reg); 1169 } 1170 } 1171 1172 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1173 const MachineOperand &MO0 = MI.getOperand(I0); 1174 const MachineOperand &MO1 = MI.getOperand(I1); 1175 Register Reg0 = MO0.getReg(); 1176 Register Reg1 = MO1.getReg(); 1177 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1178 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1179 1180 // Identify regclass that are easy to use up completely just in this 1181 // instruction. 1182 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1183 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1184 1185 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1186 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1187 if (SmallClass0 > SmallClass1) 1188 return true; 1189 if (SmallClass0 < SmallClass1) 1190 return false; 1191 1192 // Allocate early clobbers and livethrough operands first. 1193 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1194 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1195 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1196 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1197 if (Livethrough0 > Livethrough1) 1198 return true; 1199 if (Livethrough0 < Livethrough1) 1200 return false; 1201 1202 // Tie-break rule: operand index. 1203 return I0 < I1; 1204 }); 1205 1206 for (uint16_t OpIdx : DefOperandIndexes) { 1207 MachineOperand &MO = MI.getOperand(OpIdx); 1208 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1209 unsigned Reg = MO.getReg(); 1210 if (MO.isEarlyClobber() || MO.isTied() || 1211 (MO.getSubReg() && !MO.isUndef())) { 1212 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1213 } else { 1214 defineVirtReg(MI, OpIdx, Reg); 1215 } 1216 } 1217 } else { 1218 // Assign virtual register defs. 1219 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1220 MachineOperand &MO = MI.getOperand(I); 1221 if (!MO.isReg() || !MO.isDef()) 1222 continue; 1223 Register Reg = MO.getReg(); 1224 if (Reg.isVirtual()) 1225 defineVirtReg(MI, I, Reg); 1226 } 1227 } 1228 } 1229 1230 // Free registers occupied by defs. 1231 // Iterate operands in reverse order, so we see the implicit super register 1232 // defs first (we added them earlier in case of <def,read-undef>). 1233 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1234 MachineOperand &MO = MI.getOperand(I); 1235 if (!MO.isReg() || !MO.isDef()) 1236 continue; 1237 1238 // subreg defs don't free the full register. We left the subreg number 1239 // around as a marker in setPhysReg() to recognize this case here. 1240 if (MO.getSubReg() != 0) { 1241 MO.setSubReg(0); 1242 continue; 1243 } 1244 1245 // Do not free tied operands and early clobbers. 1246 if (MO.isTied() || MO.isEarlyClobber()) 1247 continue; 1248 Register Reg = MO.getReg(); 1249 if (!Reg) 1250 continue; 1251 assert(Reg.isPhysical()); 1252 if (MRI->isReserved(Reg)) 1253 continue; 1254 freePhysReg(Reg); 1255 unmarkRegUsedInInstr(Reg); 1256 } 1257 } 1258 1259 // Displace clobbered registers. 1260 if (HasRegMask) { 1261 for (const MachineOperand &MO : MI.operands()) { 1262 if (MO.isRegMask()) { 1263 // MRI bookkeeping. 1264 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1265 1266 // Displace clobbered registers. 1267 const uint32_t *Mask = MO.getRegMask(); 1268 for (const LiveReg &LR : LiveVirtRegs) { 1269 MCPhysReg PhysReg = LR.PhysReg; 1270 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1271 displacePhysReg(MI, PhysReg); 1272 } 1273 } 1274 } 1275 } 1276 1277 // Apply pre-assigned register uses to state. 1278 if (HasPhysRegUse) { 1279 for (MachineOperand &MO : MI.operands()) { 1280 if (!MO.isReg() || !MO.readsReg()) 1281 continue; 1282 Register Reg = MO.getReg(); 1283 if (!Reg.isPhysical()) 1284 continue; 1285 if (MRI->isReserved(Reg)) 1286 continue; 1287 bool displacedAny = usePhysReg(MI, Reg); 1288 if (!displacedAny && !MRI->isReserved(Reg)) 1289 MO.setIsKill(true); 1290 } 1291 } 1292 1293 // Allocate virtreg uses and insert reloads as necessary. 1294 bool HasUndefUse = false; 1295 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1296 MachineOperand &MO = MI.getOperand(I); 1297 if (!MO.isReg() || !MO.isUse()) 1298 continue; 1299 Register Reg = MO.getReg(); 1300 if (!Reg.isVirtual()) 1301 continue; 1302 1303 if (MO.isUndef()) { 1304 HasUndefUse = true; 1305 continue; 1306 } 1307 1308 1309 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1310 // the def block (removing the vreg uses). 1311 mayLiveIn(Reg); 1312 1313 1314 assert(!MO.isInternalRead() && "Bundles not supported"); 1315 assert(MO.readsReg() && "reading use"); 1316 useVirtReg(MI, I, Reg); 1317 } 1318 1319 // Allocate undef operands. This is a separate step because in a situation 1320 // like ` = OP undef %X, %X` both operands need the same register assign 1321 // so we should perform the normal assignment first. 1322 if (HasUndefUse) { 1323 for (MachineOperand &MO : MI.uses()) { 1324 if (!MO.isReg() || !MO.isUse()) 1325 continue; 1326 Register Reg = MO.getReg(); 1327 if (!Reg.isVirtual()) 1328 continue; 1329 1330 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1331 allocVirtRegUndef(MO); 1332 } 1333 } 1334 1335 // Free early clobbers. 1336 if (HasEarlyClobber) { 1337 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1338 MachineOperand &MO = MI.getOperand(I); 1339 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1340 continue; 1341 // subreg defs don't free the full register. We left the subreg number 1342 // around as a marker in setPhysReg() to recognize this case here. 1343 if (MO.getSubReg() != 0) { 1344 MO.setSubReg(0); 1345 continue; 1346 } 1347 1348 Register Reg = MO.getReg(); 1349 if (!Reg) 1350 continue; 1351 assert(Reg.isPhysical() && "should have register assigned"); 1352 1353 // We sometimes get odd situations like: 1354 // early-clobber %x0 = INSTRUCTION %x0 1355 // which is semantically questionable as the early-clobber should 1356 // apply before the use. But in practice we consider the use to 1357 // happen before the early clobber now. Don't free the early clobber 1358 // register in this case. 1359 if (MI.readsRegister(Reg, TRI)) 1360 continue; 1361 1362 freePhysReg(Reg); 1363 } 1364 } 1365 1366 LLVM_DEBUG(dbgs() << "<< " << MI); 1367 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1368 MI.getNumOperands() == 2) { 1369 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1370 Coalesced.push_back(&MI); 1371 } 1372 } 1373 1374 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1375 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1376 // mostly constants and frame indices. 1377 for (Register Reg : MI.getUsedDebugRegs()) { 1378 if (!Register::isVirtualRegister(Reg)) 1379 continue; 1380 1381 // Already spilled to a stackslot? 1382 int SS = StackSlotForVirtReg[Reg]; 1383 if (SS != -1) { 1384 // Modify DBG_VALUE now that the value is in a spill slot. 1385 updateDbgValueForSpill(MI, SS, Reg); 1386 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1387 continue; 1388 } 1389 1390 // See if this virtual register has already been allocated to a physical 1391 // register or spilled to a stack slot. 1392 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1393 SmallVector<MachineOperand *> DbgOps; 1394 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1395 DbgOps.push_back(&Op); 1396 1397 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1398 // Update every use of Reg within MI. 1399 for (auto &RegMO : DbgOps) 1400 setPhysReg(MI, *RegMO, LRI->PhysReg); 1401 } else { 1402 DanglingDbgValues[Reg].push_back(&MI); 1403 } 1404 1405 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1406 // that future spills of Reg will have DBG_VALUEs. 1407 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1408 } 1409 } 1410 1411 void RegAllocFast::handleBundle(MachineInstr &MI) { 1412 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1413 ++BundledMI; 1414 while (BundledMI->isBundledWithPred()) { 1415 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1416 MachineOperand &MO = BundledMI->getOperand(I); 1417 if (!MO.isReg()) 1418 continue; 1419 1420 Register Reg = MO.getReg(); 1421 if (!Reg.isVirtual()) 1422 continue; 1423 1424 DenseMap<Register, MCPhysReg>::iterator DI; 1425 DI = BundleVirtRegsMap.find(Reg); 1426 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1427 1428 setPhysReg(MI, MO, DI->second); 1429 } 1430 1431 ++BundledMI; 1432 } 1433 } 1434 1435 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1436 this->MBB = &MBB; 1437 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1438 1439 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1440 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1441 1442 for (MachineBasicBlock *Succ : MBB.successors()) { 1443 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1444 setPhysRegState(LI.PhysReg, regPreAssigned); 1445 } 1446 1447 Coalesced.clear(); 1448 1449 // Traverse block in reverse order allocating instructions one by one. 1450 for (MachineInstr &MI : reverse(MBB)) { 1451 LLVM_DEBUG( 1452 dbgs() << "\n>> " << MI << "Regs:"; 1453 dumpState() 1454 ); 1455 1456 // Special handling for debug values. Note that they are not allowed to 1457 // affect codegen of the other instructions in any way. 1458 if (MI.isDebugValue()) { 1459 handleDebugValue(MI); 1460 continue; 1461 } 1462 1463 allocateInstruction(MI); 1464 1465 // Once BUNDLE header is assigned registers, same assignments need to be 1466 // done for bundled MIs. 1467 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1468 handleBundle(MI); 1469 } 1470 } 1471 1472 LLVM_DEBUG( 1473 dbgs() << "Begin Regs:"; 1474 dumpState() 1475 ); 1476 1477 // Spill all physical registers holding virtual registers now. 1478 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1479 reloadAtBegin(MBB); 1480 1481 // Erase all the coalesced copies. We are delaying it until now because 1482 // LiveVirtRegs might refer to the instrs. 1483 for (MachineInstr *MI : Coalesced) 1484 MBB.erase(MI); 1485 NumCoalesced += Coalesced.size(); 1486 1487 for (auto &UDBGPair : DanglingDbgValues) { 1488 for (MachineInstr *DbgValue : UDBGPair.second) { 1489 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1490 // Nothing to do if the vreg was spilled in the meantime. 1491 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1492 continue; 1493 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1494 << '\n'); 1495 DbgValue->setDebugValueUndef(); 1496 } 1497 } 1498 DanglingDbgValues.clear(); 1499 1500 LLVM_DEBUG(MBB.dump()); 1501 } 1502 1503 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1504 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1505 << "********** Function: " << MF.getName() << '\n'); 1506 MRI = &MF.getRegInfo(); 1507 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1508 TRI = STI.getRegisterInfo(); 1509 TII = STI.getInstrInfo(); 1510 MFI = &MF.getFrameInfo(); 1511 MRI->freezeReservedRegs(MF); 1512 RegClassInfo.runOnMachineFunction(MF); 1513 unsigned NumRegUnits = TRI->getNumRegUnits(); 1514 UsedInInstr.clear(); 1515 UsedInInstr.setUniverse(NumRegUnits); 1516 PhysRegUses.clear(); 1517 PhysRegUses.setUniverse(NumRegUnits); 1518 1519 // initialize the virtual->physical register map to have a 'null' 1520 // mapping for all virtual registers 1521 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1522 StackSlotForVirtReg.resize(NumVirtRegs); 1523 LiveVirtRegs.setUniverse(NumVirtRegs); 1524 MayLiveAcrossBlocks.clear(); 1525 MayLiveAcrossBlocks.resize(NumVirtRegs); 1526 1527 // Loop over all of the basic blocks, eliminating virtual register references 1528 for (MachineBasicBlock &MBB : MF) 1529 allocateBasicBlock(MBB); 1530 1531 // All machine operands and other references to virtual registers have been 1532 // replaced. Remove the virtual registers. 1533 MRI->clearVirtRegs(); 1534 1535 StackSlotForVirtReg.clear(); 1536 LiveDbgValueMap.clear(); 1537 return true; 1538 } 1539 1540 FunctionPass *llvm::createFastRegisterAllocator() { 1541 return new RegAllocFast(); 1542 } 1543