1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <tuple> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumStores, "Number of stores added"); 55 STATISTIC(NumLoads , "Number of loads added"); 56 STATISTIC(NumCoalesced, "Number of copies coalesced"); 57 58 static RegisterRegAlloc 59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 60 61 namespace { 62 63 class RegAllocFast : public MachineFunctionPass { 64 public: 65 static char ID; 66 67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 68 69 private: 70 MachineFrameInfo *MFI; 71 MachineRegisterInfo *MRI; 72 const TargetRegisterInfo *TRI; 73 const TargetInstrInfo *TII; 74 RegisterClassInfo RegClassInfo; 75 76 /// Basic block currently being allocated. 77 MachineBasicBlock *MBB; 78 79 /// Maps virtual regs to the frame index where these values are spilled. 80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 81 82 /// Everything we know about a live virtual register. 83 struct LiveReg { 84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 85 unsigned VirtReg; ///< Virtual register number. 86 MCPhysReg PhysReg = 0; ///< Currently held here. 87 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 88 bool Dirty = false; ///< Register needs spill. 89 90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 91 92 unsigned getSparseSetIndex() const { 93 return TargetRegisterInfo::virtReg2Index(VirtReg); 94 } 95 }; 96 97 using LiveRegMap = SparseSet<LiveReg>; 98 /// This map contains entries for each virtual register that is currently 99 /// available in a physical register. 100 LiveRegMap LiveVirtRegs; 101 102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 103 104 /// State of a physical register. 105 enum RegState { 106 /// A disabled register is not available for allocation, but an alias may 107 /// be in use. A register can only be moved out of the disabled state if 108 /// all aliases are disabled. 109 regDisabled, 110 111 /// A free register is not currently in use and can be allocated 112 /// immediately without checking aliases. 113 regFree, 114 115 /// A reserved register has been assigned explicitly (e.g., setting up a 116 /// call parameter), and it remains reserved until it is used. 117 regReserved 118 119 /// A register state may also be a virtual register number, indication 120 /// that the physical register is currently allocated to a virtual 121 /// register. In that case, LiveVirtRegs contains the inverse mapping. 122 }; 123 124 /// Maps each physical register to a RegState enum or a virtual register. 125 std::vector<unsigned> PhysRegState; 126 127 SmallVector<unsigned, 16> VirtDead; 128 SmallVector<MachineInstr *, 32> Coalesced; 129 130 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 131 /// Set of register units that are used in the current instruction, and so 132 /// cannot be allocated. 133 RegUnitSet UsedInInstr; 134 135 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 136 137 /// Mark a physreg as used in this instruction. 138 void markRegUsedInInstr(MCPhysReg PhysReg) { 139 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 140 UsedInInstr.insert(*Units); 141 } 142 143 /// Check if a physreg or any of its aliases are used in this instruction. 144 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 145 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 146 if (UsedInInstr.count(*Units)) 147 return true; 148 return false; 149 } 150 151 enum : unsigned { 152 spillClean = 50, 153 spillDirty = 100, 154 spillImpossible = ~0u 155 }; 156 157 public: 158 StringRef getPassName() const override { return "Fast Register Allocator"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.setPreservesCFG(); 162 MachineFunctionPass::getAnalysisUsage(AU); 163 } 164 165 MachineFunctionProperties getRequiredProperties() const override { 166 return MachineFunctionProperties().set( 167 MachineFunctionProperties::Property::NoPHIs); 168 } 169 170 MachineFunctionProperties getSetProperties() const override { 171 return MachineFunctionProperties().set( 172 MachineFunctionProperties::Property::NoVRegs); 173 } 174 175 private: 176 bool runOnMachineFunction(MachineFunction &MF) override; 177 178 void allocateBasicBlock(MachineBasicBlock &MBB); 179 void allocateInstruction(MachineInstr &MI); 180 void handleDebugValue(MachineInstr &MI); 181 void handleThroughOperands(MachineInstr &MI, 182 SmallVectorImpl<unsigned> &VirtDead); 183 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 184 185 void addKillFlag(const LiveReg &LRI); 186 void killVirtReg(LiveReg &LR); 187 void killVirtReg(unsigned VirtReg); 188 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 189 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 190 191 void usePhysReg(MachineOperand &MO); 192 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 193 RegState NewState); 194 unsigned calcSpillCost(MCPhysReg PhysReg) const; 195 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 196 197 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 198 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 199 } 200 201 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 206 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 207 unsigned Hint); 208 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 209 unsigned Hint); 210 void spillAll(MachineBasicBlock::iterator MI); 211 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 212 213 int getStackSpaceFor(unsigned VirtReg); 214 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 215 MCPhysReg AssignedReg, bool Kill); 216 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 217 MCPhysReg PhysReg); 218 219 void dumpState(); 220 }; 221 222 } // end anonymous namespace 223 224 char RegAllocFast::ID = 0; 225 226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 227 false) 228 229 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 230 PhysRegState[PhysReg] = NewState; 231 } 232 233 /// This allocates space for the specified virtual register to be held on the 234 /// stack. 235 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 236 // Find the location Reg would belong... 237 int SS = StackSlotForVirtReg[VirtReg]; 238 // Already has space allocated? 239 if (SS != -1) 240 return SS; 241 242 // Allocate a new stack object for this spill location... 243 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 244 unsigned Size = TRI->getSpillSize(RC); 245 unsigned Align = TRI->getSpillAlignment(RC); 246 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 247 248 // Assign the slot. 249 StackSlotForVirtReg[VirtReg] = FrameIdx; 250 return FrameIdx; 251 } 252 253 /// Insert spill instruction for \p AssignedReg before \p Before. Update 254 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 255 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 256 MCPhysReg AssignedReg, bool Kill) { 257 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 258 << " in " << printReg(AssignedReg, TRI)); 259 int FI = getStackSpaceFor(VirtReg); 260 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 261 262 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 263 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 264 ++NumStores; 265 266 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 267 // identify spilled location as the place to find corresponding variable's 268 // value. 269 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 270 for (MachineInstr *DBG : LRIDbgValues) { 271 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 272 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 273 (void)NewDV; 274 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 275 } 276 // Now this register is spilled there is should not be any DBG_VALUE 277 // pointing to this register because they are all pointing to spilled value 278 // now. 279 LRIDbgValues.clear(); 280 } 281 282 /// Insert reload instruction for \p PhysReg before \p Before. 283 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 284 MCPhysReg PhysReg) { 285 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 286 << printReg(PhysReg, TRI) << '\n'); 287 int FI = getStackSpaceFor(VirtReg); 288 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 289 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 290 ++NumLoads; 291 } 292 293 /// Return true if MO is the only remaining reference to its virtual register, 294 /// and it is guaranteed to be a block-local register. 295 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 296 // If the register has ever been spilled or reloaded, we conservatively assume 297 // it is a global register used in multiple blocks. 298 if (StackSlotForVirtReg[MO.getReg()] != -1) 299 return false; 300 301 // Check that the use/def chain has exactly one operand - MO. 302 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 303 if (&*I != &MO) 304 return false; 305 return ++I == MRI->reg_nodbg_end(); 306 } 307 308 /// Set kill flags on last use of a virtual register. 309 void RegAllocFast::addKillFlag(const LiveReg &LR) { 310 if (!LR.LastUse) return; 311 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 312 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 313 if (MO.getReg() == LR.PhysReg) 314 MO.setIsKill(); 315 // else, don't do anything we are problably redefining a 316 // subreg of this register and given we don't track which 317 // lanes are actually dead, we cannot insert a kill flag here. 318 // Otherwise we may end up in a situation like this: 319 // ... = (MO) physreg:sub1, implicit killed physreg 320 // ... <== Here we would allow later pass to reuse physreg:sub1 321 // which is potentially wrong. 322 // LR:sub0 = ... 323 // ... = LR.sub1 <== This is going to use physreg:sub1 324 } 325 } 326 327 /// Mark virtreg as no longer available. 328 void RegAllocFast::killVirtReg(LiveReg &LR) { 329 addKillFlag(LR); 330 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 331 "Broken RegState mapping"); 332 setPhysRegState(LR.PhysReg, regFree); 333 LR.PhysReg = 0; 334 } 335 336 /// Mark virtreg as no longer available. 337 void RegAllocFast::killVirtReg(unsigned VirtReg) { 338 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 339 "killVirtReg needs a virtual register"); 340 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 341 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 342 killVirtReg(*LRI); 343 } 344 345 /// This method spills the value specified by VirtReg into the corresponding 346 /// stack slot if needed. 347 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 348 unsigned VirtReg) { 349 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 350 "Spilling a physical register is illegal!"); 351 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 352 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 353 "Spilling unmapped virtual register"); 354 spillVirtReg(MI, *LRI); 355 } 356 357 /// Do the actual work of spilling. 358 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 359 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 360 361 if (LR.Dirty) { 362 // If this physreg is used by the instruction, we want to kill it on the 363 // instruction, not on the spill. 364 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 365 LR.Dirty = false; 366 367 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 368 369 if (SpillKill) 370 LR.LastUse = nullptr; // Don't kill register again 371 } 372 killVirtReg(LR); 373 } 374 375 /// Spill all dirty virtregs without killing them. 376 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 377 if (LiveVirtRegs.empty()) 378 return; 379 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 380 // of spilling here is deterministic, if arbitrary. 381 for (LiveReg &LR : LiveVirtRegs) { 382 if (!LR.PhysReg) 383 continue; 384 spillVirtReg(MI, LR); 385 } 386 LiveVirtRegs.clear(); 387 } 388 389 /// Handle the direct use of a physical register. Check that the register is 390 /// not used by a virtreg. Kill the physreg, marking it free. This may add 391 /// implicit kills to MO->getParent() and invalidate MO. 392 void RegAllocFast::usePhysReg(MachineOperand &MO) { 393 // Ignore undef uses. 394 if (MO.isUndef()) 395 return; 396 397 unsigned PhysReg = MO.getReg(); 398 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 399 "Bad usePhysReg operand"); 400 401 markRegUsedInInstr(PhysReg); 402 switch (PhysRegState[PhysReg]) { 403 case regDisabled: 404 break; 405 case regReserved: 406 PhysRegState[PhysReg] = regFree; 407 LLVM_FALLTHROUGH; 408 case regFree: 409 MO.setIsKill(); 410 return; 411 default: 412 // The physreg was allocated to a virtual register. That means the value we 413 // wanted has been clobbered. 414 llvm_unreachable("Instruction uses an allocated register"); 415 } 416 417 // Maybe a superregister is reserved? 418 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 419 MCPhysReg Alias = *AI; 420 switch (PhysRegState[Alias]) { 421 case regDisabled: 422 break; 423 case regReserved: 424 // Either PhysReg is a subregister of Alias and we mark the 425 // whole register as free, or PhysReg is the superregister of 426 // Alias and we mark all the aliases as disabled before freeing 427 // PhysReg. 428 // In the latter case, since PhysReg was disabled, this means that 429 // its value is defined only by physical sub-registers. This check 430 // is performed by the assert of the default case in this loop. 431 // Note: The value of the superregister may only be partial 432 // defined, that is why regDisabled is a valid state for aliases. 433 assert((TRI->isSuperRegister(PhysReg, Alias) || 434 TRI->isSuperRegister(Alias, PhysReg)) && 435 "Instruction is not using a subregister of a reserved register"); 436 LLVM_FALLTHROUGH; 437 case regFree: 438 if (TRI->isSuperRegister(PhysReg, Alias)) { 439 // Leave the superregister in the working set. 440 setPhysRegState(Alias, regFree); 441 MO.getParent()->addRegisterKilled(Alias, TRI, true); 442 return; 443 } 444 // Some other alias was in the working set - clear it. 445 setPhysRegState(Alias, regDisabled); 446 break; 447 default: 448 llvm_unreachable("Instruction uses an alias of an allocated register"); 449 } 450 } 451 452 // All aliases are disabled, bring register into working set. 453 setPhysRegState(PhysReg, regFree); 454 MO.setIsKill(); 455 } 456 457 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 458 /// similar to defineVirtReg except the physreg is reserved instead of 459 /// allocated. 460 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 461 MCPhysReg PhysReg, RegState NewState) { 462 markRegUsedInInstr(PhysReg); 463 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 464 case regDisabled: 465 break; 466 default: 467 spillVirtReg(MI, VirtReg); 468 LLVM_FALLTHROUGH; 469 case regFree: 470 case regReserved: 471 setPhysRegState(PhysReg, NewState); 472 return; 473 } 474 475 // This is a disabled register, disable all aliases. 476 setPhysRegState(PhysReg, NewState); 477 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 478 MCPhysReg Alias = *AI; 479 switch (unsigned VirtReg = PhysRegState[Alias]) { 480 case regDisabled: 481 break; 482 default: 483 spillVirtReg(MI, VirtReg); 484 LLVM_FALLTHROUGH; 485 case regFree: 486 case regReserved: 487 setPhysRegState(Alias, regDisabled); 488 if (TRI->isSuperRegister(PhysReg, Alias)) 489 return; 490 break; 491 } 492 } 493 } 494 495 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 496 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 497 /// disabled - it can be allocated directly. 498 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 499 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 500 if (isRegUsedInInstr(PhysReg)) { 501 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 502 << " is already used in instr.\n"); 503 return spillImpossible; 504 } 505 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 506 case regDisabled: 507 break; 508 case regFree: 509 return 0; 510 case regReserved: 511 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 512 << printReg(PhysReg, TRI) << " is reserved already.\n"); 513 return spillImpossible; 514 default: { 515 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 516 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 517 "Missing VirtReg entry"); 518 return LRI->Dirty ? spillDirty : spillClean; 519 } 520 } 521 522 // This is a disabled register, add up cost of aliases. 523 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 524 unsigned Cost = 0; 525 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 526 MCPhysReg Alias = *AI; 527 switch (unsigned VirtReg = PhysRegState[Alias]) { 528 case regDisabled: 529 break; 530 case regFree: 531 ++Cost; 532 break; 533 case regReserved: 534 return spillImpossible; 535 default: { 536 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 537 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 538 "Missing VirtReg entry"); 539 Cost += LRI->Dirty ? spillDirty : spillClean; 540 break; 541 } 542 } 543 } 544 return Cost; 545 } 546 547 /// This method updates local state so that we know that PhysReg is the 548 /// proper container for VirtReg now. The physical register must not be used 549 /// for anything else when this is called. 550 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 551 unsigned VirtReg = LR.VirtReg; 552 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 553 << printReg(PhysReg, TRI) << '\n'); 554 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 555 assert(PhysReg != 0 && "Trying to assign no register"); 556 LR.PhysReg = PhysReg; 557 setPhysRegState(PhysReg, VirtReg); 558 } 559 560 /// Allocates a physical register for VirtReg. 561 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) { 562 const unsigned VirtReg = LR.VirtReg; 563 564 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 565 "Can only allocate virtual registers"); 566 567 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 568 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 569 << " in class " << TRI->getRegClassName(&RC) << '\n'); 570 571 // Take hint when possible. 572 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 573 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 574 // Ignore the hint if we would have to spill a dirty register. 575 unsigned Cost = calcSpillCost(Hint); 576 if (Cost < spillDirty) { 577 if (Cost) 578 definePhysReg(MI, Hint, regFree); 579 assignVirtToPhysReg(LR, Hint); 580 return; 581 } 582 } 583 584 // First try to find a completely free register. 585 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 586 for (MCPhysReg PhysReg : AllocationOrder) { 587 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 588 assignVirtToPhysReg(LR, PhysReg); 589 return; 590 } 591 } 592 593 MCPhysReg BestReg = 0; 594 unsigned BestCost = spillImpossible; 595 for (MCPhysReg PhysReg : AllocationOrder) { 596 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 597 unsigned Cost = calcSpillCost(PhysReg); 598 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 599 // Immediate take a register with cost 0. 600 if (Cost == 0) { 601 assignVirtToPhysReg(LR, PhysReg); 602 return; 603 } 604 if (Cost < BestCost) { 605 BestReg = PhysReg; 606 BestCost = Cost; 607 } 608 } 609 610 if (!BestReg) { 611 // Nothing we can do: Report an error and keep going with an invalid 612 // allocation. 613 if (MI.isInlineAsm()) 614 MI.emitError("inline assembly requires more registers than available"); 615 else 616 MI.emitError("ran out of registers during register allocation"); 617 definePhysReg(MI, *AllocationOrder.begin(), regFree); 618 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 619 return; 620 } 621 622 definePhysReg(MI, BestReg, regFree); 623 assignVirtToPhysReg(LR, BestReg); 624 } 625 626 /// Allocates a register for VirtReg and mark it as dirty. 627 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 628 unsigned VirtReg, unsigned Hint) { 629 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 630 "Not a virtual register"); 631 LiveRegMap::iterator LRI; 632 bool New; 633 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 634 if (!LRI->PhysReg) { 635 // If there is no hint, peek at the only use of this register. 636 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 637 MRI->hasOneNonDBGUse(VirtReg)) { 638 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 639 // It's a copy, use the destination register as a hint. 640 if (UseMI.isCopyLike()) 641 Hint = UseMI.getOperand(0).getReg(); 642 } 643 allocVirtReg(MI, *LRI, Hint); 644 } else if (LRI->LastUse) { 645 // Redefining a live register - kill at the last use, unless it is this 646 // instruction defining VirtReg multiple times. 647 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 648 addKillFlag(*LRI); 649 } 650 assert(LRI->PhysReg && "Register not assigned"); 651 LRI->LastUse = &MI; 652 LRI->LastOpNum = OpNum; 653 LRI->Dirty = true; 654 markRegUsedInInstr(LRI->PhysReg); 655 return LRI->PhysReg; 656 } 657 658 /// Make sure VirtReg is available in a physreg and return it. 659 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 660 unsigned OpNum, 661 unsigned VirtReg, 662 unsigned Hint) { 663 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 664 "Not a virtual register"); 665 LiveRegMap::iterator LRI; 666 bool New; 667 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 668 MachineOperand &MO = MI.getOperand(OpNum); 669 if (!LRI->PhysReg) { 670 allocVirtReg(MI, *LRI, Hint); 671 reload(MI, VirtReg, LRI->PhysReg); 672 } else if (LRI->Dirty) { 673 if (isLastUseOfLocalReg(MO)) { 674 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 675 if (MO.isUse()) 676 MO.setIsKill(); 677 else 678 MO.setIsDead(); 679 } else if (MO.isKill()) { 680 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 681 MO.setIsKill(false); 682 } else if (MO.isDead()) { 683 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 684 MO.setIsDead(false); 685 } 686 } else if (MO.isKill()) { 687 // We must remove kill flags from uses of reloaded registers because the 688 // register would be killed immediately, and there might be a second use: 689 // %foo = OR killed %x, %x 690 // This would cause a second reload of %x into a different register. 691 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 692 MO.setIsKill(false); 693 } else if (MO.isDead()) { 694 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 695 MO.setIsDead(false); 696 } 697 assert(LRI->PhysReg && "Register not assigned"); 698 LRI->LastUse = &MI; 699 LRI->LastOpNum = OpNum; 700 markRegUsedInInstr(LRI->PhysReg); 701 return *LRI; 702 } 703 704 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 705 /// may invalidate any operand pointers. Return true if the operand kills its 706 /// register. 707 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 708 MCPhysReg PhysReg) { 709 bool Dead = MO.isDead(); 710 if (!MO.getSubReg()) { 711 MO.setReg(PhysReg); 712 MO.setIsRenamable(true); 713 return MO.isKill() || Dead; 714 } 715 716 // Handle subregister index. 717 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 718 MO.setIsRenamable(true); 719 MO.setSubReg(0); 720 721 // A kill flag implies killing the full register. Add corresponding super 722 // register kill. 723 if (MO.isKill()) { 724 MI.addRegisterKilled(PhysReg, TRI, true); 725 return true; 726 } 727 728 // A <def,read-undef> of a sub-register requires an implicit def of the full 729 // register. 730 if (MO.isDef() && MO.isUndef()) 731 MI.addRegisterDefined(PhysReg, TRI); 732 733 return Dead; 734 } 735 736 // Handles special instruction operand like early clobbers and tied ops when 737 // there are additional physreg defines. 738 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 739 SmallVectorImpl<unsigned> &VirtDead) { 740 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 741 SmallSet<unsigned, 8> ThroughRegs; 742 for (const MachineOperand &MO : MI.operands()) { 743 if (!MO.isReg()) continue; 744 unsigned Reg = MO.getReg(); 745 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 746 continue; 747 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 748 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 749 if (ThroughRegs.insert(Reg).second) 750 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 751 } 752 } 753 754 // If any physreg defines collide with preallocated through registers, 755 // we must spill and reallocate. 756 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 757 for (const MachineOperand &MO : MI.operands()) { 758 if (!MO.isReg() || !MO.isDef()) continue; 759 unsigned Reg = MO.getReg(); 760 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 761 markRegUsedInInstr(Reg); 762 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 763 if (ThroughRegs.count(PhysRegState[*AI])) 764 definePhysReg(MI, *AI, regFree); 765 } 766 } 767 768 SmallVector<unsigned, 8> PartialDefs; 769 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 770 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 771 MachineOperand &MO = MI.getOperand(I); 772 if (!MO.isReg()) continue; 773 unsigned Reg = MO.getReg(); 774 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 775 if (MO.isUse()) { 776 if (!MO.isTied()) continue; 777 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 778 << ") is tied to operand " << MI.findTiedOperandIdx(I) 779 << ".\n"); 780 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 781 MCPhysReg PhysReg = LR.PhysReg; 782 setPhysReg(MI, MO, PhysReg); 783 // Note: we don't update the def operand yet. That would cause the normal 784 // def-scan to attempt spilling. 785 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 786 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 787 // Reload the register, but don't assign to the operand just yet. 788 // That would confuse the later phys-def processing pass. 789 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 790 PartialDefs.push_back(LR.PhysReg); 791 } 792 } 793 794 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 795 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 796 const MachineOperand &MO = MI.getOperand(I); 797 if (!MO.isReg()) continue; 798 unsigned Reg = MO.getReg(); 799 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 800 if (!MO.isEarlyClobber()) 801 continue; 802 // Note: defineVirtReg may invalidate MO. 803 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 804 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 805 VirtDead.push_back(Reg); 806 } 807 808 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 809 UsedInInstr.clear(); 810 for (const MachineOperand &MO : MI.operands()) { 811 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 812 unsigned Reg = MO.getReg(); 813 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 814 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 815 << " as used in instr\n"); 816 markRegUsedInInstr(Reg); 817 } 818 819 // Also mark PartialDefs as used to avoid reallocation. 820 for (unsigned PartialDef : PartialDefs) 821 markRegUsedInInstr(PartialDef); 822 } 823 824 #ifndef NDEBUG 825 void RegAllocFast::dumpState() { 826 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 827 if (PhysRegState[Reg] == regDisabled) continue; 828 dbgs() << " " << printReg(Reg, TRI); 829 switch(PhysRegState[Reg]) { 830 case regFree: 831 break; 832 case regReserved: 833 dbgs() << "*"; 834 break; 835 default: { 836 dbgs() << '=' << printReg(PhysRegState[Reg]); 837 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 838 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 839 "Missing VirtReg entry"); 840 if (LRI->Dirty) 841 dbgs() << "*"; 842 assert(LRI->PhysReg == Reg && "Bad inverse map"); 843 break; 844 } 845 } 846 } 847 dbgs() << '\n'; 848 // Check that LiveVirtRegs is the inverse. 849 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 850 e = LiveVirtRegs.end(); i != e; ++i) { 851 if (!i->PhysReg) 852 continue; 853 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 854 "Bad map key"); 855 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 856 "Bad map value"); 857 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 858 } 859 } 860 #endif 861 862 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 863 const MCInstrDesc &MCID = MI.getDesc(); 864 865 // If this is a copy, we may be able to coalesce. 866 unsigned CopySrcReg = 0; 867 unsigned CopyDstReg = 0; 868 unsigned CopySrcSub = 0; 869 unsigned CopyDstSub = 0; 870 if (MI.isCopy()) { 871 CopyDstReg = MI.getOperand(0).getReg(); 872 CopySrcReg = MI.getOperand(1).getReg(); 873 CopyDstSub = MI.getOperand(0).getSubReg(); 874 CopySrcSub = MI.getOperand(1).getSubReg(); 875 } 876 877 // Track registers used by instruction. 878 UsedInInstr.clear(); 879 880 // First scan. 881 // Mark physreg uses and early clobbers as used. 882 // Find the end of the virtreg operands 883 unsigned VirtOpEnd = 0; 884 bool hasTiedOps = false; 885 bool hasEarlyClobbers = false; 886 bool hasPartialRedefs = false; 887 bool hasPhysDefs = false; 888 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 889 MachineOperand &MO = MI.getOperand(i); 890 // Make sure MRI knows about registers clobbered by regmasks. 891 if (MO.isRegMask()) { 892 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 893 continue; 894 } 895 if (!MO.isReg()) continue; 896 unsigned Reg = MO.getReg(); 897 if (!Reg) continue; 898 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 899 VirtOpEnd = i+1; 900 if (MO.isUse()) { 901 hasTiedOps = hasTiedOps || 902 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 903 } else { 904 if (MO.isEarlyClobber()) 905 hasEarlyClobbers = true; 906 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 907 hasPartialRedefs = true; 908 } 909 continue; 910 } 911 if (!MRI->isAllocatable(Reg)) continue; 912 if (MO.isUse()) { 913 usePhysReg(MO); 914 } else if (MO.isEarlyClobber()) { 915 definePhysReg(MI, Reg, 916 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 917 hasEarlyClobbers = true; 918 } else 919 hasPhysDefs = true; 920 } 921 922 // The instruction may have virtual register operands that must be allocated 923 // the same register at use-time and def-time: early clobbers and tied 924 // operands. If there are also physical defs, these registers must avoid 925 // both physical defs and uses, making them more constrained than normal 926 // operands. 927 // Similarly, if there are multiple defs and tied operands, we must make 928 // sure the same register is allocated to uses and defs. 929 // We didn't detect inline asm tied operands above, so just make this extra 930 // pass for all inline asm. 931 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 932 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 933 handleThroughOperands(MI, VirtDead); 934 // Don't attempt coalescing when we have funny stuff going on. 935 CopyDstReg = 0; 936 // Pretend we have early clobbers so the use operands get marked below. 937 // This is not necessary for the common case of a single tied use. 938 hasEarlyClobbers = true; 939 } 940 941 // Second scan. 942 // Allocate virtreg uses. 943 for (unsigned I = 0; I != VirtOpEnd; ++I) { 944 MachineOperand &MO = MI.getOperand(I); 945 if (!MO.isReg()) continue; 946 unsigned Reg = MO.getReg(); 947 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 948 if (MO.isUse()) { 949 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 950 MCPhysReg PhysReg = LR.PhysReg; 951 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 952 if (setPhysReg(MI, MO, PhysReg)) 953 killVirtReg(LR); 954 } 955 } 956 957 // Track registers defined by instruction - early clobbers and tied uses at 958 // this point. 959 UsedInInstr.clear(); 960 if (hasEarlyClobbers) { 961 for (const MachineOperand &MO : MI.operands()) { 962 if (!MO.isReg()) continue; 963 unsigned Reg = MO.getReg(); 964 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 965 // Look for physreg defs and tied uses. 966 if (!MO.isDef() && !MO.isTied()) continue; 967 markRegUsedInInstr(Reg); 968 } 969 } 970 971 unsigned DefOpEnd = MI.getNumOperands(); 972 if (MI.isCall()) { 973 // Spill all virtregs before a call. This serves one purpose: If an 974 // exception is thrown, the landing pad is going to expect to find 975 // registers in their spill slots. 976 // Note: although this is appealing to just consider all definitions 977 // as call-clobbered, this is not correct because some of those 978 // definitions may be used later on and we do not want to reuse 979 // those for virtual registers in between. 980 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 981 spillAll(MI); 982 } 983 984 // Third scan. 985 // Allocate defs and collect dead defs. 986 for (unsigned I = 0; I != DefOpEnd; ++I) { 987 const MachineOperand &MO = MI.getOperand(I); 988 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 989 continue; 990 unsigned Reg = MO.getReg(); 991 992 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 993 if (!MRI->isAllocatable(Reg)) continue; 994 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 995 continue; 996 } 997 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 998 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 999 VirtDead.push_back(Reg); 1000 CopyDstReg = 0; // cancel coalescing; 1001 } else 1002 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1003 } 1004 1005 // Kill dead defs after the scan to ensure that multiple defs of the same 1006 // register are allocated identically. We didn't need to do this for uses 1007 // because we are crerating our own kill flags, and they are always at the 1008 // last use. 1009 for (unsigned VirtReg : VirtDead) 1010 killVirtReg(VirtReg); 1011 VirtDead.clear(); 1012 1013 LLVM_DEBUG(dbgs() << "<< " << MI); 1014 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1015 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1016 Coalesced.push_back(&MI); 1017 } 1018 } 1019 1020 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1021 MachineOperand &MO = MI.getOperand(0); 1022 1023 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1024 // mostly constants and frame indices. 1025 if (!MO.isReg()) 1026 return; 1027 unsigned Reg = MO.getReg(); 1028 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1029 return; 1030 1031 // See if this virtual register has already been allocated to a physical 1032 // register or spilled to a stack slot. 1033 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1034 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1035 setPhysReg(MI, MO, LRI->PhysReg); 1036 } else { 1037 int SS = StackSlotForVirtReg[Reg]; 1038 if (SS != -1) { 1039 // Modify DBG_VALUE now that the value is in a spill slot. 1040 updateDbgValueForSpill(MI, SS); 1041 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1042 return; 1043 } 1044 1045 // We can't allocate a physreg for a DebugValue, sorry! 1046 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1047 MO.setReg(0); 1048 } 1049 1050 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1051 // that future spills of Reg will have DBG_VALUEs. 1052 LiveDbgValueMap[Reg].push_back(&MI); 1053 } 1054 1055 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1056 this->MBB = &MBB; 1057 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1058 1059 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1060 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1061 1062 MachineBasicBlock::iterator MII = MBB.begin(); 1063 1064 // Add live-in registers as live. 1065 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1066 if (MRI->isAllocatable(LI.PhysReg)) 1067 definePhysReg(MII, LI.PhysReg, regReserved); 1068 1069 VirtDead.clear(); 1070 Coalesced.clear(); 1071 1072 // Otherwise, sequentially allocate each instruction in the MBB. 1073 for (MachineInstr &MI : MBB) { 1074 LLVM_DEBUG( 1075 dbgs() << "\n>> " << MI << "Regs:"; 1076 dumpState() 1077 ); 1078 1079 // Special handling for debug values. Note that they are not allowed to 1080 // affect codegen of the other instructions in any way. 1081 if (MI.isDebugValue()) { 1082 handleDebugValue(MI); 1083 continue; 1084 } 1085 1086 allocateInstruction(MI); 1087 } 1088 1089 // Spill all physical registers holding virtual registers now. 1090 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1091 spillAll(MBB.getFirstTerminator()); 1092 1093 // Erase all the coalesced copies. We are delaying it until now because 1094 // LiveVirtRegs might refer to the instrs. 1095 for (MachineInstr *MI : Coalesced) 1096 MBB.erase(MI); 1097 NumCoalesced += Coalesced.size(); 1098 1099 LLVM_DEBUG(MBB.dump()); 1100 } 1101 1102 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1103 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1104 << "********** Function: " << MF.getName() << '\n'); 1105 MRI = &MF.getRegInfo(); 1106 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1107 TRI = STI.getRegisterInfo(); 1108 TII = STI.getInstrInfo(); 1109 MFI = &MF.getFrameInfo(); 1110 MRI->freezeReservedRegs(MF); 1111 RegClassInfo.runOnMachineFunction(MF); 1112 UsedInInstr.clear(); 1113 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1114 1115 // initialize the virtual->physical register map to have a 'null' 1116 // mapping for all virtual registers 1117 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1118 StackSlotForVirtReg.resize(NumVirtRegs); 1119 LiveVirtRegs.setUniverse(NumVirtRegs); 1120 1121 // Loop over all of the basic blocks, eliminating virtual register references 1122 for (MachineBasicBlock &MBB : MF) 1123 allocateBasicBlock(MBB); 1124 1125 // All machine operands and other references to virtual registers have been 1126 // replaced. Remove the virtual registers. 1127 MRI->clearVirtRegs(); 1128 1129 StackSlotForVirtReg.clear(); 1130 LiveDbgValueMap.clear(); 1131 return true; 1132 } 1133 1134 FunctionPass *llvm::createFastRegisterAllocator() { 1135 return new RegAllocFast(); 1136 } 1137