1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 /// Stores assigned virtual registers present in the bundle MI. 109 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 110 111 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 112 /// List of DBG_VALUE that we encountered without the vreg being assigned 113 /// because they were placed after the last use of the vreg. 114 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 115 116 /// Has a bit set for every virtual register for which it was determined 117 /// that it is alive across blocks. 118 BitVector MayLiveAcrossBlocks; 119 120 /// State of a register unit. 121 enum RegUnitState { 122 /// A free register is not currently in use and can be allocated 123 /// immediately without checking aliases. 124 regFree, 125 126 /// A pre-assigned register has been assigned before register allocation 127 /// (e.g., setting up a call parameter). 128 regPreAssigned, 129 130 /// Used temporarily in reloadAtBegin() to mark register units that are 131 /// live-in to the basic block. 132 regLiveIn, 133 134 /// A register state may also be a virtual register number, indication 135 /// that the physical register is currently allocated to a virtual 136 /// register. In that case, LiveVirtRegs contains the inverse mapping. 137 }; 138 139 /// Maps each physical register to a RegUnitState enum or virtual register. 140 std::vector<unsigned> RegUnitStates; 141 142 SmallVector<MachineInstr *, 32> Coalesced; 143 144 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 145 /// Set of register units that are used in the current instruction, and so 146 /// cannot be allocated. 147 RegUnitSet UsedInInstr; 148 RegUnitSet PhysRegUses; 149 SmallVector<uint16_t, 8> DefOperandIndexes; 150 // Register masks attached to the current instruction. 151 SmallVector<const uint32_t *> RegMasks; 152 153 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 154 bool isPhysRegFree(MCPhysReg PhysReg) const; 155 156 /// Mark a physreg as used in this instruction. 157 void markRegUsedInInstr(MCPhysReg PhysReg) { 158 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 159 UsedInInstr.insert(*Units); 160 } 161 162 // Check if physreg is clobbered by instruction's regmask(s). 163 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 164 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 165 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 166 }); 167 } 168 169 /// Check if a physreg or any of its aliases are used in this instruction. 170 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 171 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 172 return true; 173 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 174 if (UsedInInstr.count(*Units)) 175 return true; 176 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 177 return true; 178 } 179 return false; 180 } 181 182 /// Mark physical register as being used in a register use operand. 183 /// This is only used by the special livethrough handling code. 184 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 185 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 186 PhysRegUses.insert(*Units); 187 } 188 189 /// Remove mark of physical register being used in the instruction. 190 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 192 UsedInInstr.erase(*Units); 193 } 194 195 enum : unsigned { 196 spillClean = 50, 197 spillDirty = 100, 198 spillPrefBonus = 20, 199 spillImpossible = ~0u 200 }; 201 202 public: 203 StringRef getPassName() const override { return "Fast Register Allocator"; } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 AU.setPreservesCFG(); 207 MachineFunctionPass::getAnalysisUsage(AU); 208 } 209 210 MachineFunctionProperties getRequiredProperties() const override { 211 return MachineFunctionProperties().set( 212 MachineFunctionProperties::Property::NoPHIs); 213 } 214 215 MachineFunctionProperties getSetProperties() const override { 216 return MachineFunctionProperties().set( 217 MachineFunctionProperties::Property::NoVRegs); 218 } 219 220 MachineFunctionProperties getClearedProperties() const override { 221 return MachineFunctionProperties().set( 222 MachineFunctionProperties::Property::IsSSA); 223 } 224 225 private: 226 bool runOnMachineFunction(MachineFunction &MF) override; 227 228 void allocateBasicBlock(MachineBasicBlock &MBB); 229 230 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 231 Register Reg) const; 232 233 void allocateInstruction(MachineInstr &MI); 234 void handleDebugValue(MachineInstr &MI); 235 void handleBundle(MachineInstr &MI); 236 237 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 238 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 239 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 240 void freePhysReg(MCPhysReg PhysReg); 241 242 unsigned calcSpillCost(MCPhysReg PhysReg) const; 243 244 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 245 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 246 } 247 248 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 249 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 250 } 251 252 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 253 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 254 bool LookAtPhysRegUses = false); 255 void allocVirtRegUndef(MachineOperand &MO); 256 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 257 MCPhysReg Reg); 258 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 259 Register VirtReg); 260 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 261 bool LookAtPhysRegUses = false); 262 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 263 264 MachineBasicBlock::iterator 265 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 266 SmallSet<Register, 2> &PrologLiveIns) const; 267 268 void reloadAtBegin(MachineBasicBlock &MBB); 269 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 270 271 Register traceCopies(Register VirtReg) const; 272 Register traceCopyChain(Register Reg) const; 273 274 int getStackSpaceFor(Register VirtReg); 275 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 276 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 277 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 278 MCPhysReg PhysReg); 279 280 bool mayLiveOut(Register VirtReg); 281 bool mayLiveIn(Register VirtReg); 282 283 void dumpState() const; 284 }; 285 286 } // end anonymous namespace 287 288 char RegAllocFast::ID = 0; 289 290 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 291 false) 292 293 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 294 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 295 RegUnitStates[*UI] = NewState; 296 } 297 298 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 299 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 300 if (RegUnitStates[*UI] != regFree) 301 return false; 302 } 303 return true; 304 } 305 306 /// This allocates space for the specified virtual register to be held on the 307 /// stack. 308 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 309 // Find the location Reg would belong... 310 int SS = StackSlotForVirtReg[VirtReg]; 311 // Already has space allocated? 312 if (SS != -1) 313 return SS; 314 315 // Allocate a new stack object for this spill location... 316 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 317 unsigned Size = TRI->getSpillSize(RC); 318 Align Alignment = TRI->getSpillAlign(RC); 319 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 320 321 // Assign the slot. 322 StackSlotForVirtReg[VirtReg] = FrameIdx; 323 return FrameIdx; 324 } 325 326 static bool dominates(MachineBasicBlock &MBB, 327 MachineBasicBlock::const_iterator A, 328 MachineBasicBlock::const_iterator B) { 329 auto MBBEnd = MBB.end(); 330 if (B == MBBEnd) 331 return true; 332 333 MachineBasicBlock::const_iterator I = MBB.begin(); 334 for (; &*I != A && &*I != B; ++I) 335 ; 336 337 return &*I == A; 338 } 339 340 /// Returns false if \p VirtReg is known to not live out of the current block. 341 bool RegAllocFast::mayLiveOut(Register VirtReg) { 342 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 343 // Cannot be live-out if there are no successors. 344 return !MBB->succ_empty(); 345 } 346 347 const MachineInstr *SelfLoopDef = nullptr; 348 349 // If this block loops back to itself, it is necessary to check whether the 350 // use comes after the def. 351 if (MBB->isSuccessor(MBB)) { 352 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 353 if (!SelfLoopDef) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 return true; 356 } 357 } 358 359 // See if the first \p Limit uses of the register are all in the current 360 // block. 361 static const unsigned Limit = 8; 362 unsigned C = 0; 363 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 364 if (UseInst.getParent() != MBB || ++C >= Limit) { 365 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 366 // Cannot be live-out if there are no successors. 367 return !MBB->succ_empty(); 368 } 369 370 if (SelfLoopDef) { 371 // Try to handle some simple cases to avoid spilling and reloading every 372 // value inside a self looping block. 373 if (SelfLoopDef == &UseInst || 374 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 375 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 376 return true; 377 } 378 } 379 } 380 381 return false; 382 } 383 384 /// Returns false if \p VirtReg is known to not be live into the current block. 385 bool RegAllocFast::mayLiveIn(Register VirtReg) { 386 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 387 return !MBB->pred_empty(); 388 389 // See if the first \p Limit def of the register are all in the current block. 390 static const unsigned Limit = 8; 391 unsigned C = 0; 392 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 393 if (DefInst.getParent() != MBB || ++C >= Limit) { 394 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 395 return !MBB->pred_empty(); 396 } 397 } 398 399 return false; 400 } 401 402 /// Insert spill instruction for \p AssignedReg before \p Before. Update 403 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 404 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 405 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 406 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 407 << " in " << printReg(AssignedReg, TRI)); 408 int FI = getStackSpaceFor(VirtReg); 409 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 410 411 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 412 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 413 ++NumStores; 414 415 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 416 417 // When we spill a virtual register, we will have spill instructions behind 418 // every definition of it, meaning we can switch all the DBG_VALUEs over 419 // to just reference the stack slot. 420 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 421 SmallDenseMap<MachineInstr *, SmallVector<const MachineOperand *>> 422 SpilledOperandsMap; 423 for (MachineOperand *MO : LRIDbgOperands) 424 SpilledOperandsMap[MO->getParent()].push_back(MO); 425 for (auto MISpilledOperands : SpilledOperandsMap) { 426 MachineInstr &DBG = *MISpilledOperands.first; 427 MachineInstr *NewDV = buildDbgValueForSpill( 428 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 429 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 430 (void)NewDV; 431 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 432 433 if (LiveOut) { 434 // We need to insert a DBG_VALUE at the end of the block if the spill slot 435 // is live out, but there is another use of the value after the 436 // spill. This will allow LiveDebugValues to see the correct live out 437 // value to propagate to the successors. 438 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 439 MBB->insert(FirstTerm, ClonedDV); 440 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 441 } 442 443 // Rewrite unassigned dbg_values to use the stack slot. 444 // TODO We can potentially do this for list debug values as well if we know 445 // how the dbg_values are getting unassigned. 446 if (DBG.isNonListDebugValue()) { 447 MachineOperand &MO = DBG.getDebugOperand(0); 448 if (MO.isReg() && MO.getReg() == 0) { 449 updateDbgValueForSpill(DBG, FI, 0); 450 } 451 } 452 } 453 // Now this register is spilled there is should not be any DBG_VALUE 454 // pointing to this register because they are all pointing to spilled value 455 // now. 456 LRIDbgOperands.clear(); 457 } 458 459 /// Insert reload instruction for \p PhysReg before \p Before. 460 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 461 MCPhysReg PhysReg) { 462 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 463 << printReg(PhysReg, TRI) << '\n'); 464 int FI = getStackSpaceFor(VirtReg); 465 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 466 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 467 ++NumLoads; 468 } 469 470 /// Get basic block begin insertion point. 471 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 472 /// instructions marking the begin of a basic block. This means we must insert 473 /// new instructions after such labels... 474 MachineBasicBlock::iterator 475 RegAllocFast::getMBBBeginInsertionPoint( 476 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 477 MachineBasicBlock::iterator I = MBB.begin(); 478 while (I != MBB.end()) { 479 if (I->isLabel()) { 480 ++I; 481 continue; 482 } 483 484 // Most reloads should be inserted after prolog instructions. 485 if (!TII->isBasicBlockPrologue(*I)) 486 break; 487 488 // However if a prolog instruction reads a register that needs to be 489 // reloaded, the reload should be inserted before the prolog. 490 for (MachineOperand &MO : I->operands()) { 491 if (MO.isReg()) 492 PrologLiveIns.insert(MO.getReg()); 493 } 494 495 ++I; 496 } 497 498 return I; 499 } 500 501 /// Reload all currently assigned virtual registers. 502 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 503 if (LiveVirtRegs.empty()) 504 return; 505 506 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 507 MCPhysReg Reg = P.PhysReg; 508 // Set state to live-in. This possibly overrides mappings to virtual 509 // registers but we don't care anymore at this point. 510 setPhysRegState(Reg, regLiveIn); 511 } 512 513 514 SmallSet<Register, 2> PrologLiveIns; 515 516 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 517 // of spilling here is deterministic, if arbitrary. 518 MachineBasicBlock::iterator InsertBefore 519 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 520 for (const LiveReg &LR : LiveVirtRegs) { 521 MCPhysReg PhysReg = LR.PhysReg; 522 if (PhysReg == 0) 523 continue; 524 525 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 526 if (RegUnitStates[FirstUnit] == regLiveIn) 527 continue; 528 529 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 530 "no reload in start block. Missing vreg def?"); 531 532 if (PrologLiveIns.count(PhysReg)) { 533 // FIXME: Theoretically this should use an insert point skipping labels 534 // but I'm not sure how labels should interact with prolog instruction 535 // that need reloads. 536 reload(MBB.begin(), LR.VirtReg, PhysReg); 537 } else 538 reload(InsertBefore, LR.VirtReg, PhysReg); 539 } 540 LiveVirtRegs.clear(); 541 } 542 543 /// Handle the direct use of a physical register. Check that the register is 544 /// not used by a virtreg. Kill the physreg, marking it free. This may add 545 /// implicit kills to MO->getParent() and invalidate MO. 546 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 547 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 548 bool displacedAny = displacePhysReg(MI, Reg); 549 setPhysRegState(Reg, regPreAssigned); 550 markRegUsedInInstr(Reg); 551 return displacedAny; 552 } 553 554 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 555 bool displacedAny = displacePhysReg(MI, Reg); 556 setPhysRegState(Reg, regPreAssigned); 557 return displacedAny; 558 } 559 560 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 561 /// similar to defineVirtReg except the physreg is reserved instead of 562 /// allocated. 563 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 564 bool displacedAny = false; 565 566 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 567 unsigned Unit = *UI; 568 switch (unsigned VirtReg = RegUnitStates[Unit]) { 569 default: { 570 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 571 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 572 MachineBasicBlock::iterator ReloadBefore = 573 std::next((MachineBasicBlock::iterator)MI.getIterator()); 574 reload(ReloadBefore, VirtReg, LRI->PhysReg); 575 576 setPhysRegState(LRI->PhysReg, regFree); 577 LRI->PhysReg = 0; 578 LRI->Reloaded = true; 579 displacedAny = true; 580 break; 581 } 582 case regPreAssigned: 583 RegUnitStates[Unit] = regFree; 584 displacedAny = true; 585 break; 586 case regFree: 587 break; 588 } 589 } 590 return displacedAny; 591 } 592 593 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 594 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 595 596 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 597 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 598 case regFree: 599 LLVM_DEBUG(dbgs() << '\n'); 600 return; 601 case regPreAssigned: 602 LLVM_DEBUG(dbgs() << '\n'); 603 setPhysRegState(PhysReg, regFree); 604 return; 605 default: { 606 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 607 assert(LRI != LiveVirtRegs.end()); 608 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 609 setPhysRegState(LRI->PhysReg, regFree); 610 LRI->PhysReg = 0; 611 } 612 return; 613 } 614 } 615 616 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 617 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 618 /// disabled - it can be allocated directly. 619 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 620 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 621 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 622 switch (unsigned VirtReg = RegUnitStates[*UI]) { 623 case regFree: 624 break; 625 case regPreAssigned: 626 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 627 << printReg(PhysReg, TRI) << '\n'); 628 return spillImpossible; 629 default: { 630 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 631 findLiveVirtReg(VirtReg)->LiveOut; 632 return SureSpill ? spillClean : spillDirty; 633 } 634 } 635 } 636 return 0; 637 } 638 639 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 640 Register VirtReg, MCPhysReg Reg) { 641 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 642 if (UDBGValIter == DanglingDbgValues.end()) 643 return; 644 645 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 646 for (MachineInstr *DbgValue : Dangling) { 647 assert(DbgValue->isDebugValue()); 648 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 649 continue; 650 651 // Test whether the physreg survives from the definition to the DBG_VALUE. 652 MCPhysReg SetToReg = Reg; 653 unsigned Limit = 20; 654 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 655 E = DbgValue->getIterator(); I != E; ++I) { 656 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 657 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 658 << '\n'); 659 SetToReg = 0; 660 break; 661 } 662 } 663 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 664 MO.setReg(SetToReg); 665 if (SetToReg != 0) 666 MO.setIsRenamable(); 667 } 668 } 669 Dangling.clear(); 670 } 671 672 /// This method updates local state so that we know that PhysReg is the 673 /// proper container for VirtReg now. The physical register must not be used 674 /// for anything else when this is called. 675 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 676 MCPhysReg PhysReg) { 677 Register VirtReg = LR.VirtReg; 678 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 679 << printReg(PhysReg, TRI) << '\n'); 680 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 681 assert(PhysReg != 0 && "Trying to assign no register"); 682 LR.PhysReg = PhysReg; 683 setPhysRegState(PhysReg, VirtReg); 684 685 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 686 } 687 688 static bool isCoalescable(const MachineInstr &MI) { 689 return MI.isFullCopy(); 690 } 691 692 Register RegAllocFast::traceCopyChain(Register Reg) const { 693 static const unsigned ChainLengthLimit = 3; 694 unsigned C = 0; 695 do { 696 if (Reg.isPhysical()) 697 return Reg; 698 assert(Reg.isVirtual()); 699 700 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 701 if (!VRegDef || !isCoalescable(*VRegDef)) 702 return 0; 703 Reg = VRegDef->getOperand(1).getReg(); 704 } while (++C <= ChainLengthLimit); 705 return 0; 706 } 707 708 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 709 /// chain of copies to check whether we reach a physical register we can 710 /// coalesce with. 711 Register RegAllocFast::traceCopies(Register VirtReg) const { 712 static const unsigned DefLimit = 3; 713 unsigned C = 0; 714 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 715 if (isCoalescable(MI)) { 716 Register Reg = MI.getOperand(1).getReg(); 717 Reg = traceCopyChain(Reg); 718 if (Reg.isValid()) 719 return Reg; 720 } 721 722 if (++C >= DefLimit) 723 break; 724 } 725 return Register(); 726 } 727 728 /// Allocates a physical register for VirtReg. 729 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 730 Register Hint0, bool LookAtPhysRegUses) { 731 const Register VirtReg = LR.VirtReg; 732 assert(LR.PhysReg == 0); 733 734 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 735 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 736 << " in class " << TRI->getRegClassName(&RC) 737 << " with hint " << printReg(Hint0, TRI) << '\n'); 738 739 // Take hint when possible. 740 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 741 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 742 // Take hint if the register is currently free. 743 if (isPhysRegFree(Hint0)) { 744 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 745 << '\n'); 746 assignVirtToPhysReg(MI, LR, Hint0); 747 return; 748 } else { 749 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 750 << " occupied\n"); 751 } 752 } else { 753 Hint0 = Register(); 754 } 755 756 757 // Try other hint. 758 Register Hint1 = traceCopies(VirtReg); 759 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 760 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 761 // Take hint if the register is currently free. 762 if (isPhysRegFree(Hint1)) { 763 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 764 << '\n'); 765 assignVirtToPhysReg(MI, LR, Hint1); 766 return; 767 } else { 768 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 769 << " occupied\n"); 770 } 771 } else { 772 Hint1 = Register(); 773 } 774 775 MCPhysReg BestReg = 0; 776 unsigned BestCost = spillImpossible; 777 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 778 for (MCPhysReg PhysReg : AllocationOrder) { 779 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 780 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 781 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 782 continue; 783 } 784 785 unsigned Cost = calcSpillCost(PhysReg); 786 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 787 // Immediate take a register with cost 0. 788 if (Cost == 0) { 789 assignVirtToPhysReg(MI, LR, PhysReg); 790 return; 791 } 792 793 if (PhysReg == Hint0 || PhysReg == Hint1) 794 Cost -= spillPrefBonus; 795 796 if (Cost < BestCost) { 797 BestReg = PhysReg; 798 BestCost = Cost; 799 } 800 } 801 802 if (!BestReg) { 803 // Nothing we can do: Report an error and keep going with an invalid 804 // allocation. 805 if (MI.isInlineAsm()) 806 MI.emitError("inline assembly requires more registers than available"); 807 else 808 MI.emitError("ran out of registers during register allocation"); 809 810 LR.Error = true; 811 LR.PhysReg = 0; 812 return; 813 } 814 815 displacePhysReg(MI, BestReg); 816 assignVirtToPhysReg(MI, LR, BestReg); 817 } 818 819 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 820 assert(MO.isUndef() && "expected undef use"); 821 Register VirtReg = MO.getReg(); 822 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 823 824 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 825 MCPhysReg PhysReg; 826 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 827 PhysReg = LRI->PhysReg; 828 } else { 829 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 830 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 831 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 832 PhysReg = AllocationOrder[0]; 833 } 834 835 unsigned SubRegIdx = MO.getSubReg(); 836 if (SubRegIdx != 0) { 837 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 838 MO.setSubReg(0); 839 } 840 MO.setReg(PhysReg); 841 MO.setIsRenamable(true); 842 } 843 844 /// Variation of defineVirtReg() with special handling for livethrough regs 845 /// (tied or earlyclobber) that may interfere with preassigned uses. 846 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 847 Register VirtReg) { 848 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 849 if (LRI != LiveVirtRegs.end()) { 850 MCPhysReg PrevReg = LRI->PhysReg; 851 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 852 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 853 << " (tied/earlyclobber resolution)\n"); 854 freePhysReg(PrevReg); 855 LRI->PhysReg = 0; 856 allocVirtReg(MI, *LRI, 0, true); 857 MachineBasicBlock::iterator InsertBefore = 858 std::next((MachineBasicBlock::iterator)MI.getIterator()); 859 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 860 << printReg(PrevReg, TRI) << '\n'); 861 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 862 TII->get(TargetOpcode::COPY), PrevReg) 863 .addReg(LRI->PhysReg, llvm::RegState::Kill); 864 } 865 MachineOperand &MO = MI.getOperand(OpNum); 866 if (MO.getSubReg() && !MO.isUndef()) { 867 LRI->LastUse = &MI; 868 } 869 } 870 return defineVirtReg(MI, OpNum, VirtReg, true); 871 } 872 873 /// Allocates a register for VirtReg definition. Typically the register is 874 /// already assigned from a use of the virtreg, however we still need to 875 /// perform an allocation if: 876 /// - It is a dead definition without any uses. 877 /// - The value is live out and all uses are in different basic blocks. 878 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 879 Register VirtReg, bool LookAtPhysRegUses) { 880 assert(VirtReg.isVirtual() && "Not a virtual register"); 881 MachineOperand &MO = MI.getOperand(OpNum); 882 LiveRegMap::iterator LRI; 883 bool New; 884 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 885 if (New) { 886 if (!MO.isDead()) { 887 if (mayLiveOut(VirtReg)) { 888 LRI->LiveOut = true; 889 } else { 890 // It is a dead def without the dead flag; add the flag now. 891 MO.setIsDead(true); 892 } 893 } 894 } 895 if (LRI->PhysReg == 0) 896 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 897 else { 898 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 899 "TODO: preassign mismatch"); 900 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 901 << " use existing assignment to " 902 << printReg(LRI->PhysReg, TRI) << '\n'); 903 } 904 905 MCPhysReg PhysReg = LRI->PhysReg; 906 assert(PhysReg != 0 && "Register not assigned"); 907 if (LRI->Reloaded || LRI->LiveOut) { 908 if (!MI.isImplicitDef()) { 909 MachineBasicBlock::iterator SpillBefore = 910 std::next((MachineBasicBlock::iterator)MI.getIterator()); 911 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 912 << LRI->Reloaded << '\n'); 913 bool Kill = LRI->LastUse == nullptr; 914 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 915 LRI->LastUse = nullptr; 916 } 917 LRI->LiveOut = false; 918 LRI->Reloaded = false; 919 } 920 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 921 BundleVirtRegsMap[VirtReg] = PhysReg; 922 } 923 markRegUsedInInstr(PhysReg); 924 setPhysReg(MI, MO, PhysReg); 925 } 926 927 /// Allocates a register for a VirtReg use. 928 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 929 Register VirtReg) { 930 assert(VirtReg.isVirtual() && "Not a virtual register"); 931 MachineOperand &MO = MI.getOperand(OpNum); 932 LiveRegMap::iterator LRI; 933 bool New; 934 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 935 if (New) { 936 MachineOperand &MO = MI.getOperand(OpNum); 937 if (!MO.isKill()) { 938 if (mayLiveOut(VirtReg)) { 939 LRI->LiveOut = true; 940 } else { 941 // It is a last (killing) use without the kill flag; add the flag now. 942 MO.setIsKill(true); 943 } 944 } 945 } else { 946 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 947 } 948 949 // If necessary allocate a register. 950 if (LRI->PhysReg == 0) { 951 assert(!MO.isTied() && "tied op should be allocated"); 952 Register Hint; 953 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 954 Hint = MI.getOperand(0).getReg(); 955 assert(Hint.isPhysical() && 956 "Copy destination should already be assigned"); 957 } 958 allocVirtReg(MI, *LRI, Hint, false); 959 if (LRI->Error) { 960 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 961 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 962 setPhysReg(MI, MO, *AllocationOrder.begin()); 963 return; 964 } 965 } 966 967 LRI->LastUse = &MI; 968 969 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 970 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 971 } 972 markRegUsedInInstr(LRI->PhysReg); 973 setPhysReg(MI, MO, LRI->PhysReg); 974 } 975 976 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 977 /// may invalidate any operand pointers. Return true if the operand kills its 978 /// register. 979 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 980 MCPhysReg PhysReg) { 981 if (!MO.getSubReg()) { 982 MO.setReg(PhysReg); 983 MO.setIsRenamable(true); 984 return; 985 } 986 987 // Handle subregister index. 988 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 989 MO.setIsRenamable(true); 990 // Note: We leave the subreg number around a little longer in case of defs. 991 // This is so that the register freeing logic in allocateInstruction can still 992 // recognize this as subregister defs. The code there will clear the number. 993 if (!MO.isDef()) 994 MO.setSubReg(0); 995 996 // A kill flag implies killing the full register. Add corresponding super 997 // register kill. 998 if (MO.isKill()) { 999 MI.addRegisterKilled(PhysReg, TRI, true); 1000 return; 1001 } 1002 1003 // A <def,read-undef> of a sub-register requires an implicit def of the full 1004 // register. 1005 if (MO.isDef() && MO.isUndef()) { 1006 if (MO.isDead()) 1007 MI.addRegisterDead(PhysReg, TRI, true); 1008 else 1009 MI.addRegisterDefined(PhysReg, TRI); 1010 } 1011 } 1012 1013 #ifndef NDEBUG 1014 1015 void RegAllocFast::dumpState() const { 1016 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1017 ++Unit) { 1018 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1019 case regFree: 1020 break; 1021 case regPreAssigned: 1022 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1023 break; 1024 case regLiveIn: 1025 llvm_unreachable("Should not have regLiveIn in map"); 1026 default: { 1027 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1028 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1029 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1030 if (I->LiveOut || I->Reloaded) { 1031 dbgs() << '['; 1032 if (I->LiveOut) dbgs() << 'O'; 1033 if (I->Reloaded) dbgs() << 'R'; 1034 dbgs() << ']'; 1035 } 1036 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1037 break; 1038 } 1039 } 1040 } 1041 dbgs() << '\n'; 1042 // Check that LiveVirtRegs is the inverse. 1043 for (const LiveReg &LR : LiveVirtRegs) { 1044 Register VirtReg = LR.VirtReg; 1045 assert(VirtReg.isVirtual() && "Bad map key"); 1046 MCPhysReg PhysReg = LR.PhysReg; 1047 if (PhysReg != 0) { 1048 assert(Register::isPhysicalRegister(PhysReg) && 1049 "mapped to physreg"); 1050 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1051 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1052 } 1053 } 1054 } 1055 } 1056 #endif 1057 1058 /// Count number of defs consumed from each register class by \p Reg 1059 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1060 Register Reg) const { 1061 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1062 1063 if (Reg.isVirtual()) { 1064 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1065 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1066 RCIdx != RCIdxEnd; ++RCIdx) { 1067 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1068 // FIXME: Consider aliasing sub/super registers. 1069 if (OpRC->hasSubClassEq(IdxRC)) 1070 ++RegClassDefCounts[RCIdx]; 1071 } 1072 1073 return; 1074 } 1075 1076 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1077 RCIdx != RCIdxEnd; ++RCIdx) { 1078 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1079 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1080 if (IdxRC->contains(*Alias)) { 1081 ++RegClassDefCounts[RCIdx]; 1082 break; 1083 } 1084 } 1085 } 1086 } 1087 1088 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1089 // The basic algorithm here is: 1090 // 1. Mark registers of def operands as free 1091 // 2. Allocate registers to use operands and place reload instructions for 1092 // registers displaced by the allocation. 1093 // 1094 // However we need to handle some corner cases: 1095 // - pre-assigned defs and uses need to be handled before the other def/use 1096 // operands are processed to avoid the allocation heuristics clashing with 1097 // the pre-assignment. 1098 // - The "free def operands" step has to come last instead of first for tied 1099 // operands and early-clobbers. 1100 1101 UsedInInstr.clear(); 1102 RegMasks.clear(); 1103 BundleVirtRegsMap.clear(); 1104 1105 // Scan for special cases; Apply pre-assigned register defs to state. 1106 bool HasPhysRegUse = false; 1107 bool HasRegMask = false; 1108 bool HasVRegDef = false; 1109 bool HasDef = false; 1110 bool HasEarlyClobber = false; 1111 bool NeedToAssignLiveThroughs = false; 1112 for (MachineOperand &MO : MI.operands()) { 1113 if (MO.isReg()) { 1114 Register Reg = MO.getReg(); 1115 if (Reg.isVirtual()) { 1116 if (MO.isDef()) { 1117 HasDef = true; 1118 HasVRegDef = true; 1119 if (MO.isEarlyClobber()) { 1120 HasEarlyClobber = true; 1121 NeedToAssignLiveThroughs = true; 1122 } 1123 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1124 NeedToAssignLiveThroughs = true; 1125 } 1126 } else if (Reg.isPhysical()) { 1127 if (!MRI->isReserved(Reg)) { 1128 if (MO.isDef()) { 1129 HasDef = true; 1130 bool displacedAny = definePhysReg(MI, Reg); 1131 if (MO.isEarlyClobber()) 1132 HasEarlyClobber = true; 1133 if (!displacedAny) 1134 MO.setIsDead(true); 1135 } 1136 if (MO.readsReg()) 1137 HasPhysRegUse = true; 1138 } 1139 } 1140 } else if (MO.isRegMask()) { 1141 HasRegMask = true; 1142 RegMasks.push_back(MO.getRegMask()); 1143 } 1144 } 1145 1146 // Allocate virtreg defs. 1147 if (HasDef) { 1148 if (HasVRegDef) { 1149 // Special handling for early clobbers, tied operands or subregister defs: 1150 // Compared to "normal" defs these: 1151 // - Must not use a register that is pre-assigned for a use operand. 1152 // - In order to solve tricky inline assembly constraints we change the 1153 // heuristic to figure out a good operand order before doing 1154 // assignments. 1155 if (NeedToAssignLiveThroughs) { 1156 DefOperandIndexes.clear(); 1157 PhysRegUses.clear(); 1158 1159 // Track number of defs which may consume a register from the class. 1160 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1161 assert(RegClassDefCounts[0] == 0); 1162 1163 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1164 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1165 const MachineOperand &MO = MI.getOperand(I); 1166 if (!MO.isReg()) 1167 continue; 1168 Register Reg = MO.getReg(); 1169 if (MO.readsReg()) { 1170 if (Reg.isPhysical()) { 1171 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1172 << '\n'); 1173 markPhysRegUsedInInstr(Reg); 1174 } 1175 } 1176 1177 if (MO.isDef()) { 1178 if (Reg.isVirtual()) 1179 DefOperandIndexes.push_back(I); 1180 1181 addRegClassDefCounts(RegClassDefCounts, Reg); 1182 } 1183 } 1184 1185 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1186 const MachineOperand &MO0 = MI.getOperand(I0); 1187 const MachineOperand &MO1 = MI.getOperand(I1); 1188 Register Reg0 = MO0.getReg(); 1189 Register Reg1 = MO1.getReg(); 1190 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1191 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1192 1193 // Identify regclass that are easy to use up completely just in this 1194 // instruction. 1195 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1196 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1197 1198 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1199 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1200 if (SmallClass0 > SmallClass1) 1201 return true; 1202 if (SmallClass0 < SmallClass1) 1203 return false; 1204 1205 // Allocate early clobbers and livethrough operands first. 1206 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1207 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1208 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1209 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1210 if (Livethrough0 > Livethrough1) 1211 return true; 1212 if (Livethrough0 < Livethrough1) 1213 return false; 1214 1215 // Tie-break rule: operand index. 1216 return I0 < I1; 1217 }); 1218 1219 for (uint16_t OpIdx : DefOperandIndexes) { 1220 MachineOperand &MO = MI.getOperand(OpIdx); 1221 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1222 unsigned Reg = MO.getReg(); 1223 if (MO.isEarlyClobber() || MO.isTied() || 1224 (MO.getSubReg() && !MO.isUndef())) { 1225 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1226 } else { 1227 defineVirtReg(MI, OpIdx, Reg); 1228 } 1229 } 1230 } else { 1231 // Assign virtual register defs. 1232 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1233 MachineOperand &MO = MI.getOperand(I); 1234 if (!MO.isReg() || !MO.isDef()) 1235 continue; 1236 Register Reg = MO.getReg(); 1237 if (Reg.isVirtual()) 1238 defineVirtReg(MI, I, Reg); 1239 } 1240 } 1241 } 1242 1243 // Free registers occupied by defs. 1244 // Iterate operands in reverse order, so we see the implicit super register 1245 // defs first (we added them earlier in case of <def,read-undef>). 1246 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1247 MachineOperand &MO = MI.getOperand(I); 1248 if (!MO.isReg() || !MO.isDef()) 1249 continue; 1250 1251 // subreg defs don't free the full register. We left the subreg number 1252 // around as a marker in setPhysReg() to recognize this case here. 1253 if (MO.getSubReg() != 0) { 1254 MO.setSubReg(0); 1255 continue; 1256 } 1257 1258 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1259 "tied def assigned to clobbered register"); 1260 1261 // Do not free tied operands and early clobbers. 1262 if (MO.isTied() || MO.isEarlyClobber()) 1263 continue; 1264 Register Reg = MO.getReg(); 1265 if (!Reg) 1266 continue; 1267 assert(Reg.isPhysical()); 1268 if (MRI->isReserved(Reg)) 1269 continue; 1270 freePhysReg(Reg); 1271 unmarkRegUsedInInstr(Reg); 1272 } 1273 } 1274 1275 // Displace clobbered registers. 1276 if (HasRegMask) { 1277 assert(!RegMasks.empty() && "expected RegMask"); 1278 // MRI bookkeeping. 1279 for (const auto *RM : RegMasks) 1280 MRI->addPhysRegsUsedFromRegMask(RM); 1281 1282 // Displace clobbered registers. 1283 for (const LiveReg &LR : LiveVirtRegs) { 1284 MCPhysReg PhysReg = LR.PhysReg; 1285 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1286 displacePhysReg(MI, PhysReg); 1287 } 1288 } 1289 1290 // Apply pre-assigned register uses to state. 1291 if (HasPhysRegUse) { 1292 for (MachineOperand &MO : MI.operands()) { 1293 if (!MO.isReg() || !MO.readsReg()) 1294 continue; 1295 Register Reg = MO.getReg(); 1296 if (!Reg.isPhysical()) 1297 continue; 1298 if (MRI->isReserved(Reg)) 1299 continue; 1300 bool displacedAny = usePhysReg(MI, Reg); 1301 if (!displacedAny && !MRI->isReserved(Reg)) 1302 MO.setIsKill(true); 1303 } 1304 } 1305 1306 // Allocate virtreg uses and insert reloads as necessary. 1307 bool HasUndefUse = false; 1308 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1309 MachineOperand &MO = MI.getOperand(I); 1310 if (!MO.isReg() || !MO.isUse()) 1311 continue; 1312 Register Reg = MO.getReg(); 1313 if (!Reg.isVirtual()) 1314 continue; 1315 1316 if (MO.isUndef()) { 1317 HasUndefUse = true; 1318 continue; 1319 } 1320 1321 1322 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1323 // the def block (removing the vreg uses). 1324 mayLiveIn(Reg); 1325 1326 1327 assert(!MO.isInternalRead() && "Bundles not supported"); 1328 assert(MO.readsReg() && "reading use"); 1329 useVirtReg(MI, I, Reg); 1330 } 1331 1332 // Allocate undef operands. This is a separate step because in a situation 1333 // like ` = OP undef %X, %X` both operands need the same register assign 1334 // so we should perform the normal assignment first. 1335 if (HasUndefUse) { 1336 for (MachineOperand &MO : MI.uses()) { 1337 if (!MO.isReg() || !MO.isUse()) 1338 continue; 1339 Register Reg = MO.getReg(); 1340 if (!Reg.isVirtual()) 1341 continue; 1342 1343 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1344 allocVirtRegUndef(MO); 1345 } 1346 } 1347 1348 // Free early clobbers. 1349 if (HasEarlyClobber) { 1350 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1351 MachineOperand &MO = MI.getOperand(I); 1352 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1353 continue; 1354 // subreg defs don't free the full register. We left the subreg number 1355 // around as a marker in setPhysReg() to recognize this case here. 1356 if (MO.getSubReg() != 0) { 1357 MO.setSubReg(0); 1358 continue; 1359 } 1360 1361 Register Reg = MO.getReg(); 1362 if (!Reg) 1363 continue; 1364 assert(Reg.isPhysical() && "should have register assigned"); 1365 1366 // We sometimes get odd situations like: 1367 // early-clobber %x0 = INSTRUCTION %x0 1368 // which is semantically questionable as the early-clobber should 1369 // apply before the use. But in practice we consider the use to 1370 // happen before the early clobber now. Don't free the early clobber 1371 // register in this case. 1372 if (MI.readsRegister(Reg, TRI)) 1373 continue; 1374 1375 freePhysReg(Reg); 1376 } 1377 } 1378 1379 LLVM_DEBUG(dbgs() << "<< " << MI); 1380 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1381 MI.getNumOperands() == 2) { 1382 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1383 Coalesced.push_back(&MI); 1384 } 1385 } 1386 1387 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1388 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1389 // mostly constants and frame indices. 1390 for (Register Reg : MI.getUsedDebugRegs()) { 1391 if (!Register::isVirtualRegister(Reg)) 1392 continue; 1393 1394 // Already spilled to a stackslot? 1395 int SS = StackSlotForVirtReg[Reg]; 1396 if (SS != -1) { 1397 // Modify DBG_VALUE now that the value is in a spill slot. 1398 updateDbgValueForSpill(MI, SS, Reg); 1399 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1400 continue; 1401 } 1402 1403 // See if this virtual register has already been allocated to a physical 1404 // register or spilled to a stack slot. 1405 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1406 SmallVector<MachineOperand *> DbgOps; 1407 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1408 DbgOps.push_back(&Op); 1409 1410 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1411 // Update every use of Reg within MI. 1412 for (auto &RegMO : DbgOps) 1413 setPhysReg(MI, *RegMO, LRI->PhysReg); 1414 } else { 1415 DanglingDbgValues[Reg].push_back(&MI); 1416 } 1417 1418 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1419 // that future spills of Reg will have DBG_VALUEs. 1420 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1421 } 1422 } 1423 1424 void RegAllocFast::handleBundle(MachineInstr &MI) { 1425 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1426 ++BundledMI; 1427 while (BundledMI->isBundledWithPred()) { 1428 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1429 MachineOperand &MO = BundledMI->getOperand(I); 1430 if (!MO.isReg()) 1431 continue; 1432 1433 Register Reg = MO.getReg(); 1434 if (!Reg.isVirtual()) 1435 continue; 1436 1437 DenseMap<Register, MCPhysReg>::iterator DI; 1438 DI = BundleVirtRegsMap.find(Reg); 1439 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1440 1441 setPhysReg(MI, MO, DI->second); 1442 } 1443 1444 ++BundledMI; 1445 } 1446 } 1447 1448 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1449 this->MBB = &MBB; 1450 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1451 1452 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1453 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1454 1455 for (MachineBasicBlock *Succ : MBB.successors()) { 1456 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1457 setPhysRegState(LI.PhysReg, regPreAssigned); 1458 } 1459 1460 Coalesced.clear(); 1461 1462 // Traverse block in reverse order allocating instructions one by one. 1463 for (MachineInstr &MI : reverse(MBB)) { 1464 LLVM_DEBUG( 1465 dbgs() << "\n>> " << MI << "Regs:"; 1466 dumpState() 1467 ); 1468 1469 // Special handling for debug values. Note that they are not allowed to 1470 // affect codegen of the other instructions in any way. 1471 if (MI.isDebugValue()) { 1472 handleDebugValue(MI); 1473 continue; 1474 } 1475 1476 allocateInstruction(MI); 1477 1478 // Once BUNDLE header is assigned registers, same assignments need to be 1479 // done for bundled MIs. 1480 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1481 handleBundle(MI); 1482 } 1483 } 1484 1485 LLVM_DEBUG( 1486 dbgs() << "Begin Regs:"; 1487 dumpState() 1488 ); 1489 1490 // Spill all physical registers holding virtual registers now. 1491 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1492 reloadAtBegin(MBB); 1493 1494 // Erase all the coalesced copies. We are delaying it until now because 1495 // LiveVirtRegs might refer to the instrs. 1496 for (MachineInstr *MI : Coalesced) 1497 MBB.erase(MI); 1498 NumCoalesced += Coalesced.size(); 1499 1500 for (auto &UDBGPair : DanglingDbgValues) { 1501 for (MachineInstr *DbgValue : UDBGPair.second) { 1502 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1503 // Nothing to do if the vreg was spilled in the meantime. 1504 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1505 continue; 1506 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1507 << '\n'); 1508 DbgValue->setDebugValueUndef(); 1509 } 1510 } 1511 DanglingDbgValues.clear(); 1512 1513 LLVM_DEBUG(MBB.dump()); 1514 } 1515 1516 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1517 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1518 << "********** Function: " << MF.getName() << '\n'); 1519 MRI = &MF.getRegInfo(); 1520 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1521 TRI = STI.getRegisterInfo(); 1522 TII = STI.getInstrInfo(); 1523 MFI = &MF.getFrameInfo(); 1524 MRI->freezeReservedRegs(MF); 1525 RegClassInfo.runOnMachineFunction(MF); 1526 unsigned NumRegUnits = TRI->getNumRegUnits(); 1527 UsedInInstr.clear(); 1528 UsedInInstr.setUniverse(NumRegUnits); 1529 PhysRegUses.clear(); 1530 PhysRegUses.setUniverse(NumRegUnits); 1531 1532 // initialize the virtual->physical register map to have a 'null' 1533 // mapping for all virtual registers 1534 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1535 StackSlotForVirtReg.resize(NumVirtRegs); 1536 LiveVirtRegs.setUniverse(NumVirtRegs); 1537 MayLiveAcrossBlocks.clear(); 1538 MayLiveAcrossBlocks.resize(NumVirtRegs); 1539 1540 // Loop over all of the basic blocks, eliminating virtual register references 1541 for (MachineBasicBlock &MBB : MF) 1542 allocateBasicBlock(MBB); 1543 1544 // All machine operands and other references to virtual registers have been 1545 // replaced. Remove the virtual registers. 1546 MRI->clearVirtRegs(); 1547 1548 StackSlotForVirtReg.clear(); 1549 LiveDbgValueMap.clear(); 1550 return true; 1551 } 1552 1553 FunctionPass *llvm::createFastRegisterAllocator() { 1554 return new RegAllocFast(); 1555 } 1556