1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <tuple> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumStores, "Number of stores added"); 55 STATISTIC(NumLoads , "Number of loads added"); 56 STATISTIC(NumCoalesced, "Number of copies coalesced"); 57 58 static RegisterRegAlloc 59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 60 61 namespace { 62 63 class RegAllocFast : public MachineFunctionPass { 64 public: 65 static char ID; 66 67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 68 69 private: 70 MachineFrameInfo *MFI; 71 MachineRegisterInfo *MRI; 72 const TargetRegisterInfo *TRI; 73 const TargetInstrInfo *TII; 74 RegisterClassInfo RegClassInfo; 75 76 /// Basic block currently being allocated. 77 MachineBasicBlock *MBB; 78 79 /// Maps virtual regs to the frame index where these values are spilled. 80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 81 82 /// Everything we know about a live virtual register. 83 struct LiveReg { 84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 85 unsigned VirtReg; ///< Virtual register number. 86 MCPhysReg PhysReg = 0; ///< Currently held here. 87 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 88 bool Dirty = false; ///< Register needs spill. 89 90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 91 92 unsigned getSparseSetIndex() const { 93 return TargetRegisterInfo::virtReg2Index(VirtReg); 94 } 95 }; 96 97 using LiveRegMap = SparseSet<LiveReg>; 98 /// This map contains entries for each virtual register that is currently 99 /// available in a physical register. 100 LiveRegMap LiveVirtRegs; 101 102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 103 104 /// Has a bit set for every virtual register for which it was determined 105 /// that it is alive across blocks. 106 BitVector MayLiveAcrossBlocks; 107 108 /// State of a physical register. 109 enum RegState { 110 /// A disabled register is not available for allocation, but an alias may 111 /// be in use. A register can only be moved out of the disabled state if 112 /// all aliases are disabled. 113 regDisabled, 114 115 /// A free register is not currently in use and can be allocated 116 /// immediately without checking aliases. 117 regFree, 118 119 /// A reserved register has been assigned explicitly (e.g., setting up a 120 /// call parameter), and it remains reserved until it is used. 121 regReserved 122 123 /// A register state may also be a virtual register number, indication 124 /// that the physical register is currently allocated to a virtual 125 /// register. In that case, LiveVirtRegs contains the inverse mapping. 126 }; 127 128 /// Maps each physical register to a RegState enum or a virtual register. 129 std::vector<unsigned> PhysRegState; 130 131 SmallVector<unsigned, 16> VirtDead; 132 SmallVector<MachineInstr *, 32> Coalesced; 133 134 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 RegUnitSet UsedInInstr; 138 139 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 140 141 /// Mark a physreg as used in this instruction. 142 void markRegUsedInInstr(MCPhysReg PhysReg) { 143 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 144 UsedInInstr.insert(*Units); 145 } 146 147 /// Check if a physreg or any of its aliases are used in this instruction. 148 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 150 if (UsedInInstr.count(*Units)) 151 return true; 152 return false; 153 } 154 155 enum : unsigned { 156 spillClean = 50, 157 spillDirty = 100, 158 spillImpossible = ~0u 159 }; 160 161 public: 162 StringRef getPassName() const override { return "Fast Register Allocator"; } 163 164 void getAnalysisUsage(AnalysisUsage &AU) const override { 165 AU.setPreservesCFG(); 166 MachineFunctionPass::getAnalysisUsage(AU); 167 } 168 169 MachineFunctionProperties getRequiredProperties() const override { 170 return MachineFunctionProperties().set( 171 MachineFunctionProperties::Property::NoPHIs); 172 } 173 174 MachineFunctionProperties getSetProperties() const override { 175 return MachineFunctionProperties().set( 176 MachineFunctionProperties::Property::NoVRegs); 177 } 178 179 private: 180 bool runOnMachineFunction(MachineFunction &MF) override; 181 182 void allocateBasicBlock(MachineBasicBlock &MBB); 183 void allocateInstruction(MachineInstr &MI); 184 void handleDebugValue(MachineInstr &MI); 185 void handleThroughOperands(MachineInstr &MI, 186 SmallVectorImpl<unsigned> &VirtDead); 187 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 188 189 void addKillFlag(const LiveReg &LRI); 190 void killVirtReg(LiveReg &LR); 191 void killVirtReg(unsigned VirtReg); 192 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 193 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 194 195 void usePhysReg(MachineOperand &MO); 196 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 197 RegState NewState); 198 unsigned calcSpillCost(MCPhysReg PhysReg) const; 199 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 200 201 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 206 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 207 } 208 209 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 210 void allocVirtRegUndef(MachineOperand &MO); 211 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 212 unsigned Hint); 213 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 214 unsigned Hint); 215 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 216 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 217 218 int getStackSpaceFor(unsigned VirtReg); 219 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 220 MCPhysReg AssignedReg, bool Kill); 221 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 222 MCPhysReg PhysReg); 223 224 bool mayLiveOut(unsigned VirtReg); 225 226 void dumpState(); 227 }; 228 229 } // end anonymous namespace 230 231 char RegAllocFast::ID = 0; 232 233 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 234 false) 235 236 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 237 PhysRegState[PhysReg] = NewState; 238 } 239 240 /// This allocates space for the specified virtual register to be held on the 241 /// stack. 242 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 243 // Find the location Reg would belong... 244 int SS = StackSlotForVirtReg[VirtReg]; 245 // Already has space allocated? 246 if (SS != -1) 247 return SS; 248 249 // Allocate a new stack object for this spill location... 250 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 251 unsigned Size = TRI->getSpillSize(RC); 252 unsigned Align = TRI->getSpillAlignment(RC); 253 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 254 255 // Assign the slot. 256 StackSlotForVirtReg[VirtReg] = FrameIdx; 257 return FrameIdx; 258 } 259 260 /// Returns false if \p VirtReg is known to not live out of the current block. 261 bool RegAllocFast::mayLiveOut(unsigned VirtReg) { 262 if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) { 263 // Cannot be live-out if there are no successors. 264 return !MBB->succ_empty(); 265 } 266 267 // If this block loops back to itself, it would be necessary to check whether 268 // the use comes after the def. 269 if (MBB->isSuccessor(MBB)) 270 return true; 271 272 // See if the first \p Limit uses of the register are all in the current 273 // block. 274 static const unsigned Limit = 8; 275 unsigned C = 0; 276 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 277 if (UseInst.getParent() != MBB || ++C >= Limit) { 278 MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); 279 // Cannot be live-out if there are no successors. 280 return !MBB->succ_empty(); 281 } 282 } 283 284 return false; 285 } 286 287 /// Insert spill instruction for \p AssignedReg before \p Before. Update 288 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 289 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 290 MCPhysReg AssignedReg, bool Kill) { 291 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 292 << " in " << printReg(AssignedReg, TRI)); 293 int FI = getStackSpaceFor(VirtReg); 294 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 295 296 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 297 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 298 ++NumStores; 299 300 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 301 // identify spilled location as the place to find corresponding variable's 302 // value. 303 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 304 for (MachineInstr *DBG : LRIDbgValues) { 305 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 306 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 307 (void)NewDV; 308 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 309 } 310 // Now this register is spilled there is should not be any DBG_VALUE 311 // pointing to this register because they are all pointing to spilled value 312 // now. 313 LRIDbgValues.clear(); 314 } 315 316 /// Insert reload instruction for \p PhysReg before \p Before. 317 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 318 MCPhysReg PhysReg) { 319 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 320 << printReg(PhysReg, TRI) << '\n'); 321 int FI = getStackSpaceFor(VirtReg); 322 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 323 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 324 ++NumLoads; 325 } 326 327 /// Return true if MO is the only remaining reference to its virtual register, 328 /// and it is guaranteed to be a block-local register. 329 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 330 // If the register has ever been spilled or reloaded, we conservatively assume 331 // it is a global register used in multiple blocks. 332 if (StackSlotForVirtReg[MO.getReg()] != -1) 333 return false; 334 335 // Check that the use/def chain has exactly one operand - MO. 336 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 337 if (&*I != &MO) 338 return false; 339 return ++I == MRI->reg_nodbg_end(); 340 } 341 342 /// Set kill flags on last use of a virtual register. 343 void RegAllocFast::addKillFlag(const LiveReg &LR) { 344 if (!LR.LastUse) return; 345 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 346 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 347 if (MO.getReg() == LR.PhysReg) 348 MO.setIsKill(); 349 // else, don't do anything we are problably redefining a 350 // subreg of this register and given we don't track which 351 // lanes are actually dead, we cannot insert a kill flag here. 352 // Otherwise we may end up in a situation like this: 353 // ... = (MO) physreg:sub1, implicit killed physreg 354 // ... <== Here we would allow later pass to reuse physreg:sub1 355 // which is potentially wrong. 356 // LR:sub0 = ... 357 // ... = LR.sub1 <== This is going to use physreg:sub1 358 } 359 } 360 361 /// Mark virtreg as no longer available. 362 void RegAllocFast::killVirtReg(LiveReg &LR) { 363 addKillFlag(LR); 364 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 365 "Broken RegState mapping"); 366 setPhysRegState(LR.PhysReg, regFree); 367 LR.PhysReg = 0; 368 } 369 370 /// Mark virtreg as no longer available. 371 void RegAllocFast::killVirtReg(unsigned VirtReg) { 372 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 373 "killVirtReg needs a virtual register"); 374 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 375 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 376 killVirtReg(*LRI); 377 } 378 379 /// This method spills the value specified by VirtReg into the corresponding 380 /// stack slot if needed. 381 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 382 unsigned VirtReg) { 383 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 384 "Spilling a physical register is illegal!"); 385 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 386 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 387 "Spilling unmapped virtual register"); 388 spillVirtReg(MI, *LRI); 389 } 390 391 /// Do the actual work of spilling. 392 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 393 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 394 395 if (LR.Dirty) { 396 // If this physreg is used by the instruction, we want to kill it on the 397 // instruction, not on the spill. 398 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 399 LR.Dirty = false; 400 401 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 402 403 if (SpillKill) 404 LR.LastUse = nullptr; // Don't kill register again 405 } 406 killVirtReg(LR); 407 } 408 409 /// Spill all dirty virtregs without killing them. 410 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 411 if (LiveVirtRegs.empty()) 412 return; 413 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 414 // of spilling here is deterministic, if arbitrary. 415 for (LiveReg &LR : LiveVirtRegs) { 416 if (!LR.PhysReg) 417 continue; 418 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 419 continue; 420 spillVirtReg(MI, LR); 421 } 422 LiveVirtRegs.clear(); 423 } 424 425 /// Handle the direct use of a physical register. Check that the register is 426 /// not used by a virtreg. Kill the physreg, marking it free. This may add 427 /// implicit kills to MO->getParent() and invalidate MO. 428 void RegAllocFast::usePhysReg(MachineOperand &MO) { 429 // Ignore undef uses. 430 if (MO.isUndef()) 431 return; 432 433 unsigned PhysReg = MO.getReg(); 434 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 435 "Bad usePhysReg operand"); 436 437 markRegUsedInInstr(PhysReg); 438 switch (PhysRegState[PhysReg]) { 439 case regDisabled: 440 break; 441 case regReserved: 442 PhysRegState[PhysReg] = regFree; 443 LLVM_FALLTHROUGH; 444 case regFree: 445 MO.setIsKill(); 446 return; 447 default: 448 // The physreg was allocated to a virtual register. That means the value we 449 // wanted has been clobbered. 450 llvm_unreachable("Instruction uses an allocated register"); 451 } 452 453 // Maybe a superregister is reserved? 454 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 455 MCPhysReg Alias = *AI; 456 switch (PhysRegState[Alias]) { 457 case regDisabled: 458 break; 459 case regReserved: 460 // Either PhysReg is a subregister of Alias and we mark the 461 // whole register as free, or PhysReg is the superregister of 462 // Alias and we mark all the aliases as disabled before freeing 463 // PhysReg. 464 // In the latter case, since PhysReg was disabled, this means that 465 // its value is defined only by physical sub-registers. This check 466 // is performed by the assert of the default case in this loop. 467 // Note: The value of the superregister may only be partial 468 // defined, that is why regDisabled is a valid state for aliases. 469 assert((TRI->isSuperRegister(PhysReg, Alias) || 470 TRI->isSuperRegister(Alias, PhysReg)) && 471 "Instruction is not using a subregister of a reserved register"); 472 LLVM_FALLTHROUGH; 473 case regFree: 474 if (TRI->isSuperRegister(PhysReg, Alias)) { 475 // Leave the superregister in the working set. 476 setPhysRegState(Alias, regFree); 477 MO.getParent()->addRegisterKilled(Alias, TRI, true); 478 return; 479 } 480 // Some other alias was in the working set - clear it. 481 setPhysRegState(Alias, regDisabled); 482 break; 483 default: 484 llvm_unreachable("Instruction uses an alias of an allocated register"); 485 } 486 } 487 488 // All aliases are disabled, bring register into working set. 489 setPhysRegState(PhysReg, regFree); 490 MO.setIsKill(); 491 } 492 493 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 494 /// similar to defineVirtReg except the physreg is reserved instead of 495 /// allocated. 496 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 497 MCPhysReg PhysReg, RegState NewState) { 498 markRegUsedInInstr(PhysReg); 499 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 500 case regDisabled: 501 break; 502 default: 503 spillVirtReg(MI, VirtReg); 504 LLVM_FALLTHROUGH; 505 case regFree: 506 case regReserved: 507 setPhysRegState(PhysReg, NewState); 508 return; 509 } 510 511 // This is a disabled register, disable all aliases. 512 setPhysRegState(PhysReg, NewState); 513 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 514 MCPhysReg Alias = *AI; 515 switch (unsigned VirtReg = PhysRegState[Alias]) { 516 case regDisabled: 517 break; 518 default: 519 spillVirtReg(MI, VirtReg); 520 LLVM_FALLTHROUGH; 521 case regFree: 522 case regReserved: 523 setPhysRegState(Alias, regDisabled); 524 if (TRI->isSuperRegister(PhysReg, Alias)) 525 return; 526 break; 527 } 528 } 529 } 530 531 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 532 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 533 /// disabled - it can be allocated directly. 534 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 535 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 536 if (isRegUsedInInstr(PhysReg)) { 537 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 538 << " is already used in instr.\n"); 539 return spillImpossible; 540 } 541 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 542 case regDisabled: 543 break; 544 case regFree: 545 return 0; 546 case regReserved: 547 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 548 << printReg(PhysReg, TRI) << " is reserved already.\n"); 549 return spillImpossible; 550 default: { 551 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 552 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 553 "Missing VirtReg entry"); 554 return LRI->Dirty ? spillDirty : spillClean; 555 } 556 } 557 558 // This is a disabled register, add up cost of aliases. 559 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 560 unsigned Cost = 0; 561 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 562 MCPhysReg Alias = *AI; 563 switch (unsigned VirtReg = PhysRegState[Alias]) { 564 case regDisabled: 565 break; 566 case regFree: 567 ++Cost; 568 break; 569 case regReserved: 570 return spillImpossible; 571 default: { 572 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 573 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 574 "Missing VirtReg entry"); 575 Cost += LRI->Dirty ? spillDirty : spillClean; 576 break; 577 } 578 } 579 } 580 return Cost; 581 } 582 583 /// This method updates local state so that we know that PhysReg is the 584 /// proper container for VirtReg now. The physical register must not be used 585 /// for anything else when this is called. 586 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 587 unsigned VirtReg = LR.VirtReg; 588 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 589 << printReg(PhysReg, TRI) << '\n'); 590 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 591 assert(PhysReg != 0 && "Trying to assign no register"); 592 LR.PhysReg = PhysReg; 593 setPhysRegState(PhysReg, VirtReg); 594 } 595 596 /// Allocates a physical register for VirtReg. 597 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) { 598 const unsigned VirtReg = LR.VirtReg; 599 600 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 601 "Can only allocate virtual registers"); 602 603 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 604 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 605 << " in class " << TRI->getRegClassName(&RC) 606 << " with hint " << printReg(Hint, TRI) << '\n'); 607 608 // Take hint when possible. 609 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 610 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 611 // Ignore the hint if we would have to spill a dirty register. 612 unsigned Cost = calcSpillCost(Hint); 613 if (Cost < spillDirty) { 614 if (Cost) 615 definePhysReg(MI, Hint, regFree); 616 assignVirtToPhysReg(LR, Hint); 617 return; 618 } 619 } 620 621 MCPhysReg BestReg = 0; 622 unsigned BestCost = spillImpossible; 623 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 624 for (MCPhysReg PhysReg : AllocationOrder) { 625 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 626 unsigned Cost = calcSpillCost(PhysReg); 627 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 628 // Immediate take a register with cost 0. 629 if (Cost == 0) { 630 assignVirtToPhysReg(LR, PhysReg); 631 return; 632 } 633 if (Cost < BestCost) { 634 BestReg = PhysReg; 635 BestCost = Cost; 636 } 637 } 638 639 if (!BestReg) { 640 // Nothing we can do: Report an error and keep going with an invalid 641 // allocation. 642 if (MI.isInlineAsm()) 643 MI.emitError("inline assembly requires more registers than available"); 644 else 645 MI.emitError("ran out of registers during register allocation"); 646 definePhysReg(MI, *AllocationOrder.begin(), regFree); 647 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 648 return; 649 } 650 651 definePhysReg(MI, BestReg, regFree); 652 assignVirtToPhysReg(LR, BestReg); 653 } 654 655 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 656 assert(MO.isUndef() && "expected undef use"); 657 unsigned VirtReg = MO.getReg(); 658 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg"); 659 660 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 661 MCPhysReg PhysReg; 662 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 663 PhysReg = LRI->PhysReg; 664 } else { 665 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 666 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 667 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 668 PhysReg = AllocationOrder[0]; 669 } 670 671 unsigned SubRegIdx = MO.getSubReg(); 672 if (SubRegIdx != 0) { 673 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 674 MO.setSubReg(0); 675 } 676 MO.setReg(PhysReg); 677 MO.setIsRenamable(true); 678 } 679 680 /// Allocates a register for VirtReg and mark it as dirty. 681 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 682 unsigned VirtReg, unsigned Hint) { 683 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 684 "Not a virtual register"); 685 LiveRegMap::iterator LRI; 686 bool New; 687 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 688 if (!LRI->PhysReg) { 689 // If there is no hint, peek at the only use of this register. 690 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 691 MRI->hasOneNonDBGUse(VirtReg)) { 692 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 693 // It's a copy, use the destination register as a hint. 694 if (UseMI.isCopyLike()) 695 Hint = UseMI.getOperand(0).getReg(); 696 } 697 allocVirtReg(MI, *LRI, Hint); 698 } else if (LRI->LastUse) { 699 // Redefining a live register - kill at the last use, unless it is this 700 // instruction defining VirtReg multiple times. 701 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 702 addKillFlag(*LRI); 703 } 704 assert(LRI->PhysReg && "Register not assigned"); 705 LRI->LastUse = &MI; 706 LRI->LastOpNum = OpNum; 707 LRI->Dirty = true; 708 markRegUsedInInstr(LRI->PhysReg); 709 return LRI->PhysReg; 710 } 711 712 /// Make sure VirtReg is available in a physreg and return it. 713 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 714 unsigned OpNum, 715 unsigned VirtReg, 716 unsigned Hint) { 717 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 718 "Not a virtual register"); 719 LiveRegMap::iterator LRI; 720 bool New; 721 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 722 MachineOperand &MO = MI.getOperand(OpNum); 723 if (!LRI->PhysReg) { 724 allocVirtReg(MI, *LRI, Hint); 725 reload(MI, VirtReg, LRI->PhysReg); 726 } else if (LRI->Dirty) { 727 if (isLastUseOfLocalReg(MO)) { 728 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 729 if (MO.isUse()) 730 MO.setIsKill(); 731 else 732 MO.setIsDead(); 733 } else if (MO.isKill()) { 734 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 735 MO.setIsKill(false); 736 } else if (MO.isDead()) { 737 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 738 MO.setIsDead(false); 739 } 740 } else if (MO.isKill()) { 741 // We must remove kill flags from uses of reloaded registers because the 742 // register would be killed immediately, and there might be a second use: 743 // %foo = OR killed %x, %x 744 // This would cause a second reload of %x into a different register. 745 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 746 MO.setIsKill(false); 747 } else if (MO.isDead()) { 748 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 749 MO.setIsDead(false); 750 } 751 assert(LRI->PhysReg && "Register not assigned"); 752 LRI->LastUse = &MI; 753 LRI->LastOpNum = OpNum; 754 markRegUsedInInstr(LRI->PhysReg); 755 return *LRI; 756 } 757 758 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 759 /// may invalidate any operand pointers. Return true if the operand kills its 760 /// register. 761 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 762 MCPhysReg PhysReg) { 763 bool Dead = MO.isDead(); 764 if (!MO.getSubReg()) { 765 MO.setReg(PhysReg); 766 MO.setIsRenamable(true); 767 return MO.isKill() || Dead; 768 } 769 770 // Handle subregister index. 771 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 772 MO.setIsRenamable(true); 773 MO.setSubReg(0); 774 775 // A kill flag implies killing the full register. Add corresponding super 776 // register kill. 777 if (MO.isKill()) { 778 MI.addRegisterKilled(PhysReg, TRI, true); 779 return true; 780 } 781 782 // A <def,read-undef> of a sub-register requires an implicit def of the full 783 // register. 784 if (MO.isDef() && MO.isUndef()) 785 MI.addRegisterDefined(PhysReg, TRI); 786 787 return Dead; 788 } 789 790 // Handles special instruction operand like early clobbers and tied ops when 791 // there are additional physreg defines. 792 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 793 SmallVectorImpl<unsigned> &VirtDead) { 794 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 795 SmallSet<unsigned, 8> ThroughRegs; 796 for (const MachineOperand &MO : MI.operands()) { 797 if (!MO.isReg()) continue; 798 unsigned Reg = MO.getReg(); 799 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 800 continue; 801 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 802 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 803 if (ThroughRegs.insert(Reg).second) 804 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 805 } 806 } 807 808 // If any physreg defines collide with preallocated through registers, 809 // we must spill and reallocate. 810 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 811 for (const MachineOperand &MO : MI.operands()) { 812 if (!MO.isReg() || !MO.isDef()) continue; 813 unsigned Reg = MO.getReg(); 814 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 815 markRegUsedInInstr(Reg); 816 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 817 if (ThroughRegs.count(PhysRegState[*AI])) 818 definePhysReg(MI, *AI, regFree); 819 } 820 } 821 822 SmallVector<unsigned, 8> PartialDefs; 823 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 824 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 825 MachineOperand &MO = MI.getOperand(I); 826 if (!MO.isReg()) continue; 827 unsigned Reg = MO.getReg(); 828 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 829 if (MO.isUse()) { 830 if (!MO.isTied()) continue; 831 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 832 << ") is tied to operand " << MI.findTiedOperandIdx(I) 833 << ".\n"); 834 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 835 MCPhysReg PhysReg = LR.PhysReg; 836 setPhysReg(MI, MO, PhysReg); 837 // Note: we don't update the def operand yet. That would cause the normal 838 // def-scan to attempt spilling. 839 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 840 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 841 // Reload the register, but don't assign to the operand just yet. 842 // That would confuse the later phys-def processing pass. 843 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 844 PartialDefs.push_back(LR.PhysReg); 845 } 846 } 847 848 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 849 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 850 const MachineOperand &MO = MI.getOperand(I); 851 if (!MO.isReg()) continue; 852 unsigned Reg = MO.getReg(); 853 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 854 if (!MO.isEarlyClobber()) 855 continue; 856 // Note: defineVirtReg may invalidate MO. 857 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 858 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 859 VirtDead.push_back(Reg); 860 } 861 862 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 863 UsedInInstr.clear(); 864 for (const MachineOperand &MO : MI.operands()) { 865 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 866 unsigned Reg = MO.getReg(); 867 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 868 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 869 << " as used in instr\n"); 870 markRegUsedInInstr(Reg); 871 } 872 873 // Also mark PartialDefs as used to avoid reallocation. 874 for (unsigned PartialDef : PartialDefs) 875 markRegUsedInInstr(PartialDef); 876 } 877 878 #ifndef NDEBUG 879 void RegAllocFast::dumpState() { 880 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 881 if (PhysRegState[Reg] == regDisabled) continue; 882 dbgs() << " " << printReg(Reg, TRI); 883 switch(PhysRegState[Reg]) { 884 case regFree: 885 break; 886 case regReserved: 887 dbgs() << "*"; 888 break; 889 default: { 890 dbgs() << '=' << printReg(PhysRegState[Reg]); 891 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 892 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 893 "Missing VirtReg entry"); 894 if (LRI->Dirty) 895 dbgs() << "*"; 896 assert(LRI->PhysReg == Reg && "Bad inverse map"); 897 break; 898 } 899 } 900 } 901 dbgs() << '\n'; 902 // Check that LiveVirtRegs is the inverse. 903 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 904 e = LiveVirtRegs.end(); i != e; ++i) { 905 if (!i->PhysReg) 906 continue; 907 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 908 "Bad map key"); 909 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 910 "Bad map value"); 911 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 912 } 913 } 914 #endif 915 916 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 917 const MCInstrDesc &MCID = MI.getDesc(); 918 919 // If this is a copy, we may be able to coalesce. 920 unsigned CopySrcReg = 0; 921 unsigned CopyDstReg = 0; 922 unsigned CopySrcSub = 0; 923 unsigned CopyDstSub = 0; 924 if (MI.isCopy()) { 925 CopyDstReg = MI.getOperand(0).getReg(); 926 CopySrcReg = MI.getOperand(1).getReg(); 927 CopyDstSub = MI.getOperand(0).getSubReg(); 928 CopySrcSub = MI.getOperand(1).getSubReg(); 929 } 930 931 // Track registers used by instruction. 932 UsedInInstr.clear(); 933 934 // First scan. 935 // Mark physreg uses and early clobbers as used. 936 // Find the end of the virtreg operands 937 unsigned VirtOpEnd = 0; 938 bool hasTiedOps = false; 939 bool hasEarlyClobbers = false; 940 bool hasPartialRedefs = false; 941 bool hasPhysDefs = false; 942 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 943 MachineOperand &MO = MI.getOperand(i); 944 // Make sure MRI knows about registers clobbered by regmasks. 945 if (MO.isRegMask()) { 946 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 947 continue; 948 } 949 if (!MO.isReg()) continue; 950 unsigned Reg = MO.getReg(); 951 if (!Reg) continue; 952 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 953 VirtOpEnd = i+1; 954 if (MO.isUse()) { 955 hasTiedOps = hasTiedOps || 956 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 957 } else { 958 if (MO.isEarlyClobber()) 959 hasEarlyClobbers = true; 960 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 961 hasPartialRedefs = true; 962 } 963 continue; 964 } 965 if (!MRI->isAllocatable(Reg)) continue; 966 if (MO.isUse()) { 967 usePhysReg(MO); 968 } else if (MO.isEarlyClobber()) { 969 definePhysReg(MI, Reg, 970 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 971 hasEarlyClobbers = true; 972 } else 973 hasPhysDefs = true; 974 } 975 976 // The instruction may have virtual register operands that must be allocated 977 // the same register at use-time and def-time: early clobbers and tied 978 // operands. If there are also physical defs, these registers must avoid 979 // both physical defs and uses, making them more constrained than normal 980 // operands. 981 // Similarly, if there are multiple defs and tied operands, we must make 982 // sure the same register is allocated to uses and defs. 983 // We didn't detect inline asm tied operands above, so just make this extra 984 // pass for all inline asm. 985 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 986 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 987 handleThroughOperands(MI, VirtDead); 988 // Don't attempt coalescing when we have funny stuff going on. 989 CopyDstReg = 0; 990 // Pretend we have early clobbers so the use operands get marked below. 991 // This is not necessary for the common case of a single tied use. 992 hasEarlyClobbers = true; 993 } 994 995 // Second scan. 996 // Allocate virtreg uses. 997 bool HasUndefUse = false; 998 for (unsigned I = 0; I != VirtOpEnd; ++I) { 999 MachineOperand &MO = MI.getOperand(I); 1000 if (!MO.isReg()) continue; 1001 unsigned Reg = MO.getReg(); 1002 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 1003 if (MO.isUse()) { 1004 if (MO.isUndef()) { 1005 HasUndefUse = true; 1006 // There is no need to allocate a register for an undef use. 1007 continue; 1008 } 1009 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1010 MCPhysReg PhysReg = LR.PhysReg; 1011 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1012 if (setPhysReg(MI, MO, PhysReg)) 1013 killVirtReg(LR); 1014 } 1015 } 1016 1017 // Allocate undef operands. This is a separate step because in a situation 1018 // like ` = OP undef %X, %X` both operands need the same register assign 1019 // so we should perform the normal assignment first. 1020 if (HasUndefUse) { 1021 for (MachineOperand &MO : MI.uses()) { 1022 if (!MO.isReg() || !MO.isUse()) 1023 continue; 1024 unsigned Reg = MO.getReg(); 1025 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1026 continue; 1027 1028 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1029 allocVirtRegUndef(MO); 1030 } 1031 } 1032 1033 // Track registers defined by instruction - early clobbers and tied uses at 1034 // this point. 1035 UsedInInstr.clear(); 1036 if (hasEarlyClobbers) { 1037 for (const MachineOperand &MO : MI.operands()) { 1038 if (!MO.isReg()) continue; 1039 unsigned Reg = MO.getReg(); 1040 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1041 // Look for physreg defs and tied uses. 1042 if (!MO.isDef() && !MO.isTied()) continue; 1043 markRegUsedInInstr(Reg); 1044 } 1045 } 1046 1047 unsigned DefOpEnd = MI.getNumOperands(); 1048 if (MI.isCall()) { 1049 // Spill all virtregs before a call. This serves one purpose: If an 1050 // exception is thrown, the landing pad is going to expect to find 1051 // registers in their spill slots. 1052 // Note: although this is appealing to just consider all definitions 1053 // as call-clobbered, this is not correct because some of those 1054 // definitions may be used later on and we do not want to reuse 1055 // those for virtual registers in between. 1056 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1057 spillAll(MI, /*OnlyLiveOut*/ false); 1058 } 1059 1060 // Third scan. 1061 // Mark all physreg defs as used before allocating virtreg defs. 1062 for (unsigned I = 0; I != DefOpEnd; ++I) { 1063 const MachineOperand &MO = MI.getOperand(I); 1064 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1065 continue; 1066 unsigned Reg = MO.getReg(); 1067 1068 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) || 1069 !MRI->isAllocatable(Reg)) 1070 continue; 1071 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1072 } 1073 1074 // Fourth scan. 1075 // Allocate defs and collect dead defs. 1076 for (unsigned I = 0; I != DefOpEnd; ++I) { 1077 const MachineOperand &MO = MI.getOperand(I); 1078 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1079 continue; 1080 unsigned Reg = MO.getReg(); 1081 1082 // We have already dealt with phys regs in the previous scan. 1083 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1084 continue; 1085 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1086 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1087 VirtDead.push_back(Reg); 1088 CopyDstReg = 0; // cancel coalescing; 1089 } else 1090 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1091 } 1092 1093 // Kill dead defs after the scan to ensure that multiple defs of the same 1094 // register are allocated identically. We didn't need to do this for uses 1095 // because we are crerating our own kill flags, and they are always at the 1096 // last use. 1097 for (unsigned VirtReg : VirtDead) 1098 killVirtReg(VirtReg); 1099 VirtDead.clear(); 1100 1101 LLVM_DEBUG(dbgs() << "<< " << MI); 1102 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1103 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1104 Coalesced.push_back(&MI); 1105 } 1106 } 1107 1108 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1109 MachineOperand &MO = MI.getOperand(0); 1110 1111 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1112 // mostly constants and frame indices. 1113 if (!MO.isReg()) 1114 return; 1115 unsigned Reg = MO.getReg(); 1116 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1117 return; 1118 1119 // See if this virtual register has already been allocated to a physical 1120 // register or spilled to a stack slot. 1121 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1122 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1123 setPhysReg(MI, MO, LRI->PhysReg); 1124 } else { 1125 int SS = StackSlotForVirtReg[Reg]; 1126 if (SS != -1) { 1127 // Modify DBG_VALUE now that the value is in a spill slot. 1128 updateDbgValueForSpill(MI, SS); 1129 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1130 return; 1131 } 1132 1133 // We can't allocate a physreg for a DebugValue, sorry! 1134 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1135 MO.setReg(0); 1136 } 1137 1138 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1139 // that future spills of Reg will have DBG_VALUEs. 1140 LiveDbgValueMap[Reg].push_back(&MI); 1141 } 1142 1143 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1144 this->MBB = &MBB; 1145 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1146 1147 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1148 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1149 1150 MachineBasicBlock::iterator MII = MBB.begin(); 1151 1152 // Add live-in registers as live. 1153 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1154 if (MRI->isAllocatable(LI.PhysReg)) 1155 definePhysReg(MII, LI.PhysReg, regReserved); 1156 1157 VirtDead.clear(); 1158 Coalesced.clear(); 1159 1160 // Otherwise, sequentially allocate each instruction in the MBB. 1161 for (MachineInstr &MI : MBB) { 1162 LLVM_DEBUG( 1163 dbgs() << "\n>> " << MI << "Regs:"; 1164 dumpState() 1165 ); 1166 1167 // Special handling for debug values. Note that they are not allowed to 1168 // affect codegen of the other instructions in any way. 1169 if (MI.isDebugValue()) { 1170 handleDebugValue(MI); 1171 continue; 1172 } 1173 1174 allocateInstruction(MI); 1175 } 1176 1177 // Spill all physical registers holding virtual registers now. 1178 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1179 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1180 1181 // Erase all the coalesced copies. We are delaying it until now because 1182 // LiveVirtRegs might refer to the instrs. 1183 for (MachineInstr *MI : Coalesced) 1184 MBB.erase(MI); 1185 NumCoalesced += Coalesced.size(); 1186 1187 LLVM_DEBUG(MBB.dump()); 1188 } 1189 1190 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1191 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1192 << "********** Function: " << MF.getName() << '\n'); 1193 MRI = &MF.getRegInfo(); 1194 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1195 TRI = STI.getRegisterInfo(); 1196 TII = STI.getInstrInfo(); 1197 MFI = &MF.getFrameInfo(); 1198 MRI->freezeReservedRegs(MF); 1199 RegClassInfo.runOnMachineFunction(MF); 1200 UsedInInstr.clear(); 1201 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1202 1203 // initialize the virtual->physical register map to have a 'null' 1204 // mapping for all virtual registers 1205 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1206 StackSlotForVirtReg.resize(NumVirtRegs); 1207 LiveVirtRegs.setUniverse(NumVirtRegs); 1208 MayLiveAcrossBlocks.clear(); 1209 MayLiveAcrossBlocks.resize(NumVirtRegs); 1210 1211 // Loop over all of the basic blocks, eliminating virtual register references 1212 for (MachineBasicBlock &MBB : MF) 1213 allocateBasicBlock(MBB); 1214 1215 // All machine operands and other references to virtual registers have been 1216 // replaced. Remove the virtual registers. 1217 MRI->clearVirtRegs(); 1218 1219 StackSlotForVirtReg.clear(); 1220 LiveDbgValueMap.clear(); 1221 return true; 1222 } 1223 1224 FunctionPass *llvm::createFastRegisterAllocator() { 1225 return new RegAllocFast(); 1226 } 1227