1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 Register VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 92 93 unsigned getSparseSetIndex() const { 94 return Register::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 /// This map contains entries for each virtual register that is currently 100 /// available in a physical register. 101 LiveRegMap LiveVirtRegs; 102 103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 104 105 /// Has a bit set for every virtual register for which it was determined 106 /// that it is alive across blocks. 107 BitVector MayLiveAcrossBlocks; 108 109 /// State of a physical register. 110 enum RegState { 111 /// A disabled register is not available for allocation, but an alias may 112 /// be in use. A register can only be moved out of the disabled state if 113 /// all aliases are disabled. 114 regDisabled, 115 116 /// A free register is not currently in use and can be allocated 117 /// immediately without checking aliases. 118 regFree, 119 120 /// A reserved register has been assigned explicitly (e.g., setting up a 121 /// call parameter), and it remains reserved until it is used. 122 regReserved 123 124 /// A register state may also be a virtual register number, indication 125 /// that the physical register is currently allocated to a virtual 126 /// register. In that case, LiveVirtRegs contains the inverse mapping. 127 }; 128 129 /// Maps each physical register to a RegState enum or a virtual register. 130 std::vector<unsigned> PhysRegState; 131 132 SmallVector<Register, 16> VirtDead; 133 SmallVector<MachineInstr *, 32> Coalesced; 134 135 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 136 /// Set of register units that are used in the current instruction, and so 137 /// cannot be allocated. 138 RegUnitSet UsedInInstr; 139 140 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 141 142 /// Mark a physreg as used in this instruction. 143 void markRegUsedInInstr(MCPhysReg PhysReg) { 144 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 145 UsedInInstr.insert(*Units); 146 } 147 148 /// Check if a physreg or any of its aliases are used in this instruction. 149 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 150 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 151 if (UsedInInstr.count(*Units)) 152 return true; 153 return false; 154 } 155 156 enum : unsigned { 157 spillClean = 50, 158 spillDirty = 100, 159 spillPrefBonus = 20, 160 spillImpossible = ~0u 161 }; 162 163 public: 164 StringRef getPassName() const override { return "Fast Register Allocator"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesCFG(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoPHIs); 174 } 175 176 MachineFunctionProperties getSetProperties() const override { 177 return MachineFunctionProperties().set( 178 MachineFunctionProperties::Property::NoVRegs); 179 } 180 181 private: 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void allocateBasicBlock(MachineBasicBlock &MBB); 185 void allocateInstruction(MachineInstr &MI); 186 void handleDebugValue(MachineInstr &MI); 187 void handleThroughOperands(MachineInstr &MI, 188 SmallVectorImpl<Register> &VirtDead); 189 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 190 191 void addKillFlag(const LiveReg &LRI); 192 void killVirtReg(LiveReg &LR); 193 void killVirtReg(Register VirtReg); 194 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 195 void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg); 196 197 void usePhysReg(MachineOperand &MO); 198 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 199 RegState NewState); 200 unsigned calcSpillCost(MCPhysReg PhysReg) const; 201 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 202 203 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 204 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 205 } 206 207 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 208 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 209 } 210 211 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint); 212 void allocVirtRegUndef(MachineOperand &MO); 213 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 214 Register Hint); 215 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 216 Register Hint); 217 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 218 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 219 220 Register traceCopies(Register VirtReg) const; 221 Register traceCopyChain(Register Reg) const; 222 223 int getStackSpaceFor(Register VirtReg); 224 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 225 MCPhysReg AssignedReg, bool Kill); 226 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 227 MCPhysReg PhysReg); 228 229 bool mayLiveOut(Register VirtReg); 230 bool mayLiveIn(Register VirtReg); 231 232 void dumpState(); 233 }; 234 235 } // end anonymous namespace 236 237 char RegAllocFast::ID = 0; 238 239 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 240 false) 241 242 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 243 PhysRegState[PhysReg] = NewState; 244 } 245 246 /// This allocates space for the specified virtual register to be held on the 247 /// stack. 248 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 249 // Find the location Reg would belong... 250 int SS = StackSlotForVirtReg[VirtReg]; 251 // Already has space allocated? 252 if (SS != -1) 253 return SS; 254 255 // Allocate a new stack object for this spill location... 256 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 257 unsigned Size = TRI->getSpillSize(RC); 258 Align Alignment = TRI->getSpillAlign(RC); 259 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 260 261 // Assign the slot. 262 StackSlotForVirtReg[VirtReg] = FrameIdx; 263 return FrameIdx; 264 } 265 266 static bool dominates(MachineBasicBlock &MBB, 267 MachineBasicBlock::const_iterator A, 268 MachineBasicBlock::const_iterator B) { 269 auto MBBEnd = MBB.end(); 270 if (B == MBBEnd) 271 return true; 272 273 MachineBasicBlock::const_iterator I = MBB.begin(); 274 for (; &*I != A && &*I != B; ++I) 275 ; 276 277 return &*I == A; 278 } 279 280 /// Returns false if \p VirtReg is known to not live out of the current block. 281 bool RegAllocFast::mayLiveOut(Register VirtReg) { 282 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 283 // Cannot be live-out if there are no successors. 284 return !MBB->succ_empty(); 285 } 286 287 const MachineInstr *SelfLoopDef = nullptr; 288 289 // If this block loops back to itself, it is necessary to check whether the 290 // use comes after the def. 291 if (MBB->isSuccessor(MBB)) { 292 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 293 if (!SelfLoopDef) { 294 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 295 return true; 296 } 297 } 298 299 // See if the first \p Limit uses of the register are all in the current 300 // block. 301 static const unsigned Limit = 8; 302 unsigned C = 0; 303 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 304 if (UseInst.getParent() != MBB || ++C >= Limit) { 305 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 306 // Cannot be live-out if there are no successors. 307 return !MBB->succ_empty(); 308 } 309 310 if (SelfLoopDef) { 311 // Try to handle some simple cases to avoid spilling and reloading every 312 // value inside a self looping block. 313 if (SelfLoopDef == &UseInst || 314 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 315 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 316 return true; 317 } 318 } 319 } 320 321 return false; 322 } 323 324 /// Returns false if \p VirtReg is known to not be live into the current block. 325 bool RegAllocFast::mayLiveIn(Register VirtReg) { 326 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 327 return !MBB->pred_empty(); 328 329 // See if the first \p Limit def of the register are all in the current block. 330 static const unsigned Limit = 8; 331 unsigned C = 0; 332 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 333 if (DefInst.getParent() != MBB || ++C >= Limit) { 334 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 335 return !MBB->pred_empty(); 336 } 337 } 338 339 return false; 340 } 341 342 /// Insert spill instruction for \p AssignedReg before \p Before. Update 343 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 344 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 345 MCPhysReg AssignedReg, bool Kill) { 346 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 347 << " in " << printReg(AssignedReg, TRI)); 348 int FI = getStackSpaceFor(VirtReg); 349 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 350 351 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 352 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 353 ++NumStores; 354 355 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 356 // identify spilled location as the place to find corresponding variable's 357 // value. 358 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 359 for (MachineInstr *DBG : LRIDbgValues) { 360 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 361 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 362 (void)NewDV; 363 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 364 } 365 // Now this register is spilled there is should not be any DBG_VALUE 366 // pointing to this register because they are all pointing to spilled value 367 // now. 368 LRIDbgValues.clear(); 369 } 370 371 /// Insert reload instruction for \p PhysReg before \p Before. 372 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 373 MCPhysReg PhysReg) { 374 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 375 << printReg(PhysReg, TRI) << '\n'); 376 int FI = getStackSpaceFor(VirtReg); 377 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 378 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 379 ++NumLoads; 380 } 381 382 /// Return true if MO is the only remaining reference to its virtual register, 383 /// and it is guaranteed to be a block-local register. 384 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 385 // If the register has ever been spilled or reloaded, we conservatively assume 386 // it is a global register used in multiple blocks. 387 if (StackSlotForVirtReg[MO.getReg()] != -1) 388 return false; 389 390 // Check that the use/def chain has exactly one operand - MO. 391 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 392 if (&*I != &MO) 393 return false; 394 return ++I == MRI->reg_nodbg_end(); 395 } 396 397 /// Set kill flags on last use of a virtual register. 398 void RegAllocFast::addKillFlag(const LiveReg &LR) { 399 if (!LR.LastUse) return; 400 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 401 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 402 if (MO.getReg() == LR.PhysReg) 403 MO.setIsKill(); 404 // else, don't do anything we are problably redefining a 405 // subreg of this register and given we don't track which 406 // lanes are actually dead, we cannot insert a kill flag here. 407 // Otherwise we may end up in a situation like this: 408 // ... = (MO) physreg:sub1, implicit killed physreg 409 // ... <== Here we would allow later pass to reuse physreg:sub1 410 // which is potentially wrong. 411 // LR:sub0 = ... 412 // ... = LR.sub1 <== This is going to use physreg:sub1 413 } 414 } 415 416 /// Mark virtreg as no longer available. 417 void RegAllocFast::killVirtReg(LiveReg &LR) { 418 addKillFlag(LR); 419 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 420 "Broken RegState mapping"); 421 setPhysRegState(LR.PhysReg, regFree); 422 LR.PhysReg = 0; 423 } 424 425 /// Mark virtreg as no longer available. 426 void RegAllocFast::killVirtReg(Register VirtReg) { 427 assert(Register::isVirtualRegister(VirtReg) && 428 "killVirtReg needs a virtual register"); 429 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 430 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 431 killVirtReg(*LRI); 432 } 433 434 /// This method spills the value specified by VirtReg into the corresponding 435 /// stack slot if needed. 436 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 437 Register VirtReg) { 438 assert(Register::isVirtualRegister(VirtReg) && 439 "Spilling a physical register is illegal!"); 440 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 441 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 442 "Spilling unmapped virtual register"); 443 spillVirtReg(MI, *LRI); 444 } 445 446 /// Do the actual work of spilling. 447 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 448 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 449 450 if (LR.Dirty) { 451 // If this physreg is used by the instruction, we want to kill it on the 452 // instruction, not on the spill. 453 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 454 LR.Dirty = false; 455 456 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 457 458 if (SpillKill) 459 LR.LastUse = nullptr; // Don't kill register again 460 } 461 killVirtReg(LR); 462 } 463 464 /// Spill all dirty virtregs without killing them. 465 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 466 if (LiveVirtRegs.empty()) 467 return; 468 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 469 // of spilling here is deterministic, if arbitrary. 470 for (LiveReg &LR : LiveVirtRegs) { 471 if (!LR.PhysReg) 472 continue; 473 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 474 continue; 475 spillVirtReg(MI, LR); 476 } 477 LiveVirtRegs.clear(); 478 } 479 480 /// Handle the direct use of a physical register. Check that the register is 481 /// not used by a virtreg. Kill the physreg, marking it free. This may add 482 /// implicit kills to MO->getParent() and invalidate MO. 483 void RegAllocFast::usePhysReg(MachineOperand &MO) { 484 // Ignore undef uses. 485 if (MO.isUndef()) 486 return; 487 488 Register PhysReg = MO.getReg(); 489 assert(PhysReg.isPhysical() && "Bad usePhysReg operand"); 490 491 markRegUsedInInstr(PhysReg); 492 switch (PhysRegState[PhysReg]) { 493 case regDisabled: 494 break; 495 case regReserved: 496 PhysRegState[PhysReg] = regFree; 497 LLVM_FALLTHROUGH; 498 case regFree: 499 MO.setIsKill(); 500 return; 501 default: 502 // The physreg was allocated to a virtual register. That means the value we 503 // wanted has been clobbered. 504 llvm_unreachable("Instruction uses an allocated register"); 505 } 506 507 // Maybe a superregister is reserved? 508 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 509 MCPhysReg Alias = *AI; 510 switch (PhysRegState[Alias]) { 511 case regDisabled: 512 break; 513 case regReserved: 514 // Either PhysReg is a subregister of Alias and we mark the 515 // whole register as free, or PhysReg is the superregister of 516 // Alias and we mark all the aliases as disabled before freeing 517 // PhysReg. 518 // In the latter case, since PhysReg was disabled, this means that 519 // its value is defined only by physical sub-registers. This check 520 // is performed by the assert of the default case in this loop. 521 // Note: The value of the superregister may only be partial 522 // defined, that is why regDisabled is a valid state for aliases. 523 assert((TRI->isSuperRegister(PhysReg, Alias) || 524 TRI->isSuperRegister(Alias, PhysReg)) && 525 "Instruction is not using a subregister of a reserved register"); 526 LLVM_FALLTHROUGH; 527 case regFree: 528 if (TRI->isSuperRegister(PhysReg, Alias)) { 529 // Leave the superregister in the working set. 530 setPhysRegState(Alias, regFree); 531 MO.getParent()->addRegisterKilled(Alias, TRI, true); 532 return; 533 } 534 // Some other alias was in the working set - clear it. 535 setPhysRegState(Alias, regDisabled); 536 break; 537 default: 538 llvm_unreachable("Instruction uses an alias of an allocated register"); 539 } 540 } 541 542 // All aliases are disabled, bring register into working set. 543 setPhysRegState(PhysReg, regFree); 544 MO.setIsKill(); 545 } 546 547 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 548 /// similar to defineVirtReg except the physreg is reserved instead of 549 /// allocated. 550 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 551 MCPhysReg PhysReg, RegState NewState) { 552 markRegUsedInInstr(PhysReg); 553 switch (Register VirtReg = PhysRegState[PhysReg]) { 554 case regDisabled: 555 break; 556 default: 557 spillVirtReg(MI, VirtReg); 558 LLVM_FALLTHROUGH; 559 case regFree: 560 case regReserved: 561 setPhysRegState(PhysReg, NewState); 562 return; 563 } 564 565 // This is a disabled register, disable all aliases. 566 setPhysRegState(PhysReg, NewState); 567 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 568 MCPhysReg Alias = *AI; 569 switch (Register VirtReg = PhysRegState[Alias]) { 570 case regDisabled: 571 break; 572 default: 573 spillVirtReg(MI, VirtReg); 574 LLVM_FALLTHROUGH; 575 case regFree: 576 case regReserved: 577 setPhysRegState(Alias, regDisabled); 578 if (TRI->isSuperRegister(PhysReg, Alias)) 579 return; 580 break; 581 } 582 } 583 } 584 585 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 586 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 587 /// disabled - it can be allocated directly. 588 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 589 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 590 if (isRegUsedInInstr(PhysReg)) { 591 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 592 << " is already used in instr.\n"); 593 return spillImpossible; 594 } 595 switch (Register VirtReg = PhysRegState[PhysReg]) { 596 case regDisabled: 597 break; 598 case regFree: 599 return 0; 600 case regReserved: 601 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 602 << printReg(PhysReg, TRI) << " is reserved already.\n"); 603 return spillImpossible; 604 default: { 605 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 606 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 607 "Missing VirtReg entry"); 608 return LRI->Dirty ? spillDirty : spillClean; 609 } 610 } 611 612 // This is a disabled register, add up cost of aliases. 613 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 614 unsigned Cost = 0; 615 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 616 MCPhysReg Alias = *AI; 617 switch (Register VirtReg = PhysRegState[Alias]) { 618 case regDisabled: 619 break; 620 case regFree: 621 ++Cost; 622 break; 623 case regReserved: 624 return spillImpossible; 625 default: { 626 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 627 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 628 "Missing VirtReg entry"); 629 Cost += LRI->Dirty ? spillDirty : spillClean; 630 break; 631 } 632 } 633 } 634 return Cost; 635 } 636 637 /// This method updates local state so that we know that PhysReg is the 638 /// proper container for VirtReg now. The physical register must not be used 639 /// for anything else when this is called. 640 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 641 Register VirtReg = LR.VirtReg; 642 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 643 << printReg(PhysReg, TRI) << '\n'); 644 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 645 assert(PhysReg != 0 && "Trying to assign no register"); 646 LR.PhysReg = PhysReg; 647 setPhysRegState(PhysReg, VirtReg); 648 } 649 650 static bool isCoalescable(const MachineInstr &MI) { 651 return MI.isFullCopy(); 652 } 653 654 Register RegAllocFast::traceCopyChain(Register Reg) const { 655 static const unsigned ChainLengthLimit = 3; 656 unsigned C = 0; 657 do { 658 if (Reg.isPhysical()) 659 return Reg; 660 assert(Reg.isVirtual()); 661 662 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 663 if (!VRegDef || !isCoalescable(*VRegDef)) 664 return 0; 665 Reg = VRegDef->getOperand(1).getReg(); 666 } while (++C <= ChainLengthLimit); 667 return 0; 668 } 669 670 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 671 /// chain of copies to check whether we reach a physical register we can 672 /// coalesce with. 673 Register RegAllocFast::traceCopies(Register VirtReg) const { 674 static const unsigned DefLimit = 3; 675 unsigned C = 0; 676 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 677 if (isCoalescable(MI)) { 678 Register Reg = MI.getOperand(1).getReg(); 679 Reg = traceCopyChain(Reg); 680 if (Reg.isValid()) 681 return Reg; 682 } 683 684 if (++C >= DefLimit) 685 break; 686 } 687 return Register(); 688 } 689 690 /// Allocates a physical register for VirtReg. 691 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) { 692 const Register VirtReg = LR.VirtReg; 693 694 assert(Register::isVirtualRegister(VirtReg) && 695 "Can only allocate virtual registers"); 696 697 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 698 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 699 << " in class " << TRI->getRegClassName(&RC) 700 << " with hint " << printReg(Hint0, TRI) << '\n'); 701 702 // Take hint when possible. 703 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && 704 RC.contains(Hint0)) { 705 // Ignore the hint if we would have to spill a dirty register. 706 unsigned Cost = calcSpillCost(Hint0); 707 if (Cost < spillDirty) { 708 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 709 << '\n'); 710 if (Cost) 711 definePhysReg(MI, Hint0, regFree); 712 assignVirtToPhysReg(LR, Hint0); 713 return; 714 } else { 715 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 716 << "occupied\n"); 717 } 718 } else { 719 Hint0 = Register(); 720 } 721 722 // Try other hint. 723 Register Hint1 = traceCopies(VirtReg); 724 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && 725 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { 726 // Ignore the hint if we would have to spill a dirty register. 727 unsigned Cost = calcSpillCost(Hint1); 728 if (Cost < spillDirty) { 729 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 730 << '\n'); 731 if (Cost) 732 definePhysReg(MI, Hint1, regFree); 733 assignVirtToPhysReg(LR, Hint1); 734 return; 735 } else { 736 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 737 << "occupied\n"); 738 } 739 } else { 740 Hint1 = Register(); 741 } 742 743 MCPhysReg BestReg = 0; 744 unsigned BestCost = spillImpossible; 745 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 746 for (MCPhysReg PhysReg : AllocationOrder) { 747 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 748 unsigned Cost = calcSpillCost(PhysReg); 749 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 750 // Immediate take a register with cost 0. 751 if (Cost == 0) { 752 assignVirtToPhysReg(LR, PhysReg); 753 return; 754 } 755 756 if (PhysReg == Hint1 || PhysReg == Hint0) 757 Cost -= spillPrefBonus; 758 759 if (Cost < BestCost) { 760 BestReg = PhysReg; 761 BestCost = Cost; 762 } 763 } 764 765 if (!BestReg) { 766 // Nothing we can do: Report an error and keep going with an invalid 767 // allocation. 768 if (MI.isInlineAsm()) 769 MI.emitError("inline assembly requires more registers than available"); 770 else 771 MI.emitError("ran out of registers during register allocation"); 772 definePhysReg(MI, *AllocationOrder.begin(), regFree); 773 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 774 return; 775 } 776 777 definePhysReg(MI, BestReg, regFree); 778 assignVirtToPhysReg(LR, BestReg); 779 } 780 781 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 782 assert(MO.isUndef() && "expected undef use"); 783 Register VirtReg = MO.getReg(); 784 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 785 786 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 787 MCPhysReg PhysReg; 788 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 789 PhysReg = LRI->PhysReg; 790 } else { 791 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 792 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 793 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 794 PhysReg = AllocationOrder[0]; 795 } 796 797 unsigned SubRegIdx = MO.getSubReg(); 798 if (SubRegIdx != 0) { 799 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 800 MO.setSubReg(0); 801 } 802 MO.setReg(PhysReg); 803 MO.setIsRenamable(true); 804 } 805 806 /// Allocates a register for VirtReg and mark it as dirty. 807 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 808 Register VirtReg, Register Hint) { 809 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 810 LiveRegMap::iterator LRI; 811 bool New; 812 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 813 if (!LRI->PhysReg) { 814 // If there is no hint, peek at the only use of this register. 815 if ((!Hint || !Hint.isPhysical()) && 816 MRI->hasOneNonDBGUse(VirtReg)) { 817 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 818 // It's a copy, use the destination register as a hint. 819 if (UseMI.isCopyLike()) 820 Hint = UseMI.getOperand(0).getReg(); 821 } 822 allocVirtReg(MI, *LRI, Hint); 823 } else if (LRI->LastUse) { 824 // Redefining a live register - kill at the last use, unless it is this 825 // instruction defining VirtReg multiple times. 826 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 827 addKillFlag(*LRI); 828 } 829 assert(LRI->PhysReg && "Register not assigned"); 830 LRI->LastUse = &MI; 831 LRI->LastOpNum = OpNum; 832 LRI->Dirty = true; 833 markRegUsedInInstr(LRI->PhysReg); 834 return LRI->PhysReg; 835 } 836 837 /// Make sure VirtReg is available in a physreg and return it. 838 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 839 unsigned OpNum, 840 Register VirtReg, 841 Register Hint) { 842 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 843 LiveRegMap::iterator LRI; 844 bool New; 845 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 846 MachineOperand &MO = MI.getOperand(OpNum); 847 if (!LRI->PhysReg) { 848 allocVirtReg(MI, *LRI, Hint); 849 reload(MI, VirtReg, LRI->PhysReg); 850 } else if (LRI->Dirty) { 851 if (isLastUseOfLocalReg(MO)) { 852 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 853 if (MO.isUse()) 854 MO.setIsKill(); 855 else 856 MO.setIsDead(); 857 } else if (MO.isKill()) { 858 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 859 MO.setIsKill(false); 860 } else if (MO.isDead()) { 861 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 862 MO.setIsDead(false); 863 } 864 } else if (MO.isKill()) { 865 // We must remove kill flags from uses of reloaded registers because the 866 // register would be killed immediately, and there might be a second use: 867 // %foo = OR killed %x, %x 868 // This would cause a second reload of %x into a different register. 869 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 870 MO.setIsKill(false); 871 } else if (MO.isDead()) { 872 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 873 MO.setIsDead(false); 874 } 875 assert(LRI->PhysReg && "Register not assigned"); 876 LRI->LastUse = &MI; 877 LRI->LastOpNum = OpNum; 878 markRegUsedInInstr(LRI->PhysReg); 879 return *LRI; 880 } 881 882 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 883 /// may invalidate any operand pointers. Return true if the operand kills its 884 /// register. 885 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 886 MCPhysReg PhysReg) { 887 bool Dead = MO.isDead(); 888 if (!MO.getSubReg()) { 889 MO.setReg(PhysReg); 890 MO.setIsRenamable(true); 891 return MO.isKill() || Dead; 892 } 893 894 // Handle subregister index. 895 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 896 MO.setIsRenamable(true); 897 MO.setSubReg(0); 898 899 // A kill flag implies killing the full register. Add corresponding super 900 // register kill. 901 if (MO.isKill()) { 902 MI.addRegisterKilled(PhysReg, TRI, true); 903 return true; 904 } 905 906 // A <def,read-undef> of a sub-register requires an implicit def of the full 907 // register. 908 if (MO.isDef() && MO.isUndef()) 909 MI.addRegisterDefined(PhysReg, TRI); 910 911 return Dead; 912 } 913 914 // Handles special instruction operand like early clobbers and tied ops when 915 // there are additional physreg defines. 916 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 917 SmallVectorImpl<Register> &VirtDead) { 918 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 919 SmallSet<Register, 8> ThroughRegs; 920 for (const MachineOperand &MO : MI.operands()) { 921 if (!MO.isReg()) continue; 922 Register Reg = MO.getReg(); 923 if (!Reg.isVirtual()) 924 continue; 925 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 926 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 927 if (ThroughRegs.insert(Reg).second) 928 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 929 } 930 } 931 932 // If any physreg defines collide with preallocated through registers, 933 // we must spill and reallocate. 934 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 935 for (const MachineOperand &MO : MI.operands()) { 936 if (!MO.isReg() || !MO.isDef()) continue; 937 Register Reg = MO.getReg(); 938 if (!Reg || !Reg.isPhysical()) 939 continue; 940 markRegUsedInInstr(Reg); 941 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 942 if (ThroughRegs.count(PhysRegState[*AI])) 943 definePhysReg(MI, *AI, regFree); 944 } 945 } 946 947 SmallVector<Register, 8> PartialDefs; 948 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 949 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 950 MachineOperand &MO = MI.getOperand(I); 951 if (!MO.isReg()) continue; 952 Register Reg = MO.getReg(); 953 if (!Register::isVirtualRegister(Reg)) 954 continue; 955 if (MO.isUse()) { 956 if (!MO.isTied()) continue; 957 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 958 << ") is tied to operand " << MI.findTiedOperandIdx(I) 959 << ".\n"); 960 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 961 MCPhysReg PhysReg = LR.PhysReg; 962 setPhysReg(MI, MO, PhysReg); 963 // Note: we don't update the def operand yet. That would cause the normal 964 // def-scan to attempt spilling. 965 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 966 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 967 // Reload the register, but don't assign to the operand just yet. 968 // That would confuse the later phys-def processing pass. 969 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 970 PartialDefs.push_back(LR.PhysReg); 971 } 972 } 973 974 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 975 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 976 const MachineOperand &MO = MI.getOperand(I); 977 if (!MO.isReg()) continue; 978 Register Reg = MO.getReg(); 979 if (!Register::isVirtualRegister(Reg)) 980 continue; 981 if (!MO.isEarlyClobber()) 982 continue; 983 // Note: defineVirtReg may invalidate MO. 984 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 985 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 986 VirtDead.push_back(Reg); 987 } 988 989 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 990 UsedInInstr.clear(); 991 for (const MachineOperand &MO : MI.operands()) { 992 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 993 Register Reg = MO.getReg(); 994 if (!Reg || !Reg.isPhysical()) 995 continue; 996 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 997 << " as used in instr\n"); 998 markRegUsedInInstr(Reg); 999 } 1000 1001 // Also mark PartialDefs as used to avoid reallocation. 1002 for (Register PartialDef : PartialDefs) 1003 markRegUsedInInstr(PartialDef); 1004 } 1005 1006 #ifndef NDEBUG 1007 void RegAllocFast::dumpState() { 1008 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 1009 if (PhysRegState[Reg] == regDisabled) continue; 1010 dbgs() << " " << printReg(Reg, TRI); 1011 switch(PhysRegState[Reg]) { 1012 case regFree: 1013 break; 1014 case regReserved: 1015 dbgs() << "*"; 1016 break; 1017 default: { 1018 dbgs() << '=' << printReg(PhysRegState[Reg]); 1019 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 1020 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 1021 "Missing VirtReg entry"); 1022 if (LRI->Dirty) 1023 dbgs() << "*"; 1024 assert(LRI->PhysReg == Reg && "Bad inverse map"); 1025 break; 1026 } 1027 } 1028 } 1029 dbgs() << '\n'; 1030 // Check that LiveVirtRegs is the inverse. 1031 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 1032 e = LiveVirtRegs.end(); i != e; ++i) { 1033 if (!i->PhysReg) 1034 continue; 1035 assert(i->VirtReg.isVirtual() && "Bad map key"); 1036 assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value"); 1037 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 1038 } 1039 } 1040 #endif 1041 1042 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1043 const MCInstrDesc &MCID = MI.getDesc(); 1044 1045 // If this is a copy, we may be able to coalesce. 1046 Register CopySrcReg; 1047 Register CopyDstReg; 1048 unsigned CopySrcSub = 0; 1049 unsigned CopyDstSub = 0; 1050 if (MI.isCopy()) { 1051 CopyDstReg = MI.getOperand(0).getReg(); 1052 CopySrcReg = MI.getOperand(1).getReg(); 1053 CopyDstSub = MI.getOperand(0).getSubReg(); 1054 CopySrcSub = MI.getOperand(1).getSubReg(); 1055 } 1056 1057 // Track registers used by instruction. 1058 UsedInInstr.clear(); 1059 1060 // First scan. 1061 // Mark physreg uses and early clobbers as used. 1062 // Find the end of the virtreg operands 1063 unsigned VirtOpEnd = 0; 1064 bool hasTiedOps = false; 1065 bool hasEarlyClobbers = false; 1066 bool hasPartialRedefs = false; 1067 bool hasPhysDefs = false; 1068 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1069 MachineOperand &MO = MI.getOperand(i); 1070 // Make sure MRI knows about registers clobbered by regmasks. 1071 if (MO.isRegMask()) { 1072 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1073 continue; 1074 } 1075 if (!MO.isReg()) continue; 1076 Register Reg = MO.getReg(); 1077 if (!Reg) continue; 1078 if (Register::isVirtualRegister(Reg)) { 1079 VirtOpEnd = i+1; 1080 if (MO.isUse()) { 1081 hasTiedOps = hasTiedOps || 1082 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1083 } else { 1084 if (MO.isEarlyClobber()) 1085 hasEarlyClobbers = true; 1086 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1087 hasPartialRedefs = true; 1088 } 1089 continue; 1090 } 1091 if (!MRI->isAllocatable(Reg)) continue; 1092 if (MO.isUse()) { 1093 usePhysReg(MO); 1094 } else if (MO.isEarlyClobber()) { 1095 definePhysReg(MI, Reg, 1096 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1097 hasEarlyClobbers = true; 1098 } else 1099 hasPhysDefs = true; 1100 } 1101 1102 // The instruction may have virtual register operands that must be allocated 1103 // the same register at use-time and def-time: early clobbers and tied 1104 // operands. If there are also physical defs, these registers must avoid 1105 // both physical defs and uses, making them more constrained than normal 1106 // operands. 1107 // Similarly, if there are multiple defs and tied operands, we must make 1108 // sure the same register is allocated to uses and defs. 1109 // We didn't detect inline asm tied operands above, so just make this extra 1110 // pass for all inline asm. 1111 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1112 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1113 handleThroughOperands(MI, VirtDead); 1114 // Don't attempt coalescing when we have funny stuff going on. 1115 CopyDstReg = Register(); 1116 // Pretend we have early clobbers so the use operands get marked below. 1117 // This is not necessary for the common case of a single tied use. 1118 hasEarlyClobbers = true; 1119 } 1120 1121 // Second scan. 1122 // Allocate virtreg uses. 1123 bool HasUndefUse = false; 1124 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1125 MachineOperand &MO = MI.getOperand(I); 1126 if (!MO.isReg()) continue; 1127 Register Reg = MO.getReg(); 1128 if (!Reg.isVirtual()) 1129 continue; 1130 if (MO.isUse()) { 1131 if (MO.isUndef()) { 1132 HasUndefUse = true; 1133 // There is no need to allocate a register for an undef use. 1134 continue; 1135 } 1136 1137 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1138 // the def block (removing the vreg uses). 1139 mayLiveIn(Reg); 1140 1141 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1142 MCPhysReg PhysReg = LR.PhysReg; 1143 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1144 if (setPhysReg(MI, MO, PhysReg)) 1145 killVirtReg(LR); 1146 } 1147 } 1148 1149 // Allocate undef operands. This is a separate step because in a situation 1150 // like ` = OP undef %X, %X` both operands need the same register assign 1151 // so we should perform the normal assignment first. 1152 if (HasUndefUse) { 1153 for (MachineOperand &MO : MI.uses()) { 1154 if (!MO.isReg() || !MO.isUse()) 1155 continue; 1156 Register Reg = MO.getReg(); 1157 if (!Reg.isVirtual()) 1158 continue; 1159 1160 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1161 allocVirtRegUndef(MO); 1162 } 1163 } 1164 1165 // Track registers defined by instruction - early clobbers and tied uses at 1166 // this point. 1167 UsedInInstr.clear(); 1168 if (hasEarlyClobbers) { 1169 for (const MachineOperand &MO : MI.operands()) { 1170 if (!MO.isReg()) continue; 1171 Register Reg = MO.getReg(); 1172 if (!Reg || !Reg.isPhysical()) 1173 continue; 1174 // Look for physreg defs and tied uses. 1175 if (!MO.isDef() && !MO.isTied()) continue; 1176 markRegUsedInInstr(Reg); 1177 } 1178 } 1179 1180 unsigned DefOpEnd = MI.getNumOperands(); 1181 if (MI.isCall()) { 1182 // Spill all virtregs before a call. This serves one purpose: If an 1183 // exception is thrown, the landing pad is going to expect to find 1184 // registers in their spill slots. 1185 // Note: although this is appealing to just consider all definitions 1186 // as call-clobbered, this is not correct because some of those 1187 // definitions may be used later on and we do not want to reuse 1188 // those for virtual registers in between. 1189 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1190 spillAll(MI, /*OnlyLiveOut*/ false); 1191 } 1192 1193 // Third scan. 1194 // Mark all physreg defs as used before allocating virtreg defs. 1195 for (unsigned I = 0; I != DefOpEnd; ++I) { 1196 const MachineOperand &MO = MI.getOperand(I); 1197 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1198 continue; 1199 Register Reg = MO.getReg(); 1200 1201 if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg)) 1202 continue; 1203 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1204 } 1205 1206 // Fourth scan. 1207 // Allocate defs and collect dead defs. 1208 for (unsigned I = 0; I != DefOpEnd; ++I) { 1209 const MachineOperand &MO = MI.getOperand(I); 1210 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1211 continue; 1212 Register Reg = MO.getReg(); 1213 1214 // We have already dealt with phys regs in the previous scan. 1215 if (Reg.isPhysical()) 1216 continue; 1217 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1218 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1219 VirtDead.push_back(Reg); 1220 CopyDstReg = Register(); // cancel coalescing; 1221 } else 1222 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1223 } 1224 1225 // Kill dead defs after the scan to ensure that multiple defs of the same 1226 // register are allocated identically. We didn't need to do this for uses 1227 // because we are creating our own kill flags, and they are always at the last 1228 // use. 1229 for (Register VirtReg : VirtDead) 1230 killVirtReg(VirtReg); 1231 VirtDead.clear(); 1232 1233 LLVM_DEBUG(dbgs() << "<< " << MI); 1234 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1235 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1236 Coalesced.push_back(&MI); 1237 } 1238 } 1239 1240 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1241 MachineOperand &MO = MI.getDebugOperand(0); 1242 1243 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1244 // mostly constants and frame indices. 1245 if (!MO.isReg()) 1246 return; 1247 Register Reg = MO.getReg(); 1248 if (!Register::isVirtualRegister(Reg)) 1249 return; 1250 1251 // See if this virtual register has already been allocated to a physical 1252 // register or spilled to a stack slot. 1253 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1254 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1255 setPhysReg(MI, MO, LRI->PhysReg); 1256 } else { 1257 int SS = StackSlotForVirtReg[Reg]; 1258 if (SS != -1) { 1259 // Modify DBG_VALUE now that the value is in a spill slot. 1260 updateDbgValueForSpill(MI, SS); 1261 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1262 return; 1263 } 1264 1265 // We can't allocate a physreg for a DebugValue, sorry! 1266 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1267 MO.setReg(Register()); 1268 } 1269 1270 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1271 // that future spills of Reg will have DBG_VALUEs. 1272 LiveDbgValueMap[Reg].push_back(&MI); 1273 } 1274 1275 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1276 this->MBB = &MBB; 1277 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1278 1279 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1280 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1281 1282 MachineBasicBlock::iterator MII = MBB.begin(); 1283 1284 // Add live-in registers as live. 1285 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins()) 1286 if (MRI->isAllocatable(LI.PhysReg)) 1287 definePhysReg(MII, LI.PhysReg, regReserved); 1288 1289 VirtDead.clear(); 1290 Coalesced.clear(); 1291 1292 // Otherwise, sequentially allocate each instruction in the MBB. 1293 for (MachineInstr &MI : MBB) { 1294 LLVM_DEBUG( 1295 dbgs() << "\n>> " << MI << "Regs:"; 1296 dumpState() 1297 ); 1298 1299 // Special handling for debug values. Note that they are not allowed to 1300 // affect codegen of the other instructions in any way. 1301 if (MI.isDebugValue()) { 1302 handleDebugValue(MI); 1303 continue; 1304 } 1305 1306 allocateInstruction(MI); 1307 } 1308 1309 // Spill all physical registers holding virtual registers now. 1310 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1311 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1312 1313 // Erase all the coalesced copies. We are delaying it until now because 1314 // LiveVirtRegs might refer to the instrs. 1315 for (MachineInstr *MI : Coalesced) 1316 MBB.erase(MI); 1317 NumCoalesced += Coalesced.size(); 1318 1319 LLVM_DEBUG(MBB.dump()); 1320 } 1321 1322 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1323 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1324 << "********** Function: " << MF.getName() << '\n'); 1325 MRI = &MF.getRegInfo(); 1326 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1327 TRI = STI.getRegisterInfo(); 1328 TII = STI.getInstrInfo(); 1329 MFI = &MF.getFrameInfo(); 1330 MRI->freezeReservedRegs(MF); 1331 RegClassInfo.runOnMachineFunction(MF); 1332 UsedInInstr.clear(); 1333 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1334 1335 // initialize the virtual->physical register map to have a 'null' 1336 // mapping for all virtual registers 1337 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1338 StackSlotForVirtReg.resize(NumVirtRegs); 1339 LiveVirtRegs.setUniverse(NumVirtRegs); 1340 MayLiveAcrossBlocks.clear(); 1341 MayLiveAcrossBlocks.resize(NumVirtRegs); 1342 1343 // Loop over all of the basic blocks, eliminating virtual register references 1344 for (MachineBasicBlock &MBB : MF) 1345 allocateBasicBlock(MBB); 1346 1347 // All machine operands and other references to virtual registers have been 1348 // replaced. Remove the virtual registers. 1349 MRI->clearVirtRegs(); 1350 1351 StackSlotForVirtReg.clear(); 1352 LiveDbgValueMap.clear(); 1353 return true; 1354 } 1355 1356 FunctionPass *llvm::createFastRegisterAllocator() { 1357 return new RegAllocFast(); 1358 } 1359