1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 109 /// List of DBG_VALUE that we encountered without the vreg being assigned 110 /// because they were placed after the last use of the vreg. 111 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 112 113 /// Has a bit set for every virtual register for which it was determined 114 /// that it is alive across blocks. 115 BitVector MayLiveAcrossBlocks; 116 117 /// State of a register unit. 118 enum RegUnitState { 119 /// A free register is not currently in use and can be allocated 120 /// immediately without checking aliases. 121 regFree, 122 123 /// A pre-assigned register has been assigned before register allocation 124 /// (e.g., setting up a call parameter). 125 regPreAssigned, 126 127 /// Used temporarily in reloadAtBegin() to mark register units that are 128 /// live-in to the basic block. 129 regLiveIn, 130 131 /// A register state may also be a virtual register number, indication 132 /// that the physical register is currently allocated to a virtual 133 /// register. In that case, LiveVirtRegs contains the inverse mapping. 134 }; 135 136 /// Maps each physical register to a RegUnitState enum or virtual register. 137 std::vector<unsigned> RegUnitStates; 138 139 SmallVector<MachineInstr *, 32> Coalesced; 140 141 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 142 /// Set of register units that are used in the current instruction, and so 143 /// cannot be allocated. 144 RegUnitSet UsedInInstr; 145 RegUnitSet PhysRegUses; 146 SmallVector<uint16_t, 8> DefOperandIndexes; 147 148 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 149 bool isPhysRegFree(MCPhysReg PhysReg) const; 150 151 /// Mark a physreg as used in this instruction. 152 void markRegUsedInInstr(MCPhysReg PhysReg) { 153 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 154 UsedInInstr.insert(*Units); 155 } 156 157 /// Check if a physreg or any of its aliases are used in this instruction. 158 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 159 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 160 if (UsedInInstr.count(*Units)) 161 return true; 162 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 163 return true; 164 } 165 return false; 166 } 167 168 /// Mark physical register as being used in a register use operand. 169 /// This is only used by the special livethrough handling code. 170 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 171 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 172 PhysRegUses.insert(*Units); 173 } 174 175 /// Remove mark of physical register being used in the instruction. 176 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 177 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 178 UsedInInstr.erase(*Units); 179 } 180 181 enum : unsigned { 182 spillClean = 50, 183 spillDirty = 100, 184 spillPrefBonus = 20, 185 spillImpossible = ~0u 186 }; 187 188 public: 189 StringRef getPassName() const override { return "Fast Register Allocator"; } 190 191 void getAnalysisUsage(AnalysisUsage &AU) const override { 192 AU.setPreservesCFG(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 MachineFunctionProperties getRequiredProperties() const override { 197 return MachineFunctionProperties().set( 198 MachineFunctionProperties::Property::NoPHIs); 199 } 200 201 MachineFunctionProperties getSetProperties() const override { 202 return MachineFunctionProperties().set( 203 MachineFunctionProperties::Property::NoVRegs); 204 } 205 206 private: 207 bool runOnMachineFunction(MachineFunction &MF) override; 208 209 void allocateBasicBlock(MachineBasicBlock &MBB); 210 211 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 212 Register Reg) const; 213 214 void allocateInstruction(MachineInstr &MI); 215 void handleDebugValue(MachineInstr &MI); 216 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 217 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 218 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 219 void freePhysReg(MCPhysReg PhysReg); 220 221 unsigned calcSpillCost(MCPhysReg PhysReg) const; 222 223 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 224 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 225 } 226 227 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 228 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 229 } 230 231 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 232 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 233 bool LookAtPhysRegUses = false); 234 void allocVirtRegUndef(MachineOperand &MO); 235 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 236 MCPhysReg Reg); 237 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 238 Register VirtReg); 239 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 240 bool LookAtPhysRegUses = false); 241 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 242 243 MachineBasicBlock::iterator 244 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 245 SmallSet<Register, 2> &PrologLiveIns) const; 246 247 void reloadAtBegin(MachineBasicBlock &MBB); 248 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 249 250 Register traceCopies(Register VirtReg) const; 251 Register traceCopyChain(Register Reg) const; 252 253 int getStackSpaceFor(Register VirtReg); 254 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 255 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 256 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 257 MCPhysReg PhysReg); 258 259 bool mayLiveOut(Register VirtReg); 260 bool mayLiveIn(Register VirtReg); 261 262 void dumpState() const; 263 }; 264 265 } // end anonymous namespace 266 267 char RegAllocFast::ID = 0; 268 269 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 270 false) 271 272 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 273 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 274 RegUnitStates[*UI] = NewState; 275 } 276 277 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 278 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 279 if (RegUnitStates[*UI] != regFree) 280 return false; 281 } 282 return true; 283 } 284 285 /// This allocates space for the specified virtual register to be held on the 286 /// stack. 287 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 288 // Find the location Reg would belong... 289 int SS = StackSlotForVirtReg[VirtReg]; 290 // Already has space allocated? 291 if (SS != -1) 292 return SS; 293 294 // Allocate a new stack object for this spill location... 295 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 296 unsigned Size = TRI->getSpillSize(RC); 297 Align Alignment = TRI->getSpillAlign(RC); 298 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 299 300 // Assign the slot. 301 StackSlotForVirtReg[VirtReg] = FrameIdx; 302 return FrameIdx; 303 } 304 305 static bool dominates(MachineBasicBlock &MBB, 306 MachineBasicBlock::const_iterator A, 307 MachineBasicBlock::const_iterator B) { 308 auto MBBEnd = MBB.end(); 309 if (B == MBBEnd) 310 return true; 311 312 MachineBasicBlock::const_iterator I = MBB.begin(); 313 for (; &*I != A && &*I != B; ++I) 314 ; 315 316 return &*I == A; 317 } 318 319 /// Returns false if \p VirtReg is known to not live out of the current block. 320 bool RegAllocFast::mayLiveOut(Register VirtReg) { 321 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 322 // Cannot be live-out if there are no successors. 323 return !MBB->succ_empty(); 324 } 325 326 const MachineInstr *SelfLoopDef = nullptr; 327 328 // If this block loops back to itself, it is necessary to check whether the 329 // use comes after the def. 330 if (MBB->isSuccessor(MBB)) { 331 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 332 if (!SelfLoopDef) { 333 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 334 return true; 335 } 336 } 337 338 // See if the first \p Limit uses of the register are all in the current 339 // block. 340 static const unsigned Limit = 8; 341 unsigned C = 0; 342 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 343 if (UseInst.getParent() != MBB || ++C >= Limit) { 344 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 345 // Cannot be live-out if there are no successors. 346 return !MBB->succ_empty(); 347 } 348 349 if (SelfLoopDef) { 350 // Try to handle some simple cases to avoid spilling and reloading every 351 // value inside a self looping block. 352 if (SelfLoopDef == &UseInst || 353 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 return true; 356 } 357 } 358 } 359 360 return false; 361 } 362 363 /// Returns false if \p VirtReg is known to not be live into the current block. 364 bool RegAllocFast::mayLiveIn(Register VirtReg) { 365 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 366 return !MBB->pred_empty(); 367 368 // See if the first \p Limit def of the register are all in the current block. 369 static const unsigned Limit = 8; 370 unsigned C = 0; 371 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 372 if (DefInst.getParent() != MBB || ++C >= Limit) { 373 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 374 return !MBB->pred_empty(); 375 } 376 } 377 378 return false; 379 } 380 381 /// Insert spill instruction for \p AssignedReg before \p Before. Update 382 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 383 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 384 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 385 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 386 << " in " << printReg(AssignedReg, TRI)); 387 int FI = getStackSpaceFor(VirtReg); 388 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 389 390 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 391 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 392 ++NumStores; 393 394 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 395 396 // When we spill a virtual register, we will have spill instructions behind 397 // every definition of it, meaning we can switch all the DBG_VALUEs over 398 // to just reference the stack slot. 399 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 400 for (MachineInstr *DBG : LRIDbgValues) { 401 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 402 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 403 (void)NewDV; 404 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 405 406 if (LiveOut) { 407 // We need to insert a DBG_VALUE at the end of the block if the spill slot 408 // is live out, but there is another use of the value after the 409 // spill. This will allow LiveDebugValues to see the correct live out 410 // value to propagate to the successors. 411 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 412 MBB->insert(FirstTerm, ClonedDV); 413 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 414 } 415 416 // Rewrite unassigned dbg_values to use the stack slot. 417 MachineOperand &MO = DBG->getOperand(0); 418 if (MO.isReg() && MO.getReg() == 0) 419 updateDbgValueForSpill(*DBG, FI); 420 } 421 // Now this register is spilled there is should not be any DBG_VALUE 422 // pointing to this register because they are all pointing to spilled value 423 // now. 424 LRIDbgValues.clear(); 425 } 426 427 /// Insert reload instruction for \p PhysReg before \p Before. 428 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 429 MCPhysReg PhysReg) { 430 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 431 << printReg(PhysReg, TRI) << '\n'); 432 int FI = getStackSpaceFor(VirtReg); 433 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 434 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 435 ++NumLoads; 436 } 437 438 /// Get basic block begin insertion point. 439 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 440 /// instructions marking the begin of a basic block. This means we must insert 441 /// new instructions after such labels... 442 MachineBasicBlock::iterator 443 RegAllocFast::getMBBBeginInsertionPoint( 444 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 445 MachineBasicBlock::iterator I = MBB.begin(); 446 while (I != MBB.end()) { 447 if (I->isLabel()) { 448 ++I; 449 continue; 450 } 451 452 // Most reloads should be inserted after prolog instructions. 453 if (!TII->isBasicBlockPrologue(*I)) 454 break; 455 456 // However if a prolog instruction reads a register that needs to be 457 // reloaded, the reload should be inserted before the prolog. 458 for (MachineOperand &MO : I->operands()) { 459 if (MO.isReg()) 460 PrologLiveIns.insert(MO.getReg()); 461 } 462 463 ++I; 464 } 465 466 return I; 467 } 468 469 /// Reload all currently assigned virtual registers. 470 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 471 if (LiveVirtRegs.empty()) 472 return; 473 474 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 475 MCPhysReg Reg = P.PhysReg; 476 // Set state to live-in. This possibly overrides mappings to virtual 477 // registers but we don't care anymore at this point. 478 setPhysRegState(Reg, regLiveIn); 479 } 480 481 482 SmallSet<Register, 2> PrologLiveIns; 483 484 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 485 // of spilling here is deterministic, if arbitrary. 486 MachineBasicBlock::iterator InsertBefore 487 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 488 for (const LiveReg &LR : LiveVirtRegs) { 489 MCPhysReg PhysReg = LR.PhysReg; 490 if (PhysReg == 0) 491 continue; 492 493 unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 494 if (RegUnitStates[FirstUnit] == regLiveIn) 495 continue; 496 497 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 498 "no reload in start block. Missing vreg def?"); 499 500 if (PrologLiveIns.count(PhysReg)) { 501 // FIXME: Theoretically this should use an insert point skipping labels 502 // but I'm not sure how labels should interact with prolog instruction 503 // that need reloads. 504 reload(MBB.begin(), LR.VirtReg, PhysReg); 505 } else 506 reload(InsertBefore, LR.VirtReg, PhysReg); 507 } 508 LiveVirtRegs.clear(); 509 } 510 511 /// Handle the direct use of a physical register. Check that the register is 512 /// not used by a virtreg. Kill the physreg, marking it free. This may add 513 /// implicit kills to MO->getParent() and invalidate MO. 514 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 515 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 516 bool displacedAny = displacePhysReg(MI, Reg); 517 setPhysRegState(Reg, regPreAssigned); 518 markRegUsedInInstr(Reg); 519 return displacedAny; 520 } 521 522 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 523 bool displacedAny = displacePhysReg(MI, Reg); 524 setPhysRegState(Reg, regPreAssigned); 525 return displacedAny; 526 } 527 528 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 529 /// similar to defineVirtReg except the physreg is reserved instead of 530 /// allocated. 531 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 532 bool displacedAny = false; 533 534 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 535 unsigned Unit = *UI; 536 switch (unsigned VirtReg = RegUnitStates[Unit]) { 537 default: { 538 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 539 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 540 MachineBasicBlock::iterator ReloadBefore = 541 std::next((MachineBasicBlock::iterator)MI.getIterator()); 542 reload(ReloadBefore, VirtReg, LRI->PhysReg); 543 544 setPhysRegState(LRI->PhysReg, regFree); 545 LRI->PhysReg = 0; 546 LRI->Reloaded = true; 547 displacedAny = true; 548 break; 549 } 550 case regPreAssigned: 551 RegUnitStates[Unit] = regFree; 552 displacedAny = true; 553 break; 554 case regFree: 555 break; 556 } 557 } 558 return displacedAny; 559 } 560 561 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 562 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 563 564 unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 565 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 566 case regFree: 567 LLVM_DEBUG(dbgs() << '\n'); 568 return; 569 case regPreAssigned: 570 LLVM_DEBUG(dbgs() << '\n'); 571 setPhysRegState(PhysReg, regFree); 572 return; 573 default: { 574 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 575 assert(LRI != LiveVirtRegs.end()); 576 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 577 setPhysRegState(LRI->PhysReg, regFree); 578 LRI->PhysReg = 0; 579 } 580 return; 581 } 582 } 583 584 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 585 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 586 /// disabled - it can be allocated directly. 587 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 588 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 589 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 590 switch (unsigned VirtReg = RegUnitStates[*UI]) { 591 case regFree: 592 break; 593 case regPreAssigned: 594 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 595 << printReg(PhysReg, TRI) << '\n'); 596 return spillImpossible; 597 default: { 598 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 599 findLiveVirtReg(VirtReg)->LiveOut; 600 return SureSpill ? spillClean : spillDirty; 601 } 602 } 603 } 604 return 0; 605 } 606 607 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 608 Register VirtReg, MCPhysReg Reg) { 609 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 610 if (UDBGValIter == DanglingDbgValues.end()) 611 return; 612 613 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 614 for (MachineInstr *DbgValue : Dangling) { 615 assert(DbgValue->isDebugValue()); 616 MachineOperand &MO = DbgValue->getOperand(0); 617 if (!MO.isReg()) 618 continue; 619 620 // Test whether the physreg survives from the definition to the DBG_VALUE. 621 MCPhysReg SetToReg = Reg; 622 unsigned Limit = 20; 623 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 624 E = DbgValue->getIterator(); I != E; ++I) { 625 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 626 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 627 << '\n'); 628 SetToReg = 0; 629 break; 630 } 631 } 632 MO.setReg(SetToReg); 633 if (SetToReg != 0) 634 MO.setIsRenamable(); 635 } 636 Dangling.clear(); 637 } 638 639 /// This method updates local state so that we know that PhysReg is the 640 /// proper container for VirtReg now. The physical register must not be used 641 /// for anything else when this is called. 642 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 643 MCPhysReg PhysReg) { 644 Register VirtReg = LR.VirtReg; 645 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 646 << printReg(PhysReg, TRI) << '\n'); 647 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 648 assert(PhysReg != 0 && "Trying to assign no register"); 649 LR.PhysReg = PhysReg; 650 setPhysRegState(PhysReg, VirtReg); 651 652 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 653 } 654 655 static bool isCoalescable(const MachineInstr &MI) { 656 return MI.isFullCopy(); 657 } 658 659 Register RegAllocFast::traceCopyChain(Register Reg) const { 660 static const unsigned ChainLengthLimit = 3; 661 unsigned C = 0; 662 do { 663 if (Reg.isPhysical()) 664 return Reg; 665 assert(Reg.isVirtual()); 666 667 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 668 if (!VRegDef || !isCoalescable(*VRegDef)) 669 return 0; 670 Reg = VRegDef->getOperand(1).getReg(); 671 } while (++C <= ChainLengthLimit); 672 return 0; 673 } 674 675 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 676 /// chain of copies to check whether we reach a physical register we can 677 /// coalesce with. 678 Register RegAllocFast::traceCopies(Register VirtReg) const { 679 static const unsigned DefLimit = 3; 680 unsigned C = 0; 681 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 682 if (isCoalescable(MI)) { 683 Register Reg = MI.getOperand(1).getReg(); 684 Reg = traceCopyChain(Reg); 685 if (Reg.isValid()) 686 return Reg; 687 } 688 689 if (++C >= DefLimit) 690 break; 691 } 692 return Register(); 693 } 694 695 /// Allocates a physical register for VirtReg. 696 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 697 Register Hint0, bool LookAtPhysRegUses) { 698 const Register VirtReg = LR.VirtReg; 699 assert(LR.PhysReg == 0); 700 701 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 702 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 703 << " in class " << TRI->getRegClassName(&RC) 704 << " with hint " << printReg(Hint0, TRI) << '\n'); 705 706 // Take hint when possible. 707 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 708 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 709 // Take hint if the register is currently free. 710 if (isPhysRegFree(Hint0)) { 711 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 712 << '\n'); 713 assignVirtToPhysReg(MI, LR, Hint0); 714 return; 715 } else { 716 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 717 << " occupied\n"); 718 } 719 } else { 720 Hint0 = Register(); 721 } 722 723 724 // Try other hint. 725 Register Hint1 = traceCopies(VirtReg); 726 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 727 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 728 // Take hint if the register is currently free. 729 if (isPhysRegFree(Hint1)) { 730 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 731 << '\n'); 732 assignVirtToPhysReg(MI, LR, Hint1); 733 return; 734 } else { 735 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 736 << " occupied\n"); 737 } 738 } else { 739 Hint1 = Register(); 740 } 741 742 MCPhysReg BestReg = 0; 743 unsigned BestCost = spillImpossible; 744 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 745 for (MCPhysReg PhysReg : AllocationOrder) { 746 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 747 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 748 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 749 continue; 750 } 751 752 unsigned Cost = calcSpillCost(PhysReg); 753 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 754 // Immediate take a register with cost 0. 755 if (Cost == 0) { 756 assignVirtToPhysReg(MI, LR, PhysReg); 757 return; 758 } 759 760 if (PhysReg == Hint0 || PhysReg == Hint1) 761 Cost -= spillPrefBonus; 762 763 if (Cost < BestCost) { 764 BestReg = PhysReg; 765 BestCost = Cost; 766 } 767 } 768 769 if (!BestReg) { 770 // Nothing we can do: Report an error and keep going with an invalid 771 // allocation. 772 if (MI.isInlineAsm()) 773 MI.emitError("inline assembly requires more registers than available"); 774 else 775 MI.emitError("ran out of registers during register allocation"); 776 777 LR.Error = true; 778 LR.PhysReg = 0; 779 return; 780 } 781 782 displacePhysReg(MI, BestReg); 783 assignVirtToPhysReg(MI, LR, BestReg); 784 } 785 786 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 787 assert(MO.isUndef() && "expected undef use"); 788 Register VirtReg = MO.getReg(); 789 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 790 791 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 792 MCPhysReg PhysReg; 793 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 794 PhysReg = LRI->PhysReg; 795 } else { 796 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 797 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 798 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 799 PhysReg = AllocationOrder[0]; 800 } 801 802 unsigned SubRegIdx = MO.getSubReg(); 803 if (SubRegIdx != 0) { 804 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 805 MO.setSubReg(0); 806 } 807 MO.setReg(PhysReg); 808 MO.setIsRenamable(true); 809 } 810 811 /// Variation of defineVirtReg() with special handling for livethrough regs 812 /// (tied or earlyclobber) that may interfere with preassigned uses. 813 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 814 Register VirtReg) { 815 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 816 if (LRI != LiveVirtRegs.end()) { 817 MCPhysReg PrevReg = LRI->PhysReg; 818 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 819 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 820 << " (tied/earlyclobber resolution)\n"); 821 freePhysReg(PrevReg); 822 LRI->PhysReg = 0; 823 allocVirtReg(MI, *LRI, 0, true); 824 MachineBasicBlock::iterator InsertBefore = 825 std::next((MachineBasicBlock::iterator)MI.getIterator()); 826 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 827 << printReg(PrevReg, TRI) << '\n'); 828 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 829 TII->get(TargetOpcode::COPY), PrevReg) 830 .addReg(LRI->PhysReg, llvm::RegState::Kill); 831 } 832 MachineOperand &MO = MI.getOperand(OpNum); 833 if (MO.getSubReg() && !MO.isUndef()) { 834 LRI->LastUse = &MI; 835 } 836 } 837 return defineVirtReg(MI, OpNum, VirtReg, true); 838 } 839 840 /// Allocates a register for VirtReg definition. Typically the register is 841 /// already assigned from a use of the virtreg, however we still need to 842 /// perform an allocation if: 843 /// - It is a dead definition without any uses. 844 /// - The value is live out and all uses are in different basic blocks. 845 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 846 Register VirtReg, bool LookAtPhysRegUses) { 847 assert(VirtReg.isVirtual() && "Not a virtual register"); 848 MachineOperand &MO = MI.getOperand(OpNum); 849 LiveRegMap::iterator LRI; 850 bool New; 851 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 852 if (New) { 853 if (!MO.isDead()) { 854 if (mayLiveOut(VirtReg)) { 855 LRI->LiveOut = true; 856 } else { 857 // It is a dead def without the dead flag; add the flag now. 858 MO.setIsDead(true); 859 } 860 } 861 } 862 if (LRI->PhysReg == 0) 863 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 864 else { 865 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 866 "TODO: preassign mismatch"); 867 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 868 << " use existing assignment to " 869 << printReg(LRI->PhysReg, TRI) << '\n'); 870 } 871 872 MCPhysReg PhysReg = LRI->PhysReg; 873 assert(PhysReg != 0 && "Register not assigned"); 874 if (LRI->Reloaded || LRI->LiveOut) { 875 if (!MI.isImplicitDef()) { 876 MachineBasicBlock::iterator SpillBefore = 877 std::next((MachineBasicBlock::iterator)MI.getIterator()); 878 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 879 << LRI->Reloaded << '\n'); 880 bool Kill = LRI->LastUse == nullptr; 881 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 882 LRI->LastUse = nullptr; 883 } 884 LRI->LiveOut = false; 885 LRI->Reloaded = false; 886 } 887 markRegUsedInInstr(PhysReg); 888 setPhysReg(MI, MO, PhysReg); 889 } 890 891 /// Allocates a register for a VirtReg use. 892 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 893 Register VirtReg) { 894 assert(VirtReg.isVirtual() && "Not a virtual register"); 895 MachineOperand &MO = MI.getOperand(OpNum); 896 LiveRegMap::iterator LRI; 897 bool New; 898 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 899 if (New) { 900 MachineOperand &MO = MI.getOperand(OpNum); 901 if (!MO.isKill()) { 902 if (mayLiveOut(VirtReg)) { 903 LRI->LiveOut = true; 904 } else { 905 // It is a last (killing) use without the kill flag; add the flag now. 906 MO.setIsKill(true); 907 } 908 } 909 } else { 910 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 911 } 912 913 // If necessary allocate a register. 914 if (LRI->PhysReg == 0) { 915 assert(!MO.isTied() && "tied op should be allocated"); 916 Register Hint; 917 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 918 Hint = MI.getOperand(0).getReg(); 919 assert(Hint.isPhysical() && 920 "Copy destination should already be assigned"); 921 } 922 allocVirtReg(MI, *LRI, Hint, false); 923 if (LRI->Error) { 924 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 925 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 926 setPhysReg(MI, MO, *AllocationOrder.begin()); 927 return; 928 } 929 } 930 931 LRI->LastUse = &MI; 932 markRegUsedInInstr(LRI->PhysReg); 933 setPhysReg(MI, MO, LRI->PhysReg); 934 } 935 936 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 937 /// may invalidate any operand pointers. Return true if the operand kills its 938 /// register. 939 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 940 MCPhysReg PhysReg) { 941 if (!MO.getSubReg()) { 942 MO.setReg(PhysReg); 943 MO.setIsRenamable(true); 944 return; 945 } 946 947 // Handle subregister index. 948 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 949 MO.setIsRenamable(true); 950 // Note: We leave the subreg number around a little longer in case of defs. 951 // This is so that the register freeing logic in allocateInstruction can still 952 // recognize this as subregister defs. The code there will clear the number. 953 if (!MO.isDef()) 954 MO.setSubReg(0); 955 956 // A kill flag implies killing the full register. Add corresponding super 957 // register kill. 958 if (MO.isKill()) { 959 MI.addRegisterKilled(PhysReg, TRI, true); 960 return; 961 } 962 963 // A <def,read-undef> of a sub-register requires an implicit def of the full 964 // register. 965 if (MO.isDef() && MO.isUndef()) { 966 if (MO.isDead()) 967 MI.addRegisterDead(PhysReg, TRI, true); 968 else 969 MI.addRegisterDefined(PhysReg, TRI); 970 } 971 } 972 973 #ifndef NDEBUG 974 975 void RegAllocFast::dumpState() const { 976 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 977 ++Unit) { 978 switch (unsigned VirtReg = RegUnitStates[Unit]) { 979 case regFree: 980 break; 981 case regPreAssigned: 982 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 983 break; 984 case regLiveIn: 985 llvm_unreachable("Should not have regLiveIn in map"); 986 default: { 987 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 988 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 989 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 990 if (I->LiveOut || I->Reloaded) { 991 dbgs() << '['; 992 if (I->LiveOut) dbgs() << 'O'; 993 if (I->Reloaded) dbgs() << 'R'; 994 dbgs() << ']'; 995 } 996 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 997 break; 998 } 999 } 1000 } 1001 dbgs() << '\n'; 1002 // Check that LiveVirtRegs is the inverse. 1003 for (const LiveReg &LR : LiveVirtRegs) { 1004 Register VirtReg = LR.VirtReg; 1005 assert(VirtReg.isVirtual() && "Bad map key"); 1006 MCPhysReg PhysReg = LR.PhysReg; 1007 if (PhysReg != 0) { 1008 assert(Register::isPhysicalRegister(PhysReg) && 1009 "mapped to physreg"); 1010 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1011 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1012 } 1013 } 1014 } 1015 } 1016 #endif 1017 1018 /// Count number of defs consumed from each register class by \p Reg 1019 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1020 Register Reg) const { 1021 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1022 1023 if (Reg.isVirtual()) { 1024 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1025 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1026 RCIdx != RCIdxEnd; ++RCIdx) { 1027 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1028 // FIXME: Consider aliasing sub/super registers. 1029 if (OpRC->hasSubClassEq(IdxRC)) 1030 ++RegClassDefCounts[RCIdx]; 1031 } 1032 1033 return; 1034 } 1035 1036 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1037 RCIdx != RCIdxEnd; ++RCIdx) { 1038 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1039 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1040 if (IdxRC->contains(*Alias)) { 1041 ++RegClassDefCounts[RCIdx]; 1042 break; 1043 } 1044 } 1045 } 1046 } 1047 1048 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1049 // The basic algorithm here is: 1050 // 1. Mark registers of def operands as free 1051 // 2. Allocate registers to use operands and place reload instructions for 1052 // registers displaced by the allocation. 1053 // 1054 // However we need to handle some corner cases: 1055 // - pre-assigned defs and uses need to be handled before the other def/use 1056 // operands are processed to avoid the allocation heuristics clashing with 1057 // the pre-assignment. 1058 // - The "free def operands" step has to come last instead of first for tied 1059 // operands and early-clobbers. 1060 1061 UsedInInstr.clear(); 1062 1063 // Scan for special cases; Apply pre-assigned register defs to state. 1064 bool HasPhysRegUse = false; 1065 bool HasRegMask = false; 1066 bool HasVRegDef = false; 1067 bool HasDef = false; 1068 bool HasEarlyClobber = false; 1069 bool NeedToAssignLiveThroughs = false; 1070 for (MachineOperand &MO : MI.operands()) { 1071 if (MO.isReg()) { 1072 Register Reg = MO.getReg(); 1073 if (Reg.isVirtual()) { 1074 if (MO.isDef()) { 1075 HasDef = true; 1076 HasVRegDef = true; 1077 if (MO.isEarlyClobber()) { 1078 HasEarlyClobber = true; 1079 NeedToAssignLiveThroughs = true; 1080 } 1081 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1082 NeedToAssignLiveThroughs = true; 1083 } 1084 } else if (Reg.isPhysical()) { 1085 if (!MRI->isReserved(Reg)) { 1086 if (MO.isDef()) { 1087 HasDef = true; 1088 bool displacedAny = definePhysReg(MI, Reg); 1089 if (MO.isEarlyClobber()) 1090 HasEarlyClobber = true; 1091 if (!displacedAny) 1092 MO.setIsDead(true); 1093 } 1094 if (MO.readsReg()) 1095 HasPhysRegUse = true; 1096 } 1097 } 1098 } else if (MO.isRegMask()) { 1099 HasRegMask = true; 1100 } 1101 } 1102 1103 // Allocate virtreg defs. 1104 if (HasDef) { 1105 if (HasVRegDef) { 1106 // Special handling for early clobbers, tied operands or subregister defs: 1107 // Compared to "normal" defs these: 1108 // - Must not use a register that is pre-assigned for a use operand. 1109 // - In order to solve tricky inline assembly constraints we change the 1110 // heuristic to figure out a good operand order before doing 1111 // assignments. 1112 if (NeedToAssignLiveThroughs) { 1113 DefOperandIndexes.clear(); 1114 PhysRegUses.clear(); 1115 1116 // Track number of defs which may consume a register from the class. 1117 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1118 assert(RegClassDefCounts[0] == 0); 1119 1120 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1121 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1122 const MachineOperand &MO = MI.getOperand(I); 1123 if (!MO.isReg()) 1124 continue; 1125 Register Reg = MO.getReg(); 1126 if (MO.readsReg()) { 1127 if (Reg.isPhysical()) { 1128 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1129 << '\n'); 1130 markPhysRegUsedInInstr(Reg); 1131 } 1132 } 1133 1134 if (MO.isDef()) { 1135 if (Reg.isVirtual()) 1136 DefOperandIndexes.push_back(I); 1137 1138 addRegClassDefCounts(RegClassDefCounts, Reg); 1139 } 1140 } 1141 1142 llvm::sort(DefOperandIndexes.begin(), DefOperandIndexes.end(), 1143 [&](uint16_t I0, uint16_t I1) { 1144 const MachineOperand &MO0 = MI.getOperand(I0); 1145 const MachineOperand &MO1 = MI.getOperand(I1); 1146 Register Reg0 = MO0.getReg(); 1147 Register Reg1 = MO1.getReg(); 1148 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1149 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1150 1151 // Identify regclass that are easy to use up completely just in this 1152 // instruction. 1153 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1154 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1155 1156 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1157 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1158 if (SmallClass0 > SmallClass1) 1159 return true; 1160 if (SmallClass0 < SmallClass1) 1161 return false; 1162 1163 // Allocate early clobbers and livethrough operands first. 1164 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1165 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1166 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1167 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1168 if (Livethrough0 > Livethrough1) 1169 return true; 1170 if (Livethrough0 < Livethrough1) 1171 return false; 1172 1173 // Tie-break rule: operand index. 1174 return I0 < I1; 1175 }); 1176 1177 for (uint16_t OpIdx : DefOperandIndexes) { 1178 MachineOperand &MO = MI.getOperand(OpIdx); 1179 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1180 unsigned Reg = MO.getReg(); 1181 if (MO.isEarlyClobber() || MO.isTied() || 1182 (MO.getSubReg() && !MO.isUndef())) { 1183 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1184 } else { 1185 defineVirtReg(MI, OpIdx, Reg); 1186 } 1187 } 1188 } else { 1189 // Assign virtual register defs. 1190 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1191 MachineOperand &MO = MI.getOperand(I); 1192 if (!MO.isReg() || !MO.isDef()) 1193 continue; 1194 Register Reg = MO.getReg(); 1195 if (Reg.isVirtual()) 1196 defineVirtReg(MI, I, Reg); 1197 } 1198 } 1199 } 1200 1201 // Free registers occupied by defs. 1202 // Iterate operands in reverse order, so we see the implicit super register 1203 // defs first (we added them earlier in case of <def,read-undef>). 1204 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1205 MachineOperand &MO = MI.getOperand(I); 1206 if (!MO.isReg() || !MO.isDef()) 1207 continue; 1208 1209 // subreg defs don't free the full register. We left the subreg number 1210 // around as a marker in setPhysReg() to recognize this case here. 1211 if (MO.getSubReg() != 0) { 1212 MO.setSubReg(0); 1213 continue; 1214 } 1215 1216 // Do not free tied operands and early clobbers. 1217 if (MO.isTied() || MO.isEarlyClobber()) 1218 continue; 1219 Register Reg = MO.getReg(); 1220 if (!Reg) 1221 continue; 1222 assert(Reg.isPhysical()); 1223 if (MRI->isReserved(Reg)) 1224 continue; 1225 freePhysReg(Reg); 1226 unmarkRegUsedInInstr(Reg); 1227 } 1228 } 1229 1230 // Displace clobbered registers. 1231 if (HasRegMask) { 1232 for (const MachineOperand &MO : MI.operands()) { 1233 if (MO.isRegMask()) { 1234 // MRI bookkeeping. 1235 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1236 1237 // Displace clobbered registers. 1238 const uint32_t *Mask = MO.getRegMask(); 1239 for (LiveRegMap::iterator LRI = LiveVirtRegs.begin(), 1240 LRIE = LiveVirtRegs.end(); LRI != LRIE; ++LRI) { 1241 MCPhysReg PhysReg = LRI->PhysReg; 1242 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1243 displacePhysReg(MI, PhysReg); 1244 } 1245 } 1246 } 1247 } 1248 1249 // Apply pre-assigned register uses to state. 1250 if (HasPhysRegUse) { 1251 for (MachineOperand &MO : MI.operands()) { 1252 if (!MO.isReg() || !MO.readsReg()) 1253 continue; 1254 Register Reg = MO.getReg(); 1255 if (!Reg.isPhysical()) 1256 continue; 1257 if (MRI->isReserved(Reg)) 1258 continue; 1259 bool displacedAny = usePhysReg(MI, Reg); 1260 if (!displacedAny && !MRI->isReserved(Reg)) 1261 MO.setIsKill(true); 1262 } 1263 } 1264 1265 // Allocate virtreg uses and insert reloads as necessary. 1266 bool HasUndefUse = false; 1267 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1268 MachineOperand &MO = MI.getOperand(I); 1269 if (!MO.isReg() || !MO.isUse()) 1270 continue; 1271 Register Reg = MO.getReg(); 1272 if (!Reg.isVirtual()) 1273 continue; 1274 1275 if (MO.isUndef()) { 1276 HasUndefUse = true; 1277 continue; 1278 } 1279 1280 1281 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1282 // the def block (removing the vreg uses). 1283 mayLiveIn(Reg); 1284 1285 1286 assert(!MO.isInternalRead() && "Bundles not supported"); 1287 assert(MO.readsReg() && "reading use"); 1288 useVirtReg(MI, I, Reg); 1289 } 1290 1291 // Allocate undef operands. This is a separate step because in a situation 1292 // like ` = OP undef %X, %X` both operands need the same register assign 1293 // so we should perform the normal assignment first. 1294 if (HasUndefUse) { 1295 for (MachineOperand &MO : MI.uses()) { 1296 if (!MO.isReg() || !MO.isUse()) 1297 continue; 1298 Register Reg = MO.getReg(); 1299 if (!Reg.isVirtual()) 1300 continue; 1301 1302 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1303 allocVirtRegUndef(MO); 1304 } 1305 } 1306 1307 // Free early clobbers. 1308 if (HasEarlyClobber) { 1309 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1310 MachineOperand &MO = MI.getOperand(I); 1311 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1312 continue; 1313 // subreg defs don't free the full register. We left the subreg number 1314 // around as a marker in setPhysReg() to recognize this case here. 1315 if (MO.getSubReg() != 0) { 1316 MO.setSubReg(0); 1317 continue; 1318 } 1319 1320 Register Reg = MO.getReg(); 1321 if (!Reg) 1322 continue; 1323 assert(Reg.isPhysical() && "should have register assigned"); 1324 1325 // We sometimes get odd situations like: 1326 // early-clobber %x0 = INSTRUCTION %x0 1327 // which is semantically questionable as the early-clobber should 1328 // apply before the use. But in practice we consider the use to 1329 // happen before the early clobber now. Don't free the early clobber 1330 // register in this case. 1331 if (MI.readsRegister(Reg, TRI)) 1332 continue; 1333 1334 freePhysReg(Reg); 1335 } 1336 } 1337 1338 LLVM_DEBUG(dbgs() << "<< " << MI); 1339 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1340 MI.getNumOperands() == 2) { 1341 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1342 Coalesced.push_back(&MI); 1343 } 1344 } 1345 1346 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1347 MachineOperand &MO = MI.getDebugOperand(0); 1348 1349 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1350 // mostly constants and frame indices. 1351 if (!MO.isReg()) 1352 return; 1353 Register Reg = MO.getReg(); 1354 if (!Register::isVirtualRegister(Reg)) 1355 return; 1356 1357 // Already spilled to a stackslot? 1358 int SS = StackSlotForVirtReg[Reg]; 1359 if (SS != -1) { 1360 // Modify DBG_VALUE now that the value is in a spill slot. 1361 updateDbgValueForSpill(MI, SS); 1362 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1363 return; 1364 } 1365 1366 // See if this virtual register has already been allocated to a physical 1367 // register or spilled to a stack slot. 1368 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1369 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1370 setPhysReg(MI, MO, LRI->PhysReg); 1371 } else { 1372 DanglingDbgValues[Reg].push_back(&MI); 1373 } 1374 1375 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1376 // that future spills of Reg will have DBG_VALUEs. 1377 LiveDbgValueMap[Reg].push_back(&MI); 1378 } 1379 1380 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1381 this->MBB = &MBB; 1382 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1383 1384 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1385 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1386 1387 for (MachineBasicBlock *Succ : MBB.successors()) { 1388 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1389 setPhysRegState(LI.PhysReg, regPreAssigned); 1390 } 1391 1392 Coalesced.clear(); 1393 1394 // Traverse block in reverse order allocating instructions one by one. 1395 for (MachineInstr &MI : reverse(MBB)) { 1396 LLVM_DEBUG( 1397 dbgs() << "\n>> " << MI << "Regs:"; 1398 dumpState() 1399 ); 1400 1401 // Special handling for debug values. Note that they are not allowed to 1402 // affect codegen of the other instructions in any way. 1403 if (MI.isDebugValue()) { 1404 handleDebugValue(MI); 1405 continue; 1406 } 1407 1408 allocateInstruction(MI); 1409 } 1410 1411 LLVM_DEBUG( 1412 dbgs() << "Begin Regs:"; 1413 dumpState() 1414 ); 1415 1416 // Spill all physical registers holding virtual registers now. 1417 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1418 reloadAtBegin(MBB); 1419 1420 // Erase all the coalesced copies. We are delaying it until now because 1421 // LiveVirtRegs might refer to the instrs. 1422 for (MachineInstr *MI : Coalesced) 1423 MBB.erase(MI); 1424 NumCoalesced += Coalesced.size(); 1425 1426 for (auto &UDBGPair : DanglingDbgValues) { 1427 for (MachineInstr *DbgValue : UDBGPair.second) { 1428 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1429 MachineOperand &MO = DbgValue->getOperand(0); 1430 // Nothing to do if the vreg was spilled in the meantime. 1431 if (!MO.isReg()) 1432 continue; 1433 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1434 << '\n'); 1435 MO.setReg(0); 1436 } 1437 } 1438 DanglingDbgValues.clear(); 1439 1440 LLVM_DEBUG(MBB.dump()); 1441 } 1442 1443 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1444 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1445 << "********** Function: " << MF.getName() << '\n'); 1446 MRI = &MF.getRegInfo(); 1447 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1448 TRI = STI.getRegisterInfo(); 1449 TII = STI.getInstrInfo(); 1450 MFI = &MF.getFrameInfo(); 1451 MRI->freezeReservedRegs(MF); 1452 RegClassInfo.runOnMachineFunction(MF); 1453 unsigned NumRegUnits = TRI->getNumRegUnits(); 1454 UsedInInstr.clear(); 1455 UsedInInstr.setUniverse(NumRegUnits); 1456 PhysRegUses.clear(); 1457 PhysRegUses.setUniverse(NumRegUnits); 1458 1459 // initialize the virtual->physical register map to have a 'null' 1460 // mapping for all virtual registers 1461 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1462 StackSlotForVirtReg.resize(NumVirtRegs); 1463 LiveVirtRegs.setUniverse(NumVirtRegs); 1464 MayLiveAcrossBlocks.clear(); 1465 MayLiveAcrossBlocks.resize(NumVirtRegs); 1466 1467 // Loop over all of the basic blocks, eliminating virtual register references 1468 for (MachineBasicBlock &MBB : MF) 1469 allocateBasicBlock(MBB); 1470 1471 // All machine operands and other references to virtual registers have been 1472 // replaced. Remove the virtual registers. 1473 MRI->clearVirtRegs(); 1474 1475 StackSlotForVirtReg.clear(); 1476 LiveDbgValueMap.clear(); 1477 return true; 1478 } 1479 1480 FunctionPass *llvm::createFastRegisterAllocator() { 1481 return new RegAllocFast(); 1482 } 1483