1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/CodeGen/RDFLiveness.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/RDFGraph.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <unordered_map>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 using namespace rdf;
55 
56 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
57   cl::Hidden, cl::desc("Maximum recursion level"));
58 
59 namespace llvm {
60 namespace rdf {
61 
62   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63     OS << '{';
64     for (auto &I : P.Obj) {
65       OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67         OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
68         if (++J != E)
69           OS << ',';
70       }
71       OS << '}';
72     }
73     OS << " }";
74     return OS;
75   }
76 
77 } // end namespace rdf
78 } // end namespace llvm
79 
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 //
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 //   SubA = phi ...
103 //   SubB = phi ...
104 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
107 
108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109       NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110       const RegisterAggr &DefRRs) {
111   NodeList RDefs; // Return value.
112   SetVector<NodeId> DefQ;
113   DenseMap<MachineInstr*, uint32_t> OrdMap;
114 
115   // Dead defs will be treated as if they were live, since they are actually
116   // on the data-flow path. They cannot be ignored because even though they
117   // do not generate meaningful values, they still modify registers.
118 
119   // If the reference is undefined, there is nothing to do.
120   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121     return RDefs;
122 
123   // The initial queue should not have reaching defs for shadows. The
124   // whole point of a shadow is that it will have a reaching def that
125   // is not aliased to the reaching defs of the related shadows.
126   NodeId Start = RefA.Id;
127   auto SNA = DFG.addr<RefNode*>(Start);
128   if (NodeId RD = SNA.Addr->getReachingDef())
129     DefQ.insert(RD);
130   if (TopShadows) {
131     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133         DefQ.insert(RD);
134   }
135 
136   // Collect all the reaching defs, going up until a phi node is encountered,
137   // or there are no more reaching defs. From this set, the actual set of
138   // reaching defs will be selected.
139   // The traversal upwards must go on until a covering def is encountered.
140   // It is possible that a collection of non-covering (individually) defs
141   // will be sufficient, but keep going until a covering one is found.
142   for (unsigned i = 0; i < DefQ.size(); ++i) {
143     auto TA = DFG.addr<DefNode*>(DefQ[i]);
144     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145       continue;
146     // Stop at the covering/overwriting def of the initial register reference.
147     RegisterRef RR = TA.Addr->getRegRef(DFG);
148     if (!DFG.IsPreservingDef(TA))
149       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150         continue;
151     // Get the next level of reaching defs. This will include multiple
152     // reaching defs for shadows.
153     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155         DefQ.insert(RD);
156     // Don't visit sibling defs. They share the same reaching def (which
157     // will be visited anyway), but they define something not aliased to
158     // this ref.
159   }
160 
161   // Return the MachineBasicBlock containing a given instruction.
162   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
163     if (IA.Addr->getKind() == NodeAttrs::Stmt)
164       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
165     assert(IA.Addr->getKind() == NodeAttrs::Phi);
166     NodeAddr<PhiNode*> PA = IA;
167     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
168     return BA.Addr->getCode();
169   };
170 
171   SmallSet<NodeId,32> Defs;
172 
173   // Remove all non-phi defs that are not aliased to RefRR, and separate
174   // the the remaining defs into buckets for containing blocks.
175   std::map<NodeId, NodeAddr<InstrNode*>> Owners;
176   std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks;
177   for (NodeId N : DefQ) {
178     auto TA = DFG.addr<DefNode*>(N);
179     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
180     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
181       continue;
182     Defs.insert(TA.Id);
183     NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
184     Owners[TA.Id] = IA;
185     Blocks[Block(IA)].push_back(IA.Id);
186   }
187 
188   auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) {
189     if (A == B)
190       return false;
191     NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A);
192     NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B);
193     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
194     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
195     if (StmtA && StmtB) {
196       const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode();
197       const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode();
198       assert(InA->getParent() == InB->getParent());
199       auto FA = OrdMap.find(InA);
200       if (FA != OrdMap.end())
201         return FA->second < OrdMap.find(InB)->second;
202       const MachineBasicBlock *BB = InA->getParent();
203       for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
204         if (It == InA->getIterator())
205           return true;
206         if (It == InB->getIterator())
207           return false;
208       }
209       llvm_unreachable("InA and InB should be in the same block");
210     }
211     // One of them is a phi node.
212     if (!StmtA && !StmtB) {
213       // Both are phis, which are unordered. Break the tie by id numbers.
214       return A < B;
215     }
216     // Only one of them is a phi. Phis always precede statements.
217     return !StmtA;
218   };
219 
220   auto GetOrder = [&OrdMap] (MachineBasicBlock &B) {
221     uint32_t Pos = 0;
222     for (MachineInstr &In : B)
223       OrdMap.insert({&In, ++Pos});
224   };
225 
226   // For each block, sort the nodes in it.
227   std::vector<MachineBasicBlock*> TmpBB;
228   for (auto &Bucket : Blocks) {
229     TmpBB.push_back(Bucket.first);
230     if (Bucket.second.size() > 2)
231       GetOrder(*Bucket.first);
232     llvm::sort(Bucket.second, Precedes);
233   }
234 
235   // Sort the blocks with respect to dominance.
236   llvm::sort(TmpBB,
237              [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
238 
239   std::vector<NodeId> TmpInst;
240   for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
241     auto &Bucket = Blocks[MBB];
242     TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
243   }
244 
245   // The vector is a list of instructions, so that defs coming from
246   // the same instruction don't need to be artificially ordered.
247   // Then, when computing the initial segment, and iterating over an
248   // instruction, pick the defs that contribute to the covering (i.e. is
249   // not covered by previously added defs). Check the defs individually,
250   // i.e. first check each def if is covered or not (without adding them
251   // to the tracking set), and then add all the selected ones.
252 
253   // The reason for this is this example:
254   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
255   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
256   //                     covered if we added A first, and A would be covered
257   //                     if we added B first.
258   // In this example we want both A and B, because we don't want to give
259   // either one priority over the other, since they belong to the same
260   // statement.
261 
262   RegisterAggr RRs(DefRRs);
263 
264   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
265     return TA.Addr->getKind() == NodeAttrs::Def &&
266            Defs.count(TA.Id);
267   };
268 
269   for (NodeId T : TmpInst) {
270     if (!FullChain && RRs.hasCoverOf(RefRR))
271       break;
272     auto TA = DFG.addr<InstrNode*>(T);
273     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
274     NodeList Ds;
275     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
276       RegisterRef QR = DA.Addr->getRegRef(DFG);
277       // Add phi defs even if they are covered by subsequent defs. This is
278       // for cases where the reached use is not covered by any of the defs
279       // encountered so far: the phi def is needed to expose the liveness
280       // of that use to the entry of the block.
281       // Example:
282       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
283       //   d2<R3>(d1,,u3), ...
284       //   ..., u3<D1>(d2)        This use needs to be live on entry.
285       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
286         Ds.push_back(DA);
287     }
288     llvm::append_range(RDefs, Ds);
289     for (NodeAddr<DefNode*> DA : Ds) {
290       // When collecting a full chain of definitions, do not consider phi
291       // defs to actually define a register.
292       uint16_t Flags = DA.Addr->getFlags();
293       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
294         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
295           RRs.insert(DA.Addr->getRegRef(DFG));
296     }
297   }
298 
299   auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
300     return DA.Addr->getFlags() & NodeAttrs::Dead;
301   };
302   llvm::erase_if(RDefs, DeadP);
303 
304   return RDefs;
305 }
306 
307 std::pair<NodeSet,bool>
308 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
309       NodeSet &Visited, const NodeSet &Defs) {
310   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
311 }
312 
313 std::pair<NodeSet,bool>
314 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
315       NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
316   if (Nest > MaxNest)
317     return { NodeSet(), false };
318   // Collect all defined registers. Do not consider phis to be defining
319   // anything, only collect "real" definitions.
320   RegisterAggr DefRRs(PRI);
321   for (NodeId D : Defs) {
322     const auto DA = DFG.addr<const DefNode*>(D);
323     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
324       DefRRs.insert(DA.Addr->getRegRef(DFG));
325   }
326 
327   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
328   if (RDs.empty())
329     return { Defs, true };
330 
331   // Make a copy of the preexisting definitions and add the newly found ones.
332   NodeSet TmpDefs = Defs;
333   for (NodeAddr<NodeBase*> R : RDs)
334     TmpDefs.insert(R.Id);
335 
336   NodeSet Result = Defs;
337 
338   for (NodeAddr<DefNode*> DA : RDs) {
339     Result.insert(DA.Id);
340     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
341       continue;
342     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
343     if (Visited.count(PA.Id))
344       continue;
345     Visited.insert(PA.Id);
346     // Go over all phi uses and get the reaching defs for each use.
347     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
348       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
349                                                 Nest+1, MaxNest);
350       if (!T.second)
351         return { T.first, false };
352       Result.insert(T.first.begin(), T.first.end());
353     }
354   }
355 
356   return { Result, true };
357 }
358 
359 /// Find the nearest ref node aliased to RefRR, going upwards in the data
360 /// flow, starting from the instruction immediately preceding Inst.
361 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
362       NodeAddr<InstrNode*> IA) {
363   NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
364   NodeList Ins = BA.Addr->members(DFG);
365   NodeId FindId = IA.Id;
366   auto E = Ins.rend();
367   auto B = std::find_if(Ins.rbegin(), E,
368                         [FindId] (const NodeAddr<InstrNode*> T) {
369                           return T.Id == FindId;
370                         });
371   // Do not scan IA (which is what B would point to).
372   if (B != E)
373     ++B;
374 
375   do {
376     // Process the range of instructions from B to E.
377     for (NodeAddr<InstrNode*> I : make_range(B, E)) {
378       NodeList Refs = I.Addr->members(DFG);
379       NodeAddr<RefNode*> Clob, Use;
380       // Scan all the refs in I aliased to RefRR, and return the one that
381       // is the closest to the output of I, i.e. def > clobber > use.
382       for (NodeAddr<RefNode*> R : Refs) {
383         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
384           continue;
385         if (DFG.IsDef(R)) {
386           // If it's a non-clobbering def, just return it.
387           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
388             return R;
389           Clob = R;
390         } else {
391           Use = R;
392         }
393       }
394       if (Clob.Id != 0)
395         return Clob;
396       if (Use.Id != 0)
397         return Use;
398     }
399 
400     // Go up to the immediate dominator, if any.
401     MachineBasicBlock *BB = BA.Addr->getCode();
402     BA = NodeAddr<BlockNode*>();
403     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
404       if ((N = N->getIDom()))
405         BA = DFG.findBlock(N->getBlock());
406     }
407     if (!BA.Id)
408       break;
409 
410     Ins = BA.Addr->members(DFG);
411     B = Ins.rbegin();
412     E = Ins.rend();
413   } while (true);
414 
415   return NodeAddr<RefNode*>();
416 }
417 
418 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
419       NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
420   NodeSet Uses;
421 
422   // If the original register is already covered by all the intervening
423   // defs, no more uses can be reached.
424   if (DefRRs.hasCoverOf(RefRR))
425     return Uses;
426 
427   // Add all directly reached uses.
428   // If the def is dead, it does not provide a value for any use.
429   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
430   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
431   while (U != 0) {
432     auto UA = DFG.addr<UseNode*>(U);
433     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
434       RegisterRef UR = UA.Addr->getRegRef(DFG);
435       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
436         Uses.insert(U);
437     }
438     U = UA.Addr->getSibling();
439   }
440 
441   // Traverse all reached defs. This time dead defs cannot be ignored.
442   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
443     auto DA = DFG.addr<DefNode*>(D);
444     NextD = DA.Addr->getSibling();
445     RegisterRef DR = DA.Addr->getRegRef(DFG);
446     // If this def is already covered, it cannot reach anything new.
447     // Similarly, skip it if it is not aliased to the interesting register.
448     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
449       continue;
450     NodeSet T;
451     if (DFG.IsPreservingDef(DA)) {
452       // If it is a preserving def, do not update the set of intervening defs.
453       T = getAllReachedUses(RefRR, DA, DefRRs);
454     } else {
455       RegisterAggr NewDefRRs = DefRRs;
456       NewDefRRs.insert(DR);
457       T = getAllReachedUses(RefRR, DA, NewDefRRs);
458     }
459     Uses.insert(T.begin(), T.end());
460   }
461   return Uses;
462 }
463 
464 void Liveness::computePhiInfo() {
465   RealUseMap.clear();
466 
467   NodeList Phis;
468   NodeAddr<FuncNode*> FA = DFG.getFunc();
469   NodeList Blocks = FA.Addr->members(DFG);
470   for (NodeAddr<BlockNode*> BA : Blocks) {
471     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
472     llvm::append_range(Phis, Ps);
473   }
474 
475   // phi use -> (map: reaching phi -> set of registers defined in between)
476   std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
477   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
478   std::unordered_map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
479 
480   // Go over all phis.
481   for (NodeAddr<PhiNode*> PhiA : Phis) {
482     // Go over all defs and collect the reached uses that are non-phi uses
483     // (i.e. the "real uses").
484     RefMap &RealUses = RealUseMap[PhiA.Id];
485     NodeList PhiRefs = PhiA.Addr->members(DFG);
486 
487     // Have a work queue of defs whose reached uses need to be found.
488     // For each def, add to the queue all reached (non-phi) defs.
489     SetVector<NodeId> DefQ;
490     NodeSet PhiDefs;
491     RegisterAggr DRs(PRI);
492     for (NodeAddr<RefNode*> R : PhiRefs) {
493       if (!DFG.IsRef<NodeAttrs::Def>(R))
494         continue;
495       DRs.insert(R.Addr->getRegRef(DFG));
496       DefQ.insert(R.Id);
497       PhiDefs.insert(R.Id);
498     }
499     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
500 
501     // Collect the super-set of all possible reached uses. This set will
502     // contain all uses reached from this phi, either directly from the
503     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
504     // This set of uses will later be trimmed to only contain these uses that
505     // are actually reached by the phi defs.
506     for (unsigned i = 0; i < DefQ.size(); ++i) {
507       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
508       // Visit all reached uses. Phi defs should not really have the "dead"
509       // flag set, but check it anyway for consistency.
510       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
511       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
512       while (UN != 0) {
513         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
514         uint16_t F = A.Addr->getFlags();
515         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
516           RegisterRef R = A.Addr->getRegRef(DFG);
517           RealUses[R.Reg].insert({A.Id,R.Mask});
518         }
519         UN = A.Addr->getSibling();
520       }
521       // Visit all reached defs, and add them to the queue. These defs may
522       // override some of the uses collected here, but that will be handled
523       // later.
524       NodeId DN = DA.Addr->getReachedDef();
525       while (DN != 0) {
526         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
527         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
528           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
529           // Must traverse the reached-def chain. Consider:
530           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
531           // The reachable use of D0 passes through a def of R0.
532           if (!(Flags & NodeAttrs::PhiRef))
533             DefQ.insert(T.Id);
534         }
535         DN = A.Addr->getSibling();
536       }
537     }
538     // Filter out these uses that appear to be reachable, but really
539     // are not. For example:
540     //
541     // R1:0 =          d1
542     //      = R1:0     u2     Reached by d1.
543     //   R0 =          d3
544     //      = R1:0     u4     Still reached by d1: indirectly through
545     //                        the def d3.
546     //   R1 =          d5
547     //      = R1:0     u6     Not reached by d1 (covered collectively
548     //                        by d3 and d5), but following reached
549     //                        defs and uses from d1 will lead here.
550     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
551       // For each reached register UI->first, there is a set UI->second, of
552       // uses of it. For each such use, check if it is reached by this phi,
553       // i.e. check if the set of its reaching uses intersects the set of
554       // this phi's defs.
555       NodeRefSet Uses = UI->second;
556       UI->second.clear();
557       for (std::pair<NodeId,LaneBitmask> I : Uses) {
558         auto UA = DFG.addr<UseNode*>(I.first);
559         // Undef flag is checked above.
560         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
561         RegisterRef R(UI->first, I.second);
562         // Calculate the exposed part of the reached use.
563         RegisterAggr Covered(PRI);
564         for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
565           if (PhiDefs.count(DA.Id))
566             break;
567           Covered.insert(DA.Addr->getRegRef(DFG));
568         }
569         if (RegisterRef RC = Covered.clearIn(R)) {
570           // We are updating the map for register UI->first, so we need
571           // to map RC to be expressed in terms of that register.
572           RegisterRef S = PRI.mapTo(RC, UI->first);
573           UI->second.insert({I.first, S.Mask});
574         }
575       }
576       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
577     }
578 
579     // If this phi reaches some "real" uses, add it to the queue for upward
580     // propagation.
581     if (!RealUses.empty())
582       PhiUQ.push_back(PhiA.Id);
583 
584     // Go over all phi uses and check if the reaching def is another phi.
585     // Collect the phis that are among the reaching defs of these uses.
586     // While traversing the list of reaching defs for each phi use, accumulate
587     // the set of registers defined between this phi (PhiA) and the owner phi
588     // of the reaching def.
589     NodeSet SeenUses;
590 
591     for (auto I : PhiRefs) {
592       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
593         continue;
594       NodeAddr<PhiUseNode*> PUA = I;
595       if (PUA.Addr->getReachingDef() == 0)
596         continue;
597 
598       RegisterRef UR = PUA.Addr->getRegRef(DFG);
599       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
600       RegisterAggr DefRRs(PRI);
601 
602       for (NodeAddr<DefNode*> D : Ds) {
603         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
604           NodeId RP = D.Addr->getOwner(DFG).Id;
605           std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
606           auto F = M.find(RP);
607           if (F == M.end())
608             M.insert(std::make_pair(RP, DefRRs));
609           else
610             F->second.insert(DefRRs);
611         }
612         DefRRs.insert(D.Addr->getRegRef(DFG));
613       }
614 
615       for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
616         SeenUses.insert(T.Id);
617     }
618   }
619 
620   if (Trace) {
621     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
622     for (auto I : PhiUp) {
623       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
624       for (auto R : I.second)
625         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
626                << Print<RegisterAggr>(R.second, DFG);
627       dbgs() << " }\n";
628     }
629   }
630 
631   // Propagate the reached registers up in the phi chain.
632   //
633   // The following type of situation needs careful handling:
634   //
635   //   phi d1<R1:0>  (1)
636   //        |
637   //   ... d2<R1>
638   //        |
639   //   phi u3<R1:0>  (2)
640   //        |
641   //   ... u4<R1>
642   //
643   // The phi node (2) defines a register pair R1:0, and reaches a "real"
644   // use u4 of just R1. The same phi node is also known to reach (upwards)
645   // the phi node (1). However, the use u4 is not reached by phi (1),
646   // because of the intervening definition d2 of R1. The data flow between
647   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
648   //
649   // When propagating uses up the phi chains, get the all reaching defs
650   // for a given phi use, and traverse the list until the propagated ref
651   // is covered, or until reaching the final phi. Only assume that the
652   // reference reaches the phi in the latter case.
653 
654   // The operation "clearIn" can be expensive. For a given set of intervening
655   // defs, cache the result of subtracting these defs from a given register
656   // ref.
657   using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
658   std::unordered_map<RegisterAggr, SubMap> Subs;
659   auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
660     if (Mid.empty())
661       return RR;
662     auto F = SM.find(RR);
663     if (F != SM.end())
664       return F->second;
665     RegisterRef S = Mid.clearIn(RR);
666     SM.insert({RR, S});
667     return S;
668   };
669 
670   // Go over all phis.
671   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
672     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
673     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
674     RefMap &RUM = RealUseMap[PA.Id];
675 
676     for (NodeAddr<UseNode*> UA : PUs) {
677       std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
678       RegisterRef UR = UA.Addr->getRegRef(DFG);
679       for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
680         bool Changed = false;
681         const RegisterAggr &MidDefs = P.second;
682         // Collect the set PropUp of uses that are reached by the current
683         // phi PA, and are not covered by any intervening def between the
684         // currently visited use UA and the upward phi P.
685 
686         if (MidDefs.hasCoverOf(UR))
687           continue;
688         SubMap &SM = Subs[MidDefs];
689 
690         // General algorithm:
691         //   for each (R,U) : U is use node of R, U is reached by PA
692         //     if MidDefs does not cover (R,U)
693         //       then add (R-MidDefs,U) to RealUseMap[P]
694         //
695         for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
696           RegisterRef R(T.first);
697           // The current phi (PA) could be a phi for a regmask. It could
698           // reach a whole variety of uses that are not related to the
699           // specific upward phi (P.first).
700           const RegisterAggr &DRs = PhiDRs.at(P.first);
701           if (!DRs.hasAliasOf(R))
702             continue;
703           R = PRI.mapTo(DRs.intersectWith(R), T.first);
704           for (std::pair<NodeId,LaneBitmask> V : T.second) {
705             LaneBitmask M = R.Mask & V.second;
706             if (M.none())
707               continue;
708             if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
709               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
710               Changed |= RS.insert({V.first,SS.Mask}).second;
711             }
712           }
713         }
714 
715         if (Changed)
716           PhiUQ.push_back(P.first);
717       }
718     }
719   }
720 
721   if (Trace) {
722     dbgs() << "Real use map:\n";
723     for (auto I : RealUseMap) {
724       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
725       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
726       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
727       if (!Ds.empty()) {
728         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
729         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
730       } else {
731         dbgs() << "<noreg>";
732       }
733       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
734     }
735   }
736 }
737 
738 void Liveness::computeLiveIns() {
739   // Populate the node-to-block map. This speeds up the calculations
740   // significantly.
741   NBMap.clear();
742   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
743     MachineBasicBlock *BB = BA.Addr->getCode();
744     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
745       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
746         NBMap.insert(std::make_pair(RA.Id, BB));
747       NBMap.insert(std::make_pair(IA.Id, BB));
748     }
749   }
750 
751   MachineFunction &MF = DFG.getMF();
752 
753   // Compute IDF first, then the inverse.
754   decltype(IIDF) IDF;
755   for (MachineBasicBlock &B : MF) {
756     auto F1 = MDF.find(&B);
757     if (F1 == MDF.end())
758       continue;
759     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
760     for (unsigned i = 0; i < IDFB.size(); ++i) {
761       auto F2 = MDF.find(IDFB[i]);
762       if (F2 != MDF.end())
763         IDFB.insert(F2->second.begin(), F2->second.end());
764     }
765     // Add B to the IDF(B). This will put B in the IIDF(B).
766     IDFB.insert(&B);
767     IDF[&B].insert(IDFB.begin(), IDFB.end());
768   }
769 
770   for (auto I : IDF)
771     for (auto S : I.second)
772       IIDF[S].insert(I.first);
773 
774   computePhiInfo();
775 
776   NodeAddr<FuncNode*> FA = DFG.getFunc();
777   NodeList Blocks = FA.Addr->members(DFG);
778 
779   // Build the phi live-on-entry map.
780   for (NodeAddr<BlockNode*> BA : Blocks) {
781     MachineBasicBlock *MB = BA.Addr->getCode();
782     RefMap &LON = PhiLON[MB];
783     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
784       for (const RefMap::value_type &S : RealUseMap[P.Id])
785         LON[S.first].insert(S.second.begin(), S.second.end());
786   }
787 
788   if (Trace) {
789     dbgs() << "Phi live-on-entry map:\n";
790     for (auto &I : PhiLON)
791       dbgs() << "block #" << I.first->getNumber() << " -> "
792              << Print<RefMap>(I.second, DFG) << '\n';
793   }
794 
795   // Build the phi live-on-exit map. Each phi node has some set of reached
796   // "real" uses. Propagate this set backwards into the block predecessors
797   // through the reaching defs of the corresponding phi uses.
798   for (NodeAddr<BlockNode*> BA : Blocks) {
799     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
800     for (NodeAddr<PhiNode*> PA : Phis) {
801       RefMap &RUs = RealUseMap[PA.Id];
802       if (RUs.empty())
803         continue;
804 
805       NodeSet SeenUses;
806       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
807         if (!SeenUses.insert(U.Id).second)
808           continue;
809         NodeAddr<PhiUseNode*> PUA = U;
810         if (PUA.Addr->getReachingDef() == 0)
811           continue;
812 
813         // Each phi has some set (possibly empty) of reached "real" uses,
814         // that is, uses that are part of the compiled program. Such a use
815         // may be located in some farther block, but following a chain of
816         // reaching defs will eventually lead to this phi.
817         // Any chain of reaching defs may fork at a phi node, but there
818         // will be a path upwards that will lead to this phi. Now, this
819         // chain will need to fork at this phi, since some of the reached
820         // uses may have definitions joining in from multiple predecessors.
821         // For each reached "real" use, identify the set of reaching defs
822         // coming from each predecessor P, and add them to PhiLOX[P].
823         //
824         auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
825         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
826 
827         for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
828           // We need to visit each individual use.
829           for (std::pair<NodeId,LaneBitmask> P : RS.second) {
830             // Create a register ref corresponding to the use, and find
831             // all reaching defs starting from the phi use, and treating
832             // all related shadows as a single use cluster.
833             RegisterRef S(RS.first, P.second);
834             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
835             for (NodeAddr<DefNode*> D : Ds) {
836               // Calculate the mask corresponding to the visited def.
837               RegisterAggr TA(PRI);
838               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
839               LaneBitmask TM = TA.makeRegRef().Mask;
840               LOX[S.Reg].insert({D.Id, TM});
841             }
842           }
843         }
844 
845         for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
846           SeenUses.insert(T.Id);
847       }  // for U : phi uses
848     }  // for P : Phis
849   }  // for B : Blocks
850 
851   if (Trace) {
852     dbgs() << "Phi live-on-exit map:\n";
853     for (auto &I : PhiLOX)
854       dbgs() << "block #" << I.first->getNumber() << " -> "
855              << Print<RefMap>(I.second, DFG) << '\n';
856   }
857 
858   RefMap LiveIn;
859   traverse(&MF.front(), LiveIn);
860 
861   // Add function live-ins to the live-in set of the function entry block.
862   LiveMap[&MF.front()].insert(DFG.getLiveIns());
863 
864   if (Trace) {
865     // Dump the liveness map
866     for (MachineBasicBlock &B : MF) {
867       std::vector<RegisterRef> LV;
868       for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
869         LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
870       llvm::sort(LV);
871       dbgs() << printMBBReference(B) << "\t rec = {";
872       for (auto I : LV)
873         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
874       dbgs() << " }\n";
875       //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
876 
877       LV.clear();
878       const RegisterAggr &LG = LiveMap[&B];
879       for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
880         LV.push_back(*I);
881       llvm::sort(LV);
882       dbgs() << "\tcomp = {";
883       for (auto I : LV)
884         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
885       dbgs() << " }\n";
886 
887     }
888   }
889 }
890 
891 void Liveness::resetLiveIns() {
892   for (auto &B : DFG.getMF()) {
893     // Remove all live-ins.
894     std::vector<unsigned> T;
895     for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
896       T.push_back(LI.PhysReg);
897     for (auto I : T)
898       B.removeLiveIn(I);
899     // Add the newly computed live-ins.
900     const RegisterAggr &LiveIns = LiveMap[&B];
901     for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end()))
902       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
903   }
904 }
905 
906 void Liveness::resetKills() {
907   for (auto &B : DFG.getMF())
908     resetKills(&B);
909 }
910 
911 void Liveness::resetKills(MachineBasicBlock *B) {
912   auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
913     for (auto I : B->liveins()) {
914       MCSubRegIndexIterator S(I.PhysReg, &TRI);
915       if (!S.isValid()) {
916         LV.set(I.PhysReg);
917         continue;
918       }
919       do {
920         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
921         if ((M & I.LaneMask).any())
922           LV.set(S.getSubReg());
923         ++S;
924       } while (S.isValid());
925     }
926   };
927 
928   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
929   CopyLiveIns(B, LiveIn);
930   for (auto SI : B->successors())
931     CopyLiveIns(SI, Live);
932 
933   for (MachineInstr &MI : llvm::reverse(*B)) {
934     if (MI.isDebugInstr())
935       continue;
936 
937     MI.clearKillInfo();
938     for (auto &Op : MI.operands()) {
939       // An implicit def of a super-register may not necessarily start a
940       // live range of it, since an implicit use could be used to keep parts
941       // of it live. Instead of analyzing the implicit operands, ignore
942       // implicit defs.
943       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
944         continue;
945       Register R = Op.getReg();
946       if (!Register::isPhysicalRegister(R))
947         continue;
948       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
949         Live.reset(*SR);
950     }
951     for (auto &Op : MI.operands()) {
952       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
953         continue;
954       Register R = Op.getReg();
955       if (!Register::isPhysicalRegister(R))
956         continue;
957       bool IsLive = false;
958       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
959         if (!Live[*AR])
960           continue;
961         IsLive = true;
962         break;
963       }
964       if (!IsLive)
965         Op.setIsKill(true);
966       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
967         Live.set(*SR);
968     }
969   }
970 }
971 
972 // Helper function to obtain the basic block containing the reaching def
973 // of the given use.
974 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
975   auto F = NBMap.find(RN);
976   if (F != NBMap.end())
977     return F->second;
978   llvm_unreachable("Node id not in map");
979 }
980 
981 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
982   // The LiveIn map, for each (physical) register, contains the set of live
983   // reaching defs of that register that are live on entry to the associated
984   // block.
985 
986   // The summary of the traversal algorithm:
987   //
988   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
989   // and (U \in IDF(B) or B dom U).
990   //
991   // for (C : children) {
992   //   LU = {}
993   //   traverse(C, LU)
994   //   LiveUses += LU
995   // }
996   //
997   // LiveUses -= Defs(B);
998   // LiveUses += UpwardExposedUses(B);
999   // for (C : IIDF[B])
1000   //   for (U : LiveUses)
1001   //     if (Rdef(U) dom C)
1002   //       C.addLiveIn(U)
1003   //
1004 
1005   // Go up the dominator tree (depth-first).
1006   MachineDomTreeNode *N = MDT.getNode(B);
1007   for (auto I : *N) {
1008     RefMap L;
1009     MachineBasicBlock *SB = I->getBlock();
1010     traverse(SB, L);
1011 
1012     for (auto S : L)
1013       LiveIn[S.first].insert(S.second.begin(), S.second.end());
1014   }
1015 
1016   if (Trace) {
1017     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1018            << " after recursion into: {";
1019     for (auto I : *N)
1020       dbgs() << ' ' << I->getBlock()->getNumber();
1021     dbgs() << " }\n";
1022     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1023     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1024   }
1025 
1026   // Add reaching defs of phi uses that are live on exit from this block.
1027   RefMap &PUs = PhiLOX[B];
1028   for (auto &S : PUs)
1029     LiveIn[S.first].insert(S.second.begin(), S.second.end());
1030 
1031   if (Trace) {
1032     dbgs() << "after LOX\n";
1033     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1034     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1035   }
1036 
1037   // The LiveIn map at this point has all defs that are live-on-exit from B,
1038   // as if they were live-on-entry to B. First, we need to filter out all
1039   // defs that are present in this block. Then we will add reaching defs of
1040   // all upward-exposed uses.
1041 
1042   // To filter out the defs, first make a copy of LiveIn, and then re-populate
1043   // LiveIn with the defs that should remain.
1044   RefMap LiveInCopy = LiveIn;
1045   LiveIn.clear();
1046 
1047   for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1048     RegisterRef LRef(LE.first);
1049     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1050     const NodeRefSet &OldDefs = LE.second;
1051     for (NodeRef OR : OldDefs) {
1052       // R is a def node that was live-on-exit
1053       auto DA = DFG.addr<DefNode*>(OR.first);
1054       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1055       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1056       if (B != BA.Addr->getCode()) {
1057         // Defs from a different block need to be preserved. Defs from this
1058         // block will need to be processed further, except for phi defs, the
1059         // liveness of which is handled through the PhiLON/PhiLOX maps.
1060         NewDefs.insert(OR);
1061         continue;
1062       }
1063 
1064       // Defs from this block need to stop the liveness from being
1065       // propagated upwards. This only applies to non-preserving defs,
1066       // and to the parts of the register actually covered by those defs.
1067       // (Note that phi defs should always be preserving.)
1068       RegisterAggr RRs(PRI);
1069       LRef.Mask = OR.second;
1070 
1071       if (!DFG.IsPreservingDef(DA)) {
1072         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1073         // DA is a non-phi def that is live-on-exit from this block, and
1074         // that is also located in this block. LRef is a register ref
1075         // whose use this def reaches. If DA covers LRef, then no part
1076         // of LRef is exposed upwards.A
1077         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1078           continue;
1079       }
1080 
1081       // DA itself was not sufficient to cover LRef. In general, it is
1082       // the last in a chain of aliased defs before the exit from this block.
1083       // There could be other defs in this block that are a part of that
1084       // chain. Check that now: accumulate the registers from these defs,
1085       // and if they all together cover LRef, it is not live-on-entry.
1086       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1087         // DefNode -> InstrNode -> BlockNode.
1088         NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1089         NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1090         // Reaching defs are ordered in the upward direction.
1091         if (BTA.Addr->getCode() != B) {
1092           // We have reached past the beginning of B, and the accumulated
1093           // registers are not covering LRef. The first def from the
1094           // upward chain will be live.
1095           // Subtract all accumulated defs (RRs) from LRef.
1096           RegisterRef T = RRs.clearIn(LRef);
1097           assert(T);
1098           NewDefs.insert({TA.Id,T.Mask});
1099           break;
1100         }
1101 
1102         // TA is in B. Only add this def to the accumulated cover if it is
1103         // not preserving.
1104         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1105           RRs.insert(TA.Addr->getRegRef(DFG));
1106         // If this is enough to cover LRef, then stop.
1107         if (RRs.hasCoverOf(LRef))
1108           break;
1109       }
1110     }
1111   }
1112 
1113   emptify(LiveIn);
1114 
1115   if (Trace) {
1116     dbgs() << "after defs in block\n";
1117     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1118     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1119   }
1120 
1121   // Scan the block for upward-exposed uses and add them to the tracking set.
1122   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1123     NodeAddr<InstrNode*> IA = I;
1124     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1125       continue;
1126     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1127       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1128         continue;
1129       RegisterRef RR = UA.Addr->getRegRef(DFG);
1130       for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1131         if (getBlockWithRef(D.Id) != B)
1132           LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1133     }
1134   }
1135 
1136   if (Trace) {
1137     dbgs() << "after uses in block\n";
1138     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1139     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1140   }
1141 
1142   // Phi uses should not be propagated up the dominator tree, since they
1143   // are not dominated by their corresponding reaching defs.
1144   RegisterAggr &Local = LiveMap[B];
1145   RefMap &LON = PhiLON[B];
1146   for (auto &R : LON) {
1147     LaneBitmask M;
1148     for (auto P : R.second)
1149       M |= P.second;
1150     Local.insert(RegisterRef(R.first,M));
1151   }
1152 
1153   if (Trace) {
1154     dbgs() << "after phi uses in block\n";
1155     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1156     dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
1157   }
1158 
1159   for (auto C : IIDF[B]) {
1160     RegisterAggr &LiveC = LiveMap[C];
1161     for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1162       for (auto R : S.second)
1163         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1164           LiveC.insert(RegisterRef(S.first, R.second));
1165   }
1166 }
1167 
1168 void Liveness::emptify(RefMap &M) {
1169   for (auto I = M.begin(), E = M.end(); I != E; )
1170     I = I->second.empty() ? M.erase(I) : std::next(I);
1171 }
1172