1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/CodeGen/RDFLiveness.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/RDFGraph.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <unordered_map>
50 #include <utility>
51 #include <vector>
52
53 using namespace llvm;
54 using namespace rdf;
55
56 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
57 cl::Hidden, cl::desc("Maximum recursion level"));
58
59 namespace llvm {
60 namespace rdf {
61
operator <<(raw_ostream & OS,const Print<Liveness::RefMap> & P)62 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63 OS << '{';
64 for (const auto &I : P.Obj) {
65 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67 OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
68 if (++J != E)
69 OS << ',';
70 }
71 OS << '}';
72 }
73 OS << " }";
74 return OS;
75 }
76
77 } // end namespace rdf
78 } // end namespace llvm
79
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 //
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 // SubA = phi ...
103 // SubB = phi ...
104 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
107
getAllReachingDefs(RegisterRef RefRR,NodeAddr<RefNode * > RefA,bool TopShadows,bool FullChain,const RegisterAggr & DefRRs)108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110 const RegisterAggr &DefRRs) {
111 NodeList RDefs; // Return value.
112 SetVector<NodeId> DefQ;
113 DenseMap<MachineInstr*, uint32_t> OrdMap;
114
115 // Dead defs will be treated as if they were live, since they are actually
116 // on the data-flow path. They cannot be ignored because even though they
117 // do not generate meaningful values, they still modify registers.
118
119 // If the reference is undefined, there is nothing to do.
120 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121 return RDefs;
122
123 // The initial queue should not have reaching defs for shadows. The
124 // whole point of a shadow is that it will have a reaching def that
125 // is not aliased to the reaching defs of the related shadows.
126 NodeId Start = RefA.Id;
127 auto SNA = DFG.addr<RefNode*>(Start);
128 if (NodeId RD = SNA.Addr->getReachingDef())
129 DefQ.insert(RD);
130 if (TopShadows) {
131 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133 DefQ.insert(RD);
134 }
135
136 // Collect all the reaching defs, going up until a phi node is encountered,
137 // or there are no more reaching defs. From this set, the actual set of
138 // reaching defs will be selected.
139 // The traversal upwards must go on until a covering def is encountered.
140 // It is possible that a collection of non-covering (individually) defs
141 // will be sufficient, but keep going until a covering one is found.
142 for (unsigned i = 0; i < DefQ.size(); ++i) {
143 auto TA = DFG.addr<DefNode*>(DefQ[i]);
144 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145 continue;
146 // Stop at the covering/overwriting def of the initial register reference.
147 RegisterRef RR = TA.Addr->getRegRef(DFG);
148 if (!DFG.IsPreservingDef(TA))
149 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150 continue;
151 // Get the next level of reaching defs. This will include multiple
152 // reaching defs for shadows.
153 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155 DefQ.insert(RD);
156 // Don't visit sibling defs. They share the same reaching def (which
157 // will be visited anyway), but they define something not aliased to
158 // this ref.
159 }
160
161 // Return the MachineBasicBlock containing a given instruction.
162 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
163 if (IA.Addr->getKind() == NodeAttrs::Stmt)
164 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
165 assert(IA.Addr->getKind() == NodeAttrs::Phi);
166 NodeAddr<PhiNode*> PA = IA;
167 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
168 return BA.Addr->getCode();
169 };
170
171 SmallSet<NodeId,32> Defs;
172
173 // Remove all non-phi defs that are not aliased to RefRR, and separate
174 // the the remaining defs into buckets for containing blocks.
175 std::map<NodeId, NodeAddr<InstrNode*>> Owners;
176 std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks;
177 for (NodeId N : DefQ) {
178 auto TA = DFG.addr<DefNode*>(N);
179 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
180 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
181 continue;
182 Defs.insert(TA.Id);
183 NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
184 Owners[TA.Id] = IA;
185 Blocks[Block(IA)].push_back(IA.Id);
186 }
187
188 auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) {
189 if (A == B)
190 return false;
191 NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A);
192 NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B);
193 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
194 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
195 if (StmtA && StmtB) {
196 const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode();
197 const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode();
198 assert(InA->getParent() == InB->getParent());
199 auto FA = OrdMap.find(InA);
200 if (FA != OrdMap.end())
201 return FA->second < OrdMap.find(InB)->second;
202 const MachineBasicBlock *BB = InA->getParent();
203 for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
204 if (It == InA->getIterator())
205 return true;
206 if (It == InB->getIterator())
207 return false;
208 }
209 llvm_unreachable("InA and InB should be in the same block");
210 }
211 // One of them is a phi node.
212 if (!StmtA && !StmtB) {
213 // Both are phis, which are unordered. Break the tie by id numbers.
214 return A < B;
215 }
216 // Only one of them is a phi. Phis always precede statements.
217 return !StmtA;
218 };
219
220 auto GetOrder = [&OrdMap] (MachineBasicBlock &B) {
221 uint32_t Pos = 0;
222 for (MachineInstr &In : B)
223 OrdMap.insert({&In, ++Pos});
224 };
225
226 // For each block, sort the nodes in it.
227 std::vector<MachineBasicBlock*> TmpBB;
228 for (auto &Bucket : Blocks) {
229 TmpBB.push_back(Bucket.first);
230 if (Bucket.second.size() > 2)
231 GetOrder(*Bucket.first);
232 llvm::sort(Bucket.second, Precedes);
233 }
234
235 // Sort the blocks with respect to dominance.
236 llvm::sort(TmpBB,
237 [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
238
239 std::vector<NodeId> TmpInst;
240 for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
241 auto &Bucket = Blocks[MBB];
242 TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
243 }
244
245 // The vector is a list of instructions, so that defs coming from
246 // the same instruction don't need to be artificially ordered.
247 // Then, when computing the initial segment, and iterating over an
248 // instruction, pick the defs that contribute to the covering (i.e. is
249 // not covered by previously added defs). Check the defs individually,
250 // i.e. first check each def if is covered or not (without adding them
251 // to the tracking set), and then add all the selected ones.
252
253 // The reason for this is this example:
254 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
255 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
256 // covered if we added A first, and A would be covered
257 // if we added B first.
258 // In this example we want both A and B, because we don't want to give
259 // either one priority over the other, since they belong to the same
260 // statement.
261
262 RegisterAggr RRs(DefRRs);
263
264 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
265 return TA.Addr->getKind() == NodeAttrs::Def &&
266 Defs.count(TA.Id);
267 };
268
269 for (NodeId T : TmpInst) {
270 if (!FullChain && RRs.hasCoverOf(RefRR))
271 break;
272 auto TA = DFG.addr<InstrNode*>(T);
273 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
274 NodeList Ds;
275 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
276 RegisterRef QR = DA.Addr->getRegRef(DFG);
277 // Add phi defs even if they are covered by subsequent defs. This is
278 // for cases where the reached use is not covered by any of the defs
279 // encountered so far: the phi def is needed to expose the liveness
280 // of that use to the entry of the block.
281 // Example:
282 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
283 // d2<R3>(d1,,u3), ...
284 // ..., u3<D1>(d2) This use needs to be live on entry.
285 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
286 Ds.push_back(DA);
287 }
288 llvm::append_range(RDefs, Ds);
289 for (NodeAddr<DefNode*> DA : Ds) {
290 // When collecting a full chain of definitions, do not consider phi
291 // defs to actually define a register.
292 uint16_t Flags = DA.Addr->getFlags();
293 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
294 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
295 RRs.insert(DA.Addr->getRegRef(DFG));
296 }
297 }
298
299 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
300 return DA.Addr->getFlags() & NodeAttrs::Dead;
301 };
302 llvm::erase_if(RDefs, DeadP);
303
304 return RDefs;
305 }
306
307 std::pair<NodeSet,bool>
getAllReachingDefsRec(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs)308 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
309 NodeSet &Visited, const NodeSet &Defs) {
310 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
311 }
312
313 std::pair<NodeSet,bool>
getAllReachingDefsRecImpl(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs,unsigned Nest,unsigned MaxNest)314 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
315 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
316 if (Nest > MaxNest)
317 return { NodeSet(), false };
318 // Collect all defined registers. Do not consider phis to be defining
319 // anything, only collect "real" definitions.
320 RegisterAggr DefRRs(PRI);
321 for (NodeId D : Defs) {
322 const auto DA = DFG.addr<const DefNode*>(D);
323 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
324 DefRRs.insert(DA.Addr->getRegRef(DFG));
325 }
326
327 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
328 if (RDs.empty())
329 return { Defs, true };
330
331 // Make a copy of the preexisting definitions and add the newly found ones.
332 NodeSet TmpDefs = Defs;
333 for (NodeAddr<NodeBase*> R : RDs)
334 TmpDefs.insert(R.Id);
335
336 NodeSet Result = Defs;
337
338 for (NodeAddr<DefNode*> DA : RDs) {
339 Result.insert(DA.Id);
340 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
341 continue;
342 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
343 if (!Visited.insert(PA.Id).second)
344 continue;
345 // Go over all phi uses and get the reaching defs for each use.
346 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
347 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
348 Nest+1, MaxNest);
349 if (!T.second)
350 return { T.first, false };
351 Result.insert(T.first.begin(), T.first.end());
352 }
353 }
354
355 return { Result, true };
356 }
357
358 /// Find the nearest ref node aliased to RefRR, going upwards in the data
359 /// flow, starting from the instruction immediately preceding Inst.
getNearestAliasedRef(RegisterRef RefRR,NodeAddr<InstrNode * > IA)360 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
361 NodeAddr<InstrNode*> IA) {
362 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
363 NodeList Ins = BA.Addr->members(DFG);
364 NodeId FindId = IA.Id;
365 auto E = Ins.rend();
366 auto B = std::find_if(Ins.rbegin(), E,
367 [FindId] (const NodeAddr<InstrNode*> T) {
368 return T.Id == FindId;
369 });
370 // Do not scan IA (which is what B would point to).
371 if (B != E)
372 ++B;
373
374 do {
375 // Process the range of instructions from B to E.
376 for (NodeAddr<InstrNode*> I : make_range(B, E)) {
377 NodeList Refs = I.Addr->members(DFG);
378 NodeAddr<RefNode*> Clob, Use;
379 // Scan all the refs in I aliased to RefRR, and return the one that
380 // is the closest to the output of I, i.e. def > clobber > use.
381 for (NodeAddr<RefNode*> R : Refs) {
382 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
383 continue;
384 if (DFG.IsDef(R)) {
385 // If it's a non-clobbering def, just return it.
386 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
387 return R;
388 Clob = R;
389 } else {
390 Use = R;
391 }
392 }
393 if (Clob.Id != 0)
394 return Clob;
395 if (Use.Id != 0)
396 return Use;
397 }
398
399 // Go up to the immediate dominator, if any.
400 MachineBasicBlock *BB = BA.Addr->getCode();
401 BA = NodeAddr<BlockNode*>();
402 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
403 if ((N = N->getIDom()))
404 BA = DFG.findBlock(N->getBlock());
405 }
406 if (!BA.Id)
407 break;
408
409 Ins = BA.Addr->members(DFG);
410 B = Ins.rbegin();
411 E = Ins.rend();
412 } while (true);
413
414 return NodeAddr<RefNode*>();
415 }
416
getAllReachedUses(RegisterRef RefRR,NodeAddr<DefNode * > DefA,const RegisterAggr & DefRRs)417 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
418 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
419 NodeSet Uses;
420
421 // If the original register is already covered by all the intervening
422 // defs, no more uses can be reached.
423 if (DefRRs.hasCoverOf(RefRR))
424 return Uses;
425
426 // Add all directly reached uses.
427 // If the def is dead, it does not provide a value for any use.
428 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
429 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
430 while (U != 0) {
431 auto UA = DFG.addr<UseNode*>(U);
432 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
433 RegisterRef UR = UA.Addr->getRegRef(DFG);
434 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
435 Uses.insert(U);
436 }
437 U = UA.Addr->getSibling();
438 }
439
440 // Traverse all reached defs. This time dead defs cannot be ignored.
441 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
442 auto DA = DFG.addr<DefNode*>(D);
443 NextD = DA.Addr->getSibling();
444 RegisterRef DR = DA.Addr->getRegRef(DFG);
445 // If this def is already covered, it cannot reach anything new.
446 // Similarly, skip it if it is not aliased to the interesting register.
447 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
448 continue;
449 NodeSet T;
450 if (DFG.IsPreservingDef(DA)) {
451 // If it is a preserving def, do not update the set of intervening defs.
452 T = getAllReachedUses(RefRR, DA, DefRRs);
453 } else {
454 RegisterAggr NewDefRRs = DefRRs;
455 NewDefRRs.insert(DR);
456 T = getAllReachedUses(RefRR, DA, NewDefRRs);
457 }
458 Uses.insert(T.begin(), T.end());
459 }
460 return Uses;
461 }
462
computePhiInfo()463 void Liveness::computePhiInfo() {
464 RealUseMap.clear();
465
466 NodeList Phis;
467 NodeAddr<FuncNode*> FA = DFG.getFunc();
468 NodeList Blocks = FA.Addr->members(DFG);
469 for (NodeAddr<BlockNode*> BA : Blocks) {
470 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
471 llvm::append_range(Phis, Ps);
472 }
473
474 // phi use -> (map: reaching phi -> set of registers defined in between)
475 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
476 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
477 std::unordered_map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
478
479 // Go over all phis.
480 for (NodeAddr<PhiNode*> PhiA : Phis) {
481 // Go over all defs and collect the reached uses that are non-phi uses
482 // (i.e. the "real uses").
483 RefMap &RealUses = RealUseMap[PhiA.Id];
484 NodeList PhiRefs = PhiA.Addr->members(DFG);
485
486 // Have a work queue of defs whose reached uses need to be found.
487 // For each def, add to the queue all reached (non-phi) defs.
488 SetVector<NodeId> DefQ;
489 NodeSet PhiDefs;
490 RegisterAggr DRs(PRI);
491 for (NodeAddr<RefNode*> R : PhiRefs) {
492 if (!DFG.IsRef<NodeAttrs::Def>(R))
493 continue;
494 DRs.insert(R.Addr->getRegRef(DFG));
495 DefQ.insert(R.Id);
496 PhiDefs.insert(R.Id);
497 }
498 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
499
500 // Collect the super-set of all possible reached uses. This set will
501 // contain all uses reached from this phi, either directly from the
502 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
503 // This set of uses will later be trimmed to only contain these uses that
504 // are actually reached by the phi defs.
505 for (unsigned i = 0; i < DefQ.size(); ++i) {
506 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
507 // Visit all reached uses. Phi defs should not really have the "dead"
508 // flag set, but check it anyway for consistency.
509 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
510 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
511 while (UN != 0) {
512 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
513 uint16_t F = A.Addr->getFlags();
514 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
515 RegisterRef R = A.Addr->getRegRef(DFG);
516 RealUses[R.Reg].insert({A.Id,R.Mask});
517 }
518 UN = A.Addr->getSibling();
519 }
520 // Visit all reached defs, and add them to the queue. These defs may
521 // override some of the uses collected here, but that will be handled
522 // later.
523 NodeId DN = DA.Addr->getReachedDef();
524 while (DN != 0) {
525 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
526 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
527 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
528 // Must traverse the reached-def chain. Consider:
529 // def(D0) -> def(R0) -> def(R0) -> use(D0)
530 // The reachable use of D0 passes through a def of R0.
531 if (!(Flags & NodeAttrs::PhiRef))
532 DefQ.insert(T.Id);
533 }
534 DN = A.Addr->getSibling();
535 }
536 }
537 // Filter out these uses that appear to be reachable, but really
538 // are not. For example:
539 //
540 // R1:0 = d1
541 // = R1:0 u2 Reached by d1.
542 // R0 = d3
543 // = R1:0 u4 Still reached by d1: indirectly through
544 // the def d3.
545 // R1 = d5
546 // = R1:0 u6 Not reached by d1 (covered collectively
547 // by d3 and d5), but following reached
548 // defs and uses from d1 will lead here.
549 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
550 // For each reached register UI->first, there is a set UI->second, of
551 // uses of it. For each such use, check if it is reached by this phi,
552 // i.e. check if the set of its reaching uses intersects the set of
553 // this phi's defs.
554 NodeRefSet Uses = UI->second;
555 UI->second.clear();
556 for (std::pair<NodeId,LaneBitmask> I : Uses) {
557 auto UA = DFG.addr<UseNode*>(I.first);
558 // Undef flag is checked above.
559 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
560 RegisterRef R(UI->first, I.second);
561 // Calculate the exposed part of the reached use.
562 RegisterAggr Covered(PRI);
563 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
564 if (PhiDefs.count(DA.Id))
565 break;
566 Covered.insert(DA.Addr->getRegRef(DFG));
567 }
568 if (RegisterRef RC = Covered.clearIn(R)) {
569 // We are updating the map for register UI->first, so we need
570 // to map RC to be expressed in terms of that register.
571 RegisterRef S = PRI.mapTo(RC, UI->first);
572 UI->second.insert({I.first, S.Mask});
573 }
574 }
575 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
576 }
577
578 // If this phi reaches some "real" uses, add it to the queue for upward
579 // propagation.
580 if (!RealUses.empty())
581 PhiUQ.push_back(PhiA.Id);
582
583 // Go over all phi uses and check if the reaching def is another phi.
584 // Collect the phis that are among the reaching defs of these uses.
585 // While traversing the list of reaching defs for each phi use, accumulate
586 // the set of registers defined between this phi (PhiA) and the owner phi
587 // of the reaching def.
588 NodeSet SeenUses;
589
590 for (auto I : PhiRefs) {
591 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
592 continue;
593 NodeAddr<PhiUseNode*> PUA = I;
594 if (PUA.Addr->getReachingDef() == 0)
595 continue;
596
597 RegisterRef UR = PUA.Addr->getRegRef(DFG);
598 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
599 RegisterAggr DefRRs(PRI);
600
601 for (NodeAddr<DefNode*> D : Ds) {
602 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
603 NodeId RP = D.Addr->getOwner(DFG).Id;
604 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
605 auto F = M.find(RP);
606 if (F == M.end())
607 M.insert(std::make_pair(RP, DefRRs));
608 else
609 F->second.insert(DefRRs);
610 }
611 DefRRs.insert(D.Addr->getRegRef(DFG));
612 }
613
614 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
615 SeenUses.insert(T.Id);
616 }
617 }
618
619 if (Trace) {
620 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
621 for (auto I : PhiUp) {
622 dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
623 for (auto R : I.second)
624 dbgs() << ' ' << Print<NodeId>(R.first, DFG)
625 << Print<RegisterAggr>(R.second, DFG);
626 dbgs() << " }\n";
627 }
628 }
629
630 // Propagate the reached registers up in the phi chain.
631 //
632 // The following type of situation needs careful handling:
633 //
634 // phi d1<R1:0> (1)
635 // |
636 // ... d2<R1>
637 // |
638 // phi u3<R1:0> (2)
639 // |
640 // ... u4<R1>
641 //
642 // The phi node (2) defines a register pair R1:0, and reaches a "real"
643 // use u4 of just R1. The same phi node is also known to reach (upwards)
644 // the phi node (1). However, the use u4 is not reached by phi (1),
645 // because of the intervening definition d2 of R1. The data flow between
646 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
647 //
648 // When propagating uses up the phi chains, get the all reaching defs
649 // for a given phi use, and traverse the list until the propagated ref
650 // is covered, or until reaching the final phi. Only assume that the
651 // reference reaches the phi in the latter case.
652
653 // The operation "clearIn" can be expensive. For a given set of intervening
654 // defs, cache the result of subtracting these defs from a given register
655 // ref.
656 using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
657 std::unordered_map<RegisterAggr, SubMap> Subs;
658 auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
659 if (Mid.empty())
660 return RR;
661 auto F = SM.find(RR);
662 if (F != SM.end())
663 return F->second;
664 RegisterRef S = Mid.clearIn(RR);
665 SM.insert({RR, S});
666 return S;
667 };
668
669 // Go over all phis.
670 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
671 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
672 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
673 RefMap &RUM = RealUseMap[PA.Id];
674
675 for (NodeAddr<UseNode*> UA : PUs) {
676 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
677 RegisterRef UR = UA.Addr->getRegRef(DFG);
678 for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
679 bool Changed = false;
680 const RegisterAggr &MidDefs = P.second;
681 // Collect the set PropUp of uses that are reached by the current
682 // phi PA, and are not covered by any intervening def between the
683 // currently visited use UA and the upward phi P.
684
685 if (MidDefs.hasCoverOf(UR))
686 continue;
687 SubMap &SM = Subs[MidDefs];
688
689 // General algorithm:
690 // for each (R,U) : U is use node of R, U is reached by PA
691 // if MidDefs does not cover (R,U)
692 // then add (R-MidDefs,U) to RealUseMap[P]
693 //
694 for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
695 RegisterRef R(T.first);
696 // The current phi (PA) could be a phi for a regmask. It could
697 // reach a whole variety of uses that are not related to the
698 // specific upward phi (P.first).
699 const RegisterAggr &DRs = PhiDRs.at(P.first);
700 if (!DRs.hasAliasOf(R))
701 continue;
702 R = PRI.mapTo(DRs.intersectWith(R), T.first);
703 for (std::pair<NodeId,LaneBitmask> V : T.second) {
704 LaneBitmask M = R.Mask & V.second;
705 if (M.none())
706 continue;
707 if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
708 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
709 Changed |= RS.insert({V.first,SS.Mask}).second;
710 }
711 }
712 }
713
714 if (Changed)
715 PhiUQ.push_back(P.first);
716 }
717 }
718 }
719
720 if (Trace) {
721 dbgs() << "Real use map:\n";
722 for (auto I : RealUseMap) {
723 dbgs() << "phi " << Print<NodeId>(I.first, DFG);
724 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
725 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
726 if (!Ds.empty()) {
727 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
728 dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
729 } else {
730 dbgs() << "<noreg>";
731 }
732 dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
733 }
734 }
735 }
736
computeLiveIns()737 void Liveness::computeLiveIns() {
738 // Populate the node-to-block map. This speeds up the calculations
739 // significantly.
740 NBMap.clear();
741 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
742 MachineBasicBlock *BB = BA.Addr->getCode();
743 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
744 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
745 NBMap.insert(std::make_pair(RA.Id, BB));
746 NBMap.insert(std::make_pair(IA.Id, BB));
747 }
748 }
749
750 MachineFunction &MF = DFG.getMF();
751
752 // Compute IDF first, then the inverse.
753 decltype(IIDF) IDF;
754 for (MachineBasicBlock &B : MF) {
755 auto F1 = MDF.find(&B);
756 if (F1 == MDF.end())
757 continue;
758 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
759 for (unsigned i = 0; i < IDFB.size(); ++i) {
760 auto F2 = MDF.find(IDFB[i]);
761 if (F2 != MDF.end())
762 IDFB.insert(F2->second.begin(), F2->second.end());
763 }
764 // Add B to the IDF(B). This will put B in the IIDF(B).
765 IDFB.insert(&B);
766 IDF[&B].insert(IDFB.begin(), IDFB.end());
767 }
768
769 for (auto I : IDF)
770 for (auto *S : I.second)
771 IIDF[S].insert(I.first);
772
773 computePhiInfo();
774
775 NodeAddr<FuncNode*> FA = DFG.getFunc();
776 NodeList Blocks = FA.Addr->members(DFG);
777
778 // Build the phi live-on-entry map.
779 for (NodeAddr<BlockNode*> BA : Blocks) {
780 MachineBasicBlock *MB = BA.Addr->getCode();
781 RefMap &LON = PhiLON[MB];
782 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
783 for (const RefMap::value_type &S : RealUseMap[P.Id])
784 LON[S.first].insert(S.second.begin(), S.second.end());
785 }
786
787 if (Trace) {
788 dbgs() << "Phi live-on-entry map:\n";
789 for (auto &I : PhiLON)
790 dbgs() << "block #" << I.first->getNumber() << " -> "
791 << Print<RefMap>(I.second, DFG) << '\n';
792 }
793
794 // Build the phi live-on-exit map. Each phi node has some set of reached
795 // "real" uses. Propagate this set backwards into the block predecessors
796 // through the reaching defs of the corresponding phi uses.
797 for (NodeAddr<BlockNode*> BA : Blocks) {
798 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
799 for (NodeAddr<PhiNode*> PA : Phis) {
800 RefMap &RUs = RealUseMap[PA.Id];
801 if (RUs.empty())
802 continue;
803
804 NodeSet SeenUses;
805 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
806 if (!SeenUses.insert(U.Id).second)
807 continue;
808 NodeAddr<PhiUseNode*> PUA = U;
809 if (PUA.Addr->getReachingDef() == 0)
810 continue;
811
812 // Each phi has some set (possibly empty) of reached "real" uses,
813 // that is, uses that are part of the compiled program. Such a use
814 // may be located in some farther block, but following a chain of
815 // reaching defs will eventually lead to this phi.
816 // Any chain of reaching defs may fork at a phi node, but there
817 // will be a path upwards that will lead to this phi. Now, this
818 // chain will need to fork at this phi, since some of the reached
819 // uses may have definitions joining in from multiple predecessors.
820 // For each reached "real" use, identify the set of reaching defs
821 // coming from each predecessor P, and add them to PhiLOX[P].
822 //
823 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
824 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
825
826 for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
827 // We need to visit each individual use.
828 for (std::pair<NodeId,LaneBitmask> P : RS.second) {
829 // Create a register ref corresponding to the use, and find
830 // all reaching defs starting from the phi use, and treating
831 // all related shadows as a single use cluster.
832 RegisterRef S(RS.first, P.second);
833 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
834 for (NodeAddr<DefNode*> D : Ds) {
835 // Calculate the mask corresponding to the visited def.
836 RegisterAggr TA(PRI);
837 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
838 LaneBitmask TM = TA.makeRegRef().Mask;
839 LOX[S.Reg].insert({D.Id, TM});
840 }
841 }
842 }
843
844 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
845 SeenUses.insert(T.Id);
846 } // for U : phi uses
847 } // for P : Phis
848 } // for B : Blocks
849
850 if (Trace) {
851 dbgs() << "Phi live-on-exit map:\n";
852 for (auto &I : PhiLOX)
853 dbgs() << "block #" << I.first->getNumber() << " -> "
854 << Print<RefMap>(I.second, DFG) << '\n';
855 }
856
857 RefMap LiveIn;
858 traverse(&MF.front(), LiveIn);
859
860 // Add function live-ins to the live-in set of the function entry block.
861 LiveMap[&MF.front()].insert(DFG.getLiveIns());
862
863 if (Trace) {
864 // Dump the liveness map
865 for (MachineBasicBlock &B : MF) {
866 std::vector<RegisterRef> LV;
867 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
868 LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
869 llvm::sort(LV);
870 dbgs() << printMBBReference(B) << "\t rec = {";
871 for (auto I : LV)
872 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
873 dbgs() << " }\n";
874 //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
875
876 LV.clear();
877 const RegisterAggr &LG = LiveMap[&B];
878 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
879 LV.push_back(*I);
880 llvm::sort(LV);
881 dbgs() << "\tcomp = {";
882 for (auto I : LV)
883 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
884 dbgs() << " }\n";
885
886 }
887 }
888 }
889
resetLiveIns()890 void Liveness::resetLiveIns() {
891 for (auto &B : DFG.getMF()) {
892 // Remove all live-ins.
893 std::vector<unsigned> T;
894 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
895 T.push_back(LI.PhysReg);
896 for (auto I : T)
897 B.removeLiveIn(I);
898 // Add the newly computed live-ins.
899 const RegisterAggr &LiveIns = LiveMap[&B];
900 for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end()))
901 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
902 }
903 }
904
resetKills()905 void Liveness::resetKills() {
906 for (auto &B : DFG.getMF())
907 resetKills(&B);
908 }
909
resetKills(MachineBasicBlock * B)910 void Liveness::resetKills(MachineBasicBlock *B) {
911 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
912 for (auto I : B->liveins()) {
913 MCSubRegIndexIterator S(I.PhysReg, &TRI);
914 if (!S.isValid()) {
915 LV.set(I.PhysReg);
916 continue;
917 }
918 do {
919 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
920 if ((M & I.LaneMask).any())
921 LV.set(S.getSubReg());
922 ++S;
923 } while (S.isValid());
924 }
925 };
926
927 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
928 CopyLiveIns(B, LiveIn);
929 for (auto *SI : B->successors())
930 CopyLiveIns(SI, Live);
931
932 for (MachineInstr &MI : llvm::reverse(*B)) {
933 if (MI.isDebugInstr())
934 continue;
935
936 MI.clearKillInfo();
937 for (auto &Op : MI.operands()) {
938 // An implicit def of a super-register may not necessarily start a
939 // live range of it, since an implicit use could be used to keep parts
940 // of it live. Instead of analyzing the implicit operands, ignore
941 // implicit defs.
942 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
943 continue;
944 Register R = Op.getReg();
945 if (!Register::isPhysicalRegister(R))
946 continue;
947 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
948 Live.reset(*SR);
949 }
950 for (auto &Op : MI.operands()) {
951 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
952 continue;
953 Register R = Op.getReg();
954 if (!Register::isPhysicalRegister(R))
955 continue;
956 bool IsLive = false;
957 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
958 if (!Live[*AR])
959 continue;
960 IsLive = true;
961 break;
962 }
963 if (!IsLive)
964 Op.setIsKill(true);
965 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
966 Live.set(*SR);
967 }
968 }
969 }
970
971 // Helper function to obtain the basic block containing the reaching def
972 // of the given use.
getBlockWithRef(NodeId RN) const973 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
974 auto F = NBMap.find(RN);
975 if (F != NBMap.end())
976 return F->second;
977 llvm_unreachable("Node id not in map");
978 }
979
traverse(MachineBasicBlock * B,RefMap & LiveIn)980 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
981 // The LiveIn map, for each (physical) register, contains the set of live
982 // reaching defs of that register that are live on entry to the associated
983 // block.
984
985 // The summary of the traversal algorithm:
986 //
987 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
988 // and (U \in IDF(B) or B dom U).
989 //
990 // for (C : children) {
991 // LU = {}
992 // traverse(C, LU)
993 // LiveUses += LU
994 // }
995 //
996 // LiveUses -= Defs(B);
997 // LiveUses += UpwardExposedUses(B);
998 // for (C : IIDF[B])
999 // for (U : LiveUses)
1000 // if (Rdef(U) dom C)
1001 // C.addLiveIn(U)
1002 //
1003
1004 // Go up the dominator tree (depth-first).
1005 MachineDomTreeNode *N = MDT.getNode(B);
1006 for (auto *I : *N) {
1007 RefMap L;
1008 MachineBasicBlock *SB = I->getBlock();
1009 traverse(SB, L);
1010
1011 for (auto S : L)
1012 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1013 }
1014
1015 if (Trace) {
1016 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1017 << " after recursion into: {";
1018 for (auto *I : *N)
1019 dbgs() << ' ' << I->getBlock()->getNumber();
1020 dbgs() << " }\n";
1021 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1022 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1023 }
1024
1025 // Add reaching defs of phi uses that are live on exit from this block.
1026 RefMap &PUs = PhiLOX[B];
1027 for (auto &S : PUs)
1028 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1029
1030 if (Trace) {
1031 dbgs() << "after LOX\n";
1032 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1033 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1034 }
1035
1036 // The LiveIn map at this point has all defs that are live-on-exit from B,
1037 // as if they were live-on-entry to B. First, we need to filter out all
1038 // defs that are present in this block. Then we will add reaching defs of
1039 // all upward-exposed uses.
1040
1041 // To filter out the defs, first make a copy of LiveIn, and then re-populate
1042 // LiveIn with the defs that should remain.
1043 RefMap LiveInCopy = LiveIn;
1044 LiveIn.clear();
1045
1046 for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1047 RegisterRef LRef(LE.first);
1048 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1049 const NodeRefSet &OldDefs = LE.second;
1050 for (NodeRef OR : OldDefs) {
1051 // R is a def node that was live-on-exit
1052 auto DA = DFG.addr<DefNode*>(OR.first);
1053 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1054 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1055 if (B != BA.Addr->getCode()) {
1056 // Defs from a different block need to be preserved. Defs from this
1057 // block will need to be processed further, except for phi defs, the
1058 // liveness of which is handled through the PhiLON/PhiLOX maps.
1059 NewDefs.insert(OR);
1060 continue;
1061 }
1062
1063 // Defs from this block need to stop the liveness from being
1064 // propagated upwards. This only applies to non-preserving defs,
1065 // and to the parts of the register actually covered by those defs.
1066 // (Note that phi defs should always be preserving.)
1067 RegisterAggr RRs(PRI);
1068 LRef.Mask = OR.second;
1069
1070 if (!DFG.IsPreservingDef(DA)) {
1071 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1072 // DA is a non-phi def that is live-on-exit from this block, and
1073 // that is also located in this block. LRef is a register ref
1074 // whose use this def reaches. If DA covers LRef, then no part
1075 // of LRef is exposed upwards.A
1076 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1077 continue;
1078 }
1079
1080 // DA itself was not sufficient to cover LRef. In general, it is
1081 // the last in a chain of aliased defs before the exit from this block.
1082 // There could be other defs in this block that are a part of that
1083 // chain. Check that now: accumulate the registers from these defs,
1084 // and if they all together cover LRef, it is not live-on-entry.
1085 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1086 // DefNode -> InstrNode -> BlockNode.
1087 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1088 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1089 // Reaching defs are ordered in the upward direction.
1090 if (BTA.Addr->getCode() != B) {
1091 // We have reached past the beginning of B, and the accumulated
1092 // registers are not covering LRef. The first def from the
1093 // upward chain will be live.
1094 // Subtract all accumulated defs (RRs) from LRef.
1095 RegisterRef T = RRs.clearIn(LRef);
1096 assert(T);
1097 NewDefs.insert({TA.Id,T.Mask});
1098 break;
1099 }
1100
1101 // TA is in B. Only add this def to the accumulated cover if it is
1102 // not preserving.
1103 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1104 RRs.insert(TA.Addr->getRegRef(DFG));
1105 // If this is enough to cover LRef, then stop.
1106 if (RRs.hasCoverOf(LRef))
1107 break;
1108 }
1109 }
1110 }
1111
1112 emptify(LiveIn);
1113
1114 if (Trace) {
1115 dbgs() << "after defs in block\n";
1116 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1117 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1118 }
1119
1120 // Scan the block for upward-exposed uses and add them to the tracking set.
1121 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1122 NodeAddr<InstrNode*> IA = I;
1123 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1124 continue;
1125 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1126 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1127 continue;
1128 RegisterRef RR = UA.Addr->getRegRef(DFG);
1129 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1130 if (getBlockWithRef(D.Id) != B)
1131 LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1132 }
1133 }
1134
1135 if (Trace) {
1136 dbgs() << "after uses in block\n";
1137 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1138 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1139 }
1140
1141 // Phi uses should not be propagated up the dominator tree, since they
1142 // are not dominated by their corresponding reaching defs.
1143 RegisterAggr &Local = LiveMap[B];
1144 RefMap &LON = PhiLON[B];
1145 for (auto &R : LON) {
1146 LaneBitmask M;
1147 for (auto P : R.second)
1148 M |= P.second;
1149 Local.insert(RegisterRef(R.first,M));
1150 }
1151
1152 if (Trace) {
1153 dbgs() << "after phi uses in block\n";
1154 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1155 dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
1156 }
1157
1158 for (auto *C : IIDF[B]) {
1159 RegisterAggr &LiveC = LiveMap[C];
1160 for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1161 for (auto R : S.second)
1162 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1163 LiveC.insert(RegisterRef(S.first, R.second));
1164 }
1165 }
1166
emptify(RefMap & M)1167 void Liveness::emptify(RefMap &M) {
1168 for (auto I = M.begin(), E = M.end(); I != E; )
1169 I = I->second.empty() ? M.erase(I) : std::next(I);
1170 }
1171