1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/InitializePasses.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 #define DEBUG_TYPE "pipeliner"
22 using namespace llvm;
23 
24 void ModuloSchedule::print(raw_ostream &OS) {
25   for (MachineInstr *MI : ScheduledInstrs)
26     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27 }
28 
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
32 
33 /// Return the register values for  the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36                        unsigned &InitVal, unsigned &LoopVal) {
37   assert(Phi.isPHI() && "Expecting a Phi.");
38 
39   InitVal = 0;
40   LoopVal = 0;
41   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42     if (Phi.getOperand(i + 1).getMBB() != Loop)
43       InitVal = Phi.getOperand(i).getReg();
44     else
45       LoopVal = Phi.getOperand(i).getReg();
46 
47   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48 }
49 
50 /// Return the Phi register value that comes from the incoming block.
51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54       return Phi.getOperand(i).getReg();
55   return 0;
56 }
57 
58 /// Return the Phi register value that comes the loop block.
59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62       return Phi.getOperand(i).getReg();
63   return 0;
64 }
65 
66 void ModuloScheduleExpander::expand() {
67   BB = Schedule.getLoop()->getTopBlock();
68   Preheader = *BB->pred_begin();
69   if (Preheader == BB)
70     Preheader = *std::next(BB->pred_begin());
71 
72   // Iterate over the definitions in each instruction, and compute the
73   // stage difference for each use.  Keep the maximum value.
74   for (MachineInstr *MI : Schedule.getInstructions()) {
75     int DefStage = Schedule.getStage(MI);
76     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77       MachineOperand &Op = MI->getOperand(i);
78       if (!Op.isReg() || !Op.isDef())
79         continue;
80 
81       Register Reg = Op.getReg();
82       unsigned MaxDiff = 0;
83       bool PhiIsSwapped = false;
84       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85                                              EI = MRI.use_end();
86            UI != EI; ++UI) {
87         MachineOperand &UseOp = *UI;
88         MachineInstr *UseMI = UseOp.getParent();
89         int UseStage = Schedule.getStage(UseMI);
90         unsigned Diff = 0;
91         if (UseStage != -1 && UseStage >= DefStage)
92           Diff = UseStage - DefStage;
93         if (MI->isPHI()) {
94           if (isLoopCarried(*MI))
95             ++Diff;
96           else
97             PhiIsSwapped = true;
98         }
99         MaxDiff = std::max(Diff, MaxDiff);
100       }
101       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102     }
103   }
104 
105   generatePipelinedLoop();
106 }
107 
108 void ModuloScheduleExpander::generatePipelinedLoop() {
109   LoopInfo = TII->analyzeLoopForPipelining(BB);
110   assert(LoopInfo && "Must be able to analyze loop!");
111 
112   // Create a new basic block for the kernel and add it to the CFG.
113   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114 
115   unsigned MaxStageCount = Schedule.getNumStages() - 1;
116 
117   // Remember the registers that are used in different stages. The index is
118   // the iteration, or stage, that the instruction is scheduled in.  This is
119   // a map between register names in the original block and the names created
120   // in each stage of the pipelined loop.
121   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122   InstrMapTy InstrMap;
123 
124   SmallVector<MachineBasicBlock *, 4> PrologBBs;
125 
126   // Generate the prolog instructions that set up the pipeline.
127   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128   MF.insert(BB->getIterator(), KernelBB);
129 
130   // Rearrange the instructions to generate the new, pipelined loop,
131   // and update register names as needed.
132   for (MachineInstr *CI : Schedule.getInstructions()) {
133     if (CI->isPHI())
134       continue;
135     unsigned StageNum = Schedule.getStage(CI);
136     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138     KernelBB->push_back(NewMI);
139     InstrMap[NewMI] = CI;
140   }
141 
142   // Copy any terminator instructions to the new kernel, and update
143   // names as needed.
144   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
145                                    E = BB->instr_end();
146        I != E; ++I) {
147     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
148     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
149     KernelBB->push_back(NewMI);
150     InstrMap[NewMI] = &*I;
151   }
152 
153   NewKernel = KernelBB;
154   KernelBB->transferSuccessors(BB);
155   KernelBB->replaceSuccessor(BB, KernelBB);
156 
157   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
158                        InstrMap, MaxStageCount, MaxStageCount, false);
159   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
160                MaxStageCount, MaxStageCount, false);
161 
162   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163 
164   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
165   // Generate the epilog instructions to complete the pipeline.
166   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167 
168   // We need this step because the register allocation doesn't handle some
169   // situations well, so we insert copies to help out.
170   splitLifetimes(KernelBB, EpilogBBs);
171 
172   // Remove dead instructions due to loop induction variables.
173   removeDeadInstructions(KernelBB, EpilogBBs);
174 
175   // Add branches between prolog and epilog blocks.
176   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177 
178   delete[] VRMap;
179 }
180 
181 void ModuloScheduleExpander::cleanup() {
182   // Remove the original loop since it's no longer referenced.
183   for (auto &I : *BB)
184     LIS.RemoveMachineInstrFromMaps(I);
185   BB->clear();
186   BB->eraseFromParent();
187 }
188 
189 /// Generate the pipeline prolog code.
190 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191                                             MachineBasicBlock *KernelBB,
192                                             ValueMapTy *VRMap,
193                                             MBBVectorTy &PrologBBs) {
194   MachineBasicBlock *PredBB = Preheader;
195   InstrMapTy InstrMap;
196 
197   // Generate a basic block for each stage, not including the last stage,
198   // which will be generated in the kernel. Each basic block may contain
199   // instructions from multiple stages/iterations.
200   for (unsigned i = 0; i < LastStage; ++i) {
201     // Create and insert the prolog basic block prior to the original loop
202     // basic block.  The original loop is removed later.
203     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204     PrologBBs.push_back(NewBB);
205     MF.insert(BB->getIterator(), NewBB);
206     NewBB->transferSuccessors(PredBB);
207     PredBB->addSuccessor(NewBB);
208     PredBB = NewBB;
209 
210     // Generate instructions for each appropriate stage. Process instructions
211     // in original program order.
212     for (int StageNum = i; StageNum >= 0; --StageNum) {
213       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214                                        BBE = BB->getFirstTerminator();
215            BBI != BBE; ++BBI) {
216         if (Schedule.getStage(&*BBI) == StageNum) {
217           if (BBI->isPHI())
218             continue;
219           MachineInstr *NewMI =
220               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222           NewBB->push_back(NewMI);
223           InstrMap[NewMI] = &*BBI;
224         }
225       }
226     }
227     rewritePhiValues(NewBB, i, VRMap, InstrMap);
228     LLVM_DEBUG({
229       dbgs() << "prolog:\n";
230       NewBB->dump();
231     });
232   }
233 
234   PredBB->replaceSuccessor(BB, KernelBB);
235 
236   // Check if we need to remove the branch from the preheader to the original
237   // loop, and replace it with a branch to the new loop.
238   unsigned numBranches = TII->removeBranch(*Preheader);
239   if (numBranches) {
240     SmallVector<MachineOperand, 0> Cond;
241     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242   }
243 }
244 
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel.  We create a basic
247 /// block for each stage that needs to complete.
248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
249                                             MachineBasicBlock *KernelBB,
250                                             ValueMapTy *VRMap,
251                                             MBBVectorTy &EpilogBBs,
252                                             MBBVectorTy &PrologBBs) {
253   // We need to change the branch from the kernel to the first epilog block, so
254   // this call to analyze branch uses the kernel rather than the original BB.
255   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
256   SmallVector<MachineOperand, 4> Cond;
257   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
258   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
259   if (checkBranch)
260     return;
261 
262   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
263   if (*LoopExitI == KernelBB)
264     ++LoopExitI;
265   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
266   MachineBasicBlock *LoopExitBB = *LoopExitI;
267 
268   MachineBasicBlock *PredBB = KernelBB;
269   MachineBasicBlock *EpilogStart = LoopExitBB;
270   InstrMapTy InstrMap;
271 
272   // Generate a basic block for each stage, not including the last stage,
273   // which was generated for the kernel.  Each basic block may contain
274   // instructions from multiple stages/iterations.
275   int EpilogStage = LastStage + 1;
276   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
277     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
278     EpilogBBs.push_back(NewBB);
279     MF.insert(BB->getIterator(), NewBB);
280 
281     PredBB->replaceSuccessor(LoopExitBB, NewBB);
282     NewBB->addSuccessor(LoopExitBB);
283 
284     if (EpilogStart == LoopExitBB)
285       EpilogStart = NewBB;
286 
287     // Add instructions to the epilog depending on the current block.
288     // Process instructions in original program order.
289     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
290       for (auto &BBI : *BB) {
291         if (BBI.isPHI())
292           continue;
293         MachineInstr *In = &BBI;
294         if ((unsigned)Schedule.getStage(In) == StageNum) {
295           // Instructions with memoperands in the epilog are updated with
296           // conservative values.
297           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
298           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
299           NewBB->push_back(NewMI);
300           InstrMap[NewMI] = In;
301         }
302       }
303     }
304     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
305                          InstrMap, LastStage, EpilogStage, i == 1);
306     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
307                  LastStage, EpilogStage, i == 1);
308     PredBB = NewBB;
309 
310     LLVM_DEBUG({
311       dbgs() << "epilog:\n";
312       NewBB->dump();
313     });
314   }
315 
316   // Fix any Phi nodes in the loop exit block.
317   LoopExitBB->replacePhiUsesWith(BB, PredBB);
318 
319   // Create a branch to the new epilog from the kernel.
320   // Remove the original branch and add a new branch to the epilog.
321   TII->removeBranch(*KernelBB);
322   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
323   // Add a branch to the loop exit.
324   if (EpilogBBs.size() > 0) {
325     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
326     SmallVector<MachineOperand, 4> Cond1;
327     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
328   }
329 }
330 
331 /// Replace all uses of FromReg that appear outside the specified
332 /// basic block with ToReg.
333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
334                                     MachineBasicBlock *MBB,
335                                     MachineRegisterInfo &MRI,
336                                     LiveIntervals &LIS) {
337   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
338                                          E = MRI.use_end();
339        I != E;) {
340     MachineOperand &O = *I;
341     ++I;
342     if (O.getParent()->getParent() != MBB)
343       O.setReg(ToReg);
344   }
345   if (!LIS.hasInterval(ToReg))
346     LIS.createEmptyInterval(ToReg);
347 }
348 
349 /// Return true if the register has a use that occurs outside the
350 /// specified loop.
351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352                             MachineRegisterInfo &MRI) {
353   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
354                                          E = MRI.use_end();
355        I != E; ++I)
356     if (I->getParent()->getParent() != BB)
357       return true;
358   return false;
359 }
360 
361 /// Generate Phis for the specific block in the generated pipelined code.
362 /// This function looks at the Phis from the original code to guide the
363 /// creation of new Phis.
364 void ModuloScheduleExpander::generateExistingPhis(
365     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
366     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
367     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
368   // Compute the stage number for the initial value of the Phi, which
369   // comes from the prolog. The prolog to use depends on to which kernel/
370   // epilog that we're adding the Phi.
371   unsigned PrologStage = 0;
372   unsigned PrevStage = 0;
373   bool InKernel = (LastStageNum == CurStageNum);
374   if (InKernel) {
375     PrologStage = LastStageNum - 1;
376     PrevStage = CurStageNum;
377   } else {
378     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
379     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380   }
381 
382   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
383                                    BBE = BB->getFirstNonPHI();
384        BBI != BBE; ++BBI) {
385     Register Def = BBI->getOperand(0).getReg();
386 
387     unsigned InitVal = 0;
388     unsigned LoopVal = 0;
389     getPhiRegs(*BBI, BB, InitVal, LoopVal);
390 
391     unsigned PhiOp1 = 0;
392     // The Phi value from the loop body typically is defined in the loop, but
393     // not always. So, we need to check if the value is defined in the loop.
394     unsigned PhiOp2 = LoopVal;
395     if (VRMap[LastStageNum].count(LoopVal))
396       PhiOp2 = VRMap[LastStageNum][LoopVal];
397 
398     int StageScheduled = Schedule.getStage(&*BBI);
399     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
400     unsigned NumStages = getStagesForReg(Def, CurStageNum);
401     if (NumStages == 0) {
402       // We don't need to generate a Phi anymore, but we need to rename any uses
403       // of the Phi value.
404       unsigned NewReg = VRMap[PrevStage][LoopVal];
405       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
406                             InitVal, NewReg);
407       if (VRMap[CurStageNum].count(LoopVal))
408         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409     }
410     // Adjust the number of Phis needed depending on the number of prologs left,
411     // and the distance from where the Phi is first scheduled. The number of
412     // Phis cannot exceed the number of prolog stages. Each stage can
413     // potentially define two values.
414     unsigned MaxPhis = PrologStage + 2;
415     if (!InKernel && (int)PrologStage <= LoopValStage)
416       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
417     unsigned NumPhis = std::min(NumStages, MaxPhis);
418 
419     unsigned NewReg = 0;
420     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
421     // In the epilog, we may need to look back one stage to get the correct
422     // Phi name, because the epilog and prolog blocks execute the same stage.
423     // The correct name is from the previous block only when the Phi has
424     // been completely scheduled prior to the epilog, and Phi value is not
425     // needed in multiple stages.
426     int StageDiff = 0;
427     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
428         NumPhis == 1)
429       StageDiff = 1;
430     // Adjust the computations below when the phi and the loop definition
431     // are scheduled in different stages.
432     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
433       StageDiff = StageScheduled - LoopValStage;
434     for (unsigned np = 0; np < NumPhis; ++np) {
435       // If the Phi hasn't been scheduled, then use the initial Phi operand
436       // value. Otherwise, use the scheduled version of the instruction. This
437       // is a little complicated when a Phi references another Phi.
438       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
439         PhiOp1 = InitVal;
440       // Check if the Phi has already been scheduled in a prolog stage.
441       else if (PrologStage >= AccessStage + StageDiff + np &&
442                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
443         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
444       // Check if the Phi has already been scheduled, but the loop instruction
445       // is either another Phi, or doesn't occur in the loop.
446       else if (PrologStage >= AccessStage + StageDiff + np) {
447         // If the Phi references another Phi, we need to examine the other
448         // Phi to get the correct value.
449         PhiOp1 = LoopVal;
450         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
451         int Indirects = 1;
452         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
453           int PhiStage = Schedule.getStage(InstOp1);
454           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
455             PhiOp1 = getInitPhiReg(*InstOp1, BB);
456           else
457             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
458           InstOp1 = MRI.getVRegDef(PhiOp1);
459           int PhiOpStage = Schedule.getStage(InstOp1);
460           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
461           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
462               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
463             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
464             break;
465           }
466           ++Indirects;
467         }
468       } else
469         PhiOp1 = InitVal;
470       // If this references a generated Phi in the kernel, get the Phi operand
471       // from the incoming block.
472       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
473         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
474           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475 
476       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
477       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
478       // In the epilog, a map lookup is needed to get the value from the kernel,
479       // or previous epilog block. How is does this depends on if the
480       // instruction is scheduled in the previous block.
481       if (!InKernel) {
482         int StageDiffAdj = 0;
483         if (LoopValStage != -1 && StageScheduled > LoopValStage)
484           StageDiffAdj = StageScheduled - LoopValStage;
485         // Use the loop value defined in the kernel, unless the kernel
486         // contains the last definition of the Phi.
487         if (np == 0 && PrevStage == LastStageNum &&
488             (StageScheduled != 0 || LoopValStage != 0) &&
489             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
490           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
491         // Use the value defined by the Phi. We add one because we switch
492         // from looking at the loop value to the Phi definition.
493         else if (np > 0 && PrevStage == LastStageNum &&
494                  VRMap[PrevStage - np + 1].count(Def))
495           PhiOp2 = VRMap[PrevStage - np + 1][Def];
496         // Use the loop value defined in the kernel.
497         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
498                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
499           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
500         // Use the value defined by the Phi, unless we're generating the first
501         // epilog and the Phi refers to a Phi in a different stage.
502         else if (VRMap[PrevStage - np].count(Def) &&
503                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
504                   (LoopValStage == StageScheduled)))
505           PhiOp2 = VRMap[PrevStage - np][Def];
506       }
507 
508       // Check if we can reuse an existing Phi. This occurs when a Phi
509       // references another Phi, and the other Phi is scheduled in an
510       // earlier stage. We can try to reuse an existing Phi up until the last
511       // stage of the current Phi.
512       if (LoopDefIsPhi) {
513         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
514           int LVNumStages = getStagesForPhi(LoopVal);
515           int StageDiff = (StageScheduled - LoopValStage);
516           LVNumStages -= StageDiff;
517           // Make sure the loop value Phi has been processed already.
518           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
519             NewReg = PhiOp2;
520             unsigned ReuseStage = CurStageNum;
521             if (isLoopCarried(*PhiInst))
522               ReuseStage -= LVNumStages;
523             // Check if the Phi to reuse has been generated yet. If not, then
524             // there is nothing to reuse.
525             if (VRMap[ReuseStage - np].count(LoopVal)) {
526               NewReg = VRMap[ReuseStage - np][LoopVal];
527 
528               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
529                                     Def, NewReg);
530               // Update the map with the new Phi name.
531               VRMap[CurStageNum - np][Def] = NewReg;
532               PhiOp2 = NewReg;
533               if (VRMap[LastStageNum - np - 1].count(LoopVal))
534                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535 
536               if (IsLast && np == NumPhis - 1)
537                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
538               continue;
539             }
540           }
541         }
542         if (InKernel && StageDiff > 0 &&
543             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
544           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545       }
546 
547       const TargetRegisterClass *RC = MRI.getRegClass(Def);
548       NewReg = MRI.createVirtualRegister(RC);
549 
550       MachineInstrBuilder NewPhi =
551           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
552                   TII->get(TargetOpcode::PHI), NewReg);
553       NewPhi.addReg(PhiOp1).addMBB(BB1);
554       NewPhi.addReg(PhiOp2).addMBB(BB2);
555       if (np == 0)
556         InstrMap[NewPhi] = &*BBI;
557 
558       // We define the Phis after creating the new pipelined code, so
559       // we need to rename the Phi values in scheduled instructions.
560 
561       unsigned PrevReg = 0;
562       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
563         PrevReg = VRMap[PrevStage - np][LoopVal];
564       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
565                             NewReg, PrevReg);
566       // If the Phi has been scheduled, use the new name for rewriting.
567       if (VRMap[CurStageNum - np].count(Def)) {
568         unsigned R = VRMap[CurStageNum - np][Def];
569         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
570                               NewReg);
571       }
572 
573       // Check if we need to rename any uses that occurs after the loop. The
574       // register to replace depends on whether the Phi is scheduled in the
575       // epilog.
576       if (IsLast && np == NumPhis - 1)
577         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578 
579       // In the kernel, a dependent Phi uses the value from this Phi.
580       if (InKernel)
581         PhiOp2 = NewReg;
582 
583       // Update the map with the new Phi name.
584       VRMap[CurStageNum - np][Def] = NewReg;
585     }
586 
587     while (NumPhis++ < NumStages) {
588       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
589                             NewReg, 0);
590     }
591 
592     // Check if we need to rename a Phi that has been eliminated due to
593     // scheduling.
594     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
595       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
596   }
597 }
598 
599 /// Generate Phis for the specified block in the generated pipelined code.
600 /// These are new Phis needed because the definition is scheduled after the
601 /// use in the pipelined sequence.
602 void ModuloScheduleExpander::generatePhis(
603     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
604     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
605     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
606   // Compute the stage number that contains the initial Phi value, and
607   // the Phi from the previous stage.
608   unsigned PrologStage = 0;
609   unsigned PrevStage = 0;
610   unsigned StageDiff = CurStageNum - LastStageNum;
611   bool InKernel = (StageDiff == 0);
612   if (InKernel) {
613     PrologStage = LastStageNum - 1;
614     PrevStage = CurStageNum;
615   } else {
616     PrologStage = LastStageNum - StageDiff;
617     PrevStage = LastStageNum + StageDiff - 1;
618   }
619 
620   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
621                                    BBE = BB->instr_end();
622        BBI != BBE; ++BBI) {
623     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
624       MachineOperand &MO = BBI->getOperand(i);
625       if (!MO.isReg() || !MO.isDef() ||
626           !Register::isVirtualRegister(MO.getReg()))
627         continue;
628 
629       int StageScheduled = Schedule.getStage(&*BBI);
630       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
631       Register Def = MO.getReg();
632       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
633       // An instruction scheduled in stage 0 and is used after the loop
634       // requires a phi in the epilog for the last definition from either
635       // the kernel or prolog.
636       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
637           hasUseAfterLoop(Def, BB, MRI))
638         NumPhis = 1;
639       if (!InKernel && (unsigned)StageScheduled > PrologStage)
640         continue;
641 
642       unsigned PhiOp2 = VRMap[PrevStage][Def];
643       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646       // The number of Phis can't exceed the number of prolog stages. The
647       // prolog stage number is zero based.
648       if (NumPhis > PrologStage + 1 - StageScheduled)
649         NumPhis = PrologStage + 1 - StageScheduled;
650       for (unsigned np = 0; np < NumPhis; ++np) {
651         unsigned PhiOp1 = VRMap[PrologStage][Def];
652         if (np <= PrologStage)
653           PhiOp1 = VRMap[PrologStage - np][Def];
654         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
655           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
656             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
657           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
658             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659         }
660         if (!InKernel)
661           PhiOp2 = VRMap[PrevStage - np][Def];
662 
663         const TargetRegisterClass *RC = MRI.getRegClass(Def);
664         Register NewReg = MRI.createVirtualRegister(RC);
665 
666         MachineInstrBuilder NewPhi =
667             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
668                     TII->get(TargetOpcode::PHI), NewReg);
669         NewPhi.addReg(PhiOp1).addMBB(BB1);
670         NewPhi.addReg(PhiOp2).addMBB(BB2);
671         if (np == 0)
672           InstrMap[NewPhi] = &*BBI;
673 
674         // Rewrite uses and update the map. The actions depend upon whether
675         // we generating code for the kernel or epilog blocks.
676         if (InKernel) {
677           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
678                                 NewReg);
679           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
680                                 NewReg);
681 
682           PhiOp2 = NewReg;
683           VRMap[PrevStage - np - 1][Def] = NewReg;
684         } else {
685           VRMap[CurStageNum - np][Def] = NewReg;
686           if (np == NumPhis - 1)
687             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
688                                   NewReg);
689         }
690         if (IsLast && np == NumPhis - 1)
691           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
692       }
693     }
694   }
695 }
696 
697 /// Remove instructions that generate values with no uses.
698 /// Typically, these are induction variable operations that generate values
699 /// used in the loop itself.  A dead instruction has a definition with
700 /// no uses, or uses that occur in the original loop only.
701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
702                                                     MBBVectorTy &EpilogBBs) {
703   // For each epilog block, check that the value defined by each instruction
704   // is used.  If not, delete it.
705   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
706                                      MBE = EpilogBBs.rend();
707        MBB != MBE; ++MBB)
708     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
709                                                    ME = (*MBB)->instr_rend();
710          MI != ME;) {
711       // From DeadMachineInstructionElem. Don't delete inline assembly.
712       if (MI->isInlineAsm()) {
713         ++MI;
714         continue;
715       }
716       bool SawStore = false;
717       // Check if it's safe to remove the instruction due to side effects.
718       // We can, and want to, remove Phis here.
719       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
720         ++MI;
721         continue;
722       }
723       bool used = true;
724       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
725                                       MOE = MI->operands_end();
726            MOI != MOE; ++MOI) {
727         if (!MOI->isReg() || !MOI->isDef())
728           continue;
729         Register reg = MOI->getReg();
730         // Assume physical registers are used, unless they are marked dead.
731         if (Register::isPhysicalRegister(reg)) {
732           used = !MOI->isDead();
733           if (used)
734             break;
735           continue;
736         }
737         unsigned realUses = 0;
738         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
739                                                EI = MRI.use_end();
740              UI != EI; ++UI) {
741           // Check if there are any uses that occur only in the original
742           // loop.  If so, that's not a real use.
743           if (UI->getParent()->getParent() != BB) {
744             realUses++;
745             used = true;
746             break;
747           }
748         }
749         if (realUses > 0)
750           break;
751         used = false;
752       }
753       if (!used) {
754         LIS.RemoveMachineInstrFromMaps(*MI);
755         MI++->eraseFromParent();
756         continue;
757       }
758       ++MI;
759     }
760   // In the kernel block, check if we can remove a Phi that generates a value
761   // used in an instruction removed in the epilog block.
762   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
763     Register reg = MI.getOperand(0).getReg();
764     if (MRI.use_begin(reg) == MRI.use_end()) {
765       LIS.RemoveMachineInstrFromMaps(MI);
766       MI.eraseFromParent();
767     }
768   }
769 }
770 
771 /// For loop carried definitions, we split the lifetime of a virtual register
772 /// that has uses past the definition in the next iteration. A copy with a new
773 /// virtual register is inserted before the definition, which helps with
774 /// generating a better register assignment.
775 ///
776 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
777 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
778 ///   v3 = ..             v4 = copy v1
779 ///   .. = V1             v3 = ..
780 ///                       .. = v4
781 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
782                                             MBBVectorTy &EpilogBBs) {
783   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
784   for (auto &PHI : KernelBB->phis()) {
785     Register Def = PHI.getOperand(0).getReg();
786     // Check for any Phi definition that used as an operand of another Phi
787     // in the same block.
788     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
789                                                  E = MRI.use_instr_end();
790          I != E; ++I) {
791       if (I->isPHI() && I->getParent() == KernelBB) {
792         // Get the loop carried definition.
793         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
794         if (!LCDef)
795           continue;
796         MachineInstr *MI = MRI.getVRegDef(LCDef);
797         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
798           continue;
799         // Search through the rest of the block looking for uses of the Phi
800         // definition. If one occurs, then split the lifetime.
801         unsigned SplitReg = 0;
802         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
803                                     KernelBB->instr_end()))
804           if (BBJ.readsRegister(Def)) {
805             // We split the lifetime when we find the first use.
806             if (SplitReg == 0) {
807               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
808               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
809                       TII->get(TargetOpcode::COPY), SplitReg)
810                   .addReg(Def);
811             }
812             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
813           }
814         if (!SplitReg)
815           continue;
816         // Search through each of the epilog blocks for any uses to be renamed.
817         for (auto &Epilog : EpilogBBs)
818           for (auto &I : *Epilog)
819             if (I.readsRegister(Def))
820               I.substituteRegister(Def, SplitReg, 0, *TRI);
821         break;
822       }
823     }
824   }
825 }
826 
827 /// Remove the incoming block from the Phis in a basic block.
828 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
829   for (MachineInstr &MI : *BB) {
830     if (!MI.isPHI())
831       break;
832     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
833       if (MI.getOperand(i + 1).getMBB() == Incoming) {
834         MI.RemoveOperand(i + 1);
835         MI.RemoveOperand(i);
836         break;
837       }
838   }
839 }
840 
841 /// Create branches from each prolog basic block to the appropriate epilog
842 /// block.  These edges are needed if the loop ends before reaching the
843 /// kernel.
844 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
845                                          MBBVectorTy &PrologBBs,
846                                          MachineBasicBlock *KernelBB,
847                                          MBBVectorTy &EpilogBBs,
848                                          ValueMapTy *VRMap) {
849   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
850   MachineBasicBlock *LastPro = KernelBB;
851   MachineBasicBlock *LastEpi = KernelBB;
852 
853   // Start from the blocks connected to the kernel and work "out"
854   // to the first prolog and the last epilog blocks.
855   SmallVector<MachineInstr *, 4> PrevInsts;
856   unsigned MaxIter = PrologBBs.size() - 1;
857   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
858     // Add branches to the prolog that go to the corresponding
859     // epilog, and the fall-thru prolog/kernel block.
860     MachineBasicBlock *Prolog = PrologBBs[j];
861     MachineBasicBlock *Epilog = EpilogBBs[i];
862 
863     SmallVector<MachineOperand, 4> Cond;
864     Optional<bool> StaticallyGreater =
865         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
866     unsigned numAdded = 0;
867     if (!StaticallyGreater.hasValue()) {
868       Prolog->addSuccessor(Epilog);
869       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
870     } else if (*StaticallyGreater == false) {
871       Prolog->addSuccessor(Epilog);
872       Prolog->removeSuccessor(LastPro);
873       LastEpi->removeSuccessor(Epilog);
874       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
875       removePhis(Epilog, LastEpi);
876       // Remove the blocks that are no longer referenced.
877       if (LastPro != LastEpi) {
878         LastEpi->clear();
879         LastEpi->eraseFromParent();
880       }
881       if (LastPro == KernelBB) {
882         LoopInfo->disposed();
883         NewKernel = nullptr;
884       }
885       LastPro->clear();
886       LastPro->eraseFromParent();
887     } else {
888       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
889       removePhis(Epilog, Prolog);
890     }
891     LastPro = Prolog;
892     LastEpi = Epilog;
893     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
894                                                    E = Prolog->instr_rend();
895          I != E && numAdded > 0; ++I, --numAdded)
896       updateInstruction(&*I, false, j, 0, VRMap);
897   }
898 
899   if (NewKernel) {
900     LoopInfo->setPreheader(PrologBBs[MaxIter]);
901     LoopInfo->adjustTripCount(-(MaxIter + 1));
902   }
903 }
904 
905 /// Return true if we can compute the amount the instruction changes
906 /// during each iteration. Set Delta to the amount of the change.
907 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
908   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
909   const MachineOperand *BaseOp;
910   int64_t Offset;
911   bool OffsetIsScalable;
912   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
913     return false;
914 
915   // FIXME: This algorithm assumes instructions have fixed-size offsets.
916   if (OffsetIsScalable)
917     return false;
918 
919   if (!BaseOp->isReg())
920     return false;
921 
922   Register BaseReg = BaseOp->getReg();
923 
924   MachineRegisterInfo &MRI = MF.getRegInfo();
925   // Check if there is a Phi. If so, get the definition in the loop.
926   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
927   if (BaseDef && BaseDef->isPHI()) {
928     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
929     BaseDef = MRI.getVRegDef(BaseReg);
930   }
931   if (!BaseDef)
932     return false;
933 
934   int D = 0;
935   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
936     return false;
937 
938   Delta = D;
939   return true;
940 }
941 
942 /// Update the memory operand with a new offset when the pipeliner
943 /// generates a new copy of the instruction that refers to a
944 /// different memory location.
945 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
946                                                MachineInstr &OldMI,
947                                                unsigned Num) {
948   if (Num == 0)
949     return;
950   // If the instruction has memory operands, then adjust the offset
951   // when the instruction appears in different stages.
952   if (NewMI.memoperands_empty())
953     return;
954   SmallVector<MachineMemOperand *, 2> NewMMOs;
955   for (MachineMemOperand *MMO : NewMI.memoperands()) {
956     // TODO: Figure out whether isAtomic is really necessary (see D57601).
957     if (MMO->isVolatile() || MMO->isAtomic() ||
958         (MMO->isInvariant() && MMO->isDereferenceable()) ||
959         (!MMO->getValue())) {
960       NewMMOs.push_back(MMO);
961       continue;
962     }
963     unsigned Delta;
964     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
965       int64_t AdjOffset = Delta * Num;
966       NewMMOs.push_back(
967           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
968     } else {
969       NewMMOs.push_back(
970           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
971     }
972   }
973   NewMI.setMemRefs(MF, NewMMOs);
974 }
975 
976 /// Clone the instruction for the new pipelined loop and update the
977 /// memory operands, if needed.
978 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
979                                                  unsigned CurStageNum,
980                                                  unsigned InstStageNum) {
981   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
982   // Check for tied operands in inline asm instructions. This should be handled
983   // elsewhere, but I'm not sure of the best solution.
984   if (OldMI->isInlineAsm())
985     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
986       const auto &MO = OldMI->getOperand(i);
987       if (MO.isReg() && MO.isUse())
988         break;
989       unsigned UseIdx;
990       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
991         NewMI->tieOperands(i, UseIdx);
992     }
993   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
994   return NewMI;
995 }
996 
997 /// Clone the instruction for the new pipelined loop. If needed, this
998 /// function updates the instruction using the values saved in the
999 /// InstrChanges structure.
1000 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1001     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1002   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1003   auto It = InstrChanges.find(OldMI);
1004   if (It != InstrChanges.end()) {
1005     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1006     unsigned BasePos, OffsetPos;
1007     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1008       return nullptr;
1009     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1010     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1011     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1012       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1013     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1014   }
1015   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1016   return NewMI;
1017 }
1018 
1019 /// Update the machine instruction with new virtual registers.  This
1020 /// function may change the defintions and/or uses.
1021 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1022                                                bool LastDef,
1023                                                unsigned CurStageNum,
1024                                                unsigned InstrStageNum,
1025                                                ValueMapTy *VRMap) {
1026   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1027     MachineOperand &MO = NewMI->getOperand(i);
1028     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1029       continue;
1030     Register reg = MO.getReg();
1031     if (MO.isDef()) {
1032       // Create a new virtual register for the definition.
1033       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1034       Register NewReg = MRI.createVirtualRegister(RC);
1035       MO.setReg(NewReg);
1036       VRMap[CurStageNum][reg] = NewReg;
1037       if (LastDef)
1038         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1039     } else if (MO.isUse()) {
1040       MachineInstr *Def = MRI.getVRegDef(reg);
1041       // Compute the stage that contains the last definition for instruction.
1042       int DefStageNum = Schedule.getStage(Def);
1043       unsigned StageNum = CurStageNum;
1044       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1045         // Compute the difference in stages between the defintion and the use.
1046         unsigned StageDiff = (InstrStageNum - DefStageNum);
1047         // Make an adjustment to get the last definition.
1048         StageNum -= StageDiff;
1049       }
1050       if (VRMap[StageNum].count(reg))
1051         MO.setReg(VRMap[StageNum][reg]);
1052     }
1053   }
1054 }
1055 
1056 /// Return the instruction in the loop that defines the register.
1057 /// If the definition is a Phi, then follow the Phi operand to
1058 /// the instruction in the loop.
1059 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1060   SmallPtrSet<MachineInstr *, 8> Visited;
1061   MachineInstr *Def = MRI.getVRegDef(Reg);
1062   while (Def->isPHI()) {
1063     if (!Visited.insert(Def).second)
1064       break;
1065     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1066       if (Def->getOperand(i + 1).getMBB() == BB) {
1067         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1068         break;
1069       }
1070   }
1071   return Def;
1072 }
1073 
1074 /// Return the new name for the value from the previous stage.
1075 unsigned ModuloScheduleExpander::getPrevMapVal(
1076     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1077     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1078   unsigned PrevVal = 0;
1079   if (StageNum > PhiStage) {
1080     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1081     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1082       // The name is defined in the previous stage.
1083       PrevVal = VRMap[StageNum - 1][LoopVal];
1084     else if (VRMap[StageNum].count(LoopVal))
1085       // The previous name is defined in the current stage when the instruction
1086       // order is swapped.
1087       PrevVal = VRMap[StageNum][LoopVal];
1088     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1089       // The loop value hasn't yet been scheduled.
1090       PrevVal = LoopVal;
1091     else if (StageNum == PhiStage + 1)
1092       // The loop value is another phi, which has not been scheduled.
1093       PrevVal = getInitPhiReg(*LoopInst, BB);
1094     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1095       // The loop value is another phi, which has been scheduled.
1096       PrevVal =
1097           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1098                         LoopStage, VRMap, BB);
1099   }
1100   return PrevVal;
1101 }
1102 
1103 /// Rewrite the Phi values in the specified block to use the mappings
1104 /// from the initial operand. Once the Phi is scheduled, we switch
1105 /// to using the loop value instead of the Phi value, so those names
1106 /// do not need to be rewritten.
1107 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1108                                               unsigned StageNum,
1109                                               ValueMapTy *VRMap,
1110                                               InstrMapTy &InstrMap) {
1111   for (auto &PHI : BB->phis()) {
1112     unsigned InitVal = 0;
1113     unsigned LoopVal = 0;
1114     getPhiRegs(PHI, BB, InitVal, LoopVal);
1115     Register PhiDef = PHI.getOperand(0).getReg();
1116 
1117     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1118     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1119     unsigned NumPhis = getStagesForPhi(PhiDef);
1120     if (NumPhis > StageNum)
1121       NumPhis = StageNum;
1122     for (unsigned np = 0; np <= NumPhis; ++np) {
1123       unsigned NewVal =
1124           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1125       if (!NewVal)
1126         NewVal = InitVal;
1127       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1128                             NewVal);
1129     }
1130   }
1131 }
1132 
1133 /// Rewrite a previously scheduled instruction to use the register value
1134 /// from the new instruction. Make sure the instruction occurs in the
1135 /// basic block, and we don't change the uses in the new instruction.
1136 void ModuloScheduleExpander::rewriteScheduledInstr(
1137     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1138     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1139     unsigned PrevReg) {
1140   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1141   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1142   // Rewrite uses that have been scheduled already to use the new
1143   // Phi register.
1144   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1145                                          EI = MRI.use_end();
1146        UI != EI;) {
1147     MachineOperand &UseOp = *UI;
1148     MachineInstr *UseMI = UseOp.getParent();
1149     ++UI;
1150     if (UseMI->getParent() != BB)
1151       continue;
1152     if (UseMI->isPHI()) {
1153       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1154         continue;
1155       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1156         continue;
1157     }
1158     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1159     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1160     MachineInstr *OrigMI = OrigInstr->second;
1161     int StageSched = Schedule.getStage(OrigMI);
1162     int CycleSched = Schedule.getCycle(OrigMI);
1163     unsigned ReplaceReg = 0;
1164     // This is the stage for the scheduled instruction.
1165     if (StagePhi == StageSched && Phi->isPHI()) {
1166       int CyclePhi = Schedule.getCycle(Phi);
1167       if (PrevReg && InProlog)
1168         ReplaceReg = PrevReg;
1169       else if (PrevReg && !isLoopCarried(*Phi) &&
1170                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1171         ReplaceReg = PrevReg;
1172       else
1173         ReplaceReg = NewReg;
1174     }
1175     // The scheduled instruction occurs before the scheduled Phi, and the
1176     // Phi is not loop carried.
1177     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1178       ReplaceReg = NewReg;
1179     if (StagePhi > StageSched && Phi->isPHI())
1180       ReplaceReg = NewReg;
1181     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1182       ReplaceReg = NewReg;
1183     if (ReplaceReg) {
1184       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1185       UseOp.setReg(ReplaceReg);
1186     }
1187   }
1188 }
1189 
1190 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1191   if (!Phi.isPHI())
1192     return false;
1193   int DefCycle = Schedule.getCycle(&Phi);
1194   int DefStage = Schedule.getStage(&Phi);
1195 
1196   unsigned InitVal = 0;
1197   unsigned LoopVal = 0;
1198   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1199   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1200   if (!Use || Use->isPHI())
1201     return true;
1202   int LoopCycle = Schedule.getCycle(Use);
1203   int LoopStage = Schedule.getStage(Use);
1204   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1205 }
1206 
1207 //===----------------------------------------------------------------------===//
1208 // PeelingModuloScheduleExpander implementation
1209 //===----------------------------------------------------------------------===//
1210 // This is a reimplementation of ModuloScheduleExpander that works by creating
1211 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1212 //===----------------------------------------------------------------------===//
1213 
1214 namespace {
1215 // Remove any dead phis in MBB. Dead phis either have only one block as input
1216 // (in which case they are the identity) or have no uses.
1217 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1218                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1219   bool Changed = true;
1220   while (Changed) {
1221     Changed = false;
1222     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1223       assert(MI.isPHI());
1224       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1225         if (LIS)
1226           LIS->RemoveMachineInstrFromMaps(MI);
1227         MI.eraseFromParent();
1228         Changed = true;
1229       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1230         MRI.constrainRegClass(MI.getOperand(1).getReg(),
1231                               MRI.getRegClass(MI.getOperand(0).getReg()));
1232         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1233                            MI.getOperand(1).getReg());
1234         if (LIS)
1235           LIS->RemoveMachineInstrFromMaps(MI);
1236         MI.eraseFromParent();
1237         Changed = true;
1238       }
1239     }
1240   }
1241 }
1242 
1243 /// Rewrites the kernel block in-place to adhere to the given schedule.
1244 /// KernelRewriter holds all of the state required to perform the rewriting.
1245 class KernelRewriter {
1246   ModuloSchedule &S;
1247   MachineBasicBlock *BB;
1248   MachineBasicBlock *PreheaderBB, *ExitBB;
1249   MachineRegisterInfo &MRI;
1250   const TargetInstrInfo *TII;
1251   LiveIntervals *LIS;
1252 
1253   // Map from register class to canonical undef register for that class.
1254   DenseMap<const TargetRegisterClass *, Register> Undefs;
1255   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1256   // this map is only used when InitReg is non-undef.
1257   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1258   // Map from LoopReg to phi register where the InitReg is undef.
1259   DenseMap<Register, Register> UndefPhis;
1260 
1261   // Reg is used by MI. Return the new register MI should use to adhere to the
1262   // schedule. Insert phis as necessary.
1263   Register remapUse(Register Reg, MachineInstr &MI);
1264   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1265   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1266   // or will be chosen so as to share another phi.
1267   Register phi(Register LoopReg, Optional<Register> InitReg = {},
1268                const TargetRegisterClass *RC = nullptr);
1269   // Create an undef register of the given register class.
1270   Register undef(const TargetRegisterClass *RC);
1271 
1272 public:
1273   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1274                  LiveIntervals *LIS = nullptr);
1275   void rewrite();
1276 };
1277 } // namespace
1278 
1279 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1280                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1281     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1282       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1283       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1284   PreheaderBB = *BB->pred_begin();
1285   if (PreheaderBB == BB)
1286     PreheaderBB = *std::next(BB->pred_begin());
1287 }
1288 
1289 void KernelRewriter::rewrite() {
1290   // Rearrange the loop to be in schedule order. Note that the schedule may
1291   // contain instructions that are not owned by the loop block (InstrChanges and
1292   // friends), so we gracefully handle unowned instructions and delete any
1293   // instructions that weren't in the schedule.
1294   auto InsertPt = BB->getFirstTerminator();
1295   MachineInstr *FirstMI = nullptr;
1296   for (MachineInstr *MI : S.getInstructions()) {
1297     if (MI->isPHI())
1298       continue;
1299     if (MI->getParent())
1300       MI->removeFromParent();
1301     BB->insert(InsertPt, MI);
1302     if (!FirstMI)
1303       FirstMI = MI;
1304   }
1305   assert(FirstMI && "Failed to find first MI in schedule");
1306 
1307   // At this point all of the scheduled instructions are between FirstMI
1308   // and the end of the block. Kill from the first non-phi to FirstMI.
1309   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1310     if (LIS)
1311       LIS->RemoveMachineInstrFromMaps(*I);
1312     (I++)->eraseFromParent();
1313   }
1314 
1315   // Now remap every instruction in the loop.
1316   for (MachineInstr &MI : *BB) {
1317     if (MI.isPHI() || MI.isTerminator())
1318       continue;
1319     for (MachineOperand &MO : MI.uses()) {
1320       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1321         continue;
1322       Register Reg = remapUse(MO.getReg(), MI);
1323       MO.setReg(Reg);
1324     }
1325   }
1326   EliminateDeadPhis(BB, MRI, LIS);
1327 
1328   // Ensure a phi exists for all instructions that are either referenced by
1329   // an illegal phi or by an instruction outside the loop. This allows us to
1330   // treat remaps of these values the same as "normal" values that come from
1331   // loop-carried phis.
1332   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1333     if (MI->isPHI()) {
1334       Register R = MI->getOperand(0).getReg();
1335       phi(R);
1336       continue;
1337     }
1338 
1339     for (MachineOperand &Def : MI->defs()) {
1340       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1341         if (MI.getParent() != BB) {
1342           phi(Def.getReg());
1343           break;
1344         }
1345       }
1346     }
1347   }
1348 }
1349 
1350 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1351   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1352   if (!Producer)
1353     return Reg;
1354 
1355   int ConsumerStage = S.getStage(&MI);
1356   if (!Producer->isPHI()) {
1357     // Non-phi producers are simple to remap. Insert as many phis as the
1358     // difference between the consumer and producer stages.
1359     if (Producer->getParent() != BB)
1360       // Producer was not inside the loop. Use the register as-is.
1361       return Reg;
1362     int ProducerStage = S.getStage(Producer);
1363     assert(ConsumerStage != -1 &&
1364            "In-loop consumer should always be scheduled!");
1365     assert(ConsumerStage >= ProducerStage);
1366     unsigned StageDiff = ConsumerStage - ProducerStage;
1367 
1368     for (unsigned I = 0; I < StageDiff; ++I)
1369       Reg = phi(Reg);
1370     return Reg;
1371   }
1372 
1373   // First, dive through the phi chain to find the defaults for the generated
1374   // phis.
1375   SmallVector<Optional<Register>, 4> Defaults;
1376   Register LoopReg = Reg;
1377   auto LoopProducer = Producer;
1378   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1379     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1380     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1381     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1382     assert(LoopProducer);
1383   }
1384   int LoopProducerStage = S.getStage(LoopProducer);
1385 
1386   Optional<Register> IllegalPhiDefault;
1387 
1388   if (LoopProducerStage == -1) {
1389     // Do nothing.
1390   } else if (LoopProducerStage > ConsumerStage) {
1391     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1392     // In addition, Consumer's cycle must be scheduled after Producer in the
1393     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1394     // functions.
1395 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1396     int LoopProducerCycle = S.getCycle(LoopProducer);
1397     int ConsumerCycle = S.getCycle(&MI);
1398 #endif
1399     assert(LoopProducerCycle <= ConsumerCycle);
1400     assert(LoopProducerStage == ConsumerStage + 1);
1401     // Peel off the first phi from Defaults and insert a phi between producer
1402     // and consumer. This phi will not be at the front of the block so we
1403     // consider it illegal. It will only exist during the rewrite process; it
1404     // needs to exist while we peel off prologs because these could take the
1405     // default value. After that we can replace all uses with the loop producer
1406     // value.
1407     IllegalPhiDefault = Defaults.front();
1408     Defaults.erase(Defaults.begin());
1409   } else {
1410     assert(ConsumerStage >= LoopProducerStage);
1411     int StageDiff = ConsumerStage - LoopProducerStage;
1412     if (StageDiff > 0) {
1413       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1414                         << " to " << (Defaults.size() + StageDiff) << "\n");
1415       // If we need more phis than we have defaults for, pad out with undefs for
1416       // the earliest phis, which are at the end of the defaults chain (the
1417       // chain is in reverse order).
1418       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1419                                                        ? Optional<Register>()
1420                                                        : Defaults.back());
1421     }
1422   }
1423 
1424   // Now we know the number of stages to jump back, insert the phi chain.
1425   auto DefaultI = Defaults.rbegin();
1426   while (DefaultI != Defaults.rend())
1427     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1428 
1429   if (IllegalPhiDefault.hasValue()) {
1430     // The consumer optionally consumes LoopProducer in the same iteration
1431     // (because the producer is scheduled at an earlier cycle than the consumer)
1432     // or the initial value. To facilitate this we create an illegal block here
1433     // by embedding a phi in the middle of the block. We will fix this up
1434     // immediately prior to pruning.
1435     auto RC = MRI.getRegClass(Reg);
1436     Register R = MRI.createVirtualRegister(RC);
1437     MachineInstr *IllegalPhi =
1438         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1439             .addReg(IllegalPhiDefault.getValue())
1440             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1441             .addReg(LoopReg)
1442             .addMBB(BB); // Block choice is arbitrary and has no effect.
1443     // Illegal phi should belong to the producer stage so that it can be
1444     // filtered correctly during peeling.
1445     S.setStage(IllegalPhi, LoopProducerStage);
1446     return R;
1447   }
1448 
1449   return LoopReg;
1450 }
1451 
1452 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1453                              const TargetRegisterClass *RC) {
1454   // If the init register is not undef, try and find an existing phi.
1455   if (InitReg.hasValue()) {
1456     auto I = Phis.find({LoopReg, InitReg.getValue()});
1457     if (I != Phis.end())
1458       return I->second;
1459   } else {
1460     for (auto &KV : Phis) {
1461       if (KV.first.first == LoopReg)
1462         return KV.second;
1463     }
1464   }
1465 
1466   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1467   // find a phi that takes undef as input.
1468   auto I = UndefPhis.find(LoopReg);
1469   if (I != UndefPhis.end()) {
1470     Register R = I->second;
1471     if (!InitReg.hasValue())
1472       // Found a phi taking undef as input, and this input is undef so return
1473       // without any more changes.
1474       return R;
1475     // Found a phi taking undef as input, so rewrite it to take InitReg.
1476     MachineInstr *MI = MRI.getVRegDef(R);
1477     MI->getOperand(1).setReg(InitReg.getValue());
1478     Phis.insert({{LoopReg, InitReg.getValue()}, R});
1479     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1480     UndefPhis.erase(I);
1481     return R;
1482   }
1483 
1484   // Failed to find any existing phi to reuse, so create a new one.
1485   if (!RC)
1486     RC = MRI.getRegClass(LoopReg);
1487   Register R = MRI.createVirtualRegister(RC);
1488   if (InitReg.hasValue())
1489     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1490   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1491       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1492       .addMBB(PreheaderBB)
1493       .addReg(LoopReg)
1494       .addMBB(BB);
1495   if (!InitReg.hasValue())
1496     UndefPhis[LoopReg] = R;
1497   else
1498     Phis[{LoopReg, *InitReg}] = R;
1499   return R;
1500 }
1501 
1502 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1503   Register &R = Undefs[RC];
1504   if (R == 0) {
1505     // Create an IMPLICIT_DEF that defines this register if we need it.
1506     // All uses of this should be removed by the time we have finished unrolling
1507     // prologs and epilogs.
1508     R = MRI.createVirtualRegister(RC);
1509     auto *InsertBB = &PreheaderBB->getParent()->front();
1510     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1511             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1512   }
1513   return R;
1514 }
1515 
1516 namespace {
1517 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1518 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1519 /// through and defaults for these phis.
1520 class KernelOperandInfo {
1521   MachineBasicBlock *BB;
1522   MachineRegisterInfo &MRI;
1523   SmallVector<Register, 4> PhiDefaults;
1524   MachineOperand *Source;
1525   MachineOperand *Target;
1526 
1527 public:
1528   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1529                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1530       : MRI(MRI) {
1531     Source = MO;
1532     BB = MO->getParent()->getParent();
1533     while (isRegInLoop(MO)) {
1534       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1535       if (MI->isFullCopy()) {
1536         MO = &MI->getOperand(1);
1537         continue;
1538       }
1539       if (!MI->isPHI())
1540         break;
1541       // If this is an illegal phi, don't count it in distance.
1542       if (IllegalPhis.count(MI)) {
1543         MO = &MI->getOperand(3);
1544         continue;
1545       }
1546 
1547       Register Default = getInitPhiReg(*MI, BB);
1548       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1549                                             : &MI->getOperand(3);
1550       PhiDefaults.push_back(Default);
1551     }
1552     Target = MO;
1553   }
1554 
1555   bool operator==(const KernelOperandInfo &Other) const {
1556     return PhiDefaults.size() == Other.PhiDefaults.size();
1557   }
1558 
1559   void print(raw_ostream &OS) const {
1560     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1561        << *Source->getParent();
1562   }
1563 
1564 private:
1565   bool isRegInLoop(MachineOperand *MO) {
1566     return MO->isReg() && MO->getReg().isVirtual() &&
1567            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1568   }
1569 };
1570 } // namespace
1571 
1572 MachineBasicBlock *
1573 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1574   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1575   if (LPD == LPD_Front)
1576     PeeledFront.push_back(NewBB);
1577   else
1578     PeeledBack.push_front(NewBB);
1579   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1580        ++I, ++NI) {
1581     CanonicalMIs[&*I] = &*I;
1582     CanonicalMIs[&*NI] = &*I;
1583     BlockMIs[{NewBB, &*I}] = &*NI;
1584     BlockMIs[{BB, &*I}] = &*I;
1585   }
1586   return NewBB;
1587 }
1588 
1589 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1590                                                        int MinStage) {
1591   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1592        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1593     MachineInstr *MI = &*I++;
1594     int Stage = getStage(MI);
1595     if (Stage == -1 || Stage >= MinStage)
1596       continue;
1597 
1598     for (MachineOperand &DefMO : MI->defs()) {
1599       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1600       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1601         // Only PHIs can use values from this block by construction.
1602         // Match with the equivalent PHI in B.
1603         assert(UseMI.isPHI());
1604         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1605                                                MI->getParent());
1606         Subs.emplace_back(&UseMI, Reg);
1607       }
1608       for (auto &Sub : Subs)
1609         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1610                                       *MRI.getTargetRegisterInfo());
1611     }
1612     if (LIS)
1613       LIS->RemoveMachineInstrFromMaps(*MI);
1614     MI->eraseFromParent();
1615   }
1616 }
1617 
1618 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1619     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1620   auto InsertPt = DestBB->getFirstNonPHI();
1621   DenseMap<Register, Register> Remaps;
1622   for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1623     MachineInstr *MI = &*I++;
1624     if (MI->isPHI()) {
1625       // This is an illegal PHI. If we move any instructions using an illegal
1626       // PHI, we need to create a legal Phi.
1627       if (getStage(MI) != Stage) {
1628         // The legal Phi is not necessary if the illegal phi's stage
1629         // is being moved.
1630         Register PhiR = MI->getOperand(0).getReg();
1631         auto RC = MRI.getRegClass(PhiR);
1632         Register NR = MRI.createVirtualRegister(RC);
1633         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1634                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1635                                .addReg(PhiR)
1636                                .addMBB(SourceBB);
1637         BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1638         CanonicalMIs[NI] = CanonicalMIs[MI];
1639         Remaps[PhiR] = NR;
1640       }
1641     }
1642     if (getStage(MI) != Stage)
1643       continue;
1644     MI->removeFromParent();
1645     DestBB->insert(InsertPt, MI);
1646     auto *KernelMI = CanonicalMIs[MI];
1647     BlockMIs[{DestBB, KernelMI}] = MI;
1648     BlockMIs.erase({SourceBB, KernelMI});
1649   }
1650   SmallVector<MachineInstr *, 4> PhiToDelete;
1651   for (MachineInstr &MI : DestBB->phis()) {
1652     assert(MI.getNumOperands() == 3);
1653     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1654     // If the instruction referenced by the phi is moved inside the block
1655     // we don't need the phi anymore.
1656     if (getStage(Def) == Stage) {
1657       Register PhiReg = MI.getOperand(0).getReg();
1658       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1659       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1660       MI.getOperand(0).setReg(PhiReg);
1661       PhiToDelete.push_back(&MI);
1662     }
1663   }
1664   for (auto *P : PhiToDelete)
1665     P->eraseFromParent();
1666   InsertPt = DestBB->getFirstNonPHI();
1667   // Helper to clone Phi instructions into the destination block. We clone Phi
1668   // greedily to avoid combinatorial explosion of Phi instructions.
1669   auto clonePhi = [&](MachineInstr *Phi) {
1670     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1671     DestBB->insert(InsertPt, NewMI);
1672     Register OrigR = Phi->getOperand(0).getReg();
1673     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1674     NewMI->getOperand(0).setReg(R);
1675     NewMI->getOperand(1).setReg(OrigR);
1676     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1677     Remaps[OrigR] = R;
1678     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1679     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1680     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1681     return R;
1682   };
1683   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1684     for (MachineOperand &MO : I->uses()) {
1685       if (!MO.isReg())
1686         continue;
1687       if (Remaps.count(MO.getReg()))
1688         MO.setReg(Remaps[MO.getReg()]);
1689       else {
1690         // If we are using a phi from the source block we need to add a new phi
1691         // pointing to the old one.
1692         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1693         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1694           Register R = clonePhi(Use);
1695           MO.setReg(R);
1696         }
1697       }
1698     }
1699   }
1700 }
1701 
1702 Register
1703 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1704                                                   MachineInstr *Phi) {
1705   unsigned distance = PhiNodeLoopIteration[Phi];
1706   MachineInstr *CanonicalUse = CanonicalPhi;
1707   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1708   for (unsigned I = 0; I < distance; ++I) {
1709     assert(CanonicalUse->isPHI());
1710     assert(CanonicalUse->getNumOperands() == 5);
1711     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1712     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1713       std::swap(LoopRegIdx, InitRegIdx);
1714     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1715     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1716   }
1717   return CanonicalUseReg;
1718 }
1719 
1720 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1721   BitVector LS(Schedule.getNumStages(), true);
1722   BitVector AS(Schedule.getNumStages(), true);
1723   LiveStages[BB] = LS;
1724   AvailableStages[BB] = AS;
1725 
1726   // Peel out the prologs.
1727   LS.reset();
1728   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1729     LS[I] = 1;
1730     Prologs.push_back(peelKernel(LPD_Front));
1731     LiveStages[Prologs.back()] = LS;
1732     AvailableStages[Prologs.back()] = LS;
1733   }
1734 
1735   // Create a block that will end up as the new loop exiting block (dominated by
1736   // all prologs and epilogs). It will only contain PHIs, in the same order as
1737   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1738   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1739   // property that any value deffed in BB but used outside of BB is used by a
1740   // PHI in the exiting block.
1741   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1742   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1743   // Push out the epilogs, again in reverse order.
1744   // We can't assume anything about the minumum loop trip count at this point,
1745   // so emit a fairly complex epilog.
1746 
1747   // We first peel number of stages minus one epilogue. Then we remove dead
1748   // stages and reorder instructions based on their stage. If we have 3 stages
1749   // we generate first:
1750   // E0[3, 2, 1]
1751   // E1[3', 2']
1752   // E2[3'']
1753   // And then we move instructions based on their stages to have:
1754   // E0[3]
1755   // E1[2, 3']
1756   // E2[1, 2', 3'']
1757   // The transformation is legal because we only move instructions past
1758   // instructions of a previous loop iteration.
1759   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1760     Epilogs.push_back(peelKernel(LPD_Back));
1761     MachineBasicBlock *B = Epilogs.back();
1762     filterInstructions(B, Schedule.getNumStages() - I);
1763     // Keep track at which iteration each phi belongs to. We need it to know
1764     // what version of the variable to use during prologue/epilogue stitching.
1765     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1766     for (MachineInstr &Phi : B->phis())
1767       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1768   }
1769   for (size_t I = 0; I < Epilogs.size(); I++) {
1770     LS.reset();
1771     for (size_t J = I; J < Epilogs.size(); J++) {
1772       int Iteration = J;
1773       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1774       // Move stage one block at a time so that Phi nodes are updated correctly.
1775       for (size_t K = Iteration; K > I; K--)
1776         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1777       LS[Stage] = 1;
1778     }
1779     LiveStages[Epilogs[I]] = LS;
1780     AvailableStages[Epilogs[I]] = AS;
1781   }
1782 
1783   // Now we've defined all the prolog and epilog blocks as a fallthrough
1784   // sequence, add the edges that will be followed if the loop trip count is
1785   // lower than the number of stages (connecting prologs directly with epilogs).
1786   auto PI = Prologs.begin();
1787   auto EI = Epilogs.begin();
1788   assert(Prologs.size() == Epilogs.size());
1789   for (; PI != Prologs.end(); ++PI, ++EI) {
1790     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1791     (*PI)->addSuccessor(*EI);
1792     for (MachineInstr &MI : (*EI)->phis()) {
1793       Register Reg = MI.getOperand(1).getReg();
1794       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1795       if (Use && Use->getParent() == Pred) {
1796         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1797         if (CanonicalUse->isPHI()) {
1798           // If the use comes from a phi we need to skip as many phi as the
1799           // distance between the epilogue and the kernel. Trace through the phi
1800           // chain to find the right value.
1801           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1802         }
1803         Reg = getEquivalentRegisterIn(Reg, *PI);
1804       }
1805       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1806       MI.addOperand(MachineOperand::CreateMBB(*PI));
1807     }
1808   }
1809 
1810   // Create a list of all blocks in order.
1811   SmallVector<MachineBasicBlock *, 8> Blocks;
1812   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1813   Blocks.push_back(BB);
1814   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1815 
1816   // Iterate in reverse order over all instructions, remapping as we go.
1817   for (MachineBasicBlock *B : reverse(Blocks)) {
1818     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1819          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1820       MachineInstr *MI = &*I++;
1821       rewriteUsesOf(MI);
1822     }
1823   }
1824   for (auto *MI : IllegalPhisToDelete) {
1825     if (LIS)
1826       LIS->RemoveMachineInstrFromMaps(*MI);
1827     MI->eraseFromParent();
1828   }
1829   IllegalPhisToDelete.clear();
1830 
1831   // Now all remapping has been done, we're free to optimize the generated code.
1832   for (MachineBasicBlock *B : reverse(Blocks))
1833     EliminateDeadPhis(B, MRI, LIS);
1834   EliminateDeadPhis(ExitingBB, MRI, LIS);
1835 }
1836 
1837 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1838   MachineFunction &MF = *BB->getParent();
1839   MachineBasicBlock *Exit = *BB->succ_begin();
1840   if (Exit == BB)
1841     Exit = *std::next(BB->succ_begin());
1842 
1843   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1844   MF.insert(std::next(BB->getIterator()), NewBB);
1845 
1846   // Clone all phis in BB into NewBB and rewrite.
1847   for (MachineInstr &MI : BB->phis()) {
1848     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1849     Register OldR = MI.getOperand(3).getReg();
1850     Register R = MRI.createVirtualRegister(RC);
1851     SmallVector<MachineInstr *, 4> Uses;
1852     for (MachineInstr &Use : MRI.use_instructions(OldR))
1853       if (Use.getParent() != BB)
1854         Uses.push_back(&Use);
1855     for (MachineInstr *Use : Uses)
1856       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1857                               *MRI.getTargetRegisterInfo());
1858     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1859         .addReg(OldR)
1860         .addMBB(BB);
1861     BlockMIs[{NewBB, &MI}] = NI;
1862     CanonicalMIs[NI] = &MI;
1863   }
1864   BB->replaceSuccessor(Exit, NewBB);
1865   Exit->replacePhiUsesWith(BB, NewBB);
1866   NewBB->addSuccessor(Exit);
1867 
1868   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1869   SmallVector<MachineOperand, 4> Cond;
1870   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1871   (void)CanAnalyzeBr;
1872   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1873   TII->removeBranch(*BB);
1874   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1875                     Cond, DebugLoc());
1876   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1877   return NewBB;
1878 }
1879 
1880 Register
1881 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1882                                                        MachineBasicBlock *BB) {
1883   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1884   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1885   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1886 }
1887 
1888 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1889   if (MI->isPHI()) {
1890     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1891     // and it is produced by this block.
1892     Register PhiR = MI->getOperand(0).getReg();
1893     Register R = MI->getOperand(3).getReg();
1894     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1895     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1896       R = MI->getOperand(1).getReg();
1897     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1898     MRI.replaceRegWith(PhiR, R);
1899     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1900     // later to figure out how to remap registers.
1901     MI->getOperand(0).setReg(PhiR);
1902     IllegalPhisToDelete.push_back(MI);
1903     return;
1904   }
1905 
1906   int Stage = getStage(MI);
1907   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1908       LiveStages[MI->getParent()].test(Stage))
1909     // Instruction is live, no rewriting to do.
1910     return;
1911 
1912   for (MachineOperand &DefMO : MI->defs()) {
1913     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1914     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1915       // Only PHIs can use values from this block by construction.
1916       // Match with the equivalent PHI in B.
1917       assert(UseMI.isPHI());
1918       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1919                                              MI->getParent());
1920       Subs.emplace_back(&UseMI, Reg);
1921     }
1922     for (auto &Sub : Subs)
1923       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1924                                     *MRI.getTargetRegisterInfo());
1925   }
1926   if (LIS)
1927     LIS->RemoveMachineInstrFromMaps(*MI);
1928   MI->eraseFromParent();
1929 }
1930 
1931 void PeelingModuloScheduleExpander::fixupBranches() {
1932   // Work outwards from the kernel.
1933   bool KernelDisposed = false;
1934   int TC = Schedule.getNumStages() - 1;
1935   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1936        ++PI, ++EI, --TC) {
1937     MachineBasicBlock *Prolog = *PI;
1938     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1939     MachineBasicBlock *Epilog = *EI;
1940     SmallVector<MachineOperand, 4> Cond;
1941     TII->removeBranch(*Prolog);
1942     Optional<bool> StaticallyGreater =
1943         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1944     if (!StaticallyGreater.hasValue()) {
1945       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1946       // Dynamically branch based on Cond.
1947       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1948     } else if (*StaticallyGreater == false) {
1949       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1950       // Prolog never falls through; branch to epilog and orphan interior
1951       // blocks. Leave it to unreachable-block-elim to clean up.
1952       Prolog->removeSuccessor(Fallthrough);
1953       for (MachineInstr &P : Fallthrough->phis()) {
1954         P.RemoveOperand(2);
1955         P.RemoveOperand(1);
1956       }
1957       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1958       KernelDisposed = true;
1959     } else {
1960       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1961       // Prolog always falls through; remove incoming values in epilog.
1962       Prolog->removeSuccessor(Epilog);
1963       for (MachineInstr &P : Epilog->phis()) {
1964         P.RemoveOperand(4);
1965         P.RemoveOperand(3);
1966       }
1967     }
1968   }
1969 
1970   if (!KernelDisposed) {
1971     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1972     LoopInfo->setPreheader(Prologs.back());
1973   } else {
1974     LoopInfo->disposed();
1975   }
1976 }
1977 
1978 void PeelingModuloScheduleExpander::rewriteKernel() {
1979   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1980   KR.rewrite();
1981 }
1982 
1983 void PeelingModuloScheduleExpander::expand() {
1984   BB = Schedule.getLoop()->getTopBlock();
1985   Preheader = Schedule.getLoop()->getLoopPreheader();
1986   LLVM_DEBUG(Schedule.dump());
1987   LoopInfo = TII->analyzeLoopForPipelining(BB);
1988   assert(LoopInfo);
1989 
1990   rewriteKernel();
1991   peelPrologAndEpilogs();
1992   fixupBranches();
1993 }
1994 
1995 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1996   BB = Schedule.getLoop()->getTopBlock();
1997   Preheader = Schedule.getLoop()->getLoopPreheader();
1998 
1999   // Dump the schedule before we invalidate and remap all its instructions.
2000   // Stash it in a string so we can print it if we found an error.
2001   std::string ScheduleDump;
2002   raw_string_ostream OS(ScheduleDump);
2003   Schedule.print(OS);
2004   OS.flush();
2005 
2006   // First, run the normal ModuleScheduleExpander. We don't support any
2007   // InstrChanges.
2008   assert(LIS && "Requires LiveIntervals!");
2009   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2010                              ModuloScheduleExpander::InstrChangesTy());
2011   MSE.expand();
2012   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2013   if (!ExpandedKernel) {
2014     // The expander optimized away the kernel. We can't do any useful checking.
2015     MSE.cleanup();
2016     return;
2017   }
2018   // Before running the KernelRewriter, re-add BB into the CFG.
2019   Preheader->addSuccessor(BB);
2020 
2021   // Now run the new expansion algorithm.
2022   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2023   KR.rewrite();
2024   peelPrologAndEpilogs();
2025 
2026   // Collect all illegal phis that the new algorithm created. We'll give these
2027   // to KernelOperandInfo.
2028   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2029   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2030     if (NI->isPHI())
2031       IllegalPhis.insert(&*NI);
2032   }
2033 
2034   // Co-iterate across both kernels. We expect them to be identical apart from
2035   // phis and full COPYs (we look through both).
2036   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2037   auto OI = ExpandedKernel->begin();
2038   auto NI = BB->begin();
2039   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2040     while (OI->isPHI() || OI->isFullCopy())
2041       ++OI;
2042     while (NI->isPHI() || NI->isFullCopy())
2043       ++NI;
2044     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2045     // Analyze every operand separately.
2046     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2047          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2048       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2049                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2050   }
2051 
2052   bool Failed = false;
2053   for (auto &OldAndNew : KOIs) {
2054     if (OldAndNew.first == OldAndNew.second)
2055       continue;
2056     Failed = true;
2057     errs() << "Modulo kernel validation error: [\n";
2058     errs() << " [golden] ";
2059     OldAndNew.first.print(errs());
2060     errs() << "          ";
2061     OldAndNew.second.print(errs());
2062     errs() << "]\n";
2063   }
2064 
2065   if (Failed) {
2066     errs() << "Golden reference kernel:\n";
2067     ExpandedKernel->print(errs());
2068     errs() << "New kernel:\n";
2069     BB->print(errs());
2070     errs() << ScheduleDump;
2071     report_fatal_error(
2072         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2073   }
2074 
2075   // Cleanup by removing BB from the CFG again as the original
2076   // ModuloScheduleExpander intended.
2077   Preheader->removeSuccessor(BB);
2078   MSE.cleanup();
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 // ModuloScheduleTestPass implementation
2083 //===----------------------------------------------------------------------===//
2084 // This pass constructs a ModuloSchedule from its module and runs
2085 // ModuloScheduleExpander.
2086 //
2087 // The module is expected to contain a single-block analyzable loop.
2088 // The total order of instructions is taken from the loop as-is.
2089 // Instructions are expected to be annotated with a PostInstrSymbol.
2090 // This PostInstrSymbol must have the following format:
2091 //  "Stage=%d Cycle=%d".
2092 //===----------------------------------------------------------------------===//
2093 
2094 namespace {
2095 class ModuloScheduleTest : public MachineFunctionPass {
2096 public:
2097   static char ID;
2098 
2099   ModuloScheduleTest() : MachineFunctionPass(ID) {
2100     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2101   }
2102 
2103   bool runOnMachineFunction(MachineFunction &MF) override;
2104   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2105 
2106   void getAnalysisUsage(AnalysisUsage &AU) const override {
2107     AU.addRequired<MachineLoopInfo>();
2108     AU.addRequired<LiveIntervals>();
2109     MachineFunctionPass::getAnalysisUsage(AU);
2110   }
2111 };
2112 } // namespace
2113 
2114 char ModuloScheduleTest::ID = 0;
2115 
2116 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2117                       "Modulo Schedule test pass", false, false)
2118 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2119 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2120 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2121                     "Modulo Schedule test pass", false, false)
2122 
2123 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2124   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2125   for (auto *L : MLI) {
2126     if (L->getTopBlock() != L->getBottomBlock())
2127       continue;
2128     runOnLoop(MF, *L);
2129     return false;
2130   }
2131   return false;
2132 }
2133 
2134 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2135   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2136   std::pair<StringRef, StringRef> StageTokenAndValue =
2137       getToken(StageAndCycle.first, "-");
2138   std::pair<StringRef, StringRef> CycleTokenAndValue =
2139       getToken(StageAndCycle.second, "-");
2140   if (StageTokenAndValue.first != "Stage" ||
2141       CycleTokenAndValue.first != "_Cycle") {
2142     llvm_unreachable(
2143         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2144     return;
2145   }
2146 
2147   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2148   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2149 
2150   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2151 }
2152 
2153 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2154   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2155   MachineBasicBlock *BB = L.getTopBlock();
2156   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2157 
2158   DenseMap<MachineInstr *, int> Cycle, Stage;
2159   std::vector<MachineInstr *> Instrs;
2160   for (MachineInstr &MI : *BB) {
2161     if (MI.isTerminator())
2162       continue;
2163     Instrs.push_back(&MI);
2164     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2165       dbgs() << "Parsing post-instr symbol for " << MI;
2166       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2167     }
2168   }
2169 
2170   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2171                     std::move(Stage));
2172   ModuloScheduleExpander MSE(
2173       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2174   MSE.expand();
2175   MSE.cleanup();
2176 }
2177 
2178 //===----------------------------------------------------------------------===//
2179 // ModuloScheduleTestAnnotater implementation
2180 //===----------------------------------------------------------------------===//
2181 
2182 void ModuloScheduleTestAnnotater::annotate() {
2183   for (MachineInstr *MI : S.getInstructions()) {
2184     SmallVector<char, 16> SV;
2185     raw_svector_ostream OS(SV);
2186     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2187     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2188     MI->setPostInstrSymbol(MF, Sym);
2189   }
2190 }
2191