1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85 EI = MRI.use_end(); 86 UI != EI; ++UI) { 87 MachineOperand &UseOp = *UI; 88 MachineInstr *UseMI = UseOp.getParent(); 89 int UseStage = Schedule.getStage(UseMI); 90 unsigned Diff = 0; 91 if (UseStage != -1 && UseStage >= DefStage) 92 Diff = UseStage - DefStage; 93 if (MI->isPHI()) { 94 if (isLoopCarried(*MI)) 95 ++Diff; 96 else 97 PhiIsSwapped = true; 98 } 99 MaxDiff = std::max(Diff, MaxDiff); 100 } 101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102 } 103 } 104 105 generatePipelinedLoop(); 106 } 107 108 void ModuloScheduleExpander::generatePipelinedLoop() { 109 LoopInfo = TII->analyzeLoopForPipelining(BB); 110 assert(LoopInfo && "Must be able to analyze loop!"); 111 112 // Create a new basic block for the kernel and add it to the CFG. 113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114 115 unsigned MaxStageCount = Schedule.getNumStages() - 1; 116 117 // Remember the registers that are used in different stages. The index is 118 // the iteration, or stage, that the instruction is scheduled in. This is 119 // a map between register names in the original block and the names created 120 // in each stage of the pipelined loop. 121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122 InstrMapTy InstrMap; 123 124 SmallVector<MachineBasicBlock *, 4> PrologBBs; 125 126 // Generate the prolog instructions that set up the pipeline. 127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128 MF.insert(BB->getIterator(), KernelBB); 129 130 // Rearrange the instructions to generate the new, pipelined loop, 131 // and update register names as needed. 132 for (MachineInstr *CI : Schedule.getInstructions()) { 133 if (CI->isPHI()) 134 continue; 135 unsigned StageNum = Schedule.getStage(CI); 136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138 KernelBB->push_back(NewMI); 139 InstrMap[NewMI] = CI; 140 } 141 142 // Copy any terminator instructions to the new kernel, and update 143 // names as needed. 144 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 145 E = BB->instr_end(); 146 I != E; ++I) { 147 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 148 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 149 KernelBB->push_back(NewMI); 150 InstrMap[NewMI] = &*I; 151 } 152 153 NewKernel = KernelBB; 154 KernelBB->transferSuccessors(BB); 155 KernelBB->replaceSuccessor(BB, KernelBB); 156 157 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 158 InstrMap, MaxStageCount, MaxStageCount, false); 159 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 160 MaxStageCount, MaxStageCount, false); 161 162 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 163 164 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 165 // Generate the epilog instructions to complete the pipeline. 166 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 167 168 // We need this step because the register allocation doesn't handle some 169 // situations well, so we insert copies to help out. 170 splitLifetimes(KernelBB, EpilogBBs); 171 172 // Remove dead instructions due to loop induction variables. 173 removeDeadInstructions(KernelBB, EpilogBBs); 174 175 // Add branches between prolog and epilog blocks. 176 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 177 178 delete[] VRMap; 179 } 180 181 void ModuloScheduleExpander::cleanup() { 182 // Remove the original loop since it's no longer referenced. 183 for (auto &I : *BB) 184 LIS.RemoveMachineInstrFromMaps(I); 185 BB->clear(); 186 BB->eraseFromParent(); 187 } 188 189 /// Generate the pipeline prolog code. 190 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 191 MachineBasicBlock *KernelBB, 192 ValueMapTy *VRMap, 193 MBBVectorTy &PrologBBs) { 194 MachineBasicBlock *PredBB = Preheader; 195 InstrMapTy InstrMap; 196 197 // Generate a basic block for each stage, not including the last stage, 198 // which will be generated in the kernel. Each basic block may contain 199 // instructions from multiple stages/iterations. 200 for (unsigned i = 0; i < LastStage; ++i) { 201 // Create and insert the prolog basic block prior to the original loop 202 // basic block. The original loop is removed later. 203 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 204 PrologBBs.push_back(NewBB); 205 MF.insert(BB->getIterator(), NewBB); 206 NewBB->transferSuccessors(PredBB); 207 PredBB->addSuccessor(NewBB); 208 PredBB = NewBB; 209 210 // Generate instructions for each appropriate stage. Process instructions 211 // in original program order. 212 for (int StageNum = i; StageNum >= 0; --StageNum) { 213 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 214 BBE = BB->getFirstTerminator(); 215 BBI != BBE; ++BBI) { 216 if (Schedule.getStage(&*BBI) == StageNum) { 217 if (BBI->isPHI()) 218 continue; 219 MachineInstr *NewMI = 220 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 221 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 222 NewBB->push_back(NewMI); 223 InstrMap[NewMI] = &*BBI; 224 } 225 } 226 } 227 rewritePhiValues(NewBB, i, VRMap, InstrMap); 228 LLVM_DEBUG({ 229 dbgs() << "prolog:\n"; 230 NewBB->dump(); 231 }); 232 } 233 234 PredBB->replaceSuccessor(BB, KernelBB); 235 236 // Check if we need to remove the branch from the preheader to the original 237 // loop, and replace it with a branch to the new loop. 238 unsigned numBranches = TII->removeBranch(*Preheader); 239 if (numBranches) { 240 SmallVector<MachineOperand, 0> Cond; 241 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 242 } 243 } 244 245 /// Generate the pipeline epilog code. The epilog code finishes the iterations 246 /// that were started in either the prolog or the kernel. We create a basic 247 /// block for each stage that needs to complete. 248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 249 MachineBasicBlock *KernelBB, 250 ValueMapTy *VRMap, 251 MBBVectorTy &EpilogBBs, 252 MBBVectorTy &PrologBBs) { 253 // We need to change the branch from the kernel to the first epilog block, so 254 // this call to analyze branch uses the kernel rather than the original BB. 255 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 256 SmallVector<MachineOperand, 4> Cond; 257 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 258 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 259 if (checkBranch) 260 return; 261 262 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 263 if (*LoopExitI == KernelBB) 264 ++LoopExitI; 265 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 266 MachineBasicBlock *LoopExitBB = *LoopExitI; 267 268 MachineBasicBlock *PredBB = KernelBB; 269 MachineBasicBlock *EpilogStart = LoopExitBB; 270 InstrMapTy InstrMap; 271 272 // Generate a basic block for each stage, not including the last stage, 273 // which was generated for the kernel. Each basic block may contain 274 // instructions from multiple stages/iterations. 275 int EpilogStage = LastStage + 1; 276 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 277 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 278 EpilogBBs.push_back(NewBB); 279 MF.insert(BB->getIterator(), NewBB); 280 281 PredBB->replaceSuccessor(LoopExitBB, NewBB); 282 NewBB->addSuccessor(LoopExitBB); 283 284 if (EpilogStart == LoopExitBB) 285 EpilogStart = NewBB; 286 287 // Add instructions to the epilog depending on the current block. 288 // Process instructions in original program order. 289 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 290 for (auto &BBI : *BB) { 291 if (BBI.isPHI()) 292 continue; 293 MachineInstr *In = &BBI; 294 if ((unsigned)Schedule.getStage(In) == StageNum) { 295 // Instructions with memoperands in the epilog are updated with 296 // conservative values. 297 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 298 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 299 NewBB->push_back(NewMI); 300 InstrMap[NewMI] = In; 301 } 302 } 303 } 304 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 305 InstrMap, LastStage, EpilogStage, i == 1); 306 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 307 LastStage, EpilogStage, i == 1); 308 PredBB = NewBB; 309 310 LLVM_DEBUG({ 311 dbgs() << "epilog:\n"; 312 NewBB->dump(); 313 }); 314 } 315 316 // Fix any Phi nodes in the loop exit block. 317 LoopExitBB->replacePhiUsesWith(BB, PredBB); 318 319 // Create a branch to the new epilog from the kernel. 320 // Remove the original branch and add a new branch to the epilog. 321 TII->removeBranch(*KernelBB); 322 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 323 // Add a branch to the loop exit. 324 if (EpilogBBs.size() > 0) { 325 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 326 SmallVector<MachineOperand, 4> Cond1; 327 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 328 } 329 } 330 331 /// Replace all uses of FromReg that appear outside the specified 332 /// basic block with ToReg. 333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 334 MachineBasicBlock *MBB, 335 MachineRegisterInfo &MRI, 336 LiveIntervals &LIS) { 337 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 338 E = MRI.use_end(); 339 I != E;) { 340 MachineOperand &O = *I; 341 ++I; 342 if (O.getParent()->getParent() != MBB) 343 O.setReg(ToReg); 344 } 345 if (!LIS.hasInterval(ToReg)) 346 LIS.createEmptyInterval(ToReg); 347 } 348 349 /// Return true if the register has a use that occurs outside the 350 /// specified loop. 351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 352 MachineRegisterInfo &MRI) { 353 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 354 E = MRI.use_end(); 355 I != E; ++I) 356 if (I->getParent()->getParent() != BB) 357 return true; 358 return false; 359 } 360 361 /// Generate Phis for the specific block in the generated pipelined code. 362 /// This function looks at the Phis from the original code to guide the 363 /// creation of new Phis. 364 void ModuloScheduleExpander::generateExistingPhis( 365 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 366 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 367 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 368 // Compute the stage number for the initial value of the Phi, which 369 // comes from the prolog. The prolog to use depends on to which kernel/ 370 // epilog that we're adding the Phi. 371 unsigned PrologStage = 0; 372 unsigned PrevStage = 0; 373 bool InKernel = (LastStageNum == CurStageNum); 374 if (InKernel) { 375 PrologStage = LastStageNum - 1; 376 PrevStage = CurStageNum; 377 } else { 378 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 379 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 380 } 381 382 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 383 BBE = BB->getFirstNonPHI(); 384 BBI != BBE; ++BBI) { 385 Register Def = BBI->getOperand(0).getReg(); 386 387 unsigned InitVal = 0; 388 unsigned LoopVal = 0; 389 getPhiRegs(*BBI, BB, InitVal, LoopVal); 390 391 unsigned PhiOp1 = 0; 392 // The Phi value from the loop body typically is defined in the loop, but 393 // not always. So, we need to check if the value is defined in the loop. 394 unsigned PhiOp2 = LoopVal; 395 if (VRMap[LastStageNum].count(LoopVal)) 396 PhiOp2 = VRMap[LastStageNum][LoopVal]; 397 398 int StageScheduled = Schedule.getStage(&*BBI); 399 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 400 unsigned NumStages = getStagesForReg(Def, CurStageNum); 401 if (NumStages == 0) { 402 // We don't need to generate a Phi anymore, but we need to rename any uses 403 // of the Phi value. 404 unsigned NewReg = VRMap[PrevStage][LoopVal]; 405 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 406 InitVal, NewReg); 407 if (VRMap[CurStageNum].count(LoopVal)) 408 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 409 } 410 // Adjust the number of Phis needed depending on the number of prologs left, 411 // and the distance from where the Phi is first scheduled. The number of 412 // Phis cannot exceed the number of prolog stages. Each stage can 413 // potentially define two values. 414 unsigned MaxPhis = PrologStage + 2; 415 if (!InKernel && (int)PrologStage <= LoopValStage) 416 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 417 unsigned NumPhis = std::min(NumStages, MaxPhis); 418 419 unsigned NewReg = 0; 420 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 421 // In the epilog, we may need to look back one stage to get the correct 422 // Phi name, because the epilog and prolog blocks execute the same stage. 423 // The correct name is from the previous block only when the Phi has 424 // been completely scheduled prior to the epilog, and Phi value is not 425 // needed in multiple stages. 426 int StageDiff = 0; 427 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 428 NumPhis == 1) 429 StageDiff = 1; 430 // Adjust the computations below when the phi and the loop definition 431 // are scheduled in different stages. 432 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 433 StageDiff = StageScheduled - LoopValStage; 434 for (unsigned np = 0; np < NumPhis; ++np) { 435 // If the Phi hasn't been scheduled, then use the initial Phi operand 436 // value. Otherwise, use the scheduled version of the instruction. This 437 // is a little complicated when a Phi references another Phi. 438 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 439 PhiOp1 = InitVal; 440 // Check if the Phi has already been scheduled in a prolog stage. 441 else if (PrologStage >= AccessStage + StageDiff + np && 442 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 443 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 444 // Check if the Phi has already been scheduled, but the loop instruction 445 // is either another Phi, or doesn't occur in the loop. 446 else if (PrologStage >= AccessStage + StageDiff + np) { 447 // If the Phi references another Phi, we need to examine the other 448 // Phi to get the correct value. 449 PhiOp1 = LoopVal; 450 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 451 int Indirects = 1; 452 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 453 int PhiStage = Schedule.getStage(InstOp1); 454 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 455 PhiOp1 = getInitPhiReg(*InstOp1, BB); 456 else 457 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 458 InstOp1 = MRI.getVRegDef(PhiOp1); 459 int PhiOpStage = Schedule.getStage(InstOp1); 460 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 461 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 462 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 463 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 464 break; 465 } 466 ++Indirects; 467 } 468 } else 469 PhiOp1 = InitVal; 470 // If this references a generated Phi in the kernel, get the Phi operand 471 // from the incoming block. 472 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 473 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 474 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 475 476 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 477 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 478 // In the epilog, a map lookup is needed to get the value from the kernel, 479 // or previous epilog block. How is does this depends on if the 480 // instruction is scheduled in the previous block. 481 if (!InKernel) { 482 int StageDiffAdj = 0; 483 if (LoopValStage != -1 && StageScheduled > LoopValStage) 484 StageDiffAdj = StageScheduled - LoopValStage; 485 // Use the loop value defined in the kernel, unless the kernel 486 // contains the last definition of the Phi. 487 if (np == 0 && PrevStage == LastStageNum && 488 (StageScheduled != 0 || LoopValStage != 0) && 489 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 490 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 491 // Use the value defined by the Phi. We add one because we switch 492 // from looking at the loop value to the Phi definition. 493 else if (np > 0 && PrevStage == LastStageNum && 494 VRMap[PrevStage - np + 1].count(Def)) 495 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 496 // Use the loop value defined in the kernel. 497 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 498 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 499 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 500 // Use the value defined by the Phi, unless we're generating the first 501 // epilog and the Phi refers to a Phi in a different stage. 502 else if (VRMap[PrevStage - np].count(Def) && 503 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 504 (LoopValStage == StageScheduled))) 505 PhiOp2 = VRMap[PrevStage - np][Def]; 506 } 507 508 // Check if we can reuse an existing Phi. This occurs when a Phi 509 // references another Phi, and the other Phi is scheduled in an 510 // earlier stage. We can try to reuse an existing Phi up until the last 511 // stage of the current Phi. 512 if (LoopDefIsPhi) { 513 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 514 int LVNumStages = getStagesForPhi(LoopVal); 515 int StageDiff = (StageScheduled - LoopValStage); 516 LVNumStages -= StageDiff; 517 // Make sure the loop value Phi has been processed already. 518 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 519 NewReg = PhiOp2; 520 unsigned ReuseStage = CurStageNum; 521 if (isLoopCarried(*PhiInst)) 522 ReuseStage -= LVNumStages; 523 // Check if the Phi to reuse has been generated yet. If not, then 524 // there is nothing to reuse. 525 if (VRMap[ReuseStage - np].count(LoopVal)) { 526 NewReg = VRMap[ReuseStage - np][LoopVal]; 527 528 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 529 Def, NewReg); 530 // Update the map with the new Phi name. 531 VRMap[CurStageNum - np][Def] = NewReg; 532 PhiOp2 = NewReg; 533 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 534 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 535 536 if (IsLast && np == NumPhis - 1) 537 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 538 continue; 539 } 540 } 541 } 542 if (InKernel && StageDiff > 0 && 543 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 544 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 545 } 546 547 const TargetRegisterClass *RC = MRI.getRegClass(Def); 548 NewReg = MRI.createVirtualRegister(RC); 549 550 MachineInstrBuilder NewPhi = 551 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 552 TII->get(TargetOpcode::PHI), NewReg); 553 NewPhi.addReg(PhiOp1).addMBB(BB1); 554 NewPhi.addReg(PhiOp2).addMBB(BB2); 555 if (np == 0) 556 InstrMap[NewPhi] = &*BBI; 557 558 // We define the Phis after creating the new pipelined code, so 559 // we need to rename the Phi values in scheduled instructions. 560 561 unsigned PrevReg = 0; 562 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 563 PrevReg = VRMap[PrevStage - np][LoopVal]; 564 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 565 NewReg, PrevReg); 566 // If the Phi has been scheduled, use the new name for rewriting. 567 if (VRMap[CurStageNum - np].count(Def)) { 568 unsigned R = VRMap[CurStageNum - np][Def]; 569 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 570 NewReg); 571 } 572 573 // Check if we need to rename any uses that occurs after the loop. The 574 // register to replace depends on whether the Phi is scheduled in the 575 // epilog. 576 if (IsLast && np == NumPhis - 1) 577 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 578 579 // In the kernel, a dependent Phi uses the value from this Phi. 580 if (InKernel) 581 PhiOp2 = NewReg; 582 583 // Update the map with the new Phi name. 584 VRMap[CurStageNum - np][Def] = NewReg; 585 } 586 587 while (NumPhis++ < NumStages) { 588 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 589 NewReg, 0); 590 } 591 592 // Check if we need to rename a Phi that has been eliminated due to 593 // scheduling. 594 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 595 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 596 } 597 } 598 599 /// Generate Phis for the specified block in the generated pipelined code. 600 /// These are new Phis needed because the definition is scheduled after the 601 /// use in the pipelined sequence. 602 void ModuloScheduleExpander::generatePhis( 603 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 604 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 605 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 606 // Compute the stage number that contains the initial Phi value, and 607 // the Phi from the previous stage. 608 unsigned PrologStage = 0; 609 unsigned PrevStage = 0; 610 unsigned StageDiff = CurStageNum - LastStageNum; 611 bool InKernel = (StageDiff == 0); 612 if (InKernel) { 613 PrologStage = LastStageNum - 1; 614 PrevStage = CurStageNum; 615 } else { 616 PrologStage = LastStageNum - StageDiff; 617 PrevStage = LastStageNum + StageDiff - 1; 618 } 619 620 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 621 BBE = BB->instr_end(); 622 BBI != BBE; ++BBI) { 623 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 624 MachineOperand &MO = BBI->getOperand(i); 625 if (!MO.isReg() || !MO.isDef() || 626 !Register::isVirtualRegister(MO.getReg())) 627 continue; 628 629 int StageScheduled = Schedule.getStage(&*BBI); 630 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 631 Register Def = MO.getReg(); 632 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 633 // An instruction scheduled in stage 0 and is used after the loop 634 // requires a phi in the epilog for the last definition from either 635 // the kernel or prolog. 636 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 637 hasUseAfterLoop(Def, BB, MRI)) 638 NumPhis = 1; 639 if (!InKernel && (unsigned)StageScheduled > PrologStage) 640 continue; 641 642 unsigned PhiOp2 = VRMap[PrevStage][Def]; 643 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 644 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 645 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 646 // The number of Phis can't exceed the number of prolog stages. The 647 // prolog stage number is zero based. 648 if (NumPhis > PrologStage + 1 - StageScheduled) 649 NumPhis = PrologStage + 1 - StageScheduled; 650 for (unsigned np = 0; np < NumPhis; ++np) { 651 unsigned PhiOp1 = VRMap[PrologStage][Def]; 652 if (np <= PrologStage) 653 PhiOp1 = VRMap[PrologStage - np][Def]; 654 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 655 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 656 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 657 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 658 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 659 } 660 if (!InKernel) 661 PhiOp2 = VRMap[PrevStage - np][Def]; 662 663 const TargetRegisterClass *RC = MRI.getRegClass(Def); 664 Register NewReg = MRI.createVirtualRegister(RC); 665 666 MachineInstrBuilder NewPhi = 667 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 668 TII->get(TargetOpcode::PHI), NewReg); 669 NewPhi.addReg(PhiOp1).addMBB(BB1); 670 NewPhi.addReg(PhiOp2).addMBB(BB2); 671 if (np == 0) 672 InstrMap[NewPhi] = &*BBI; 673 674 // Rewrite uses and update the map. The actions depend upon whether 675 // we generating code for the kernel or epilog blocks. 676 if (InKernel) { 677 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 678 NewReg); 679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 680 NewReg); 681 682 PhiOp2 = NewReg; 683 VRMap[PrevStage - np - 1][Def] = NewReg; 684 } else { 685 VRMap[CurStageNum - np][Def] = NewReg; 686 if (np == NumPhis - 1) 687 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 688 NewReg); 689 } 690 if (IsLast && np == NumPhis - 1) 691 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 692 } 693 } 694 } 695 } 696 697 /// Remove instructions that generate values with no uses. 698 /// Typically, these are induction variable operations that generate values 699 /// used in the loop itself. A dead instruction has a definition with 700 /// no uses, or uses that occur in the original loop only. 701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 702 MBBVectorTy &EpilogBBs) { 703 // For each epilog block, check that the value defined by each instruction 704 // is used. If not, delete it. 705 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 706 MBE = EpilogBBs.rend(); 707 MBB != MBE; ++MBB) 708 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 709 ME = (*MBB)->instr_rend(); 710 MI != ME;) { 711 // From DeadMachineInstructionElem. Don't delete inline assembly. 712 if (MI->isInlineAsm()) { 713 ++MI; 714 continue; 715 } 716 bool SawStore = false; 717 // Check if it's safe to remove the instruction due to side effects. 718 // We can, and want to, remove Phis here. 719 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 720 ++MI; 721 continue; 722 } 723 bool used = true; 724 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 725 MOE = MI->operands_end(); 726 MOI != MOE; ++MOI) { 727 if (!MOI->isReg() || !MOI->isDef()) 728 continue; 729 Register reg = MOI->getReg(); 730 // Assume physical registers are used, unless they are marked dead. 731 if (Register::isPhysicalRegister(reg)) { 732 used = !MOI->isDead(); 733 if (used) 734 break; 735 continue; 736 } 737 unsigned realUses = 0; 738 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 739 EI = MRI.use_end(); 740 UI != EI; ++UI) { 741 // Check if there are any uses that occur only in the original 742 // loop. If so, that's not a real use. 743 if (UI->getParent()->getParent() != BB) { 744 realUses++; 745 used = true; 746 break; 747 } 748 } 749 if (realUses > 0) 750 break; 751 used = false; 752 } 753 if (!used) { 754 LIS.RemoveMachineInstrFromMaps(*MI); 755 MI++->eraseFromParent(); 756 continue; 757 } 758 ++MI; 759 } 760 // In the kernel block, check if we can remove a Phi that generates a value 761 // used in an instruction removed in the epilog block. 762 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 763 Register reg = MI.getOperand(0).getReg(); 764 if (MRI.use_begin(reg) == MRI.use_end()) { 765 LIS.RemoveMachineInstrFromMaps(MI); 766 MI.eraseFromParent(); 767 } 768 } 769 } 770 771 /// For loop carried definitions, we split the lifetime of a virtual register 772 /// that has uses past the definition in the next iteration. A copy with a new 773 /// virtual register is inserted before the definition, which helps with 774 /// generating a better register assignment. 775 /// 776 /// v1 = phi(a, v2) v1 = phi(a, v2) 777 /// v2 = phi(b, v3) v2 = phi(b, v3) 778 /// v3 = .. v4 = copy v1 779 /// .. = V1 v3 = .. 780 /// .. = v4 781 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 782 MBBVectorTy &EpilogBBs) { 783 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 784 for (auto &PHI : KernelBB->phis()) { 785 Register Def = PHI.getOperand(0).getReg(); 786 // Check for any Phi definition that used as an operand of another Phi 787 // in the same block. 788 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 789 E = MRI.use_instr_end(); 790 I != E; ++I) { 791 if (I->isPHI() && I->getParent() == KernelBB) { 792 // Get the loop carried definition. 793 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 794 if (!LCDef) 795 continue; 796 MachineInstr *MI = MRI.getVRegDef(LCDef); 797 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 798 continue; 799 // Search through the rest of the block looking for uses of the Phi 800 // definition. If one occurs, then split the lifetime. 801 unsigned SplitReg = 0; 802 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 803 KernelBB->instr_end())) 804 if (BBJ.readsRegister(Def)) { 805 // We split the lifetime when we find the first use. 806 if (SplitReg == 0) { 807 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 808 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 809 TII->get(TargetOpcode::COPY), SplitReg) 810 .addReg(Def); 811 } 812 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 813 } 814 if (!SplitReg) 815 continue; 816 // Search through each of the epilog blocks for any uses to be renamed. 817 for (auto &Epilog : EpilogBBs) 818 for (auto &I : *Epilog) 819 if (I.readsRegister(Def)) 820 I.substituteRegister(Def, SplitReg, 0, *TRI); 821 break; 822 } 823 } 824 } 825 } 826 827 /// Remove the incoming block from the Phis in a basic block. 828 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 829 for (MachineInstr &MI : *BB) { 830 if (!MI.isPHI()) 831 break; 832 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 833 if (MI.getOperand(i + 1).getMBB() == Incoming) { 834 MI.RemoveOperand(i + 1); 835 MI.RemoveOperand(i); 836 break; 837 } 838 } 839 } 840 841 /// Create branches from each prolog basic block to the appropriate epilog 842 /// block. These edges are needed if the loop ends before reaching the 843 /// kernel. 844 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 845 MBBVectorTy &PrologBBs, 846 MachineBasicBlock *KernelBB, 847 MBBVectorTy &EpilogBBs, 848 ValueMapTy *VRMap) { 849 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 850 MachineBasicBlock *LastPro = KernelBB; 851 MachineBasicBlock *LastEpi = KernelBB; 852 853 // Start from the blocks connected to the kernel and work "out" 854 // to the first prolog and the last epilog blocks. 855 SmallVector<MachineInstr *, 4> PrevInsts; 856 unsigned MaxIter = PrologBBs.size() - 1; 857 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 858 // Add branches to the prolog that go to the corresponding 859 // epilog, and the fall-thru prolog/kernel block. 860 MachineBasicBlock *Prolog = PrologBBs[j]; 861 MachineBasicBlock *Epilog = EpilogBBs[i]; 862 863 SmallVector<MachineOperand, 4> Cond; 864 Optional<bool> StaticallyGreater = 865 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 866 unsigned numAdded = 0; 867 if (!StaticallyGreater.hasValue()) { 868 Prolog->addSuccessor(Epilog); 869 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 870 } else if (*StaticallyGreater == false) { 871 Prolog->addSuccessor(Epilog); 872 Prolog->removeSuccessor(LastPro); 873 LastEpi->removeSuccessor(Epilog); 874 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 875 removePhis(Epilog, LastEpi); 876 // Remove the blocks that are no longer referenced. 877 if (LastPro != LastEpi) { 878 LastEpi->clear(); 879 LastEpi->eraseFromParent(); 880 } 881 if (LastPro == KernelBB) { 882 LoopInfo->disposed(); 883 NewKernel = nullptr; 884 } 885 LastPro->clear(); 886 LastPro->eraseFromParent(); 887 } else { 888 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 889 removePhis(Epilog, Prolog); 890 } 891 LastPro = Prolog; 892 LastEpi = Epilog; 893 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 894 E = Prolog->instr_rend(); 895 I != E && numAdded > 0; ++I, --numAdded) 896 updateInstruction(&*I, false, j, 0, VRMap); 897 } 898 899 if (NewKernel) { 900 LoopInfo->setPreheader(PrologBBs[MaxIter]); 901 LoopInfo->adjustTripCount(-(MaxIter + 1)); 902 } 903 } 904 905 /// Return true if we can compute the amount the instruction changes 906 /// during each iteration. Set Delta to the amount of the change. 907 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 908 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 909 const MachineOperand *BaseOp; 910 int64_t Offset; 911 bool OffsetIsScalable; 912 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 913 return false; 914 915 // FIXME: This algorithm assumes instructions have fixed-size offsets. 916 if (OffsetIsScalable) 917 return false; 918 919 if (!BaseOp->isReg()) 920 return false; 921 922 Register BaseReg = BaseOp->getReg(); 923 924 MachineRegisterInfo &MRI = MF.getRegInfo(); 925 // Check if there is a Phi. If so, get the definition in the loop. 926 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 927 if (BaseDef && BaseDef->isPHI()) { 928 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 929 BaseDef = MRI.getVRegDef(BaseReg); 930 } 931 if (!BaseDef) 932 return false; 933 934 int D = 0; 935 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 936 return false; 937 938 Delta = D; 939 return true; 940 } 941 942 /// Update the memory operand with a new offset when the pipeliner 943 /// generates a new copy of the instruction that refers to a 944 /// different memory location. 945 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 946 MachineInstr &OldMI, 947 unsigned Num) { 948 if (Num == 0) 949 return; 950 // If the instruction has memory operands, then adjust the offset 951 // when the instruction appears in different stages. 952 if (NewMI.memoperands_empty()) 953 return; 954 SmallVector<MachineMemOperand *, 2> NewMMOs; 955 for (MachineMemOperand *MMO : NewMI.memoperands()) { 956 // TODO: Figure out whether isAtomic is really necessary (see D57601). 957 if (MMO->isVolatile() || MMO->isAtomic() || 958 (MMO->isInvariant() && MMO->isDereferenceable()) || 959 (!MMO->getValue())) { 960 NewMMOs.push_back(MMO); 961 continue; 962 } 963 unsigned Delta; 964 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 965 int64_t AdjOffset = Delta * Num; 966 NewMMOs.push_back( 967 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 968 } else { 969 NewMMOs.push_back( 970 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 971 } 972 } 973 NewMI.setMemRefs(MF, NewMMOs); 974 } 975 976 /// Clone the instruction for the new pipelined loop and update the 977 /// memory operands, if needed. 978 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 979 unsigned CurStageNum, 980 unsigned InstStageNum) { 981 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 982 // Check for tied operands in inline asm instructions. This should be handled 983 // elsewhere, but I'm not sure of the best solution. 984 if (OldMI->isInlineAsm()) 985 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 986 const auto &MO = OldMI->getOperand(i); 987 if (MO.isReg() && MO.isUse()) 988 break; 989 unsigned UseIdx; 990 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 991 NewMI->tieOperands(i, UseIdx); 992 } 993 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 994 return NewMI; 995 } 996 997 /// Clone the instruction for the new pipelined loop. If needed, this 998 /// function updates the instruction using the values saved in the 999 /// InstrChanges structure. 1000 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1001 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1002 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1003 auto It = InstrChanges.find(OldMI); 1004 if (It != InstrChanges.end()) { 1005 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1006 unsigned BasePos, OffsetPos; 1007 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1008 return nullptr; 1009 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1010 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1011 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1012 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1013 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1014 } 1015 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1016 return NewMI; 1017 } 1018 1019 /// Update the machine instruction with new virtual registers. This 1020 /// function may change the defintions and/or uses. 1021 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1022 bool LastDef, 1023 unsigned CurStageNum, 1024 unsigned InstrStageNum, 1025 ValueMapTy *VRMap) { 1026 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1027 MachineOperand &MO = NewMI->getOperand(i); 1028 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1029 continue; 1030 Register reg = MO.getReg(); 1031 if (MO.isDef()) { 1032 // Create a new virtual register for the definition. 1033 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1034 Register NewReg = MRI.createVirtualRegister(RC); 1035 MO.setReg(NewReg); 1036 VRMap[CurStageNum][reg] = NewReg; 1037 if (LastDef) 1038 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1039 } else if (MO.isUse()) { 1040 MachineInstr *Def = MRI.getVRegDef(reg); 1041 // Compute the stage that contains the last definition for instruction. 1042 int DefStageNum = Schedule.getStage(Def); 1043 unsigned StageNum = CurStageNum; 1044 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1045 // Compute the difference in stages between the defintion and the use. 1046 unsigned StageDiff = (InstrStageNum - DefStageNum); 1047 // Make an adjustment to get the last definition. 1048 StageNum -= StageDiff; 1049 } 1050 if (VRMap[StageNum].count(reg)) 1051 MO.setReg(VRMap[StageNum][reg]); 1052 } 1053 } 1054 } 1055 1056 /// Return the instruction in the loop that defines the register. 1057 /// If the definition is a Phi, then follow the Phi operand to 1058 /// the instruction in the loop. 1059 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1060 SmallPtrSet<MachineInstr *, 8> Visited; 1061 MachineInstr *Def = MRI.getVRegDef(Reg); 1062 while (Def->isPHI()) { 1063 if (!Visited.insert(Def).second) 1064 break; 1065 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1066 if (Def->getOperand(i + 1).getMBB() == BB) { 1067 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1068 break; 1069 } 1070 } 1071 return Def; 1072 } 1073 1074 /// Return the new name for the value from the previous stage. 1075 unsigned ModuloScheduleExpander::getPrevMapVal( 1076 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1077 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1078 unsigned PrevVal = 0; 1079 if (StageNum > PhiStage) { 1080 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1081 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1082 // The name is defined in the previous stage. 1083 PrevVal = VRMap[StageNum - 1][LoopVal]; 1084 else if (VRMap[StageNum].count(LoopVal)) 1085 // The previous name is defined in the current stage when the instruction 1086 // order is swapped. 1087 PrevVal = VRMap[StageNum][LoopVal]; 1088 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1089 // The loop value hasn't yet been scheduled. 1090 PrevVal = LoopVal; 1091 else if (StageNum == PhiStage + 1) 1092 // The loop value is another phi, which has not been scheduled. 1093 PrevVal = getInitPhiReg(*LoopInst, BB); 1094 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1095 // The loop value is another phi, which has been scheduled. 1096 PrevVal = 1097 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1098 LoopStage, VRMap, BB); 1099 } 1100 return PrevVal; 1101 } 1102 1103 /// Rewrite the Phi values in the specified block to use the mappings 1104 /// from the initial operand. Once the Phi is scheduled, we switch 1105 /// to using the loop value instead of the Phi value, so those names 1106 /// do not need to be rewritten. 1107 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1108 unsigned StageNum, 1109 ValueMapTy *VRMap, 1110 InstrMapTy &InstrMap) { 1111 for (auto &PHI : BB->phis()) { 1112 unsigned InitVal = 0; 1113 unsigned LoopVal = 0; 1114 getPhiRegs(PHI, BB, InitVal, LoopVal); 1115 Register PhiDef = PHI.getOperand(0).getReg(); 1116 1117 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1118 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1119 unsigned NumPhis = getStagesForPhi(PhiDef); 1120 if (NumPhis > StageNum) 1121 NumPhis = StageNum; 1122 for (unsigned np = 0; np <= NumPhis; ++np) { 1123 unsigned NewVal = 1124 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1125 if (!NewVal) 1126 NewVal = InitVal; 1127 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1128 NewVal); 1129 } 1130 } 1131 } 1132 1133 /// Rewrite a previously scheduled instruction to use the register value 1134 /// from the new instruction. Make sure the instruction occurs in the 1135 /// basic block, and we don't change the uses in the new instruction. 1136 void ModuloScheduleExpander::rewriteScheduledInstr( 1137 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1138 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1139 unsigned PrevReg) { 1140 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1141 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1142 // Rewrite uses that have been scheduled already to use the new 1143 // Phi register. 1144 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1145 EI = MRI.use_end(); 1146 UI != EI;) { 1147 MachineOperand &UseOp = *UI; 1148 MachineInstr *UseMI = UseOp.getParent(); 1149 ++UI; 1150 if (UseMI->getParent() != BB) 1151 continue; 1152 if (UseMI->isPHI()) { 1153 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1154 continue; 1155 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1156 continue; 1157 } 1158 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1159 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1160 MachineInstr *OrigMI = OrigInstr->second; 1161 int StageSched = Schedule.getStage(OrigMI); 1162 int CycleSched = Schedule.getCycle(OrigMI); 1163 unsigned ReplaceReg = 0; 1164 // This is the stage for the scheduled instruction. 1165 if (StagePhi == StageSched && Phi->isPHI()) { 1166 int CyclePhi = Schedule.getCycle(Phi); 1167 if (PrevReg && InProlog) 1168 ReplaceReg = PrevReg; 1169 else if (PrevReg && !isLoopCarried(*Phi) && 1170 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1171 ReplaceReg = PrevReg; 1172 else 1173 ReplaceReg = NewReg; 1174 } 1175 // The scheduled instruction occurs before the scheduled Phi, and the 1176 // Phi is not loop carried. 1177 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1178 ReplaceReg = NewReg; 1179 if (StagePhi > StageSched && Phi->isPHI()) 1180 ReplaceReg = NewReg; 1181 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1182 ReplaceReg = NewReg; 1183 if (ReplaceReg) { 1184 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1185 UseOp.setReg(ReplaceReg); 1186 } 1187 } 1188 } 1189 1190 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1191 if (!Phi.isPHI()) 1192 return false; 1193 int DefCycle = Schedule.getCycle(&Phi); 1194 int DefStage = Schedule.getStage(&Phi); 1195 1196 unsigned InitVal = 0; 1197 unsigned LoopVal = 0; 1198 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1199 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1200 if (!Use || Use->isPHI()) 1201 return true; 1202 int LoopCycle = Schedule.getCycle(Use); 1203 int LoopStage = Schedule.getStage(Use); 1204 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1205 } 1206 1207 //===----------------------------------------------------------------------===// 1208 // PeelingModuloScheduleExpander implementation 1209 //===----------------------------------------------------------------------===// 1210 // This is a reimplementation of ModuloScheduleExpander that works by creating 1211 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1212 //===----------------------------------------------------------------------===// 1213 1214 namespace { 1215 // Remove any dead phis in MBB. Dead phis either have only one block as input 1216 // (in which case they are the identity) or have no uses. 1217 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1218 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1219 bool Changed = true; 1220 while (Changed) { 1221 Changed = false; 1222 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1223 assert(MI.isPHI()); 1224 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1225 if (LIS) 1226 LIS->RemoveMachineInstrFromMaps(MI); 1227 MI.eraseFromParent(); 1228 Changed = true; 1229 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1230 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1231 MRI.getRegClass(MI.getOperand(0).getReg())); 1232 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1233 MI.getOperand(1).getReg()); 1234 if (LIS) 1235 LIS->RemoveMachineInstrFromMaps(MI); 1236 MI.eraseFromParent(); 1237 Changed = true; 1238 } 1239 } 1240 } 1241 } 1242 1243 /// Rewrites the kernel block in-place to adhere to the given schedule. 1244 /// KernelRewriter holds all of the state required to perform the rewriting. 1245 class KernelRewriter { 1246 ModuloSchedule &S; 1247 MachineBasicBlock *BB; 1248 MachineBasicBlock *PreheaderBB, *ExitBB; 1249 MachineRegisterInfo &MRI; 1250 const TargetInstrInfo *TII; 1251 LiveIntervals *LIS; 1252 1253 // Map from register class to canonical undef register for that class. 1254 DenseMap<const TargetRegisterClass *, Register> Undefs; 1255 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1256 // this map is only used when InitReg is non-undef. 1257 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1258 // Map from LoopReg to phi register where the InitReg is undef. 1259 DenseMap<Register, Register> UndefPhis; 1260 1261 // Reg is used by MI. Return the new register MI should use to adhere to the 1262 // schedule. Insert phis as necessary. 1263 Register remapUse(Register Reg, MachineInstr &MI); 1264 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1265 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1266 // or will be chosen so as to share another phi. 1267 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1268 const TargetRegisterClass *RC = nullptr); 1269 // Create an undef register of the given register class. 1270 Register undef(const TargetRegisterClass *RC); 1271 1272 public: 1273 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1274 LiveIntervals *LIS = nullptr); 1275 void rewrite(); 1276 }; 1277 } // namespace 1278 1279 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1280 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1281 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1282 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1283 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1284 PreheaderBB = *BB->pred_begin(); 1285 if (PreheaderBB == BB) 1286 PreheaderBB = *std::next(BB->pred_begin()); 1287 } 1288 1289 void KernelRewriter::rewrite() { 1290 // Rearrange the loop to be in schedule order. Note that the schedule may 1291 // contain instructions that are not owned by the loop block (InstrChanges and 1292 // friends), so we gracefully handle unowned instructions and delete any 1293 // instructions that weren't in the schedule. 1294 auto InsertPt = BB->getFirstTerminator(); 1295 MachineInstr *FirstMI = nullptr; 1296 for (MachineInstr *MI : S.getInstructions()) { 1297 if (MI->isPHI()) 1298 continue; 1299 if (MI->getParent()) 1300 MI->removeFromParent(); 1301 BB->insert(InsertPt, MI); 1302 if (!FirstMI) 1303 FirstMI = MI; 1304 } 1305 assert(FirstMI && "Failed to find first MI in schedule"); 1306 1307 // At this point all of the scheduled instructions are between FirstMI 1308 // and the end of the block. Kill from the first non-phi to FirstMI. 1309 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1310 if (LIS) 1311 LIS->RemoveMachineInstrFromMaps(*I); 1312 (I++)->eraseFromParent(); 1313 } 1314 1315 // Now remap every instruction in the loop. 1316 for (MachineInstr &MI : *BB) { 1317 if (MI.isPHI() || MI.isTerminator()) 1318 continue; 1319 for (MachineOperand &MO : MI.uses()) { 1320 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1321 continue; 1322 Register Reg = remapUse(MO.getReg(), MI); 1323 MO.setReg(Reg); 1324 } 1325 } 1326 EliminateDeadPhis(BB, MRI, LIS); 1327 1328 // Ensure a phi exists for all instructions that are either referenced by 1329 // an illegal phi or by an instruction outside the loop. This allows us to 1330 // treat remaps of these values the same as "normal" values that come from 1331 // loop-carried phis. 1332 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1333 if (MI->isPHI()) { 1334 Register R = MI->getOperand(0).getReg(); 1335 phi(R); 1336 continue; 1337 } 1338 1339 for (MachineOperand &Def : MI->defs()) { 1340 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1341 if (MI.getParent() != BB) { 1342 phi(Def.getReg()); 1343 break; 1344 } 1345 } 1346 } 1347 } 1348 } 1349 1350 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1351 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1352 if (!Producer) 1353 return Reg; 1354 1355 int ConsumerStage = S.getStage(&MI); 1356 if (!Producer->isPHI()) { 1357 // Non-phi producers are simple to remap. Insert as many phis as the 1358 // difference between the consumer and producer stages. 1359 if (Producer->getParent() != BB) 1360 // Producer was not inside the loop. Use the register as-is. 1361 return Reg; 1362 int ProducerStage = S.getStage(Producer); 1363 assert(ConsumerStage != -1 && 1364 "In-loop consumer should always be scheduled!"); 1365 assert(ConsumerStage >= ProducerStage); 1366 unsigned StageDiff = ConsumerStage - ProducerStage; 1367 1368 for (unsigned I = 0; I < StageDiff; ++I) 1369 Reg = phi(Reg); 1370 return Reg; 1371 } 1372 1373 // First, dive through the phi chain to find the defaults for the generated 1374 // phis. 1375 SmallVector<Optional<Register>, 4> Defaults; 1376 Register LoopReg = Reg; 1377 auto LoopProducer = Producer; 1378 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1379 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1380 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1381 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1382 assert(LoopProducer); 1383 } 1384 int LoopProducerStage = S.getStage(LoopProducer); 1385 1386 Optional<Register> IllegalPhiDefault; 1387 1388 if (LoopProducerStage == -1) { 1389 // Do nothing. 1390 } else if (LoopProducerStage > ConsumerStage) { 1391 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1392 // In addition, Consumer's cycle must be scheduled after Producer in the 1393 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1394 // functions. 1395 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1396 int LoopProducerCycle = S.getCycle(LoopProducer); 1397 int ConsumerCycle = S.getCycle(&MI); 1398 #endif 1399 assert(LoopProducerCycle <= ConsumerCycle); 1400 assert(LoopProducerStage == ConsumerStage + 1); 1401 // Peel off the first phi from Defaults and insert a phi between producer 1402 // and consumer. This phi will not be at the front of the block so we 1403 // consider it illegal. It will only exist during the rewrite process; it 1404 // needs to exist while we peel off prologs because these could take the 1405 // default value. After that we can replace all uses with the loop producer 1406 // value. 1407 IllegalPhiDefault = Defaults.front(); 1408 Defaults.erase(Defaults.begin()); 1409 } else { 1410 assert(ConsumerStage >= LoopProducerStage); 1411 int StageDiff = ConsumerStage - LoopProducerStage; 1412 if (StageDiff > 0) { 1413 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1414 << " to " << (Defaults.size() + StageDiff) << "\n"); 1415 // If we need more phis than we have defaults for, pad out with undefs for 1416 // the earliest phis, which are at the end of the defaults chain (the 1417 // chain is in reverse order). 1418 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1419 ? Optional<Register>() 1420 : Defaults.back()); 1421 } 1422 } 1423 1424 // Now we know the number of stages to jump back, insert the phi chain. 1425 auto DefaultI = Defaults.rbegin(); 1426 while (DefaultI != Defaults.rend()) 1427 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1428 1429 if (IllegalPhiDefault.hasValue()) { 1430 // The consumer optionally consumes LoopProducer in the same iteration 1431 // (because the producer is scheduled at an earlier cycle than the consumer) 1432 // or the initial value. To facilitate this we create an illegal block here 1433 // by embedding a phi in the middle of the block. We will fix this up 1434 // immediately prior to pruning. 1435 auto RC = MRI.getRegClass(Reg); 1436 Register R = MRI.createVirtualRegister(RC); 1437 MachineInstr *IllegalPhi = 1438 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1439 .addReg(IllegalPhiDefault.getValue()) 1440 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1441 .addReg(LoopReg) 1442 .addMBB(BB); // Block choice is arbitrary and has no effect. 1443 // Illegal phi should belong to the producer stage so that it can be 1444 // filtered correctly during peeling. 1445 S.setStage(IllegalPhi, LoopProducerStage); 1446 return R; 1447 } 1448 1449 return LoopReg; 1450 } 1451 1452 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1453 const TargetRegisterClass *RC) { 1454 // If the init register is not undef, try and find an existing phi. 1455 if (InitReg.hasValue()) { 1456 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1457 if (I != Phis.end()) 1458 return I->second; 1459 } else { 1460 for (auto &KV : Phis) { 1461 if (KV.first.first == LoopReg) 1462 return KV.second; 1463 } 1464 } 1465 1466 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1467 // find a phi that takes undef as input. 1468 auto I = UndefPhis.find(LoopReg); 1469 if (I != UndefPhis.end()) { 1470 Register R = I->second; 1471 if (!InitReg.hasValue()) 1472 // Found a phi taking undef as input, and this input is undef so return 1473 // without any more changes. 1474 return R; 1475 // Found a phi taking undef as input, so rewrite it to take InitReg. 1476 MachineInstr *MI = MRI.getVRegDef(R); 1477 MI->getOperand(1).setReg(InitReg.getValue()); 1478 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1479 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1480 UndefPhis.erase(I); 1481 return R; 1482 } 1483 1484 // Failed to find any existing phi to reuse, so create a new one. 1485 if (!RC) 1486 RC = MRI.getRegClass(LoopReg); 1487 Register R = MRI.createVirtualRegister(RC); 1488 if (InitReg.hasValue()) 1489 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1490 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1491 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1492 .addMBB(PreheaderBB) 1493 .addReg(LoopReg) 1494 .addMBB(BB); 1495 if (!InitReg.hasValue()) 1496 UndefPhis[LoopReg] = R; 1497 else 1498 Phis[{LoopReg, *InitReg}] = R; 1499 return R; 1500 } 1501 1502 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1503 Register &R = Undefs[RC]; 1504 if (R == 0) { 1505 // Create an IMPLICIT_DEF that defines this register if we need it. 1506 // All uses of this should be removed by the time we have finished unrolling 1507 // prologs and epilogs. 1508 R = MRI.createVirtualRegister(RC); 1509 auto *InsertBB = &PreheaderBB->getParent()->front(); 1510 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1511 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1512 } 1513 return R; 1514 } 1515 1516 namespace { 1517 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1518 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1519 /// through and defaults for these phis. 1520 class KernelOperandInfo { 1521 MachineBasicBlock *BB; 1522 MachineRegisterInfo &MRI; 1523 SmallVector<Register, 4> PhiDefaults; 1524 MachineOperand *Source; 1525 MachineOperand *Target; 1526 1527 public: 1528 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1529 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1530 : MRI(MRI) { 1531 Source = MO; 1532 BB = MO->getParent()->getParent(); 1533 while (isRegInLoop(MO)) { 1534 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1535 if (MI->isFullCopy()) { 1536 MO = &MI->getOperand(1); 1537 continue; 1538 } 1539 if (!MI->isPHI()) 1540 break; 1541 // If this is an illegal phi, don't count it in distance. 1542 if (IllegalPhis.count(MI)) { 1543 MO = &MI->getOperand(3); 1544 continue; 1545 } 1546 1547 Register Default = getInitPhiReg(*MI, BB); 1548 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1549 : &MI->getOperand(3); 1550 PhiDefaults.push_back(Default); 1551 } 1552 Target = MO; 1553 } 1554 1555 bool operator==(const KernelOperandInfo &Other) const { 1556 return PhiDefaults.size() == Other.PhiDefaults.size(); 1557 } 1558 1559 void print(raw_ostream &OS) const { 1560 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1561 << *Source->getParent(); 1562 } 1563 1564 private: 1565 bool isRegInLoop(MachineOperand *MO) { 1566 return MO->isReg() && MO->getReg().isVirtual() && 1567 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1568 } 1569 }; 1570 } // namespace 1571 1572 MachineBasicBlock * 1573 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1574 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1575 if (LPD == LPD_Front) 1576 PeeledFront.push_back(NewBB); 1577 else 1578 PeeledBack.push_front(NewBB); 1579 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1580 ++I, ++NI) { 1581 CanonicalMIs[&*I] = &*I; 1582 CanonicalMIs[&*NI] = &*I; 1583 BlockMIs[{NewBB, &*I}] = &*NI; 1584 BlockMIs[{BB, &*I}] = &*I; 1585 } 1586 return NewBB; 1587 } 1588 1589 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1590 int MinStage) { 1591 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1592 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1593 MachineInstr *MI = &*I++; 1594 int Stage = getStage(MI); 1595 if (Stage == -1 || Stage >= MinStage) 1596 continue; 1597 1598 for (MachineOperand &DefMO : MI->defs()) { 1599 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1600 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1601 // Only PHIs can use values from this block by construction. 1602 // Match with the equivalent PHI in B. 1603 assert(UseMI.isPHI()); 1604 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1605 MI->getParent()); 1606 Subs.emplace_back(&UseMI, Reg); 1607 } 1608 for (auto &Sub : Subs) 1609 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1610 *MRI.getTargetRegisterInfo()); 1611 } 1612 if (LIS) 1613 LIS->RemoveMachineInstrFromMaps(*MI); 1614 MI->eraseFromParent(); 1615 } 1616 } 1617 1618 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1619 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1620 auto InsertPt = DestBB->getFirstNonPHI(); 1621 DenseMap<Register, Register> Remaps; 1622 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { 1623 MachineInstr *MI = &*I++; 1624 if (MI->isPHI()) { 1625 // This is an illegal PHI. If we move any instructions using an illegal 1626 // PHI, we need to create a legal Phi. 1627 if (getStage(MI) != Stage) { 1628 // The legal Phi is not necessary if the illegal phi's stage 1629 // is being moved. 1630 Register PhiR = MI->getOperand(0).getReg(); 1631 auto RC = MRI.getRegClass(PhiR); 1632 Register NR = MRI.createVirtualRegister(RC); 1633 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1634 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1635 .addReg(PhiR) 1636 .addMBB(SourceBB); 1637 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; 1638 CanonicalMIs[NI] = CanonicalMIs[MI]; 1639 Remaps[PhiR] = NR; 1640 } 1641 } 1642 if (getStage(MI) != Stage) 1643 continue; 1644 MI->removeFromParent(); 1645 DestBB->insert(InsertPt, MI); 1646 auto *KernelMI = CanonicalMIs[MI]; 1647 BlockMIs[{DestBB, KernelMI}] = MI; 1648 BlockMIs.erase({SourceBB, KernelMI}); 1649 } 1650 SmallVector<MachineInstr *, 4> PhiToDelete; 1651 for (MachineInstr &MI : DestBB->phis()) { 1652 assert(MI.getNumOperands() == 3); 1653 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1654 // If the instruction referenced by the phi is moved inside the block 1655 // we don't need the phi anymore. 1656 if (getStage(Def) == Stage) { 1657 Register PhiReg = MI.getOperand(0).getReg(); 1658 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1659 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1660 MI.getOperand(0).setReg(PhiReg); 1661 PhiToDelete.push_back(&MI); 1662 } 1663 } 1664 for (auto *P : PhiToDelete) 1665 P->eraseFromParent(); 1666 InsertPt = DestBB->getFirstNonPHI(); 1667 // Helper to clone Phi instructions into the destination block. We clone Phi 1668 // greedily to avoid combinatorial explosion of Phi instructions. 1669 auto clonePhi = [&](MachineInstr *Phi) { 1670 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1671 DestBB->insert(InsertPt, NewMI); 1672 Register OrigR = Phi->getOperand(0).getReg(); 1673 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1674 NewMI->getOperand(0).setReg(R); 1675 NewMI->getOperand(1).setReg(OrigR); 1676 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1677 Remaps[OrigR] = R; 1678 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1679 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1680 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1681 return R; 1682 }; 1683 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1684 for (MachineOperand &MO : I->uses()) { 1685 if (!MO.isReg()) 1686 continue; 1687 if (Remaps.count(MO.getReg())) 1688 MO.setReg(Remaps[MO.getReg()]); 1689 else { 1690 // If we are using a phi from the source block we need to add a new phi 1691 // pointing to the old one. 1692 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1693 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1694 Register R = clonePhi(Use); 1695 MO.setReg(R); 1696 } 1697 } 1698 } 1699 } 1700 } 1701 1702 Register 1703 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1704 MachineInstr *Phi) { 1705 unsigned distance = PhiNodeLoopIteration[Phi]; 1706 MachineInstr *CanonicalUse = CanonicalPhi; 1707 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1708 for (unsigned I = 0; I < distance; ++I) { 1709 assert(CanonicalUse->isPHI()); 1710 assert(CanonicalUse->getNumOperands() == 5); 1711 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1712 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1713 std::swap(LoopRegIdx, InitRegIdx); 1714 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1715 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1716 } 1717 return CanonicalUseReg; 1718 } 1719 1720 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1721 BitVector LS(Schedule.getNumStages(), true); 1722 BitVector AS(Schedule.getNumStages(), true); 1723 LiveStages[BB] = LS; 1724 AvailableStages[BB] = AS; 1725 1726 // Peel out the prologs. 1727 LS.reset(); 1728 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1729 LS[I] = 1; 1730 Prologs.push_back(peelKernel(LPD_Front)); 1731 LiveStages[Prologs.back()] = LS; 1732 AvailableStages[Prologs.back()] = LS; 1733 } 1734 1735 // Create a block that will end up as the new loop exiting block (dominated by 1736 // all prologs and epilogs). It will only contain PHIs, in the same order as 1737 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1738 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1739 // property that any value deffed in BB but used outside of BB is used by a 1740 // PHI in the exiting block. 1741 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1742 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1743 // Push out the epilogs, again in reverse order. 1744 // We can't assume anything about the minumum loop trip count at this point, 1745 // so emit a fairly complex epilog. 1746 1747 // We first peel number of stages minus one epilogue. Then we remove dead 1748 // stages and reorder instructions based on their stage. If we have 3 stages 1749 // we generate first: 1750 // E0[3, 2, 1] 1751 // E1[3', 2'] 1752 // E2[3''] 1753 // And then we move instructions based on their stages to have: 1754 // E0[3] 1755 // E1[2, 3'] 1756 // E2[1, 2', 3''] 1757 // The transformation is legal because we only move instructions past 1758 // instructions of a previous loop iteration. 1759 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1760 Epilogs.push_back(peelKernel(LPD_Back)); 1761 MachineBasicBlock *B = Epilogs.back(); 1762 filterInstructions(B, Schedule.getNumStages() - I); 1763 // Keep track at which iteration each phi belongs to. We need it to know 1764 // what version of the variable to use during prologue/epilogue stitching. 1765 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1766 for (MachineInstr &Phi : B->phis()) 1767 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1768 } 1769 for (size_t I = 0; I < Epilogs.size(); I++) { 1770 LS.reset(); 1771 for (size_t J = I; J < Epilogs.size(); J++) { 1772 int Iteration = J; 1773 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1774 // Move stage one block at a time so that Phi nodes are updated correctly. 1775 for (size_t K = Iteration; K > I; K--) 1776 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1777 LS[Stage] = 1; 1778 } 1779 LiveStages[Epilogs[I]] = LS; 1780 AvailableStages[Epilogs[I]] = AS; 1781 } 1782 1783 // Now we've defined all the prolog and epilog blocks as a fallthrough 1784 // sequence, add the edges that will be followed if the loop trip count is 1785 // lower than the number of stages (connecting prologs directly with epilogs). 1786 auto PI = Prologs.begin(); 1787 auto EI = Epilogs.begin(); 1788 assert(Prologs.size() == Epilogs.size()); 1789 for (; PI != Prologs.end(); ++PI, ++EI) { 1790 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1791 (*PI)->addSuccessor(*EI); 1792 for (MachineInstr &MI : (*EI)->phis()) { 1793 Register Reg = MI.getOperand(1).getReg(); 1794 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1795 if (Use && Use->getParent() == Pred) { 1796 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1797 if (CanonicalUse->isPHI()) { 1798 // If the use comes from a phi we need to skip as many phi as the 1799 // distance between the epilogue and the kernel. Trace through the phi 1800 // chain to find the right value. 1801 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1802 } 1803 Reg = getEquivalentRegisterIn(Reg, *PI); 1804 } 1805 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1806 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1807 } 1808 } 1809 1810 // Create a list of all blocks in order. 1811 SmallVector<MachineBasicBlock *, 8> Blocks; 1812 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1813 Blocks.push_back(BB); 1814 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1815 1816 // Iterate in reverse order over all instructions, remapping as we go. 1817 for (MachineBasicBlock *B : reverse(Blocks)) { 1818 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1819 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1820 MachineInstr *MI = &*I++; 1821 rewriteUsesOf(MI); 1822 } 1823 } 1824 for (auto *MI : IllegalPhisToDelete) { 1825 if (LIS) 1826 LIS->RemoveMachineInstrFromMaps(*MI); 1827 MI->eraseFromParent(); 1828 } 1829 IllegalPhisToDelete.clear(); 1830 1831 // Now all remapping has been done, we're free to optimize the generated code. 1832 for (MachineBasicBlock *B : reverse(Blocks)) 1833 EliminateDeadPhis(B, MRI, LIS); 1834 EliminateDeadPhis(ExitingBB, MRI, LIS); 1835 } 1836 1837 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1838 MachineFunction &MF = *BB->getParent(); 1839 MachineBasicBlock *Exit = *BB->succ_begin(); 1840 if (Exit == BB) 1841 Exit = *std::next(BB->succ_begin()); 1842 1843 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1844 MF.insert(std::next(BB->getIterator()), NewBB); 1845 1846 // Clone all phis in BB into NewBB and rewrite. 1847 for (MachineInstr &MI : BB->phis()) { 1848 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1849 Register OldR = MI.getOperand(3).getReg(); 1850 Register R = MRI.createVirtualRegister(RC); 1851 SmallVector<MachineInstr *, 4> Uses; 1852 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1853 if (Use.getParent() != BB) 1854 Uses.push_back(&Use); 1855 for (MachineInstr *Use : Uses) 1856 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1857 *MRI.getTargetRegisterInfo()); 1858 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1859 .addReg(OldR) 1860 .addMBB(BB); 1861 BlockMIs[{NewBB, &MI}] = NI; 1862 CanonicalMIs[NI] = &MI; 1863 } 1864 BB->replaceSuccessor(Exit, NewBB); 1865 Exit->replacePhiUsesWith(BB, NewBB); 1866 NewBB->addSuccessor(Exit); 1867 1868 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1869 SmallVector<MachineOperand, 4> Cond; 1870 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1871 (void)CanAnalyzeBr; 1872 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1873 TII->removeBranch(*BB); 1874 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1875 Cond, DebugLoc()); 1876 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1877 return NewBB; 1878 } 1879 1880 Register 1881 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1882 MachineBasicBlock *BB) { 1883 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1884 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1885 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1886 } 1887 1888 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1889 if (MI->isPHI()) { 1890 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1891 // and it is produced by this block. 1892 Register PhiR = MI->getOperand(0).getReg(); 1893 Register R = MI->getOperand(3).getReg(); 1894 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1895 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1896 R = MI->getOperand(1).getReg(); 1897 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1898 MRI.replaceRegWith(PhiR, R); 1899 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1900 // later to figure out how to remap registers. 1901 MI->getOperand(0).setReg(PhiR); 1902 IllegalPhisToDelete.push_back(MI); 1903 return; 1904 } 1905 1906 int Stage = getStage(MI); 1907 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1908 LiveStages[MI->getParent()].test(Stage)) 1909 // Instruction is live, no rewriting to do. 1910 return; 1911 1912 for (MachineOperand &DefMO : MI->defs()) { 1913 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1914 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1915 // Only PHIs can use values from this block by construction. 1916 // Match with the equivalent PHI in B. 1917 assert(UseMI.isPHI()); 1918 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1919 MI->getParent()); 1920 Subs.emplace_back(&UseMI, Reg); 1921 } 1922 for (auto &Sub : Subs) 1923 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1924 *MRI.getTargetRegisterInfo()); 1925 } 1926 if (LIS) 1927 LIS->RemoveMachineInstrFromMaps(*MI); 1928 MI->eraseFromParent(); 1929 } 1930 1931 void PeelingModuloScheduleExpander::fixupBranches() { 1932 // Work outwards from the kernel. 1933 bool KernelDisposed = false; 1934 int TC = Schedule.getNumStages() - 1; 1935 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1936 ++PI, ++EI, --TC) { 1937 MachineBasicBlock *Prolog = *PI; 1938 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1939 MachineBasicBlock *Epilog = *EI; 1940 SmallVector<MachineOperand, 4> Cond; 1941 TII->removeBranch(*Prolog); 1942 Optional<bool> StaticallyGreater = 1943 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1944 if (!StaticallyGreater.hasValue()) { 1945 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1946 // Dynamically branch based on Cond. 1947 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1948 } else if (*StaticallyGreater == false) { 1949 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1950 // Prolog never falls through; branch to epilog and orphan interior 1951 // blocks. Leave it to unreachable-block-elim to clean up. 1952 Prolog->removeSuccessor(Fallthrough); 1953 for (MachineInstr &P : Fallthrough->phis()) { 1954 P.RemoveOperand(2); 1955 P.RemoveOperand(1); 1956 } 1957 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1958 KernelDisposed = true; 1959 } else { 1960 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1961 // Prolog always falls through; remove incoming values in epilog. 1962 Prolog->removeSuccessor(Epilog); 1963 for (MachineInstr &P : Epilog->phis()) { 1964 P.RemoveOperand(4); 1965 P.RemoveOperand(3); 1966 } 1967 } 1968 } 1969 1970 if (!KernelDisposed) { 1971 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1972 LoopInfo->setPreheader(Prologs.back()); 1973 } else { 1974 LoopInfo->disposed(); 1975 } 1976 } 1977 1978 void PeelingModuloScheduleExpander::rewriteKernel() { 1979 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1980 KR.rewrite(); 1981 } 1982 1983 void PeelingModuloScheduleExpander::expand() { 1984 BB = Schedule.getLoop()->getTopBlock(); 1985 Preheader = Schedule.getLoop()->getLoopPreheader(); 1986 LLVM_DEBUG(Schedule.dump()); 1987 LoopInfo = TII->analyzeLoopForPipelining(BB); 1988 assert(LoopInfo); 1989 1990 rewriteKernel(); 1991 peelPrologAndEpilogs(); 1992 fixupBranches(); 1993 } 1994 1995 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1996 BB = Schedule.getLoop()->getTopBlock(); 1997 Preheader = Schedule.getLoop()->getLoopPreheader(); 1998 1999 // Dump the schedule before we invalidate and remap all its instructions. 2000 // Stash it in a string so we can print it if we found an error. 2001 std::string ScheduleDump; 2002 raw_string_ostream OS(ScheduleDump); 2003 Schedule.print(OS); 2004 OS.flush(); 2005 2006 // First, run the normal ModuleScheduleExpander. We don't support any 2007 // InstrChanges. 2008 assert(LIS && "Requires LiveIntervals!"); 2009 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2010 ModuloScheduleExpander::InstrChangesTy()); 2011 MSE.expand(); 2012 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2013 if (!ExpandedKernel) { 2014 // The expander optimized away the kernel. We can't do any useful checking. 2015 MSE.cleanup(); 2016 return; 2017 } 2018 // Before running the KernelRewriter, re-add BB into the CFG. 2019 Preheader->addSuccessor(BB); 2020 2021 // Now run the new expansion algorithm. 2022 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2023 KR.rewrite(); 2024 peelPrologAndEpilogs(); 2025 2026 // Collect all illegal phis that the new algorithm created. We'll give these 2027 // to KernelOperandInfo. 2028 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2029 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2030 if (NI->isPHI()) 2031 IllegalPhis.insert(&*NI); 2032 } 2033 2034 // Co-iterate across both kernels. We expect them to be identical apart from 2035 // phis and full COPYs (we look through both). 2036 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2037 auto OI = ExpandedKernel->begin(); 2038 auto NI = BB->begin(); 2039 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2040 while (OI->isPHI() || OI->isFullCopy()) 2041 ++OI; 2042 while (NI->isPHI() || NI->isFullCopy()) 2043 ++NI; 2044 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2045 // Analyze every operand separately. 2046 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2047 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2048 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2049 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2050 } 2051 2052 bool Failed = false; 2053 for (auto &OldAndNew : KOIs) { 2054 if (OldAndNew.first == OldAndNew.second) 2055 continue; 2056 Failed = true; 2057 errs() << "Modulo kernel validation error: [\n"; 2058 errs() << " [golden] "; 2059 OldAndNew.first.print(errs()); 2060 errs() << " "; 2061 OldAndNew.second.print(errs()); 2062 errs() << "]\n"; 2063 } 2064 2065 if (Failed) { 2066 errs() << "Golden reference kernel:\n"; 2067 ExpandedKernel->print(errs()); 2068 errs() << "New kernel:\n"; 2069 BB->print(errs()); 2070 errs() << ScheduleDump; 2071 report_fatal_error( 2072 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2073 } 2074 2075 // Cleanup by removing BB from the CFG again as the original 2076 // ModuloScheduleExpander intended. 2077 Preheader->removeSuccessor(BB); 2078 MSE.cleanup(); 2079 } 2080 2081 //===----------------------------------------------------------------------===// 2082 // ModuloScheduleTestPass implementation 2083 //===----------------------------------------------------------------------===// 2084 // This pass constructs a ModuloSchedule from its module and runs 2085 // ModuloScheduleExpander. 2086 // 2087 // The module is expected to contain a single-block analyzable loop. 2088 // The total order of instructions is taken from the loop as-is. 2089 // Instructions are expected to be annotated with a PostInstrSymbol. 2090 // This PostInstrSymbol must have the following format: 2091 // "Stage=%d Cycle=%d". 2092 //===----------------------------------------------------------------------===// 2093 2094 namespace { 2095 class ModuloScheduleTest : public MachineFunctionPass { 2096 public: 2097 static char ID; 2098 2099 ModuloScheduleTest() : MachineFunctionPass(ID) { 2100 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2101 } 2102 2103 bool runOnMachineFunction(MachineFunction &MF) override; 2104 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2105 2106 void getAnalysisUsage(AnalysisUsage &AU) const override { 2107 AU.addRequired<MachineLoopInfo>(); 2108 AU.addRequired<LiveIntervals>(); 2109 MachineFunctionPass::getAnalysisUsage(AU); 2110 } 2111 }; 2112 } // namespace 2113 2114 char ModuloScheduleTest::ID = 0; 2115 2116 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2117 "Modulo Schedule test pass", false, false) 2118 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2119 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2120 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2121 "Modulo Schedule test pass", false, false) 2122 2123 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2124 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2125 for (auto *L : MLI) { 2126 if (L->getTopBlock() != L->getBottomBlock()) 2127 continue; 2128 runOnLoop(MF, *L); 2129 return false; 2130 } 2131 return false; 2132 } 2133 2134 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2135 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2136 std::pair<StringRef, StringRef> StageTokenAndValue = 2137 getToken(StageAndCycle.first, "-"); 2138 std::pair<StringRef, StringRef> CycleTokenAndValue = 2139 getToken(StageAndCycle.second, "-"); 2140 if (StageTokenAndValue.first != "Stage" || 2141 CycleTokenAndValue.first != "_Cycle") { 2142 llvm_unreachable( 2143 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2144 return; 2145 } 2146 2147 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2148 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2149 2150 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2151 } 2152 2153 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2154 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2155 MachineBasicBlock *BB = L.getTopBlock(); 2156 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2157 2158 DenseMap<MachineInstr *, int> Cycle, Stage; 2159 std::vector<MachineInstr *> Instrs; 2160 for (MachineInstr &MI : *BB) { 2161 if (MI.isTerminator()) 2162 continue; 2163 Instrs.push_back(&MI); 2164 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2165 dbgs() << "Parsing post-instr symbol for " << MI; 2166 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2167 } 2168 } 2169 2170 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2171 std::move(Stage)); 2172 ModuloScheduleExpander MSE( 2173 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2174 MSE.expand(); 2175 MSE.cleanup(); 2176 } 2177 2178 //===----------------------------------------------------------------------===// 2179 // ModuloScheduleTestAnnotater implementation 2180 //===----------------------------------------------------------------------===// 2181 2182 void ModuloScheduleTestAnnotater::annotate() { 2183 for (MachineInstr *MI : S.getInstructions()) { 2184 SmallVector<char, 16> SV; 2185 raw_svector_ostream OS(SV); 2186 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2187 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2188 MI->setPostInstrSymbol(MF, Sym); 2189 } 2190 } 2191