1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21
22 #define DEBUG_TYPE "pipeliner"
23 using namespace llvm;
24
print(raw_ostream & OS)25 void ModuloSchedule::print(raw_ostream &OS) {
26 for (MachineInstr *MI : ScheduledInstrs)
27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28 }
29
30 //===----------------------------------------------------------------------===//
31 // ModuloScheduleExpander implementation
32 //===----------------------------------------------------------------------===//
33
34 /// Return the register values for the operands of a Phi instruction.
35 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37 unsigned &InitVal, unsigned &LoopVal) {
38 assert(Phi.isPHI() && "Expecting a Phi.");
39
40 InitVal = 0;
41 LoopVal = 0;
42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43 if (Phi.getOperand(i + 1).getMBB() != Loop)
44 InitVal = Phi.getOperand(i).getReg();
45 else
46 LoopVal = Phi.getOperand(i).getReg();
47
48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49 }
50
51 /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55 return Phi.getOperand(i).getReg();
56 return 0;
57 }
58
59 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63 return Phi.getOperand(i).getReg();
64 return 0;
65 }
66
expand()67 void ModuloScheduleExpander::expand() {
68 BB = Schedule.getLoop()->getTopBlock();
69 Preheader = *BB->pred_begin();
70 if (Preheader == BB)
71 Preheader = *std::next(BB->pred_begin());
72
73 // Iterate over the definitions in each instruction, and compute the
74 // stage difference for each use. Keep the maximum value.
75 for (MachineInstr *MI : Schedule.getInstructions()) {
76 int DefStage = Schedule.getStage(MI);
77 for (const MachineOperand &Op : MI->operands()) {
78 if (!Op.isReg() || !Op.isDef())
79 continue;
80
81 Register Reg = Op.getReg();
82 unsigned MaxDiff = 0;
83 bool PhiIsSwapped = false;
84 for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
85 MachineInstr *UseMI = UseOp.getParent();
86 int UseStage = Schedule.getStage(UseMI);
87 unsigned Diff = 0;
88 if (UseStage != -1 && UseStage >= DefStage)
89 Diff = UseStage - DefStage;
90 if (MI->isPHI()) {
91 if (isLoopCarried(*MI))
92 ++Diff;
93 else
94 PhiIsSwapped = true;
95 }
96 MaxDiff = std::max(Diff, MaxDiff);
97 }
98 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
99 }
100 }
101
102 generatePipelinedLoop();
103 }
104
generatePipelinedLoop()105 void ModuloScheduleExpander::generatePipelinedLoop() {
106 LoopInfo = TII->analyzeLoopForPipelining(BB);
107 assert(LoopInfo && "Must be able to analyze loop!");
108
109 // Create a new basic block for the kernel and add it to the CFG.
110 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
111
112 unsigned MaxStageCount = Schedule.getNumStages() - 1;
113
114 // Remember the registers that are used in different stages. The index is
115 // the iteration, or stage, that the instruction is scheduled in. This is
116 // a map between register names in the original block and the names created
117 // in each stage of the pipelined loop.
118 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
119 InstrMapTy InstrMap;
120
121 SmallVector<MachineBasicBlock *, 4> PrologBBs;
122
123 // Generate the prolog instructions that set up the pipeline.
124 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
125 MF.insert(BB->getIterator(), KernelBB);
126
127 // Rearrange the instructions to generate the new, pipelined loop,
128 // and update register names as needed.
129 for (MachineInstr *CI : Schedule.getInstructions()) {
130 if (CI->isPHI())
131 continue;
132 unsigned StageNum = Schedule.getStage(CI);
133 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
134 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
135 KernelBB->push_back(NewMI);
136 InstrMap[NewMI] = CI;
137 }
138
139 // Copy any terminator instructions to the new kernel, and update
140 // names as needed.
141 for (MachineInstr &MI : BB->terminators()) {
142 MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
143 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
144 KernelBB->push_back(NewMI);
145 InstrMap[NewMI] = &MI;
146 }
147
148 NewKernel = KernelBB;
149 KernelBB->transferSuccessors(BB);
150 KernelBB->replaceSuccessor(BB, KernelBB);
151
152 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
153 InstrMap, MaxStageCount, MaxStageCount, false);
154 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
155 MaxStageCount, MaxStageCount, false);
156
157 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
158
159 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
160 // Generate the epilog instructions to complete the pipeline.
161 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, EpilogBBs, PrologBBs);
162
163 // We need this step because the register allocation doesn't handle some
164 // situations well, so we insert copies to help out.
165 splitLifetimes(KernelBB, EpilogBBs);
166
167 // Remove dead instructions due to loop induction variables.
168 removeDeadInstructions(KernelBB, EpilogBBs);
169
170 // Add branches between prolog and epilog blocks.
171 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
172
173 delete[] VRMap;
174 }
175
cleanup()176 void ModuloScheduleExpander::cleanup() {
177 // Remove the original loop since it's no longer referenced.
178 for (auto &I : *BB)
179 LIS.RemoveMachineInstrFromMaps(I);
180 BB->clear();
181 BB->eraseFromParent();
182 }
183
184 /// Generate the pipeline prolog code.
generateProlog(unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)185 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
186 MachineBasicBlock *KernelBB,
187 ValueMapTy *VRMap,
188 MBBVectorTy &PrologBBs) {
189 MachineBasicBlock *PredBB = Preheader;
190 InstrMapTy InstrMap;
191
192 // Generate a basic block for each stage, not including the last stage,
193 // which will be generated in the kernel. Each basic block may contain
194 // instructions from multiple stages/iterations.
195 for (unsigned i = 0; i < LastStage; ++i) {
196 // Create and insert the prolog basic block prior to the original loop
197 // basic block. The original loop is removed later.
198 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
199 PrologBBs.push_back(NewBB);
200 MF.insert(BB->getIterator(), NewBB);
201 NewBB->transferSuccessors(PredBB);
202 PredBB->addSuccessor(NewBB);
203 PredBB = NewBB;
204
205 // Generate instructions for each appropriate stage. Process instructions
206 // in original program order.
207 for (int StageNum = i; StageNum >= 0; --StageNum) {
208 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
209 BBE = BB->getFirstTerminator();
210 BBI != BBE; ++BBI) {
211 if (Schedule.getStage(&*BBI) == StageNum) {
212 if (BBI->isPHI())
213 continue;
214 MachineInstr *NewMI =
215 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
216 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
217 NewBB->push_back(NewMI);
218 InstrMap[NewMI] = &*BBI;
219 }
220 }
221 }
222 rewritePhiValues(NewBB, i, VRMap, InstrMap);
223 LLVM_DEBUG({
224 dbgs() << "prolog:\n";
225 NewBB->dump();
226 });
227 }
228
229 PredBB->replaceSuccessor(BB, KernelBB);
230
231 // Check if we need to remove the branch from the preheader to the original
232 // loop, and replace it with a branch to the new loop.
233 unsigned numBranches = TII->removeBranch(*Preheader);
234 if (numBranches) {
235 SmallVector<MachineOperand, 0> Cond;
236 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
237 }
238 }
239
240 /// Generate the pipeline epilog code. The epilog code finishes the iterations
241 /// that were started in either the prolog or the kernel. We create a basic
242 /// block for each stage that needs to complete.
generateEpilog(unsigned LastStage,MachineBasicBlock * KernelBB,MachineBasicBlock * OrigBB,ValueMapTy * VRMap,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)243 void ModuloScheduleExpander::generateEpilog(
244 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
245 ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs) {
246 // We need to change the branch from the kernel to the first epilog block, so
247 // this call to analyze branch uses the kernel rather than the original BB.
248 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
249 SmallVector<MachineOperand, 4> Cond;
250 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
251 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
252 if (checkBranch)
253 return;
254
255 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
256 if (*LoopExitI == KernelBB)
257 ++LoopExitI;
258 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
259 MachineBasicBlock *LoopExitBB = *LoopExitI;
260
261 MachineBasicBlock *PredBB = KernelBB;
262 MachineBasicBlock *EpilogStart = LoopExitBB;
263 InstrMapTy InstrMap;
264
265 // Generate a basic block for each stage, not including the last stage,
266 // which was generated for the kernel. Each basic block may contain
267 // instructions from multiple stages/iterations.
268 int EpilogStage = LastStage + 1;
269 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
270 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
271 EpilogBBs.push_back(NewBB);
272 MF.insert(BB->getIterator(), NewBB);
273
274 PredBB->replaceSuccessor(LoopExitBB, NewBB);
275 NewBB->addSuccessor(LoopExitBB);
276
277 if (EpilogStart == LoopExitBB)
278 EpilogStart = NewBB;
279
280 // Add instructions to the epilog depending on the current block.
281 // Process instructions in original program order.
282 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
283 for (auto &BBI : *BB) {
284 if (BBI.isPHI())
285 continue;
286 MachineInstr *In = &BBI;
287 if ((unsigned)Schedule.getStage(In) == StageNum) {
288 // Instructions with memoperands in the epilog are updated with
289 // conservative values.
290 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
291 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
292 NewBB->push_back(NewMI);
293 InstrMap[NewMI] = In;
294 }
295 }
296 }
297 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
298 InstrMap, LastStage, EpilogStage, i == 1);
299 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
300 LastStage, EpilogStage, i == 1);
301 PredBB = NewBB;
302
303 LLVM_DEBUG({
304 dbgs() << "epilog:\n";
305 NewBB->dump();
306 });
307 }
308
309 // Fix any Phi nodes in the loop exit block.
310 LoopExitBB->replacePhiUsesWith(BB, PredBB);
311
312 // Create a branch to the new epilog from the kernel.
313 // Remove the original branch and add a new branch to the epilog.
314 TII->removeBranch(*KernelBB);
315 assert((OrigBB == TBB || OrigBB == FBB) &&
316 "Unable to determine looping branch direction");
317 if (OrigBB != TBB)
318 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
319 else
320 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
321 // Add a branch to the loop exit.
322 if (EpilogBBs.size() > 0) {
323 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
324 SmallVector<MachineOperand, 4> Cond1;
325 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
326 }
327 }
328
329 /// Replace all uses of FromReg that appear outside the specified
330 /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)331 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
332 MachineBasicBlock *MBB,
333 MachineRegisterInfo &MRI,
334 LiveIntervals &LIS) {
335 for (MachineOperand &O :
336 llvm::make_early_inc_range(MRI.use_operands(FromReg)))
337 if (O.getParent()->getParent() != MBB)
338 O.setReg(ToReg);
339 if (!LIS.hasInterval(ToReg))
340 LIS.createEmptyInterval(ToReg);
341 }
342
343 /// Return true if the register has a use that occurs outside the
344 /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)345 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
346 MachineRegisterInfo &MRI) {
347 for (const MachineOperand &MO : MRI.use_operands(Reg))
348 if (MO.getParent()->getParent() != BB)
349 return true;
350 return false;
351 }
352
353 /// Generate Phis for the specific block in the generated pipelined code.
354 /// This function looks at the Phis from the original code to guide the
355 /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)356 void ModuloScheduleExpander::generateExistingPhis(
357 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
358 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
359 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
360 // Compute the stage number for the initial value of the Phi, which
361 // comes from the prolog. The prolog to use depends on to which kernel/
362 // epilog that we're adding the Phi.
363 unsigned PrologStage = 0;
364 unsigned PrevStage = 0;
365 bool InKernel = (LastStageNum == CurStageNum);
366 if (InKernel) {
367 PrologStage = LastStageNum - 1;
368 PrevStage = CurStageNum;
369 } else {
370 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
371 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
372 }
373
374 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
375 BBE = BB->getFirstNonPHI();
376 BBI != BBE; ++BBI) {
377 Register Def = BBI->getOperand(0).getReg();
378
379 unsigned InitVal = 0;
380 unsigned LoopVal = 0;
381 getPhiRegs(*BBI, BB, InitVal, LoopVal);
382
383 unsigned PhiOp1 = 0;
384 // The Phi value from the loop body typically is defined in the loop, but
385 // not always. So, we need to check if the value is defined in the loop.
386 unsigned PhiOp2 = LoopVal;
387 if (VRMap[LastStageNum].count(LoopVal))
388 PhiOp2 = VRMap[LastStageNum][LoopVal];
389
390 int StageScheduled = Schedule.getStage(&*BBI);
391 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
392 unsigned NumStages = getStagesForReg(Def, CurStageNum);
393 if (NumStages == 0) {
394 // We don't need to generate a Phi anymore, but we need to rename any uses
395 // of the Phi value.
396 unsigned NewReg = VRMap[PrevStage][LoopVal];
397 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
398 InitVal, NewReg);
399 if (VRMap[CurStageNum].count(LoopVal))
400 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
401 }
402 // Adjust the number of Phis needed depending on the number of prologs left,
403 // and the distance from where the Phi is first scheduled. The number of
404 // Phis cannot exceed the number of prolog stages. Each stage can
405 // potentially define two values.
406 unsigned MaxPhis = PrologStage + 2;
407 if (!InKernel && (int)PrologStage <= LoopValStage)
408 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
409 unsigned NumPhis = std::min(NumStages, MaxPhis);
410
411 unsigned NewReg = 0;
412 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
413 // In the epilog, we may need to look back one stage to get the correct
414 // Phi name, because the epilog and prolog blocks execute the same stage.
415 // The correct name is from the previous block only when the Phi has
416 // been completely scheduled prior to the epilog, and Phi value is not
417 // needed in multiple stages.
418 int StageDiff = 0;
419 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
420 NumPhis == 1)
421 StageDiff = 1;
422 // Adjust the computations below when the phi and the loop definition
423 // are scheduled in different stages.
424 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
425 StageDiff = StageScheduled - LoopValStage;
426 for (unsigned np = 0; np < NumPhis; ++np) {
427 // If the Phi hasn't been scheduled, then use the initial Phi operand
428 // value. Otherwise, use the scheduled version of the instruction. This
429 // is a little complicated when a Phi references another Phi.
430 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
431 PhiOp1 = InitVal;
432 // Check if the Phi has already been scheduled in a prolog stage.
433 else if (PrologStage >= AccessStage + StageDiff + np &&
434 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
435 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
436 // Check if the Phi has already been scheduled, but the loop instruction
437 // is either another Phi, or doesn't occur in the loop.
438 else if (PrologStage >= AccessStage + StageDiff + np) {
439 // If the Phi references another Phi, we need to examine the other
440 // Phi to get the correct value.
441 PhiOp1 = LoopVal;
442 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
443 int Indirects = 1;
444 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
445 int PhiStage = Schedule.getStage(InstOp1);
446 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
447 PhiOp1 = getInitPhiReg(*InstOp1, BB);
448 else
449 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
450 InstOp1 = MRI.getVRegDef(PhiOp1);
451 int PhiOpStage = Schedule.getStage(InstOp1);
452 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
453 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
454 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
455 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
456 break;
457 }
458 ++Indirects;
459 }
460 } else
461 PhiOp1 = InitVal;
462 // If this references a generated Phi in the kernel, get the Phi operand
463 // from the incoming block.
464 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
465 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
466 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
467
468 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
469 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
470 // In the epilog, a map lookup is needed to get the value from the kernel,
471 // or previous epilog block. How is does this depends on if the
472 // instruction is scheduled in the previous block.
473 if (!InKernel) {
474 int StageDiffAdj = 0;
475 if (LoopValStage != -1 && StageScheduled > LoopValStage)
476 StageDiffAdj = StageScheduled - LoopValStage;
477 // Use the loop value defined in the kernel, unless the kernel
478 // contains the last definition of the Phi.
479 if (np == 0 && PrevStage == LastStageNum &&
480 (StageScheduled != 0 || LoopValStage != 0) &&
481 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
482 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
483 // Use the value defined by the Phi. We add one because we switch
484 // from looking at the loop value to the Phi definition.
485 else if (np > 0 && PrevStage == LastStageNum &&
486 VRMap[PrevStage - np + 1].count(Def))
487 PhiOp2 = VRMap[PrevStage - np + 1][Def];
488 // Use the loop value defined in the kernel.
489 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
490 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
491 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
492 // Use the value defined by the Phi, unless we're generating the first
493 // epilog and the Phi refers to a Phi in a different stage.
494 else if (VRMap[PrevStage - np].count(Def) &&
495 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
496 (LoopValStage == StageScheduled)))
497 PhiOp2 = VRMap[PrevStage - np][Def];
498 }
499
500 // Check if we can reuse an existing Phi. This occurs when a Phi
501 // references another Phi, and the other Phi is scheduled in an
502 // earlier stage. We can try to reuse an existing Phi up until the last
503 // stage of the current Phi.
504 if (LoopDefIsPhi) {
505 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
506 int LVNumStages = getStagesForPhi(LoopVal);
507 int StageDiff = (StageScheduled - LoopValStage);
508 LVNumStages -= StageDiff;
509 // Make sure the loop value Phi has been processed already.
510 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
511 NewReg = PhiOp2;
512 unsigned ReuseStage = CurStageNum;
513 if (isLoopCarried(*PhiInst))
514 ReuseStage -= LVNumStages;
515 // Check if the Phi to reuse has been generated yet. If not, then
516 // there is nothing to reuse.
517 if (VRMap[ReuseStage - np].count(LoopVal)) {
518 NewReg = VRMap[ReuseStage - np][LoopVal];
519
520 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
521 Def, NewReg);
522 // Update the map with the new Phi name.
523 VRMap[CurStageNum - np][Def] = NewReg;
524 PhiOp2 = NewReg;
525 if (VRMap[LastStageNum - np - 1].count(LoopVal))
526 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
527
528 if (IsLast && np == NumPhis - 1)
529 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
530 continue;
531 }
532 }
533 }
534 if (InKernel && StageDiff > 0 &&
535 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
536 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
537 }
538
539 const TargetRegisterClass *RC = MRI.getRegClass(Def);
540 NewReg = MRI.createVirtualRegister(RC);
541
542 MachineInstrBuilder NewPhi =
543 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
544 TII->get(TargetOpcode::PHI), NewReg);
545 NewPhi.addReg(PhiOp1).addMBB(BB1);
546 NewPhi.addReg(PhiOp2).addMBB(BB2);
547 if (np == 0)
548 InstrMap[NewPhi] = &*BBI;
549
550 // We define the Phis after creating the new pipelined code, so
551 // we need to rename the Phi values in scheduled instructions.
552
553 unsigned PrevReg = 0;
554 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
555 PrevReg = VRMap[PrevStage - np][LoopVal];
556 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
557 NewReg, PrevReg);
558 // If the Phi has been scheduled, use the new name for rewriting.
559 if (VRMap[CurStageNum - np].count(Def)) {
560 unsigned R = VRMap[CurStageNum - np][Def];
561 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
562 NewReg);
563 }
564
565 // Check if we need to rename any uses that occurs after the loop. The
566 // register to replace depends on whether the Phi is scheduled in the
567 // epilog.
568 if (IsLast && np == NumPhis - 1)
569 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
570
571 // In the kernel, a dependent Phi uses the value from this Phi.
572 if (InKernel)
573 PhiOp2 = NewReg;
574
575 // Update the map with the new Phi name.
576 VRMap[CurStageNum - np][Def] = NewReg;
577 }
578
579 while (NumPhis++ < NumStages) {
580 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
581 NewReg, 0);
582 }
583
584 // Check if we need to rename a Phi that has been eliminated due to
585 // scheduling.
586 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
587 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
588 }
589 }
590
591 /// Generate Phis for the specified block in the generated pipelined code.
592 /// These are new Phis needed because the definition is scheduled after the
593 /// use in the pipelined sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)594 void ModuloScheduleExpander::generatePhis(
595 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
596 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
597 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
598 // Compute the stage number that contains the initial Phi value, and
599 // the Phi from the previous stage.
600 unsigned PrologStage = 0;
601 unsigned PrevStage = 0;
602 unsigned StageDiff = CurStageNum - LastStageNum;
603 bool InKernel = (StageDiff == 0);
604 if (InKernel) {
605 PrologStage = LastStageNum - 1;
606 PrevStage = CurStageNum;
607 } else {
608 PrologStage = LastStageNum - StageDiff;
609 PrevStage = LastStageNum + StageDiff - 1;
610 }
611
612 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
613 BBE = BB->instr_end();
614 BBI != BBE; ++BBI) {
615 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
616 MachineOperand &MO = BBI->getOperand(i);
617 if (!MO.isReg() || !MO.isDef() ||
618 !Register::isVirtualRegister(MO.getReg()))
619 continue;
620
621 int StageScheduled = Schedule.getStage(&*BBI);
622 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
623 Register Def = MO.getReg();
624 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
625 // An instruction scheduled in stage 0 and is used after the loop
626 // requires a phi in the epilog for the last definition from either
627 // the kernel or prolog.
628 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
629 hasUseAfterLoop(Def, BB, MRI))
630 NumPhis = 1;
631 if (!InKernel && (unsigned)StageScheduled > PrologStage)
632 continue;
633
634 unsigned PhiOp2 = VRMap[PrevStage][Def];
635 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
636 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
637 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
638 // The number of Phis can't exceed the number of prolog stages. The
639 // prolog stage number is zero based.
640 if (NumPhis > PrologStage + 1 - StageScheduled)
641 NumPhis = PrologStage + 1 - StageScheduled;
642 for (unsigned np = 0; np < NumPhis; ++np) {
643 unsigned PhiOp1 = VRMap[PrologStage][Def];
644 if (np <= PrologStage)
645 PhiOp1 = VRMap[PrologStage - np][Def];
646 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
647 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
648 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
649 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
650 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
651 }
652 if (!InKernel)
653 PhiOp2 = VRMap[PrevStage - np][Def];
654
655 const TargetRegisterClass *RC = MRI.getRegClass(Def);
656 Register NewReg = MRI.createVirtualRegister(RC);
657
658 MachineInstrBuilder NewPhi =
659 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
660 TII->get(TargetOpcode::PHI), NewReg);
661 NewPhi.addReg(PhiOp1).addMBB(BB1);
662 NewPhi.addReg(PhiOp2).addMBB(BB2);
663 if (np == 0)
664 InstrMap[NewPhi] = &*BBI;
665
666 // Rewrite uses and update the map. The actions depend upon whether
667 // we generating code for the kernel or epilog blocks.
668 if (InKernel) {
669 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
670 NewReg);
671 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
672 NewReg);
673
674 PhiOp2 = NewReg;
675 VRMap[PrevStage - np - 1][Def] = NewReg;
676 } else {
677 VRMap[CurStageNum - np][Def] = NewReg;
678 if (np == NumPhis - 1)
679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
680 NewReg);
681 }
682 if (IsLast && np == NumPhis - 1)
683 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
684 }
685 }
686 }
687 }
688
689 /// Remove instructions that generate values with no uses.
690 /// Typically, these are induction variable operations that generate values
691 /// used in the loop itself. A dead instruction has a definition with
692 /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)693 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
694 MBBVectorTy &EpilogBBs) {
695 // For each epilog block, check that the value defined by each instruction
696 // is used. If not, delete it.
697 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
698 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
699 ME = MBB->instr_rend();
700 MI != ME;) {
701 // From DeadMachineInstructionElem. Don't delete inline assembly.
702 if (MI->isInlineAsm()) {
703 ++MI;
704 continue;
705 }
706 bool SawStore = false;
707 // Check if it's safe to remove the instruction due to side effects.
708 // We can, and want to, remove Phis here.
709 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
710 ++MI;
711 continue;
712 }
713 bool used = true;
714 for (const MachineOperand &MO : MI->operands()) {
715 if (!MO.isReg() || !MO.isDef())
716 continue;
717 Register reg = MO.getReg();
718 // Assume physical registers are used, unless they are marked dead.
719 if (Register::isPhysicalRegister(reg)) {
720 used = !MO.isDead();
721 if (used)
722 break;
723 continue;
724 }
725 unsigned realUses = 0;
726 for (const MachineOperand &U : MRI.use_operands(reg)) {
727 // Check if there are any uses that occur only in the original
728 // loop. If so, that's not a real use.
729 if (U.getParent()->getParent() != BB) {
730 realUses++;
731 used = true;
732 break;
733 }
734 }
735 if (realUses > 0)
736 break;
737 used = false;
738 }
739 if (!used) {
740 LIS.RemoveMachineInstrFromMaps(*MI);
741 MI++->eraseFromParent();
742 continue;
743 }
744 ++MI;
745 }
746 // In the kernel block, check if we can remove a Phi that generates a value
747 // used in an instruction removed in the epilog block.
748 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
749 Register reg = MI.getOperand(0).getReg();
750 if (MRI.use_begin(reg) == MRI.use_end()) {
751 LIS.RemoveMachineInstrFromMaps(MI);
752 MI.eraseFromParent();
753 }
754 }
755 }
756
757 /// For loop carried definitions, we split the lifetime of a virtual register
758 /// that has uses past the definition in the next iteration. A copy with a new
759 /// virtual register is inserted before the definition, which helps with
760 /// generating a better register assignment.
761 ///
762 /// v1 = phi(a, v2) v1 = phi(a, v2)
763 /// v2 = phi(b, v3) v2 = phi(b, v3)
764 /// v3 = .. v4 = copy v1
765 /// .. = V1 v3 = ..
766 /// .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)767 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
768 MBBVectorTy &EpilogBBs) {
769 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
770 for (auto &PHI : KernelBB->phis()) {
771 Register Def = PHI.getOperand(0).getReg();
772 // Check for any Phi definition that used as an operand of another Phi
773 // in the same block.
774 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
775 E = MRI.use_instr_end();
776 I != E; ++I) {
777 if (I->isPHI() && I->getParent() == KernelBB) {
778 // Get the loop carried definition.
779 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
780 if (!LCDef)
781 continue;
782 MachineInstr *MI = MRI.getVRegDef(LCDef);
783 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
784 continue;
785 // Search through the rest of the block looking for uses of the Phi
786 // definition. If one occurs, then split the lifetime.
787 unsigned SplitReg = 0;
788 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
789 KernelBB->instr_end()))
790 if (BBJ.readsRegister(Def)) {
791 // We split the lifetime when we find the first use.
792 if (SplitReg == 0) {
793 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
794 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
795 TII->get(TargetOpcode::COPY), SplitReg)
796 .addReg(Def);
797 }
798 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
799 }
800 if (!SplitReg)
801 continue;
802 // Search through each of the epilog blocks for any uses to be renamed.
803 for (auto &Epilog : EpilogBBs)
804 for (auto &I : *Epilog)
805 if (I.readsRegister(Def))
806 I.substituteRegister(Def, SplitReg, 0, *TRI);
807 break;
808 }
809 }
810 }
811 }
812
813 /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)814 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
815 for (MachineInstr &MI : *BB) {
816 if (!MI.isPHI())
817 break;
818 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
819 if (MI.getOperand(i + 1).getMBB() == Incoming) {
820 MI.removeOperand(i + 1);
821 MI.removeOperand(i);
822 break;
823 }
824 }
825 }
826
827 /// Create branches from each prolog basic block to the appropriate epilog
828 /// block. These edges are needed if the loop ends before reaching the
829 /// kernel.
addBranches(MachineBasicBlock & PreheaderBB,MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,ValueMapTy * VRMap)830 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
831 MBBVectorTy &PrologBBs,
832 MachineBasicBlock *KernelBB,
833 MBBVectorTy &EpilogBBs,
834 ValueMapTy *VRMap) {
835 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
836 MachineBasicBlock *LastPro = KernelBB;
837 MachineBasicBlock *LastEpi = KernelBB;
838
839 // Start from the blocks connected to the kernel and work "out"
840 // to the first prolog and the last epilog blocks.
841 SmallVector<MachineInstr *, 4> PrevInsts;
842 unsigned MaxIter = PrologBBs.size() - 1;
843 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
844 // Add branches to the prolog that go to the corresponding
845 // epilog, and the fall-thru prolog/kernel block.
846 MachineBasicBlock *Prolog = PrologBBs[j];
847 MachineBasicBlock *Epilog = EpilogBBs[i];
848
849 SmallVector<MachineOperand, 4> Cond;
850 Optional<bool> StaticallyGreater =
851 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
852 unsigned numAdded = 0;
853 if (!StaticallyGreater) {
854 Prolog->addSuccessor(Epilog);
855 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
856 } else if (*StaticallyGreater == false) {
857 Prolog->addSuccessor(Epilog);
858 Prolog->removeSuccessor(LastPro);
859 LastEpi->removeSuccessor(Epilog);
860 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
861 removePhis(Epilog, LastEpi);
862 // Remove the blocks that are no longer referenced.
863 if (LastPro != LastEpi) {
864 LastEpi->clear();
865 LastEpi->eraseFromParent();
866 }
867 if (LastPro == KernelBB) {
868 LoopInfo->disposed();
869 NewKernel = nullptr;
870 }
871 LastPro->clear();
872 LastPro->eraseFromParent();
873 } else {
874 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
875 removePhis(Epilog, Prolog);
876 }
877 LastPro = Prolog;
878 LastEpi = Epilog;
879 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
880 E = Prolog->instr_rend();
881 I != E && numAdded > 0; ++I, --numAdded)
882 updateInstruction(&*I, false, j, 0, VRMap);
883 }
884
885 if (NewKernel) {
886 LoopInfo->setPreheader(PrologBBs[MaxIter]);
887 LoopInfo->adjustTripCount(-(MaxIter + 1));
888 }
889 }
890
891 /// Return true if we can compute the amount the instruction changes
892 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)893 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
894 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
895 const MachineOperand *BaseOp;
896 int64_t Offset;
897 bool OffsetIsScalable;
898 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
899 return false;
900
901 // FIXME: This algorithm assumes instructions have fixed-size offsets.
902 if (OffsetIsScalable)
903 return false;
904
905 if (!BaseOp->isReg())
906 return false;
907
908 Register BaseReg = BaseOp->getReg();
909
910 MachineRegisterInfo &MRI = MF.getRegInfo();
911 // Check if there is a Phi. If so, get the definition in the loop.
912 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
913 if (BaseDef && BaseDef->isPHI()) {
914 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
915 BaseDef = MRI.getVRegDef(BaseReg);
916 }
917 if (!BaseDef)
918 return false;
919
920 int D = 0;
921 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
922 return false;
923
924 Delta = D;
925 return true;
926 }
927
928 /// Update the memory operand with a new offset when the pipeliner
929 /// generates a new copy of the instruction that refers to a
930 /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)931 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
932 MachineInstr &OldMI,
933 unsigned Num) {
934 if (Num == 0)
935 return;
936 // If the instruction has memory operands, then adjust the offset
937 // when the instruction appears in different stages.
938 if (NewMI.memoperands_empty())
939 return;
940 SmallVector<MachineMemOperand *, 2> NewMMOs;
941 for (MachineMemOperand *MMO : NewMI.memoperands()) {
942 // TODO: Figure out whether isAtomic is really necessary (see D57601).
943 if (MMO->isVolatile() || MMO->isAtomic() ||
944 (MMO->isInvariant() && MMO->isDereferenceable()) ||
945 (!MMO->getValue())) {
946 NewMMOs.push_back(MMO);
947 continue;
948 }
949 unsigned Delta;
950 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
951 int64_t AdjOffset = Delta * Num;
952 NewMMOs.push_back(
953 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
954 } else {
955 NewMMOs.push_back(
956 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
957 }
958 }
959 NewMI.setMemRefs(MF, NewMMOs);
960 }
961
962 /// Clone the instruction for the new pipelined loop and update the
963 /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)964 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
965 unsigned CurStageNum,
966 unsigned InstStageNum) {
967 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
968 // Check for tied operands in inline asm instructions. This should be handled
969 // elsewhere, but I'm not sure of the best solution.
970 if (OldMI->isInlineAsm())
971 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
972 const auto &MO = OldMI->getOperand(i);
973 if (MO.isReg() && MO.isUse())
974 break;
975 unsigned UseIdx;
976 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
977 NewMI->tieOperands(i, UseIdx);
978 }
979 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
980 return NewMI;
981 }
982
983 /// Clone the instruction for the new pipelined loop. If needed, this
984 /// function updates the instruction using the values saved in the
985 /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)986 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
987 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
988 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
989 auto It = InstrChanges.find(OldMI);
990 if (It != InstrChanges.end()) {
991 std::pair<unsigned, int64_t> RegAndOffset = It->second;
992 unsigned BasePos, OffsetPos;
993 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
994 return nullptr;
995 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
996 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
997 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
998 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
999 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1000 }
1001 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1002 return NewMI;
1003 }
1004
1005 /// Update the machine instruction with new virtual registers. This
1006 /// function may change the definitions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,ValueMapTy * VRMap)1007 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1008 bool LastDef,
1009 unsigned CurStageNum,
1010 unsigned InstrStageNum,
1011 ValueMapTy *VRMap) {
1012 for (MachineOperand &MO : NewMI->operands()) {
1013 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1014 continue;
1015 Register reg = MO.getReg();
1016 if (MO.isDef()) {
1017 // Create a new virtual register for the definition.
1018 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1019 Register NewReg = MRI.createVirtualRegister(RC);
1020 MO.setReg(NewReg);
1021 VRMap[CurStageNum][reg] = NewReg;
1022 if (LastDef)
1023 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1024 } else if (MO.isUse()) {
1025 MachineInstr *Def = MRI.getVRegDef(reg);
1026 // Compute the stage that contains the last definition for instruction.
1027 int DefStageNum = Schedule.getStage(Def);
1028 unsigned StageNum = CurStageNum;
1029 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1030 // Compute the difference in stages between the defintion and the use.
1031 unsigned StageDiff = (InstrStageNum - DefStageNum);
1032 // Make an adjustment to get the last definition.
1033 StageNum -= StageDiff;
1034 }
1035 if (VRMap[StageNum].count(reg))
1036 MO.setReg(VRMap[StageNum][reg]);
1037 }
1038 }
1039 }
1040
1041 /// Return the instruction in the loop that defines the register.
1042 /// If the definition is a Phi, then follow the Phi operand to
1043 /// the instruction in the loop.
findDefInLoop(unsigned Reg)1044 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1045 SmallPtrSet<MachineInstr *, 8> Visited;
1046 MachineInstr *Def = MRI.getVRegDef(Reg);
1047 while (Def->isPHI()) {
1048 if (!Visited.insert(Def).second)
1049 break;
1050 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1051 if (Def->getOperand(i + 1).getMBB() == BB) {
1052 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1053 break;
1054 }
1055 }
1056 return Def;
1057 }
1058
1059 /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)1060 unsigned ModuloScheduleExpander::getPrevMapVal(
1061 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1062 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1063 unsigned PrevVal = 0;
1064 if (StageNum > PhiStage) {
1065 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1066 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1067 // The name is defined in the previous stage.
1068 PrevVal = VRMap[StageNum - 1][LoopVal];
1069 else if (VRMap[StageNum].count(LoopVal))
1070 // The previous name is defined in the current stage when the instruction
1071 // order is swapped.
1072 PrevVal = VRMap[StageNum][LoopVal];
1073 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1074 // The loop value hasn't yet been scheduled.
1075 PrevVal = LoopVal;
1076 else if (StageNum == PhiStage + 1)
1077 // The loop value is another phi, which has not been scheduled.
1078 PrevVal = getInitPhiReg(*LoopInst, BB);
1079 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1080 // The loop value is another phi, which has been scheduled.
1081 PrevVal =
1082 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1083 LoopStage, VRMap, BB);
1084 }
1085 return PrevVal;
1086 }
1087
1088 /// Rewrite the Phi values in the specified block to use the mappings
1089 /// from the initial operand. Once the Phi is scheduled, we switch
1090 /// to using the loop value instead of the Phi value, so those names
1091 /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,ValueMapTy * VRMap,InstrMapTy & InstrMap)1092 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1093 unsigned StageNum,
1094 ValueMapTy *VRMap,
1095 InstrMapTy &InstrMap) {
1096 for (auto &PHI : BB->phis()) {
1097 unsigned InitVal = 0;
1098 unsigned LoopVal = 0;
1099 getPhiRegs(PHI, BB, InitVal, LoopVal);
1100 Register PhiDef = PHI.getOperand(0).getReg();
1101
1102 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1103 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1104 unsigned NumPhis = getStagesForPhi(PhiDef);
1105 if (NumPhis > StageNum)
1106 NumPhis = StageNum;
1107 for (unsigned np = 0; np <= NumPhis; ++np) {
1108 unsigned NewVal =
1109 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1110 if (!NewVal)
1111 NewVal = InitVal;
1112 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1113 NewVal);
1114 }
1115 }
1116 }
1117
1118 /// Rewrite a previously scheduled instruction to use the register value
1119 /// from the new instruction. Make sure the instruction occurs in the
1120 /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)1121 void ModuloScheduleExpander::rewriteScheduledInstr(
1122 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1123 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1124 unsigned PrevReg) {
1125 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1126 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1127 // Rewrite uses that have been scheduled already to use the new
1128 // Phi register.
1129 for (MachineOperand &UseOp :
1130 llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1131 MachineInstr *UseMI = UseOp.getParent();
1132 if (UseMI->getParent() != BB)
1133 continue;
1134 if (UseMI->isPHI()) {
1135 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1136 continue;
1137 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1138 continue;
1139 }
1140 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1141 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1142 MachineInstr *OrigMI = OrigInstr->second;
1143 int StageSched = Schedule.getStage(OrigMI);
1144 int CycleSched = Schedule.getCycle(OrigMI);
1145 unsigned ReplaceReg = 0;
1146 // This is the stage for the scheduled instruction.
1147 if (StagePhi == StageSched && Phi->isPHI()) {
1148 int CyclePhi = Schedule.getCycle(Phi);
1149 if (PrevReg && InProlog)
1150 ReplaceReg = PrevReg;
1151 else if (PrevReg && !isLoopCarried(*Phi) &&
1152 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1153 ReplaceReg = PrevReg;
1154 else
1155 ReplaceReg = NewReg;
1156 }
1157 // The scheduled instruction occurs before the scheduled Phi, and the
1158 // Phi is not loop carried.
1159 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1160 ReplaceReg = NewReg;
1161 if (StagePhi > StageSched && Phi->isPHI())
1162 ReplaceReg = NewReg;
1163 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1164 ReplaceReg = NewReg;
1165 if (ReplaceReg) {
1166 const TargetRegisterClass *NRC =
1167 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1168 if (NRC)
1169 UseOp.setReg(ReplaceReg);
1170 else {
1171 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1172 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1173 SplitReg)
1174 .addReg(ReplaceReg);
1175 UseOp.setReg(SplitReg);
1176 }
1177 }
1178 }
1179 }
1180
isLoopCarried(MachineInstr & Phi)1181 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1182 if (!Phi.isPHI())
1183 return false;
1184 int DefCycle = Schedule.getCycle(&Phi);
1185 int DefStage = Schedule.getStage(&Phi);
1186
1187 unsigned InitVal = 0;
1188 unsigned LoopVal = 0;
1189 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1190 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1191 if (!Use || Use->isPHI())
1192 return true;
1193 int LoopCycle = Schedule.getCycle(Use);
1194 int LoopStage = Schedule.getStage(Use);
1195 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1196 }
1197
1198 //===----------------------------------------------------------------------===//
1199 // PeelingModuloScheduleExpander implementation
1200 //===----------------------------------------------------------------------===//
1201 // This is a reimplementation of ModuloScheduleExpander that works by creating
1202 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1203 //===----------------------------------------------------------------------===//
1204
1205 namespace {
1206 // Remove any dead phis in MBB. Dead phis either have only one block as input
1207 // (in which case they are the identity) or have no uses.
EliminateDeadPhis(MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals * LIS,bool KeepSingleSrcPhi=false)1208 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1209 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1210 bool Changed = true;
1211 while (Changed) {
1212 Changed = false;
1213 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1214 assert(MI.isPHI());
1215 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1216 if (LIS)
1217 LIS->RemoveMachineInstrFromMaps(MI);
1218 MI.eraseFromParent();
1219 Changed = true;
1220 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1221 const TargetRegisterClass *ConstrainRegClass =
1222 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1223 MRI.getRegClass(MI.getOperand(0).getReg()));
1224 assert(ConstrainRegClass &&
1225 "Expected a valid constrained register class!");
1226 (void)ConstrainRegClass;
1227 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1228 MI.getOperand(1).getReg());
1229 if (LIS)
1230 LIS->RemoveMachineInstrFromMaps(MI);
1231 MI.eraseFromParent();
1232 Changed = true;
1233 }
1234 }
1235 }
1236 }
1237
1238 /// Rewrites the kernel block in-place to adhere to the given schedule.
1239 /// KernelRewriter holds all of the state required to perform the rewriting.
1240 class KernelRewriter {
1241 ModuloSchedule &S;
1242 MachineBasicBlock *BB;
1243 MachineBasicBlock *PreheaderBB, *ExitBB;
1244 MachineRegisterInfo &MRI;
1245 const TargetInstrInfo *TII;
1246 LiveIntervals *LIS;
1247
1248 // Map from register class to canonical undef register for that class.
1249 DenseMap<const TargetRegisterClass *, Register> Undefs;
1250 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1251 // this map is only used when InitReg is non-undef.
1252 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1253 // Map from LoopReg to phi register where the InitReg is undef.
1254 DenseMap<Register, Register> UndefPhis;
1255
1256 // Reg is used by MI. Return the new register MI should use to adhere to the
1257 // schedule. Insert phis as necessary.
1258 Register remapUse(Register Reg, MachineInstr &MI);
1259 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1260 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1261 // or will be chosen so as to share another phi.
1262 Register phi(Register LoopReg, Optional<Register> InitReg = {},
1263 const TargetRegisterClass *RC = nullptr);
1264 // Create an undef register of the given register class.
1265 Register undef(const TargetRegisterClass *RC);
1266
1267 public:
1268 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1269 LiveIntervals *LIS = nullptr);
1270 void rewrite();
1271 };
1272 } // namespace
1273
KernelRewriter(MachineLoop & L,ModuloSchedule & S,MachineBasicBlock * LoopBB,LiveIntervals * LIS)1274 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1275 MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1276 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1277 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1278 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1279 PreheaderBB = *BB->pred_begin();
1280 if (PreheaderBB == BB)
1281 PreheaderBB = *std::next(BB->pred_begin());
1282 }
1283
rewrite()1284 void KernelRewriter::rewrite() {
1285 // Rearrange the loop to be in schedule order. Note that the schedule may
1286 // contain instructions that are not owned by the loop block (InstrChanges and
1287 // friends), so we gracefully handle unowned instructions and delete any
1288 // instructions that weren't in the schedule.
1289 auto InsertPt = BB->getFirstTerminator();
1290 MachineInstr *FirstMI = nullptr;
1291 for (MachineInstr *MI : S.getInstructions()) {
1292 if (MI->isPHI())
1293 continue;
1294 if (MI->getParent())
1295 MI->removeFromParent();
1296 BB->insert(InsertPt, MI);
1297 if (!FirstMI)
1298 FirstMI = MI;
1299 }
1300 assert(FirstMI && "Failed to find first MI in schedule");
1301
1302 // At this point all of the scheduled instructions are between FirstMI
1303 // and the end of the block. Kill from the first non-phi to FirstMI.
1304 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1305 if (LIS)
1306 LIS->RemoveMachineInstrFromMaps(*I);
1307 (I++)->eraseFromParent();
1308 }
1309
1310 // Now remap every instruction in the loop.
1311 for (MachineInstr &MI : *BB) {
1312 if (MI.isPHI() || MI.isTerminator())
1313 continue;
1314 for (MachineOperand &MO : MI.uses()) {
1315 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1316 continue;
1317 Register Reg = remapUse(MO.getReg(), MI);
1318 MO.setReg(Reg);
1319 }
1320 }
1321 EliminateDeadPhis(BB, MRI, LIS);
1322
1323 // Ensure a phi exists for all instructions that are either referenced by
1324 // an illegal phi or by an instruction outside the loop. This allows us to
1325 // treat remaps of these values the same as "normal" values that come from
1326 // loop-carried phis.
1327 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1328 if (MI->isPHI()) {
1329 Register R = MI->getOperand(0).getReg();
1330 phi(R);
1331 continue;
1332 }
1333
1334 for (MachineOperand &Def : MI->defs()) {
1335 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1336 if (MI.getParent() != BB) {
1337 phi(Def.getReg());
1338 break;
1339 }
1340 }
1341 }
1342 }
1343 }
1344
remapUse(Register Reg,MachineInstr & MI)1345 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1346 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1347 if (!Producer)
1348 return Reg;
1349
1350 int ConsumerStage = S.getStage(&MI);
1351 if (!Producer->isPHI()) {
1352 // Non-phi producers are simple to remap. Insert as many phis as the
1353 // difference between the consumer and producer stages.
1354 if (Producer->getParent() != BB)
1355 // Producer was not inside the loop. Use the register as-is.
1356 return Reg;
1357 int ProducerStage = S.getStage(Producer);
1358 assert(ConsumerStage != -1 &&
1359 "In-loop consumer should always be scheduled!");
1360 assert(ConsumerStage >= ProducerStage);
1361 unsigned StageDiff = ConsumerStage - ProducerStage;
1362
1363 for (unsigned I = 0; I < StageDiff; ++I)
1364 Reg = phi(Reg);
1365 return Reg;
1366 }
1367
1368 // First, dive through the phi chain to find the defaults for the generated
1369 // phis.
1370 SmallVector<Optional<Register>, 4> Defaults;
1371 Register LoopReg = Reg;
1372 auto LoopProducer = Producer;
1373 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1374 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1375 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1376 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1377 assert(LoopProducer);
1378 }
1379 int LoopProducerStage = S.getStage(LoopProducer);
1380
1381 Optional<Register> IllegalPhiDefault;
1382
1383 if (LoopProducerStage == -1) {
1384 // Do nothing.
1385 } else if (LoopProducerStage > ConsumerStage) {
1386 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1387 // In addition, Consumer's cycle must be scheduled after Producer in the
1388 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1389 // functions.
1390 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1391 int LoopProducerCycle = S.getCycle(LoopProducer);
1392 int ConsumerCycle = S.getCycle(&MI);
1393 #endif
1394 assert(LoopProducerCycle <= ConsumerCycle);
1395 assert(LoopProducerStage == ConsumerStage + 1);
1396 // Peel off the first phi from Defaults and insert a phi between producer
1397 // and consumer. This phi will not be at the front of the block so we
1398 // consider it illegal. It will only exist during the rewrite process; it
1399 // needs to exist while we peel off prologs because these could take the
1400 // default value. After that we can replace all uses with the loop producer
1401 // value.
1402 IllegalPhiDefault = Defaults.front();
1403 Defaults.erase(Defaults.begin());
1404 } else {
1405 assert(ConsumerStage >= LoopProducerStage);
1406 int StageDiff = ConsumerStage - LoopProducerStage;
1407 if (StageDiff > 0) {
1408 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1409 << " to " << (Defaults.size() + StageDiff) << "\n");
1410 // If we need more phis than we have defaults for, pad out with undefs for
1411 // the earliest phis, which are at the end of the defaults chain (the
1412 // chain is in reverse order).
1413 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1414 ? Optional<Register>()
1415 : Defaults.back());
1416 }
1417 }
1418
1419 // Now we know the number of stages to jump back, insert the phi chain.
1420 auto DefaultI = Defaults.rbegin();
1421 while (DefaultI != Defaults.rend())
1422 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1423
1424 if (IllegalPhiDefault) {
1425 // The consumer optionally consumes LoopProducer in the same iteration
1426 // (because the producer is scheduled at an earlier cycle than the consumer)
1427 // or the initial value. To facilitate this we create an illegal block here
1428 // by embedding a phi in the middle of the block. We will fix this up
1429 // immediately prior to pruning.
1430 auto RC = MRI.getRegClass(Reg);
1431 Register R = MRI.createVirtualRegister(RC);
1432 MachineInstr *IllegalPhi =
1433 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1434 .addReg(*IllegalPhiDefault)
1435 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1436 .addReg(LoopReg)
1437 .addMBB(BB); // Block choice is arbitrary and has no effect.
1438 // Illegal phi should belong to the producer stage so that it can be
1439 // filtered correctly during peeling.
1440 S.setStage(IllegalPhi, LoopProducerStage);
1441 return R;
1442 }
1443
1444 return LoopReg;
1445 }
1446
phi(Register LoopReg,Optional<Register> InitReg,const TargetRegisterClass * RC)1447 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1448 const TargetRegisterClass *RC) {
1449 // If the init register is not undef, try and find an existing phi.
1450 if (InitReg) {
1451 auto I = Phis.find({LoopReg, InitReg.value()});
1452 if (I != Phis.end())
1453 return I->second;
1454 } else {
1455 for (auto &KV : Phis) {
1456 if (KV.first.first == LoopReg)
1457 return KV.second;
1458 }
1459 }
1460
1461 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1462 // find a phi that takes undef as input.
1463 auto I = UndefPhis.find(LoopReg);
1464 if (I != UndefPhis.end()) {
1465 Register R = I->second;
1466 if (!InitReg)
1467 // Found a phi taking undef as input, and this input is undef so return
1468 // without any more changes.
1469 return R;
1470 // Found a phi taking undef as input, so rewrite it to take InitReg.
1471 MachineInstr *MI = MRI.getVRegDef(R);
1472 MI->getOperand(1).setReg(InitReg.value());
1473 Phis.insert({{LoopReg, InitReg.value()}, R});
1474 const TargetRegisterClass *ConstrainRegClass =
1475 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.value()));
1476 assert(ConstrainRegClass && "Expected a valid constrained register class!");
1477 (void)ConstrainRegClass;
1478 UndefPhis.erase(I);
1479 return R;
1480 }
1481
1482 // Failed to find any existing phi to reuse, so create a new one.
1483 if (!RC)
1484 RC = MRI.getRegClass(LoopReg);
1485 Register R = MRI.createVirtualRegister(RC);
1486 if (InitReg) {
1487 const TargetRegisterClass *ConstrainRegClass =
1488 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1489 assert(ConstrainRegClass && "Expected a valid constrained register class!");
1490 (void)ConstrainRegClass;
1491 }
1492 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1493 .addReg(InitReg ? *InitReg : undef(RC))
1494 .addMBB(PreheaderBB)
1495 .addReg(LoopReg)
1496 .addMBB(BB);
1497 if (!InitReg)
1498 UndefPhis[LoopReg] = R;
1499 else
1500 Phis[{LoopReg, *InitReg}] = R;
1501 return R;
1502 }
1503
undef(const TargetRegisterClass * RC)1504 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1505 Register &R = Undefs[RC];
1506 if (R == 0) {
1507 // Create an IMPLICIT_DEF that defines this register if we need it.
1508 // All uses of this should be removed by the time we have finished unrolling
1509 // prologs and epilogs.
1510 R = MRI.createVirtualRegister(RC);
1511 auto *InsertBB = &PreheaderBB->getParent()->front();
1512 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1513 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1514 }
1515 return R;
1516 }
1517
1518 namespace {
1519 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1520 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1521 /// through and defaults for these phis.
1522 class KernelOperandInfo {
1523 MachineBasicBlock *BB;
1524 MachineRegisterInfo &MRI;
1525 SmallVector<Register, 4> PhiDefaults;
1526 MachineOperand *Source;
1527 MachineOperand *Target;
1528
1529 public:
KernelOperandInfo(MachineOperand * MO,MachineRegisterInfo & MRI,const SmallPtrSetImpl<MachineInstr * > & IllegalPhis)1530 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1531 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1532 : MRI(MRI) {
1533 Source = MO;
1534 BB = MO->getParent()->getParent();
1535 while (isRegInLoop(MO)) {
1536 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1537 if (MI->isFullCopy()) {
1538 MO = &MI->getOperand(1);
1539 continue;
1540 }
1541 if (!MI->isPHI())
1542 break;
1543 // If this is an illegal phi, don't count it in distance.
1544 if (IllegalPhis.count(MI)) {
1545 MO = &MI->getOperand(3);
1546 continue;
1547 }
1548
1549 Register Default = getInitPhiReg(*MI, BB);
1550 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1551 : &MI->getOperand(3);
1552 PhiDefaults.push_back(Default);
1553 }
1554 Target = MO;
1555 }
1556
operator ==(const KernelOperandInfo & Other) const1557 bool operator==(const KernelOperandInfo &Other) const {
1558 return PhiDefaults.size() == Other.PhiDefaults.size();
1559 }
1560
print(raw_ostream & OS) const1561 void print(raw_ostream &OS) const {
1562 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1563 << *Source->getParent();
1564 }
1565
1566 private:
isRegInLoop(MachineOperand * MO)1567 bool isRegInLoop(MachineOperand *MO) {
1568 return MO->isReg() && MO->getReg().isVirtual() &&
1569 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1570 }
1571 };
1572 } // namespace
1573
1574 MachineBasicBlock *
peelKernel(LoopPeelDirection LPD)1575 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1576 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1577 if (LPD == LPD_Front)
1578 PeeledFront.push_back(NewBB);
1579 else
1580 PeeledBack.push_front(NewBB);
1581 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1582 ++I, ++NI) {
1583 CanonicalMIs[&*I] = &*I;
1584 CanonicalMIs[&*NI] = &*I;
1585 BlockMIs[{NewBB, &*I}] = &*NI;
1586 BlockMIs[{BB, &*I}] = &*I;
1587 }
1588 return NewBB;
1589 }
1590
filterInstructions(MachineBasicBlock * MB,int MinStage)1591 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1592 int MinStage) {
1593 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1594 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1595 MachineInstr *MI = &*I++;
1596 int Stage = getStage(MI);
1597 if (Stage == -1 || Stage >= MinStage)
1598 continue;
1599
1600 for (MachineOperand &DefMO : MI->defs()) {
1601 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1602 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1603 // Only PHIs can use values from this block by construction.
1604 // Match with the equivalent PHI in B.
1605 assert(UseMI.isPHI());
1606 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1607 MI->getParent());
1608 Subs.emplace_back(&UseMI, Reg);
1609 }
1610 for (auto &Sub : Subs)
1611 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1612 *MRI.getTargetRegisterInfo());
1613 }
1614 if (LIS)
1615 LIS->RemoveMachineInstrFromMaps(*MI);
1616 MI->eraseFromParent();
1617 }
1618 }
1619
moveStageBetweenBlocks(MachineBasicBlock * DestBB,MachineBasicBlock * SourceBB,unsigned Stage)1620 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1621 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1622 auto InsertPt = DestBB->getFirstNonPHI();
1623 DenseMap<Register, Register> Remaps;
1624 for (MachineInstr &MI : llvm::make_early_inc_range(
1625 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1626 if (MI.isPHI()) {
1627 // This is an illegal PHI. If we move any instructions using an illegal
1628 // PHI, we need to create a legal Phi.
1629 if (getStage(&MI) != Stage) {
1630 // The legal Phi is not necessary if the illegal phi's stage
1631 // is being moved.
1632 Register PhiR = MI.getOperand(0).getReg();
1633 auto RC = MRI.getRegClass(PhiR);
1634 Register NR = MRI.createVirtualRegister(RC);
1635 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1636 DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1637 .addReg(PhiR)
1638 .addMBB(SourceBB);
1639 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1640 CanonicalMIs[NI] = CanonicalMIs[&MI];
1641 Remaps[PhiR] = NR;
1642 }
1643 }
1644 if (getStage(&MI) != Stage)
1645 continue;
1646 MI.removeFromParent();
1647 DestBB->insert(InsertPt, &MI);
1648 auto *KernelMI = CanonicalMIs[&MI];
1649 BlockMIs[{DestBB, KernelMI}] = &MI;
1650 BlockMIs.erase({SourceBB, KernelMI});
1651 }
1652 SmallVector<MachineInstr *, 4> PhiToDelete;
1653 for (MachineInstr &MI : DestBB->phis()) {
1654 assert(MI.getNumOperands() == 3);
1655 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1656 // If the instruction referenced by the phi is moved inside the block
1657 // we don't need the phi anymore.
1658 if (getStage(Def) == Stage) {
1659 Register PhiReg = MI.getOperand(0).getReg();
1660 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1661 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1662 MI.getOperand(0).setReg(PhiReg);
1663 PhiToDelete.push_back(&MI);
1664 }
1665 }
1666 for (auto *P : PhiToDelete)
1667 P->eraseFromParent();
1668 InsertPt = DestBB->getFirstNonPHI();
1669 // Helper to clone Phi instructions into the destination block. We clone Phi
1670 // greedily to avoid combinatorial explosion of Phi instructions.
1671 auto clonePhi = [&](MachineInstr *Phi) {
1672 MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1673 DestBB->insert(InsertPt, NewMI);
1674 Register OrigR = Phi->getOperand(0).getReg();
1675 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1676 NewMI->getOperand(0).setReg(R);
1677 NewMI->getOperand(1).setReg(OrigR);
1678 NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1679 Remaps[OrigR] = R;
1680 CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1681 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1682 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1683 return R;
1684 };
1685 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1686 for (MachineOperand &MO : I->uses()) {
1687 if (!MO.isReg())
1688 continue;
1689 if (Remaps.count(MO.getReg()))
1690 MO.setReg(Remaps[MO.getReg()]);
1691 else {
1692 // If we are using a phi from the source block we need to add a new phi
1693 // pointing to the old one.
1694 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1695 if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1696 Register R = clonePhi(Use);
1697 MO.setReg(R);
1698 }
1699 }
1700 }
1701 }
1702 }
1703
1704 Register
getPhiCanonicalReg(MachineInstr * CanonicalPhi,MachineInstr * Phi)1705 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1706 MachineInstr *Phi) {
1707 unsigned distance = PhiNodeLoopIteration[Phi];
1708 MachineInstr *CanonicalUse = CanonicalPhi;
1709 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1710 for (unsigned I = 0; I < distance; ++I) {
1711 assert(CanonicalUse->isPHI());
1712 assert(CanonicalUse->getNumOperands() == 5);
1713 unsigned LoopRegIdx = 3, InitRegIdx = 1;
1714 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1715 std::swap(LoopRegIdx, InitRegIdx);
1716 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1717 CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1718 }
1719 return CanonicalUseReg;
1720 }
1721
peelPrologAndEpilogs()1722 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1723 BitVector LS(Schedule.getNumStages(), true);
1724 BitVector AS(Schedule.getNumStages(), true);
1725 LiveStages[BB] = LS;
1726 AvailableStages[BB] = AS;
1727
1728 // Peel out the prologs.
1729 LS.reset();
1730 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1731 LS[I] = true;
1732 Prologs.push_back(peelKernel(LPD_Front));
1733 LiveStages[Prologs.back()] = LS;
1734 AvailableStages[Prologs.back()] = LS;
1735 }
1736
1737 // Create a block that will end up as the new loop exiting block (dominated by
1738 // all prologs and epilogs). It will only contain PHIs, in the same order as
1739 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1740 // that the exiting block is a (sub) clone of BB. This in turn gives us the
1741 // property that any value deffed in BB but used outside of BB is used by a
1742 // PHI in the exiting block.
1743 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1744 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1745 // Push out the epilogs, again in reverse order.
1746 // We can't assume anything about the minumum loop trip count at this point,
1747 // so emit a fairly complex epilog.
1748
1749 // We first peel number of stages minus one epilogue. Then we remove dead
1750 // stages and reorder instructions based on their stage. If we have 3 stages
1751 // we generate first:
1752 // E0[3, 2, 1]
1753 // E1[3', 2']
1754 // E2[3'']
1755 // And then we move instructions based on their stages to have:
1756 // E0[3]
1757 // E1[2, 3']
1758 // E2[1, 2', 3'']
1759 // The transformation is legal because we only move instructions past
1760 // instructions of a previous loop iteration.
1761 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1762 Epilogs.push_back(peelKernel(LPD_Back));
1763 MachineBasicBlock *B = Epilogs.back();
1764 filterInstructions(B, Schedule.getNumStages() - I);
1765 // Keep track at which iteration each phi belongs to. We need it to know
1766 // what version of the variable to use during prologue/epilogue stitching.
1767 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1768 for (MachineInstr &Phi : B->phis())
1769 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1770 }
1771 for (size_t I = 0; I < Epilogs.size(); I++) {
1772 LS.reset();
1773 for (size_t J = I; J < Epilogs.size(); J++) {
1774 int Iteration = J;
1775 unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1776 // Move stage one block at a time so that Phi nodes are updated correctly.
1777 for (size_t K = Iteration; K > I; K--)
1778 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1779 LS[Stage] = true;
1780 }
1781 LiveStages[Epilogs[I]] = LS;
1782 AvailableStages[Epilogs[I]] = AS;
1783 }
1784
1785 // Now we've defined all the prolog and epilog blocks as a fallthrough
1786 // sequence, add the edges that will be followed if the loop trip count is
1787 // lower than the number of stages (connecting prologs directly with epilogs).
1788 auto PI = Prologs.begin();
1789 auto EI = Epilogs.begin();
1790 assert(Prologs.size() == Epilogs.size());
1791 for (; PI != Prologs.end(); ++PI, ++EI) {
1792 MachineBasicBlock *Pred = *(*EI)->pred_begin();
1793 (*PI)->addSuccessor(*EI);
1794 for (MachineInstr &MI : (*EI)->phis()) {
1795 Register Reg = MI.getOperand(1).getReg();
1796 MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1797 if (Use && Use->getParent() == Pred) {
1798 MachineInstr *CanonicalUse = CanonicalMIs[Use];
1799 if (CanonicalUse->isPHI()) {
1800 // If the use comes from a phi we need to skip as many phi as the
1801 // distance between the epilogue and the kernel. Trace through the phi
1802 // chain to find the right value.
1803 Reg = getPhiCanonicalReg(CanonicalUse, Use);
1804 }
1805 Reg = getEquivalentRegisterIn(Reg, *PI);
1806 }
1807 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1808 MI.addOperand(MachineOperand::CreateMBB(*PI));
1809 }
1810 }
1811
1812 // Create a list of all blocks in order.
1813 SmallVector<MachineBasicBlock *, 8> Blocks;
1814 llvm::copy(PeeledFront, std::back_inserter(Blocks));
1815 Blocks.push_back(BB);
1816 llvm::copy(PeeledBack, std::back_inserter(Blocks));
1817
1818 // Iterate in reverse order over all instructions, remapping as we go.
1819 for (MachineBasicBlock *B : reverse(Blocks)) {
1820 for (auto I = B->instr_rbegin();
1821 I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1822 MachineBasicBlock::reverse_instr_iterator MI = I++;
1823 rewriteUsesOf(&*MI);
1824 }
1825 }
1826 for (auto *MI : IllegalPhisToDelete) {
1827 if (LIS)
1828 LIS->RemoveMachineInstrFromMaps(*MI);
1829 MI->eraseFromParent();
1830 }
1831 IllegalPhisToDelete.clear();
1832
1833 // Now all remapping has been done, we're free to optimize the generated code.
1834 for (MachineBasicBlock *B : reverse(Blocks))
1835 EliminateDeadPhis(B, MRI, LIS);
1836 EliminateDeadPhis(ExitingBB, MRI, LIS);
1837 }
1838
CreateLCSSAExitingBlock()1839 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1840 MachineFunction &MF = *BB->getParent();
1841 MachineBasicBlock *Exit = *BB->succ_begin();
1842 if (Exit == BB)
1843 Exit = *std::next(BB->succ_begin());
1844
1845 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1846 MF.insert(std::next(BB->getIterator()), NewBB);
1847
1848 // Clone all phis in BB into NewBB and rewrite.
1849 for (MachineInstr &MI : BB->phis()) {
1850 auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1851 Register OldR = MI.getOperand(3).getReg();
1852 Register R = MRI.createVirtualRegister(RC);
1853 SmallVector<MachineInstr *, 4> Uses;
1854 for (MachineInstr &Use : MRI.use_instructions(OldR))
1855 if (Use.getParent() != BB)
1856 Uses.push_back(&Use);
1857 for (MachineInstr *Use : Uses)
1858 Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1859 *MRI.getTargetRegisterInfo());
1860 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1861 .addReg(OldR)
1862 .addMBB(BB);
1863 BlockMIs[{NewBB, &MI}] = NI;
1864 CanonicalMIs[NI] = &MI;
1865 }
1866 BB->replaceSuccessor(Exit, NewBB);
1867 Exit->replacePhiUsesWith(BB, NewBB);
1868 NewBB->addSuccessor(Exit);
1869
1870 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1871 SmallVector<MachineOperand, 4> Cond;
1872 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1873 (void)CanAnalyzeBr;
1874 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1875 TII->removeBranch(*BB);
1876 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1877 Cond, DebugLoc());
1878 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1879 return NewBB;
1880 }
1881
1882 Register
getEquivalentRegisterIn(Register Reg,MachineBasicBlock * BB)1883 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1884 MachineBasicBlock *BB) {
1885 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1886 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1887 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1888 }
1889
rewriteUsesOf(MachineInstr * MI)1890 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1891 if (MI->isPHI()) {
1892 // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1893 // and it is produced by this block.
1894 Register PhiR = MI->getOperand(0).getReg();
1895 Register R = MI->getOperand(3).getReg();
1896 int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1897 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1898 R = MI->getOperand(1).getReg();
1899 MRI.setRegClass(R, MRI.getRegClass(PhiR));
1900 MRI.replaceRegWith(PhiR, R);
1901 // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1902 // later to figure out how to remap registers.
1903 MI->getOperand(0).setReg(PhiR);
1904 IllegalPhisToDelete.push_back(MI);
1905 return;
1906 }
1907
1908 int Stage = getStage(MI);
1909 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1910 LiveStages[MI->getParent()].test(Stage))
1911 // Instruction is live, no rewriting to do.
1912 return;
1913
1914 for (MachineOperand &DefMO : MI->defs()) {
1915 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1916 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1917 // Only PHIs can use values from this block by construction.
1918 // Match with the equivalent PHI in B.
1919 assert(UseMI.isPHI());
1920 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1921 MI->getParent());
1922 Subs.emplace_back(&UseMI, Reg);
1923 }
1924 for (auto &Sub : Subs)
1925 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1926 *MRI.getTargetRegisterInfo());
1927 }
1928 if (LIS)
1929 LIS->RemoveMachineInstrFromMaps(*MI);
1930 MI->eraseFromParent();
1931 }
1932
fixupBranches()1933 void PeelingModuloScheduleExpander::fixupBranches() {
1934 // Work outwards from the kernel.
1935 bool KernelDisposed = false;
1936 int TC = Schedule.getNumStages() - 1;
1937 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1938 ++PI, ++EI, --TC) {
1939 MachineBasicBlock *Prolog = *PI;
1940 MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1941 MachineBasicBlock *Epilog = *EI;
1942 SmallVector<MachineOperand, 4> Cond;
1943 TII->removeBranch(*Prolog);
1944 Optional<bool> StaticallyGreater =
1945 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1946 if (!StaticallyGreater) {
1947 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1948 // Dynamically branch based on Cond.
1949 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1950 } else if (*StaticallyGreater == false) {
1951 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1952 // Prolog never falls through; branch to epilog and orphan interior
1953 // blocks. Leave it to unreachable-block-elim to clean up.
1954 Prolog->removeSuccessor(Fallthrough);
1955 for (MachineInstr &P : Fallthrough->phis()) {
1956 P.removeOperand(2);
1957 P.removeOperand(1);
1958 }
1959 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1960 KernelDisposed = true;
1961 } else {
1962 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1963 // Prolog always falls through; remove incoming values in epilog.
1964 Prolog->removeSuccessor(Epilog);
1965 for (MachineInstr &P : Epilog->phis()) {
1966 P.removeOperand(4);
1967 P.removeOperand(3);
1968 }
1969 }
1970 }
1971
1972 if (!KernelDisposed) {
1973 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1974 LoopInfo->setPreheader(Prologs.back());
1975 } else {
1976 LoopInfo->disposed();
1977 }
1978 }
1979
rewriteKernel()1980 void PeelingModuloScheduleExpander::rewriteKernel() {
1981 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1982 KR.rewrite();
1983 }
1984
expand()1985 void PeelingModuloScheduleExpander::expand() {
1986 BB = Schedule.getLoop()->getTopBlock();
1987 Preheader = Schedule.getLoop()->getLoopPreheader();
1988 LLVM_DEBUG(Schedule.dump());
1989 LoopInfo = TII->analyzeLoopForPipelining(BB);
1990 assert(LoopInfo);
1991
1992 rewriteKernel();
1993 peelPrologAndEpilogs();
1994 fixupBranches();
1995 }
1996
validateAgainstModuloScheduleExpander()1997 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1998 BB = Schedule.getLoop()->getTopBlock();
1999 Preheader = Schedule.getLoop()->getLoopPreheader();
2000
2001 // Dump the schedule before we invalidate and remap all its instructions.
2002 // Stash it in a string so we can print it if we found an error.
2003 std::string ScheduleDump;
2004 raw_string_ostream OS(ScheduleDump);
2005 Schedule.print(OS);
2006 OS.flush();
2007
2008 // First, run the normal ModuleScheduleExpander. We don't support any
2009 // InstrChanges.
2010 assert(LIS && "Requires LiveIntervals!");
2011 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2012 ModuloScheduleExpander::InstrChangesTy());
2013 MSE.expand();
2014 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2015 if (!ExpandedKernel) {
2016 // The expander optimized away the kernel. We can't do any useful checking.
2017 MSE.cleanup();
2018 return;
2019 }
2020 // Before running the KernelRewriter, re-add BB into the CFG.
2021 Preheader->addSuccessor(BB);
2022
2023 // Now run the new expansion algorithm.
2024 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2025 KR.rewrite();
2026 peelPrologAndEpilogs();
2027
2028 // Collect all illegal phis that the new algorithm created. We'll give these
2029 // to KernelOperandInfo.
2030 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2031 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2032 if (NI->isPHI())
2033 IllegalPhis.insert(&*NI);
2034 }
2035
2036 // Co-iterate across both kernels. We expect them to be identical apart from
2037 // phis and full COPYs (we look through both).
2038 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2039 auto OI = ExpandedKernel->begin();
2040 auto NI = BB->begin();
2041 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2042 while (OI->isPHI() || OI->isFullCopy())
2043 ++OI;
2044 while (NI->isPHI() || NI->isFullCopy())
2045 ++NI;
2046 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2047 // Analyze every operand separately.
2048 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2049 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2050 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2051 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2052 }
2053
2054 bool Failed = false;
2055 for (auto &OldAndNew : KOIs) {
2056 if (OldAndNew.first == OldAndNew.second)
2057 continue;
2058 Failed = true;
2059 errs() << "Modulo kernel validation error: [\n";
2060 errs() << " [golden] ";
2061 OldAndNew.first.print(errs());
2062 errs() << " ";
2063 OldAndNew.second.print(errs());
2064 errs() << "]\n";
2065 }
2066
2067 if (Failed) {
2068 errs() << "Golden reference kernel:\n";
2069 ExpandedKernel->print(errs());
2070 errs() << "New kernel:\n";
2071 BB->print(errs());
2072 errs() << ScheduleDump;
2073 report_fatal_error(
2074 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2075 }
2076
2077 // Cleanup by removing BB from the CFG again as the original
2078 // ModuloScheduleExpander intended.
2079 Preheader->removeSuccessor(BB);
2080 MSE.cleanup();
2081 }
2082
2083 //===----------------------------------------------------------------------===//
2084 // ModuloScheduleTestPass implementation
2085 //===----------------------------------------------------------------------===//
2086 // This pass constructs a ModuloSchedule from its module and runs
2087 // ModuloScheduleExpander.
2088 //
2089 // The module is expected to contain a single-block analyzable loop.
2090 // The total order of instructions is taken from the loop as-is.
2091 // Instructions are expected to be annotated with a PostInstrSymbol.
2092 // This PostInstrSymbol must have the following format:
2093 // "Stage=%d Cycle=%d".
2094 //===----------------------------------------------------------------------===//
2095
2096 namespace {
2097 class ModuloScheduleTest : public MachineFunctionPass {
2098 public:
2099 static char ID;
2100
ModuloScheduleTest()2101 ModuloScheduleTest() : MachineFunctionPass(ID) {
2102 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2103 }
2104
2105 bool runOnMachineFunction(MachineFunction &MF) override;
2106 void runOnLoop(MachineFunction &MF, MachineLoop &L);
2107
getAnalysisUsage(AnalysisUsage & AU) const2108 void getAnalysisUsage(AnalysisUsage &AU) const override {
2109 AU.addRequired<MachineLoopInfo>();
2110 AU.addRequired<LiveIntervals>();
2111 MachineFunctionPass::getAnalysisUsage(AU);
2112 }
2113 };
2114 } // namespace
2115
2116 char ModuloScheduleTest::ID = 0;
2117
2118 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2119 "Modulo Schedule test pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)2120 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2121 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2122 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2123 "Modulo Schedule test pass", false, false)
2124
2125 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2126 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2127 for (auto *L : MLI) {
2128 if (L->getTopBlock() != L->getBottomBlock())
2129 continue;
2130 runOnLoop(MF, *L);
2131 return false;
2132 }
2133 return false;
2134 }
2135
parseSymbolString(StringRef S,int & Cycle,int & Stage)2136 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2137 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2138 std::pair<StringRef, StringRef> StageTokenAndValue =
2139 getToken(StageAndCycle.first, "-");
2140 std::pair<StringRef, StringRef> CycleTokenAndValue =
2141 getToken(StageAndCycle.second, "-");
2142 if (StageTokenAndValue.first != "Stage" ||
2143 CycleTokenAndValue.first != "_Cycle") {
2144 llvm_unreachable(
2145 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2146 return;
2147 }
2148
2149 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2150 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2151
2152 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2153 }
2154
runOnLoop(MachineFunction & MF,MachineLoop & L)2155 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2156 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2157 MachineBasicBlock *BB = L.getTopBlock();
2158 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2159
2160 DenseMap<MachineInstr *, int> Cycle, Stage;
2161 std::vector<MachineInstr *> Instrs;
2162 for (MachineInstr &MI : *BB) {
2163 if (MI.isTerminator())
2164 continue;
2165 Instrs.push_back(&MI);
2166 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2167 dbgs() << "Parsing post-instr symbol for " << MI;
2168 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2169 }
2170 }
2171
2172 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2173 std::move(Stage));
2174 ModuloScheduleExpander MSE(
2175 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2176 MSE.expand();
2177 MSE.cleanup();
2178 }
2179
2180 //===----------------------------------------------------------------------===//
2181 // ModuloScheduleTestAnnotater implementation
2182 //===----------------------------------------------------------------------===//
2183
annotate()2184 void ModuloScheduleTestAnnotater::annotate() {
2185 for (MachineInstr *MI : S.getInstructions()) {
2186 SmallVector<char, 16> SV;
2187 raw_svector_ostream OS(SV);
2188 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2189 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2190 MI->setPostInstrSymbol(MF, Sym);
2191 }
2192 }
2193