1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85 EI = MRI.use_end(); 86 UI != EI; ++UI) { 87 MachineOperand &UseOp = *UI; 88 MachineInstr *UseMI = UseOp.getParent(); 89 int UseStage = Schedule.getStage(UseMI); 90 unsigned Diff = 0; 91 if (UseStage != -1 && UseStage >= DefStage) 92 Diff = UseStage - DefStage; 93 if (MI->isPHI()) { 94 if (isLoopCarried(*MI)) 95 ++Diff; 96 else 97 PhiIsSwapped = true; 98 } 99 MaxDiff = std::max(Diff, MaxDiff); 100 } 101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102 } 103 } 104 105 generatePipelinedLoop(); 106 } 107 108 void ModuloScheduleExpander::generatePipelinedLoop() { 109 LoopInfo = TII->analyzeLoopForPipelining(BB); 110 assert(LoopInfo && "Must be able to analyze loop!"); 111 112 // Create a new basic block for the kernel and add it to the CFG. 113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114 115 unsigned MaxStageCount = Schedule.getNumStages() - 1; 116 117 // Remember the registers that are used in different stages. The index is 118 // the iteration, or stage, that the instruction is scheduled in. This is 119 // a map between register names in the original block and the names created 120 // in each stage of the pipelined loop. 121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122 InstrMapTy InstrMap; 123 124 SmallVector<MachineBasicBlock *, 4> PrologBBs; 125 126 // Generate the prolog instructions that set up the pipeline. 127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128 MF.insert(BB->getIterator(), KernelBB); 129 130 // Rearrange the instructions to generate the new, pipelined loop, 131 // and update register names as needed. 132 for (MachineInstr *CI : Schedule.getInstructions()) { 133 if (CI->isPHI()) 134 continue; 135 unsigned StageNum = Schedule.getStage(CI); 136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138 KernelBB->push_back(NewMI); 139 InstrMap[NewMI] = CI; 140 } 141 142 // Copy any terminator instructions to the new kernel, and update 143 // names as needed. 144 for (MachineInstr &MI : BB->terminators()) { 145 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 146 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 147 KernelBB->push_back(NewMI); 148 InstrMap[NewMI] = &MI; 149 } 150 151 NewKernel = KernelBB; 152 KernelBB->transferSuccessors(BB); 153 KernelBB->replaceSuccessor(BB, KernelBB); 154 155 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 156 InstrMap, MaxStageCount, MaxStageCount, false); 157 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 158 MaxStageCount, MaxStageCount, false); 159 160 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 161 162 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 163 // Generate the epilog instructions to complete the pipeline. 164 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 165 166 // We need this step because the register allocation doesn't handle some 167 // situations well, so we insert copies to help out. 168 splitLifetimes(KernelBB, EpilogBBs); 169 170 // Remove dead instructions due to loop induction variables. 171 removeDeadInstructions(KernelBB, EpilogBBs); 172 173 // Add branches between prolog and epilog blocks. 174 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 175 176 delete[] VRMap; 177 } 178 179 void ModuloScheduleExpander::cleanup() { 180 // Remove the original loop since it's no longer referenced. 181 for (auto &I : *BB) 182 LIS.RemoveMachineInstrFromMaps(I); 183 BB->clear(); 184 BB->eraseFromParent(); 185 } 186 187 /// Generate the pipeline prolog code. 188 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 189 MachineBasicBlock *KernelBB, 190 ValueMapTy *VRMap, 191 MBBVectorTy &PrologBBs) { 192 MachineBasicBlock *PredBB = Preheader; 193 InstrMapTy InstrMap; 194 195 // Generate a basic block for each stage, not including the last stage, 196 // which will be generated in the kernel. Each basic block may contain 197 // instructions from multiple stages/iterations. 198 for (unsigned i = 0; i < LastStage; ++i) { 199 // Create and insert the prolog basic block prior to the original loop 200 // basic block. The original loop is removed later. 201 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 202 PrologBBs.push_back(NewBB); 203 MF.insert(BB->getIterator(), NewBB); 204 NewBB->transferSuccessors(PredBB); 205 PredBB->addSuccessor(NewBB); 206 PredBB = NewBB; 207 208 // Generate instructions for each appropriate stage. Process instructions 209 // in original program order. 210 for (int StageNum = i; StageNum >= 0; --StageNum) { 211 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 212 BBE = BB->getFirstTerminator(); 213 BBI != BBE; ++BBI) { 214 if (Schedule.getStage(&*BBI) == StageNum) { 215 if (BBI->isPHI()) 216 continue; 217 MachineInstr *NewMI = 218 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 219 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 220 NewBB->push_back(NewMI); 221 InstrMap[NewMI] = &*BBI; 222 } 223 } 224 } 225 rewritePhiValues(NewBB, i, VRMap, InstrMap); 226 LLVM_DEBUG({ 227 dbgs() << "prolog:\n"; 228 NewBB->dump(); 229 }); 230 } 231 232 PredBB->replaceSuccessor(BB, KernelBB); 233 234 // Check if we need to remove the branch from the preheader to the original 235 // loop, and replace it with a branch to the new loop. 236 unsigned numBranches = TII->removeBranch(*Preheader); 237 if (numBranches) { 238 SmallVector<MachineOperand, 0> Cond; 239 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 240 } 241 } 242 243 /// Generate the pipeline epilog code. The epilog code finishes the iterations 244 /// that were started in either the prolog or the kernel. We create a basic 245 /// block for each stage that needs to complete. 246 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 247 MachineBasicBlock *KernelBB, 248 ValueMapTy *VRMap, 249 MBBVectorTy &EpilogBBs, 250 MBBVectorTy &PrologBBs) { 251 // We need to change the branch from the kernel to the first epilog block, so 252 // this call to analyze branch uses the kernel rather than the original BB. 253 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 254 SmallVector<MachineOperand, 4> Cond; 255 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 256 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 257 if (checkBranch) 258 return; 259 260 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 261 if (*LoopExitI == KernelBB) 262 ++LoopExitI; 263 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 264 MachineBasicBlock *LoopExitBB = *LoopExitI; 265 266 MachineBasicBlock *PredBB = KernelBB; 267 MachineBasicBlock *EpilogStart = LoopExitBB; 268 InstrMapTy InstrMap; 269 270 // Generate a basic block for each stage, not including the last stage, 271 // which was generated for the kernel. Each basic block may contain 272 // instructions from multiple stages/iterations. 273 int EpilogStage = LastStage + 1; 274 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 275 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 276 EpilogBBs.push_back(NewBB); 277 MF.insert(BB->getIterator(), NewBB); 278 279 PredBB->replaceSuccessor(LoopExitBB, NewBB); 280 NewBB->addSuccessor(LoopExitBB); 281 282 if (EpilogStart == LoopExitBB) 283 EpilogStart = NewBB; 284 285 // Add instructions to the epilog depending on the current block. 286 // Process instructions in original program order. 287 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 288 for (auto &BBI : *BB) { 289 if (BBI.isPHI()) 290 continue; 291 MachineInstr *In = &BBI; 292 if ((unsigned)Schedule.getStage(In) == StageNum) { 293 // Instructions with memoperands in the epilog are updated with 294 // conservative values. 295 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 296 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 297 NewBB->push_back(NewMI); 298 InstrMap[NewMI] = In; 299 } 300 } 301 } 302 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 303 InstrMap, LastStage, EpilogStage, i == 1); 304 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 305 LastStage, EpilogStage, i == 1); 306 PredBB = NewBB; 307 308 LLVM_DEBUG({ 309 dbgs() << "epilog:\n"; 310 NewBB->dump(); 311 }); 312 } 313 314 // Fix any Phi nodes in the loop exit block. 315 LoopExitBB->replacePhiUsesWith(BB, PredBB); 316 317 // Create a branch to the new epilog from the kernel. 318 // Remove the original branch and add a new branch to the epilog. 319 TII->removeBranch(*KernelBB); 320 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 321 // Add a branch to the loop exit. 322 if (EpilogBBs.size() > 0) { 323 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 324 SmallVector<MachineOperand, 4> Cond1; 325 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 326 } 327 } 328 329 /// Replace all uses of FromReg that appear outside the specified 330 /// basic block with ToReg. 331 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 332 MachineBasicBlock *MBB, 333 MachineRegisterInfo &MRI, 334 LiveIntervals &LIS) { 335 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 336 E = MRI.use_end(); 337 I != E;) { 338 MachineOperand &O = *I; 339 ++I; 340 if (O.getParent()->getParent() != MBB) 341 O.setReg(ToReg); 342 } 343 if (!LIS.hasInterval(ToReg)) 344 LIS.createEmptyInterval(ToReg); 345 } 346 347 /// Return true if the register has a use that occurs outside the 348 /// specified loop. 349 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 350 MachineRegisterInfo &MRI) { 351 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 352 E = MRI.use_end(); 353 I != E; ++I) 354 if (I->getParent()->getParent() != BB) 355 return true; 356 return false; 357 } 358 359 /// Generate Phis for the specific block in the generated pipelined code. 360 /// This function looks at the Phis from the original code to guide the 361 /// creation of new Phis. 362 void ModuloScheduleExpander::generateExistingPhis( 363 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 364 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 365 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 366 // Compute the stage number for the initial value of the Phi, which 367 // comes from the prolog. The prolog to use depends on to which kernel/ 368 // epilog that we're adding the Phi. 369 unsigned PrologStage = 0; 370 unsigned PrevStage = 0; 371 bool InKernel = (LastStageNum == CurStageNum); 372 if (InKernel) { 373 PrologStage = LastStageNum - 1; 374 PrevStage = CurStageNum; 375 } else { 376 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 377 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 378 } 379 380 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 381 BBE = BB->getFirstNonPHI(); 382 BBI != BBE; ++BBI) { 383 Register Def = BBI->getOperand(0).getReg(); 384 385 unsigned InitVal = 0; 386 unsigned LoopVal = 0; 387 getPhiRegs(*BBI, BB, InitVal, LoopVal); 388 389 unsigned PhiOp1 = 0; 390 // The Phi value from the loop body typically is defined in the loop, but 391 // not always. So, we need to check if the value is defined in the loop. 392 unsigned PhiOp2 = LoopVal; 393 if (VRMap[LastStageNum].count(LoopVal)) 394 PhiOp2 = VRMap[LastStageNum][LoopVal]; 395 396 int StageScheduled = Schedule.getStage(&*BBI); 397 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 398 unsigned NumStages = getStagesForReg(Def, CurStageNum); 399 if (NumStages == 0) { 400 // We don't need to generate a Phi anymore, but we need to rename any uses 401 // of the Phi value. 402 unsigned NewReg = VRMap[PrevStage][LoopVal]; 403 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 404 InitVal, NewReg); 405 if (VRMap[CurStageNum].count(LoopVal)) 406 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 407 } 408 // Adjust the number of Phis needed depending on the number of prologs left, 409 // and the distance from where the Phi is first scheduled. The number of 410 // Phis cannot exceed the number of prolog stages. Each stage can 411 // potentially define two values. 412 unsigned MaxPhis = PrologStage + 2; 413 if (!InKernel && (int)PrologStage <= LoopValStage) 414 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 415 unsigned NumPhis = std::min(NumStages, MaxPhis); 416 417 unsigned NewReg = 0; 418 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 419 // In the epilog, we may need to look back one stage to get the correct 420 // Phi name, because the epilog and prolog blocks execute the same stage. 421 // The correct name is from the previous block only when the Phi has 422 // been completely scheduled prior to the epilog, and Phi value is not 423 // needed in multiple stages. 424 int StageDiff = 0; 425 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 426 NumPhis == 1) 427 StageDiff = 1; 428 // Adjust the computations below when the phi and the loop definition 429 // are scheduled in different stages. 430 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 431 StageDiff = StageScheduled - LoopValStage; 432 for (unsigned np = 0; np < NumPhis; ++np) { 433 // If the Phi hasn't been scheduled, then use the initial Phi operand 434 // value. Otherwise, use the scheduled version of the instruction. This 435 // is a little complicated when a Phi references another Phi. 436 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 437 PhiOp1 = InitVal; 438 // Check if the Phi has already been scheduled in a prolog stage. 439 else if (PrologStage >= AccessStage + StageDiff + np && 440 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 441 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 442 // Check if the Phi has already been scheduled, but the loop instruction 443 // is either another Phi, or doesn't occur in the loop. 444 else if (PrologStage >= AccessStage + StageDiff + np) { 445 // If the Phi references another Phi, we need to examine the other 446 // Phi to get the correct value. 447 PhiOp1 = LoopVal; 448 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 449 int Indirects = 1; 450 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 451 int PhiStage = Schedule.getStage(InstOp1); 452 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 453 PhiOp1 = getInitPhiReg(*InstOp1, BB); 454 else 455 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 456 InstOp1 = MRI.getVRegDef(PhiOp1); 457 int PhiOpStage = Schedule.getStage(InstOp1); 458 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 459 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 460 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 461 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 462 break; 463 } 464 ++Indirects; 465 } 466 } else 467 PhiOp1 = InitVal; 468 // If this references a generated Phi in the kernel, get the Phi operand 469 // from the incoming block. 470 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 471 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 472 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 473 474 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 475 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 476 // In the epilog, a map lookup is needed to get the value from the kernel, 477 // or previous epilog block. How is does this depends on if the 478 // instruction is scheduled in the previous block. 479 if (!InKernel) { 480 int StageDiffAdj = 0; 481 if (LoopValStage != -1 && StageScheduled > LoopValStage) 482 StageDiffAdj = StageScheduled - LoopValStage; 483 // Use the loop value defined in the kernel, unless the kernel 484 // contains the last definition of the Phi. 485 if (np == 0 && PrevStage == LastStageNum && 486 (StageScheduled != 0 || LoopValStage != 0) && 487 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 488 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 489 // Use the value defined by the Phi. We add one because we switch 490 // from looking at the loop value to the Phi definition. 491 else if (np > 0 && PrevStage == LastStageNum && 492 VRMap[PrevStage - np + 1].count(Def)) 493 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 494 // Use the loop value defined in the kernel. 495 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 496 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 497 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 498 // Use the value defined by the Phi, unless we're generating the first 499 // epilog and the Phi refers to a Phi in a different stage. 500 else if (VRMap[PrevStage - np].count(Def) && 501 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 502 (LoopValStage == StageScheduled))) 503 PhiOp2 = VRMap[PrevStage - np][Def]; 504 } 505 506 // Check if we can reuse an existing Phi. This occurs when a Phi 507 // references another Phi, and the other Phi is scheduled in an 508 // earlier stage. We can try to reuse an existing Phi up until the last 509 // stage of the current Phi. 510 if (LoopDefIsPhi) { 511 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 512 int LVNumStages = getStagesForPhi(LoopVal); 513 int StageDiff = (StageScheduled - LoopValStage); 514 LVNumStages -= StageDiff; 515 // Make sure the loop value Phi has been processed already. 516 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 517 NewReg = PhiOp2; 518 unsigned ReuseStage = CurStageNum; 519 if (isLoopCarried(*PhiInst)) 520 ReuseStage -= LVNumStages; 521 // Check if the Phi to reuse has been generated yet. If not, then 522 // there is nothing to reuse. 523 if (VRMap[ReuseStage - np].count(LoopVal)) { 524 NewReg = VRMap[ReuseStage - np][LoopVal]; 525 526 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 527 Def, NewReg); 528 // Update the map with the new Phi name. 529 VRMap[CurStageNum - np][Def] = NewReg; 530 PhiOp2 = NewReg; 531 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 532 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 533 534 if (IsLast && np == NumPhis - 1) 535 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 536 continue; 537 } 538 } 539 } 540 if (InKernel && StageDiff > 0 && 541 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 542 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 543 } 544 545 const TargetRegisterClass *RC = MRI.getRegClass(Def); 546 NewReg = MRI.createVirtualRegister(RC); 547 548 MachineInstrBuilder NewPhi = 549 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 550 TII->get(TargetOpcode::PHI), NewReg); 551 NewPhi.addReg(PhiOp1).addMBB(BB1); 552 NewPhi.addReg(PhiOp2).addMBB(BB2); 553 if (np == 0) 554 InstrMap[NewPhi] = &*BBI; 555 556 // We define the Phis after creating the new pipelined code, so 557 // we need to rename the Phi values in scheduled instructions. 558 559 unsigned PrevReg = 0; 560 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 561 PrevReg = VRMap[PrevStage - np][LoopVal]; 562 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 563 NewReg, PrevReg); 564 // If the Phi has been scheduled, use the new name for rewriting. 565 if (VRMap[CurStageNum - np].count(Def)) { 566 unsigned R = VRMap[CurStageNum - np][Def]; 567 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 568 NewReg); 569 } 570 571 // Check if we need to rename any uses that occurs after the loop. The 572 // register to replace depends on whether the Phi is scheduled in the 573 // epilog. 574 if (IsLast && np == NumPhis - 1) 575 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 576 577 // In the kernel, a dependent Phi uses the value from this Phi. 578 if (InKernel) 579 PhiOp2 = NewReg; 580 581 // Update the map with the new Phi name. 582 VRMap[CurStageNum - np][Def] = NewReg; 583 } 584 585 while (NumPhis++ < NumStages) { 586 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 587 NewReg, 0); 588 } 589 590 // Check if we need to rename a Phi that has been eliminated due to 591 // scheduling. 592 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 593 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 594 } 595 } 596 597 /// Generate Phis for the specified block in the generated pipelined code. 598 /// These are new Phis needed because the definition is scheduled after the 599 /// use in the pipelined sequence. 600 void ModuloScheduleExpander::generatePhis( 601 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 602 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 603 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 604 // Compute the stage number that contains the initial Phi value, and 605 // the Phi from the previous stage. 606 unsigned PrologStage = 0; 607 unsigned PrevStage = 0; 608 unsigned StageDiff = CurStageNum - LastStageNum; 609 bool InKernel = (StageDiff == 0); 610 if (InKernel) { 611 PrologStage = LastStageNum - 1; 612 PrevStage = CurStageNum; 613 } else { 614 PrologStage = LastStageNum - StageDiff; 615 PrevStage = LastStageNum + StageDiff - 1; 616 } 617 618 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 619 BBE = BB->instr_end(); 620 BBI != BBE; ++BBI) { 621 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 622 MachineOperand &MO = BBI->getOperand(i); 623 if (!MO.isReg() || !MO.isDef() || 624 !Register::isVirtualRegister(MO.getReg())) 625 continue; 626 627 int StageScheduled = Schedule.getStage(&*BBI); 628 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 629 Register Def = MO.getReg(); 630 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 631 // An instruction scheduled in stage 0 and is used after the loop 632 // requires a phi in the epilog for the last definition from either 633 // the kernel or prolog. 634 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 635 hasUseAfterLoop(Def, BB, MRI)) 636 NumPhis = 1; 637 if (!InKernel && (unsigned)StageScheduled > PrologStage) 638 continue; 639 640 unsigned PhiOp2 = VRMap[PrevStage][Def]; 641 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 642 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 643 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 644 // The number of Phis can't exceed the number of prolog stages. The 645 // prolog stage number is zero based. 646 if (NumPhis > PrologStage + 1 - StageScheduled) 647 NumPhis = PrologStage + 1 - StageScheduled; 648 for (unsigned np = 0; np < NumPhis; ++np) { 649 unsigned PhiOp1 = VRMap[PrologStage][Def]; 650 if (np <= PrologStage) 651 PhiOp1 = VRMap[PrologStage - np][Def]; 652 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 653 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 654 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 655 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 656 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 657 } 658 if (!InKernel) 659 PhiOp2 = VRMap[PrevStage - np][Def]; 660 661 const TargetRegisterClass *RC = MRI.getRegClass(Def); 662 Register NewReg = MRI.createVirtualRegister(RC); 663 664 MachineInstrBuilder NewPhi = 665 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 666 TII->get(TargetOpcode::PHI), NewReg); 667 NewPhi.addReg(PhiOp1).addMBB(BB1); 668 NewPhi.addReg(PhiOp2).addMBB(BB2); 669 if (np == 0) 670 InstrMap[NewPhi] = &*BBI; 671 672 // Rewrite uses and update the map. The actions depend upon whether 673 // we generating code for the kernel or epilog blocks. 674 if (InKernel) { 675 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 676 NewReg); 677 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 678 NewReg); 679 680 PhiOp2 = NewReg; 681 VRMap[PrevStage - np - 1][Def] = NewReg; 682 } else { 683 VRMap[CurStageNum - np][Def] = NewReg; 684 if (np == NumPhis - 1) 685 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 686 NewReg); 687 } 688 if (IsLast && np == NumPhis - 1) 689 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 690 } 691 } 692 } 693 } 694 695 /// Remove instructions that generate values with no uses. 696 /// Typically, these are induction variable operations that generate values 697 /// used in the loop itself. A dead instruction has a definition with 698 /// no uses, or uses that occur in the original loop only. 699 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 700 MBBVectorTy &EpilogBBs) { 701 // For each epilog block, check that the value defined by each instruction 702 // is used. If not, delete it. 703 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 704 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 705 ME = MBB->instr_rend(); 706 MI != ME;) { 707 // From DeadMachineInstructionElem. Don't delete inline assembly. 708 if (MI->isInlineAsm()) { 709 ++MI; 710 continue; 711 } 712 bool SawStore = false; 713 // Check if it's safe to remove the instruction due to side effects. 714 // We can, and want to, remove Phis here. 715 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 716 ++MI; 717 continue; 718 } 719 bool used = true; 720 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 721 MOE = MI->operands_end(); 722 MOI != MOE; ++MOI) { 723 if (!MOI->isReg() || !MOI->isDef()) 724 continue; 725 Register reg = MOI->getReg(); 726 // Assume physical registers are used, unless they are marked dead. 727 if (Register::isPhysicalRegister(reg)) { 728 used = !MOI->isDead(); 729 if (used) 730 break; 731 continue; 732 } 733 unsigned realUses = 0; 734 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 735 EI = MRI.use_end(); 736 UI != EI; ++UI) { 737 // Check if there are any uses that occur only in the original 738 // loop. If so, that's not a real use. 739 if (UI->getParent()->getParent() != BB) { 740 realUses++; 741 used = true; 742 break; 743 } 744 } 745 if (realUses > 0) 746 break; 747 used = false; 748 } 749 if (!used) { 750 LIS.RemoveMachineInstrFromMaps(*MI); 751 MI++->eraseFromParent(); 752 continue; 753 } 754 ++MI; 755 } 756 // In the kernel block, check if we can remove a Phi that generates a value 757 // used in an instruction removed in the epilog block. 758 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 759 Register reg = MI.getOperand(0).getReg(); 760 if (MRI.use_begin(reg) == MRI.use_end()) { 761 LIS.RemoveMachineInstrFromMaps(MI); 762 MI.eraseFromParent(); 763 } 764 } 765 } 766 767 /// For loop carried definitions, we split the lifetime of a virtual register 768 /// that has uses past the definition in the next iteration. A copy with a new 769 /// virtual register is inserted before the definition, which helps with 770 /// generating a better register assignment. 771 /// 772 /// v1 = phi(a, v2) v1 = phi(a, v2) 773 /// v2 = phi(b, v3) v2 = phi(b, v3) 774 /// v3 = .. v4 = copy v1 775 /// .. = V1 v3 = .. 776 /// .. = v4 777 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 778 MBBVectorTy &EpilogBBs) { 779 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 780 for (auto &PHI : KernelBB->phis()) { 781 Register Def = PHI.getOperand(0).getReg(); 782 // Check for any Phi definition that used as an operand of another Phi 783 // in the same block. 784 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 785 E = MRI.use_instr_end(); 786 I != E; ++I) { 787 if (I->isPHI() && I->getParent() == KernelBB) { 788 // Get the loop carried definition. 789 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 790 if (!LCDef) 791 continue; 792 MachineInstr *MI = MRI.getVRegDef(LCDef); 793 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 794 continue; 795 // Search through the rest of the block looking for uses of the Phi 796 // definition. If one occurs, then split the lifetime. 797 unsigned SplitReg = 0; 798 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 799 KernelBB->instr_end())) 800 if (BBJ.readsRegister(Def)) { 801 // We split the lifetime when we find the first use. 802 if (SplitReg == 0) { 803 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 804 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 805 TII->get(TargetOpcode::COPY), SplitReg) 806 .addReg(Def); 807 } 808 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 809 } 810 if (!SplitReg) 811 continue; 812 // Search through each of the epilog blocks for any uses to be renamed. 813 for (auto &Epilog : EpilogBBs) 814 for (auto &I : *Epilog) 815 if (I.readsRegister(Def)) 816 I.substituteRegister(Def, SplitReg, 0, *TRI); 817 break; 818 } 819 } 820 } 821 } 822 823 /// Remove the incoming block from the Phis in a basic block. 824 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 825 for (MachineInstr &MI : *BB) { 826 if (!MI.isPHI()) 827 break; 828 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 829 if (MI.getOperand(i + 1).getMBB() == Incoming) { 830 MI.RemoveOperand(i + 1); 831 MI.RemoveOperand(i); 832 break; 833 } 834 } 835 } 836 837 /// Create branches from each prolog basic block to the appropriate epilog 838 /// block. These edges are needed if the loop ends before reaching the 839 /// kernel. 840 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 841 MBBVectorTy &PrologBBs, 842 MachineBasicBlock *KernelBB, 843 MBBVectorTy &EpilogBBs, 844 ValueMapTy *VRMap) { 845 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 846 MachineBasicBlock *LastPro = KernelBB; 847 MachineBasicBlock *LastEpi = KernelBB; 848 849 // Start from the blocks connected to the kernel and work "out" 850 // to the first prolog and the last epilog blocks. 851 SmallVector<MachineInstr *, 4> PrevInsts; 852 unsigned MaxIter = PrologBBs.size() - 1; 853 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 854 // Add branches to the prolog that go to the corresponding 855 // epilog, and the fall-thru prolog/kernel block. 856 MachineBasicBlock *Prolog = PrologBBs[j]; 857 MachineBasicBlock *Epilog = EpilogBBs[i]; 858 859 SmallVector<MachineOperand, 4> Cond; 860 Optional<bool> StaticallyGreater = 861 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 862 unsigned numAdded = 0; 863 if (!StaticallyGreater.hasValue()) { 864 Prolog->addSuccessor(Epilog); 865 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 866 } else if (*StaticallyGreater == false) { 867 Prolog->addSuccessor(Epilog); 868 Prolog->removeSuccessor(LastPro); 869 LastEpi->removeSuccessor(Epilog); 870 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 871 removePhis(Epilog, LastEpi); 872 // Remove the blocks that are no longer referenced. 873 if (LastPro != LastEpi) { 874 LastEpi->clear(); 875 LastEpi->eraseFromParent(); 876 } 877 if (LastPro == KernelBB) { 878 LoopInfo->disposed(); 879 NewKernel = nullptr; 880 } 881 LastPro->clear(); 882 LastPro->eraseFromParent(); 883 } else { 884 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 885 removePhis(Epilog, Prolog); 886 } 887 LastPro = Prolog; 888 LastEpi = Epilog; 889 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 890 E = Prolog->instr_rend(); 891 I != E && numAdded > 0; ++I, --numAdded) 892 updateInstruction(&*I, false, j, 0, VRMap); 893 } 894 895 if (NewKernel) { 896 LoopInfo->setPreheader(PrologBBs[MaxIter]); 897 LoopInfo->adjustTripCount(-(MaxIter + 1)); 898 } 899 } 900 901 /// Return true if we can compute the amount the instruction changes 902 /// during each iteration. Set Delta to the amount of the change. 903 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 904 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 905 const MachineOperand *BaseOp; 906 int64_t Offset; 907 bool OffsetIsScalable; 908 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 909 return false; 910 911 // FIXME: This algorithm assumes instructions have fixed-size offsets. 912 if (OffsetIsScalable) 913 return false; 914 915 if (!BaseOp->isReg()) 916 return false; 917 918 Register BaseReg = BaseOp->getReg(); 919 920 MachineRegisterInfo &MRI = MF.getRegInfo(); 921 // Check if there is a Phi. If so, get the definition in the loop. 922 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 923 if (BaseDef && BaseDef->isPHI()) { 924 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 925 BaseDef = MRI.getVRegDef(BaseReg); 926 } 927 if (!BaseDef) 928 return false; 929 930 int D = 0; 931 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 932 return false; 933 934 Delta = D; 935 return true; 936 } 937 938 /// Update the memory operand with a new offset when the pipeliner 939 /// generates a new copy of the instruction that refers to a 940 /// different memory location. 941 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 942 MachineInstr &OldMI, 943 unsigned Num) { 944 if (Num == 0) 945 return; 946 // If the instruction has memory operands, then adjust the offset 947 // when the instruction appears in different stages. 948 if (NewMI.memoperands_empty()) 949 return; 950 SmallVector<MachineMemOperand *, 2> NewMMOs; 951 for (MachineMemOperand *MMO : NewMI.memoperands()) { 952 // TODO: Figure out whether isAtomic is really necessary (see D57601). 953 if (MMO->isVolatile() || MMO->isAtomic() || 954 (MMO->isInvariant() && MMO->isDereferenceable()) || 955 (!MMO->getValue())) { 956 NewMMOs.push_back(MMO); 957 continue; 958 } 959 unsigned Delta; 960 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 961 int64_t AdjOffset = Delta * Num; 962 NewMMOs.push_back( 963 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 964 } else { 965 NewMMOs.push_back( 966 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 967 } 968 } 969 NewMI.setMemRefs(MF, NewMMOs); 970 } 971 972 /// Clone the instruction for the new pipelined loop and update the 973 /// memory operands, if needed. 974 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 975 unsigned CurStageNum, 976 unsigned InstStageNum) { 977 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 978 // Check for tied operands in inline asm instructions. This should be handled 979 // elsewhere, but I'm not sure of the best solution. 980 if (OldMI->isInlineAsm()) 981 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 982 const auto &MO = OldMI->getOperand(i); 983 if (MO.isReg() && MO.isUse()) 984 break; 985 unsigned UseIdx; 986 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 987 NewMI->tieOperands(i, UseIdx); 988 } 989 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 990 return NewMI; 991 } 992 993 /// Clone the instruction for the new pipelined loop. If needed, this 994 /// function updates the instruction using the values saved in the 995 /// InstrChanges structure. 996 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 997 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 998 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 999 auto It = InstrChanges.find(OldMI); 1000 if (It != InstrChanges.end()) { 1001 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1002 unsigned BasePos, OffsetPos; 1003 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1004 return nullptr; 1005 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1006 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1007 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1008 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1009 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1010 } 1011 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1012 return NewMI; 1013 } 1014 1015 /// Update the machine instruction with new virtual registers. This 1016 /// function may change the defintions and/or uses. 1017 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1018 bool LastDef, 1019 unsigned CurStageNum, 1020 unsigned InstrStageNum, 1021 ValueMapTy *VRMap) { 1022 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1023 MachineOperand &MO = NewMI->getOperand(i); 1024 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1025 continue; 1026 Register reg = MO.getReg(); 1027 if (MO.isDef()) { 1028 // Create a new virtual register for the definition. 1029 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1030 Register NewReg = MRI.createVirtualRegister(RC); 1031 MO.setReg(NewReg); 1032 VRMap[CurStageNum][reg] = NewReg; 1033 if (LastDef) 1034 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1035 } else if (MO.isUse()) { 1036 MachineInstr *Def = MRI.getVRegDef(reg); 1037 // Compute the stage that contains the last definition for instruction. 1038 int DefStageNum = Schedule.getStage(Def); 1039 unsigned StageNum = CurStageNum; 1040 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1041 // Compute the difference in stages between the defintion and the use. 1042 unsigned StageDiff = (InstrStageNum - DefStageNum); 1043 // Make an adjustment to get the last definition. 1044 StageNum -= StageDiff; 1045 } 1046 if (VRMap[StageNum].count(reg)) 1047 MO.setReg(VRMap[StageNum][reg]); 1048 } 1049 } 1050 } 1051 1052 /// Return the instruction in the loop that defines the register. 1053 /// If the definition is a Phi, then follow the Phi operand to 1054 /// the instruction in the loop. 1055 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1056 SmallPtrSet<MachineInstr *, 8> Visited; 1057 MachineInstr *Def = MRI.getVRegDef(Reg); 1058 while (Def->isPHI()) { 1059 if (!Visited.insert(Def).second) 1060 break; 1061 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1062 if (Def->getOperand(i + 1).getMBB() == BB) { 1063 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1064 break; 1065 } 1066 } 1067 return Def; 1068 } 1069 1070 /// Return the new name for the value from the previous stage. 1071 unsigned ModuloScheduleExpander::getPrevMapVal( 1072 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1073 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1074 unsigned PrevVal = 0; 1075 if (StageNum > PhiStage) { 1076 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1077 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1078 // The name is defined in the previous stage. 1079 PrevVal = VRMap[StageNum - 1][LoopVal]; 1080 else if (VRMap[StageNum].count(LoopVal)) 1081 // The previous name is defined in the current stage when the instruction 1082 // order is swapped. 1083 PrevVal = VRMap[StageNum][LoopVal]; 1084 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1085 // The loop value hasn't yet been scheduled. 1086 PrevVal = LoopVal; 1087 else if (StageNum == PhiStage + 1) 1088 // The loop value is another phi, which has not been scheduled. 1089 PrevVal = getInitPhiReg(*LoopInst, BB); 1090 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1091 // The loop value is another phi, which has been scheduled. 1092 PrevVal = 1093 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1094 LoopStage, VRMap, BB); 1095 } 1096 return PrevVal; 1097 } 1098 1099 /// Rewrite the Phi values in the specified block to use the mappings 1100 /// from the initial operand. Once the Phi is scheduled, we switch 1101 /// to using the loop value instead of the Phi value, so those names 1102 /// do not need to be rewritten. 1103 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1104 unsigned StageNum, 1105 ValueMapTy *VRMap, 1106 InstrMapTy &InstrMap) { 1107 for (auto &PHI : BB->phis()) { 1108 unsigned InitVal = 0; 1109 unsigned LoopVal = 0; 1110 getPhiRegs(PHI, BB, InitVal, LoopVal); 1111 Register PhiDef = PHI.getOperand(0).getReg(); 1112 1113 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1114 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1115 unsigned NumPhis = getStagesForPhi(PhiDef); 1116 if (NumPhis > StageNum) 1117 NumPhis = StageNum; 1118 for (unsigned np = 0; np <= NumPhis; ++np) { 1119 unsigned NewVal = 1120 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1121 if (!NewVal) 1122 NewVal = InitVal; 1123 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1124 NewVal); 1125 } 1126 } 1127 } 1128 1129 /// Rewrite a previously scheduled instruction to use the register value 1130 /// from the new instruction. Make sure the instruction occurs in the 1131 /// basic block, and we don't change the uses in the new instruction. 1132 void ModuloScheduleExpander::rewriteScheduledInstr( 1133 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1134 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1135 unsigned PrevReg) { 1136 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1137 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1138 // Rewrite uses that have been scheduled already to use the new 1139 // Phi register. 1140 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1141 EI = MRI.use_end(); 1142 UI != EI;) { 1143 MachineOperand &UseOp = *UI; 1144 MachineInstr *UseMI = UseOp.getParent(); 1145 ++UI; 1146 if (UseMI->getParent() != BB) 1147 continue; 1148 if (UseMI->isPHI()) { 1149 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1150 continue; 1151 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1152 continue; 1153 } 1154 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1155 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1156 MachineInstr *OrigMI = OrigInstr->second; 1157 int StageSched = Schedule.getStage(OrigMI); 1158 int CycleSched = Schedule.getCycle(OrigMI); 1159 unsigned ReplaceReg = 0; 1160 // This is the stage for the scheduled instruction. 1161 if (StagePhi == StageSched && Phi->isPHI()) { 1162 int CyclePhi = Schedule.getCycle(Phi); 1163 if (PrevReg && InProlog) 1164 ReplaceReg = PrevReg; 1165 else if (PrevReg && !isLoopCarried(*Phi) && 1166 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1167 ReplaceReg = PrevReg; 1168 else 1169 ReplaceReg = NewReg; 1170 } 1171 // The scheduled instruction occurs before the scheduled Phi, and the 1172 // Phi is not loop carried. 1173 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1174 ReplaceReg = NewReg; 1175 if (StagePhi > StageSched && Phi->isPHI()) 1176 ReplaceReg = NewReg; 1177 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1178 ReplaceReg = NewReg; 1179 if (ReplaceReg) { 1180 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1181 UseOp.setReg(ReplaceReg); 1182 } 1183 } 1184 } 1185 1186 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1187 if (!Phi.isPHI()) 1188 return false; 1189 int DefCycle = Schedule.getCycle(&Phi); 1190 int DefStage = Schedule.getStage(&Phi); 1191 1192 unsigned InitVal = 0; 1193 unsigned LoopVal = 0; 1194 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1195 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1196 if (!Use || Use->isPHI()) 1197 return true; 1198 int LoopCycle = Schedule.getCycle(Use); 1199 int LoopStage = Schedule.getStage(Use); 1200 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1201 } 1202 1203 //===----------------------------------------------------------------------===// 1204 // PeelingModuloScheduleExpander implementation 1205 //===----------------------------------------------------------------------===// 1206 // This is a reimplementation of ModuloScheduleExpander that works by creating 1207 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1208 //===----------------------------------------------------------------------===// 1209 1210 namespace { 1211 // Remove any dead phis in MBB. Dead phis either have only one block as input 1212 // (in which case they are the identity) or have no uses. 1213 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1214 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1215 bool Changed = true; 1216 while (Changed) { 1217 Changed = false; 1218 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1219 assert(MI.isPHI()); 1220 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1221 if (LIS) 1222 LIS->RemoveMachineInstrFromMaps(MI); 1223 MI.eraseFromParent(); 1224 Changed = true; 1225 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1226 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1227 MRI.getRegClass(MI.getOperand(0).getReg())); 1228 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1229 MI.getOperand(1).getReg()); 1230 if (LIS) 1231 LIS->RemoveMachineInstrFromMaps(MI); 1232 MI.eraseFromParent(); 1233 Changed = true; 1234 } 1235 } 1236 } 1237 } 1238 1239 /// Rewrites the kernel block in-place to adhere to the given schedule. 1240 /// KernelRewriter holds all of the state required to perform the rewriting. 1241 class KernelRewriter { 1242 ModuloSchedule &S; 1243 MachineBasicBlock *BB; 1244 MachineBasicBlock *PreheaderBB, *ExitBB; 1245 MachineRegisterInfo &MRI; 1246 const TargetInstrInfo *TII; 1247 LiveIntervals *LIS; 1248 1249 // Map from register class to canonical undef register for that class. 1250 DenseMap<const TargetRegisterClass *, Register> Undefs; 1251 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1252 // this map is only used when InitReg is non-undef. 1253 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1254 // Map from LoopReg to phi register where the InitReg is undef. 1255 DenseMap<Register, Register> UndefPhis; 1256 1257 // Reg is used by MI. Return the new register MI should use to adhere to the 1258 // schedule. Insert phis as necessary. 1259 Register remapUse(Register Reg, MachineInstr &MI); 1260 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1261 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1262 // or will be chosen so as to share another phi. 1263 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1264 const TargetRegisterClass *RC = nullptr); 1265 // Create an undef register of the given register class. 1266 Register undef(const TargetRegisterClass *RC); 1267 1268 public: 1269 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1270 LiveIntervals *LIS = nullptr); 1271 void rewrite(); 1272 }; 1273 } // namespace 1274 1275 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1276 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1277 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1278 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1279 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1280 PreheaderBB = *BB->pred_begin(); 1281 if (PreheaderBB == BB) 1282 PreheaderBB = *std::next(BB->pred_begin()); 1283 } 1284 1285 void KernelRewriter::rewrite() { 1286 // Rearrange the loop to be in schedule order. Note that the schedule may 1287 // contain instructions that are not owned by the loop block (InstrChanges and 1288 // friends), so we gracefully handle unowned instructions and delete any 1289 // instructions that weren't in the schedule. 1290 auto InsertPt = BB->getFirstTerminator(); 1291 MachineInstr *FirstMI = nullptr; 1292 for (MachineInstr *MI : S.getInstructions()) { 1293 if (MI->isPHI()) 1294 continue; 1295 if (MI->getParent()) 1296 MI->removeFromParent(); 1297 BB->insert(InsertPt, MI); 1298 if (!FirstMI) 1299 FirstMI = MI; 1300 } 1301 assert(FirstMI && "Failed to find first MI in schedule"); 1302 1303 // At this point all of the scheduled instructions are between FirstMI 1304 // and the end of the block. Kill from the first non-phi to FirstMI. 1305 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1306 if (LIS) 1307 LIS->RemoveMachineInstrFromMaps(*I); 1308 (I++)->eraseFromParent(); 1309 } 1310 1311 // Now remap every instruction in the loop. 1312 for (MachineInstr &MI : *BB) { 1313 if (MI.isPHI() || MI.isTerminator()) 1314 continue; 1315 for (MachineOperand &MO : MI.uses()) { 1316 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1317 continue; 1318 Register Reg = remapUse(MO.getReg(), MI); 1319 MO.setReg(Reg); 1320 } 1321 } 1322 EliminateDeadPhis(BB, MRI, LIS); 1323 1324 // Ensure a phi exists for all instructions that are either referenced by 1325 // an illegal phi or by an instruction outside the loop. This allows us to 1326 // treat remaps of these values the same as "normal" values that come from 1327 // loop-carried phis. 1328 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1329 if (MI->isPHI()) { 1330 Register R = MI->getOperand(0).getReg(); 1331 phi(R); 1332 continue; 1333 } 1334 1335 for (MachineOperand &Def : MI->defs()) { 1336 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1337 if (MI.getParent() != BB) { 1338 phi(Def.getReg()); 1339 break; 1340 } 1341 } 1342 } 1343 } 1344 } 1345 1346 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1347 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1348 if (!Producer) 1349 return Reg; 1350 1351 int ConsumerStage = S.getStage(&MI); 1352 if (!Producer->isPHI()) { 1353 // Non-phi producers are simple to remap. Insert as many phis as the 1354 // difference between the consumer and producer stages. 1355 if (Producer->getParent() != BB) 1356 // Producer was not inside the loop. Use the register as-is. 1357 return Reg; 1358 int ProducerStage = S.getStage(Producer); 1359 assert(ConsumerStage != -1 && 1360 "In-loop consumer should always be scheduled!"); 1361 assert(ConsumerStage >= ProducerStage); 1362 unsigned StageDiff = ConsumerStage - ProducerStage; 1363 1364 for (unsigned I = 0; I < StageDiff; ++I) 1365 Reg = phi(Reg); 1366 return Reg; 1367 } 1368 1369 // First, dive through the phi chain to find the defaults for the generated 1370 // phis. 1371 SmallVector<Optional<Register>, 4> Defaults; 1372 Register LoopReg = Reg; 1373 auto LoopProducer = Producer; 1374 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1375 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1376 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1377 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1378 assert(LoopProducer); 1379 } 1380 int LoopProducerStage = S.getStage(LoopProducer); 1381 1382 Optional<Register> IllegalPhiDefault; 1383 1384 if (LoopProducerStage == -1) { 1385 // Do nothing. 1386 } else if (LoopProducerStage > ConsumerStage) { 1387 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1388 // In addition, Consumer's cycle must be scheduled after Producer in the 1389 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1390 // functions. 1391 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1392 int LoopProducerCycle = S.getCycle(LoopProducer); 1393 int ConsumerCycle = S.getCycle(&MI); 1394 #endif 1395 assert(LoopProducerCycle <= ConsumerCycle); 1396 assert(LoopProducerStage == ConsumerStage + 1); 1397 // Peel off the first phi from Defaults and insert a phi between producer 1398 // and consumer. This phi will not be at the front of the block so we 1399 // consider it illegal. It will only exist during the rewrite process; it 1400 // needs to exist while we peel off prologs because these could take the 1401 // default value. After that we can replace all uses with the loop producer 1402 // value. 1403 IllegalPhiDefault = Defaults.front(); 1404 Defaults.erase(Defaults.begin()); 1405 } else { 1406 assert(ConsumerStage >= LoopProducerStage); 1407 int StageDiff = ConsumerStage - LoopProducerStage; 1408 if (StageDiff > 0) { 1409 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1410 << " to " << (Defaults.size() + StageDiff) << "\n"); 1411 // If we need more phis than we have defaults for, pad out with undefs for 1412 // the earliest phis, which are at the end of the defaults chain (the 1413 // chain is in reverse order). 1414 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1415 ? Optional<Register>() 1416 : Defaults.back()); 1417 } 1418 } 1419 1420 // Now we know the number of stages to jump back, insert the phi chain. 1421 auto DefaultI = Defaults.rbegin(); 1422 while (DefaultI != Defaults.rend()) 1423 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1424 1425 if (IllegalPhiDefault.hasValue()) { 1426 // The consumer optionally consumes LoopProducer in the same iteration 1427 // (because the producer is scheduled at an earlier cycle than the consumer) 1428 // or the initial value. To facilitate this we create an illegal block here 1429 // by embedding a phi in the middle of the block. We will fix this up 1430 // immediately prior to pruning. 1431 auto RC = MRI.getRegClass(Reg); 1432 Register R = MRI.createVirtualRegister(RC); 1433 MachineInstr *IllegalPhi = 1434 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1435 .addReg(IllegalPhiDefault.getValue()) 1436 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1437 .addReg(LoopReg) 1438 .addMBB(BB); // Block choice is arbitrary and has no effect. 1439 // Illegal phi should belong to the producer stage so that it can be 1440 // filtered correctly during peeling. 1441 S.setStage(IllegalPhi, LoopProducerStage); 1442 return R; 1443 } 1444 1445 return LoopReg; 1446 } 1447 1448 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1449 const TargetRegisterClass *RC) { 1450 // If the init register is not undef, try and find an existing phi. 1451 if (InitReg.hasValue()) { 1452 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1453 if (I != Phis.end()) 1454 return I->second; 1455 } else { 1456 for (auto &KV : Phis) { 1457 if (KV.first.first == LoopReg) 1458 return KV.second; 1459 } 1460 } 1461 1462 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1463 // find a phi that takes undef as input. 1464 auto I = UndefPhis.find(LoopReg); 1465 if (I != UndefPhis.end()) { 1466 Register R = I->second; 1467 if (!InitReg.hasValue()) 1468 // Found a phi taking undef as input, and this input is undef so return 1469 // without any more changes. 1470 return R; 1471 // Found a phi taking undef as input, so rewrite it to take InitReg. 1472 MachineInstr *MI = MRI.getVRegDef(R); 1473 MI->getOperand(1).setReg(InitReg.getValue()); 1474 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1475 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1476 UndefPhis.erase(I); 1477 return R; 1478 } 1479 1480 // Failed to find any existing phi to reuse, so create a new one. 1481 if (!RC) 1482 RC = MRI.getRegClass(LoopReg); 1483 Register R = MRI.createVirtualRegister(RC); 1484 if (InitReg.hasValue()) 1485 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1486 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1487 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1488 .addMBB(PreheaderBB) 1489 .addReg(LoopReg) 1490 .addMBB(BB); 1491 if (!InitReg.hasValue()) 1492 UndefPhis[LoopReg] = R; 1493 else 1494 Phis[{LoopReg, *InitReg}] = R; 1495 return R; 1496 } 1497 1498 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1499 Register &R = Undefs[RC]; 1500 if (R == 0) { 1501 // Create an IMPLICIT_DEF that defines this register if we need it. 1502 // All uses of this should be removed by the time we have finished unrolling 1503 // prologs and epilogs. 1504 R = MRI.createVirtualRegister(RC); 1505 auto *InsertBB = &PreheaderBB->getParent()->front(); 1506 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1507 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1508 } 1509 return R; 1510 } 1511 1512 namespace { 1513 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1514 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1515 /// through and defaults for these phis. 1516 class KernelOperandInfo { 1517 MachineBasicBlock *BB; 1518 MachineRegisterInfo &MRI; 1519 SmallVector<Register, 4> PhiDefaults; 1520 MachineOperand *Source; 1521 MachineOperand *Target; 1522 1523 public: 1524 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1525 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1526 : MRI(MRI) { 1527 Source = MO; 1528 BB = MO->getParent()->getParent(); 1529 while (isRegInLoop(MO)) { 1530 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1531 if (MI->isFullCopy()) { 1532 MO = &MI->getOperand(1); 1533 continue; 1534 } 1535 if (!MI->isPHI()) 1536 break; 1537 // If this is an illegal phi, don't count it in distance. 1538 if (IllegalPhis.count(MI)) { 1539 MO = &MI->getOperand(3); 1540 continue; 1541 } 1542 1543 Register Default = getInitPhiReg(*MI, BB); 1544 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1545 : &MI->getOperand(3); 1546 PhiDefaults.push_back(Default); 1547 } 1548 Target = MO; 1549 } 1550 1551 bool operator==(const KernelOperandInfo &Other) const { 1552 return PhiDefaults.size() == Other.PhiDefaults.size(); 1553 } 1554 1555 void print(raw_ostream &OS) const { 1556 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1557 << *Source->getParent(); 1558 } 1559 1560 private: 1561 bool isRegInLoop(MachineOperand *MO) { 1562 return MO->isReg() && MO->getReg().isVirtual() && 1563 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1564 } 1565 }; 1566 } // namespace 1567 1568 MachineBasicBlock * 1569 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1570 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1571 if (LPD == LPD_Front) 1572 PeeledFront.push_back(NewBB); 1573 else 1574 PeeledBack.push_front(NewBB); 1575 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1576 ++I, ++NI) { 1577 CanonicalMIs[&*I] = &*I; 1578 CanonicalMIs[&*NI] = &*I; 1579 BlockMIs[{NewBB, &*I}] = &*NI; 1580 BlockMIs[{BB, &*I}] = &*I; 1581 } 1582 return NewBB; 1583 } 1584 1585 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1586 int MinStage) { 1587 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1588 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1589 MachineInstr *MI = &*I++; 1590 int Stage = getStage(MI); 1591 if (Stage == -1 || Stage >= MinStage) 1592 continue; 1593 1594 for (MachineOperand &DefMO : MI->defs()) { 1595 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1596 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1597 // Only PHIs can use values from this block by construction. 1598 // Match with the equivalent PHI in B. 1599 assert(UseMI.isPHI()); 1600 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1601 MI->getParent()); 1602 Subs.emplace_back(&UseMI, Reg); 1603 } 1604 for (auto &Sub : Subs) 1605 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1606 *MRI.getTargetRegisterInfo()); 1607 } 1608 if (LIS) 1609 LIS->RemoveMachineInstrFromMaps(*MI); 1610 MI->eraseFromParent(); 1611 } 1612 } 1613 1614 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1615 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1616 auto InsertPt = DestBB->getFirstNonPHI(); 1617 DenseMap<Register, Register> Remaps; 1618 for (MachineInstr &MI : llvm::make_early_inc_range( 1619 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1620 if (MI.isPHI()) { 1621 // This is an illegal PHI. If we move any instructions using an illegal 1622 // PHI, we need to create a legal Phi. 1623 if (getStage(&MI) != Stage) { 1624 // The legal Phi is not necessary if the illegal phi's stage 1625 // is being moved. 1626 Register PhiR = MI.getOperand(0).getReg(); 1627 auto RC = MRI.getRegClass(PhiR); 1628 Register NR = MRI.createVirtualRegister(RC); 1629 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1630 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1631 .addReg(PhiR) 1632 .addMBB(SourceBB); 1633 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1634 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1635 Remaps[PhiR] = NR; 1636 } 1637 } 1638 if (getStage(&MI) != Stage) 1639 continue; 1640 MI.removeFromParent(); 1641 DestBB->insert(InsertPt, &MI); 1642 auto *KernelMI = CanonicalMIs[&MI]; 1643 BlockMIs[{DestBB, KernelMI}] = &MI; 1644 BlockMIs.erase({SourceBB, KernelMI}); 1645 } 1646 SmallVector<MachineInstr *, 4> PhiToDelete; 1647 for (MachineInstr &MI : DestBB->phis()) { 1648 assert(MI.getNumOperands() == 3); 1649 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1650 // If the instruction referenced by the phi is moved inside the block 1651 // we don't need the phi anymore. 1652 if (getStage(Def) == Stage) { 1653 Register PhiReg = MI.getOperand(0).getReg(); 1654 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1655 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1656 MI.getOperand(0).setReg(PhiReg); 1657 PhiToDelete.push_back(&MI); 1658 } 1659 } 1660 for (auto *P : PhiToDelete) 1661 P->eraseFromParent(); 1662 InsertPt = DestBB->getFirstNonPHI(); 1663 // Helper to clone Phi instructions into the destination block. We clone Phi 1664 // greedily to avoid combinatorial explosion of Phi instructions. 1665 auto clonePhi = [&](MachineInstr *Phi) { 1666 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1667 DestBB->insert(InsertPt, NewMI); 1668 Register OrigR = Phi->getOperand(0).getReg(); 1669 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1670 NewMI->getOperand(0).setReg(R); 1671 NewMI->getOperand(1).setReg(OrigR); 1672 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1673 Remaps[OrigR] = R; 1674 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1675 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1676 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1677 return R; 1678 }; 1679 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1680 for (MachineOperand &MO : I->uses()) { 1681 if (!MO.isReg()) 1682 continue; 1683 if (Remaps.count(MO.getReg())) 1684 MO.setReg(Remaps[MO.getReg()]); 1685 else { 1686 // If we are using a phi from the source block we need to add a new phi 1687 // pointing to the old one. 1688 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1689 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1690 Register R = clonePhi(Use); 1691 MO.setReg(R); 1692 } 1693 } 1694 } 1695 } 1696 } 1697 1698 Register 1699 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1700 MachineInstr *Phi) { 1701 unsigned distance = PhiNodeLoopIteration[Phi]; 1702 MachineInstr *CanonicalUse = CanonicalPhi; 1703 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1704 for (unsigned I = 0; I < distance; ++I) { 1705 assert(CanonicalUse->isPHI()); 1706 assert(CanonicalUse->getNumOperands() == 5); 1707 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1708 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1709 std::swap(LoopRegIdx, InitRegIdx); 1710 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1711 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1712 } 1713 return CanonicalUseReg; 1714 } 1715 1716 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1717 BitVector LS(Schedule.getNumStages(), true); 1718 BitVector AS(Schedule.getNumStages(), true); 1719 LiveStages[BB] = LS; 1720 AvailableStages[BB] = AS; 1721 1722 // Peel out the prologs. 1723 LS.reset(); 1724 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1725 LS[I] = 1; 1726 Prologs.push_back(peelKernel(LPD_Front)); 1727 LiveStages[Prologs.back()] = LS; 1728 AvailableStages[Prologs.back()] = LS; 1729 } 1730 1731 // Create a block that will end up as the new loop exiting block (dominated by 1732 // all prologs and epilogs). It will only contain PHIs, in the same order as 1733 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1734 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1735 // property that any value deffed in BB but used outside of BB is used by a 1736 // PHI in the exiting block. 1737 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1738 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1739 // Push out the epilogs, again in reverse order. 1740 // We can't assume anything about the minumum loop trip count at this point, 1741 // so emit a fairly complex epilog. 1742 1743 // We first peel number of stages minus one epilogue. Then we remove dead 1744 // stages and reorder instructions based on their stage. If we have 3 stages 1745 // we generate first: 1746 // E0[3, 2, 1] 1747 // E1[3', 2'] 1748 // E2[3''] 1749 // And then we move instructions based on their stages to have: 1750 // E0[3] 1751 // E1[2, 3'] 1752 // E2[1, 2', 3''] 1753 // The transformation is legal because we only move instructions past 1754 // instructions of a previous loop iteration. 1755 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1756 Epilogs.push_back(peelKernel(LPD_Back)); 1757 MachineBasicBlock *B = Epilogs.back(); 1758 filterInstructions(B, Schedule.getNumStages() - I); 1759 // Keep track at which iteration each phi belongs to. We need it to know 1760 // what version of the variable to use during prologue/epilogue stitching. 1761 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1762 for (MachineInstr &Phi : B->phis()) 1763 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1764 } 1765 for (size_t I = 0; I < Epilogs.size(); I++) { 1766 LS.reset(); 1767 for (size_t J = I; J < Epilogs.size(); J++) { 1768 int Iteration = J; 1769 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1770 // Move stage one block at a time so that Phi nodes are updated correctly. 1771 for (size_t K = Iteration; K > I; K--) 1772 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1773 LS[Stage] = 1; 1774 } 1775 LiveStages[Epilogs[I]] = LS; 1776 AvailableStages[Epilogs[I]] = AS; 1777 } 1778 1779 // Now we've defined all the prolog and epilog blocks as a fallthrough 1780 // sequence, add the edges that will be followed if the loop trip count is 1781 // lower than the number of stages (connecting prologs directly with epilogs). 1782 auto PI = Prologs.begin(); 1783 auto EI = Epilogs.begin(); 1784 assert(Prologs.size() == Epilogs.size()); 1785 for (; PI != Prologs.end(); ++PI, ++EI) { 1786 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1787 (*PI)->addSuccessor(*EI); 1788 for (MachineInstr &MI : (*EI)->phis()) { 1789 Register Reg = MI.getOperand(1).getReg(); 1790 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1791 if (Use && Use->getParent() == Pred) { 1792 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1793 if (CanonicalUse->isPHI()) { 1794 // If the use comes from a phi we need to skip as many phi as the 1795 // distance between the epilogue and the kernel. Trace through the phi 1796 // chain to find the right value. 1797 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1798 } 1799 Reg = getEquivalentRegisterIn(Reg, *PI); 1800 } 1801 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1802 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1803 } 1804 } 1805 1806 // Create a list of all blocks in order. 1807 SmallVector<MachineBasicBlock *, 8> Blocks; 1808 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1809 Blocks.push_back(BB); 1810 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1811 1812 // Iterate in reverse order over all instructions, remapping as we go. 1813 for (MachineBasicBlock *B : reverse(Blocks)) { 1814 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1815 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1816 MachineInstr *MI = &*I++; 1817 rewriteUsesOf(MI); 1818 } 1819 } 1820 for (auto *MI : IllegalPhisToDelete) { 1821 if (LIS) 1822 LIS->RemoveMachineInstrFromMaps(*MI); 1823 MI->eraseFromParent(); 1824 } 1825 IllegalPhisToDelete.clear(); 1826 1827 // Now all remapping has been done, we're free to optimize the generated code. 1828 for (MachineBasicBlock *B : reverse(Blocks)) 1829 EliminateDeadPhis(B, MRI, LIS); 1830 EliminateDeadPhis(ExitingBB, MRI, LIS); 1831 } 1832 1833 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1834 MachineFunction &MF = *BB->getParent(); 1835 MachineBasicBlock *Exit = *BB->succ_begin(); 1836 if (Exit == BB) 1837 Exit = *std::next(BB->succ_begin()); 1838 1839 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1840 MF.insert(std::next(BB->getIterator()), NewBB); 1841 1842 // Clone all phis in BB into NewBB and rewrite. 1843 for (MachineInstr &MI : BB->phis()) { 1844 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1845 Register OldR = MI.getOperand(3).getReg(); 1846 Register R = MRI.createVirtualRegister(RC); 1847 SmallVector<MachineInstr *, 4> Uses; 1848 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1849 if (Use.getParent() != BB) 1850 Uses.push_back(&Use); 1851 for (MachineInstr *Use : Uses) 1852 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1853 *MRI.getTargetRegisterInfo()); 1854 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1855 .addReg(OldR) 1856 .addMBB(BB); 1857 BlockMIs[{NewBB, &MI}] = NI; 1858 CanonicalMIs[NI] = &MI; 1859 } 1860 BB->replaceSuccessor(Exit, NewBB); 1861 Exit->replacePhiUsesWith(BB, NewBB); 1862 NewBB->addSuccessor(Exit); 1863 1864 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1865 SmallVector<MachineOperand, 4> Cond; 1866 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1867 (void)CanAnalyzeBr; 1868 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1869 TII->removeBranch(*BB); 1870 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1871 Cond, DebugLoc()); 1872 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1873 return NewBB; 1874 } 1875 1876 Register 1877 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1878 MachineBasicBlock *BB) { 1879 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1880 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1881 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1882 } 1883 1884 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1885 if (MI->isPHI()) { 1886 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1887 // and it is produced by this block. 1888 Register PhiR = MI->getOperand(0).getReg(); 1889 Register R = MI->getOperand(3).getReg(); 1890 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1891 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1892 R = MI->getOperand(1).getReg(); 1893 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1894 MRI.replaceRegWith(PhiR, R); 1895 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1896 // later to figure out how to remap registers. 1897 MI->getOperand(0).setReg(PhiR); 1898 IllegalPhisToDelete.push_back(MI); 1899 return; 1900 } 1901 1902 int Stage = getStage(MI); 1903 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1904 LiveStages[MI->getParent()].test(Stage)) 1905 // Instruction is live, no rewriting to do. 1906 return; 1907 1908 for (MachineOperand &DefMO : MI->defs()) { 1909 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1910 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1911 // Only PHIs can use values from this block by construction. 1912 // Match with the equivalent PHI in B. 1913 assert(UseMI.isPHI()); 1914 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1915 MI->getParent()); 1916 Subs.emplace_back(&UseMI, Reg); 1917 } 1918 for (auto &Sub : Subs) 1919 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1920 *MRI.getTargetRegisterInfo()); 1921 } 1922 if (LIS) 1923 LIS->RemoveMachineInstrFromMaps(*MI); 1924 MI->eraseFromParent(); 1925 } 1926 1927 void PeelingModuloScheduleExpander::fixupBranches() { 1928 // Work outwards from the kernel. 1929 bool KernelDisposed = false; 1930 int TC = Schedule.getNumStages() - 1; 1931 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1932 ++PI, ++EI, --TC) { 1933 MachineBasicBlock *Prolog = *PI; 1934 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1935 MachineBasicBlock *Epilog = *EI; 1936 SmallVector<MachineOperand, 4> Cond; 1937 TII->removeBranch(*Prolog); 1938 Optional<bool> StaticallyGreater = 1939 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1940 if (!StaticallyGreater.hasValue()) { 1941 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1942 // Dynamically branch based on Cond. 1943 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1944 } else if (*StaticallyGreater == false) { 1945 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1946 // Prolog never falls through; branch to epilog and orphan interior 1947 // blocks. Leave it to unreachable-block-elim to clean up. 1948 Prolog->removeSuccessor(Fallthrough); 1949 for (MachineInstr &P : Fallthrough->phis()) { 1950 P.RemoveOperand(2); 1951 P.RemoveOperand(1); 1952 } 1953 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1954 KernelDisposed = true; 1955 } else { 1956 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1957 // Prolog always falls through; remove incoming values in epilog. 1958 Prolog->removeSuccessor(Epilog); 1959 for (MachineInstr &P : Epilog->phis()) { 1960 P.RemoveOperand(4); 1961 P.RemoveOperand(3); 1962 } 1963 } 1964 } 1965 1966 if (!KernelDisposed) { 1967 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1968 LoopInfo->setPreheader(Prologs.back()); 1969 } else { 1970 LoopInfo->disposed(); 1971 } 1972 } 1973 1974 void PeelingModuloScheduleExpander::rewriteKernel() { 1975 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1976 KR.rewrite(); 1977 } 1978 1979 void PeelingModuloScheduleExpander::expand() { 1980 BB = Schedule.getLoop()->getTopBlock(); 1981 Preheader = Schedule.getLoop()->getLoopPreheader(); 1982 LLVM_DEBUG(Schedule.dump()); 1983 LoopInfo = TII->analyzeLoopForPipelining(BB); 1984 assert(LoopInfo); 1985 1986 rewriteKernel(); 1987 peelPrologAndEpilogs(); 1988 fixupBranches(); 1989 } 1990 1991 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1992 BB = Schedule.getLoop()->getTopBlock(); 1993 Preheader = Schedule.getLoop()->getLoopPreheader(); 1994 1995 // Dump the schedule before we invalidate and remap all its instructions. 1996 // Stash it in a string so we can print it if we found an error. 1997 std::string ScheduleDump; 1998 raw_string_ostream OS(ScheduleDump); 1999 Schedule.print(OS); 2000 OS.flush(); 2001 2002 // First, run the normal ModuleScheduleExpander. We don't support any 2003 // InstrChanges. 2004 assert(LIS && "Requires LiveIntervals!"); 2005 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2006 ModuloScheduleExpander::InstrChangesTy()); 2007 MSE.expand(); 2008 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2009 if (!ExpandedKernel) { 2010 // The expander optimized away the kernel. We can't do any useful checking. 2011 MSE.cleanup(); 2012 return; 2013 } 2014 // Before running the KernelRewriter, re-add BB into the CFG. 2015 Preheader->addSuccessor(BB); 2016 2017 // Now run the new expansion algorithm. 2018 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2019 KR.rewrite(); 2020 peelPrologAndEpilogs(); 2021 2022 // Collect all illegal phis that the new algorithm created. We'll give these 2023 // to KernelOperandInfo. 2024 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2025 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2026 if (NI->isPHI()) 2027 IllegalPhis.insert(&*NI); 2028 } 2029 2030 // Co-iterate across both kernels. We expect them to be identical apart from 2031 // phis and full COPYs (we look through both). 2032 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2033 auto OI = ExpandedKernel->begin(); 2034 auto NI = BB->begin(); 2035 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2036 while (OI->isPHI() || OI->isFullCopy()) 2037 ++OI; 2038 while (NI->isPHI() || NI->isFullCopy()) 2039 ++NI; 2040 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2041 // Analyze every operand separately. 2042 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2043 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2044 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2045 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2046 } 2047 2048 bool Failed = false; 2049 for (auto &OldAndNew : KOIs) { 2050 if (OldAndNew.first == OldAndNew.second) 2051 continue; 2052 Failed = true; 2053 errs() << "Modulo kernel validation error: [\n"; 2054 errs() << " [golden] "; 2055 OldAndNew.first.print(errs()); 2056 errs() << " "; 2057 OldAndNew.second.print(errs()); 2058 errs() << "]\n"; 2059 } 2060 2061 if (Failed) { 2062 errs() << "Golden reference kernel:\n"; 2063 ExpandedKernel->print(errs()); 2064 errs() << "New kernel:\n"; 2065 BB->print(errs()); 2066 errs() << ScheduleDump; 2067 report_fatal_error( 2068 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2069 } 2070 2071 // Cleanup by removing BB from the CFG again as the original 2072 // ModuloScheduleExpander intended. 2073 Preheader->removeSuccessor(BB); 2074 MSE.cleanup(); 2075 } 2076 2077 //===----------------------------------------------------------------------===// 2078 // ModuloScheduleTestPass implementation 2079 //===----------------------------------------------------------------------===// 2080 // This pass constructs a ModuloSchedule from its module and runs 2081 // ModuloScheduleExpander. 2082 // 2083 // The module is expected to contain a single-block analyzable loop. 2084 // The total order of instructions is taken from the loop as-is. 2085 // Instructions are expected to be annotated with a PostInstrSymbol. 2086 // This PostInstrSymbol must have the following format: 2087 // "Stage=%d Cycle=%d". 2088 //===----------------------------------------------------------------------===// 2089 2090 namespace { 2091 class ModuloScheduleTest : public MachineFunctionPass { 2092 public: 2093 static char ID; 2094 2095 ModuloScheduleTest() : MachineFunctionPass(ID) { 2096 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2097 } 2098 2099 bool runOnMachineFunction(MachineFunction &MF) override; 2100 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2101 2102 void getAnalysisUsage(AnalysisUsage &AU) const override { 2103 AU.addRequired<MachineLoopInfo>(); 2104 AU.addRequired<LiveIntervals>(); 2105 MachineFunctionPass::getAnalysisUsage(AU); 2106 } 2107 }; 2108 } // namespace 2109 2110 char ModuloScheduleTest::ID = 0; 2111 2112 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2113 "Modulo Schedule test pass", false, false) 2114 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2115 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2116 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2117 "Modulo Schedule test pass", false, false) 2118 2119 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2120 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2121 for (auto *L : MLI) { 2122 if (L->getTopBlock() != L->getBottomBlock()) 2123 continue; 2124 runOnLoop(MF, *L); 2125 return false; 2126 } 2127 return false; 2128 } 2129 2130 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2131 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2132 std::pair<StringRef, StringRef> StageTokenAndValue = 2133 getToken(StageAndCycle.first, "-"); 2134 std::pair<StringRef, StringRef> CycleTokenAndValue = 2135 getToken(StageAndCycle.second, "-"); 2136 if (StageTokenAndValue.first != "Stage" || 2137 CycleTokenAndValue.first != "_Cycle") { 2138 llvm_unreachable( 2139 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2140 return; 2141 } 2142 2143 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2144 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2145 2146 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2147 } 2148 2149 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2150 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2151 MachineBasicBlock *BB = L.getTopBlock(); 2152 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2153 2154 DenseMap<MachineInstr *, int> Cycle, Stage; 2155 std::vector<MachineInstr *> Instrs; 2156 for (MachineInstr &MI : *BB) { 2157 if (MI.isTerminator()) 2158 continue; 2159 Instrs.push_back(&MI); 2160 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2161 dbgs() << "Parsing post-instr symbol for " << MI; 2162 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2163 } 2164 } 2165 2166 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2167 std::move(Stage)); 2168 ModuloScheduleExpander MSE( 2169 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2170 MSE.expand(); 2171 MSE.cleanup(); 2172 } 2173 2174 //===----------------------------------------------------------------------===// 2175 // ModuloScheduleTestAnnotater implementation 2176 //===----------------------------------------------------------------------===// 2177 2178 void ModuloScheduleTestAnnotater::annotate() { 2179 for (MachineInstr *MI : S.getInstructions()) { 2180 SmallVector<char, 16> SV; 2181 raw_svector_ostream OS(SV); 2182 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2183 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2184 MI->setPostInstrSymbol(MF, Sym); 2185 } 2186 } 2187