1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/CodeGen/LiveIntervals.h"
12 #include "llvm/CodeGen/MachineInstrBuilder.h"
13 #include "llvm/CodeGen/MachineLoopUtils.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/CodeGen/TargetInstrInfo.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 #define DEBUG_TYPE "pipeliner"
22 using namespace llvm;
23 
24 void ModuloSchedule::print(raw_ostream &OS) {
25   for (MachineInstr *MI : ScheduledInstrs)
26     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27 }
28 
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
32 
33 /// Return the register values for  the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36                        unsigned &InitVal, unsigned &LoopVal) {
37   assert(Phi.isPHI() && "Expecting a Phi.");
38 
39   InitVal = 0;
40   LoopVal = 0;
41   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42     if (Phi.getOperand(i + 1).getMBB() != Loop)
43       InitVal = Phi.getOperand(i).getReg();
44     else
45       LoopVal = Phi.getOperand(i).getReg();
46 
47   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48 }
49 
50 /// Return the Phi register value that comes from the incoming block.
51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54       return Phi.getOperand(i).getReg();
55   return 0;
56 }
57 
58 /// Return the Phi register value that comes the loop block.
59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62       return Phi.getOperand(i).getReg();
63   return 0;
64 }
65 
66 void ModuloScheduleExpander::expand() {
67   BB = Schedule.getLoop()->getTopBlock();
68   Preheader = *BB->pred_begin();
69   if (Preheader == BB)
70     Preheader = *std::next(BB->pred_begin());
71 
72   // Iterate over the definitions in each instruction, and compute the
73   // stage difference for each use.  Keep the maximum value.
74   for (MachineInstr *MI : Schedule.getInstructions()) {
75     int DefStage = Schedule.getStage(MI);
76     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77       MachineOperand &Op = MI->getOperand(i);
78       if (!Op.isReg() || !Op.isDef())
79         continue;
80 
81       Register Reg = Op.getReg();
82       unsigned MaxDiff = 0;
83       bool PhiIsSwapped = false;
84       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85                                              EI = MRI.use_end();
86            UI != EI; ++UI) {
87         MachineOperand &UseOp = *UI;
88         MachineInstr *UseMI = UseOp.getParent();
89         int UseStage = Schedule.getStage(UseMI);
90         unsigned Diff = 0;
91         if (UseStage != -1 && UseStage >= DefStage)
92           Diff = UseStage - DefStage;
93         if (MI->isPHI()) {
94           if (isLoopCarried(*MI))
95             ++Diff;
96           else
97             PhiIsSwapped = true;
98         }
99         MaxDiff = std::max(Diff, MaxDiff);
100       }
101       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102     }
103   }
104 
105   generatePipelinedLoop();
106 }
107 
108 void ModuloScheduleExpander::generatePipelinedLoop() {
109   LoopInfo = TII->analyzeLoopForPipelining(BB);
110   assert(LoopInfo && "Must be able to analyze loop!");
111 
112   // Create a new basic block for the kernel and add it to the CFG.
113   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114 
115   unsigned MaxStageCount = Schedule.getNumStages() - 1;
116 
117   // Remember the registers that are used in different stages. The index is
118   // the iteration, or stage, that the instruction is scheduled in.  This is
119   // a map between register names in the original block and the names created
120   // in each stage of the pipelined loop.
121   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122   InstrMapTy InstrMap;
123 
124   SmallVector<MachineBasicBlock *, 4> PrologBBs;
125 
126   // Generate the prolog instructions that set up the pipeline.
127   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128   MF.insert(BB->getIterator(), KernelBB);
129 
130   // Rearrange the instructions to generate the new, pipelined loop,
131   // and update register names as needed.
132   for (MachineInstr *CI : Schedule.getInstructions()) {
133     if (CI->isPHI())
134       continue;
135     unsigned StageNum = Schedule.getStage(CI);
136     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138     KernelBB->push_back(NewMI);
139     InstrMap[NewMI] = CI;
140   }
141 
142   // Copy any terminator instructions to the new kernel, and update
143   // names as needed.
144   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
145                                    E = BB->instr_end();
146        I != E; ++I) {
147     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
148     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
149     KernelBB->push_back(NewMI);
150     InstrMap[NewMI] = &*I;
151   }
152 
153   NewKernel = KernelBB;
154   KernelBB->transferSuccessors(BB);
155   KernelBB->replaceSuccessor(BB, KernelBB);
156 
157   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
158                        InstrMap, MaxStageCount, MaxStageCount, false);
159   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
160                MaxStageCount, MaxStageCount, false);
161 
162   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163 
164   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
165   // Generate the epilog instructions to complete the pipeline.
166   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167 
168   // We need this step because the register allocation doesn't handle some
169   // situations well, so we insert copies to help out.
170   splitLifetimes(KernelBB, EpilogBBs);
171 
172   // Remove dead instructions due to loop induction variables.
173   removeDeadInstructions(KernelBB, EpilogBBs);
174 
175   // Add branches between prolog and epilog blocks.
176   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177 
178   delete[] VRMap;
179 }
180 
181 void ModuloScheduleExpander::cleanup() {
182   // Remove the original loop since it's no longer referenced.
183   for (auto &I : *BB)
184     LIS.RemoveMachineInstrFromMaps(I);
185   BB->clear();
186   BB->eraseFromParent();
187 }
188 
189 /// Generate the pipeline prolog code.
190 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191                                             MachineBasicBlock *KernelBB,
192                                             ValueMapTy *VRMap,
193                                             MBBVectorTy &PrologBBs) {
194   MachineBasicBlock *PredBB = Preheader;
195   InstrMapTy InstrMap;
196 
197   // Generate a basic block for each stage, not including the last stage,
198   // which will be generated in the kernel. Each basic block may contain
199   // instructions from multiple stages/iterations.
200   for (unsigned i = 0; i < LastStage; ++i) {
201     // Create and insert the prolog basic block prior to the original loop
202     // basic block.  The original loop is removed later.
203     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204     PrologBBs.push_back(NewBB);
205     MF.insert(BB->getIterator(), NewBB);
206     NewBB->transferSuccessors(PredBB);
207     PredBB->addSuccessor(NewBB);
208     PredBB = NewBB;
209 
210     // Generate instructions for each appropriate stage. Process instructions
211     // in original program order.
212     for (int StageNum = i; StageNum >= 0; --StageNum) {
213       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214                                        BBE = BB->getFirstTerminator();
215            BBI != BBE; ++BBI) {
216         if (Schedule.getStage(&*BBI) == StageNum) {
217           if (BBI->isPHI())
218             continue;
219           MachineInstr *NewMI =
220               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222           NewBB->push_back(NewMI);
223           InstrMap[NewMI] = &*BBI;
224         }
225       }
226     }
227     rewritePhiValues(NewBB, i, VRMap, InstrMap);
228     LLVM_DEBUG({
229       dbgs() << "prolog:\n";
230       NewBB->dump();
231     });
232   }
233 
234   PredBB->replaceSuccessor(BB, KernelBB);
235 
236   // Check if we need to remove the branch from the preheader to the original
237   // loop, and replace it with a branch to the new loop.
238   unsigned numBranches = TII->removeBranch(*Preheader);
239   if (numBranches) {
240     SmallVector<MachineOperand, 0> Cond;
241     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242   }
243 }
244 
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel.  We create a basic
247 /// block for each stage that needs to complete.
248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
249                                             MachineBasicBlock *KernelBB,
250                                             ValueMapTy *VRMap,
251                                             MBBVectorTy &EpilogBBs,
252                                             MBBVectorTy &PrologBBs) {
253   // We need to change the branch from the kernel to the first epilog block, so
254   // this call to analyze branch uses the kernel rather than the original BB.
255   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
256   SmallVector<MachineOperand, 4> Cond;
257   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
258   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
259   if (checkBranch)
260     return;
261 
262   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
263   if (*LoopExitI == KernelBB)
264     ++LoopExitI;
265   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
266   MachineBasicBlock *LoopExitBB = *LoopExitI;
267 
268   MachineBasicBlock *PredBB = KernelBB;
269   MachineBasicBlock *EpilogStart = LoopExitBB;
270   InstrMapTy InstrMap;
271 
272   // Generate a basic block for each stage, not including the last stage,
273   // which was generated for the kernel.  Each basic block may contain
274   // instructions from multiple stages/iterations.
275   int EpilogStage = LastStage + 1;
276   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
277     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
278     EpilogBBs.push_back(NewBB);
279     MF.insert(BB->getIterator(), NewBB);
280 
281     PredBB->replaceSuccessor(LoopExitBB, NewBB);
282     NewBB->addSuccessor(LoopExitBB);
283 
284     if (EpilogStart == LoopExitBB)
285       EpilogStart = NewBB;
286 
287     // Add instructions to the epilog depending on the current block.
288     // Process instructions in original program order.
289     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
290       for (auto &BBI : *BB) {
291         if (BBI.isPHI())
292           continue;
293         MachineInstr *In = &BBI;
294         if ((unsigned)Schedule.getStage(In) == StageNum) {
295           // Instructions with memoperands in the epilog are updated with
296           // conservative values.
297           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
298           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
299           NewBB->push_back(NewMI);
300           InstrMap[NewMI] = In;
301         }
302       }
303     }
304     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
305                          InstrMap, LastStage, EpilogStage, i == 1);
306     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
307                  LastStage, EpilogStage, i == 1);
308     PredBB = NewBB;
309 
310     LLVM_DEBUG({
311       dbgs() << "epilog:\n";
312       NewBB->dump();
313     });
314   }
315 
316   // Fix any Phi nodes in the loop exit block.
317   LoopExitBB->replacePhiUsesWith(BB, PredBB);
318 
319   // Create a branch to the new epilog from the kernel.
320   // Remove the original branch and add a new branch to the epilog.
321   TII->removeBranch(*KernelBB);
322   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
323   // Add a branch to the loop exit.
324   if (EpilogBBs.size() > 0) {
325     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
326     SmallVector<MachineOperand, 4> Cond1;
327     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
328   }
329 }
330 
331 /// Replace all uses of FromReg that appear outside the specified
332 /// basic block with ToReg.
333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
334                                     MachineBasicBlock *MBB,
335                                     MachineRegisterInfo &MRI,
336                                     LiveIntervals &LIS) {
337   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
338                                          E = MRI.use_end();
339        I != E;) {
340     MachineOperand &O = *I;
341     ++I;
342     if (O.getParent()->getParent() != MBB)
343       O.setReg(ToReg);
344   }
345   if (!LIS.hasInterval(ToReg))
346     LIS.createEmptyInterval(ToReg);
347 }
348 
349 /// Return true if the register has a use that occurs outside the
350 /// specified loop.
351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352                             MachineRegisterInfo &MRI) {
353   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
354                                          E = MRI.use_end();
355        I != E; ++I)
356     if (I->getParent()->getParent() != BB)
357       return true;
358   return false;
359 }
360 
361 /// Generate Phis for the specific block in the generated pipelined code.
362 /// This function looks at the Phis from the original code to guide the
363 /// creation of new Phis.
364 void ModuloScheduleExpander::generateExistingPhis(
365     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
366     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
367     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
368   // Compute the stage number for the initial value of the Phi, which
369   // comes from the prolog. The prolog to use depends on to which kernel/
370   // epilog that we're adding the Phi.
371   unsigned PrologStage = 0;
372   unsigned PrevStage = 0;
373   bool InKernel = (LastStageNum == CurStageNum);
374   if (InKernel) {
375     PrologStage = LastStageNum - 1;
376     PrevStage = CurStageNum;
377   } else {
378     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
379     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380   }
381 
382   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
383                                    BBE = BB->getFirstNonPHI();
384        BBI != BBE; ++BBI) {
385     Register Def = BBI->getOperand(0).getReg();
386 
387     unsigned InitVal = 0;
388     unsigned LoopVal = 0;
389     getPhiRegs(*BBI, BB, InitVal, LoopVal);
390 
391     unsigned PhiOp1 = 0;
392     // The Phi value from the loop body typically is defined in the loop, but
393     // not always. So, we need to check if the value is defined in the loop.
394     unsigned PhiOp2 = LoopVal;
395     if (VRMap[LastStageNum].count(LoopVal))
396       PhiOp2 = VRMap[LastStageNum][LoopVal];
397 
398     int StageScheduled = Schedule.getStage(&*BBI);
399     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
400     unsigned NumStages = getStagesForReg(Def, CurStageNum);
401     if (NumStages == 0) {
402       // We don't need to generate a Phi anymore, but we need to rename any uses
403       // of the Phi value.
404       unsigned NewReg = VRMap[PrevStage][LoopVal];
405       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
406                             InitVal, NewReg);
407       if (VRMap[CurStageNum].count(LoopVal))
408         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409     }
410     // Adjust the number of Phis needed depending on the number of prologs left,
411     // and the distance from where the Phi is first scheduled. The number of
412     // Phis cannot exceed the number of prolog stages. Each stage can
413     // potentially define two values.
414     unsigned MaxPhis = PrologStage + 2;
415     if (!InKernel && (int)PrologStage <= LoopValStage)
416       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
417     unsigned NumPhis = std::min(NumStages, MaxPhis);
418 
419     unsigned NewReg = 0;
420     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
421     // In the epilog, we may need to look back one stage to get the correct
422     // Phi name because the epilog and prolog blocks execute the same stage.
423     // The correct name is from the previous block only when the Phi has
424     // been completely scheduled prior to the epilog, and Phi value is not
425     // needed in multiple stages.
426     int StageDiff = 0;
427     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
428         NumPhis == 1)
429       StageDiff = 1;
430     // Adjust the computations below when the phi and the loop definition
431     // are scheduled in different stages.
432     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
433       StageDiff = StageScheduled - LoopValStage;
434     for (unsigned np = 0; np < NumPhis; ++np) {
435       // If the Phi hasn't been scheduled, then use the initial Phi operand
436       // value. Otherwise, use the scheduled version of the instruction. This
437       // is a little complicated when a Phi references another Phi.
438       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
439         PhiOp1 = InitVal;
440       // Check if the Phi has already been scheduled in a prolog stage.
441       else if (PrologStage >= AccessStage + StageDiff + np &&
442                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
443         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
444       // Check if the Phi has already been scheduled, but the loop instruction
445       // is either another Phi, or doesn't occur in the loop.
446       else if (PrologStage >= AccessStage + StageDiff + np) {
447         // If the Phi references another Phi, we need to examine the other
448         // Phi to get the correct value.
449         PhiOp1 = LoopVal;
450         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
451         int Indirects = 1;
452         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
453           int PhiStage = Schedule.getStage(InstOp1);
454           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
455             PhiOp1 = getInitPhiReg(*InstOp1, BB);
456           else
457             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
458           InstOp1 = MRI.getVRegDef(PhiOp1);
459           int PhiOpStage = Schedule.getStage(InstOp1);
460           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
461           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
462               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
463             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
464             break;
465           }
466           ++Indirects;
467         }
468       } else
469         PhiOp1 = InitVal;
470       // If this references a generated Phi in the kernel, get the Phi operand
471       // from the incoming block.
472       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
473         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
474           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475 
476       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
477       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
478       // In the epilog, a map lookup is needed to get the value from the kernel,
479       // or previous epilog block. How is does this depends on if the
480       // instruction is scheduled in the previous block.
481       if (!InKernel) {
482         int StageDiffAdj = 0;
483         if (LoopValStage != -1 && StageScheduled > LoopValStage)
484           StageDiffAdj = StageScheduled - LoopValStage;
485         // Use the loop value defined in the kernel, unless the kernel
486         // contains the last definition of the Phi.
487         if (np == 0 && PrevStage == LastStageNum &&
488             (StageScheduled != 0 || LoopValStage != 0) &&
489             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
490           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
491         // Use the value defined by the Phi. We add one because we switch
492         // from looking at the loop value to the Phi definition.
493         else if (np > 0 && PrevStage == LastStageNum &&
494                  VRMap[PrevStage - np + 1].count(Def))
495           PhiOp2 = VRMap[PrevStage - np + 1][Def];
496         // Use the loop value defined in the kernel.
497         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
498                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
499           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
500         // Use the value defined by the Phi, unless we're generating the first
501         // epilog and the Phi refers to a Phi in a different stage.
502         else if (VRMap[PrevStage - np].count(Def) &&
503                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
504                   (LoopValStage == StageScheduled)))
505           PhiOp2 = VRMap[PrevStage - np][Def];
506       }
507 
508       // Check if we can reuse an existing Phi. This occurs when a Phi
509       // references another Phi, and the other Phi is scheduled in an
510       // earlier stage. We can try to reuse an existing Phi up until the last
511       // stage of the current Phi.
512       if (LoopDefIsPhi) {
513         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
514           int LVNumStages = getStagesForPhi(LoopVal);
515           int StageDiff = (StageScheduled - LoopValStage);
516           LVNumStages -= StageDiff;
517           // Make sure the loop value Phi has been processed already.
518           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
519             NewReg = PhiOp2;
520             unsigned ReuseStage = CurStageNum;
521             if (isLoopCarried(*PhiInst))
522               ReuseStage -= LVNumStages;
523             // Check if the Phi to reuse has been generated yet. If not, then
524             // there is nothing to reuse.
525             if (VRMap[ReuseStage - np].count(LoopVal)) {
526               NewReg = VRMap[ReuseStage - np][LoopVal];
527 
528               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
529                                     Def, NewReg);
530               // Update the map with the new Phi name.
531               VRMap[CurStageNum - np][Def] = NewReg;
532               PhiOp2 = NewReg;
533               if (VRMap[LastStageNum - np - 1].count(LoopVal))
534                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535 
536               if (IsLast && np == NumPhis - 1)
537                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
538               continue;
539             }
540           }
541         }
542         if (InKernel && StageDiff > 0 &&
543             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
544           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545       }
546 
547       const TargetRegisterClass *RC = MRI.getRegClass(Def);
548       NewReg = MRI.createVirtualRegister(RC);
549 
550       MachineInstrBuilder NewPhi =
551           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
552                   TII->get(TargetOpcode::PHI), NewReg);
553       NewPhi.addReg(PhiOp1).addMBB(BB1);
554       NewPhi.addReg(PhiOp2).addMBB(BB2);
555       if (np == 0)
556         InstrMap[NewPhi] = &*BBI;
557 
558       // We define the Phis after creating the new pipelined code, so
559       // we need to rename the Phi values in scheduled instructions.
560 
561       unsigned PrevReg = 0;
562       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
563         PrevReg = VRMap[PrevStage - np][LoopVal];
564       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
565                             NewReg, PrevReg);
566       // If the Phi has been scheduled, use the new name for rewriting.
567       if (VRMap[CurStageNum - np].count(Def)) {
568         unsigned R = VRMap[CurStageNum - np][Def];
569         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
570                               NewReg);
571       }
572 
573       // Check if we need to rename any uses that occurs after the loop. The
574       // register to replace depends on whether the Phi is scheduled in the
575       // epilog.
576       if (IsLast && np == NumPhis - 1)
577         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578 
579       // In the kernel, a dependent Phi uses the value from this Phi.
580       if (InKernel)
581         PhiOp2 = NewReg;
582 
583       // Update the map with the new Phi name.
584       VRMap[CurStageNum - np][Def] = NewReg;
585     }
586 
587     while (NumPhis++ < NumStages) {
588       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
589                             NewReg, 0);
590     }
591 
592     // Check if we need to rename a Phi that has been eliminated due to
593     // scheduling.
594     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
595       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
596   }
597 }
598 
599 /// Generate Phis for the specified block in the generated pipelined code.
600 /// These are new Phis needed because the definition is scheduled after the
601 /// use in the pipelined sequence.
602 void ModuloScheduleExpander::generatePhis(
603     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
604     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
605     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
606   // Compute the stage number that contains the initial Phi value, and
607   // the Phi from the previous stage.
608   unsigned PrologStage = 0;
609   unsigned PrevStage = 0;
610   unsigned StageDiff = CurStageNum - LastStageNum;
611   bool InKernel = (StageDiff == 0);
612   if (InKernel) {
613     PrologStage = LastStageNum - 1;
614     PrevStage = CurStageNum;
615   } else {
616     PrologStage = LastStageNum - StageDiff;
617     PrevStage = LastStageNum + StageDiff - 1;
618   }
619 
620   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
621                                    BBE = BB->instr_end();
622        BBI != BBE; ++BBI) {
623     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
624       MachineOperand &MO = BBI->getOperand(i);
625       if (!MO.isReg() || !MO.isDef() ||
626           !Register::isVirtualRegister(MO.getReg()))
627         continue;
628 
629       int StageScheduled = Schedule.getStage(&*BBI);
630       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
631       Register Def = MO.getReg();
632       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
633       // An instruction scheduled in stage 0 and is used after the loop
634       // requires a phi in the epilog for the last definition from either
635       // the kernel or prolog.
636       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
637           hasUseAfterLoop(Def, BB, MRI))
638         NumPhis = 1;
639       if (!InKernel && (unsigned)StageScheduled > PrologStage)
640         continue;
641 
642       unsigned PhiOp2 = VRMap[PrevStage][Def];
643       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646       // The number of Phis can't exceed the number of prolog stages. The
647       // prolog stage number is zero based.
648       if (NumPhis > PrologStage + 1 - StageScheduled)
649         NumPhis = PrologStage + 1 - StageScheduled;
650       for (unsigned np = 0; np < NumPhis; ++np) {
651         unsigned PhiOp1 = VRMap[PrologStage][Def];
652         if (np <= PrologStage)
653           PhiOp1 = VRMap[PrologStage - np][Def];
654         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
655           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
656             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
657           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
658             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659         }
660         if (!InKernel)
661           PhiOp2 = VRMap[PrevStage - np][Def];
662 
663         const TargetRegisterClass *RC = MRI.getRegClass(Def);
664         Register NewReg = MRI.createVirtualRegister(RC);
665 
666         MachineInstrBuilder NewPhi =
667             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
668                     TII->get(TargetOpcode::PHI), NewReg);
669         NewPhi.addReg(PhiOp1).addMBB(BB1);
670         NewPhi.addReg(PhiOp2).addMBB(BB2);
671         if (np == 0)
672           InstrMap[NewPhi] = &*BBI;
673 
674         // Rewrite uses and update the map. The actions depend upon whether
675         // we generating code for the kernel or epilog blocks.
676         if (InKernel) {
677           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
678                                 NewReg);
679           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
680                                 NewReg);
681 
682           PhiOp2 = NewReg;
683           VRMap[PrevStage - np - 1][Def] = NewReg;
684         } else {
685           VRMap[CurStageNum - np][Def] = NewReg;
686           if (np == NumPhis - 1)
687             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
688                                   NewReg);
689         }
690         if (IsLast && np == NumPhis - 1)
691           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
692       }
693     }
694   }
695 }
696 
697 /// Remove instructions that generate values with no uses.
698 /// Typically, these are induction variable operations that generate values
699 /// used in the loop itself.  A dead instruction has a definition with
700 /// no uses, or uses that occur in the original loop only.
701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
702                                                     MBBVectorTy &EpilogBBs) {
703   // For each epilog block, check that the value defined by each instruction
704   // is used.  If not, delete it.
705   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
706                                      MBE = EpilogBBs.rend();
707        MBB != MBE; ++MBB)
708     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
709                                                    ME = (*MBB)->instr_rend();
710          MI != ME;) {
711       // From DeadMachineInstructionElem. Don't delete inline assembly.
712       if (MI->isInlineAsm()) {
713         ++MI;
714         continue;
715       }
716       bool SawStore = false;
717       // Check if it's safe to remove the instruction due to side effects.
718       // We can, and want to, remove Phis here.
719       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
720         ++MI;
721         continue;
722       }
723       bool used = true;
724       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
725                                       MOE = MI->operands_end();
726            MOI != MOE; ++MOI) {
727         if (!MOI->isReg() || !MOI->isDef())
728           continue;
729         Register reg = MOI->getReg();
730         // Assume physical registers are used, unless they are marked dead.
731         if (Register::isPhysicalRegister(reg)) {
732           used = !MOI->isDead();
733           if (used)
734             break;
735           continue;
736         }
737         unsigned realUses = 0;
738         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
739                                                EI = MRI.use_end();
740              UI != EI; ++UI) {
741           // Check if there are any uses that occur only in the original
742           // loop.  If so, that's not a real use.
743           if (UI->getParent()->getParent() != BB) {
744             realUses++;
745             used = true;
746             break;
747           }
748         }
749         if (realUses > 0)
750           break;
751         used = false;
752       }
753       if (!used) {
754         LIS.RemoveMachineInstrFromMaps(*MI);
755         MI++->eraseFromParent();
756         continue;
757       }
758       ++MI;
759     }
760   // In the kernel block, check if we can remove a Phi that generates a value
761   // used in an instruction removed in the epilog block.
762   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
763                                    BBE = KernelBB->getFirstNonPHI();
764        BBI != BBE;) {
765     MachineInstr *MI = &*BBI;
766     ++BBI;
767     Register reg = MI->getOperand(0).getReg();
768     if (MRI.use_begin(reg) == MRI.use_end()) {
769       LIS.RemoveMachineInstrFromMaps(*MI);
770       MI->eraseFromParent();
771     }
772   }
773 }
774 
775 /// For loop carried definitions, we split the lifetime of a virtual register
776 /// that has uses past the definition in the next iteration. A copy with a new
777 /// virtual register is inserted before the definition, which helps with
778 /// generating a better register assignment.
779 ///
780 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
781 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
782 ///   v3 = ..             v4 = copy v1
783 ///   .. = V1             v3 = ..
784 ///                       .. = v4
785 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
786                                             MBBVectorTy &EpilogBBs) {
787   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
788   for (auto &PHI : KernelBB->phis()) {
789     Register Def = PHI.getOperand(0).getReg();
790     // Check for any Phi definition that used as an operand of another Phi
791     // in the same block.
792     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
793                                                  E = MRI.use_instr_end();
794          I != E; ++I) {
795       if (I->isPHI() && I->getParent() == KernelBB) {
796         // Get the loop carried definition.
797         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
798         if (!LCDef)
799           continue;
800         MachineInstr *MI = MRI.getVRegDef(LCDef);
801         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
802           continue;
803         // Search through the rest of the block looking for uses of the Phi
804         // definition. If one occurs, then split the lifetime.
805         unsigned SplitReg = 0;
806         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
807                                     KernelBB->instr_end()))
808           if (BBJ.readsRegister(Def)) {
809             // We split the lifetime when we find the first use.
810             if (SplitReg == 0) {
811               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
812               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
813                       TII->get(TargetOpcode::COPY), SplitReg)
814                   .addReg(Def);
815             }
816             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
817           }
818         if (!SplitReg)
819           continue;
820         // Search through each of the epilog blocks for any uses to be renamed.
821         for (auto &Epilog : EpilogBBs)
822           for (auto &I : *Epilog)
823             if (I.readsRegister(Def))
824               I.substituteRegister(Def, SplitReg, 0, *TRI);
825         break;
826       }
827     }
828   }
829 }
830 
831 /// Remove the incoming block from the Phis in a basic block.
832 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
833   for (MachineInstr &MI : *BB) {
834     if (!MI.isPHI())
835       break;
836     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
837       if (MI.getOperand(i + 1).getMBB() == Incoming) {
838         MI.RemoveOperand(i + 1);
839         MI.RemoveOperand(i);
840         break;
841       }
842   }
843 }
844 
845 /// Create branches from each prolog basic block to the appropriate epilog
846 /// block.  These edges are needed if the loop ends before reaching the
847 /// kernel.
848 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
849                                          MBBVectorTy &PrologBBs,
850                                          MachineBasicBlock *KernelBB,
851                                          MBBVectorTy &EpilogBBs,
852                                          ValueMapTy *VRMap) {
853   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
854   MachineBasicBlock *LastPro = KernelBB;
855   MachineBasicBlock *LastEpi = KernelBB;
856 
857   // Start from the blocks connected to the kernel and work "out"
858   // to the first prolog and the last epilog blocks.
859   SmallVector<MachineInstr *, 4> PrevInsts;
860   unsigned MaxIter = PrologBBs.size() - 1;
861   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
862     // Add branches to the prolog that go to the corresponding
863     // epilog, and the fall-thru prolog/kernel block.
864     MachineBasicBlock *Prolog = PrologBBs[j];
865     MachineBasicBlock *Epilog = EpilogBBs[i];
866 
867     SmallVector<MachineOperand, 4> Cond;
868     Optional<bool> StaticallyGreater =
869         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
870     unsigned numAdded = 0;
871     if (!StaticallyGreater.hasValue()) {
872       Prolog->addSuccessor(Epilog);
873       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
874     } else if (*StaticallyGreater == false) {
875       Prolog->addSuccessor(Epilog);
876       Prolog->removeSuccessor(LastPro);
877       LastEpi->removeSuccessor(Epilog);
878       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
879       removePhis(Epilog, LastEpi);
880       // Remove the blocks that are no longer referenced.
881       if (LastPro != LastEpi) {
882         LastEpi->clear();
883         LastEpi->eraseFromParent();
884       }
885       if (LastPro == KernelBB) {
886         LoopInfo->disposed();
887         NewKernel = nullptr;
888       }
889       LastPro->clear();
890       LastPro->eraseFromParent();
891     } else {
892       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
893       removePhis(Epilog, Prolog);
894     }
895     LastPro = Prolog;
896     LastEpi = Epilog;
897     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
898                                                    E = Prolog->instr_rend();
899          I != E && numAdded > 0; ++I, --numAdded)
900       updateInstruction(&*I, false, j, 0, VRMap);
901   }
902 
903   if (NewKernel) {
904     LoopInfo->setPreheader(PrologBBs[MaxIter]);
905     LoopInfo->adjustTripCount(-(MaxIter + 1));
906   }
907 }
908 
909 /// Return true if we can compute the amount the instruction changes
910 /// during each iteration. Set Delta to the amount of the change.
911 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
912   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
913   const MachineOperand *BaseOp;
914   int64_t Offset;
915   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
916     return false;
917 
918   if (!BaseOp->isReg())
919     return false;
920 
921   Register BaseReg = BaseOp->getReg();
922 
923   MachineRegisterInfo &MRI = MF.getRegInfo();
924   // Check if there is a Phi. If so, get the definition in the loop.
925   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
926   if (BaseDef && BaseDef->isPHI()) {
927     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
928     BaseDef = MRI.getVRegDef(BaseReg);
929   }
930   if (!BaseDef)
931     return false;
932 
933   int D = 0;
934   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
935     return false;
936 
937   Delta = D;
938   return true;
939 }
940 
941 /// Update the memory operand with a new offset when the pipeliner
942 /// generates a new copy of the instruction that refers to a
943 /// different memory location.
944 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
945                                                MachineInstr &OldMI,
946                                                unsigned Num) {
947   if (Num == 0)
948     return;
949   // If the instruction has memory operands, then adjust the offset
950   // when the instruction appears in different stages.
951   if (NewMI.memoperands_empty())
952     return;
953   SmallVector<MachineMemOperand *, 2> NewMMOs;
954   for (MachineMemOperand *MMO : NewMI.memoperands()) {
955     // TODO: Figure out whether isAtomic is really necessary (see D57601).
956     if (MMO->isVolatile() || MMO->isAtomic() ||
957         (MMO->isInvariant() && MMO->isDereferenceable()) ||
958         (!MMO->getValue())) {
959       NewMMOs.push_back(MMO);
960       continue;
961     }
962     unsigned Delta;
963     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
964       int64_t AdjOffset = Delta * Num;
965       NewMMOs.push_back(
966           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
967     } else {
968       NewMMOs.push_back(
969           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
970     }
971   }
972   NewMI.setMemRefs(MF, NewMMOs);
973 }
974 
975 /// Clone the instruction for the new pipelined loop and update the
976 /// memory operands, if needed.
977 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
978                                                  unsigned CurStageNum,
979                                                  unsigned InstStageNum) {
980   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
981   // Check for tied operands in inline asm instructions. This should be handled
982   // elsewhere, but I'm not sure of the best solution.
983   if (OldMI->isInlineAsm())
984     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
985       const auto &MO = OldMI->getOperand(i);
986       if (MO.isReg() && MO.isUse())
987         break;
988       unsigned UseIdx;
989       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
990         NewMI->tieOperands(i, UseIdx);
991     }
992   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
993   return NewMI;
994 }
995 
996 /// Clone the instruction for the new pipelined loop. If needed, this
997 /// function updates the instruction using the values saved in the
998 /// InstrChanges structure.
999 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1000     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1001   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1002   auto It = InstrChanges.find(OldMI);
1003   if (It != InstrChanges.end()) {
1004     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1005     unsigned BasePos, OffsetPos;
1006     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1007       return nullptr;
1008     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1009     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1010     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1011       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1012     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1013   }
1014   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1015   return NewMI;
1016 }
1017 
1018 /// Update the machine instruction with new virtual registers.  This
1019 /// function may change the defintions and/or uses.
1020 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1021                                                bool LastDef,
1022                                                unsigned CurStageNum,
1023                                                unsigned InstrStageNum,
1024                                                ValueMapTy *VRMap) {
1025   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1026     MachineOperand &MO = NewMI->getOperand(i);
1027     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1028       continue;
1029     Register reg = MO.getReg();
1030     if (MO.isDef()) {
1031       // Create a new virtual register for the definition.
1032       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1033       Register NewReg = MRI.createVirtualRegister(RC);
1034       MO.setReg(NewReg);
1035       VRMap[CurStageNum][reg] = NewReg;
1036       if (LastDef)
1037         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1038     } else if (MO.isUse()) {
1039       MachineInstr *Def = MRI.getVRegDef(reg);
1040       // Compute the stage that contains the last definition for instruction.
1041       int DefStageNum = Schedule.getStage(Def);
1042       unsigned StageNum = CurStageNum;
1043       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1044         // Compute the difference in stages between the defintion and the use.
1045         unsigned StageDiff = (InstrStageNum - DefStageNum);
1046         // Make an adjustment to get the last definition.
1047         StageNum -= StageDiff;
1048       }
1049       if (VRMap[StageNum].count(reg))
1050         MO.setReg(VRMap[StageNum][reg]);
1051     }
1052   }
1053 }
1054 
1055 /// Return the instruction in the loop that defines the register.
1056 /// If the definition is a Phi, then follow the Phi operand to
1057 /// the instruction in the loop.
1058 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1059   SmallPtrSet<MachineInstr *, 8> Visited;
1060   MachineInstr *Def = MRI.getVRegDef(Reg);
1061   while (Def->isPHI()) {
1062     if (!Visited.insert(Def).second)
1063       break;
1064     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1065       if (Def->getOperand(i + 1).getMBB() == BB) {
1066         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1067         break;
1068       }
1069   }
1070   return Def;
1071 }
1072 
1073 /// Return the new name for the value from the previous stage.
1074 unsigned ModuloScheduleExpander::getPrevMapVal(
1075     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1076     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1077   unsigned PrevVal = 0;
1078   if (StageNum > PhiStage) {
1079     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1080     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1081       // The name is defined in the previous stage.
1082       PrevVal = VRMap[StageNum - 1][LoopVal];
1083     else if (VRMap[StageNum].count(LoopVal))
1084       // The previous name is defined in the current stage when the instruction
1085       // order is swapped.
1086       PrevVal = VRMap[StageNum][LoopVal];
1087     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1088       // The loop value hasn't yet been scheduled.
1089       PrevVal = LoopVal;
1090     else if (StageNum == PhiStage + 1)
1091       // The loop value is another phi, which has not been scheduled.
1092       PrevVal = getInitPhiReg(*LoopInst, BB);
1093     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1094       // The loop value is another phi, which has been scheduled.
1095       PrevVal =
1096           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1097                         LoopStage, VRMap, BB);
1098   }
1099   return PrevVal;
1100 }
1101 
1102 /// Rewrite the Phi values in the specified block to use the mappings
1103 /// from the initial operand. Once the Phi is scheduled, we switch
1104 /// to using the loop value instead of the Phi value, so those names
1105 /// do not need to be rewritten.
1106 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1107                                               unsigned StageNum,
1108                                               ValueMapTy *VRMap,
1109                                               InstrMapTy &InstrMap) {
1110   for (auto &PHI : BB->phis()) {
1111     unsigned InitVal = 0;
1112     unsigned LoopVal = 0;
1113     getPhiRegs(PHI, BB, InitVal, LoopVal);
1114     Register PhiDef = PHI.getOperand(0).getReg();
1115 
1116     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1117     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1118     unsigned NumPhis = getStagesForPhi(PhiDef);
1119     if (NumPhis > StageNum)
1120       NumPhis = StageNum;
1121     for (unsigned np = 0; np <= NumPhis; ++np) {
1122       unsigned NewVal =
1123           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1124       if (!NewVal)
1125         NewVal = InitVal;
1126       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1127                             NewVal);
1128     }
1129   }
1130 }
1131 
1132 /// Rewrite a previously scheduled instruction to use the register value
1133 /// from the new instruction. Make sure the instruction occurs in the
1134 /// basic block, and we don't change the uses in the new instruction.
1135 void ModuloScheduleExpander::rewriteScheduledInstr(
1136     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1137     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1138     unsigned PrevReg) {
1139   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1140   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1141   // Rewrite uses that have been scheduled already to use the new
1142   // Phi register.
1143   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1144                                          EI = MRI.use_end();
1145        UI != EI;) {
1146     MachineOperand &UseOp = *UI;
1147     MachineInstr *UseMI = UseOp.getParent();
1148     ++UI;
1149     if (UseMI->getParent() != BB)
1150       continue;
1151     if (UseMI->isPHI()) {
1152       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1153         continue;
1154       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1155         continue;
1156     }
1157     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1158     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1159     MachineInstr *OrigMI = OrigInstr->second;
1160     int StageSched = Schedule.getStage(OrigMI);
1161     int CycleSched = Schedule.getCycle(OrigMI);
1162     unsigned ReplaceReg = 0;
1163     // This is the stage for the scheduled instruction.
1164     if (StagePhi == StageSched && Phi->isPHI()) {
1165       int CyclePhi = Schedule.getCycle(Phi);
1166       if (PrevReg && InProlog)
1167         ReplaceReg = PrevReg;
1168       else if (PrevReg && !isLoopCarried(*Phi) &&
1169                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1170         ReplaceReg = PrevReg;
1171       else
1172         ReplaceReg = NewReg;
1173     }
1174     // The scheduled instruction occurs before the scheduled Phi, and the
1175     // Phi is not loop carried.
1176     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1177       ReplaceReg = NewReg;
1178     if (StagePhi > StageSched && Phi->isPHI())
1179       ReplaceReg = NewReg;
1180     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1181       ReplaceReg = NewReg;
1182     if (ReplaceReg) {
1183       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1184       UseOp.setReg(ReplaceReg);
1185     }
1186   }
1187 }
1188 
1189 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1190   if (!Phi.isPHI())
1191     return false;
1192   unsigned DefCycle = Schedule.getCycle(&Phi);
1193   int DefStage = Schedule.getStage(&Phi);
1194 
1195   unsigned InitVal = 0;
1196   unsigned LoopVal = 0;
1197   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1198   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1199   if (!Use || Use->isPHI())
1200     return true;
1201   unsigned LoopCycle = Schedule.getCycle(Use);
1202   int LoopStage = Schedule.getStage(Use);
1203   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1204 }
1205 
1206 //===----------------------------------------------------------------------===//
1207 // PeelingModuloScheduleExpander implementation
1208 //===----------------------------------------------------------------------===//
1209 // This is a reimplementation of ModuloScheduleExpander that works by creating
1210 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1211 //===----------------------------------------------------------------------===//
1212 
1213 namespace {
1214 // Remove any dead phis in MBB. Dead phis either have only one block as input
1215 // (in which case they are the identity) or have no uses.
1216 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1217                        LiveIntervals *LIS) {
1218   bool Changed = true;
1219   while (Changed) {
1220     Changed = false;
1221     for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1222       MachineInstr &MI = *I++;
1223       assert(MI.isPHI());
1224       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1225         if (LIS)
1226           LIS->RemoveMachineInstrFromMaps(MI);
1227         MI.eraseFromParent();
1228         Changed = true;
1229       } else if (MI.getNumExplicitOperands() == 3) {
1230         MRI.constrainRegClass(MI.getOperand(1).getReg(),
1231                               MRI.getRegClass(MI.getOperand(0).getReg()));
1232         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1233                            MI.getOperand(1).getReg());
1234         if (LIS)
1235           LIS->RemoveMachineInstrFromMaps(MI);
1236         MI.eraseFromParent();
1237         Changed = true;
1238       }
1239     }
1240   }
1241 }
1242 
1243 /// Rewrites the kernel block in-place to adhere to the given schedule.
1244 /// KernelRewriter holds all of the state required to perform the rewriting.
1245 class KernelRewriter {
1246   ModuloSchedule &S;
1247   MachineBasicBlock *BB;
1248   MachineBasicBlock *PreheaderBB, *ExitBB;
1249   MachineRegisterInfo &MRI;
1250   const TargetInstrInfo *TII;
1251   LiveIntervals *LIS;
1252 
1253   // Map from register class to canonical undef register for that class.
1254   DenseMap<const TargetRegisterClass *, Register> Undefs;
1255   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1256   // this map is only used when InitReg is non-undef.
1257   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1258   // Map from LoopReg to phi register where the InitReg is undef.
1259   DenseMap<Register, Register> UndefPhis;
1260 
1261   // Reg is used by MI. Return the new register MI should use to adhere to the
1262   // schedule. Insert phis as necessary.
1263   Register remapUse(Register Reg, MachineInstr &MI);
1264   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1265   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1266   // or will be chosen so as to share another phi.
1267   Register phi(Register LoopReg, Optional<Register> InitReg = {},
1268                const TargetRegisterClass *RC = nullptr);
1269   // Create an undef register of the given register class.
1270   Register undef(const TargetRegisterClass *RC);
1271 
1272 public:
1273   KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1274                  LiveIntervals *LIS = nullptr);
1275   void rewrite();
1276 };
1277 } // namespace
1278 
1279 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1280                                LiveIntervals *LIS)
1281     : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1282       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1283       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1284   PreheaderBB = *BB->pred_begin();
1285   if (PreheaderBB == BB)
1286     PreheaderBB = *std::next(BB->pred_begin());
1287 }
1288 
1289 void KernelRewriter::rewrite() {
1290   // Rearrange the loop to be in schedule order. Note that the schedule may
1291   // contain instructions that are not owned by the loop block (InstrChanges and
1292   // friends), so we gracefully handle unowned instructions and delete any
1293   // instructions that weren't in the schedule.
1294   auto InsertPt = BB->getFirstTerminator();
1295   MachineInstr *FirstMI = nullptr;
1296   for (MachineInstr *MI : S.getInstructions()) {
1297     if (MI->isPHI())
1298       continue;
1299     if (MI->getParent())
1300       MI->removeFromParent();
1301     BB->insert(InsertPt, MI);
1302     if (!FirstMI)
1303       FirstMI = MI;
1304   }
1305   assert(FirstMI && "Failed to find first MI in schedule");
1306 
1307   // At this point all of the scheduled instructions are between FirstMI
1308   // and the end of the block. Kill from the first non-phi to FirstMI.
1309   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1310     if (LIS)
1311       LIS->RemoveMachineInstrFromMaps(*I);
1312     (I++)->eraseFromParent();
1313   }
1314 
1315   // Now remap every instruction in the loop.
1316   for (MachineInstr &MI : *BB) {
1317     if (MI.isPHI() || MI.isTerminator())
1318       continue;
1319     for (MachineOperand &MO : MI.uses()) {
1320       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1321         continue;
1322       Register Reg = remapUse(MO.getReg(), MI);
1323       MO.setReg(Reg);
1324     }
1325   }
1326   EliminateDeadPhis(BB, MRI, LIS);
1327 
1328   // Ensure a phi exists for all instructions that are either referenced by
1329   // an illegal phi or by an instruction outside the loop. This allows us to
1330   // treat remaps of these values the same as "normal" values that come from
1331   // loop-carried phis.
1332   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1333     if (MI->isPHI()) {
1334       Register R = MI->getOperand(0).getReg();
1335       phi(R);
1336       continue;
1337     }
1338 
1339     for (MachineOperand &Def : MI->defs()) {
1340       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1341         if (MI.getParent() != BB) {
1342           phi(Def.getReg());
1343           break;
1344         }
1345       }
1346     }
1347   }
1348 }
1349 
1350 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1351   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1352   if (!Producer)
1353     return Reg;
1354 
1355   int ConsumerStage = S.getStage(&MI);
1356   if (!Producer->isPHI()) {
1357     // Non-phi producers are simple to remap. Insert as many phis as the
1358     // difference between the consumer and producer stages.
1359     if (Producer->getParent() != BB)
1360       // Producer was not inside the loop. Use the register as-is.
1361       return Reg;
1362     int ProducerStage = S.getStage(Producer);
1363     assert(ConsumerStage != -1 &&
1364            "In-loop consumer should always be scheduled!");
1365     assert(ConsumerStage >= ProducerStage);
1366     unsigned StageDiff = ConsumerStage - ProducerStage;
1367 
1368     for (unsigned I = 0; I < StageDiff; ++I)
1369       Reg = phi(Reg);
1370     return Reg;
1371   }
1372 
1373   // First, dive through the phi chain to find the defaults for the generated
1374   // phis.
1375   SmallVector<Optional<Register>, 4> Defaults;
1376   Register LoopReg = Reg;
1377   auto LoopProducer = Producer;
1378   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1379     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1380     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1381     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1382     assert(LoopProducer);
1383   }
1384   int LoopProducerStage = S.getStage(LoopProducer);
1385 
1386   Optional<Register> IllegalPhiDefault;
1387 
1388   if (LoopProducerStage == -1) {
1389     // Do nothing.
1390   } else if (LoopProducerStage > ConsumerStage) {
1391     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1392     // In addition, Consumer's cycle must be scheduled after Producer in the
1393     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1394     // functions.
1395 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1396     int LoopProducerCycle = S.getCycle(LoopProducer);
1397     int ConsumerCycle = S.getCycle(&MI);
1398 #endif
1399     assert(LoopProducerCycle <= ConsumerCycle);
1400     assert(LoopProducerStage == ConsumerStage + 1);
1401     // Peel off the first phi from Defaults and insert a phi between producer
1402     // and consumer. This phi will not be at the front of the block so we
1403     // consider it illegal. It will only exist during the rewrite process; it
1404     // needs to exist while we peel off prologs because these could take the
1405     // default value. After that we can replace all uses with the loop producer
1406     // value.
1407     IllegalPhiDefault = Defaults.front();
1408     Defaults.erase(Defaults.begin());
1409   } else {
1410     assert(ConsumerStage >= LoopProducerStage);
1411     int StageDiff = ConsumerStage - LoopProducerStage;
1412     if (StageDiff > 0) {
1413       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1414                         << " to " << (Defaults.size() + StageDiff) << "\n");
1415       // If we need more phis than we have defaults for, pad out with undefs for
1416       // the earliest phis, which are at the end of the defaults chain (the
1417       // chain is in reverse order).
1418       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1419                                                        ? Optional<Register>()
1420                                                        : Defaults.back());
1421     }
1422   }
1423 
1424   // Now we know the number of stages to jump back, insert the phi chain.
1425   auto DefaultI = Defaults.rbegin();
1426   while (DefaultI != Defaults.rend())
1427     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1428 
1429   if (IllegalPhiDefault.hasValue()) {
1430     // The consumer optionally consumes LoopProducer in the same iteration
1431     // (because the producer is scheduled at an earlier cycle than the consumer)
1432     // or the initial value. To facilitate this we create an illegal block here
1433     // by embedding a phi in the middle of the block. We will fix this up
1434     // immediately prior to pruning.
1435     auto RC = MRI.getRegClass(Reg);
1436     Register R = MRI.createVirtualRegister(RC);
1437     BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1438         .addReg(IllegalPhiDefault.getValue())
1439         .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1440         .addReg(LoopReg)
1441         .addMBB(BB); // Block choice is arbitrary and has no effect.
1442     return R;
1443   }
1444 
1445   return LoopReg;
1446 }
1447 
1448 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1449                              const TargetRegisterClass *RC) {
1450   // If the init register is not undef, try and find an existing phi.
1451   if (InitReg.hasValue()) {
1452     auto I = Phis.find({LoopReg, InitReg.getValue()});
1453     if (I != Phis.end())
1454       return I->second;
1455   } else {
1456     for (auto &KV : Phis) {
1457       if (KV.first.first == LoopReg)
1458         return KV.second;
1459     }
1460   }
1461 
1462   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1463   // find a phi that takes undef as input.
1464   auto I = UndefPhis.find(LoopReg);
1465   if (I != UndefPhis.end()) {
1466     Register R = I->second;
1467     if (!InitReg.hasValue())
1468       // Found a phi taking undef as input, and this input is undef so return
1469       // without any more changes.
1470       return R;
1471     // Found a phi taking undef as input, so rewrite it to take InitReg.
1472     MachineInstr *MI = MRI.getVRegDef(R);
1473     MI->getOperand(1).setReg(InitReg.getValue());
1474     Phis.insert({{LoopReg, InitReg.getValue()}, R});
1475     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1476     UndefPhis.erase(I);
1477     return R;
1478   }
1479 
1480   // Failed to find any existing phi to reuse, so create a new one.
1481   if (!RC)
1482     RC = MRI.getRegClass(LoopReg);
1483   Register R = MRI.createVirtualRegister(RC);
1484   if (InitReg.hasValue())
1485     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1486   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1487       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1488       .addMBB(PreheaderBB)
1489       .addReg(LoopReg)
1490       .addMBB(BB);
1491   if (!InitReg.hasValue())
1492     UndefPhis[LoopReg] = R;
1493   else
1494     Phis[{LoopReg, *InitReg}] = R;
1495   return R;
1496 }
1497 
1498 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1499   Register &R = Undefs[RC];
1500   if (R == 0) {
1501     // Create an IMPLICIT_DEF that defines this register if we need it.
1502     // All uses of this should be removed by the time we have finished unrolling
1503     // prologs and epilogs.
1504     R = MRI.createVirtualRegister(RC);
1505     auto *InsertBB = &PreheaderBB->getParent()->front();
1506     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1507             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1508   }
1509   return R;
1510 }
1511 
1512 namespace {
1513 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1514 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1515 /// through and defaults for these phis.
1516 class KernelOperandInfo {
1517   MachineBasicBlock *BB;
1518   MachineRegisterInfo &MRI;
1519   SmallVector<Register, 4> PhiDefaults;
1520   MachineOperand *Source;
1521   MachineOperand *Target;
1522 
1523 public:
1524   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1525                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1526       : MRI(MRI) {
1527     Source = MO;
1528     BB = MO->getParent()->getParent();
1529     while (isRegInLoop(MO)) {
1530       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1531       if (MI->isFullCopy()) {
1532         MO = &MI->getOperand(1);
1533         continue;
1534       }
1535       if (!MI->isPHI())
1536         break;
1537       // If this is an illegal phi, don't count it in distance.
1538       if (IllegalPhis.count(MI)) {
1539         MO = &MI->getOperand(3);
1540         continue;
1541       }
1542 
1543       Register Default = getInitPhiReg(*MI, BB);
1544       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1545                                             : &MI->getOperand(3);
1546       PhiDefaults.push_back(Default);
1547     }
1548     Target = MO;
1549   }
1550 
1551   bool operator==(const KernelOperandInfo &Other) const {
1552     return PhiDefaults.size() == Other.PhiDefaults.size();
1553   }
1554 
1555   void print(raw_ostream &OS) const {
1556     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1557        << *Source->getParent();
1558   }
1559 
1560 private:
1561   bool isRegInLoop(MachineOperand *MO) {
1562     return MO->isReg() && MO->getReg().isVirtual() &&
1563            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1564   }
1565 };
1566 } // namespace
1567 
1568 MachineBasicBlock *
1569 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1570   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1571   if (LPD == LPD_Front)
1572     PeeledFront.push_back(NewBB);
1573   else
1574     PeeledBack.push_front(NewBB);
1575   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1576        ++I, ++NI) {
1577     CanonicalMIs[&*I] = &*I;
1578     CanonicalMIs[&*NI] = &*I;
1579     BlockMIs[{NewBB, &*I}] = &*NI;
1580     BlockMIs[{BB, &*I}] = &*I;
1581   }
1582   return NewBB;
1583 }
1584 
1585 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1586                                                        int MinStage) {
1587   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1588        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1589     MachineInstr *MI = &*I++;
1590     int Stage = getStage(MI);
1591     if (Stage == -1 || Stage >= MinStage)
1592       continue;
1593 
1594     for (MachineOperand &DefMO : MI->defs()) {
1595       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1596       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1597         // Only PHIs can use values from this block by construction.
1598         // Match with the equivalent PHI in B.
1599         assert(UseMI.isPHI());
1600         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1601                                                MI->getParent());
1602         Subs.emplace_back(&UseMI, Reg);
1603       }
1604       for (auto &Sub : Subs)
1605         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1606                                       *MRI.getTargetRegisterInfo());
1607     }
1608     if (LIS)
1609       LIS->RemoveMachineInstrFromMaps(*MI);
1610     MI->eraseFromParent();
1611   }
1612 }
1613 
1614 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1615     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1616   auto InsertPt = DestBB->getFirstNonPHI();
1617   DenseMap<Register, Register> Remaps;
1618   for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1619     MachineInstr *MI = &*I++;
1620     if (MI->isPHI()) {
1621       // This is an illegal PHI. If we move any instructions using an illegal
1622       // PHI, we need to create a legal Phi
1623       Register PhiR = MI->getOperand(0).getReg();
1624       auto RC = MRI.getRegClass(PhiR);
1625       Register NR = MRI.createVirtualRegister(RC);
1626       MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(),
1627                                  TII->get(TargetOpcode::PHI), NR)
1628                              .addReg(PhiR)
1629                              .addMBB(SourceBB);
1630       BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1631       CanonicalMIs[NI] = CanonicalMIs[MI];
1632       Remaps[PhiR] = NR;
1633       continue;
1634     }
1635     if (getStage(MI) != Stage)
1636       continue;
1637     MI->removeFromParent();
1638     DestBB->insert(InsertPt, MI);
1639     auto *KernelMI = CanonicalMIs[MI];
1640     BlockMIs[{DestBB, KernelMI}] = MI;
1641     BlockMIs.erase({SourceBB, KernelMI});
1642   }
1643   SmallVector<MachineInstr *, 4> PhiToDelete;
1644   for (MachineInstr &MI : DestBB->phis()) {
1645     assert(MI.getNumOperands() == 3);
1646     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1647     // If the instruction referenced by the phi is moved inside the block
1648     // we don't need the phi anymore.
1649     if (getStage(Def) == Stage) {
1650       Register PhiReg = MI.getOperand(0).getReg();
1651       MRI.replaceRegWith(MI.getOperand(0).getReg(),
1652                          Def->getOperand(0).getReg());
1653       MI.getOperand(0).setReg(PhiReg);
1654       PhiToDelete.push_back(&MI);
1655     }
1656   }
1657   for (auto *P : PhiToDelete)
1658     P->eraseFromParent();
1659   InsertPt = DestBB->getFirstNonPHI();
1660   for (MachineInstr &MI : SourceBB->phis()) {
1661     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
1662     DestBB->insert(InsertPt, NewMI);
1663     Register OrigR = MI.getOperand(0).getReg();
1664     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1665     NewMI->getOperand(0).setReg(R);
1666     NewMI->getOperand(1).setReg(OrigR);
1667     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1668     Remaps[OrigR] = R;
1669     CanonicalMIs[NewMI] = CanonicalMIs[&MI];
1670     BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NewMI;
1671   }
1672   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I)
1673     for (MachineOperand &MO : I->uses())
1674       if (MO.isReg() && Remaps.count(MO.getReg()))
1675         MO.setReg(Remaps[MO.getReg()]);
1676 }
1677 
1678 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1679   BitVector LS(Schedule.getNumStages(), true);
1680   BitVector AS(Schedule.getNumStages(), true);
1681   LiveStages[BB] = LS;
1682   AvailableStages[BB] = AS;
1683 
1684   // Peel out the prologs.
1685   LS.reset();
1686   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1687     LS[I] = 1;
1688     Prologs.push_back(peelKernel(LPD_Front));
1689     LiveStages[Prologs.back()] = LS;
1690     AvailableStages[Prologs.back()] = LS;
1691   }
1692 
1693   // Create a block that will end up as the new loop exiting block (dominated by
1694   // all prologs and epilogs). It will only contain PHIs, in the same order as
1695   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1696   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1697   // property that any value deffed in BB but used outside of BB is used by a
1698   // PHI in the exiting block.
1699   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1700 
1701   // Push out the epilogs, again in reverse order.
1702   // We can't assume anything about the minumum loop trip count at this point,
1703   // so emit a fairly complex epilog.
1704 
1705   // We first peel number of stages minus one epilogue. Then we remove dead
1706   // stages and reorder instructions based on their stage. If we have 3 stages
1707   // we generate first:
1708   // E0[3, 2, 1]
1709   // E1[3', 2']
1710   // E2[3'']
1711   // And then we move instructions based on their stages to have:
1712   // E0[3]
1713   // E1[2, 3']
1714   // E2[1, 2', 3'']
1715   // The transformation is legal because we only move instructions past
1716   // instructions of a previous loop iteration.
1717   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1718     Epilogs.push_back(peelKernel(LPD_Back));
1719     filterInstructions(Epilogs.back(), Schedule.getNumStages() - I);
1720   }
1721   for (size_t I = 0; I < Epilogs.size(); I++) {
1722     LS.reset();
1723     for (size_t J = I; J < Epilogs.size(); J++) {
1724       int Iteration = J;
1725       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1726       // Move stage one block at a time so that Phi nodes are updated correctly.
1727       for (size_t K = Iteration; K > I; K--)
1728         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1729       LS[Stage] = 1;
1730     }
1731     LiveStages[Epilogs[I]] = LS;
1732     AvailableStages[Epilogs[I]] = AS;
1733   }
1734 
1735   // Now we've defined all the prolog and epilog blocks as a fallthrough
1736   // sequence, add the edges that will be followed if the loop trip count is
1737   // lower than the number of stages (connecting prologs directly with epilogs).
1738   auto PI = Prologs.begin();
1739   auto EI = Epilogs.begin();
1740   assert(Prologs.size() == Epilogs.size());
1741   for (; PI != Prologs.end(); ++PI, ++EI) {
1742     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1743     (*PI)->addSuccessor(*EI);
1744     for (MachineInstr &MI : (*EI)->phis()) {
1745       Register Reg = MI.getOperand(1).getReg();
1746       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1747       if (Use && Use->getParent() == Pred)
1748         Reg = getEquivalentRegisterIn(Reg, *PI);
1749       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1750       MI.addOperand(MachineOperand::CreateMBB(*PI));
1751     }
1752   }
1753 
1754   // Create a list of all blocks in order.
1755   SmallVector<MachineBasicBlock *, 8> Blocks;
1756   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1757   Blocks.push_back(BB);
1758   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1759 
1760   // Iterate in reverse order over all instructions, remapping as we go.
1761   for (MachineBasicBlock *B : reverse(Blocks)) {
1762     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1763          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1764       MachineInstr *MI = &*I++;
1765       rewriteUsesOf(MI);
1766     }
1767   }
1768   for (auto *MI : IllegalPhisToDelete) {
1769     if (LIS)
1770       LIS->RemoveMachineInstrFromMaps(*MI);
1771     MI->eraseFromParent();
1772   }
1773   IllegalPhisToDelete.clear();
1774 
1775   // Now all remapping has been done, we're free to optimize the generated code.
1776   for (MachineBasicBlock *B : reverse(Blocks))
1777     EliminateDeadPhis(B, MRI, LIS);
1778   EliminateDeadPhis(ExitingBB, MRI, LIS);
1779 }
1780 
1781 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1782   MachineFunction &MF = *BB->getParent();
1783   MachineBasicBlock *Exit = *BB->succ_begin();
1784   if (Exit == BB)
1785     Exit = *std::next(BB->succ_begin());
1786 
1787   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1788   MF.insert(std::next(BB->getIterator()), NewBB);
1789 
1790   // Clone all phis in BB into NewBB and rewrite.
1791   for (MachineInstr &MI : BB->phis()) {
1792     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1793     Register OldR = MI.getOperand(3).getReg();
1794     Register R = MRI.createVirtualRegister(RC);
1795     SmallVector<MachineInstr *, 4> Uses;
1796     for (MachineInstr &Use : MRI.use_instructions(OldR))
1797       if (Use.getParent() != BB)
1798         Uses.push_back(&Use);
1799     for (MachineInstr *Use : Uses)
1800       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1801                               *MRI.getTargetRegisterInfo());
1802     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1803         .addReg(OldR)
1804         .addMBB(BB);
1805     BlockMIs[{NewBB, &MI}] = NI;
1806     CanonicalMIs[NI] = &MI;
1807   }
1808   BB->replaceSuccessor(Exit, NewBB);
1809   Exit->replacePhiUsesWith(BB, NewBB);
1810   NewBB->addSuccessor(Exit);
1811 
1812   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1813   SmallVector<MachineOperand, 4> Cond;
1814   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1815   (void)CanAnalyzeBr;
1816   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1817   TII->removeBranch(*BB);
1818   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1819                     Cond, DebugLoc());
1820   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1821   return NewBB;
1822 }
1823 
1824 Register
1825 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1826                                                        MachineBasicBlock *BB) {
1827   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1828   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1829   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1830 }
1831 
1832 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1833   if (MI->isPHI()) {
1834     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1835     // and it is produced by this block.
1836     Register PhiR = MI->getOperand(0).getReg();
1837     Register R = MI->getOperand(3).getReg();
1838     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1839     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1840       R = MI->getOperand(1).getReg();
1841     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1842     MRI.replaceRegWith(PhiR, R);
1843     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1844     // later to figure out how to remap registers.
1845     MI->getOperand(0).setReg(PhiR);
1846     IllegalPhisToDelete.push_back(MI);
1847     return;
1848   }
1849 
1850   int Stage = getStage(MI);
1851   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1852       LiveStages[MI->getParent()].test(Stage))
1853     // Instruction is live, no rewriting to do.
1854     return;
1855 
1856   for (MachineOperand &DefMO : MI->defs()) {
1857     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1858     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1859       // Only PHIs can use values from this block by construction.
1860       // Match with the equivalent PHI in B.
1861       assert(UseMI.isPHI());
1862       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1863                                              MI->getParent());
1864       Subs.emplace_back(&UseMI, Reg);
1865     }
1866     for (auto &Sub : Subs)
1867       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1868                                     *MRI.getTargetRegisterInfo());
1869   }
1870   if (LIS)
1871     LIS->RemoveMachineInstrFromMaps(*MI);
1872   MI->eraseFromParent();
1873 }
1874 
1875 void PeelingModuloScheduleExpander::fixupBranches() {
1876   // Work outwards from the kernel.
1877   bool KernelDisposed = false;
1878   int TC = Schedule.getNumStages() - 1;
1879   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1880        ++PI, ++EI, --TC) {
1881     MachineBasicBlock *Prolog = *PI;
1882     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1883     MachineBasicBlock *Epilog = *EI;
1884     SmallVector<MachineOperand, 4> Cond;
1885     TII->removeBranch(*Prolog);
1886     Optional<bool> StaticallyGreater =
1887         Info->createTripCountGreaterCondition(TC, *Prolog, Cond);
1888     if (!StaticallyGreater.hasValue()) {
1889       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1890       // Dynamically branch based on Cond.
1891       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1892     } else if (*StaticallyGreater == false) {
1893       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1894       // Prolog never falls through; branch to epilog and orphan interior
1895       // blocks. Leave it to unreachable-block-elim to clean up.
1896       Prolog->removeSuccessor(Fallthrough);
1897       for (MachineInstr &P : Fallthrough->phis()) {
1898         P.RemoveOperand(2);
1899         P.RemoveOperand(1);
1900       }
1901       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1902       KernelDisposed = true;
1903     } else {
1904       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1905       // Prolog always falls through; remove incoming values in epilog.
1906       Prolog->removeSuccessor(Epilog);
1907       for (MachineInstr &P : Epilog->phis()) {
1908         P.RemoveOperand(4);
1909         P.RemoveOperand(3);
1910       }
1911     }
1912   }
1913 
1914   if (!KernelDisposed) {
1915     Info->adjustTripCount(-(Schedule.getNumStages() - 1));
1916     Info->setPreheader(Prologs.back());
1917   } else {
1918     Info->disposed();
1919   }
1920 }
1921 
1922 void PeelingModuloScheduleExpander::rewriteKernel() {
1923   KernelRewriter KR(*Schedule.getLoop(), Schedule);
1924   KR.rewrite();
1925 }
1926 
1927 void PeelingModuloScheduleExpander::expand() {
1928   BB = Schedule.getLoop()->getTopBlock();
1929   Preheader = Schedule.getLoop()->getLoopPreheader();
1930   LLVM_DEBUG(Schedule.dump());
1931   Info = TII->analyzeLoopForPipelining(BB);
1932   assert(Info);
1933 
1934   rewriteKernel();
1935   peelPrologAndEpilogs();
1936   fixupBranches();
1937 }
1938 
1939 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1940   BB = Schedule.getLoop()->getTopBlock();
1941   Preheader = Schedule.getLoop()->getLoopPreheader();
1942 
1943   // Dump the schedule before we invalidate and remap all its instructions.
1944   // Stash it in a string so we can print it if we found an error.
1945   std::string ScheduleDump;
1946   raw_string_ostream OS(ScheduleDump);
1947   Schedule.print(OS);
1948   OS.flush();
1949 
1950   // First, run the normal ModuleScheduleExpander. We don't support any
1951   // InstrChanges.
1952   assert(LIS && "Requires LiveIntervals!");
1953   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
1954                              ModuloScheduleExpander::InstrChangesTy());
1955   MSE.expand();
1956   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
1957   if (!ExpandedKernel) {
1958     // The expander optimized away the kernel. We can't do any useful checking.
1959     MSE.cleanup();
1960     return;
1961   }
1962   // Before running the KernelRewriter, re-add BB into the CFG.
1963   Preheader->addSuccessor(BB);
1964 
1965   // Now run the new expansion algorithm.
1966   KernelRewriter KR(*Schedule.getLoop(), Schedule);
1967   KR.rewrite();
1968   peelPrologAndEpilogs();
1969 
1970   // Collect all illegal phis that the new algorithm created. We'll give these
1971   // to KernelOperandInfo.
1972   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
1973   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
1974     if (NI->isPHI())
1975       IllegalPhis.insert(&*NI);
1976   }
1977 
1978   // Co-iterate across both kernels. We expect them to be identical apart from
1979   // phis and full COPYs (we look through both).
1980   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
1981   auto OI = ExpandedKernel->begin();
1982   auto NI = BB->begin();
1983   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
1984     while (OI->isPHI() || OI->isFullCopy())
1985       ++OI;
1986     while (NI->isPHI() || NI->isFullCopy())
1987       ++NI;
1988     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
1989     // Analyze every operand separately.
1990     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
1991          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
1992       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
1993                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
1994   }
1995 
1996   bool Failed = false;
1997   for (auto &OldAndNew : KOIs) {
1998     if (OldAndNew.first == OldAndNew.second)
1999       continue;
2000     Failed = true;
2001     errs() << "Modulo kernel validation error: [\n";
2002     errs() << " [golden] ";
2003     OldAndNew.first.print(errs());
2004     errs() << "          ";
2005     OldAndNew.second.print(errs());
2006     errs() << "]\n";
2007   }
2008 
2009   if (Failed) {
2010     errs() << "Golden reference kernel:\n";
2011     ExpandedKernel->print(errs());
2012     errs() << "New kernel:\n";
2013     BB->print(errs());
2014     errs() << ScheduleDump;
2015     report_fatal_error(
2016         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2017   }
2018 
2019   // Cleanup by removing BB from the CFG again as the original
2020   // ModuloScheduleExpander intended.
2021   Preheader->removeSuccessor(BB);
2022   MSE.cleanup();
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // ModuloScheduleTestPass implementation
2027 //===----------------------------------------------------------------------===//
2028 // This pass constructs a ModuloSchedule from its module and runs
2029 // ModuloScheduleExpander.
2030 //
2031 // The module is expected to contain a single-block analyzable loop.
2032 // The total order of instructions is taken from the loop as-is.
2033 // Instructions are expected to be annotated with a PostInstrSymbol.
2034 // This PostInstrSymbol must have the following format:
2035 //  "Stage=%d Cycle=%d".
2036 //===----------------------------------------------------------------------===//
2037 
2038 namespace {
2039 class ModuloScheduleTest : public MachineFunctionPass {
2040 public:
2041   static char ID;
2042 
2043   ModuloScheduleTest() : MachineFunctionPass(ID) {
2044     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2045   }
2046 
2047   bool runOnMachineFunction(MachineFunction &MF) override;
2048   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2049 
2050   void getAnalysisUsage(AnalysisUsage &AU) const override {
2051     AU.addRequired<MachineLoopInfo>();
2052     AU.addRequired<LiveIntervals>();
2053     MachineFunctionPass::getAnalysisUsage(AU);
2054   }
2055 };
2056 } // namespace
2057 
2058 char ModuloScheduleTest::ID = 0;
2059 
2060 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2061                       "Modulo Schedule test pass", false, false)
2062 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2063 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2064 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2065                     "Modulo Schedule test pass", false, false)
2066 
2067 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2068   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2069   for (auto *L : MLI) {
2070     if (L->getTopBlock() != L->getBottomBlock())
2071       continue;
2072     runOnLoop(MF, *L);
2073     return false;
2074   }
2075   return false;
2076 }
2077 
2078 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2079   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2080   std::pair<StringRef, StringRef> StageTokenAndValue =
2081       getToken(StageAndCycle.first, "-");
2082   std::pair<StringRef, StringRef> CycleTokenAndValue =
2083       getToken(StageAndCycle.second, "-");
2084   if (StageTokenAndValue.first != "Stage" ||
2085       CycleTokenAndValue.first != "_Cycle") {
2086     llvm_unreachable(
2087         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2088     return;
2089   }
2090 
2091   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2092   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2093 
2094   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2095 }
2096 
2097 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2098   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2099   MachineBasicBlock *BB = L.getTopBlock();
2100   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2101 
2102   DenseMap<MachineInstr *, int> Cycle, Stage;
2103   std::vector<MachineInstr *> Instrs;
2104   for (MachineInstr &MI : *BB) {
2105     if (MI.isTerminator())
2106       continue;
2107     Instrs.push_back(&MI);
2108     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2109       dbgs() << "Parsing post-instr symbol for " << MI;
2110       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2111     }
2112   }
2113 
2114   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2115                     std::move(Stage));
2116   ModuloScheduleExpander MSE(
2117       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2118   MSE.expand();
2119   MSE.cleanup();
2120 }
2121 
2122 //===----------------------------------------------------------------------===//
2123 // ModuloScheduleTestAnnotater implementation
2124 //===----------------------------------------------------------------------===//
2125 
2126 void ModuloScheduleTestAnnotater::annotate() {
2127   for (MachineInstr *MI : S.getInstructions()) {
2128     SmallVector<char, 16> SV;
2129     raw_svector_ostream OS(SV);
2130     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2131     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2132     MI->setPostInstrSymbol(MF, Sym);
2133   }
2134 }
2135