1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/CodeGen/LiveIntervals.h" 12 #include "llvm/CodeGen/MachineInstrBuilder.h" 13 #include "llvm/CodeGen/MachineLoopUtils.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/CodeGen/TargetInstrInfo.h" 16 #include "llvm/InitializePasses.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #define DEBUG_TYPE "pipeliner" 23 using namespace llvm; 24 25 void ModuloSchedule::print(raw_ostream &OS) { 26 for (MachineInstr *MI : ScheduledInstrs) 27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 28 } 29 30 //===----------------------------------------------------------------------===// 31 // ModuloScheduleExpander implementation 32 //===----------------------------------------------------------------------===// 33 34 /// Return the register values for the operands of a Phi instruction. 35 /// This function assume the instruction is a Phi. 36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 37 unsigned &InitVal, unsigned &LoopVal) { 38 assert(Phi.isPHI() && "Expecting a Phi."); 39 40 InitVal = 0; 41 LoopVal = 0; 42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 43 if (Phi.getOperand(i + 1).getMBB() != Loop) 44 InitVal = Phi.getOperand(i).getReg(); 45 else 46 LoopVal = Phi.getOperand(i).getReg(); 47 48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 49 } 50 51 /// Return the Phi register value that comes from the incoming block. 52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 54 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 55 return Phi.getOperand(i).getReg(); 56 return 0; 57 } 58 59 /// Return the Phi register value that comes the loop block. 60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 62 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 63 return Phi.getOperand(i).getReg(); 64 return 0; 65 } 66 67 void ModuloScheduleExpander::expand() { 68 BB = Schedule.getLoop()->getTopBlock(); 69 Preheader = *BB->pred_begin(); 70 if (Preheader == BB) 71 Preheader = *std::next(BB->pred_begin()); 72 73 // Iterate over the definitions in each instruction, and compute the 74 // stage difference for each use. Keep the maximum value. 75 for (MachineInstr *MI : Schedule.getInstructions()) { 76 int DefStage = Schedule.getStage(MI); 77 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 78 MachineOperand &Op = MI->getOperand(i); 79 if (!Op.isReg() || !Op.isDef()) 80 continue; 81 82 Register Reg = Op.getReg(); 83 unsigned MaxDiff = 0; 84 bool PhiIsSwapped = false; 85 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 86 EI = MRI.use_end(); 87 UI != EI; ++UI) { 88 MachineOperand &UseOp = *UI; 89 MachineInstr *UseMI = UseOp.getParent(); 90 int UseStage = Schedule.getStage(UseMI); 91 unsigned Diff = 0; 92 if (UseStage != -1 && UseStage >= DefStage) 93 Diff = UseStage - DefStage; 94 if (MI->isPHI()) { 95 if (isLoopCarried(*MI)) 96 ++Diff; 97 else 98 PhiIsSwapped = true; 99 } 100 MaxDiff = std::max(Diff, MaxDiff); 101 } 102 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 103 } 104 } 105 106 generatePipelinedLoop(); 107 } 108 109 void ModuloScheduleExpander::generatePipelinedLoop() { 110 LoopInfo = TII->analyzeLoopForPipelining(BB); 111 assert(LoopInfo && "Must be able to analyze loop!"); 112 113 // Create a new basic block for the kernel and add it to the CFG. 114 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 115 116 unsigned MaxStageCount = Schedule.getNumStages() - 1; 117 118 // Remember the registers that are used in different stages. The index is 119 // the iteration, or stage, that the instruction is scheduled in. This is 120 // a map between register names in the original block and the names created 121 // in each stage of the pipelined loop. 122 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 123 InstrMapTy InstrMap; 124 125 SmallVector<MachineBasicBlock *, 4> PrologBBs; 126 127 // Generate the prolog instructions that set up the pipeline. 128 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 129 MF.insert(BB->getIterator(), KernelBB); 130 131 // Rearrange the instructions to generate the new, pipelined loop, 132 // and update register names as needed. 133 for (MachineInstr *CI : Schedule.getInstructions()) { 134 if (CI->isPHI()) 135 continue; 136 unsigned StageNum = Schedule.getStage(CI); 137 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 138 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 139 KernelBB->push_back(NewMI); 140 InstrMap[NewMI] = CI; 141 } 142 143 // Copy any terminator instructions to the new kernel, and update 144 // names as needed. 145 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 146 E = BB->instr_end(); 147 I != E; ++I) { 148 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 149 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 150 KernelBB->push_back(NewMI); 151 InstrMap[NewMI] = &*I; 152 } 153 154 NewKernel = KernelBB; 155 KernelBB->transferSuccessors(BB); 156 KernelBB->replaceSuccessor(BB, KernelBB); 157 158 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 159 InstrMap, MaxStageCount, MaxStageCount, false); 160 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 161 MaxStageCount, MaxStageCount, false); 162 163 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 164 165 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 166 // Generate the epilog instructions to complete the pipeline. 167 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 168 169 // We need this step because the register allocation doesn't handle some 170 // situations well, so we insert copies to help out. 171 splitLifetimes(KernelBB, EpilogBBs); 172 173 // Remove dead instructions due to loop induction variables. 174 removeDeadInstructions(KernelBB, EpilogBBs); 175 176 // Add branches between prolog and epilog blocks. 177 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 178 179 delete[] VRMap; 180 } 181 182 void ModuloScheduleExpander::cleanup() { 183 // Remove the original loop since it's no longer referenced. 184 for (auto &I : *BB) 185 LIS.RemoveMachineInstrFromMaps(I); 186 BB->clear(); 187 BB->eraseFromParent(); 188 } 189 190 /// Generate the pipeline prolog code. 191 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 192 MachineBasicBlock *KernelBB, 193 ValueMapTy *VRMap, 194 MBBVectorTy &PrologBBs) { 195 MachineBasicBlock *PredBB = Preheader; 196 InstrMapTy InstrMap; 197 198 // Generate a basic block for each stage, not including the last stage, 199 // which will be generated in the kernel. Each basic block may contain 200 // instructions from multiple stages/iterations. 201 for (unsigned i = 0; i < LastStage; ++i) { 202 // Create and insert the prolog basic block prior to the original loop 203 // basic block. The original loop is removed later. 204 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 205 PrologBBs.push_back(NewBB); 206 MF.insert(BB->getIterator(), NewBB); 207 NewBB->transferSuccessors(PredBB); 208 PredBB->addSuccessor(NewBB); 209 PredBB = NewBB; 210 211 // Generate instructions for each appropriate stage. Process instructions 212 // in original program order. 213 for (int StageNum = i; StageNum >= 0; --StageNum) { 214 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 215 BBE = BB->getFirstTerminator(); 216 BBI != BBE; ++BBI) { 217 if (Schedule.getStage(&*BBI) == StageNum) { 218 if (BBI->isPHI()) 219 continue; 220 MachineInstr *NewMI = 221 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 222 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 223 NewBB->push_back(NewMI); 224 InstrMap[NewMI] = &*BBI; 225 } 226 } 227 } 228 rewritePhiValues(NewBB, i, VRMap, InstrMap); 229 LLVM_DEBUG({ 230 dbgs() << "prolog:\n"; 231 NewBB->dump(); 232 }); 233 } 234 235 PredBB->replaceSuccessor(BB, KernelBB); 236 237 // Check if we need to remove the branch from the preheader to the original 238 // loop, and replace it with a branch to the new loop. 239 unsigned numBranches = TII->removeBranch(*Preheader); 240 if (numBranches) { 241 SmallVector<MachineOperand, 0> Cond; 242 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 243 } 244 } 245 246 /// Generate the pipeline epilog code. The epilog code finishes the iterations 247 /// that were started in either the prolog or the kernel. We create a basic 248 /// block for each stage that needs to complete. 249 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 250 MachineBasicBlock *KernelBB, 251 ValueMapTy *VRMap, 252 MBBVectorTy &EpilogBBs, 253 MBBVectorTy &PrologBBs) { 254 // We need to change the branch from the kernel to the first epilog block, so 255 // this call to analyze branch uses the kernel rather than the original BB. 256 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 257 SmallVector<MachineOperand, 4> Cond; 258 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 259 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 260 if (checkBranch) 261 return; 262 263 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 264 if (*LoopExitI == KernelBB) 265 ++LoopExitI; 266 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 267 MachineBasicBlock *LoopExitBB = *LoopExitI; 268 269 MachineBasicBlock *PredBB = KernelBB; 270 MachineBasicBlock *EpilogStart = LoopExitBB; 271 InstrMapTy InstrMap; 272 273 // Generate a basic block for each stage, not including the last stage, 274 // which was generated for the kernel. Each basic block may contain 275 // instructions from multiple stages/iterations. 276 int EpilogStage = LastStage + 1; 277 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 278 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 279 EpilogBBs.push_back(NewBB); 280 MF.insert(BB->getIterator(), NewBB); 281 282 PredBB->replaceSuccessor(LoopExitBB, NewBB); 283 NewBB->addSuccessor(LoopExitBB); 284 285 if (EpilogStart == LoopExitBB) 286 EpilogStart = NewBB; 287 288 // Add instructions to the epilog depending on the current block. 289 // Process instructions in original program order. 290 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 291 for (auto &BBI : *BB) { 292 if (BBI.isPHI()) 293 continue; 294 MachineInstr *In = &BBI; 295 if ((unsigned)Schedule.getStage(In) == StageNum) { 296 // Instructions with memoperands in the epilog are updated with 297 // conservative values. 298 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 299 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 300 NewBB->push_back(NewMI); 301 InstrMap[NewMI] = In; 302 } 303 } 304 } 305 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 306 InstrMap, LastStage, EpilogStage, i == 1); 307 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 308 LastStage, EpilogStage, i == 1); 309 PredBB = NewBB; 310 311 LLVM_DEBUG({ 312 dbgs() << "epilog:\n"; 313 NewBB->dump(); 314 }); 315 } 316 317 // Fix any Phi nodes in the loop exit block. 318 LoopExitBB->replacePhiUsesWith(BB, PredBB); 319 320 // Create a branch to the new epilog from the kernel. 321 // Remove the original branch and add a new branch to the epilog. 322 TII->removeBranch(*KernelBB); 323 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 324 // Add a branch to the loop exit. 325 if (EpilogBBs.size() > 0) { 326 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 327 SmallVector<MachineOperand, 4> Cond1; 328 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 329 } 330 } 331 332 /// Replace all uses of FromReg that appear outside the specified 333 /// basic block with ToReg. 334 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 335 MachineBasicBlock *MBB, 336 MachineRegisterInfo &MRI, 337 LiveIntervals &LIS) { 338 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 339 E = MRI.use_end(); 340 I != E;) { 341 MachineOperand &O = *I; 342 ++I; 343 if (O.getParent()->getParent() != MBB) 344 O.setReg(ToReg); 345 } 346 if (!LIS.hasInterval(ToReg)) 347 LIS.createEmptyInterval(ToReg); 348 } 349 350 /// Return true if the register has a use that occurs outside the 351 /// specified loop. 352 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 353 MachineRegisterInfo &MRI) { 354 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 355 E = MRI.use_end(); 356 I != E; ++I) 357 if (I->getParent()->getParent() != BB) 358 return true; 359 return false; 360 } 361 362 /// Generate Phis for the specific block in the generated pipelined code. 363 /// This function looks at the Phis from the original code to guide the 364 /// creation of new Phis. 365 void ModuloScheduleExpander::generateExistingPhis( 366 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 367 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 368 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 369 // Compute the stage number for the initial value of the Phi, which 370 // comes from the prolog. The prolog to use depends on to which kernel/ 371 // epilog that we're adding the Phi. 372 unsigned PrologStage = 0; 373 unsigned PrevStage = 0; 374 bool InKernel = (LastStageNum == CurStageNum); 375 if (InKernel) { 376 PrologStage = LastStageNum - 1; 377 PrevStage = CurStageNum; 378 } else { 379 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 380 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 381 } 382 383 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 384 BBE = BB->getFirstNonPHI(); 385 BBI != BBE; ++BBI) { 386 Register Def = BBI->getOperand(0).getReg(); 387 388 unsigned InitVal = 0; 389 unsigned LoopVal = 0; 390 getPhiRegs(*BBI, BB, InitVal, LoopVal); 391 392 unsigned PhiOp1 = 0; 393 // The Phi value from the loop body typically is defined in the loop, but 394 // not always. So, we need to check if the value is defined in the loop. 395 unsigned PhiOp2 = LoopVal; 396 if (VRMap[LastStageNum].count(LoopVal)) 397 PhiOp2 = VRMap[LastStageNum][LoopVal]; 398 399 int StageScheduled = Schedule.getStage(&*BBI); 400 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 401 unsigned NumStages = getStagesForReg(Def, CurStageNum); 402 if (NumStages == 0) { 403 // We don't need to generate a Phi anymore, but we need to rename any uses 404 // of the Phi value. 405 unsigned NewReg = VRMap[PrevStage][LoopVal]; 406 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 407 InitVal, NewReg); 408 if (VRMap[CurStageNum].count(LoopVal)) 409 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 410 } 411 // Adjust the number of Phis needed depending on the number of prologs left, 412 // and the distance from where the Phi is first scheduled. The number of 413 // Phis cannot exceed the number of prolog stages. Each stage can 414 // potentially define two values. 415 unsigned MaxPhis = PrologStage + 2; 416 if (!InKernel && (int)PrologStage <= LoopValStage) 417 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 418 unsigned NumPhis = std::min(NumStages, MaxPhis); 419 420 unsigned NewReg = 0; 421 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 422 // In the epilog, we may need to look back one stage to get the correct 423 // Phi name, because the epilog and prolog blocks execute the same stage. 424 // The correct name is from the previous block only when the Phi has 425 // been completely scheduled prior to the epilog, and Phi value is not 426 // needed in multiple stages. 427 int StageDiff = 0; 428 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 429 NumPhis == 1) 430 StageDiff = 1; 431 // Adjust the computations below when the phi and the loop definition 432 // are scheduled in different stages. 433 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 434 StageDiff = StageScheduled - LoopValStage; 435 for (unsigned np = 0; np < NumPhis; ++np) { 436 // If the Phi hasn't been scheduled, then use the initial Phi operand 437 // value. Otherwise, use the scheduled version of the instruction. This 438 // is a little complicated when a Phi references another Phi. 439 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 440 PhiOp1 = InitVal; 441 // Check if the Phi has already been scheduled in a prolog stage. 442 else if (PrologStage >= AccessStage + StageDiff + np && 443 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 444 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 445 // Check if the Phi has already been scheduled, but the loop instruction 446 // is either another Phi, or doesn't occur in the loop. 447 else if (PrologStage >= AccessStage + StageDiff + np) { 448 // If the Phi references another Phi, we need to examine the other 449 // Phi to get the correct value. 450 PhiOp1 = LoopVal; 451 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 452 int Indirects = 1; 453 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 454 int PhiStage = Schedule.getStage(InstOp1); 455 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 456 PhiOp1 = getInitPhiReg(*InstOp1, BB); 457 else 458 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 459 InstOp1 = MRI.getVRegDef(PhiOp1); 460 int PhiOpStage = Schedule.getStage(InstOp1); 461 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 462 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 463 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 464 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 465 break; 466 } 467 ++Indirects; 468 } 469 } else 470 PhiOp1 = InitVal; 471 // If this references a generated Phi in the kernel, get the Phi operand 472 // from the incoming block. 473 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 474 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 475 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 476 477 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 478 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 479 // In the epilog, a map lookup is needed to get the value from the kernel, 480 // or previous epilog block. How is does this depends on if the 481 // instruction is scheduled in the previous block. 482 if (!InKernel) { 483 int StageDiffAdj = 0; 484 if (LoopValStage != -1 && StageScheduled > LoopValStage) 485 StageDiffAdj = StageScheduled - LoopValStage; 486 // Use the loop value defined in the kernel, unless the kernel 487 // contains the last definition of the Phi. 488 if (np == 0 && PrevStage == LastStageNum && 489 (StageScheduled != 0 || LoopValStage != 0) && 490 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 491 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 492 // Use the value defined by the Phi. We add one because we switch 493 // from looking at the loop value to the Phi definition. 494 else if (np > 0 && PrevStage == LastStageNum && 495 VRMap[PrevStage - np + 1].count(Def)) 496 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 497 // Use the loop value defined in the kernel. 498 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 499 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 500 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 501 // Use the value defined by the Phi, unless we're generating the first 502 // epilog and the Phi refers to a Phi in a different stage. 503 else if (VRMap[PrevStage - np].count(Def) && 504 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 505 (LoopValStage == StageScheduled))) 506 PhiOp2 = VRMap[PrevStage - np][Def]; 507 } 508 509 // Check if we can reuse an existing Phi. This occurs when a Phi 510 // references another Phi, and the other Phi is scheduled in an 511 // earlier stage. We can try to reuse an existing Phi up until the last 512 // stage of the current Phi. 513 if (LoopDefIsPhi) { 514 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 515 int LVNumStages = getStagesForPhi(LoopVal); 516 int StageDiff = (StageScheduled - LoopValStage); 517 LVNumStages -= StageDiff; 518 // Make sure the loop value Phi has been processed already. 519 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 520 NewReg = PhiOp2; 521 unsigned ReuseStage = CurStageNum; 522 if (isLoopCarried(*PhiInst)) 523 ReuseStage -= LVNumStages; 524 // Check if the Phi to reuse has been generated yet. If not, then 525 // there is nothing to reuse. 526 if (VRMap[ReuseStage - np].count(LoopVal)) { 527 NewReg = VRMap[ReuseStage - np][LoopVal]; 528 529 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 530 Def, NewReg); 531 // Update the map with the new Phi name. 532 VRMap[CurStageNum - np][Def] = NewReg; 533 PhiOp2 = NewReg; 534 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 535 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 536 537 if (IsLast && np == NumPhis - 1) 538 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 539 continue; 540 } 541 } 542 } 543 if (InKernel && StageDiff > 0 && 544 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 545 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 546 } 547 548 const TargetRegisterClass *RC = MRI.getRegClass(Def); 549 NewReg = MRI.createVirtualRegister(RC); 550 551 MachineInstrBuilder NewPhi = 552 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 553 TII->get(TargetOpcode::PHI), NewReg); 554 NewPhi.addReg(PhiOp1).addMBB(BB1); 555 NewPhi.addReg(PhiOp2).addMBB(BB2); 556 if (np == 0) 557 InstrMap[NewPhi] = &*BBI; 558 559 // We define the Phis after creating the new pipelined code, so 560 // we need to rename the Phi values in scheduled instructions. 561 562 unsigned PrevReg = 0; 563 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 564 PrevReg = VRMap[PrevStage - np][LoopVal]; 565 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 566 NewReg, PrevReg); 567 // If the Phi has been scheduled, use the new name for rewriting. 568 if (VRMap[CurStageNum - np].count(Def)) { 569 unsigned R = VRMap[CurStageNum - np][Def]; 570 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 571 NewReg); 572 } 573 574 // Check if we need to rename any uses that occurs after the loop. The 575 // register to replace depends on whether the Phi is scheduled in the 576 // epilog. 577 if (IsLast && np == NumPhis - 1) 578 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 579 580 // In the kernel, a dependent Phi uses the value from this Phi. 581 if (InKernel) 582 PhiOp2 = NewReg; 583 584 // Update the map with the new Phi name. 585 VRMap[CurStageNum - np][Def] = NewReg; 586 } 587 588 while (NumPhis++ < NumStages) { 589 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 590 NewReg, 0); 591 } 592 593 // Check if we need to rename a Phi that has been eliminated due to 594 // scheduling. 595 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 596 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 597 } 598 } 599 600 /// Generate Phis for the specified block in the generated pipelined code. 601 /// These are new Phis needed because the definition is scheduled after the 602 /// use in the pipelined sequence. 603 void ModuloScheduleExpander::generatePhis( 604 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 605 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 606 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 607 // Compute the stage number that contains the initial Phi value, and 608 // the Phi from the previous stage. 609 unsigned PrologStage = 0; 610 unsigned PrevStage = 0; 611 unsigned StageDiff = CurStageNum - LastStageNum; 612 bool InKernel = (StageDiff == 0); 613 if (InKernel) { 614 PrologStage = LastStageNum - 1; 615 PrevStage = CurStageNum; 616 } else { 617 PrologStage = LastStageNum - StageDiff; 618 PrevStage = LastStageNum + StageDiff - 1; 619 } 620 621 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 622 BBE = BB->instr_end(); 623 BBI != BBE; ++BBI) { 624 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 625 MachineOperand &MO = BBI->getOperand(i); 626 if (!MO.isReg() || !MO.isDef() || 627 !Register::isVirtualRegister(MO.getReg())) 628 continue; 629 630 int StageScheduled = Schedule.getStage(&*BBI); 631 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 632 Register Def = MO.getReg(); 633 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 634 // An instruction scheduled in stage 0 and is used after the loop 635 // requires a phi in the epilog for the last definition from either 636 // the kernel or prolog. 637 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 638 hasUseAfterLoop(Def, BB, MRI)) 639 NumPhis = 1; 640 if (!InKernel && (unsigned)StageScheduled > PrologStage) 641 continue; 642 643 unsigned PhiOp2 = VRMap[PrevStage][Def]; 644 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 645 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 646 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 647 // The number of Phis can't exceed the number of prolog stages. The 648 // prolog stage number is zero based. 649 if (NumPhis > PrologStage + 1 - StageScheduled) 650 NumPhis = PrologStage + 1 - StageScheduled; 651 for (unsigned np = 0; np < NumPhis; ++np) { 652 unsigned PhiOp1 = VRMap[PrologStage][Def]; 653 if (np <= PrologStage) 654 PhiOp1 = VRMap[PrologStage - np][Def]; 655 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 656 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 657 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 658 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 659 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 660 } 661 if (!InKernel) 662 PhiOp2 = VRMap[PrevStage - np][Def]; 663 664 const TargetRegisterClass *RC = MRI.getRegClass(Def); 665 Register NewReg = MRI.createVirtualRegister(RC); 666 667 MachineInstrBuilder NewPhi = 668 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 669 TII->get(TargetOpcode::PHI), NewReg); 670 NewPhi.addReg(PhiOp1).addMBB(BB1); 671 NewPhi.addReg(PhiOp2).addMBB(BB2); 672 if (np == 0) 673 InstrMap[NewPhi] = &*BBI; 674 675 // Rewrite uses and update the map. The actions depend upon whether 676 // we generating code for the kernel or epilog blocks. 677 if (InKernel) { 678 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 679 NewReg); 680 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 681 NewReg); 682 683 PhiOp2 = NewReg; 684 VRMap[PrevStage - np - 1][Def] = NewReg; 685 } else { 686 VRMap[CurStageNum - np][Def] = NewReg; 687 if (np == NumPhis - 1) 688 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 689 NewReg); 690 } 691 if (IsLast && np == NumPhis - 1) 692 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 693 } 694 } 695 } 696 } 697 698 /// Remove instructions that generate values with no uses. 699 /// Typically, these are induction variable operations that generate values 700 /// used in the loop itself. A dead instruction has a definition with 701 /// no uses, or uses that occur in the original loop only. 702 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 703 MBBVectorTy &EpilogBBs) { 704 // For each epilog block, check that the value defined by each instruction 705 // is used. If not, delete it. 706 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 707 MBE = EpilogBBs.rend(); 708 MBB != MBE; ++MBB) 709 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 710 ME = (*MBB)->instr_rend(); 711 MI != ME;) { 712 // From DeadMachineInstructionElem. Don't delete inline assembly. 713 if (MI->isInlineAsm()) { 714 ++MI; 715 continue; 716 } 717 bool SawStore = false; 718 // Check if it's safe to remove the instruction due to side effects. 719 // We can, and want to, remove Phis here. 720 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 721 ++MI; 722 continue; 723 } 724 bool used = true; 725 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 726 MOE = MI->operands_end(); 727 MOI != MOE; ++MOI) { 728 if (!MOI->isReg() || !MOI->isDef()) 729 continue; 730 Register reg = MOI->getReg(); 731 // Assume physical registers are used, unless they are marked dead. 732 if (Register::isPhysicalRegister(reg)) { 733 used = !MOI->isDead(); 734 if (used) 735 break; 736 continue; 737 } 738 unsigned realUses = 0; 739 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 740 EI = MRI.use_end(); 741 UI != EI; ++UI) { 742 // Check if there are any uses that occur only in the original 743 // loop. If so, that's not a real use. 744 if (UI->getParent()->getParent() != BB) { 745 realUses++; 746 used = true; 747 break; 748 } 749 } 750 if (realUses > 0) 751 break; 752 used = false; 753 } 754 if (!used) { 755 LIS.RemoveMachineInstrFromMaps(*MI); 756 MI++->eraseFromParent(); 757 continue; 758 } 759 ++MI; 760 } 761 // In the kernel block, check if we can remove a Phi that generates a value 762 // used in an instruction removed in the epilog block. 763 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 764 BBE = KernelBB->getFirstNonPHI(); 765 BBI != BBE;) { 766 MachineInstr *MI = &*BBI; 767 ++BBI; 768 Register reg = MI->getOperand(0).getReg(); 769 if (MRI.use_begin(reg) == MRI.use_end()) { 770 LIS.RemoveMachineInstrFromMaps(*MI); 771 MI->eraseFromParent(); 772 } 773 } 774 } 775 776 /// For loop carried definitions, we split the lifetime of a virtual register 777 /// that has uses past the definition in the next iteration. A copy with a new 778 /// virtual register is inserted before the definition, which helps with 779 /// generating a better register assignment. 780 /// 781 /// v1 = phi(a, v2) v1 = phi(a, v2) 782 /// v2 = phi(b, v3) v2 = phi(b, v3) 783 /// v3 = .. v4 = copy v1 784 /// .. = V1 v3 = .. 785 /// .. = v4 786 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 787 MBBVectorTy &EpilogBBs) { 788 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 789 for (auto &PHI : KernelBB->phis()) { 790 Register Def = PHI.getOperand(0).getReg(); 791 // Check for any Phi definition that used as an operand of another Phi 792 // in the same block. 793 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 794 E = MRI.use_instr_end(); 795 I != E; ++I) { 796 if (I->isPHI() && I->getParent() == KernelBB) { 797 // Get the loop carried definition. 798 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 799 if (!LCDef) 800 continue; 801 MachineInstr *MI = MRI.getVRegDef(LCDef); 802 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 803 continue; 804 // Search through the rest of the block looking for uses of the Phi 805 // definition. If one occurs, then split the lifetime. 806 unsigned SplitReg = 0; 807 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 808 KernelBB->instr_end())) 809 if (BBJ.readsRegister(Def)) { 810 // We split the lifetime when we find the first use. 811 if (SplitReg == 0) { 812 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 813 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 814 TII->get(TargetOpcode::COPY), SplitReg) 815 .addReg(Def); 816 } 817 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 818 } 819 if (!SplitReg) 820 continue; 821 // Search through each of the epilog blocks for any uses to be renamed. 822 for (auto &Epilog : EpilogBBs) 823 for (auto &I : *Epilog) 824 if (I.readsRegister(Def)) 825 I.substituteRegister(Def, SplitReg, 0, *TRI); 826 break; 827 } 828 } 829 } 830 } 831 832 /// Remove the incoming block from the Phis in a basic block. 833 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 834 for (MachineInstr &MI : *BB) { 835 if (!MI.isPHI()) 836 break; 837 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 838 if (MI.getOperand(i + 1).getMBB() == Incoming) { 839 MI.RemoveOperand(i + 1); 840 MI.RemoveOperand(i); 841 break; 842 } 843 } 844 } 845 846 /// Create branches from each prolog basic block to the appropriate epilog 847 /// block. These edges are needed if the loop ends before reaching the 848 /// kernel. 849 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 850 MBBVectorTy &PrologBBs, 851 MachineBasicBlock *KernelBB, 852 MBBVectorTy &EpilogBBs, 853 ValueMapTy *VRMap) { 854 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 855 MachineBasicBlock *LastPro = KernelBB; 856 MachineBasicBlock *LastEpi = KernelBB; 857 858 // Start from the blocks connected to the kernel and work "out" 859 // to the first prolog and the last epilog blocks. 860 SmallVector<MachineInstr *, 4> PrevInsts; 861 unsigned MaxIter = PrologBBs.size() - 1; 862 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 863 // Add branches to the prolog that go to the corresponding 864 // epilog, and the fall-thru prolog/kernel block. 865 MachineBasicBlock *Prolog = PrologBBs[j]; 866 MachineBasicBlock *Epilog = EpilogBBs[i]; 867 868 SmallVector<MachineOperand, 4> Cond; 869 Optional<bool> StaticallyGreater = 870 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 871 unsigned numAdded = 0; 872 if (!StaticallyGreater.hasValue()) { 873 Prolog->addSuccessor(Epilog); 874 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 875 } else if (*StaticallyGreater == false) { 876 Prolog->addSuccessor(Epilog); 877 Prolog->removeSuccessor(LastPro); 878 LastEpi->removeSuccessor(Epilog); 879 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 880 removePhis(Epilog, LastEpi); 881 // Remove the blocks that are no longer referenced. 882 if (LastPro != LastEpi) { 883 LastEpi->clear(); 884 LastEpi->eraseFromParent(); 885 } 886 if (LastPro == KernelBB) { 887 LoopInfo->disposed(); 888 NewKernel = nullptr; 889 } 890 LastPro->clear(); 891 LastPro->eraseFromParent(); 892 } else { 893 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 894 removePhis(Epilog, Prolog); 895 } 896 LastPro = Prolog; 897 LastEpi = Epilog; 898 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 899 E = Prolog->instr_rend(); 900 I != E && numAdded > 0; ++I, --numAdded) 901 updateInstruction(&*I, false, j, 0, VRMap); 902 } 903 904 if (NewKernel) { 905 LoopInfo->setPreheader(PrologBBs[MaxIter]); 906 LoopInfo->adjustTripCount(-(MaxIter + 1)); 907 } 908 } 909 910 /// Return true if we can compute the amount the instruction changes 911 /// during each iteration. Set Delta to the amount of the change. 912 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 913 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 914 const MachineOperand *BaseOp; 915 int64_t Offset; 916 bool OffsetIsScalable; 917 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 918 return false; 919 920 // FIXME: This algorithm assumes instructions have fixed-size offsets. 921 if (OffsetIsScalable) 922 return false; 923 924 if (!BaseOp->isReg()) 925 return false; 926 927 Register BaseReg = BaseOp->getReg(); 928 929 MachineRegisterInfo &MRI = MF.getRegInfo(); 930 // Check if there is a Phi. If so, get the definition in the loop. 931 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 932 if (BaseDef && BaseDef->isPHI()) { 933 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 934 BaseDef = MRI.getVRegDef(BaseReg); 935 } 936 if (!BaseDef) 937 return false; 938 939 int D = 0; 940 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 941 return false; 942 943 Delta = D; 944 return true; 945 } 946 947 /// Update the memory operand with a new offset when the pipeliner 948 /// generates a new copy of the instruction that refers to a 949 /// different memory location. 950 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 951 MachineInstr &OldMI, 952 unsigned Num) { 953 if (Num == 0) 954 return; 955 // If the instruction has memory operands, then adjust the offset 956 // when the instruction appears in different stages. 957 if (NewMI.memoperands_empty()) 958 return; 959 SmallVector<MachineMemOperand *, 2> NewMMOs; 960 for (MachineMemOperand *MMO : NewMI.memoperands()) { 961 // TODO: Figure out whether isAtomic is really necessary (see D57601). 962 if (MMO->isVolatile() || MMO->isAtomic() || 963 (MMO->isInvariant() && MMO->isDereferenceable()) || 964 (!MMO->getValue())) { 965 NewMMOs.push_back(MMO); 966 continue; 967 } 968 unsigned Delta; 969 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 970 int64_t AdjOffset = Delta * Num; 971 NewMMOs.push_back( 972 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 973 } else { 974 NewMMOs.push_back( 975 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 976 } 977 } 978 NewMI.setMemRefs(MF, NewMMOs); 979 } 980 981 /// Clone the instruction for the new pipelined loop and update the 982 /// memory operands, if needed. 983 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 984 unsigned CurStageNum, 985 unsigned InstStageNum) { 986 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 987 // Check for tied operands in inline asm instructions. This should be handled 988 // elsewhere, but I'm not sure of the best solution. 989 if (OldMI->isInlineAsm()) 990 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 991 const auto &MO = OldMI->getOperand(i); 992 if (MO.isReg() && MO.isUse()) 993 break; 994 unsigned UseIdx; 995 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 996 NewMI->tieOperands(i, UseIdx); 997 } 998 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 999 return NewMI; 1000 } 1001 1002 /// Clone the instruction for the new pipelined loop. If needed, this 1003 /// function updates the instruction using the values saved in the 1004 /// InstrChanges structure. 1005 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1006 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1007 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1008 auto It = InstrChanges.find(OldMI); 1009 if (It != InstrChanges.end()) { 1010 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1011 unsigned BasePos, OffsetPos; 1012 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1013 return nullptr; 1014 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1015 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1016 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1017 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1018 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1019 } 1020 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1021 return NewMI; 1022 } 1023 1024 /// Update the machine instruction with new virtual registers. This 1025 /// function may change the defintions and/or uses. 1026 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1027 bool LastDef, 1028 unsigned CurStageNum, 1029 unsigned InstrStageNum, 1030 ValueMapTy *VRMap) { 1031 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1032 MachineOperand &MO = NewMI->getOperand(i); 1033 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1034 continue; 1035 Register reg = MO.getReg(); 1036 if (MO.isDef()) { 1037 // Create a new virtual register for the definition. 1038 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1039 Register NewReg = MRI.createVirtualRegister(RC); 1040 MO.setReg(NewReg); 1041 VRMap[CurStageNum][reg] = NewReg; 1042 if (LastDef) 1043 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1044 } else if (MO.isUse()) { 1045 MachineInstr *Def = MRI.getVRegDef(reg); 1046 // Compute the stage that contains the last definition for instruction. 1047 int DefStageNum = Schedule.getStage(Def); 1048 unsigned StageNum = CurStageNum; 1049 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1050 // Compute the difference in stages between the defintion and the use. 1051 unsigned StageDiff = (InstrStageNum - DefStageNum); 1052 // Make an adjustment to get the last definition. 1053 StageNum -= StageDiff; 1054 } 1055 if (VRMap[StageNum].count(reg)) 1056 MO.setReg(VRMap[StageNum][reg]); 1057 } 1058 } 1059 } 1060 1061 /// Return the instruction in the loop that defines the register. 1062 /// If the definition is a Phi, then follow the Phi operand to 1063 /// the instruction in the loop. 1064 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1065 SmallPtrSet<MachineInstr *, 8> Visited; 1066 MachineInstr *Def = MRI.getVRegDef(Reg); 1067 while (Def->isPHI()) { 1068 if (!Visited.insert(Def).second) 1069 break; 1070 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1071 if (Def->getOperand(i + 1).getMBB() == BB) { 1072 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1073 break; 1074 } 1075 } 1076 return Def; 1077 } 1078 1079 /// Return the new name for the value from the previous stage. 1080 unsigned ModuloScheduleExpander::getPrevMapVal( 1081 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1082 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1083 unsigned PrevVal = 0; 1084 if (StageNum > PhiStage) { 1085 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1086 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1087 // The name is defined in the previous stage. 1088 PrevVal = VRMap[StageNum - 1][LoopVal]; 1089 else if (VRMap[StageNum].count(LoopVal)) 1090 // The previous name is defined in the current stage when the instruction 1091 // order is swapped. 1092 PrevVal = VRMap[StageNum][LoopVal]; 1093 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1094 // The loop value hasn't yet been scheduled. 1095 PrevVal = LoopVal; 1096 else if (StageNum == PhiStage + 1) 1097 // The loop value is another phi, which has not been scheduled. 1098 PrevVal = getInitPhiReg(*LoopInst, BB); 1099 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1100 // The loop value is another phi, which has been scheduled. 1101 PrevVal = 1102 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1103 LoopStage, VRMap, BB); 1104 } 1105 return PrevVal; 1106 } 1107 1108 /// Rewrite the Phi values in the specified block to use the mappings 1109 /// from the initial operand. Once the Phi is scheduled, we switch 1110 /// to using the loop value instead of the Phi value, so those names 1111 /// do not need to be rewritten. 1112 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1113 unsigned StageNum, 1114 ValueMapTy *VRMap, 1115 InstrMapTy &InstrMap) { 1116 for (auto &PHI : BB->phis()) { 1117 unsigned InitVal = 0; 1118 unsigned LoopVal = 0; 1119 getPhiRegs(PHI, BB, InitVal, LoopVal); 1120 Register PhiDef = PHI.getOperand(0).getReg(); 1121 1122 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1123 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1124 unsigned NumPhis = getStagesForPhi(PhiDef); 1125 if (NumPhis > StageNum) 1126 NumPhis = StageNum; 1127 for (unsigned np = 0; np <= NumPhis; ++np) { 1128 unsigned NewVal = 1129 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1130 if (!NewVal) 1131 NewVal = InitVal; 1132 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1133 NewVal); 1134 } 1135 } 1136 } 1137 1138 /// Rewrite a previously scheduled instruction to use the register value 1139 /// from the new instruction. Make sure the instruction occurs in the 1140 /// basic block, and we don't change the uses in the new instruction. 1141 void ModuloScheduleExpander::rewriteScheduledInstr( 1142 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1143 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1144 unsigned PrevReg) { 1145 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1146 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1147 // Rewrite uses that have been scheduled already to use the new 1148 // Phi register. 1149 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1150 EI = MRI.use_end(); 1151 UI != EI;) { 1152 MachineOperand &UseOp = *UI; 1153 MachineInstr *UseMI = UseOp.getParent(); 1154 ++UI; 1155 if (UseMI->getParent() != BB) 1156 continue; 1157 if (UseMI->isPHI()) { 1158 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1159 continue; 1160 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1161 continue; 1162 } 1163 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1164 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1165 MachineInstr *OrigMI = OrigInstr->second; 1166 int StageSched = Schedule.getStage(OrigMI); 1167 int CycleSched = Schedule.getCycle(OrigMI); 1168 unsigned ReplaceReg = 0; 1169 // This is the stage for the scheduled instruction. 1170 if (StagePhi == StageSched && Phi->isPHI()) { 1171 int CyclePhi = Schedule.getCycle(Phi); 1172 if (PrevReg && InProlog) 1173 ReplaceReg = PrevReg; 1174 else if (PrevReg && !isLoopCarried(*Phi) && 1175 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1176 ReplaceReg = PrevReg; 1177 else 1178 ReplaceReg = NewReg; 1179 } 1180 // The scheduled instruction occurs before the scheduled Phi, and the 1181 // Phi is not loop carried. 1182 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1183 ReplaceReg = NewReg; 1184 if (StagePhi > StageSched && Phi->isPHI()) 1185 ReplaceReg = NewReg; 1186 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1187 ReplaceReg = NewReg; 1188 if (ReplaceReg) { 1189 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1190 UseOp.setReg(ReplaceReg); 1191 } 1192 } 1193 } 1194 1195 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1196 if (!Phi.isPHI()) 1197 return false; 1198 int DefCycle = Schedule.getCycle(&Phi); 1199 int DefStage = Schedule.getStage(&Phi); 1200 1201 unsigned InitVal = 0; 1202 unsigned LoopVal = 0; 1203 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1204 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1205 if (!Use || Use->isPHI()) 1206 return true; 1207 int LoopCycle = Schedule.getCycle(Use); 1208 int LoopStage = Schedule.getStage(Use); 1209 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // PeelingModuloScheduleExpander implementation 1214 //===----------------------------------------------------------------------===// 1215 // This is a reimplementation of ModuloScheduleExpander that works by creating 1216 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1217 //===----------------------------------------------------------------------===// 1218 1219 namespace { 1220 // Remove any dead phis in MBB. Dead phis either have only one block as input 1221 // (in which case they are the identity) or have no uses. 1222 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1223 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1224 bool Changed = true; 1225 while (Changed) { 1226 Changed = false; 1227 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { 1228 MachineInstr &MI = *I++; 1229 assert(MI.isPHI()); 1230 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1231 if (LIS) 1232 LIS->RemoveMachineInstrFromMaps(MI); 1233 MI.eraseFromParent(); 1234 Changed = true; 1235 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1236 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1237 MRI.getRegClass(MI.getOperand(0).getReg())); 1238 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1239 MI.getOperand(1).getReg()); 1240 if (LIS) 1241 LIS->RemoveMachineInstrFromMaps(MI); 1242 MI.eraseFromParent(); 1243 Changed = true; 1244 } 1245 } 1246 } 1247 } 1248 1249 /// Rewrites the kernel block in-place to adhere to the given schedule. 1250 /// KernelRewriter holds all of the state required to perform the rewriting. 1251 class KernelRewriter { 1252 ModuloSchedule &S; 1253 MachineBasicBlock *BB; 1254 MachineBasicBlock *PreheaderBB, *ExitBB; 1255 MachineRegisterInfo &MRI; 1256 const TargetInstrInfo *TII; 1257 LiveIntervals *LIS; 1258 1259 // Map from register class to canonical undef register for that class. 1260 DenseMap<const TargetRegisterClass *, Register> Undefs; 1261 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1262 // this map is only used when InitReg is non-undef. 1263 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1264 // Map from LoopReg to phi register where the InitReg is undef. 1265 DenseMap<Register, Register> UndefPhis; 1266 1267 // Reg is used by MI. Return the new register MI should use to adhere to the 1268 // schedule. Insert phis as necessary. 1269 Register remapUse(Register Reg, MachineInstr &MI); 1270 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1271 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1272 // or will be chosen so as to share another phi. 1273 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1274 const TargetRegisterClass *RC = nullptr); 1275 // Create an undef register of the given register class. 1276 Register undef(const TargetRegisterClass *RC); 1277 1278 public: 1279 KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1280 LiveIntervals *LIS = nullptr); 1281 void rewrite(); 1282 }; 1283 } // namespace 1284 1285 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1286 LiveIntervals *LIS) 1287 : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), 1288 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1289 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1290 PreheaderBB = *BB->pred_begin(); 1291 if (PreheaderBB == BB) 1292 PreheaderBB = *std::next(BB->pred_begin()); 1293 } 1294 1295 void KernelRewriter::rewrite() { 1296 // Rearrange the loop to be in schedule order. Note that the schedule may 1297 // contain instructions that are not owned by the loop block (InstrChanges and 1298 // friends), so we gracefully handle unowned instructions and delete any 1299 // instructions that weren't in the schedule. 1300 auto InsertPt = BB->getFirstTerminator(); 1301 MachineInstr *FirstMI = nullptr; 1302 for (MachineInstr *MI : S.getInstructions()) { 1303 if (MI->isPHI()) 1304 continue; 1305 if (MI->getParent()) 1306 MI->removeFromParent(); 1307 BB->insert(InsertPt, MI); 1308 if (!FirstMI) 1309 FirstMI = MI; 1310 } 1311 assert(FirstMI && "Failed to find first MI in schedule"); 1312 1313 // At this point all of the scheduled instructions are between FirstMI 1314 // and the end of the block. Kill from the first non-phi to FirstMI. 1315 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1316 if (LIS) 1317 LIS->RemoveMachineInstrFromMaps(*I); 1318 (I++)->eraseFromParent(); 1319 } 1320 1321 // Now remap every instruction in the loop. 1322 for (MachineInstr &MI : *BB) { 1323 if (MI.isPHI() || MI.isTerminator()) 1324 continue; 1325 for (MachineOperand &MO : MI.uses()) { 1326 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1327 continue; 1328 Register Reg = remapUse(MO.getReg(), MI); 1329 MO.setReg(Reg); 1330 } 1331 } 1332 EliminateDeadPhis(BB, MRI, LIS); 1333 1334 // Ensure a phi exists for all instructions that are either referenced by 1335 // an illegal phi or by an instruction outside the loop. This allows us to 1336 // treat remaps of these values the same as "normal" values that come from 1337 // loop-carried phis. 1338 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1339 if (MI->isPHI()) { 1340 Register R = MI->getOperand(0).getReg(); 1341 phi(R); 1342 continue; 1343 } 1344 1345 for (MachineOperand &Def : MI->defs()) { 1346 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1347 if (MI.getParent() != BB) { 1348 phi(Def.getReg()); 1349 break; 1350 } 1351 } 1352 } 1353 } 1354 } 1355 1356 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1357 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1358 if (!Producer) 1359 return Reg; 1360 1361 int ConsumerStage = S.getStage(&MI); 1362 if (!Producer->isPHI()) { 1363 // Non-phi producers are simple to remap. Insert as many phis as the 1364 // difference between the consumer and producer stages. 1365 if (Producer->getParent() != BB) 1366 // Producer was not inside the loop. Use the register as-is. 1367 return Reg; 1368 int ProducerStage = S.getStage(Producer); 1369 assert(ConsumerStage != -1 && 1370 "In-loop consumer should always be scheduled!"); 1371 assert(ConsumerStage >= ProducerStage); 1372 unsigned StageDiff = ConsumerStage - ProducerStage; 1373 1374 for (unsigned I = 0; I < StageDiff; ++I) 1375 Reg = phi(Reg); 1376 return Reg; 1377 } 1378 1379 // First, dive through the phi chain to find the defaults for the generated 1380 // phis. 1381 SmallVector<Optional<Register>, 4> Defaults; 1382 Register LoopReg = Reg; 1383 auto LoopProducer = Producer; 1384 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1385 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1386 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1387 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1388 assert(LoopProducer); 1389 } 1390 int LoopProducerStage = S.getStage(LoopProducer); 1391 1392 Optional<Register> IllegalPhiDefault; 1393 1394 if (LoopProducerStage == -1) { 1395 // Do nothing. 1396 } else if (LoopProducerStage > ConsumerStage) { 1397 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1398 // In addition, Consumer's cycle must be scheduled after Producer in the 1399 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1400 // functions. 1401 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1402 int LoopProducerCycle = S.getCycle(LoopProducer); 1403 int ConsumerCycle = S.getCycle(&MI); 1404 #endif 1405 assert(LoopProducerCycle <= ConsumerCycle); 1406 assert(LoopProducerStage == ConsumerStage + 1); 1407 // Peel off the first phi from Defaults and insert a phi between producer 1408 // and consumer. This phi will not be at the front of the block so we 1409 // consider it illegal. It will only exist during the rewrite process; it 1410 // needs to exist while we peel off prologs because these could take the 1411 // default value. After that we can replace all uses with the loop producer 1412 // value. 1413 IllegalPhiDefault = Defaults.front(); 1414 Defaults.erase(Defaults.begin()); 1415 } else { 1416 assert(ConsumerStage >= LoopProducerStage); 1417 int StageDiff = ConsumerStage - LoopProducerStage; 1418 if (StageDiff > 0) { 1419 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1420 << " to " << (Defaults.size() + StageDiff) << "\n"); 1421 // If we need more phis than we have defaults for, pad out with undefs for 1422 // the earliest phis, which are at the end of the defaults chain (the 1423 // chain is in reverse order). 1424 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1425 ? Optional<Register>() 1426 : Defaults.back()); 1427 } 1428 } 1429 1430 // Now we know the number of stages to jump back, insert the phi chain. 1431 auto DefaultI = Defaults.rbegin(); 1432 while (DefaultI != Defaults.rend()) 1433 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1434 1435 if (IllegalPhiDefault.hasValue()) { 1436 // The consumer optionally consumes LoopProducer in the same iteration 1437 // (because the producer is scheduled at an earlier cycle than the consumer) 1438 // or the initial value. To facilitate this we create an illegal block here 1439 // by embedding a phi in the middle of the block. We will fix this up 1440 // immediately prior to pruning. 1441 auto RC = MRI.getRegClass(Reg); 1442 Register R = MRI.createVirtualRegister(RC); 1443 MachineInstr *IllegalPhi = 1444 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1445 .addReg(IllegalPhiDefault.getValue()) 1446 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1447 .addReg(LoopReg) 1448 .addMBB(BB); // Block choice is arbitrary and has no effect. 1449 // Illegal phi should belong to the producer stage so that it can be 1450 // filtered correctly during peeling. 1451 S.setStage(IllegalPhi, LoopProducerStage); 1452 return R; 1453 } 1454 1455 return LoopReg; 1456 } 1457 1458 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1459 const TargetRegisterClass *RC) { 1460 // If the init register is not undef, try and find an existing phi. 1461 if (InitReg.hasValue()) { 1462 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1463 if (I != Phis.end()) 1464 return I->second; 1465 } else { 1466 for (auto &KV : Phis) { 1467 if (KV.first.first == LoopReg) 1468 return KV.second; 1469 } 1470 } 1471 1472 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1473 // find a phi that takes undef as input. 1474 auto I = UndefPhis.find(LoopReg); 1475 if (I != UndefPhis.end()) { 1476 Register R = I->second; 1477 if (!InitReg.hasValue()) 1478 // Found a phi taking undef as input, and this input is undef so return 1479 // without any more changes. 1480 return R; 1481 // Found a phi taking undef as input, so rewrite it to take InitReg. 1482 MachineInstr *MI = MRI.getVRegDef(R); 1483 MI->getOperand(1).setReg(InitReg.getValue()); 1484 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1485 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1486 UndefPhis.erase(I); 1487 return R; 1488 } 1489 1490 // Failed to find any existing phi to reuse, so create a new one. 1491 if (!RC) 1492 RC = MRI.getRegClass(LoopReg); 1493 Register R = MRI.createVirtualRegister(RC); 1494 if (InitReg.hasValue()) 1495 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1496 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1497 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1498 .addMBB(PreheaderBB) 1499 .addReg(LoopReg) 1500 .addMBB(BB); 1501 if (!InitReg.hasValue()) 1502 UndefPhis[LoopReg] = R; 1503 else 1504 Phis[{LoopReg, *InitReg}] = R; 1505 return R; 1506 } 1507 1508 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1509 Register &R = Undefs[RC]; 1510 if (R == 0) { 1511 // Create an IMPLICIT_DEF that defines this register if we need it. 1512 // All uses of this should be removed by the time we have finished unrolling 1513 // prologs and epilogs. 1514 R = MRI.createVirtualRegister(RC); 1515 auto *InsertBB = &PreheaderBB->getParent()->front(); 1516 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1517 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1518 } 1519 return R; 1520 } 1521 1522 namespace { 1523 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1524 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1525 /// through and defaults for these phis. 1526 class KernelOperandInfo { 1527 MachineBasicBlock *BB; 1528 MachineRegisterInfo &MRI; 1529 SmallVector<Register, 4> PhiDefaults; 1530 MachineOperand *Source; 1531 MachineOperand *Target; 1532 1533 public: 1534 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1535 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1536 : MRI(MRI) { 1537 Source = MO; 1538 BB = MO->getParent()->getParent(); 1539 while (isRegInLoop(MO)) { 1540 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1541 if (MI->isFullCopy()) { 1542 MO = &MI->getOperand(1); 1543 continue; 1544 } 1545 if (!MI->isPHI()) 1546 break; 1547 // If this is an illegal phi, don't count it in distance. 1548 if (IllegalPhis.count(MI)) { 1549 MO = &MI->getOperand(3); 1550 continue; 1551 } 1552 1553 Register Default = getInitPhiReg(*MI, BB); 1554 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1555 : &MI->getOperand(3); 1556 PhiDefaults.push_back(Default); 1557 } 1558 Target = MO; 1559 } 1560 1561 bool operator==(const KernelOperandInfo &Other) const { 1562 return PhiDefaults.size() == Other.PhiDefaults.size(); 1563 } 1564 1565 void print(raw_ostream &OS) const { 1566 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1567 << *Source->getParent(); 1568 } 1569 1570 private: 1571 bool isRegInLoop(MachineOperand *MO) { 1572 return MO->isReg() && MO->getReg().isVirtual() && 1573 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1574 } 1575 }; 1576 } // namespace 1577 1578 MachineBasicBlock * 1579 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1580 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1581 if (LPD == LPD_Front) 1582 PeeledFront.push_back(NewBB); 1583 else 1584 PeeledBack.push_front(NewBB); 1585 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1586 ++I, ++NI) { 1587 CanonicalMIs[&*I] = &*I; 1588 CanonicalMIs[&*NI] = &*I; 1589 BlockMIs[{NewBB, &*I}] = &*NI; 1590 BlockMIs[{BB, &*I}] = &*I; 1591 } 1592 return NewBB; 1593 } 1594 1595 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1596 int MinStage) { 1597 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1598 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1599 MachineInstr *MI = &*I++; 1600 int Stage = getStage(MI); 1601 if (Stage == -1 || Stage >= MinStage) 1602 continue; 1603 1604 for (MachineOperand &DefMO : MI->defs()) { 1605 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1606 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1607 // Only PHIs can use values from this block by construction. 1608 // Match with the equivalent PHI in B. 1609 assert(UseMI.isPHI()); 1610 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1611 MI->getParent()); 1612 Subs.emplace_back(&UseMI, Reg); 1613 } 1614 for (auto &Sub : Subs) 1615 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1616 *MRI.getTargetRegisterInfo()); 1617 } 1618 if (LIS) 1619 LIS->RemoveMachineInstrFromMaps(*MI); 1620 MI->eraseFromParent(); 1621 } 1622 } 1623 1624 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1625 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1626 auto InsertPt = DestBB->getFirstNonPHI(); 1627 DenseMap<Register, Register> Remaps; 1628 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { 1629 MachineInstr *MI = &*I++; 1630 if (MI->isPHI()) { 1631 // This is an illegal PHI. If we move any instructions using an illegal 1632 // PHI, we need to create a legal Phi 1633 Register PhiR = MI->getOperand(0).getReg(); 1634 auto RC = MRI.getRegClass(PhiR); 1635 Register NR = MRI.createVirtualRegister(RC); 1636 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(), 1637 TII->get(TargetOpcode::PHI), NR) 1638 .addReg(PhiR) 1639 .addMBB(SourceBB); 1640 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; 1641 CanonicalMIs[NI] = CanonicalMIs[MI]; 1642 Remaps[PhiR] = NR; 1643 continue; 1644 } 1645 if (getStage(MI) != Stage) 1646 continue; 1647 MI->removeFromParent(); 1648 DestBB->insert(InsertPt, MI); 1649 auto *KernelMI = CanonicalMIs[MI]; 1650 BlockMIs[{DestBB, KernelMI}] = MI; 1651 BlockMIs.erase({SourceBB, KernelMI}); 1652 } 1653 SmallVector<MachineInstr *, 4> PhiToDelete; 1654 for (MachineInstr &MI : DestBB->phis()) { 1655 assert(MI.getNumOperands() == 3); 1656 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1657 // If the instruction referenced by the phi is moved inside the block 1658 // we don't need the phi anymore. 1659 if (getStage(Def) == Stage) { 1660 Register PhiReg = MI.getOperand(0).getReg(); 1661 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1662 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1663 MI.getOperand(0).setReg(PhiReg); 1664 PhiToDelete.push_back(&MI); 1665 } 1666 } 1667 for (auto *P : PhiToDelete) 1668 P->eraseFromParent(); 1669 InsertPt = DestBB->getFirstNonPHI(); 1670 // Helper to clone Phi instructions into the destination block. We clone Phi 1671 // greedily to avoid combinatorial explosion of Phi instructions. 1672 auto clonePhi = [&](MachineInstr *Phi) { 1673 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1674 DestBB->insert(InsertPt, NewMI); 1675 Register OrigR = Phi->getOperand(0).getReg(); 1676 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1677 NewMI->getOperand(0).setReg(R); 1678 NewMI->getOperand(1).setReg(OrigR); 1679 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1680 Remaps[OrigR] = R; 1681 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1682 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1683 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1684 return R; 1685 }; 1686 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1687 for (MachineOperand &MO : I->uses()) { 1688 if (!MO.isReg()) 1689 continue; 1690 if (Remaps.count(MO.getReg())) 1691 MO.setReg(Remaps[MO.getReg()]); 1692 else { 1693 // If we are using a phi from the source block we need to add a new phi 1694 // pointing to the old one. 1695 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1696 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1697 Register R = clonePhi(Use); 1698 MO.setReg(R); 1699 } 1700 } 1701 } 1702 } 1703 } 1704 1705 Register 1706 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1707 MachineInstr *Phi) { 1708 unsigned distance = PhiNodeLoopIteration[Phi]; 1709 MachineInstr *CanonicalUse = CanonicalPhi; 1710 for (unsigned I = 0; I < distance; ++I) { 1711 assert(CanonicalUse->isPHI()); 1712 assert(CanonicalUse->getNumOperands() == 5); 1713 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1714 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1715 std::swap(LoopRegIdx, InitRegIdx); 1716 CanonicalUse = 1717 MRI.getVRegDef(CanonicalUse->getOperand(LoopRegIdx).getReg()); 1718 } 1719 return CanonicalUse->getOperand(0).getReg(); 1720 } 1721 1722 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1723 BitVector LS(Schedule.getNumStages(), true); 1724 BitVector AS(Schedule.getNumStages(), true); 1725 LiveStages[BB] = LS; 1726 AvailableStages[BB] = AS; 1727 1728 // Peel out the prologs. 1729 LS.reset(); 1730 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1731 LS[I] = 1; 1732 Prologs.push_back(peelKernel(LPD_Front)); 1733 LiveStages[Prologs.back()] = LS; 1734 AvailableStages[Prologs.back()] = LS; 1735 } 1736 1737 // Create a block that will end up as the new loop exiting block (dominated by 1738 // all prologs and epilogs). It will only contain PHIs, in the same order as 1739 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1740 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1741 // property that any value deffed in BB but used outside of BB is used by a 1742 // PHI in the exiting block. 1743 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1744 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1745 // Push out the epilogs, again in reverse order. 1746 // We can't assume anything about the minumum loop trip count at this point, 1747 // so emit a fairly complex epilog. 1748 1749 // We first peel number of stages minus one epilogue. Then we remove dead 1750 // stages and reorder instructions based on their stage. If we have 3 stages 1751 // we generate first: 1752 // E0[3, 2, 1] 1753 // E1[3', 2'] 1754 // E2[3''] 1755 // And then we move instructions based on their stages to have: 1756 // E0[3] 1757 // E1[2, 3'] 1758 // E2[1, 2', 3''] 1759 // The transformation is legal because we only move instructions past 1760 // instructions of a previous loop iteration. 1761 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1762 Epilogs.push_back(peelKernel(LPD_Back)); 1763 MachineBasicBlock *B = Epilogs.back(); 1764 filterInstructions(B, Schedule.getNumStages() - I); 1765 // Keep track at which iteration each phi belongs to. We need it to know 1766 // what version of the variable to use during prologue/epilogue stitching. 1767 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1768 for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi) 1769 PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I; 1770 } 1771 for (size_t I = 0; I < Epilogs.size(); I++) { 1772 LS.reset(); 1773 for (size_t J = I; J < Epilogs.size(); J++) { 1774 int Iteration = J; 1775 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1776 // Move stage one block at a time so that Phi nodes are updated correctly. 1777 for (size_t K = Iteration; K > I; K--) 1778 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1779 LS[Stage] = 1; 1780 } 1781 LiveStages[Epilogs[I]] = LS; 1782 AvailableStages[Epilogs[I]] = AS; 1783 } 1784 1785 // Now we've defined all the prolog and epilog blocks as a fallthrough 1786 // sequence, add the edges that will be followed if the loop trip count is 1787 // lower than the number of stages (connecting prologs directly with epilogs). 1788 auto PI = Prologs.begin(); 1789 auto EI = Epilogs.begin(); 1790 assert(Prologs.size() == Epilogs.size()); 1791 for (; PI != Prologs.end(); ++PI, ++EI) { 1792 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1793 (*PI)->addSuccessor(*EI); 1794 for (MachineInstr &MI : (*EI)->phis()) { 1795 Register Reg = MI.getOperand(1).getReg(); 1796 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1797 if (Use && Use->getParent() == Pred) { 1798 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1799 if (CanonicalUse->isPHI()) { 1800 // If the use comes from a phi we need to skip as many phi as the 1801 // distance between the epilogue and the kernel. Trace through the phi 1802 // chain to find the right value. 1803 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1804 } 1805 Reg = getEquivalentRegisterIn(Reg, *PI); 1806 } 1807 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1808 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1809 } 1810 } 1811 1812 // Create a list of all blocks in order. 1813 SmallVector<MachineBasicBlock *, 8> Blocks; 1814 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1815 Blocks.push_back(BB); 1816 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1817 1818 // Iterate in reverse order over all instructions, remapping as we go. 1819 for (MachineBasicBlock *B : reverse(Blocks)) { 1820 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1821 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1822 MachineInstr *MI = &*I++; 1823 rewriteUsesOf(MI); 1824 } 1825 } 1826 for (auto *MI : IllegalPhisToDelete) { 1827 if (LIS) 1828 LIS->RemoveMachineInstrFromMaps(*MI); 1829 MI->eraseFromParent(); 1830 } 1831 IllegalPhisToDelete.clear(); 1832 1833 // Now all remapping has been done, we're free to optimize the generated code. 1834 for (MachineBasicBlock *B : reverse(Blocks)) 1835 EliminateDeadPhis(B, MRI, LIS); 1836 EliminateDeadPhis(ExitingBB, MRI, LIS); 1837 } 1838 1839 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1840 MachineFunction &MF = *BB->getParent(); 1841 MachineBasicBlock *Exit = *BB->succ_begin(); 1842 if (Exit == BB) 1843 Exit = *std::next(BB->succ_begin()); 1844 1845 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1846 MF.insert(std::next(BB->getIterator()), NewBB); 1847 1848 // Clone all phis in BB into NewBB and rewrite. 1849 for (MachineInstr &MI : BB->phis()) { 1850 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1851 Register OldR = MI.getOperand(3).getReg(); 1852 Register R = MRI.createVirtualRegister(RC); 1853 SmallVector<MachineInstr *, 4> Uses; 1854 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1855 if (Use.getParent() != BB) 1856 Uses.push_back(&Use); 1857 for (MachineInstr *Use : Uses) 1858 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1859 *MRI.getTargetRegisterInfo()); 1860 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1861 .addReg(OldR) 1862 .addMBB(BB); 1863 BlockMIs[{NewBB, &MI}] = NI; 1864 CanonicalMIs[NI] = &MI; 1865 } 1866 BB->replaceSuccessor(Exit, NewBB); 1867 Exit->replacePhiUsesWith(BB, NewBB); 1868 NewBB->addSuccessor(Exit); 1869 1870 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1871 SmallVector<MachineOperand, 4> Cond; 1872 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1873 (void)CanAnalyzeBr; 1874 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1875 TII->removeBranch(*BB); 1876 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1877 Cond, DebugLoc()); 1878 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1879 return NewBB; 1880 } 1881 1882 Register 1883 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1884 MachineBasicBlock *BB) { 1885 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1886 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1887 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1888 } 1889 1890 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1891 if (MI->isPHI()) { 1892 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1893 // and it is produced by this block. 1894 Register PhiR = MI->getOperand(0).getReg(); 1895 Register R = MI->getOperand(3).getReg(); 1896 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1897 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1898 R = MI->getOperand(1).getReg(); 1899 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1900 MRI.replaceRegWith(PhiR, R); 1901 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1902 // later to figure out how to remap registers. 1903 MI->getOperand(0).setReg(PhiR); 1904 IllegalPhisToDelete.push_back(MI); 1905 return; 1906 } 1907 1908 int Stage = getStage(MI); 1909 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1910 LiveStages[MI->getParent()].test(Stage)) 1911 // Instruction is live, no rewriting to do. 1912 return; 1913 1914 for (MachineOperand &DefMO : MI->defs()) { 1915 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1916 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1917 // Only PHIs can use values from this block by construction. 1918 // Match with the equivalent PHI in B. 1919 assert(UseMI.isPHI()); 1920 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1921 MI->getParent()); 1922 Subs.emplace_back(&UseMI, Reg); 1923 } 1924 for (auto &Sub : Subs) 1925 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1926 *MRI.getTargetRegisterInfo()); 1927 } 1928 if (LIS) 1929 LIS->RemoveMachineInstrFromMaps(*MI); 1930 MI->eraseFromParent(); 1931 } 1932 1933 void PeelingModuloScheduleExpander::fixupBranches() { 1934 // Work outwards from the kernel. 1935 bool KernelDisposed = false; 1936 int TC = Schedule.getNumStages() - 1; 1937 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1938 ++PI, ++EI, --TC) { 1939 MachineBasicBlock *Prolog = *PI; 1940 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1941 MachineBasicBlock *Epilog = *EI; 1942 SmallVector<MachineOperand, 4> Cond; 1943 TII->removeBranch(*Prolog); 1944 Optional<bool> StaticallyGreater = 1945 Info->createTripCountGreaterCondition(TC, *Prolog, Cond); 1946 if (!StaticallyGreater.hasValue()) { 1947 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1948 // Dynamically branch based on Cond. 1949 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1950 } else if (*StaticallyGreater == false) { 1951 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1952 // Prolog never falls through; branch to epilog and orphan interior 1953 // blocks. Leave it to unreachable-block-elim to clean up. 1954 Prolog->removeSuccessor(Fallthrough); 1955 for (MachineInstr &P : Fallthrough->phis()) { 1956 P.RemoveOperand(2); 1957 P.RemoveOperand(1); 1958 } 1959 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1960 KernelDisposed = true; 1961 } else { 1962 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1963 // Prolog always falls through; remove incoming values in epilog. 1964 Prolog->removeSuccessor(Epilog); 1965 for (MachineInstr &P : Epilog->phis()) { 1966 P.RemoveOperand(4); 1967 P.RemoveOperand(3); 1968 } 1969 } 1970 } 1971 1972 if (!KernelDisposed) { 1973 Info->adjustTripCount(-(Schedule.getNumStages() - 1)); 1974 Info->setPreheader(Prologs.back()); 1975 } else { 1976 Info->disposed(); 1977 } 1978 } 1979 1980 void PeelingModuloScheduleExpander::rewriteKernel() { 1981 KernelRewriter KR(*Schedule.getLoop(), Schedule); 1982 KR.rewrite(); 1983 } 1984 1985 void PeelingModuloScheduleExpander::expand() { 1986 BB = Schedule.getLoop()->getTopBlock(); 1987 Preheader = Schedule.getLoop()->getLoopPreheader(); 1988 LLVM_DEBUG(Schedule.dump()); 1989 Info = TII->analyzeLoopForPipelining(BB); 1990 assert(Info); 1991 1992 rewriteKernel(); 1993 peelPrologAndEpilogs(); 1994 fixupBranches(); 1995 } 1996 1997 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1998 BB = Schedule.getLoop()->getTopBlock(); 1999 Preheader = Schedule.getLoop()->getLoopPreheader(); 2000 2001 // Dump the schedule before we invalidate and remap all its instructions. 2002 // Stash it in a string so we can print it if we found an error. 2003 std::string ScheduleDump; 2004 raw_string_ostream OS(ScheduleDump); 2005 Schedule.print(OS); 2006 OS.flush(); 2007 2008 // First, run the normal ModuleScheduleExpander. We don't support any 2009 // InstrChanges. 2010 assert(LIS && "Requires LiveIntervals!"); 2011 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2012 ModuloScheduleExpander::InstrChangesTy()); 2013 MSE.expand(); 2014 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2015 if (!ExpandedKernel) { 2016 // The expander optimized away the kernel. We can't do any useful checking. 2017 MSE.cleanup(); 2018 return; 2019 } 2020 // Before running the KernelRewriter, re-add BB into the CFG. 2021 Preheader->addSuccessor(BB); 2022 2023 // Now run the new expansion algorithm. 2024 KernelRewriter KR(*Schedule.getLoop(), Schedule); 2025 KR.rewrite(); 2026 peelPrologAndEpilogs(); 2027 2028 // Collect all illegal phis that the new algorithm created. We'll give these 2029 // to KernelOperandInfo. 2030 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2031 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2032 if (NI->isPHI()) 2033 IllegalPhis.insert(&*NI); 2034 } 2035 2036 // Co-iterate across both kernels. We expect them to be identical apart from 2037 // phis and full COPYs (we look through both). 2038 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2039 auto OI = ExpandedKernel->begin(); 2040 auto NI = BB->begin(); 2041 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2042 while (OI->isPHI() || OI->isFullCopy()) 2043 ++OI; 2044 while (NI->isPHI() || NI->isFullCopy()) 2045 ++NI; 2046 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2047 // Analyze every operand separately. 2048 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2049 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2050 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2051 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2052 } 2053 2054 bool Failed = false; 2055 for (auto &OldAndNew : KOIs) { 2056 if (OldAndNew.first == OldAndNew.second) 2057 continue; 2058 Failed = true; 2059 errs() << "Modulo kernel validation error: [\n"; 2060 errs() << " [golden] "; 2061 OldAndNew.first.print(errs()); 2062 errs() << " "; 2063 OldAndNew.second.print(errs()); 2064 errs() << "]\n"; 2065 } 2066 2067 if (Failed) { 2068 errs() << "Golden reference kernel:\n"; 2069 ExpandedKernel->print(errs()); 2070 errs() << "New kernel:\n"; 2071 BB->print(errs()); 2072 errs() << ScheduleDump; 2073 report_fatal_error( 2074 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2075 } 2076 2077 // Cleanup by removing BB from the CFG again as the original 2078 // ModuloScheduleExpander intended. 2079 Preheader->removeSuccessor(BB); 2080 MSE.cleanup(); 2081 } 2082 2083 //===----------------------------------------------------------------------===// 2084 // ModuloScheduleTestPass implementation 2085 //===----------------------------------------------------------------------===// 2086 // This pass constructs a ModuloSchedule from its module and runs 2087 // ModuloScheduleExpander. 2088 // 2089 // The module is expected to contain a single-block analyzable loop. 2090 // The total order of instructions is taken from the loop as-is. 2091 // Instructions are expected to be annotated with a PostInstrSymbol. 2092 // This PostInstrSymbol must have the following format: 2093 // "Stage=%d Cycle=%d". 2094 //===----------------------------------------------------------------------===// 2095 2096 namespace { 2097 class ModuloScheduleTest : public MachineFunctionPass { 2098 public: 2099 static char ID; 2100 2101 ModuloScheduleTest() : MachineFunctionPass(ID) { 2102 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2103 } 2104 2105 bool runOnMachineFunction(MachineFunction &MF) override; 2106 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2107 2108 void getAnalysisUsage(AnalysisUsage &AU) const override { 2109 AU.addRequired<MachineLoopInfo>(); 2110 AU.addRequired<LiveIntervals>(); 2111 MachineFunctionPass::getAnalysisUsage(AU); 2112 } 2113 }; 2114 } // namespace 2115 2116 char ModuloScheduleTest::ID = 0; 2117 2118 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2119 "Modulo Schedule test pass", false, false) 2120 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2121 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2122 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2123 "Modulo Schedule test pass", false, false) 2124 2125 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2126 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2127 for (auto *L : MLI) { 2128 if (L->getTopBlock() != L->getBottomBlock()) 2129 continue; 2130 runOnLoop(MF, *L); 2131 return false; 2132 } 2133 return false; 2134 } 2135 2136 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2137 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2138 std::pair<StringRef, StringRef> StageTokenAndValue = 2139 getToken(StageAndCycle.first, "-"); 2140 std::pair<StringRef, StringRef> CycleTokenAndValue = 2141 getToken(StageAndCycle.second, "-"); 2142 if (StageTokenAndValue.first != "Stage" || 2143 CycleTokenAndValue.first != "_Cycle") { 2144 llvm_unreachable( 2145 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2146 return; 2147 } 2148 2149 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2150 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2151 2152 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2153 } 2154 2155 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2156 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2157 MachineBasicBlock *BB = L.getTopBlock(); 2158 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2159 2160 DenseMap<MachineInstr *, int> Cycle, Stage; 2161 std::vector<MachineInstr *> Instrs; 2162 for (MachineInstr &MI : *BB) { 2163 if (MI.isTerminator()) 2164 continue; 2165 Instrs.push_back(&MI); 2166 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2167 dbgs() << "Parsing post-instr symbol for " << MI; 2168 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2169 } 2170 } 2171 2172 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2173 std::move(Stage)); 2174 ModuloScheduleExpander MSE( 2175 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2176 MSE.expand(); 2177 MSE.cleanup(); 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // ModuloScheduleTestAnnotater implementation 2182 //===----------------------------------------------------------------------===// 2183 2184 void ModuloScheduleTestAnnotater::annotate() { 2185 for (MachineInstr *MI : S.getInstructions()) { 2186 SmallVector<char, 16> SV; 2187 raw_svector_ostream OS(SV); 2188 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2189 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2190 MI->setPostInstrSymbol(MF, Sym); 2191 } 2192 } 2193