1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85 EI = MRI.use_end(); 86 UI != EI; ++UI) { 87 MachineOperand &UseOp = *UI; 88 MachineInstr *UseMI = UseOp.getParent(); 89 int UseStage = Schedule.getStage(UseMI); 90 unsigned Diff = 0; 91 if (UseStage != -1 && UseStage >= DefStage) 92 Diff = UseStage - DefStage; 93 if (MI->isPHI()) { 94 if (isLoopCarried(*MI)) 95 ++Diff; 96 else 97 PhiIsSwapped = true; 98 } 99 MaxDiff = std::max(Diff, MaxDiff); 100 } 101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102 } 103 } 104 105 generatePipelinedLoop(); 106 } 107 108 void ModuloScheduleExpander::generatePipelinedLoop() { 109 LoopInfo = TII->analyzeLoopForPipelining(BB); 110 assert(LoopInfo && "Must be able to analyze loop!"); 111 112 // Create a new basic block for the kernel and add it to the CFG. 113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114 115 unsigned MaxStageCount = Schedule.getNumStages() - 1; 116 117 // Remember the registers that are used in different stages. The index is 118 // the iteration, or stage, that the instruction is scheduled in. This is 119 // a map between register names in the original block and the names created 120 // in each stage of the pipelined loop. 121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122 InstrMapTy InstrMap; 123 124 SmallVector<MachineBasicBlock *, 4> PrologBBs; 125 126 // Generate the prolog instructions that set up the pipeline. 127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128 MF.insert(BB->getIterator(), KernelBB); 129 130 // Rearrange the instructions to generate the new, pipelined loop, 131 // and update register names as needed. 132 for (MachineInstr *CI : Schedule.getInstructions()) { 133 if (CI->isPHI()) 134 continue; 135 unsigned StageNum = Schedule.getStage(CI); 136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138 KernelBB->push_back(NewMI); 139 InstrMap[NewMI] = CI; 140 } 141 142 // Copy any terminator instructions to the new kernel, and update 143 // names as needed. 144 for (MachineInstr &MI : BB->terminators()) { 145 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 146 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 147 KernelBB->push_back(NewMI); 148 InstrMap[NewMI] = &MI; 149 } 150 151 NewKernel = KernelBB; 152 KernelBB->transferSuccessors(BB); 153 KernelBB->replaceSuccessor(BB, KernelBB); 154 155 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 156 InstrMap, MaxStageCount, MaxStageCount, false); 157 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 158 MaxStageCount, MaxStageCount, false); 159 160 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 161 162 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 163 // Generate the epilog instructions to complete the pipeline. 164 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 165 166 // We need this step because the register allocation doesn't handle some 167 // situations well, so we insert copies to help out. 168 splitLifetimes(KernelBB, EpilogBBs); 169 170 // Remove dead instructions due to loop induction variables. 171 removeDeadInstructions(KernelBB, EpilogBBs); 172 173 // Add branches between prolog and epilog blocks. 174 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 175 176 delete[] VRMap; 177 } 178 179 void ModuloScheduleExpander::cleanup() { 180 // Remove the original loop since it's no longer referenced. 181 for (auto &I : *BB) 182 LIS.RemoveMachineInstrFromMaps(I); 183 BB->clear(); 184 BB->eraseFromParent(); 185 } 186 187 /// Generate the pipeline prolog code. 188 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 189 MachineBasicBlock *KernelBB, 190 ValueMapTy *VRMap, 191 MBBVectorTy &PrologBBs) { 192 MachineBasicBlock *PredBB = Preheader; 193 InstrMapTy InstrMap; 194 195 // Generate a basic block for each stage, not including the last stage, 196 // which will be generated in the kernel. Each basic block may contain 197 // instructions from multiple stages/iterations. 198 for (unsigned i = 0; i < LastStage; ++i) { 199 // Create and insert the prolog basic block prior to the original loop 200 // basic block. The original loop is removed later. 201 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 202 PrologBBs.push_back(NewBB); 203 MF.insert(BB->getIterator(), NewBB); 204 NewBB->transferSuccessors(PredBB); 205 PredBB->addSuccessor(NewBB); 206 PredBB = NewBB; 207 208 // Generate instructions for each appropriate stage. Process instructions 209 // in original program order. 210 for (int StageNum = i; StageNum >= 0; --StageNum) { 211 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 212 BBE = BB->getFirstTerminator(); 213 BBI != BBE; ++BBI) { 214 if (Schedule.getStage(&*BBI) == StageNum) { 215 if (BBI->isPHI()) 216 continue; 217 MachineInstr *NewMI = 218 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 219 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 220 NewBB->push_back(NewMI); 221 InstrMap[NewMI] = &*BBI; 222 } 223 } 224 } 225 rewritePhiValues(NewBB, i, VRMap, InstrMap); 226 LLVM_DEBUG({ 227 dbgs() << "prolog:\n"; 228 NewBB->dump(); 229 }); 230 } 231 232 PredBB->replaceSuccessor(BB, KernelBB); 233 234 // Check if we need to remove the branch from the preheader to the original 235 // loop, and replace it with a branch to the new loop. 236 unsigned numBranches = TII->removeBranch(*Preheader); 237 if (numBranches) { 238 SmallVector<MachineOperand, 0> Cond; 239 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 240 } 241 } 242 243 /// Generate the pipeline epilog code. The epilog code finishes the iterations 244 /// that were started in either the prolog or the kernel. We create a basic 245 /// block for each stage that needs to complete. 246 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 247 MachineBasicBlock *KernelBB, 248 ValueMapTy *VRMap, 249 MBBVectorTy &EpilogBBs, 250 MBBVectorTy &PrologBBs) { 251 // We need to change the branch from the kernel to the first epilog block, so 252 // this call to analyze branch uses the kernel rather than the original BB. 253 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 254 SmallVector<MachineOperand, 4> Cond; 255 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 256 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 257 if (checkBranch) 258 return; 259 260 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 261 if (*LoopExitI == KernelBB) 262 ++LoopExitI; 263 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 264 MachineBasicBlock *LoopExitBB = *LoopExitI; 265 266 MachineBasicBlock *PredBB = KernelBB; 267 MachineBasicBlock *EpilogStart = LoopExitBB; 268 InstrMapTy InstrMap; 269 270 // Generate a basic block for each stage, not including the last stage, 271 // which was generated for the kernel. Each basic block may contain 272 // instructions from multiple stages/iterations. 273 int EpilogStage = LastStage + 1; 274 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 275 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 276 EpilogBBs.push_back(NewBB); 277 MF.insert(BB->getIterator(), NewBB); 278 279 PredBB->replaceSuccessor(LoopExitBB, NewBB); 280 NewBB->addSuccessor(LoopExitBB); 281 282 if (EpilogStart == LoopExitBB) 283 EpilogStart = NewBB; 284 285 // Add instructions to the epilog depending on the current block. 286 // Process instructions in original program order. 287 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 288 for (auto &BBI : *BB) { 289 if (BBI.isPHI()) 290 continue; 291 MachineInstr *In = &BBI; 292 if ((unsigned)Schedule.getStage(In) == StageNum) { 293 // Instructions with memoperands in the epilog are updated with 294 // conservative values. 295 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 296 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 297 NewBB->push_back(NewMI); 298 InstrMap[NewMI] = In; 299 } 300 } 301 } 302 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 303 InstrMap, LastStage, EpilogStage, i == 1); 304 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 305 LastStage, EpilogStage, i == 1); 306 PredBB = NewBB; 307 308 LLVM_DEBUG({ 309 dbgs() << "epilog:\n"; 310 NewBB->dump(); 311 }); 312 } 313 314 // Fix any Phi nodes in the loop exit block. 315 LoopExitBB->replacePhiUsesWith(BB, PredBB); 316 317 // Create a branch to the new epilog from the kernel. 318 // Remove the original branch and add a new branch to the epilog. 319 TII->removeBranch(*KernelBB); 320 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 321 // Add a branch to the loop exit. 322 if (EpilogBBs.size() > 0) { 323 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 324 SmallVector<MachineOperand, 4> Cond1; 325 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 326 } 327 } 328 329 /// Replace all uses of FromReg that appear outside the specified 330 /// basic block with ToReg. 331 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 332 MachineBasicBlock *MBB, 333 MachineRegisterInfo &MRI, 334 LiveIntervals &LIS) { 335 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 336 E = MRI.use_end(); 337 I != E;) { 338 MachineOperand &O = *I; 339 ++I; 340 if (O.getParent()->getParent() != MBB) 341 O.setReg(ToReg); 342 } 343 if (!LIS.hasInterval(ToReg)) 344 LIS.createEmptyInterval(ToReg); 345 } 346 347 /// Return true if the register has a use that occurs outside the 348 /// specified loop. 349 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 350 MachineRegisterInfo &MRI) { 351 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 352 E = MRI.use_end(); 353 I != E; ++I) 354 if (I->getParent()->getParent() != BB) 355 return true; 356 return false; 357 } 358 359 /// Generate Phis for the specific block in the generated pipelined code. 360 /// This function looks at the Phis from the original code to guide the 361 /// creation of new Phis. 362 void ModuloScheduleExpander::generateExistingPhis( 363 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 364 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 365 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 366 // Compute the stage number for the initial value of the Phi, which 367 // comes from the prolog. The prolog to use depends on to which kernel/ 368 // epilog that we're adding the Phi. 369 unsigned PrologStage = 0; 370 unsigned PrevStage = 0; 371 bool InKernel = (LastStageNum == CurStageNum); 372 if (InKernel) { 373 PrologStage = LastStageNum - 1; 374 PrevStage = CurStageNum; 375 } else { 376 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 377 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 378 } 379 380 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 381 BBE = BB->getFirstNonPHI(); 382 BBI != BBE; ++BBI) { 383 Register Def = BBI->getOperand(0).getReg(); 384 385 unsigned InitVal = 0; 386 unsigned LoopVal = 0; 387 getPhiRegs(*BBI, BB, InitVal, LoopVal); 388 389 unsigned PhiOp1 = 0; 390 // The Phi value from the loop body typically is defined in the loop, but 391 // not always. So, we need to check if the value is defined in the loop. 392 unsigned PhiOp2 = LoopVal; 393 if (VRMap[LastStageNum].count(LoopVal)) 394 PhiOp2 = VRMap[LastStageNum][LoopVal]; 395 396 int StageScheduled = Schedule.getStage(&*BBI); 397 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 398 unsigned NumStages = getStagesForReg(Def, CurStageNum); 399 if (NumStages == 0) { 400 // We don't need to generate a Phi anymore, but we need to rename any uses 401 // of the Phi value. 402 unsigned NewReg = VRMap[PrevStage][LoopVal]; 403 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 404 InitVal, NewReg); 405 if (VRMap[CurStageNum].count(LoopVal)) 406 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 407 } 408 // Adjust the number of Phis needed depending on the number of prologs left, 409 // and the distance from where the Phi is first scheduled. The number of 410 // Phis cannot exceed the number of prolog stages. Each stage can 411 // potentially define two values. 412 unsigned MaxPhis = PrologStage + 2; 413 if (!InKernel && (int)PrologStage <= LoopValStage) 414 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 415 unsigned NumPhis = std::min(NumStages, MaxPhis); 416 417 unsigned NewReg = 0; 418 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 419 // In the epilog, we may need to look back one stage to get the correct 420 // Phi name, because the epilog and prolog blocks execute the same stage. 421 // The correct name is from the previous block only when the Phi has 422 // been completely scheduled prior to the epilog, and Phi value is not 423 // needed in multiple stages. 424 int StageDiff = 0; 425 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 426 NumPhis == 1) 427 StageDiff = 1; 428 // Adjust the computations below when the phi and the loop definition 429 // are scheduled in different stages. 430 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 431 StageDiff = StageScheduled - LoopValStage; 432 for (unsigned np = 0; np < NumPhis; ++np) { 433 // If the Phi hasn't been scheduled, then use the initial Phi operand 434 // value. Otherwise, use the scheduled version of the instruction. This 435 // is a little complicated when a Phi references another Phi. 436 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 437 PhiOp1 = InitVal; 438 // Check if the Phi has already been scheduled in a prolog stage. 439 else if (PrologStage >= AccessStage + StageDiff + np && 440 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 441 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 442 // Check if the Phi has already been scheduled, but the loop instruction 443 // is either another Phi, or doesn't occur in the loop. 444 else if (PrologStage >= AccessStage + StageDiff + np) { 445 // If the Phi references another Phi, we need to examine the other 446 // Phi to get the correct value. 447 PhiOp1 = LoopVal; 448 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 449 int Indirects = 1; 450 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 451 int PhiStage = Schedule.getStage(InstOp1); 452 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 453 PhiOp1 = getInitPhiReg(*InstOp1, BB); 454 else 455 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 456 InstOp1 = MRI.getVRegDef(PhiOp1); 457 int PhiOpStage = Schedule.getStage(InstOp1); 458 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 459 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 460 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 461 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 462 break; 463 } 464 ++Indirects; 465 } 466 } else 467 PhiOp1 = InitVal; 468 // If this references a generated Phi in the kernel, get the Phi operand 469 // from the incoming block. 470 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 471 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 472 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 473 474 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 475 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 476 // In the epilog, a map lookup is needed to get the value from the kernel, 477 // or previous epilog block. How is does this depends on if the 478 // instruction is scheduled in the previous block. 479 if (!InKernel) { 480 int StageDiffAdj = 0; 481 if (LoopValStage != -1 && StageScheduled > LoopValStage) 482 StageDiffAdj = StageScheduled - LoopValStage; 483 // Use the loop value defined in the kernel, unless the kernel 484 // contains the last definition of the Phi. 485 if (np == 0 && PrevStage == LastStageNum && 486 (StageScheduled != 0 || LoopValStage != 0) && 487 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 488 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 489 // Use the value defined by the Phi. We add one because we switch 490 // from looking at the loop value to the Phi definition. 491 else if (np > 0 && PrevStage == LastStageNum && 492 VRMap[PrevStage - np + 1].count(Def)) 493 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 494 // Use the loop value defined in the kernel. 495 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 496 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 497 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 498 // Use the value defined by the Phi, unless we're generating the first 499 // epilog and the Phi refers to a Phi in a different stage. 500 else if (VRMap[PrevStage - np].count(Def) && 501 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 502 (LoopValStage == StageScheduled))) 503 PhiOp2 = VRMap[PrevStage - np][Def]; 504 } 505 506 // Check if we can reuse an existing Phi. This occurs when a Phi 507 // references another Phi, and the other Phi is scheduled in an 508 // earlier stage. We can try to reuse an existing Phi up until the last 509 // stage of the current Phi. 510 if (LoopDefIsPhi) { 511 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 512 int LVNumStages = getStagesForPhi(LoopVal); 513 int StageDiff = (StageScheduled - LoopValStage); 514 LVNumStages -= StageDiff; 515 // Make sure the loop value Phi has been processed already. 516 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 517 NewReg = PhiOp2; 518 unsigned ReuseStage = CurStageNum; 519 if (isLoopCarried(*PhiInst)) 520 ReuseStage -= LVNumStages; 521 // Check if the Phi to reuse has been generated yet. If not, then 522 // there is nothing to reuse. 523 if (VRMap[ReuseStage - np].count(LoopVal)) { 524 NewReg = VRMap[ReuseStage - np][LoopVal]; 525 526 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 527 Def, NewReg); 528 // Update the map with the new Phi name. 529 VRMap[CurStageNum - np][Def] = NewReg; 530 PhiOp2 = NewReg; 531 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 532 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 533 534 if (IsLast && np == NumPhis - 1) 535 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 536 continue; 537 } 538 } 539 } 540 if (InKernel && StageDiff > 0 && 541 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 542 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 543 } 544 545 const TargetRegisterClass *RC = MRI.getRegClass(Def); 546 NewReg = MRI.createVirtualRegister(RC); 547 548 MachineInstrBuilder NewPhi = 549 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 550 TII->get(TargetOpcode::PHI), NewReg); 551 NewPhi.addReg(PhiOp1).addMBB(BB1); 552 NewPhi.addReg(PhiOp2).addMBB(BB2); 553 if (np == 0) 554 InstrMap[NewPhi] = &*BBI; 555 556 // We define the Phis after creating the new pipelined code, so 557 // we need to rename the Phi values in scheduled instructions. 558 559 unsigned PrevReg = 0; 560 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 561 PrevReg = VRMap[PrevStage - np][LoopVal]; 562 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 563 NewReg, PrevReg); 564 // If the Phi has been scheduled, use the new name for rewriting. 565 if (VRMap[CurStageNum - np].count(Def)) { 566 unsigned R = VRMap[CurStageNum - np][Def]; 567 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 568 NewReg); 569 } 570 571 // Check if we need to rename any uses that occurs after the loop. The 572 // register to replace depends on whether the Phi is scheduled in the 573 // epilog. 574 if (IsLast && np == NumPhis - 1) 575 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 576 577 // In the kernel, a dependent Phi uses the value from this Phi. 578 if (InKernel) 579 PhiOp2 = NewReg; 580 581 // Update the map with the new Phi name. 582 VRMap[CurStageNum - np][Def] = NewReg; 583 } 584 585 while (NumPhis++ < NumStages) { 586 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 587 NewReg, 0); 588 } 589 590 // Check if we need to rename a Phi that has been eliminated due to 591 // scheduling. 592 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 593 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 594 } 595 } 596 597 /// Generate Phis for the specified block in the generated pipelined code. 598 /// These are new Phis needed because the definition is scheduled after the 599 /// use in the pipelined sequence. 600 void ModuloScheduleExpander::generatePhis( 601 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 602 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 603 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 604 // Compute the stage number that contains the initial Phi value, and 605 // the Phi from the previous stage. 606 unsigned PrologStage = 0; 607 unsigned PrevStage = 0; 608 unsigned StageDiff = CurStageNum - LastStageNum; 609 bool InKernel = (StageDiff == 0); 610 if (InKernel) { 611 PrologStage = LastStageNum - 1; 612 PrevStage = CurStageNum; 613 } else { 614 PrologStage = LastStageNum - StageDiff; 615 PrevStage = LastStageNum + StageDiff - 1; 616 } 617 618 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 619 BBE = BB->instr_end(); 620 BBI != BBE; ++BBI) { 621 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 622 MachineOperand &MO = BBI->getOperand(i); 623 if (!MO.isReg() || !MO.isDef() || 624 !Register::isVirtualRegister(MO.getReg())) 625 continue; 626 627 int StageScheduled = Schedule.getStage(&*BBI); 628 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 629 Register Def = MO.getReg(); 630 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 631 // An instruction scheduled in stage 0 and is used after the loop 632 // requires a phi in the epilog for the last definition from either 633 // the kernel or prolog. 634 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 635 hasUseAfterLoop(Def, BB, MRI)) 636 NumPhis = 1; 637 if (!InKernel && (unsigned)StageScheduled > PrologStage) 638 continue; 639 640 unsigned PhiOp2 = VRMap[PrevStage][Def]; 641 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 642 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 643 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 644 // The number of Phis can't exceed the number of prolog stages. The 645 // prolog stage number is zero based. 646 if (NumPhis > PrologStage + 1 - StageScheduled) 647 NumPhis = PrologStage + 1 - StageScheduled; 648 for (unsigned np = 0; np < NumPhis; ++np) { 649 unsigned PhiOp1 = VRMap[PrologStage][Def]; 650 if (np <= PrologStage) 651 PhiOp1 = VRMap[PrologStage - np][Def]; 652 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 653 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 654 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 655 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 656 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 657 } 658 if (!InKernel) 659 PhiOp2 = VRMap[PrevStage - np][Def]; 660 661 const TargetRegisterClass *RC = MRI.getRegClass(Def); 662 Register NewReg = MRI.createVirtualRegister(RC); 663 664 MachineInstrBuilder NewPhi = 665 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 666 TII->get(TargetOpcode::PHI), NewReg); 667 NewPhi.addReg(PhiOp1).addMBB(BB1); 668 NewPhi.addReg(PhiOp2).addMBB(BB2); 669 if (np == 0) 670 InstrMap[NewPhi] = &*BBI; 671 672 // Rewrite uses and update the map. The actions depend upon whether 673 // we generating code for the kernel or epilog blocks. 674 if (InKernel) { 675 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 676 NewReg); 677 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 678 NewReg); 679 680 PhiOp2 = NewReg; 681 VRMap[PrevStage - np - 1][Def] = NewReg; 682 } else { 683 VRMap[CurStageNum - np][Def] = NewReg; 684 if (np == NumPhis - 1) 685 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 686 NewReg); 687 } 688 if (IsLast && np == NumPhis - 1) 689 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 690 } 691 } 692 } 693 } 694 695 /// Remove instructions that generate values with no uses. 696 /// Typically, these are induction variable operations that generate values 697 /// used in the loop itself. A dead instruction has a definition with 698 /// no uses, or uses that occur in the original loop only. 699 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 700 MBBVectorTy &EpilogBBs) { 701 // For each epilog block, check that the value defined by each instruction 702 // is used. If not, delete it. 703 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 704 MBE = EpilogBBs.rend(); 705 MBB != MBE; ++MBB) 706 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 707 ME = (*MBB)->instr_rend(); 708 MI != ME;) { 709 // From DeadMachineInstructionElem. Don't delete inline assembly. 710 if (MI->isInlineAsm()) { 711 ++MI; 712 continue; 713 } 714 bool SawStore = false; 715 // Check if it's safe to remove the instruction due to side effects. 716 // We can, and want to, remove Phis here. 717 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 718 ++MI; 719 continue; 720 } 721 bool used = true; 722 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 723 MOE = MI->operands_end(); 724 MOI != MOE; ++MOI) { 725 if (!MOI->isReg() || !MOI->isDef()) 726 continue; 727 Register reg = MOI->getReg(); 728 // Assume physical registers are used, unless they are marked dead. 729 if (Register::isPhysicalRegister(reg)) { 730 used = !MOI->isDead(); 731 if (used) 732 break; 733 continue; 734 } 735 unsigned realUses = 0; 736 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 737 EI = MRI.use_end(); 738 UI != EI; ++UI) { 739 // Check if there are any uses that occur only in the original 740 // loop. If so, that's not a real use. 741 if (UI->getParent()->getParent() != BB) { 742 realUses++; 743 used = true; 744 break; 745 } 746 } 747 if (realUses > 0) 748 break; 749 used = false; 750 } 751 if (!used) { 752 LIS.RemoveMachineInstrFromMaps(*MI); 753 MI++->eraseFromParent(); 754 continue; 755 } 756 ++MI; 757 } 758 // In the kernel block, check if we can remove a Phi that generates a value 759 // used in an instruction removed in the epilog block. 760 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 761 Register reg = MI.getOperand(0).getReg(); 762 if (MRI.use_begin(reg) == MRI.use_end()) { 763 LIS.RemoveMachineInstrFromMaps(MI); 764 MI.eraseFromParent(); 765 } 766 } 767 } 768 769 /// For loop carried definitions, we split the lifetime of a virtual register 770 /// that has uses past the definition in the next iteration. A copy with a new 771 /// virtual register is inserted before the definition, which helps with 772 /// generating a better register assignment. 773 /// 774 /// v1 = phi(a, v2) v1 = phi(a, v2) 775 /// v2 = phi(b, v3) v2 = phi(b, v3) 776 /// v3 = .. v4 = copy v1 777 /// .. = V1 v3 = .. 778 /// .. = v4 779 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 780 MBBVectorTy &EpilogBBs) { 781 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 782 for (auto &PHI : KernelBB->phis()) { 783 Register Def = PHI.getOperand(0).getReg(); 784 // Check for any Phi definition that used as an operand of another Phi 785 // in the same block. 786 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 787 E = MRI.use_instr_end(); 788 I != E; ++I) { 789 if (I->isPHI() && I->getParent() == KernelBB) { 790 // Get the loop carried definition. 791 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 792 if (!LCDef) 793 continue; 794 MachineInstr *MI = MRI.getVRegDef(LCDef); 795 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 796 continue; 797 // Search through the rest of the block looking for uses of the Phi 798 // definition. If one occurs, then split the lifetime. 799 unsigned SplitReg = 0; 800 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 801 KernelBB->instr_end())) 802 if (BBJ.readsRegister(Def)) { 803 // We split the lifetime when we find the first use. 804 if (SplitReg == 0) { 805 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 806 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 807 TII->get(TargetOpcode::COPY), SplitReg) 808 .addReg(Def); 809 } 810 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 811 } 812 if (!SplitReg) 813 continue; 814 // Search through each of the epilog blocks for any uses to be renamed. 815 for (auto &Epilog : EpilogBBs) 816 for (auto &I : *Epilog) 817 if (I.readsRegister(Def)) 818 I.substituteRegister(Def, SplitReg, 0, *TRI); 819 break; 820 } 821 } 822 } 823 } 824 825 /// Remove the incoming block from the Phis in a basic block. 826 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 827 for (MachineInstr &MI : *BB) { 828 if (!MI.isPHI()) 829 break; 830 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 831 if (MI.getOperand(i + 1).getMBB() == Incoming) { 832 MI.RemoveOperand(i + 1); 833 MI.RemoveOperand(i); 834 break; 835 } 836 } 837 } 838 839 /// Create branches from each prolog basic block to the appropriate epilog 840 /// block. These edges are needed if the loop ends before reaching the 841 /// kernel. 842 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 843 MBBVectorTy &PrologBBs, 844 MachineBasicBlock *KernelBB, 845 MBBVectorTy &EpilogBBs, 846 ValueMapTy *VRMap) { 847 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 848 MachineBasicBlock *LastPro = KernelBB; 849 MachineBasicBlock *LastEpi = KernelBB; 850 851 // Start from the blocks connected to the kernel and work "out" 852 // to the first prolog and the last epilog blocks. 853 SmallVector<MachineInstr *, 4> PrevInsts; 854 unsigned MaxIter = PrologBBs.size() - 1; 855 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 856 // Add branches to the prolog that go to the corresponding 857 // epilog, and the fall-thru prolog/kernel block. 858 MachineBasicBlock *Prolog = PrologBBs[j]; 859 MachineBasicBlock *Epilog = EpilogBBs[i]; 860 861 SmallVector<MachineOperand, 4> Cond; 862 Optional<bool> StaticallyGreater = 863 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 864 unsigned numAdded = 0; 865 if (!StaticallyGreater.hasValue()) { 866 Prolog->addSuccessor(Epilog); 867 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 868 } else if (*StaticallyGreater == false) { 869 Prolog->addSuccessor(Epilog); 870 Prolog->removeSuccessor(LastPro); 871 LastEpi->removeSuccessor(Epilog); 872 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 873 removePhis(Epilog, LastEpi); 874 // Remove the blocks that are no longer referenced. 875 if (LastPro != LastEpi) { 876 LastEpi->clear(); 877 LastEpi->eraseFromParent(); 878 } 879 if (LastPro == KernelBB) { 880 LoopInfo->disposed(); 881 NewKernel = nullptr; 882 } 883 LastPro->clear(); 884 LastPro->eraseFromParent(); 885 } else { 886 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 887 removePhis(Epilog, Prolog); 888 } 889 LastPro = Prolog; 890 LastEpi = Epilog; 891 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 892 E = Prolog->instr_rend(); 893 I != E && numAdded > 0; ++I, --numAdded) 894 updateInstruction(&*I, false, j, 0, VRMap); 895 } 896 897 if (NewKernel) { 898 LoopInfo->setPreheader(PrologBBs[MaxIter]); 899 LoopInfo->adjustTripCount(-(MaxIter + 1)); 900 } 901 } 902 903 /// Return true if we can compute the amount the instruction changes 904 /// during each iteration. Set Delta to the amount of the change. 905 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 906 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 907 const MachineOperand *BaseOp; 908 int64_t Offset; 909 bool OffsetIsScalable; 910 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 911 return false; 912 913 // FIXME: This algorithm assumes instructions have fixed-size offsets. 914 if (OffsetIsScalable) 915 return false; 916 917 if (!BaseOp->isReg()) 918 return false; 919 920 Register BaseReg = BaseOp->getReg(); 921 922 MachineRegisterInfo &MRI = MF.getRegInfo(); 923 // Check if there is a Phi. If so, get the definition in the loop. 924 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 925 if (BaseDef && BaseDef->isPHI()) { 926 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 927 BaseDef = MRI.getVRegDef(BaseReg); 928 } 929 if (!BaseDef) 930 return false; 931 932 int D = 0; 933 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 934 return false; 935 936 Delta = D; 937 return true; 938 } 939 940 /// Update the memory operand with a new offset when the pipeliner 941 /// generates a new copy of the instruction that refers to a 942 /// different memory location. 943 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 944 MachineInstr &OldMI, 945 unsigned Num) { 946 if (Num == 0) 947 return; 948 // If the instruction has memory operands, then adjust the offset 949 // when the instruction appears in different stages. 950 if (NewMI.memoperands_empty()) 951 return; 952 SmallVector<MachineMemOperand *, 2> NewMMOs; 953 for (MachineMemOperand *MMO : NewMI.memoperands()) { 954 // TODO: Figure out whether isAtomic is really necessary (see D57601). 955 if (MMO->isVolatile() || MMO->isAtomic() || 956 (MMO->isInvariant() && MMO->isDereferenceable()) || 957 (!MMO->getValue())) { 958 NewMMOs.push_back(MMO); 959 continue; 960 } 961 unsigned Delta; 962 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 963 int64_t AdjOffset = Delta * Num; 964 NewMMOs.push_back( 965 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 966 } else { 967 NewMMOs.push_back( 968 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 969 } 970 } 971 NewMI.setMemRefs(MF, NewMMOs); 972 } 973 974 /// Clone the instruction for the new pipelined loop and update the 975 /// memory operands, if needed. 976 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 977 unsigned CurStageNum, 978 unsigned InstStageNum) { 979 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 980 // Check for tied operands in inline asm instructions. This should be handled 981 // elsewhere, but I'm not sure of the best solution. 982 if (OldMI->isInlineAsm()) 983 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 984 const auto &MO = OldMI->getOperand(i); 985 if (MO.isReg() && MO.isUse()) 986 break; 987 unsigned UseIdx; 988 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 989 NewMI->tieOperands(i, UseIdx); 990 } 991 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 992 return NewMI; 993 } 994 995 /// Clone the instruction for the new pipelined loop. If needed, this 996 /// function updates the instruction using the values saved in the 997 /// InstrChanges structure. 998 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 999 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1000 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1001 auto It = InstrChanges.find(OldMI); 1002 if (It != InstrChanges.end()) { 1003 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1004 unsigned BasePos, OffsetPos; 1005 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1006 return nullptr; 1007 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1008 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1009 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1010 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1011 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1012 } 1013 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1014 return NewMI; 1015 } 1016 1017 /// Update the machine instruction with new virtual registers. This 1018 /// function may change the defintions and/or uses. 1019 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1020 bool LastDef, 1021 unsigned CurStageNum, 1022 unsigned InstrStageNum, 1023 ValueMapTy *VRMap) { 1024 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1025 MachineOperand &MO = NewMI->getOperand(i); 1026 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1027 continue; 1028 Register reg = MO.getReg(); 1029 if (MO.isDef()) { 1030 // Create a new virtual register for the definition. 1031 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1032 Register NewReg = MRI.createVirtualRegister(RC); 1033 MO.setReg(NewReg); 1034 VRMap[CurStageNum][reg] = NewReg; 1035 if (LastDef) 1036 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1037 } else if (MO.isUse()) { 1038 MachineInstr *Def = MRI.getVRegDef(reg); 1039 // Compute the stage that contains the last definition for instruction. 1040 int DefStageNum = Schedule.getStage(Def); 1041 unsigned StageNum = CurStageNum; 1042 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1043 // Compute the difference in stages between the defintion and the use. 1044 unsigned StageDiff = (InstrStageNum - DefStageNum); 1045 // Make an adjustment to get the last definition. 1046 StageNum -= StageDiff; 1047 } 1048 if (VRMap[StageNum].count(reg)) 1049 MO.setReg(VRMap[StageNum][reg]); 1050 } 1051 } 1052 } 1053 1054 /// Return the instruction in the loop that defines the register. 1055 /// If the definition is a Phi, then follow the Phi operand to 1056 /// the instruction in the loop. 1057 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1058 SmallPtrSet<MachineInstr *, 8> Visited; 1059 MachineInstr *Def = MRI.getVRegDef(Reg); 1060 while (Def->isPHI()) { 1061 if (!Visited.insert(Def).second) 1062 break; 1063 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1064 if (Def->getOperand(i + 1).getMBB() == BB) { 1065 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1066 break; 1067 } 1068 } 1069 return Def; 1070 } 1071 1072 /// Return the new name for the value from the previous stage. 1073 unsigned ModuloScheduleExpander::getPrevMapVal( 1074 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1075 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1076 unsigned PrevVal = 0; 1077 if (StageNum > PhiStage) { 1078 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1079 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1080 // The name is defined in the previous stage. 1081 PrevVal = VRMap[StageNum - 1][LoopVal]; 1082 else if (VRMap[StageNum].count(LoopVal)) 1083 // The previous name is defined in the current stage when the instruction 1084 // order is swapped. 1085 PrevVal = VRMap[StageNum][LoopVal]; 1086 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1087 // The loop value hasn't yet been scheduled. 1088 PrevVal = LoopVal; 1089 else if (StageNum == PhiStage + 1) 1090 // The loop value is another phi, which has not been scheduled. 1091 PrevVal = getInitPhiReg(*LoopInst, BB); 1092 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1093 // The loop value is another phi, which has been scheduled. 1094 PrevVal = 1095 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1096 LoopStage, VRMap, BB); 1097 } 1098 return PrevVal; 1099 } 1100 1101 /// Rewrite the Phi values in the specified block to use the mappings 1102 /// from the initial operand. Once the Phi is scheduled, we switch 1103 /// to using the loop value instead of the Phi value, so those names 1104 /// do not need to be rewritten. 1105 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1106 unsigned StageNum, 1107 ValueMapTy *VRMap, 1108 InstrMapTy &InstrMap) { 1109 for (auto &PHI : BB->phis()) { 1110 unsigned InitVal = 0; 1111 unsigned LoopVal = 0; 1112 getPhiRegs(PHI, BB, InitVal, LoopVal); 1113 Register PhiDef = PHI.getOperand(0).getReg(); 1114 1115 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1116 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1117 unsigned NumPhis = getStagesForPhi(PhiDef); 1118 if (NumPhis > StageNum) 1119 NumPhis = StageNum; 1120 for (unsigned np = 0; np <= NumPhis; ++np) { 1121 unsigned NewVal = 1122 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1123 if (!NewVal) 1124 NewVal = InitVal; 1125 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1126 NewVal); 1127 } 1128 } 1129 } 1130 1131 /// Rewrite a previously scheduled instruction to use the register value 1132 /// from the new instruction. Make sure the instruction occurs in the 1133 /// basic block, and we don't change the uses in the new instruction. 1134 void ModuloScheduleExpander::rewriteScheduledInstr( 1135 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1136 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1137 unsigned PrevReg) { 1138 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1139 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1140 // Rewrite uses that have been scheduled already to use the new 1141 // Phi register. 1142 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1143 EI = MRI.use_end(); 1144 UI != EI;) { 1145 MachineOperand &UseOp = *UI; 1146 MachineInstr *UseMI = UseOp.getParent(); 1147 ++UI; 1148 if (UseMI->getParent() != BB) 1149 continue; 1150 if (UseMI->isPHI()) { 1151 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1152 continue; 1153 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1154 continue; 1155 } 1156 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1157 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1158 MachineInstr *OrigMI = OrigInstr->second; 1159 int StageSched = Schedule.getStage(OrigMI); 1160 int CycleSched = Schedule.getCycle(OrigMI); 1161 unsigned ReplaceReg = 0; 1162 // This is the stage for the scheduled instruction. 1163 if (StagePhi == StageSched && Phi->isPHI()) { 1164 int CyclePhi = Schedule.getCycle(Phi); 1165 if (PrevReg && InProlog) 1166 ReplaceReg = PrevReg; 1167 else if (PrevReg && !isLoopCarried(*Phi) && 1168 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1169 ReplaceReg = PrevReg; 1170 else 1171 ReplaceReg = NewReg; 1172 } 1173 // The scheduled instruction occurs before the scheduled Phi, and the 1174 // Phi is not loop carried. 1175 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1176 ReplaceReg = NewReg; 1177 if (StagePhi > StageSched && Phi->isPHI()) 1178 ReplaceReg = NewReg; 1179 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1180 ReplaceReg = NewReg; 1181 if (ReplaceReg) { 1182 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1183 UseOp.setReg(ReplaceReg); 1184 } 1185 } 1186 } 1187 1188 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1189 if (!Phi.isPHI()) 1190 return false; 1191 int DefCycle = Schedule.getCycle(&Phi); 1192 int DefStage = Schedule.getStage(&Phi); 1193 1194 unsigned InitVal = 0; 1195 unsigned LoopVal = 0; 1196 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1197 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1198 if (!Use || Use->isPHI()) 1199 return true; 1200 int LoopCycle = Schedule.getCycle(Use); 1201 int LoopStage = Schedule.getStage(Use); 1202 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1203 } 1204 1205 //===----------------------------------------------------------------------===// 1206 // PeelingModuloScheduleExpander implementation 1207 //===----------------------------------------------------------------------===// 1208 // This is a reimplementation of ModuloScheduleExpander that works by creating 1209 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1210 //===----------------------------------------------------------------------===// 1211 1212 namespace { 1213 // Remove any dead phis in MBB. Dead phis either have only one block as input 1214 // (in which case they are the identity) or have no uses. 1215 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1216 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1217 bool Changed = true; 1218 while (Changed) { 1219 Changed = false; 1220 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1221 assert(MI.isPHI()); 1222 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1223 if (LIS) 1224 LIS->RemoveMachineInstrFromMaps(MI); 1225 MI.eraseFromParent(); 1226 Changed = true; 1227 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1228 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1229 MRI.getRegClass(MI.getOperand(0).getReg())); 1230 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1231 MI.getOperand(1).getReg()); 1232 if (LIS) 1233 LIS->RemoveMachineInstrFromMaps(MI); 1234 MI.eraseFromParent(); 1235 Changed = true; 1236 } 1237 } 1238 } 1239 } 1240 1241 /// Rewrites the kernel block in-place to adhere to the given schedule. 1242 /// KernelRewriter holds all of the state required to perform the rewriting. 1243 class KernelRewriter { 1244 ModuloSchedule &S; 1245 MachineBasicBlock *BB; 1246 MachineBasicBlock *PreheaderBB, *ExitBB; 1247 MachineRegisterInfo &MRI; 1248 const TargetInstrInfo *TII; 1249 LiveIntervals *LIS; 1250 1251 // Map from register class to canonical undef register for that class. 1252 DenseMap<const TargetRegisterClass *, Register> Undefs; 1253 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1254 // this map is only used when InitReg is non-undef. 1255 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1256 // Map from LoopReg to phi register where the InitReg is undef. 1257 DenseMap<Register, Register> UndefPhis; 1258 1259 // Reg is used by MI. Return the new register MI should use to adhere to the 1260 // schedule. Insert phis as necessary. 1261 Register remapUse(Register Reg, MachineInstr &MI); 1262 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1263 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1264 // or will be chosen so as to share another phi. 1265 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1266 const TargetRegisterClass *RC = nullptr); 1267 // Create an undef register of the given register class. 1268 Register undef(const TargetRegisterClass *RC); 1269 1270 public: 1271 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1272 LiveIntervals *LIS = nullptr); 1273 void rewrite(); 1274 }; 1275 } // namespace 1276 1277 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1278 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1279 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1280 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1281 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1282 PreheaderBB = *BB->pred_begin(); 1283 if (PreheaderBB == BB) 1284 PreheaderBB = *std::next(BB->pred_begin()); 1285 } 1286 1287 void KernelRewriter::rewrite() { 1288 // Rearrange the loop to be in schedule order. Note that the schedule may 1289 // contain instructions that are not owned by the loop block (InstrChanges and 1290 // friends), so we gracefully handle unowned instructions and delete any 1291 // instructions that weren't in the schedule. 1292 auto InsertPt = BB->getFirstTerminator(); 1293 MachineInstr *FirstMI = nullptr; 1294 for (MachineInstr *MI : S.getInstructions()) { 1295 if (MI->isPHI()) 1296 continue; 1297 if (MI->getParent()) 1298 MI->removeFromParent(); 1299 BB->insert(InsertPt, MI); 1300 if (!FirstMI) 1301 FirstMI = MI; 1302 } 1303 assert(FirstMI && "Failed to find first MI in schedule"); 1304 1305 // At this point all of the scheduled instructions are between FirstMI 1306 // and the end of the block. Kill from the first non-phi to FirstMI. 1307 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1308 if (LIS) 1309 LIS->RemoveMachineInstrFromMaps(*I); 1310 (I++)->eraseFromParent(); 1311 } 1312 1313 // Now remap every instruction in the loop. 1314 for (MachineInstr &MI : *BB) { 1315 if (MI.isPHI() || MI.isTerminator()) 1316 continue; 1317 for (MachineOperand &MO : MI.uses()) { 1318 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1319 continue; 1320 Register Reg = remapUse(MO.getReg(), MI); 1321 MO.setReg(Reg); 1322 } 1323 } 1324 EliminateDeadPhis(BB, MRI, LIS); 1325 1326 // Ensure a phi exists for all instructions that are either referenced by 1327 // an illegal phi or by an instruction outside the loop. This allows us to 1328 // treat remaps of these values the same as "normal" values that come from 1329 // loop-carried phis. 1330 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1331 if (MI->isPHI()) { 1332 Register R = MI->getOperand(0).getReg(); 1333 phi(R); 1334 continue; 1335 } 1336 1337 for (MachineOperand &Def : MI->defs()) { 1338 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1339 if (MI.getParent() != BB) { 1340 phi(Def.getReg()); 1341 break; 1342 } 1343 } 1344 } 1345 } 1346 } 1347 1348 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1349 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1350 if (!Producer) 1351 return Reg; 1352 1353 int ConsumerStage = S.getStage(&MI); 1354 if (!Producer->isPHI()) { 1355 // Non-phi producers are simple to remap. Insert as many phis as the 1356 // difference between the consumer and producer stages. 1357 if (Producer->getParent() != BB) 1358 // Producer was not inside the loop. Use the register as-is. 1359 return Reg; 1360 int ProducerStage = S.getStage(Producer); 1361 assert(ConsumerStage != -1 && 1362 "In-loop consumer should always be scheduled!"); 1363 assert(ConsumerStage >= ProducerStage); 1364 unsigned StageDiff = ConsumerStage - ProducerStage; 1365 1366 for (unsigned I = 0; I < StageDiff; ++I) 1367 Reg = phi(Reg); 1368 return Reg; 1369 } 1370 1371 // First, dive through the phi chain to find the defaults for the generated 1372 // phis. 1373 SmallVector<Optional<Register>, 4> Defaults; 1374 Register LoopReg = Reg; 1375 auto LoopProducer = Producer; 1376 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1377 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1378 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1379 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1380 assert(LoopProducer); 1381 } 1382 int LoopProducerStage = S.getStage(LoopProducer); 1383 1384 Optional<Register> IllegalPhiDefault; 1385 1386 if (LoopProducerStage == -1) { 1387 // Do nothing. 1388 } else if (LoopProducerStage > ConsumerStage) { 1389 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1390 // In addition, Consumer's cycle must be scheduled after Producer in the 1391 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1392 // functions. 1393 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1394 int LoopProducerCycle = S.getCycle(LoopProducer); 1395 int ConsumerCycle = S.getCycle(&MI); 1396 #endif 1397 assert(LoopProducerCycle <= ConsumerCycle); 1398 assert(LoopProducerStage == ConsumerStage + 1); 1399 // Peel off the first phi from Defaults and insert a phi between producer 1400 // and consumer. This phi will not be at the front of the block so we 1401 // consider it illegal. It will only exist during the rewrite process; it 1402 // needs to exist while we peel off prologs because these could take the 1403 // default value. After that we can replace all uses with the loop producer 1404 // value. 1405 IllegalPhiDefault = Defaults.front(); 1406 Defaults.erase(Defaults.begin()); 1407 } else { 1408 assert(ConsumerStage >= LoopProducerStage); 1409 int StageDiff = ConsumerStage - LoopProducerStage; 1410 if (StageDiff > 0) { 1411 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1412 << " to " << (Defaults.size() + StageDiff) << "\n"); 1413 // If we need more phis than we have defaults for, pad out with undefs for 1414 // the earliest phis, which are at the end of the defaults chain (the 1415 // chain is in reverse order). 1416 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1417 ? Optional<Register>() 1418 : Defaults.back()); 1419 } 1420 } 1421 1422 // Now we know the number of stages to jump back, insert the phi chain. 1423 auto DefaultI = Defaults.rbegin(); 1424 while (DefaultI != Defaults.rend()) 1425 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1426 1427 if (IllegalPhiDefault.hasValue()) { 1428 // The consumer optionally consumes LoopProducer in the same iteration 1429 // (because the producer is scheduled at an earlier cycle than the consumer) 1430 // or the initial value. To facilitate this we create an illegal block here 1431 // by embedding a phi in the middle of the block. We will fix this up 1432 // immediately prior to pruning. 1433 auto RC = MRI.getRegClass(Reg); 1434 Register R = MRI.createVirtualRegister(RC); 1435 MachineInstr *IllegalPhi = 1436 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1437 .addReg(IllegalPhiDefault.getValue()) 1438 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1439 .addReg(LoopReg) 1440 .addMBB(BB); // Block choice is arbitrary and has no effect. 1441 // Illegal phi should belong to the producer stage so that it can be 1442 // filtered correctly during peeling. 1443 S.setStage(IllegalPhi, LoopProducerStage); 1444 return R; 1445 } 1446 1447 return LoopReg; 1448 } 1449 1450 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1451 const TargetRegisterClass *RC) { 1452 // If the init register is not undef, try and find an existing phi. 1453 if (InitReg.hasValue()) { 1454 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1455 if (I != Phis.end()) 1456 return I->second; 1457 } else { 1458 for (auto &KV : Phis) { 1459 if (KV.first.first == LoopReg) 1460 return KV.second; 1461 } 1462 } 1463 1464 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1465 // find a phi that takes undef as input. 1466 auto I = UndefPhis.find(LoopReg); 1467 if (I != UndefPhis.end()) { 1468 Register R = I->second; 1469 if (!InitReg.hasValue()) 1470 // Found a phi taking undef as input, and this input is undef so return 1471 // without any more changes. 1472 return R; 1473 // Found a phi taking undef as input, so rewrite it to take InitReg. 1474 MachineInstr *MI = MRI.getVRegDef(R); 1475 MI->getOperand(1).setReg(InitReg.getValue()); 1476 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1477 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1478 UndefPhis.erase(I); 1479 return R; 1480 } 1481 1482 // Failed to find any existing phi to reuse, so create a new one. 1483 if (!RC) 1484 RC = MRI.getRegClass(LoopReg); 1485 Register R = MRI.createVirtualRegister(RC); 1486 if (InitReg.hasValue()) 1487 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1488 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1489 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1490 .addMBB(PreheaderBB) 1491 .addReg(LoopReg) 1492 .addMBB(BB); 1493 if (!InitReg.hasValue()) 1494 UndefPhis[LoopReg] = R; 1495 else 1496 Phis[{LoopReg, *InitReg}] = R; 1497 return R; 1498 } 1499 1500 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1501 Register &R = Undefs[RC]; 1502 if (R == 0) { 1503 // Create an IMPLICIT_DEF that defines this register if we need it. 1504 // All uses of this should be removed by the time we have finished unrolling 1505 // prologs and epilogs. 1506 R = MRI.createVirtualRegister(RC); 1507 auto *InsertBB = &PreheaderBB->getParent()->front(); 1508 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1509 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1510 } 1511 return R; 1512 } 1513 1514 namespace { 1515 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1516 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1517 /// through and defaults for these phis. 1518 class KernelOperandInfo { 1519 MachineBasicBlock *BB; 1520 MachineRegisterInfo &MRI; 1521 SmallVector<Register, 4> PhiDefaults; 1522 MachineOperand *Source; 1523 MachineOperand *Target; 1524 1525 public: 1526 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1527 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1528 : MRI(MRI) { 1529 Source = MO; 1530 BB = MO->getParent()->getParent(); 1531 while (isRegInLoop(MO)) { 1532 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1533 if (MI->isFullCopy()) { 1534 MO = &MI->getOperand(1); 1535 continue; 1536 } 1537 if (!MI->isPHI()) 1538 break; 1539 // If this is an illegal phi, don't count it in distance. 1540 if (IllegalPhis.count(MI)) { 1541 MO = &MI->getOperand(3); 1542 continue; 1543 } 1544 1545 Register Default = getInitPhiReg(*MI, BB); 1546 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1547 : &MI->getOperand(3); 1548 PhiDefaults.push_back(Default); 1549 } 1550 Target = MO; 1551 } 1552 1553 bool operator==(const KernelOperandInfo &Other) const { 1554 return PhiDefaults.size() == Other.PhiDefaults.size(); 1555 } 1556 1557 void print(raw_ostream &OS) const { 1558 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1559 << *Source->getParent(); 1560 } 1561 1562 private: 1563 bool isRegInLoop(MachineOperand *MO) { 1564 return MO->isReg() && MO->getReg().isVirtual() && 1565 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1566 } 1567 }; 1568 } // namespace 1569 1570 MachineBasicBlock * 1571 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1572 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1573 if (LPD == LPD_Front) 1574 PeeledFront.push_back(NewBB); 1575 else 1576 PeeledBack.push_front(NewBB); 1577 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1578 ++I, ++NI) { 1579 CanonicalMIs[&*I] = &*I; 1580 CanonicalMIs[&*NI] = &*I; 1581 BlockMIs[{NewBB, &*I}] = &*NI; 1582 BlockMIs[{BB, &*I}] = &*I; 1583 } 1584 return NewBB; 1585 } 1586 1587 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1588 int MinStage) { 1589 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1590 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1591 MachineInstr *MI = &*I++; 1592 int Stage = getStage(MI); 1593 if (Stage == -1 || Stage >= MinStage) 1594 continue; 1595 1596 for (MachineOperand &DefMO : MI->defs()) { 1597 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1598 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1599 // Only PHIs can use values from this block by construction. 1600 // Match with the equivalent PHI in B. 1601 assert(UseMI.isPHI()); 1602 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1603 MI->getParent()); 1604 Subs.emplace_back(&UseMI, Reg); 1605 } 1606 for (auto &Sub : Subs) 1607 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1608 *MRI.getTargetRegisterInfo()); 1609 } 1610 if (LIS) 1611 LIS->RemoveMachineInstrFromMaps(*MI); 1612 MI->eraseFromParent(); 1613 } 1614 } 1615 1616 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1617 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1618 auto InsertPt = DestBB->getFirstNonPHI(); 1619 DenseMap<Register, Register> Remaps; 1620 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { 1621 MachineInstr *MI = &*I++; 1622 if (MI->isPHI()) { 1623 // This is an illegal PHI. If we move any instructions using an illegal 1624 // PHI, we need to create a legal Phi. 1625 if (getStage(MI) != Stage) { 1626 // The legal Phi is not necessary if the illegal phi's stage 1627 // is being moved. 1628 Register PhiR = MI->getOperand(0).getReg(); 1629 auto RC = MRI.getRegClass(PhiR); 1630 Register NR = MRI.createVirtualRegister(RC); 1631 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1632 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1633 .addReg(PhiR) 1634 .addMBB(SourceBB); 1635 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; 1636 CanonicalMIs[NI] = CanonicalMIs[MI]; 1637 Remaps[PhiR] = NR; 1638 } 1639 } 1640 if (getStage(MI) != Stage) 1641 continue; 1642 MI->removeFromParent(); 1643 DestBB->insert(InsertPt, MI); 1644 auto *KernelMI = CanonicalMIs[MI]; 1645 BlockMIs[{DestBB, KernelMI}] = MI; 1646 BlockMIs.erase({SourceBB, KernelMI}); 1647 } 1648 SmallVector<MachineInstr *, 4> PhiToDelete; 1649 for (MachineInstr &MI : DestBB->phis()) { 1650 assert(MI.getNumOperands() == 3); 1651 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1652 // If the instruction referenced by the phi is moved inside the block 1653 // we don't need the phi anymore. 1654 if (getStage(Def) == Stage) { 1655 Register PhiReg = MI.getOperand(0).getReg(); 1656 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1657 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1658 MI.getOperand(0).setReg(PhiReg); 1659 PhiToDelete.push_back(&MI); 1660 } 1661 } 1662 for (auto *P : PhiToDelete) 1663 P->eraseFromParent(); 1664 InsertPt = DestBB->getFirstNonPHI(); 1665 // Helper to clone Phi instructions into the destination block. We clone Phi 1666 // greedily to avoid combinatorial explosion of Phi instructions. 1667 auto clonePhi = [&](MachineInstr *Phi) { 1668 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1669 DestBB->insert(InsertPt, NewMI); 1670 Register OrigR = Phi->getOperand(0).getReg(); 1671 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1672 NewMI->getOperand(0).setReg(R); 1673 NewMI->getOperand(1).setReg(OrigR); 1674 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1675 Remaps[OrigR] = R; 1676 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1677 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1678 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1679 return R; 1680 }; 1681 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1682 for (MachineOperand &MO : I->uses()) { 1683 if (!MO.isReg()) 1684 continue; 1685 if (Remaps.count(MO.getReg())) 1686 MO.setReg(Remaps[MO.getReg()]); 1687 else { 1688 // If we are using a phi from the source block we need to add a new phi 1689 // pointing to the old one. 1690 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1691 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1692 Register R = clonePhi(Use); 1693 MO.setReg(R); 1694 } 1695 } 1696 } 1697 } 1698 } 1699 1700 Register 1701 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1702 MachineInstr *Phi) { 1703 unsigned distance = PhiNodeLoopIteration[Phi]; 1704 MachineInstr *CanonicalUse = CanonicalPhi; 1705 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1706 for (unsigned I = 0; I < distance; ++I) { 1707 assert(CanonicalUse->isPHI()); 1708 assert(CanonicalUse->getNumOperands() == 5); 1709 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1710 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1711 std::swap(LoopRegIdx, InitRegIdx); 1712 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1713 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1714 } 1715 return CanonicalUseReg; 1716 } 1717 1718 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1719 BitVector LS(Schedule.getNumStages(), true); 1720 BitVector AS(Schedule.getNumStages(), true); 1721 LiveStages[BB] = LS; 1722 AvailableStages[BB] = AS; 1723 1724 // Peel out the prologs. 1725 LS.reset(); 1726 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1727 LS[I] = 1; 1728 Prologs.push_back(peelKernel(LPD_Front)); 1729 LiveStages[Prologs.back()] = LS; 1730 AvailableStages[Prologs.back()] = LS; 1731 } 1732 1733 // Create a block that will end up as the new loop exiting block (dominated by 1734 // all prologs and epilogs). It will only contain PHIs, in the same order as 1735 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1736 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1737 // property that any value deffed in BB but used outside of BB is used by a 1738 // PHI in the exiting block. 1739 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1740 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1741 // Push out the epilogs, again in reverse order. 1742 // We can't assume anything about the minumum loop trip count at this point, 1743 // so emit a fairly complex epilog. 1744 1745 // We first peel number of stages minus one epilogue. Then we remove dead 1746 // stages and reorder instructions based on their stage. If we have 3 stages 1747 // we generate first: 1748 // E0[3, 2, 1] 1749 // E1[3', 2'] 1750 // E2[3''] 1751 // And then we move instructions based on their stages to have: 1752 // E0[3] 1753 // E1[2, 3'] 1754 // E2[1, 2', 3''] 1755 // The transformation is legal because we only move instructions past 1756 // instructions of a previous loop iteration. 1757 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1758 Epilogs.push_back(peelKernel(LPD_Back)); 1759 MachineBasicBlock *B = Epilogs.back(); 1760 filterInstructions(B, Schedule.getNumStages() - I); 1761 // Keep track at which iteration each phi belongs to. We need it to know 1762 // what version of the variable to use during prologue/epilogue stitching. 1763 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1764 for (MachineInstr &Phi : B->phis()) 1765 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1766 } 1767 for (size_t I = 0; I < Epilogs.size(); I++) { 1768 LS.reset(); 1769 for (size_t J = I; J < Epilogs.size(); J++) { 1770 int Iteration = J; 1771 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1772 // Move stage one block at a time so that Phi nodes are updated correctly. 1773 for (size_t K = Iteration; K > I; K--) 1774 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1775 LS[Stage] = 1; 1776 } 1777 LiveStages[Epilogs[I]] = LS; 1778 AvailableStages[Epilogs[I]] = AS; 1779 } 1780 1781 // Now we've defined all the prolog and epilog blocks as a fallthrough 1782 // sequence, add the edges that will be followed if the loop trip count is 1783 // lower than the number of stages (connecting prologs directly with epilogs). 1784 auto PI = Prologs.begin(); 1785 auto EI = Epilogs.begin(); 1786 assert(Prologs.size() == Epilogs.size()); 1787 for (; PI != Prologs.end(); ++PI, ++EI) { 1788 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1789 (*PI)->addSuccessor(*EI); 1790 for (MachineInstr &MI : (*EI)->phis()) { 1791 Register Reg = MI.getOperand(1).getReg(); 1792 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1793 if (Use && Use->getParent() == Pred) { 1794 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1795 if (CanonicalUse->isPHI()) { 1796 // If the use comes from a phi we need to skip as many phi as the 1797 // distance between the epilogue and the kernel. Trace through the phi 1798 // chain to find the right value. 1799 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1800 } 1801 Reg = getEquivalentRegisterIn(Reg, *PI); 1802 } 1803 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1804 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1805 } 1806 } 1807 1808 // Create a list of all blocks in order. 1809 SmallVector<MachineBasicBlock *, 8> Blocks; 1810 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1811 Blocks.push_back(BB); 1812 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1813 1814 // Iterate in reverse order over all instructions, remapping as we go. 1815 for (MachineBasicBlock *B : reverse(Blocks)) { 1816 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1817 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1818 MachineInstr *MI = &*I++; 1819 rewriteUsesOf(MI); 1820 } 1821 } 1822 for (auto *MI : IllegalPhisToDelete) { 1823 if (LIS) 1824 LIS->RemoveMachineInstrFromMaps(*MI); 1825 MI->eraseFromParent(); 1826 } 1827 IllegalPhisToDelete.clear(); 1828 1829 // Now all remapping has been done, we're free to optimize the generated code. 1830 for (MachineBasicBlock *B : reverse(Blocks)) 1831 EliminateDeadPhis(B, MRI, LIS); 1832 EliminateDeadPhis(ExitingBB, MRI, LIS); 1833 } 1834 1835 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1836 MachineFunction &MF = *BB->getParent(); 1837 MachineBasicBlock *Exit = *BB->succ_begin(); 1838 if (Exit == BB) 1839 Exit = *std::next(BB->succ_begin()); 1840 1841 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1842 MF.insert(std::next(BB->getIterator()), NewBB); 1843 1844 // Clone all phis in BB into NewBB and rewrite. 1845 for (MachineInstr &MI : BB->phis()) { 1846 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1847 Register OldR = MI.getOperand(3).getReg(); 1848 Register R = MRI.createVirtualRegister(RC); 1849 SmallVector<MachineInstr *, 4> Uses; 1850 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1851 if (Use.getParent() != BB) 1852 Uses.push_back(&Use); 1853 for (MachineInstr *Use : Uses) 1854 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1855 *MRI.getTargetRegisterInfo()); 1856 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1857 .addReg(OldR) 1858 .addMBB(BB); 1859 BlockMIs[{NewBB, &MI}] = NI; 1860 CanonicalMIs[NI] = &MI; 1861 } 1862 BB->replaceSuccessor(Exit, NewBB); 1863 Exit->replacePhiUsesWith(BB, NewBB); 1864 NewBB->addSuccessor(Exit); 1865 1866 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1867 SmallVector<MachineOperand, 4> Cond; 1868 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1869 (void)CanAnalyzeBr; 1870 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1871 TII->removeBranch(*BB); 1872 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1873 Cond, DebugLoc()); 1874 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1875 return NewBB; 1876 } 1877 1878 Register 1879 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1880 MachineBasicBlock *BB) { 1881 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1882 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1883 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1884 } 1885 1886 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1887 if (MI->isPHI()) { 1888 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1889 // and it is produced by this block. 1890 Register PhiR = MI->getOperand(0).getReg(); 1891 Register R = MI->getOperand(3).getReg(); 1892 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1893 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1894 R = MI->getOperand(1).getReg(); 1895 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1896 MRI.replaceRegWith(PhiR, R); 1897 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1898 // later to figure out how to remap registers. 1899 MI->getOperand(0).setReg(PhiR); 1900 IllegalPhisToDelete.push_back(MI); 1901 return; 1902 } 1903 1904 int Stage = getStage(MI); 1905 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1906 LiveStages[MI->getParent()].test(Stage)) 1907 // Instruction is live, no rewriting to do. 1908 return; 1909 1910 for (MachineOperand &DefMO : MI->defs()) { 1911 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1912 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1913 // Only PHIs can use values from this block by construction. 1914 // Match with the equivalent PHI in B. 1915 assert(UseMI.isPHI()); 1916 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1917 MI->getParent()); 1918 Subs.emplace_back(&UseMI, Reg); 1919 } 1920 for (auto &Sub : Subs) 1921 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1922 *MRI.getTargetRegisterInfo()); 1923 } 1924 if (LIS) 1925 LIS->RemoveMachineInstrFromMaps(*MI); 1926 MI->eraseFromParent(); 1927 } 1928 1929 void PeelingModuloScheduleExpander::fixupBranches() { 1930 // Work outwards from the kernel. 1931 bool KernelDisposed = false; 1932 int TC = Schedule.getNumStages() - 1; 1933 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1934 ++PI, ++EI, --TC) { 1935 MachineBasicBlock *Prolog = *PI; 1936 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1937 MachineBasicBlock *Epilog = *EI; 1938 SmallVector<MachineOperand, 4> Cond; 1939 TII->removeBranch(*Prolog); 1940 Optional<bool> StaticallyGreater = 1941 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1942 if (!StaticallyGreater.hasValue()) { 1943 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1944 // Dynamically branch based on Cond. 1945 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1946 } else if (*StaticallyGreater == false) { 1947 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1948 // Prolog never falls through; branch to epilog and orphan interior 1949 // blocks. Leave it to unreachable-block-elim to clean up. 1950 Prolog->removeSuccessor(Fallthrough); 1951 for (MachineInstr &P : Fallthrough->phis()) { 1952 P.RemoveOperand(2); 1953 P.RemoveOperand(1); 1954 } 1955 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1956 KernelDisposed = true; 1957 } else { 1958 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1959 // Prolog always falls through; remove incoming values in epilog. 1960 Prolog->removeSuccessor(Epilog); 1961 for (MachineInstr &P : Epilog->phis()) { 1962 P.RemoveOperand(4); 1963 P.RemoveOperand(3); 1964 } 1965 } 1966 } 1967 1968 if (!KernelDisposed) { 1969 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1970 LoopInfo->setPreheader(Prologs.back()); 1971 } else { 1972 LoopInfo->disposed(); 1973 } 1974 } 1975 1976 void PeelingModuloScheduleExpander::rewriteKernel() { 1977 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1978 KR.rewrite(); 1979 } 1980 1981 void PeelingModuloScheduleExpander::expand() { 1982 BB = Schedule.getLoop()->getTopBlock(); 1983 Preheader = Schedule.getLoop()->getLoopPreheader(); 1984 LLVM_DEBUG(Schedule.dump()); 1985 LoopInfo = TII->analyzeLoopForPipelining(BB); 1986 assert(LoopInfo); 1987 1988 rewriteKernel(); 1989 peelPrologAndEpilogs(); 1990 fixupBranches(); 1991 } 1992 1993 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1994 BB = Schedule.getLoop()->getTopBlock(); 1995 Preheader = Schedule.getLoop()->getLoopPreheader(); 1996 1997 // Dump the schedule before we invalidate and remap all its instructions. 1998 // Stash it in a string so we can print it if we found an error. 1999 std::string ScheduleDump; 2000 raw_string_ostream OS(ScheduleDump); 2001 Schedule.print(OS); 2002 OS.flush(); 2003 2004 // First, run the normal ModuleScheduleExpander. We don't support any 2005 // InstrChanges. 2006 assert(LIS && "Requires LiveIntervals!"); 2007 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2008 ModuloScheduleExpander::InstrChangesTy()); 2009 MSE.expand(); 2010 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2011 if (!ExpandedKernel) { 2012 // The expander optimized away the kernel. We can't do any useful checking. 2013 MSE.cleanup(); 2014 return; 2015 } 2016 // Before running the KernelRewriter, re-add BB into the CFG. 2017 Preheader->addSuccessor(BB); 2018 2019 // Now run the new expansion algorithm. 2020 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2021 KR.rewrite(); 2022 peelPrologAndEpilogs(); 2023 2024 // Collect all illegal phis that the new algorithm created. We'll give these 2025 // to KernelOperandInfo. 2026 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2027 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2028 if (NI->isPHI()) 2029 IllegalPhis.insert(&*NI); 2030 } 2031 2032 // Co-iterate across both kernels. We expect them to be identical apart from 2033 // phis and full COPYs (we look through both). 2034 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2035 auto OI = ExpandedKernel->begin(); 2036 auto NI = BB->begin(); 2037 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2038 while (OI->isPHI() || OI->isFullCopy()) 2039 ++OI; 2040 while (NI->isPHI() || NI->isFullCopy()) 2041 ++NI; 2042 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2043 // Analyze every operand separately. 2044 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2045 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2046 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2047 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2048 } 2049 2050 bool Failed = false; 2051 for (auto &OldAndNew : KOIs) { 2052 if (OldAndNew.first == OldAndNew.second) 2053 continue; 2054 Failed = true; 2055 errs() << "Modulo kernel validation error: [\n"; 2056 errs() << " [golden] "; 2057 OldAndNew.first.print(errs()); 2058 errs() << " "; 2059 OldAndNew.second.print(errs()); 2060 errs() << "]\n"; 2061 } 2062 2063 if (Failed) { 2064 errs() << "Golden reference kernel:\n"; 2065 ExpandedKernel->print(errs()); 2066 errs() << "New kernel:\n"; 2067 BB->print(errs()); 2068 errs() << ScheduleDump; 2069 report_fatal_error( 2070 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2071 } 2072 2073 // Cleanup by removing BB from the CFG again as the original 2074 // ModuloScheduleExpander intended. 2075 Preheader->removeSuccessor(BB); 2076 MSE.cleanup(); 2077 } 2078 2079 //===----------------------------------------------------------------------===// 2080 // ModuloScheduleTestPass implementation 2081 //===----------------------------------------------------------------------===// 2082 // This pass constructs a ModuloSchedule from its module and runs 2083 // ModuloScheduleExpander. 2084 // 2085 // The module is expected to contain a single-block analyzable loop. 2086 // The total order of instructions is taken from the loop as-is. 2087 // Instructions are expected to be annotated with a PostInstrSymbol. 2088 // This PostInstrSymbol must have the following format: 2089 // "Stage=%d Cycle=%d". 2090 //===----------------------------------------------------------------------===// 2091 2092 namespace { 2093 class ModuloScheduleTest : public MachineFunctionPass { 2094 public: 2095 static char ID; 2096 2097 ModuloScheduleTest() : MachineFunctionPass(ID) { 2098 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2099 } 2100 2101 bool runOnMachineFunction(MachineFunction &MF) override; 2102 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2103 2104 void getAnalysisUsage(AnalysisUsage &AU) const override { 2105 AU.addRequired<MachineLoopInfo>(); 2106 AU.addRequired<LiveIntervals>(); 2107 MachineFunctionPass::getAnalysisUsage(AU); 2108 } 2109 }; 2110 } // namespace 2111 2112 char ModuloScheduleTest::ID = 0; 2113 2114 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2115 "Modulo Schedule test pass", false, false) 2116 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2117 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2118 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2119 "Modulo Schedule test pass", false, false) 2120 2121 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2122 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2123 for (auto *L : MLI) { 2124 if (L->getTopBlock() != L->getBottomBlock()) 2125 continue; 2126 runOnLoop(MF, *L); 2127 return false; 2128 } 2129 return false; 2130 } 2131 2132 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2133 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2134 std::pair<StringRef, StringRef> StageTokenAndValue = 2135 getToken(StageAndCycle.first, "-"); 2136 std::pair<StringRef, StringRef> CycleTokenAndValue = 2137 getToken(StageAndCycle.second, "-"); 2138 if (StageTokenAndValue.first != "Stage" || 2139 CycleTokenAndValue.first != "_Cycle") { 2140 llvm_unreachable( 2141 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2142 return; 2143 } 2144 2145 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2146 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2147 2148 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2149 } 2150 2151 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2152 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2153 MachineBasicBlock *BB = L.getTopBlock(); 2154 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2155 2156 DenseMap<MachineInstr *, int> Cycle, Stage; 2157 std::vector<MachineInstr *> Instrs; 2158 for (MachineInstr &MI : *BB) { 2159 if (MI.isTerminator()) 2160 continue; 2161 Instrs.push_back(&MI); 2162 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2163 dbgs() << "Parsing post-instr symbol for " << MI; 2164 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2165 } 2166 } 2167 2168 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2169 std::move(Stage)); 2170 ModuloScheduleExpander MSE( 2171 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2172 MSE.expand(); 2173 MSE.cleanup(); 2174 } 2175 2176 //===----------------------------------------------------------------------===// 2177 // ModuloScheduleTestAnnotater implementation 2178 //===----------------------------------------------------------------------===// 2179 2180 void ModuloScheduleTestAnnotater::annotate() { 2181 for (MachineInstr *MI : S.getInstructions()) { 2182 SmallVector<char, 16> SV; 2183 raw_svector_ostream OS(SV); 2184 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2185 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2186 MI->setPostInstrSymbol(MF, Sym); 2187 } 2188 } 2189