1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85 EI = MRI.use_end(); 86 UI != EI; ++UI) { 87 MachineOperand &UseOp = *UI; 88 MachineInstr *UseMI = UseOp.getParent(); 89 int UseStage = Schedule.getStage(UseMI); 90 unsigned Diff = 0; 91 if (UseStage != -1 && UseStage >= DefStage) 92 Diff = UseStage - DefStage; 93 if (MI->isPHI()) { 94 if (isLoopCarried(*MI)) 95 ++Diff; 96 else 97 PhiIsSwapped = true; 98 } 99 MaxDiff = std::max(Diff, MaxDiff); 100 } 101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102 } 103 } 104 105 generatePipelinedLoop(); 106 } 107 108 void ModuloScheduleExpander::generatePipelinedLoop() { 109 LoopInfo = TII->analyzeLoopForPipelining(BB); 110 assert(LoopInfo && "Must be able to analyze loop!"); 111 112 // Create a new basic block for the kernel and add it to the CFG. 113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114 115 unsigned MaxStageCount = Schedule.getNumStages() - 1; 116 117 // Remember the registers that are used in different stages. The index is 118 // the iteration, or stage, that the instruction is scheduled in. This is 119 // a map between register names in the original block and the names created 120 // in each stage of the pipelined loop. 121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122 InstrMapTy InstrMap; 123 124 SmallVector<MachineBasicBlock *, 4> PrologBBs; 125 126 // Generate the prolog instructions that set up the pipeline. 127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128 MF.insert(BB->getIterator(), KernelBB); 129 130 // Rearrange the instructions to generate the new, pipelined loop, 131 // and update register names as needed. 132 for (MachineInstr *CI : Schedule.getInstructions()) { 133 if (CI->isPHI()) 134 continue; 135 unsigned StageNum = Schedule.getStage(CI); 136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138 KernelBB->push_back(NewMI); 139 InstrMap[NewMI] = CI; 140 } 141 142 // Copy any terminator instructions to the new kernel, and update 143 // names as needed. 144 for (MachineInstr &MI : BB->terminators()) { 145 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 146 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 147 KernelBB->push_back(NewMI); 148 InstrMap[NewMI] = &MI; 149 } 150 151 NewKernel = KernelBB; 152 KernelBB->transferSuccessors(BB); 153 KernelBB->replaceSuccessor(BB, KernelBB); 154 155 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 156 InstrMap, MaxStageCount, MaxStageCount, false); 157 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 158 MaxStageCount, MaxStageCount, false); 159 160 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 161 162 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 163 // Generate the epilog instructions to complete the pipeline. 164 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 165 166 // We need this step because the register allocation doesn't handle some 167 // situations well, so we insert copies to help out. 168 splitLifetimes(KernelBB, EpilogBBs); 169 170 // Remove dead instructions due to loop induction variables. 171 removeDeadInstructions(KernelBB, EpilogBBs); 172 173 // Add branches between prolog and epilog blocks. 174 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 175 176 delete[] VRMap; 177 } 178 179 void ModuloScheduleExpander::cleanup() { 180 // Remove the original loop since it's no longer referenced. 181 for (auto &I : *BB) 182 LIS.RemoveMachineInstrFromMaps(I); 183 BB->clear(); 184 BB->eraseFromParent(); 185 } 186 187 /// Generate the pipeline prolog code. 188 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 189 MachineBasicBlock *KernelBB, 190 ValueMapTy *VRMap, 191 MBBVectorTy &PrologBBs) { 192 MachineBasicBlock *PredBB = Preheader; 193 InstrMapTy InstrMap; 194 195 // Generate a basic block for each stage, not including the last stage, 196 // which will be generated in the kernel. Each basic block may contain 197 // instructions from multiple stages/iterations. 198 for (unsigned i = 0; i < LastStage; ++i) { 199 // Create and insert the prolog basic block prior to the original loop 200 // basic block. The original loop is removed later. 201 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 202 PrologBBs.push_back(NewBB); 203 MF.insert(BB->getIterator(), NewBB); 204 NewBB->transferSuccessors(PredBB); 205 PredBB->addSuccessor(NewBB); 206 PredBB = NewBB; 207 208 // Generate instructions for each appropriate stage. Process instructions 209 // in original program order. 210 for (int StageNum = i; StageNum >= 0; --StageNum) { 211 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 212 BBE = BB->getFirstTerminator(); 213 BBI != BBE; ++BBI) { 214 if (Schedule.getStage(&*BBI) == StageNum) { 215 if (BBI->isPHI()) 216 continue; 217 MachineInstr *NewMI = 218 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 219 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 220 NewBB->push_back(NewMI); 221 InstrMap[NewMI] = &*BBI; 222 } 223 } 224 } 225 rewritePhiValues(NewBB, i, VRMap, InstrMap); 226 LLVM_DEBUG({ 227 dbgs() << "prolog:\n"; 228 NewBB->dump(); 229 }); 230 } 231 232 PredBB->replaceSuccessor(BB, KernelBB); 233 234 // Check if we need to remove the branch from the preheader to the original 235 // loop, and replace it with a branch to the new loop. 236 unsigned numBranches = TII->removeBranch(*Preheader); 237 if (numBranches) { 238 SmallVector<MachineOperand, 0> Cond; 239 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 240 } 241 } 242 243 /// Generate the pipeline epilog code. The epilog code finishes the iterations 244 /// that were started in either the prolog or the kernel. We create a basic 245 /// block for each stage that needs to complete. 246 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 247 MachineBasicBlock *KernelBB, 248 ValueMapTy *VRMap, 249 MBBVectorTy &EpilogBBs, 250 MBBVectorTy &PrologBBs) { 251 // We need to change the branch from the kernel to the first epilog block, so 252 // this call to analyze branch uses the kernel rather than the original BB. 253 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 254 SmallVector<MachineOperand, 4> Cond; 255 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 256 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 257 if (checkBranch) 258 return; 259 260 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 261 if (*LoopExitI == KernelBB) 262 ++LoopExitI; 263 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 264 MachineBasicBlock *LoopExitBB = *LoopExitI; 265 266 MachineBasicBlock *PredBB = KernelBB; 267 MachineBasicBlock *EpilogStart = LoopExitBB; 268 InstrMapTy InstrMap; 269 270 // Generate a basic block for each stage, not including the last stage, 271 // which was generated for the kernel. Each basic block may contain 272 // instructions from multiple stages/iterations. 273 int EpilogStage = LastStage + 1; 274 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 275 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 276 EpilogBBs.push_back(NewBB); 277 MF.insert(BB->getIterator(), NewBB); 278 279 PredBB->replaceSuccessor(LoopExitBB, NewBB); 280 NewBB->addSuccessor(LoopExitBB); 281 282 if (EpilogStart == LoopExitBB) 283 EpilogStart = NewBB; 284 285 // Add instructions to the epilog depending on the current block. 286 // Process instructions in original program order. 287 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 288 for (auto &BBI : *BB) { 289 if (BBI.isPHI()) 290 continue; 291 MachineInstr *In = &BBI; 292 if ((unsigned)Schedule.getStage(In) == StageNum) { 293 // Instructions with memoperands in the epilog are updated with 294 // conservative values. 295 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 296 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 297 NewBB->push_back(NewMI); 298 InstrMap[NewMI] = In; 299 } 300 } 301 } 302 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 303 InstrMap, LastStage, EpilogStage, i == 1); 304 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 305 LastStage, EpilogStage, i == 1); 306 PredBB = NewBB; 307 308 LLVM_DEBUG({ 309 dbgs() << "epilog:\n"; 310 NewBB->dump(); 311 }); 312 } 313 314 // Fix any Phi nodes in the loop exit block. 315 LoopExitBB->replacePhiUsesWith(BB, PredBB); 316 317 // Create a branch to the new epilog from the kernel. 318 // Remove the original branch and add a new branch to the epilog. 319 TII->removeBranch(*KernelBB); 320 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 321 // Add a branch to the loop exit. 322 if (EpilogBBs.size() > 0) { 323 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 324 SmallVector<MachineOperand, 4> Cond1; 325 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 326 } 327 } 328 329 /// Replace all uses of FromReg that appear outside the specified 330 /// basic block with ToReg. 331 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 332 MachineBasicBlock *MBB, 333 MachineRegisterInfo &MRI, 334 LiveIntervals &LIS) { 335 for (MachineOperand &O : 336 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 337 if (O.getParent()->getParent() != MBB) 338 O.setReg(ToReg); 339 if (!LIS.hasInterval(ToReg)) 340 LIS.createEmptyInterval(ToReg); 341 } 342 343 /// Return true if the register has a use that occurs outside the 344 /// specified loop. 345 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 346 MachineRegisterInfo &MRI) { 347 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 348 E = MRI.use_end(); 349 I != E; ++I) 350 if (I->getParent()->getParent() != BB) 351 return true; 352 return false; 353 } 354 355 /// Generate Phis for the specific block in the generated pipelined code. 356 /// This function looks at the Phis from the original code to guide the 357 /// creation of new Phis. 358 void ModuloScheduleExpander::generateExistingPhis( 359 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 360 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 361 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 362 // Compute the stage number for the initial value of the Phi, which 363 // comes from the prolog. The prolog to use depends on to which kernel/ 364 // epilog that we're adding the Phi. 365 unsigned PrologStage = 0; 366 unsigned PrevStage = 0; 367 bool InKernel = (LastStageNum == CurStageNum); 368 if (InKernel) { 369 PrologStage = LastStageNum - 1; 370 PrevStage = CurStageNum; 371 } else { 372 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 373 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 374 } 375 376 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 377 BBE = BB->getFirstNonPHI(); 378 BBI != BBE; ++BBI) { 379 Register Def = BBI->getOperand(0).getReg(); 380 381 unsigned InitVal = 0; 382 unsigned LoopVal = 0; 383 getPhiRegs(*BBI, BB, InitVal, LoopVal); 384 385 unsigned PhiOp1 = 0; 386 // The Phi value from the loop body typically is defined in the loop, but 387 // not always. So, we need to check if the value is defined in the loop. 388 unsigned PhiOp2 = LoopVal; 389 if (VRMap[LastStageNum].count(LoopVal)) 390 PhiOp2 = VRMap[LastStageNum][LoopVal]; 391 392 int StageScheduled = Schedule.getStage(&*BBI); 393 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 394 unsigned NumStages = getStagesForReg(Def, CurStageNum); 395 if (NumStages == 0) { 396 // We don't need to generate a Phi anymore, but we need to rename any uses 397 // of the Phi value. 398 unsigned NewReg = VRMap[PrevStage][LoopVal]; 399 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 400 InitVal, NewReg); 401 if (VRMap[CurStageNum].count(LoopVal)) 402 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 403 } 404 // Adjust the number of Phis needed depending on the number of prologs left, 405 // and the distance from where the Phi is first scheduled. The number of 406 // Phis cannot exceed the number of prolog stages. Each stage can 407 // potentially define two values. 408 unsigned MaxPhis = PrologStage + 2; 409 if (!InKernel && (int)PrologStage <= LoopValStage) 410 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 411 unsigned NumPhis = std::min(NumStages, MaxPhis); 412 413 unsigned NewReg = 0; 414 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 415 // In the epilog, we may need to look back one stage to get the correct 416 // Phi name, because the epilog and prolog blocks execute the same stage. 417 // The correct name is from the previous block only when the Phi has 418 // been completely scheduled prior to the epilog, and Phi value is not 419 // needed in multiple stages. 420 int StageDiff = 0; 421 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 422 NumPhis == 1) 423 StageDiff = 1; 424 // Adjust the computations below when the phi and the loop definition 425 // are scheduled in different stages. 426 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 427 StageDiff = StageScheduled - LoopValStage; 428 for (unsigned np = 0; np < NumPhis; ++np) { 429 // If the Phi hasn't been scheduled, then use the initial Phi operand 430 // value. Otherwise, use the scheduled version of the instruction. This 431 // is a little complicated when a Phi references another Phi. 432 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 433 PhiOp1 = InitVal; 434 // Check if the Phi has already been scheduled in a prolog stage. 435 else if (PrologStage >= AccessStage + StageDiff + np && 436 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 437 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 438 // Check if the Phi has already been scheduled, but the loop instruction 439 // is either another Phi, or doesn't occur in the loop. 440 else if (PrologStage >= AccessStage + StageDiff + np) { 441 // If the Phi references another Phi, we need to examine the other 442 // Phi to get the correct value. 443 PhiOp1 = LoopVal; 444 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 445 int Indirects = 1; 446 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 447 int PhiStage = Schedule.getStage(InstOp1); 448 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 449 PhiOp1 = getInitPhiReg(*InstOp1, BB); 450 else 451 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 452 InstOp1 = MRI.getVRegDef(PhiOp1); 453 int PhiOpStage = Schedule.getStage(InstOp1); 454 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 455 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 456 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 457 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 458 break; 459 } 460 ++Indirects; 461 } 462 } else 463 PhiOp1 = InitVal; 464 // If this references a generated Phi in the kernel, get the Phi operand 465 // from the incoming block. 466 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 467 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 468 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 469 470 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 471 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 472 // In the epilog, a map lookup is needed to get the value from the kernel, 473 // or previous epilog block. How is does this depends on if the 474 // instruction is scheduled in the previous block. 475 if (!InKernel) { 476 int StageDiffAdj = 0; 477 if (LoopValStage != -1 && StageScheduled > LoopValStage) 478 StageDiffAdj = StageScheduled - LoopValStage; 479 // Use the loop value defined in the kernel, unless the kernel 480 // contains the last definition of the Phi. 481 if (np == 0 && PrevStage == LastStageNum && 482 (StageScheduled != 0 || LoopValStage != 0) && 483 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 484 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 485 // Use the value defined by the Phi. We add one because we switch 486 // from looking at the loop value to the Phi definition. 487 else if (np > 0 && PrevStage == LastStageNum && 488 VRMap[PrevStage - np + 1].count(Def)) 489 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 490 // Use the loop value defined in the kernel. 491 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 492 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 493 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 494 // Use the value defined by the Phi, unless we're generating the first 495 // epilog and the Phi refers to a Phi in a different stage. 496 else if (VRMap[PrevStage - np].count(Def) && 497 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 498 (LoopValStage == StageScheduled))) 499 PhiOp2 = VRMap[PrevStage - np][Def]; 500 } 501 502 // Check if we can reuse an existing Phi. This occurs when a Phi 503 // references another Phi, and the other Phi is scheduled in an 504 // earlier stage. We can try to reuse an existing Phi up until the last 505 // stage of the current Phi. 506 if (LoopDefIsPhi) { 507 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 508 int LVNumStages = getStagesForPhi(LoopVal); 509 int StageDiff = (StageScheduled - LoopValStage); 510 LVNumStages -= StageDiff; 511 // Make sure the loop value Phi has been processed already. 512 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 513 NewReg = PhiOp2; 514 unsigned ReuseStage = CurStageNum; 515 if (isLoopCarried(*PhiInst)) 516 ReuseStage -= LVNumStages; 517 // Check if the Phi to reuse has been generated yet. If not, then 518 // there is nothing to reuse. 519 if (VRMap[ReuseStage - np].count(LoopVal)) { 520 NewReg = VRMap[ReuseStage - np][LoopVal]; 521 522 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 523 Def, NewReg); 524 // Update the map with the new Phi name. 525 VRMap[CurStageNum - np][Def] = NewReg; 526 PhiOp2 = NewReg; 527 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 528 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 529 530 if (IsLast && np == NumPhis - 1) 531 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 532 continue; 533 } 534 } 535 } 536 if (InKernel && StageDiff > 0 && 537 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 538 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 539 } 540 541 const TargetRegisterClass *RC = MRI.getRegClass(Def); 542 NewReg = MRI.createVirtualRegister(RC); 543 544 MachineInstrBuilder NewPhi = 545 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 546 TII->get(TargetOpcode::PHI), NewReg); 547 NewPhi.addReg(PhiOp1).addMBB(BB1); 548 NewPhi.addReg(PhiOp2).addMBB(BB2); 549 if (np == 0) 550 InstrMap[NewPhi] = &*BBI; 551 552 // We define the Phis after creating the new pipelined code, so 553 // we need to rename the Phi values in scheduled instructions. 554 555 unsigned PrevReg = 0; 556 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 557 PrevReg = VRMap[PrevStage - np][LoopVal]; 558 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 559 NewReg, PrevReg); 560 // If the Phi has been scheduled, use the new name for rewriting. 561 if (VRMap[CurStageNum - np].count(Def)) { 562 unsigned R = VRMap[CurStageNum - np][Def]; 563 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 564 NewReg); 565 } 566 567 // Check if we need to rename any uses that occurs after the loop. The 568 // register to replace depends on whether the Phi is scheduled in the 569 // epilog. 570 if (IsLast && np == NumPhis - 1) 571 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 572 573 // In the kernel, a dependent Phi uses the value from this Phi. 574 if (InKernel) 575 PhiOp2 = NewReg; 576 577 // Update the map with the new Phi name. 578 VRMap[CurStageNum - np][Def] = NewReg; 579 } 580 581 while (NumPhis++ < NumStages) { 582 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 583 NewReg, 0); 584 } 585 586 // Check if we need to rename a Phi that has been eliminated due to 587 // scheduling. 588 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 589 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 590 } 591 } 592 593 /// Generate Phis for the specified block in the generated pipelined code. 594 /// These are new Phis needed because the definition is scheduled after the 595 /// use in the pipelined sequence. 596 void ModuloScheduleExpander::generatePhis( 597 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 598 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 599 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 600 // Compute the stage number that contains the initial Phi value, and 601 // the Phi from the previous stage. 602 unsigned PrologStage = 0; 603 unsigned PrevStage = 0; 604 unsigned StageDiff = CurStageNum - LastStageNum; 605 bool InKernel = (StageDiff == 0); 606 if (InKernel) { 607 PrologStage = LastStageNum - 1; 608 PrevStage = CurStageNum; 609 } else { 610 PrologStage = LastStageNum - StageDiff; 611 PrevStage = LastStageNum + StageDiff - 1; 612 } 613 614 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 615 BBE = BB->instr_end(); 616 BBI != BBE; ++BBI) { 617 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 618 MachineOperand &MO = BBI->getOperand(i); 619 if (!MO.isReg() || !MO.isDef() || 620 !Register::isVirtualRegister(MO.getReg())) 621 continue; 622 623 int StageScheduled = Schedule.getStage(&*BBI); 624 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 625 Register Def = MO.getReg(); 626 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 627 // An instruction scheduled in stage 0 and is used after the loop 628 // requires a phi in the epilog for the last definition from either 629 // the kernel or prolog. 630 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 631 hasUseAfterLoop(Def, BB, MRI)) 632 NumPhis = 1; 633 if (!InKernel && (unsigned)StageScheduled > PrologStage) 634 continue; 635 636 unsigned PhiOp2 = VRMap[PrevStage][Def]; 637 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 638 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 639 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 640 // The number of Phis can't exceed the number of prolog stages. The 641 // prolog stage number is zero based. 642 if (NumPhis > PrologStage + 1 - StageScheduled) 643 NumPhis = PrologStage + 1 - StageScheduled; 644 for (unsigned np = 0; np < NumPhis; ++np) { 645 unsigned PhiOp1 = VRMap[PrologStage][Def]; 646 if (np <= PrologStage) 647 PhiOp1 = VRMap[PrologStage - np][Def]; 648 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 649 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 650 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 651 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 652 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 653 } 654 if (!InKernel) 655 PhiOp2 = VRMap[PrevStage - np][Def]; 656 657 const TargetRegisterClass *RC = MRI.getRegClass(Def); 658 Register NewReg = MRI.createVirtualRegister(RC); 659 660 MachineInstrBuilder NewPhi = 661 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 662 TII->get(TargetOpcode::PHI), NewReg); 663 NewPhi.addReg(PhiOp1).addMBB(BB1); 664 NewPhi.addReg(PhiOp2).addMBB(BB2); 665 if (np == 0) 666 InstrMap[NewPhi] = &*BBI; 667 668 // Rewrite uses and update the map. The actions depend upon whether 669 // we generating code for the kernel or epilog blocks. 670 if (InKernel) { 671 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 672 NewReg); 673 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 674 NewReg); 675 676 PhiOp2 = NewReg; 677 VRMap[PrevStage - np - 1][Def] = NewReg; 678 } else { 679 VRMap[CurStageNum - np][Def] = NewReg; 680 if (np == NumPhis - 1) 681 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 682 NewReg); 683 } 684 if (IsLast && np == NumPhis - 1) 685 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 686 } 687 } 688 } 689 } 690 691 /// Remove instructions that generate values with no uses. 692 /// Typically, these are induction variable operations that generate values 693 /// used in the loop itself. A dead instruction has a definition with 694 /// no uses, or uses that occur in the original loop only. 695 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 696 MBBVectorTy &EpilogBBs) { 697 // For each epilog block, check that the value defined by each instruction 698 // is used. If not, delete it. 699 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 700 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 701 ME = MBB->instr_rend(); 702 MI != ME;) { 703 // From DeadMachineInstructionElem. Don't delete inline assembly. 704 if (MI->isInlineAsm()) { 705 ++MI; 706 continue; 707 } 708 bool SawStore = false; 709 // Check if it's safe to remove the instruction due to side effects. 710 // We can, and want to, remove Phis here. 711 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 712 ++MI; 713 continue; 714 } 715 bool used = true; 716 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 717 MOE = MI->operands_end(); 718 MOI != MOE; ++MOI) { 719 if (!MOI->isReg() || !MOI->isDef()) 720 continue; 721 Register reg = MOI->getReg(); 722 // Assume physical registers are used, unless they are marked dead. 723 if (Register::isPhysicalRegister(reg)) { 724 used = !MOI->isDead(); 725 if (used) 726 break; 727 continue; 728 } 729 unsigned realUses = 0; 730 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 731 EI = MRI.use_end(); 732 UI != EI; ++UI) { 733 // Check if there are any uses that occur only in the original 734 // loop. If so, that's not a real use. 735 if (UI->getParent()->getParent() != BB) { 736 realUses++; 737 used = true; 738 break; 739 } 740 } 741 if (realUses > 0) 742 break; 743 used = false; 744 } 745 if (!used) { 746 LIS.RemoveMachineInstrFromMaps(*MI); 747 MI++->eraseFromParent(); 748 continue; 749 } 750 ++MI; 751 } 752 // In the kernel block, check if we can remove a Phi that generates a value 753 // used in an instruction removed in the epilog block. 754 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 755 Register reg = MI.getOperand(0).getReg(); 756 if (MRI.use_begin(reg) == MRI.use_end()) { 757 LIS.RemoveMachineInstrFromMaps(MI); 758 MI.eraseFromParent(); 759 } 760 } 761 } 762 763 /// For loop carried definitions, we split the lifetime of a virtual register 764 /// that has uses past the definition in the next iteration. A copy with a new 765 /// virtual register is inserted before the definition, which helps with 766 /// generating a better register assignment. 767 /// 768 /// v1 = phi(a, v2) v1 = phi(a, v2) 769 /// v2 = phi(b, v3) v2 = phi(b, v3) 770 /// v3 = .. v4 = copy v1 771 /// .. = V1 v3 = .. 772 /// .. = v4 773 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 774 MBBVectorTy &EpilogBBs) { 775 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 776 for (auto &PHI : KernelBB->phis()) { 777 Register Def = PHI.getOperand(0).getReg(); 778 // Check for any Phi definition that used as an operand of another Phi 779 // in the same block. 780 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 781 E = MRI.use_instr_end(); 782 I != E; ++I) { 783 if (I->isPHI() && I->getParent() == KernelBB) { 784 // Get the loop carried definition. 785 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 786 if (!LCDef) 787 continue; 788 MachineInstr *MI = MRI.getVRegDef(LCDef); 789 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 790 continue; 791 // Search through the rest of the block looking for uses of the Phi 792 // definition. If one occurs, then split the lifetime. 793 unsigned SplitReg = 0; 794 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 795 KernelBB->instr_end())) 796 if (BBJ.readsRegister(Def)) { 797 // We split the lifetime when we find the first use. 798 if (SplitReg == 0) { 799 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 800 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 801 TII->get(TargetOpcode::COPY), SplitReg) 802 .addReg(Def); 803 } 804 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 805 } 806 if (!SplitReg) 807 continue; 808 // Search through each of the epilog blocks for any uses to be renamed. 809 for (auto &Epilog : EpilogBBs) 810 for (auto &I : *Epilog) 811 if (I.readsRegister(Def)) 812 I.substituteRegister(Def, SplitReg, 0, *TRI); 813 break; 814 } 815 } 816 } 817 } 818 819 /// Remove the incoming block from the Phis in a basic block. 820 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 821 for (MachineInstr &MI : *BB) { 822 if (!MI.isPHI()) 823 break; 824 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 825 if (MI.getOperand(i + 1).getMBB() == Incoming) { 826 MI.RemoveOperand(i + 1); 827 MI.RemoveOperand(i); 828 break; 829 } 830 } 831 } 832 833 /// Create branches from each prolog basic block to the appropriate epilog 834 /// block. These edges are needed if the loop ends before reaching the 835 /// kernel. 836 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 837 MBBVectorTy &PrologBBs, 838 MachineBasicBlock *KernelBB, 839 MBBVectorTy &EpilogBBs, 840 ValueMapTy *VRMap) { 841 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 842 MachineBasicBlock *LastPro = KernelBB; 843 MachineBasicBlock *LastEpi = KernelBB; 844 845 // Start from the blocks connected to the kernel and work "out" 846 // to the first prolog and the last epilog blocks. 847 SmallVector<MachineInstr *, 4> PrevInsts; 848 unsigned MaxIter = PrologBBs.size() - 1; 849 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 850 // Add branches to the prolog that go to the corresponding 851 // epilog, and the fall-thru prolog/kernel block. 852 MachineBasicBlock *Prolog = PrologBBs[j]; 853 MachineBasicBlock *Epilog = EpilogBBs[i]; 854 855 SmallVector<MachineOperand, 4> Cond; 856 Optional<bool> StaticallyGreater = 857 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 858 unsigned numAdded = 0; 859 if (!StaticallyGreater.hasValue()) { 860 Prolog->addSuccessor(Epilog); 861 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 862 } else if (*StaticallyGreater == false) { 863 Prolog->addSuccessor(Epilog); 864 Prolog->removeSuccessor(LastPro); 865 LastEpi->removeSuccessor(Epilog); 866 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 867 removePhis(Epilog, LastEpi); 868 // Remove the blocks that are no longer referenced. 869 if (LastPro != LastEpi) { 870 LastEpi->clear(); 871 LastEpi->eraseFromParent(); 872 } 873 if (LastPro == KernelBB) { 874 LoopInfo->disposed(); 875 NewKernel = nullptr; 876 } 877 LastPro->clear(); 878 LastPro->eraseFromParent(); 879 } else { 880 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 881 removePhis(Epilog, Prolog); 882 } 883 LastPro = Prolog; 884 LastEpi = Epilog; 885 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 886 E = Prolog->instr_rend(); 887 I != E && numAdded > 0; ++I, --numAdded) 888 updateInstruction(&*I, false, j, 0, VRMap); 889 } 890 891 if (NewKernel) { 892 LoopInfo->setPreheader(PrologBBs[MaxIter]); 893 LoopInfo->adjustTripCount(-(MaxIter + 1)); 894 } 895 } 896 897 /// Return true if we can compute the amount the instruction changes 898 /// during each iteration. Set Delta to the amount of the change. 899 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 900 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 901 const MachineOperand *BaseOp; 902 int64_t Offset; 903 bool OffsetIsScalable; 904 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 905 return false; 906 907 // FIXME: This algorithm assumes instructions have fixed-size offsets. 908 if (OffsetIsScalable) 909 return false; 910 911 if (!BaseOp->isReg()) 912 return false; 913 914 Register BaseReg = BaseOp->getReg(); 915 916 MachineRegisterInfo &MRI = MF.getRegInfo(); 917 // Check if there is a Phi. If so, get the definition in the loop. 918 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 919 if (BaseDef && BaseDef->isPHI()) { 920 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 921 BaseDef = MRI.getVRegDef(BaseReg); 922 } 923 if (!BaseDef) 924 return false; 925 926 int D = 0; 927 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 928 return false; 929 930 Delta = D; 931 return true; 932 } 933 934 /// Update the memory operand with a new offset when the pipeliner 935 /// generates a new copy of the instruction that refers to a 936 /// different memory location. 937 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 938 MachineInstr &OldMI, 939 unsigned Num) { 940 if (Num == 0) 941 return; 942 // If the instruction has memory operands, then adjust the offset 943 // when the instruction appears in different stages. 944 if (NewMI.memoperands_empty()) 945 return; 946 SmallVector<MachineMemOperand *, 2> NewMMOs; 947 for (MachineMemOperand *MMO : NewMI.memoperands()) { 948 // TODO: Figure out whether isAtomic is really necessary (see D57601). 949 if (MMO->isVolatile() || MMO->isAtomic() || 950 (MMO->isInvariant() && MMO->isDereferenceable()) || 951 (!MMO->getValue())) { 952 NewMMOs.push_back(MMO); 953 continue; 954 } 955 unsigned Delta; 956 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 957 int64_t AdjOffset = Delta * Num; 958 NewMMOs.push_back( 959 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 960 } else { 961 NewMMOs.push_back( 962 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 963 } 964 } 965 NewMI.setMemRefs(MF, NewMMOs); 966 } 967 968 /// Clone the instruction for the new pipelined loop and update the 969 /// memory operands, if needed. 970 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 971 unsigned CurStageNum, 972 unsigned InstStageNum) { 973 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 974 // Check for tied operands in inline asm instructions. This should be handled 975 // elsewhere, but I'm not sure of the best solution. 976 if (OldMI->isInlineAsm()) 977 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 978 const auto &MO = OldMI->getOperand(i); 979 if (MO.isReg() && MO.isUse()) 980 break; 981 unsigned UseIdx; 982 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 983 NewMI->tieOperands(i, UseIdx); 984 } 985 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 986 return NewMI; 987 } 988 989 /// Clone the instruction for the new pipelined loop. If needed, this 990 /// function updates the instruction using the values saved in the 991 /// InstrChanges structure. 992 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 993 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 994 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 995 auto It = InstrChanges.find(OldMI); 996 if (It != InstrChanges.end()) { 997 std::pair<unsigned, int64_t> RegAndOffset = It->second; 998 unsigned BasePos, OffsetPos; 999 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1000 return nullptr; 1001 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1002 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1003 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1004 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1005 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1006 } 1007 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1008 return NewMI; 1009 } 1010 1011 /// Update the machine instruction with new virtual registers. This 1012 /// function may change the defintions and/or uses. 1013 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1014 bool LastDef, 1015 unsigned CurStageNum, 1016 unsigned InstrStageNum, 1017 ValueMapTy *VRMap) { 1018 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1019 MachineOperand &MO = NewMI->getOperand(i); 1020 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1021 continue; 1022 Register reg = MO.getReg(); 1023 if (MO.isDef()) { 1024 // Create a new virtual register for the definition. 1025 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1026 Register NewReg = MRI.createVirtualRegister(RC); 1027 MO.setReg(NewReg); 1028 VRMap[CurStageNum][reg] = NewReg; 1029 if (LastDef) 1030 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1031 } else if (MO.isUse()) { 1032 MachineInstr *Def = MRI.getVRegDef(reg); 1033 // Compute the stage that contains the last definition for instruction. 1034 int DefStageNum = Schedule.getStage(Def); 1035 unsigned StageNum = CurStageNum; 1036 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1037 // Compute the difference in stages between the defintion and the use. 1038 unsigned StageDiff = (InstrStageNum - DefStageNum); 1039 // Make an adjustment to get the last definition. 1040 StageNum -= StageDiff; 1041 } 1042 if (VRMap[StageNum].count(reg)) 1043 MO.setReg(VRMap[StageNum][reg]); 1044 } 1045 } 1046 } 1047 1048 /// Return the instruction in the loop that defines the register. 1049 /// If the definition is a Phi, then follow the Phi operand to 1050 /// the instruction in the loop. 1051 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1052 SmallPtrSet<MachineInstr *, 8> Visited; 1053 MachineInstr *Def = MRI.getVRegDef(Reg); 1054 while (Def->isPHI()) { 1055 if (!Visited.insert(Def).second) 1056 break; 1057 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1058 if (Def->getOperand(i + 1).getMBB() == BB) { 1059 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1060 break; 1061 } 1062 } 1063 return Def; 1064 } 1065 1066 /// Return the new name for the value from the previous stage. 1067 unsigned ModuloScheduleExpander::getPrevMapVal( 1068 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1069 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1070 unsigned PrevVal = 0; 1071 if (StageNum > PhiStage) { 1072 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1073 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1074 // The name is defined in the previous stage. 1075 PrevVal = VRMap[StageNum - 1][LoopVal]; 1076 else if (VRMap[StageNum].count(LoopVal)) 1077 // The previous name is defined in the current stage when the instruction 1078 // order is swapped. 1079 PrevVal = VRMap[StageNum][LoopVal]; 1080 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1081 // The loop value hasn't yet been scheduled. 1082 PrevVal = LoopVal; 1083 else if (StageNum == PhiStage + 1) 1084 // The loop value is another phi, which has not been scheduled. 1085 PrevVal = getInitPhiReg(*LoopInst, BB); 1086 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1087 // The loop value is another phi, which has been scheduled. 1088 PrevVal = 1089 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1090 LoopStage, VRMap, BB); 1091 } 1092 return PrevVal; 1093 } 1094 1095 /// Rewrite the Phi values in the specified block to use the mappings 1096 /// from the initial operand. Once the Phi is scheduled, we switch 1097 /// to using the loop value instead of the Phi value, so those names 1098 /// do not need to be rewritten. 1099 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1100 unsigned StageNum, 1101 ValueMapTy *VRMap, 1102 InstrMapTy &InstrMap) { 1103 for (auto &PHI : BB->phis()) { 1104 unsigned InitVal = 0; 1105 unsigned LoopVal = 0; 1106 getPhiRegs(PHI, BB, InitVal, LoopVal); 1107 Register PhiDef = PHI.getOperand(0).getReg(); 1108 1109 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1110 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1111 unsigned NumPhis = getStagesForPhi(PhiDef); 1112 if (NumPhis > StageNum) 1113 NumPhis = StageNum; 1114 for (unsigned np = 0; np <= NumPhis; ++np) { 1115 unsigned NewVal = 1116 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1117 if (!NewVal) 1118 NewVal = InitVal; 1119 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1120 NewVal); 1121 } 1122 } 1123 } 1124 1125 /// Rewrite a previously scheduled instruction to use the register value 1126 /// from the new instruction. Make sure the instruction occurs in the 1127 /// basic block, and we don't change the uses in the new instruction. 1128 void ModuloScheduleExpander::rewriteScheduledInstr( 1129 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1130 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1131 unsigned PrevReg) { 1132 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1133 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1134 // Rewrite uses that have been scheduled already to use the new 1135 // Phi register. 1136 for (MachineOperand &UseOp : 1137 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1138 MachineInstr *UseMI = UseOp.getParent(); 1139 if (UseMI->getParent() != BB) 1140 continue; 1141 if (UseMI->isPHI()) { 1142 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1143 continue; 1144 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1145 continue; 1146 } 1147 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1148 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1149 MachineInstr *OrigMI = OrigInstr->second; 1150 int StageSched = Schedule.getStage(OrigMI); 1151 int CycleSched = Schedule.getCycle(OrigMI); 1152 unsigned ReplaceReg = 0; 1153 // This is the stage for the scheduled instruction. 1154 if (StagePhi == StageSched && Phi->isPHI()) { 1155 int CyclePhi = Schedule.getCycle(Phi); 1156 if (PrevReg && InProlog) 1157 ReplaceReg = PrevReg; 1158 else if (PrevReg && !isLoopCarried(*Phi) && 1159 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1160 ReplaceReg = PrevReg; 1161 else 1162 ReplaceReg = NewReg; 1163 } 1164 // The scheduled instruction occurs before the scheduled Phi, and the 1165 // Phi is not loop carried. 1166 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1167 ReplaceReg = NewReg; 1168 if (StagePhi > StageSched && Phi->isPHI()) 1169 ReplaceReg = NewReg; 1170 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1171 ReplaceReg = NewReg; 1172 if (ReplaceReg) { 1173 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1174 UseOp.setReg(ReplaceReg); 1175 } 1176 } 1177 } 1178 1179 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1180 if (!Phi.isPHI()) 1181 return false; 1182 int DefCycle = Schedule.getCycle(&Phi); 1183 int DefStage = Schedule.getStage(&Phi); 1184 1185 unsigned InitVal = 0; 1186 unsigned LoopVal = 0; 1187 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1188 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1189 if (!Use || Use->isPHI()) 1190 return true; 1191 int LoopCycle = Schedule.getCycle(Use); 1192 int LoopStage = Schedule.getStage(Use); 1193 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // PeelingModuloScheduleExpander implementation 1198 //===----------------------------------------------------------------------===// 1199 // This is a reimplementation of ModuloScheduleExpander that works by creating 1200 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1201 //===----------------------------------------------------------------------===// 1202 1203 namespace { 1204 // Remove any dead phis in MBB. Dead phis either have only one block as input 1205 // (in which case they are the identity) or have no uses. 1206 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1207 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1208 bool Changed = true; 1209 while (Changed) { 1210 Changed = false; 1211 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1212 assert(MI.isPHI()); 1213 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1214 if (LIS) 1215 LIS->RemoveMachineInstrFromMaps(MI); 1216 MI.eraseFromParent(); 1217 Changed = true; 1218 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1219 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1220 MRI.getRegClass(MI.getOperand(0).getReg())); 1221 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1222 MI.getOperand(1).getReg()); 1223 if (LIS) 1224 LIS->RemoveMachineInstrFromMaps(MI); 1225 MI.eraseFromParent(); 1226 Changed = true; 1227 } 1228 } 1229 } 1230 } 1231 1232 /// Rewrites the kernel block in-place to adhere to the given schedule. 1233 /// KernelRewriter holds all of the state required to perform the rewriting. 1234 class KernelRewriter { 1235 ModuloSchedule &S; 1236 MachineBasicBlock *BB; 1237 MachineBasicBlock *PreheaderBB, *ExitBB; 1238 MachineRegisterInfo &MRI; 1239 const TargetInstrInfo *TII; 1240 LiveIntervals *LIS; 1241 1242 // Map from register class to canonical undef register for that class. 1243 DenseMap<const TargetRegisterClass *, Register> Undefs; 1244 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1245 // this map is only used when InitReg is non-undef. 1246 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1247 // Map from LoopReg to phi register where the InitReg is undef. 1248 DenseMap<Register, Register> UndefPhis; 1249 1250 // Reg is used by MI. Return the new register MI should use to adhere to the 1251 // schedule. Insert phis as necessary. 1252 Register remapUse(Register Reg, MachineInstr &MI); 1253 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1254 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1255 // or will be chosen so as to share another phi. 1256 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1257 const TargetRegisterClass *RC = nullptr); 1258 // Create an undef register of the given register class. 1259 Register undef(const TargetRegisterClass *RC); 1260 1261 public: 1262 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1263 LiveIntervals *LIS = nullptr); 1264 void rewrite(); 1265 }; 1266 } // namespace 1267 1268 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1269 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1270 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1271 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1272 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1273 PreheaderBB = *BB->pred_begin(); 1274 if (PreheaderBB == BB) 1275 PreheaderBB = *std::next(BB->pred_begin()); 1276 } 1277 1278 void KernelRewriter::rewrite() { 1279 // Rearrange the loop to be in schedule order. Note that the schedule may 1280 // contain instructions that are not owned by the loop block (InstrChanges and 1281 // friends), so we gracefully handle unowned instructions and delete any 1282 // instructions that weren't in the schedule. 1283 auto InsertPt = BB->getFirstTerminator(); 1284 MachineInstr *FirstMI = nullptr; 1285 for (MachineInstr *MI : S.getInstructions()) { 1286 if (MI->isPHI()) 1287 continue; 1288 if (MI->getParent()) 1289 MI->removeFromParent(); 1290 BB->insert(InsertPt, MI); 1291 if (!FirstMI) 1292 FirstMI = MI; 1293 } 1294 assert(FirstMI && "Failed to find first MI in schedule"); 1295 1296 // At this point all of the scheduled instructions are between FirstMI 1297 // and the end of the block. Kill from the first non-phi to FirstMI. 1298 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1299 if (LIS) 1300 LIS->RemoveMachineInstrFromMaps(*I); 1301 (I++)->eraseFromParent(); 1302 } 1303 1304 // Now remap every instruction in the loop. 1305 for (MachineInstr &MI : *BB) { 1306 if (MI.isPHI() || MI.isTerminator()) 1307 continue; 1308 for (MachineOperand &MO : MI.uses()) { 1309 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1310 continue; 1311 Register Reg = remapUse(MO.getReg(), MI); 1312 MO.setReg(Reg); 1313 } 1314 } 1315 EliminateDeadPhis(BB, MRI, LIS); 1316 1317 // Ensure a phi exists for all instructions that are either referenced by 1318 // an illegal phi or by an instruction outside the loop. This allows us to 1319 // treat remaps of these values the same as "normal" values that come from 1320 // loop-carried phis. 1321 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1322 if (MI->isPHI()) { 1323 Register R = MI->getOperand(0).getReg(); 1324 phi(R); 1325 continue; 1326 } 1327 1328 for (MachineOperand &Def : MI->defs()) { 1329 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1330 if (MI.getParent() != BB) { 1331 phi(Def.getReg()); 1332 break; 1333 } 1334 } 1335 } 1336 } 1337 } 1338 1339 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1340 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1341 if (!Producer) 1342 return Reg; 1343 1344 int ConsumerStage = S.getStage(&MI); 1345 if (!Producer->isPHI()) { 1346 // Non-phi producers are simple to remap. Insert as many phis as the 1347 // difference between the consumer and producer stages. 1348 if (Producer->getParent() != BB) 1349 // Producer was not inside the loop. Use the register as-is. 1350 return Reg; 1351 int ProducerStage = S.getStage(Producer); 1352 assert(ConsumerStage != -1 && 1353 "In-loop consumer should always be scheduled!"); 1354 assert(ConsumerStage >= ProducerStage); 1355 unsigned StageDiff = ConsumerStage - ProducerStage; 1356 1357 for (unsigned I = 0; I < StageDiff; ++I) 1358 Reg = phi(Reg); 1359 return Reg; 1360 } 1361 1362 // First, dive through the phi chain to find the defaults for the generated 1363 // phis. 1364 SmallVector<Optional<Register>, 4> Defaults; 1365 Register LoopReg = Reg; 1366 auto LoopProducer = Producer; 1367 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1368 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1369 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1370 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1371 assert(LoopProducer); 1372 } 1373 int LoopProducerStage = S.getStage(LoopProducer); 1374 1375 Optional<Register> IllegalPhiDefault; 1376 1377 if (LoopProducerStage == -1) { 1378 // Do nothing. 1379 } else if (LoopProducerStage > ConsumerStage) { 1380 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1381 // In addition, Consumer's cycle must be scheduled after Producer in the 1382 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1383 // functions. 1384 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1385 int LoopProducerCycle = S.getCycle(LoopProducer); 1386 int ConsumerCycle = S.getCycle(&MI); 1387 #endif 1388 assert(LoopProducerCycle <= ConsumerCycle); 1389 assert(LoopProducerStage == ConsumerStage + 1); 1390 // Peel off the first phi from Defaults and insert a phi between producer 1391 // and consumer. This phi will not be at the front of the block so we 1392 // consider it illegal. It will only exist during the rewrite process; it 1393 // needs to exist while we peel off prologs because these could take the 1394 // default value. After that we can replace all uses with the loop producer 1395 // value. 1396 IllegalPhiDefault = Defaults.front(); 1397 Defaults.erase(Defaults.begin()); 1398 } else { 1399 assert(ConsumerStage >= LoopProducerStage); 1400 int StageDiff = ConsumerStage - LoopProducerStage; 1401 if (StageDiff > 0) { 1402 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1403 << " to " << (Defaults.size() + StageDiff) << "\n"); 1404 // If we need more phis than we have defaults for, pad out with undefs for 1405 // the earliest phis, which are at the end of the defaults chain (the 1406 // chain is in reverse order). 1407 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1408 ? Optional<Register>() 1409 : Defaults.back()); 1410 } 1411 } 1412 1413 // Now we know the number of stages to jump back, insert the phi chain. 1414 auto DefaultI = Defaults.rbegin(); 1415 while (DefaultI != Defaults.rend()) 1416 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1417 1418 if (IllegalPhiDefault.hasValue()) { 1419 // The consumer optionally consumes LoopProducer in the same iteration 1420 // (because the producer is scheduled at an earlier cycle than the consumer) 1421 // or the initial value. To facilitate this we create an illegal block here 1422 // by embedding a phi in the middle of the block. We will fix this up 1423 // immediately prior to pruning. 1424 auto RC = MRI.getRegClass(Reg); 1425 Register R = MRI.createVirtualRegister(RC); 1426 MachineInstr *IllegalPhi = 1427 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1428 .addReg(IllegalPhiDefault.getValue()) 1429 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1430 .addReg(LoopReg) 1431 .addMBB(BB); // Block choice is arbitrary and has no effect. 1432 // Illegal phi should belong to the producer stage so that it can be 1433 // filtered correctly during peeling. 1434 S.setStage(IllegalPhi, LoopProducerStage); 1435 return R; 1436 } 1437 1438 return LoopReg; 1439 } 1440 1441 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1442 const TargetRegisterClass *RC) { 1443 // If the init register is not undef, try and find an existing phi. 1444 if (InitReg.hasValue()) { 1445 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1446 if (I != Phis.end()) 1447 return I->second; 1448 } else { 1449 for (auto &KV : Phis) { 1450 if (KV.first.first == LoopReg) 1451 return KV.second; 1452 } 1453 } 1454 1455 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1456 // find a phi that takes undef as input. 1457 auto I = UndefPhis.find(LoopReg); 1458 if (I != UndefPhis.end()) { 1459 Register R = I->second; 1460 if (!InitReg.hasValue()) 1461 // Found a phi taking undef as input, and this input is undef so return 1462 // without any more changes. 1463 return R; 1464 // Found a phi taking undef as input, so rewrite it to take InitReg. 1465 MachineInstr *MI = MRI.getVRegDef(R); 1466 MI->getOperand(1).setReg(InitReg.getValue()); 1467 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1468 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1469 UndefPhis.erase(I); 1470 return R; 1471 } 1472 1473 // Failed to find any existing phi to reuse, so create a new one. 1474 if (!RC) 1475 RC = MRI.getRegClass(LoopReg); 1476 Register R = MRI.createVirtualRegister(RC); 1477 if (InitReg.hasValue()) 1478 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1479 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1480 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1481 .addMBB(PreheaderBB) 1482 .addReg(LoopReg) 1483 .addMBB(BB); 1484 if (!InitReg.hasValue()) 1485 UndefPhis[LoopReg] = R; 1486 else 1487 Phis[{LoopReg, *InitReg}] = R; 1488 return R; 1489 } 1490 1491 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1492 Register &R = Undefs[RC]; 1493 if (R == 0) { 1494 // Create an IMPLICIT_DEF that defines this register if we need it. 1495 // All uses of this should be removed by the time we have finished unrolling 1496 // prologs and epilogs. 1497 R = MRI.createVirtualRegister(RC); 1498 auto *InsertBB = &PreheaderBB->getParent()->front(); 1499 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1500 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1501 } 1502 return R; 1503 } 1504 1505 namespace { 1506 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1507 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1508 /// through and defaults for these phis. 1509 class KernelOperandInfo { 1510 MachineBasicBlock *BB; 1511 MachineRegisterInfo &MRI; 1512 SmallVector<Register, 4> PhiDefaults; 1513 MachineOperand *Source; 1514 MachineOperand *Target; 1515 1516 public: 1517 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1518 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1519 : MRI(MRI) { 1520 Source = MO; 1521 BB = MO->getParent()->getParent(); 1522 while (isRegInLoop(MO)) { 1523 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1524 if (MI->isFullCopy()) { 1525 MO = &MI->getOperand(1); 1526 continue; 1527 } 1528 if (!MI->isPHI()) 1529 break; 1530 // If this is an illegal phi, don't count it in distance. 1531 if (IllegalPhis.count(MI)) { 1532 MO = &MI->getOperand(3); 1533 continue; 1534 } 1535 1536 Register Default = getInitPhiReg(*MI, BB); 1537 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1538 : &MI->getOperand(3); 1539 PhiDefaults.push_back(Default); 1540 } 1541 Target = MO; 1542 } 1543 1544 bool operator==(const KernelOperandInfo &Other) const { 1545 return PhiDefaults.size() == Other.PhiDefaults.size(); 1546 } 1547 1548 void print(raw_ostream &OS) const { 1549 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1550 << *Source->getParent(); 1551 } 1552 1553 private: 1554 bool isRegInLoop(MachineOperand *MO) { 1555 return MO->isReg() && MO->getReg().isVirtual() && 1556 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1557 } 1558 }; 1559 } // namespace 1560 1561 MachineBasicBlock * 1562 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1563 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1564 if (LPD == LPD_Front) 1565 PeeledFront.push_back(NewBB); 1566 else 1567 PeeledBack.push_front(NewBB); 1568 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1569 ++I, ++NI) { 1570 CanonicalMIs[&*I] = &*I; 1571 CanonicalMIs[&*NI] = &*I; 1572 BlockMIs[{NewBB, &*I}] = &*NI; 1573 BlockMIs[{BB, &*I}] = &*I; 1574 } 1575 return NewBB; 1576 } 1577 1578 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1579 int MinStage) { 1580 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1581 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1582 MachineInstr *MI = &*I++; 1583 int Stage = getStage(MI); 1584 if (Stage == -1 || Stage >= MinStage) 1585 continue; 1586 1587 for (MachineOperand &DefMO : MI->defs()) { 1588 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1589 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1590 // Only PHIs can use values from this block by construction. 1591 // Match with the equivalent PHI in B. 1592 assert(UseMI.isPHI()); 1593 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1594 MI->getParent()); 1595 Subs.emplace_back(&UseMI, Reg); 1596 } 1597 for (auto &Sub : Subs) 1598 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1599 *MRI.getTargetRegisterInfo()); 1600 } 1601 if (LIS) 1602 LIS->RemoveMachineInstrFromMaps(*MI); 1603 MI->eraseFromParent(); 1604 } 1605 } 1606 1607 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1608 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1609 auto InsertPt = DestBB->getFirstNonPHI(); 1610 DenseMap<Register, Register> Remaps; 1611 for (MachineInstr &MI : llvm::make_early_inc_range( 1612 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1613 if (MI.isPHI()) { 1614 // This is an illegal PHI. If we move any instructions using an illegal 1615 // PHI, we need to create a legal Phi. 1616 if (getStage(&MI) != Stage) { 1617 // The legal Phi is not necessary if the illegal phi's stage 1618 // is being moved. 1619 Register PhiR = MI.getOperand(0).getReg(); 1620 auto RC = MRI.getRegClass(PhiR); 1621 Register NR = MRI.createVirtualRegister(RC); 1622 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1623 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1624 .addReg(PhiR) 1625 .addMBB(SourceBB); 1626 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1627 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1628 Remaps[PhiR] = NR; 1629 } 1630 } 1631 if (getStage(&MI) != Stage) 1632 continue; 1633 MI.removeFromParent(); 1634 DestBB->insert(InsertPt, &MI); 1635 auto *KernelMI = CanonicalMIs[&MI]; 1636 BlockMIs[{DestBB, KernelMI}] = &MI; 1637 BlockMIs.erase({SourceBB, KernelMI}); 1638 } 1639 SmallVector<MachineInstr *, 4> PhiToDelete; 1640 for (MachineInstr &MI : DestBB->phis()) { 1641 assert(MI.getNumOperands() == 3); 1642 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1643 // If the instruction referenced by the phi is moved inside the block 1644 // we don't need the phi anymore. 1645 if (getStage(Def) == Stage) { 1646 Register PhiReg = MI.getOperand(0).getReg(); 1647 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1648 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1649 MI.getOperand(0).setReg(PhiReg); 1650 PhiToDelete.push_back(&MI); 1651 } 1652 } 1653 for (auto *P : PhiToDelete) 1654 P->eraseFromParent(); 1655 InsertPt = DestBB->getFirstNonPHI(); 1656 // Helper to clone Phi instructions into the destination block. We clone Phi 1657 // greedily to avoid combinatorial explosion of Phi instructions. 1658 auto clonePhi = [&](MachineInstr *Phi) { 1659 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1660 DestBB->insert(InsertPt, NewMI); 1661 Register OrigR = Phi->getOperand(0).getReg(); 1662 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1663 NewMI->getOperand(0).setReg(R); 1664 NewMI->getOperand(1).setReg(OrigR); 1665 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1666 Remaps[OrigR] = R; 1667 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1668 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1669 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1670 return R; 1671 }; 1672 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1673 for (MachineOperand &MO : I->uses()) { 1674 if (!MO.isReg()) 1675 continue; 1676 if (Remaps.count(MO.getReg())) 1677 MO.setReg(Remaps[MO.getReg()]); 1678 else { 1679 // If we are using a phi from the source block we need to add a new phi 1680 // pointing to the old one. 1681 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1682 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1683 Register R = clonePhi(Use); 1684 MO.setReg(R); 1685 } 1686 } 1687 } 1688 } 1689 } 1690 1691 Register 1692 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1693 MachineInstr *Phi) { 1694 unsigned distance = PhiNodeLoopIteration[Phi]; 1695 MachineInstr *CanonicalUse = CanonicalPhi; 1696 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1697 for (unsigned I = 0; I < distance; ++I) { 1698 assert(CanonicalUse->isPHI()); 1699 assert(CanonicalUse->getNumOperands() == 5); 1700 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1701 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1702 std::swap(LoopRegIdx, InitRegIdx); 1703 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1704 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1705 } 1706 return CanonicalUseReg; 1707 } 1708 1709 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1710 BitVector LS(Schedule.getNumStages(), true); 1711 BitVector AS(Schedule.getNumStages(), true); 1712 LiveStages[BB] = LS; 1713 AvailableStages[BB] = AS; 1714 1715 // Peel out the prologs. 1716 LS.reset(); 1717 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1718 LS[I] = 1; 1719 Prologs.push_back(peelKernel(LPD_Front)); 1720 LiveStages[Prologs.back()] = LS; 1721 AvailableStages[Prologs.back()] = LS; 1722 } 1723 1724 // Create a block that will end up as the new loop exiting block (dominated by 1725 // all prologs and epilogs). It will only contain PHIs, in the same order as 1726 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1727 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1728 // property that any value deffed in BB but used outside of BB is used by a 1729 // PHI in the exiting block. 1730 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1731 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1732 // Push out the epilogs, again in reverse order. 1733 // We can't assume anything about the minumum loop trip count at this point, 1734 // so emit a fairly complex epilog. 1735 1736 // We first peel number of stages minus one epilogue. Then we remove dead 1737 // stages and reorder instructions based on their stage. If we have 3 stages 1738 // we generate first: 1739 // E0[3, 2, 1] 1740 // E1[3', 2'] 1741 // E2[3''] 1742 // And then we move instructions based on their stages to have: 1743 // E0[3] 1744 // E1[2, 3'] 1745 // E2[1, 2', 3''] 1746 // The transformation is legal because we only move instructions past 1747 // instructions of a previous loop iteration. 1748 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1749 Epilogs.push_back(peelKernel(LPD_Back)); 1750 MachineBasicBlock *B = Epilogs.back(); 1751 filterInstructions(B, Schedule.getNumStages() - I); 1752 // Keep track at which iteration each phi belongs to. We need it to know 1753 // what version of the variable to use during prologue/epilogue stitching. 1754 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1755 for (MachineInstr &Phi : B->phis()) 1756 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1757 } 1758 for (size_t I = 0; I < Epilogs.size(); I++) { 1759 LS.reset(); 1760 for (size_t J = I; J < Epilogs.size(); J++) { 1761 int Iteration = J; 1762 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1763 // Move stage one block at a time so that Phi nodes are updated correctly. 1764 for (size_t K = Iteration; K > I; K--) 1765 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1766 LS[Stage] = 1; 1767 } 1768 LiveStages[Epilogs[I]] = LS; 1769 AvailableStages[Epilogs[I]] = AS; 1770 } 1771 1772 // Now we've defined all the prolog and epilog blocks as a fallthrough 1773 // sequence, add the edges that will be followed if the loop trip count is 1774 // lower than the number of stages (connecting prologs directly with epilogs). 1775 auto PI = Prologs.begin(); 1776 auto EI = Epilogs.begin(); 1777 assert(Prologs.size() == Epilogs.size()); 1778 for (; PI != Prologs.end(); ++PI, ++EI) { 1779 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1780 (*PI)->addSuccessor(*EI); 1781 for (MachineInstr &MI : (*EI)->phis()) { 1782 Register Reg = MI.getOperand(1).getReg(); 1783 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1784 if (Use && Use->getParent() == Pred) { 1785 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1786 if (CanonicalUse->isPHI()) { 1787 // If the use comes from a phi we need to skip as many phi as the 1788 // distance between the epilogue and the kernel. Trace through the phi 1789 // chain to find the right value. 1790 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1791 } 1792 Reg = getEquivalentRegisterIn(Reg, *PI); 1793 } 1794 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1795 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1796 } 1797 } 1798 1799 // Create a list of all blocks in order. 1800 SmallVector<MachineBasicBlock *, 8> Blocks; 1801 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1802 Blocks.push_back(BB); 1803 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1804 1805 // Iterate in reverse order over all instructions, remapping as we go. 1806 for (MachineBasicBlock *B : reverse(Blocks)) { 1807 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1808 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1809 MachineInstr *MI = &*I++; 1810 rewriteUsesOf(MI); 1811 } 1812 } 1813 for (auto *MI : IllegalPhisToDelete) { 1814 if (LIS) 1815 LIS->RemoveMachineInstrFromMaps(*MI); 1816 MI->eraseFromParent(); 1817 } 1818 IllegalPhisToDelete.clear(); 1819 1820 // Now all remapping has been done, we're free to optimize the generated code. 1821 for (MachineBasicBlock *B : reverse(Blocks)) 1822 EliminateDeadPhis(B, MRI, LIS); 1823 EliminateDeadPhis(ExitingBB, MRI, LIS); 1824 } 1825 1826 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1827 MachineFunction &MF = *BB->getParent(); 1828 MachineBasicBlock *Exit = *BB->succ_begin(); 1829 if (Exit == BB) 1830 Exit = *std::next(BB->succ_begin()); 1831 1832 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1833 MF.insert(std::next(BB->getIterator()), NewBB); 1834 1835 // Clone all phis in BB into NewBB and rewrite. 1836 for (MachineInstr &MI : BB->phis()) { 1837 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1838 Register OldR = MI.getOperand(3).getReg(); 1839 Register R = MRI.createVirtualRegister(RC); 1840 SmallVector<MachineInstr *, 4> Uses; 1841 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1842 if (Use.getParent() != BB) 1843 Uses.push_back(&Use); 1844 for (MachineInstr *Use : Uses) 1845 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1846 *MRI.getTargetRegisterInfo()); 1847 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1848 .addReg(OldR) 1849 .addMBB(BB); 1850 BlockMIs[{NewBB, &MI}] = NI; 1851 CanonicalMIs[NI] = &MI; 1852 } 1853 BB->replaceSuccessor(Exit, NewBB); 1854 Exit->replacePhiUsesWith(BB, NewBB); 1855 NewBB->addSuccessor(Exit); 1856 1857 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1858 SmallVector<MachineOperand, 4> Cond; 1859 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1860 (void)CanAnalyzeBr; 1861 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1862 TII->removeBranch(*BB); 1863 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1864 Cond, DebugLoc()); 1865 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1866 return NewBB; 1867 } 1868 1869 Register 1870 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1871 MachineBasicBlock *BB) { 1872 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1873 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1874 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1875 } 1876 1877 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1878 if (MI->isPHI()) { 1879 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1880 // and it is produced by this block. 1881 Register PhiR = MI->getOperand(0).getReg(); 1882 Register R = MI->getOperand(3).getReg(); 1883 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1884 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1885 R = MI->getOperand(1).getReg(); 1886 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1887 MRI.replaceRegWith(PhiR, R); 1888 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1889 // later to figure out how to remap registers. 1890 MI->getOperand(0).setReg(PhiR); 1891 IllegalPhisToDelete.push_back(MI); 1892 return; 1893 } 1894 1895 int Stage = getStage(MI); 1896 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1897 LiveStages[MI->getParent()].test(Stage)) 1898 // Instruction is live, no rewriting to do. 1899 return; 1900 1901 for (MachineOperand &DefMO : MI->defs()) { 1902 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1903 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1904 // Only PHIs can use values from this block by construction. 1905 // Match with the equivalent PHI in B. 1906 assert(UseMI.isPHI()); 1907 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1908 MI->getParent()); 1909 Subs.emplace_back(&UseMI, Reg); 1910 } 1911 for (auto &Sub : Subs) 1912 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1913 *MRI.getTargetRegisterInfo()); 1914 } 1915 if (LIS) 1916 LIS->RemoveMachineInstrFromMaps(*MI); 1917 MI->eraseFromParent(); 1918 } 1919 1920 void PeelingModuloScheduleExpander::fixupBranches() { 1921 // Work outwards from the kernel. 1922 bool KernelDisposed = false; 1923 int TC = Schedule.getNumStages() - 1; 1924 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1925 ++PI, ++EI, --TC) { 1926 MachineBasicBlock *Prolog = *PI; 1927 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1928 MachineBasicBlock *Epilog = *EI; 1929 SmallVector<MachineOperand, 4> Cond; 1930 TII->removeBranch(*Prolog); 1931 Optional<bool> StaticallyGreater = 1932 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1933 if (!StaticallyGreater.hasValue()) { 1934 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1935 // Dynamically branch based on Cond. 1936 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1937 } else if (*StaticallyGreater == false) { 1938 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1939 // Prolog never falls through; branch to epilog and orphan interior 1940 // blocks. Leave it to unreachable-block-elim to clean up. 1941 Prolog->removeSuccessor(Fallthrough); 1942 for (MachineInstr &P : Fallthrough->phis()) { 1943 P.RemoveOperand(2); 1944 P.RemoveOperand(1); 1945 } 1946 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1947 KernelDisposed = true; 1948 } else { 1949 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1950 // Prolog always falls through; remove incoming values in epilog. 1951 Prolog->removeSuccessor(Epilog); 1952 for (MachineInstr &P : Epilog->phis()) { 1953 P.RemoveOperand(4); 1954 P.RemoveOperand(3); 1955 } 1956 } 1957 } 1958 1959 if (!KernelDisposed) { 1960 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1961 LoopInfo->setPreheader(Prologs.back()); 1962 } else { 1963 LoopInfo->disposed(); 1964 } 1965 } 1966 1967 void PeelingModuloScheduleExpander::rewriteKernel() { 1968 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1969 KR.rewrite(); 1970 } 1971 1972 void PeelingModuloScheduleExpander::expand() { 1973 BB = Schedule.getLoop()->getTopBlock(); 1974 Preheader = Schedule.getLoop()->getLoopPreheader(); 1975 LLVM_DEBUG(Schedule.dump()); 1976 LoopInfo = TII->analyzeLoopForPipelining(BB); 1977 assert(LoopInfo); 1978 1979 rewriteKernel(); 1980 peelPrologAndEpilogs(); 1981 fixupBranches(); 1982 } 1983 1984 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1985 BB = Schedule.getLoop()->getTopBlock(); 1986 Preheader = Schedule.getLoop()->getLoopPreheader(); 1987 1988 // Dump the schedule before we invalidate and remap all its instructions. 1989 // Stash it in a string so we can print it if we found an error. 1990 std::string ScheduleDump; 1991 raw_string_ostream OS(ScheduleDump); 1992 Schedule.print(OS); 1993 OS.flush(); 1994 1995 // First, run the normal ModuleScheduleExpander. We don't support any 1996 // InstrChanges. 1997 assert(LIS && "Requires LiveIntervals!"); 1998 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 1999 ModuloScheduleExpander::InstrChangesTy()); 2000 MSE.expand(); 2001 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2002 if (!ExpandedKernel) { 2003 // The expander optimized away the kernel. We can't do any useful checking. 2004 MSE.cleanup(); 2005 return; 2006 } 2007 // Before running the KernelRewriter, re-add BB into the CFG. 2008 Preheader->addSuccessor(BB); 2009 2010 // Now run the new expansion algorithm. 2011 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2012 KR.rewrite(); 2013 peelPrologAndEpilogs(); 2014 2015 // Collect all illegal phis that the new algorithm created. We'll give these 2016 // to KernelOperandInfo. 2017 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2018 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2019 if (NI->isPHI()) 2020 IllegalPhis.insert(&*NI); 2021 } 2022 2023 // Co-iterate across both kernels. We expect them to be identical apart from 2024 // phis and full COPYs (we look through both). 2025 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2026 auto OI = ExpandedKernel->begin(); 2027 auto NI = BB->begin(); 2028 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2029 while (OI->isPHI() || OI->isFullCopy()) 2030 ++OI; 2031 while (NI->isPHI() || NI->isFullCopy()) 2032 ++NI; 2033 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2034 // Analyze every operand separately. 2035 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2036 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2037 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2038 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2039 } 2040 2041 bool Failed = false; 2042 for (auto &OldAndNew : KOIs) { 2043 if (OldAndNew.first == OldAndNew.second) 2044 continue; 2045 Failed = true; 2046 errs() << "Modulo kernel validation error: [\n"; 2047 errs() << " [golden] "; 2048 OldAndNew.first.print(errs()); 2049 errs() << " "; 2050 OldAndNew.second.print(errs()); 2051 errs() << "]\n"; 2052 } 2053 2054 if (Failed) { 2055 errs() << "Golden reference kernel:\n"; 2056 ExpandedKernel->print(errs()); 2057 errs() << "New kernel:\n"; 2058 BB->print(errs()); 2059 errs() << ScheduleDump; 2060 report_fatal_error( 2061 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2062 } 2063 2064 // Cleanup by removing BB from the CFG again as the original 2065 // ModuloScheduleExpander intended. 2066 Preheader->removeSuccessor(BB); 2067 MSE.cleanup(); 2068 } 2069 2070 //===----------------------------------------------------------------------===// 2071 // ModuloScheduleTestPass implementation 2072 //===----------------------------------------------------------------------===// 2073 // This pass constructs a ModuloSchedule from its module and runs 2074 // ModuloScheduleExpander. 2075 // 2076 // The module is expected to contain a single-block analyzable loop. 2077 // The total order of instructions is taken from the loop as-is. 2078 // Instructions are expected to be annotated with a PostInstrSymbol. 2079 // This PostInstrSymbol must have the following format: 2080 // "Stage=%d Cycle=%d". 2081 //===----------------------------------------------------------------------===// 2082 2083 namespace { 2084 class ModuloScheduleTest : public MachineFunctionPass { 2085 public: 2086 static char ID; 2087 2088 ModuloScheduleTest() : MachineFunctionPass(ID) { 2089 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2090 } 2091 2092 bool runOnMachineFunction(MachineFunction &MF) override; 2093 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2094 2095 void getAnalysisUsage(AnalysisUsage &AU) const override { 2096 AU.addRequired<MachineLoopInfo>(); 2097 AU.addRequired<LiveIntervals>(); 2098 MachineFunctionPass::getAnalysisUsage(AU); 2099 } 2100 }; 2101 } // namespace 2102 2103 char ModuloScheduleTest::ID = 0; 2104 2105 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2106 "Modulo Schedule test pass", false, false) 2107 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2108 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2109 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2110 "Modulo Schedule test pass", false, false) 2111 2112 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2113 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2114 for (auto *L : MLI) { 2115 if (L->getTopBlock() != L->getBottomBlock()) 2116 continue; 2117 runOnLoop(MF, *L); 2118 return false; 2119 } 2120 return false; 2121 } 2122 2123 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2124 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2125 std::pair<StringRef, StringRef> StageTokenAndValue = 2126 getToken(StageAndCycle.first, "-"); 2127 std::pair<StringRef, StringRef> CycleTokenAndValue = 2128 getToken(StageAndCycle.second, "-"); 2129 if (StageTokenAndValue.first != "Stage" || 2130 CycleTokenAndValue.first != "_Cycle") { 2131 llvm_unreachable( 2132 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2133 return; 2134 } 2135 2136 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2137 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2138 2139 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2140 } 2141 2142 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2143 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2144 MachineBasicBlock *BB = L.getTopBlock(); 2145 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2146 2147 DenseMap<MachineInstr *, int> Cycle, Stage; 2148 std::vector<MachineInstr *> Instrs; 2149 for (MachineInstr &MI : *BB) { 2150 if (MI.isTerminator()) 2151 continue; 2152 Instrs.push_back(&MI); 2153 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2154 dbgs() << "Parsing post-instr symbol for " << MI; 2155 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2156 } 2157 } 2158 2159 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2160 std::move(Stage)); 2161 ModuloScheduleExpander MSE( 2162 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2163 MSE.expand(); 2164 MSE.cleanup(); 2165 } 2166 2167 //===----------------------------------------------------------------------===// 2168 // ModuloScheduleTestAnnotater implementation 2169 //===----------------------------------------------------------------------===// 2170 2171 void ModuloScheduleTestAnnotater::annotate() { 2172 for (MachineInstr *MI : S.getInstructions()) { 2173 SmallVector<char, 16> SV; 2174 raw_svector_ostream OS(SV); 2175 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2176 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2177 MI->setPostInstrSymbol(MF, Sym); 2178 } 2179 } 2180