1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/CodeGen/LiveIntervals.h" 12 #include "llvm/CodeGen/MachineInstrBuilder.h" 13 #include "llvm/CodeGen/MachineRegisterInfo.h" 14 #include "llvm/CodeGen/TargetInstrInfo.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/raw_ostream.h" 19 20 #define DEBUG_TYPE "pipeliner" 21 using namespace llvm; 22 23 void ModuloSchedule::print(raw_ostream &OS) { 24 for (MachineInstr *MI : ScheduledInstrs) 25 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 26 } 27 28 //===----------------------------------------------------------------------===// 29 // ModuloScheduleExpander implementation 30 //===----------------------------------------------------------------------===// 31 32 /// Return the register values for the operands of a Phi instruction. 33 /// This function assume the instruction is a Phi. 34 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 35 unsigned &InitVal, unsigned &LoopVal) { 36 assert(Phi.isPHI() && "Expecting a Phi."); 37 38 InitVal = 0; 39 LoopVal = 0; 40 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 41 if (Phi.getOperand(i + 1).getMBB() != Loop) 42 InitVal = Phi.getOperand(i).getReg(); 43 else 44 LoopVal = Phi.getOperand(i).getReg(); 45 46 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 47 } 48 49 /// Return the Phi register value that comes from the incoming block. 50 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 51 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 52 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 53 return Phi.getOperand(i).getReg(); 54 return 0; 55 } 56 57 /// Return the Phi register value that comes the loop block. 58 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 59 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 60 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 61 return Phi.getOperand(i).getReg(); 62 return 0; 63 } 64 65 void ModuloScheduleExpander::expand() { 66 BB = Schedule.getLoop()->getTopBlock(); 67 Preheader = *BB->pred_begin(); 68 if (Preheader == BB) 69 Preheader = *std::next(BB->pred_begin()); 70 71 // Iterate over the definitions in each instruction, and compute the 72 // stage difference for each use. Keep the maximum value. 73 for (MachineInstr *MI : Schedule.getInstructions()) { 74 int DefStage = Schedule.getStage(MI); 75 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 76 MachineOperand &Op = MI->getOperand(i); 77 if (!Op.isReg() || !Op.isDef()) 78 continue; 79 80 Register Reg = Op.getReg(); 81 unsigned MaxDiff = 0; 82 bool PhiIsSwapped = false; 83 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 84 EI = MRI.use_end(); 85 UI != EI; ++UI) { 86 MachineOperand &UseOp = *UI; 87 MachineInstr *UseMI = UseOp.getParent(); 88 int UseStage = Schedule.getStage(UseMI); 89 unsigned Diff = 0; 90 if (UseStage != -1 && UseStage >= DefStage) 91 Diff = UseStage - DefStage; 92 if (MI->isPHI()) { 93 if (isLoopCarried(*MI)) 94 ++Diff; 95 else 96 PhiIsSwapped = true; 97 } 98 MaxDiff = std::max(Diff, MaxDiff); 99 } 100 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 101 } 102 } 103 104 generatePipelinedLoop(); 105 } 106 107 void ModuloScheduleExpander::generatePipelinedLoop() { 108 // Create a new basic block for the kernel and add it to the CFG. 109 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 110 111 unsigned MaxStageCount = Schedule.getNumStages() - 1; 112 113 // Remember the registers that are used in different stages. The index is 114 // the iteration, or stage, that the instruction is scheduled in. This is 115 // a map between register names in the original block and the names created 116 // in each stage of the pipelined loop. 117 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 118 InstrMapTy InstrMap; 119 120 SmallVector<MachineBasicBlock *, 4> PrologBBs; 121 122 // Generate the prolog instructions that set up the pipeline. 123 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 124 MF.insert(BB->getIterator(), KernelBB); 125 126 // Rearrange the instructions to generate the new, pipelined loop, 127 // and update register names as needed. 128 for (MachineInstr *CI : Schedule.getInstructions()) { 129 if (CI->isPHI()) 130 continue; 131 unsigned StageNum = Schedule.getStage(CI); 132 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 133 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 134 KernelBB->push_back(NewMI); 135 InstrMap[NewMI] = CI; 136 } 137 138 // Copy any terminator instructions to the new kernel, and update 139 // names as needed. 140 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 141 E = BB->instr_end(); 142 I != E; ++I) { 143 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 144 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 145 KernelBB->push_back(NewMI); 146 InstrMap[NewMI] = &*I; 147 } 148 149 NewKernel = KernelBB; 150 KernelBB->transferSuccessors(BB); 151 KernelBB->replaceSuccessor(BB, KernelBB); 152 153 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 154 InstrMap, MaxStageCount, MaxStageCount, false); 155 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 156 MaxStageCount, MaxStageCount, false); 157 158 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 159 160 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 161 // Generate the epilog instructions to complete the pipeline. 162 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 163 164 // We need this step because the register allocation doesn't handle some 165 // situations well, so we insert copies to help out. 166 splitLifetimes(KernelBB, EpilogBBs); 167 168 // Remove dead instructions due to loop induction variables. 169 removeDeadInstructions(KernelBB, EpilogBBs); 170 171 // Add branches between prolog and epilog blocks. 172 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 173 174 delete[] VRMap; 175 } 176 177 void ModuloScheduleExpander::cleanup() { 178 // Remove the original loop since it's no longer referenced. 179 for (auto &I : *BB) 180 LIS.RemoveMachineInstrFromMaps(I); 181 BB->clear(); 182 BB->eraseFromParent(); 183 } 184 185 /// Generate the pipeline prolog code. 186 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 187 MachineBasicBlock *KernelBB, 188 ValueMapTy *VRMap, 189 MBBVectorTy &PrologBBs) { 190 MachineBasicBlock *PredBB = Preheader; 191 InstrMapTy InstrMap; 192 193 // Generate a basic block for each stage, not including the last stage, 194 // which will be generated in the kernel. Each basic block may contain 195 // instructions from multiple stages/iterations. 196 for (unsigned i = 0; i < LastStage; ++i) { 197 // Create and insert the prolog basic block prior to the original loop 198 // basic block. The original loop is removed later. 199 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 200 PrologBBs.push_back(NewBB); 201 MF.insert(BB->getIterator(), NewBB); 202 NewBB->transferSuccessors(PredBB); 203 PredBB->addSuccessor(NewBB); 204 PredBB = NewBB; 205 206 // Generate instructions for each appropriate stage. Process instructions 207 // in original program order. 208 for (int StageNum = i; StageNum >= 0; --StageNum) { 209 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 210 BBE = BB->getFirstTerminator(); 211 BBI != BBE; ++BBI) { 212 if (Schedule.getStage(&*BBI) == StageNum) { 213 if (BBI->isPHI()) 214 continue; 215 MachineInstr *NewMI = 216 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 217 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 218 NewBB->push_back(NewMI); 219 InstrMap[NewMI] = &*BBI; 220 } 221 } 222 } 223 rewritePhiValues(NewBB, i, VRMap, InstrMap); 224 LLVM_DEBUG({ 225 dbgs() << "prolog:\n"; 226 NewBB->dump(); 227 }); 228 } 229 230 PredBB->replaceSuccessor(BB, KernelBB); 231 232 // Check if we need to remove the branch from the preheader to the original 233 // loop, and replace it with a branch to the new loop. 234 unsigned numBranches = TII->removeBranch(*Preheader); 235 if (numBranches) { 236 SmallVector<MachineOperand, 0> Cond; 237 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 238 } 239 } 240 241 /// Generate the pipeline epilog code. The epilog code finishes the iterations 242 /// that were started in either the prolog or the kernel. We create a basic 243 /// block for each stage that needs to complete. 244 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 245 MachineBasicBlock *KernelBB, 246 ValueMapTy *VRMap, 247 MBBVectorTy &EpilogBBs, 248 MBBVectorTy &PrologBBs) { 249 // We need to change the branch from the kernel to the first epilog block, so 250 // this call to analyze branch uses the kernel rather than the original BB. 251 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 252 SmallVector<MachineOperand, 4> Cond; 253 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 254 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 255 if (checkBranch) 256 return; 257 258 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 259 if (*LoopExitI == KernelBB) 260 ++LoopExitI; 261 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 262 MachineBasicBlock *LoopExitBB = *LoopExitI; 263 264 MachineBasicBlock *PredBB = KernelBB; 265 MachineBasicBlock *EpilogStart = LoopExitBB; 266 InstrMapTy InstrMap; 267 268 // Generate a basic block for each stage, not including the last stage, 269 // which was generated for the kernel. Each basic block may contain 270 // instructions from multiple stages/iterations. 271 int EpilogStage = LastStage + 1; 272 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 273 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 274 EpilogBBs.push_back(NewBB); 275 MF.insert(BB->getIterator(), NewBB); 276 277 PredBB->replaceSuccessor(LoopExitBB, NewBB); 278 NewBB->addSuccessor(LoopExitBB); 279 280 if (EpilogStart == LoopExitBB) 281 EpilogStart = NewBB; 282 283 // Add instructions to the epilog depending on the current block. 284 // Process instructions in original program order. 285 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 286 for (auto &BBI : *BB) { 287 if (BBI.isPHI()) 288 continue; 289 MachineInstr *In = &BBI; 290 if ((unsigned)Schedule.getStage(In) == StageNum) { 291 // Instructions with memoperands in the epilog are updated with 292 // conservative values. 293 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 294 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 295 NewBB->push_back(NewMI); 296 InstrMap[NewMI] = In; 297 } 298 } 299 } 300 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 301 InstrMap, LastStage, EpilogStage, i == 1); 302 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 303 LastStage, EpilogStage, i == 1); 304 PredBB = NewBB; 305 306 LLVM_DEBUG({ 307 dbgs() << "epilog:\n"; 308 NewBB->dump(); 309 }); 310 } 311 312 // Fix any Phi nodes in the loop exit block. 313 LoopExitBB->replacePhiUsesWith(BB, PredBB); 314 315 // Create a branch to the new epilog from the kernel. 316 // Remove the original branch and add a new branch to the epilog. 317 TII->removeBranch(*KernelBB); 318 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 319 // Add a branch to the loop exit. 320 if (EpilogBBs.size() > 0) { 321 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 322 SmallVector<MachineOperand, 4> Cond1; 323 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 324 } 325 } 326 327 /// Replace all uses of FromReg that appear outside the specified 328 /// basic block with ToReg. 329 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 330 MachineBasicBlock *MBB, 331 MachineRegisterInfo &MRI, 332 LiveIntervals &LIS) { 333 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 334 E = MRI.use_end(); 335 I != E;) { 336 MachineOperand &O = *I; 337 ++I; 338 if (O.getParent()->getParent() != MBB) 339 O.setReg(ToReg); 340 } 341 if (!LIS.hasInterval(ToReg)) 342 LIS.createEmptyInterval(ToReg); 343 } 344 345 /// Return true if the register has a use that occurs outside the 346 /// specified loop. 347 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 348 MachineRegisterInfo &MRI) { 349 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 350 E = MRI.use_end(); 351 I != E; ++I) 352 if (I->getParent()->getParent() != BB) 353 return true; 354 return false; 355 } 356 357 /// Generate Phis for the specific block in the generated pipelined code. 358 /// This function looks at the Phis from the original code to guide the 359 /// creation of new Phis. 360 void ModuloScheduleExpander::generateExistingPhis( 361 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 362 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 363 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 364 // Compute the stage number for the initial value of the Phi, which 365 // comes from the prolog. The prolog to use depends on to which kernel/ 366 // epilog that we're adding the Phi. 367 unsigned PrologStage = 0; 368 unsigned PrevStage = 0; 369 bool InKernel = (LastStageNum == CurStageNum); 370 if (InKernel) { 371 PrologStage = LastStageNum - 1; 372 PrevStage = CurStageNum; 373 } else { 374 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 375 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 376 } 377 378 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 379 BBE = BB->getFirstNonPHI(); 380 BBI != BBE; ++BBI) { 381 Register Def = BBI->getOperand(0).getReg(); 382 383 unsigned InitVal = 0; 384 unsigned LoopVal = 0; 385 getPhiRegs(*BBI, BB, InitVal, LoopVal); 386 387 unsigned PhiOp1 = 0; 388 // The Phi value from the loop body typically is defined in the loop, but 389 // not always. So, we need to check if the value is defined in the loop. 390 unsigned PhiOp2 = LoopVal; 391 if (VRMap[LastStageNum].count(LoopVal)) 392 PhiOp2 = VRMap[LastStageNum][LoopVal]; 393 394 int StageScheduled = Schedule.getStage(&*BBI); 395 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 396 unsigned NumStages = getStagesForReg(Def, CurStageNum); 397 if (NumStages == 0) { 398 // We don't need to generate a Phi anymore, but we need to rename any uses 399 // of the Phi value. 400 unsigned NewReg = VRMap[PrevStage][LoopVal]; 401 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 402 InitVal, NewReg); 403 if (VRMap[CurStageNum].count(LoopVal)) 404 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 405 } 406 // Adjust the number of Phis needed depending on the number of prologs left, 407 // and the distance from where the Phi is first scheduled. The number of 408 // Phis cannot exceed the number of prolog stages. Each stage can 409 // potentially define two values. 410 unsigned MaxPhis = PrologStage + 2; 411 if (!InKernel && (int)PrologStage <= LoopValStage) 412 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 413 unsigned NumPhis = std::min(NumStages, MaxPhis); 414 415 unsigned NewReg = 0; 416 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 417 // In the epilog, we may need to look back one stage to get the correct 418 // Phi name because the epilog and prolog blocks execute the same stage. 419 // The correct name is from the previous block only when the Phi has 420 // been completely scheduled prior to the epilog, and Phi value is not 421 // needed in multiple stages. 422 int StageDiff = 0; 423 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 424 NumPhis == 1) 425 StageDiff = 1; 426 // Adjust the computations below when the phi and the loop definition 427 // are scheduled in different stages. 428 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 429 StageDiff = StageScheduled - LoopValStage; 430 for (unsigned np = 0; np < NumPhis; ++np) { 431 // If the Phi hasn't been scheduled, then use the initial Phi operand 432 // value. Otherwise, use the scheduled version of the instruction. This 433 // is a little complicated when a Phi references another Phi. 434 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 435 PhiOp1 = InitVal; 436 // Check if the Phi has already been scheduled in a prolog stage. 437 else if (PrologStage >= AccessStage + StageDiff + np && 438 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 439 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 440 // Check if the Phi has already been scheduled, but the loop instruction 441 // is either another Phi, or doesn't occur in the loop. 442 else if (PrologStage >= AccessStage + StageDiff + np) { 443 // If the Phi references another Phi, we need to examine the other 444 // Phi to get the correct value. 445 PhiOp1 = LoopVal; 446 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 447 int Indirects = 1; 448 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 449 int PhiStage = Schedule.getStage(InstOp1); 450 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 451 PhiOp1 = getInitPhiReg(*InstOp1, BB); 452 else 453 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 454 InstOp1 = MRI.getVRegDef(PhiOp1); 455 int PhiOpStage = Schedule.getStage(InstOp1); 456 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 457 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 458 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 459 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 460 break; 461 } 462 ++Indirects; 463 } 464 } else 465 PhiOp1 = InitVal; 466 // If this references a generated Phi in the kernel, get the Phi operand 467 // from the incoming block. 468 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 469 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 470 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 471 472 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 473 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 474 // In the epilog, a map lookup is needed to get the value from the kernel, 475 // or previous epilog block. How is does this depends on if the 476 // instruction is scheduled in the previous block. 477 if (!InKernel) { 478 int StageDiffAdj = 0; 479 if (LoopValStage != -1 && StageScheduled > LoopValStage) 480 StageDiffAdj = StageScheduled - LoopValStage; 481 // Use the loop value defined in the kernel, unless the kernel 482 // contains the last definition of the Phi. 483 if (np == 0 && PrevStage == LastStageNum && 484 (StageScheduled != 0 || LoopValStage != 0) && 485 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 486 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 487 // Use the value defined by the Phi. We add one because we switch 488 // from looking at the loop value to the Phi definition. 489 else if (np > 0 && PrevStage == LastStageNum && 490 VRMap[PrevStage - np + 1].count(Def)) 491 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 492 // Use the loop value defined in the kernel. 493 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 494 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 495 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 496 // Use the value defined by the Phi, unless we're generating the first 497 // epilog and the Phi refers to a Phi in a different stage. 498 else if (VRMap[PrevStage - np].count(Def) && 499 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 500 (LoopValStage == StageScheduled))) 501 PhiOp2 = VRMap[PrevStage - np][Def]; 502 } 503 504 // Check if we can reuse an existing Phi. This occurs when a Phi 505 // references another Phi, and the other Phi is scheduled in an 506 // earlier stage. We can try to reuse an existing Phi up until the last 507 // stage of the current Phi. 508 if (LoopDefIsPhi) { 509 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 510 int LVNumStages = getStagesForPhi(LoopVal); 511 int StageDiff = (StageScheduled - LoopValStage); 512 LVNumStages -= StageDiff; 513 // Make sure the loop value Phi has been processed already. 514 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 515 NewReg = PhiOp2; 516 unsigned ReuseStage = CurStageNum; 517 if (isLoopCarried(*PhiInst)) 518 ReuseStage -= LVNumStages; 519 // Check if the Phi to reuse has been generated yet. If not, then 520 // there is nothing to reuse. 521 if (VRMap[ReuseStage - np].count(LoopVal)) { 522 NewReg = VRMap[ReuseStage - np][LoopVal]; 523 524 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 525 Def, NewReg); 526 // Update the map with the new Phi name. 527 VRMap[CurStageNum - np][Def] = NewReg; 528 PhiOp2 = NewReg; 529 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 530 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 531 532 if (IsLast && np == NumPhis - 1) 533 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 534 continue; 535 } 536 } 537 } 538 if (InKernel && StageDiff > 0 && 539 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 540 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 541 } 542 543 const TargetRegisterClass *RC = MRI.getRegClass(Def); 544 NewReg = MRI.createVirtualRegister(RC); 545 546 MachineInstrBuilder NewPhi = 547 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 548 TII->get(TargetOpcode::PHI), NewReg); 549 NewPhi.addReg(PhiOp1).addMBB(BB1); 550 NewPhi.addReg(PhiOp2).addMBB(BB2); 551 if (np == 0) 552 InstrMap[NewPhi] = &*BBI; 553 554 // We define the Phis after creating the new pipelined code, so 555 // we need to rename the Phi values in scheduled instructions. 556 557 unsigned PrevReg = 0; 558 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 559 PrevReg = VRMap[PrevStage - np][LoopVal]; 560 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 561 NewReg, PrevReg); 562 // If the Phi has been scheduled, use the new name for rewriting. 563 if (VRMap[CurStageNum - np].count(Def)) { 564 unsigned R = VRMap[CurStageNum - np][Def]; 565 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 566 NewReg); 567 } 568 569 // Check if we need to rename any uses that occurs after the loop. The 570 // register to replace depends on whether the Phi is scheduled in the 571 // epilog. 572 if (IsLast && np == NumPhis - 1) 573 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 574 575 // In the kernel, a dependent Phi uses the value from this Phi. 576 if (InKernel) 577 PhiOp2 = NewReg; 578 579 // Update the map with the new Phi name. 580 VRMap[CurStageNum - np][Def] = NewReg; 581 } 582 583 while (NumPhis++ < NumStages) { 584 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 585 NewReg, 0); 586 } 587 588 // Check if we need to rename a Phi that has been eliminated due to 589 // scheduling. 590 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 591 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 592 } 593 } 594 595 /// Generate Phis for the specified block in the generated pipelined code. 596 /// These are new Phis needed because the definition is scheduled after the 597 /// use in the pipelined sequence. 598 void ModuloScheduleExpander::generatePhis( 599 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 600 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 601 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 602 // Compute the stage number that contains the initial Phi value, and 603 // the Phi from the previous stage. 604 unsigned PrologStage = 0; 605 unsigned PrevStage = 0; 606 unsigned StageDiff = CurStageNum - LastStageNum; 607 bool InKernel = (StageDiff == 0); 608 if (InKernel) { 609 PrologStage = LastStageNum - 1; 610 PrevStage = CurStageNum; 611 } else { 612 PrologStage = LastStageNum - StageDiff; 613 PrevStage = LastStageNum + StageDiff - 1; 614 } 615 616 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 617 BBE = BB->instr_end(); 618 BBI != BBE; ++BBI) { 619 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 620 MachineOperand &MO = BBI->getOperand(i); 621 if (!MO.isReg() || !MO.isDef() || 622 !Register::isVirtualRegister(MO.getReg())) 623 continue; 624 625 int StageScheduled = Schedule.getStage(&*BBI); 626 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 627 Register Def = MO.getReg(); 628 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 629 // An instruction scheduled in stage 0 and is used after the loop 630 // requires a phi in the epilog for the last definition from either 631 // the kernel or prolog. 632 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 633 hasUseAfterLoop(Def, BB, MRI)) 634 NumPhis = 1; 635 if (!InKernel && (unsigned)StageScheduled > PrologStage) 636 continue; 637 638 unsigned PhiOp2 = VRMap[PrevStage][Def]; 639 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 640 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 641 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 642 // The number of Phis can't exceed the number of prolog stages. The 643 // prolog stage number is zero based. 644 if (NumPhis > PrologStage + 1 - StageScheduled) 645 NumPhis = PrologStage + 1 - StageScheduled; 646 for (unsigned np = 0; np < NumPhis; ++np) { 647 unsigned PhiOp1 = VRMap[PrologStage][Def]; 648 if (np <= PrologStage) 649 PhiOp1 = VRMap[PrologStage - np][Def]; 650 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 651 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 652 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 653 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 654 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 655 } 656 if (!InKernel) 657 PhiOp2 = VRMap[PrevStage - np][Def]; 658 659 const TargetRegisterClass *RC = MRI.getRegClass(Def); 660 Register NewReg = MRI.createVirtualRegister(RC); 661 662 MachineInstrBuilder NewPhi = 663 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 664 TII->get(TargetOpcode::PHI), NewReg); 665 NewPhi.addReg(PhiOp1).addMBB(BB1); 666 NewPhi.addReg(PhiOp2).addMBB(BB2); 667 if (np == 0) 668 InstrMap[NewPhi] = &*BBI; 669 670 // Rewrite uses and update the map. The actions depend upon whether 671 // we generating code for the kernel or epilog blocks. 672 if (InKernel) { 673 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 674 NewReg); 675 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 676 NewReg); 677 678 PhiOp2 = NewReg; 679 VRMap[PrevStage - np - 1][Def] = NewReg; 680 } else { 681 VRMap[CurStageNum - np][Def] = NewReg; 682 if (np == NumPhis - 1) 683 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 684 NewReg); 685 } 686 if (IsLast && np == NumPhis - 1) 687 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 688 } 689 } 690 } 691 } 692 693 /// Remove instructions that generate values with no uses. 694 /// Typically, these are induction variable operations that generate values 695 /// used in the loop itself. A dead instruction has a definition with 696 /// no uses, or uses that occur in the original loop only. 697 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 698 MBBVectorTy &EpilogBBs) { 699 // For each epilog block, check that the value defined by each instruction 700 // is used. If not, delete it. 701 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 702 MBE = EpilogBBs.rend(); 703 MBB != MBE; ++MBB) 704 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 705 ME = (*MBB)->instr_rend(); 706 MI != ME;) { 707 // From DeadMachineInstructionElem. Don't delete inline assembly. 708 if (MI->isInlineAsm()) { 709 ++MI; 710 continue; 711 } 712 bool SawStore = false; 713 // Check if it's safe to remove the instruction due to side effects. 714 // We can, and want to, remove Phis here. 715 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 716 ++MI; 717 continue; 718 } 719 bool used = true; 720 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 721 MOE = MI->operands_end(); 722 MOI != MOE; ++MOI) { 723 if (!MOI->isReg() || !MOI->isDef()) 724 continue; 725 Register reg = MOI->getReg(); 726 // Assume physical registers are used, unless they are marked dead. 727 if (Register::isPhysicalRegister(reg)) { 728 used = !MOI->isDead(); 729 if (used) 730 break; 731 continue; 732 } 733 unsigned realUses = 0; 734 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 735 EI = MRI.use_end(); 736 UI != EI; ++UI) { 737 // Check if there are any uses that occur only in the original 738 // loop. If so, that's not a real use. 739 if (UI->getParent()->getParent() != BB) { 740 realUses++; 741 used = true; 742 break; 743 } 744 } 745 if (realUses > 0) 746 break; 747 used = false; 748 } 749 if (!used) { 750 LIS.RemoveMachineInstrFromMaps(*MI); 751 MI++->eraseFromParent(); 752 continue; 753 } 754 ++MI; 755 } 756 // In the kernel block, check if we can remove a Phi that generates a value 757 // used in an instruction removed in the epilog block. 758 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 759 BBE = KernelBB->getFirstNonPHI(); 760 BBI != BBE;) { 761 MachineInstr *MI = &*BBI; 762 ++BBI; 763 Register reg = MI->getOperand(0).getReg(); 764 if (MRI.use_begin(reg) == MRI.use_end()) { 765 LIS.RemoveMachineInstrFromMaps(*MI); 766 MI->eraseFromParent(); 767 } 768 } 769 } 770 771 /// For loop carried definitions, we split the lifetime of a virtual register 772 /// that has uses past the definition in the next iteration. A copy with a new 773 /// virtual register is inserted before the definition, which helps with 774 /// generating a better register assignment. 775 /// 776 /// v1 = phi(a, v2) v1 = phi(a, v2) 777 /// v2 = phi(b, v3) v2 = phi(b, v3) 778 /// v3 = .. v4 = copy v1 779 /// .. = V1 v3 = .. 780 /// .. = v4 781 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 782 MBBVectorTy &EpilogBBs) { 783 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 784 for (auto &PHI : KernelBB->phis()) { 785 Register Def = PHI.getOperand(0).getReg(); 786 // Check for any Phi definition that used as an operand of another Phi 787 // in the same block. 788 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 789 E = MRI.use_instr_end(); 790 I != E; ++I) { 791 if (I->isPHI() && I->getParent() == KernelBB) { 792 // Get the loop carried definition. 793 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 794 if (!LCDef) 795 continue; 796 MachineInstr *MI = MRI.getVRegDef(LCDef); 797 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 798 continue; 799 // Search through the rest of the block looking for uses of the Phi 800 // definition. If one occurs, then split the lifetime. 801 unsigned SplitReg = 0; 802 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 803 KernelBB->instr_end())) 804 if (BBJ.readsRegister(Def)) { 805 // We split the lifetime when we find the first use. 806 if (SplitReg == 0) { 807 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 808 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 809 TII->get(TargetOpcode::COPY), SplitReg) 810 .addReg(Def); 811 } 812 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 813 } 814 if (!SplitReg) 815 continue; 816 // Search through each of the epilog blocks for any uses to be renamed. 817 for (auto &Epilog : EpilogBBs) 818 for (auto &I : *Epilog) 819 if (I.readsRegister(Def)) 820 I.substituteRegister(Def, SplitReg, 0, *TRI); 821 break; 822 } 823 } 824 } 825 } 826 827 /// Remove the incoming block from the Phis in a basic block. 828 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 829 for (MachineInstr &MI : *BB) { 830 if (!MI.isPHI()) 831 break; 832 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 833 if (MI.getOperand(i + 1).getMBB() == Incoming) { 834 MI.RemoveOperand(i + 1); 835 MI.RemoveOperand(i); 836 break; 837 } 838 } 839 } 840 841 /// Create branches from each prolog basic block to the appropriate epilog 842 /// block. These edges are needed if the loop ends before reaching the 843 /// kernel. 844 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 845 MBBVectorTy &PrologBBs, 846 MachineBasicBlock *KernelBB, 847 MBBVectorTy &EpilogBBs, 848 ValueMapTy *VRMap) { 849 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 850 MachineInstr *IndVar; 851 MachineInstr *Cmp; 852 if (TII->analyzeLoop(*Schedule.getLoop(), IndVar, Cmp)) 853 llvm_unreachable("Must be able to analyze loop!"); 854 MachineBasicBlock *LastPro = KernelBB; 855 MachineBasicBlock *LastEpi = KernelBB; 856 857 // Start from the blocks connected to the kernel and work "out" 858 // to the first prolog and the last epilog blocks. 859 SmallVector<MachineInstr *, 4> PrevInsts; 860 unsigned MaxIter = PrologBBs.size() - 1; 861 unsigned LC = UINT_MAX; 862 unsigned LCMin = UINT_MAX; 863 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 864 // Add branches to the prolog that go to the corresponding 865 // epilog, and the fall-thru prolog/kernel block. 866 MachineBasicBlock *Prolog = PrologBBs[j]; 867 MachineBasicBlock *Epilog = EpilogBBs[i]; 868 // We've executed one iteration, so decrement the loop count and check for 869 // the loop end. 870 SmallVector<MachineOperand, 4> Cond; 871 // Check if the LOOP0 has already been removed. If so, then there is no need 872 // to reduce the trip count. 873 if (LC != 0) 874 LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, 875 PrevInsts, j, MaxIter); 876 877 // Record the value of the first trip count, which is used to determine if 878 // branches and blocks can be removed for constant trip counts. 879 if (LCMin == UINT_MAX) 880 LCMin = LC; 881 882 unsigned numAdded = 0; 883 if (Register::isVirtualRegister(LC)) { 884 Prolog->addSuccessor(Epilog); 885 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 886 } else if (j >= LCMin) { 887 Prolog->addSuccessor(Epilog); 888 Prolog->removeSuccessor(LastPro); 889 LastEpi->removeSuccessor(Epilog); 890 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 891 removePhis(Epilog, LastEpi); 892 // Remove the blocks that are no longer referenced. 893 if (LastPro != LastEpi) { 894 LastEpi->clear(); 895 LastEpi->eraseFromParent(); 896 } 897 LastPro->clear(); 898 LastPro->eraseFromParent(); 899 if (LastPro == KernelBB) 900 NewKernel = nullptr; 901 } else { 902 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 903 removePhis(Epilog, Prolog); 904 } 905 LastPro = Prolog; 906 LastEpi = Epilog; 907 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 908 E = Prolog->instr_rend(); 909 I != E && numAdded > 0; ++I, --numAdded) 910 updateInstruction(&*I, false, j, 0, VRMap); 911 } 912 } 913 914 /// Return true if we can compute the amount the instruction changes 915 /// during each iteration. Set Delta to the amount of the change. 916 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 917 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 918 const MachineOperand *BaseOp; 919 int64_t Offset; 920 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 921 return false; 922 923 if (!BaseOp->isReg()) 924 return false; 925 926 Register BaseReg = BaseOp->getReg(); 927 928 MachineRegisterInfo &MRI = MF.getRegInfo(); 929 // Check if there is a Phi. If so, get the definition in the loop. 930 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 931 if (BaseDef && BaseDef->isPHI()) { 932 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 933 BaseDef = MRI.getVRegDef(BaseReg); 934 } 935 if (!BaseDef) 936 return false; 937 938 int D = 0; 939 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 940 return false; 941 942 Delta = D; 943 return true; 944 } 945 946 /// Update the memory operand with a new offset when the pipeliner 947 /// generates a new copy of the instruction that refers to a 948 /// different memory location. 949 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 950 MachineInstr &OldMI, 951 unsigned Num) { 952 if (Num == 0) 953 return; 954 // If the instruction has memory operands, then adjust the offset 955 // when the instruction appears in different stages. 956 if (NewMI.memoperands_empty()) 957 return; 958 SmallVector<MachineMemOperand *, 2> NewMMOs; 959 for (MachineMemOperand *MMO : NewMI.memoperands()) { 960 // TODO: Figure out whether isAtomic is really necessary (see D57601). 961 if (MMO->isVolatile() || MMO->isAtomic() || 962 (MMO->isInvariant() && MMO->isDereferenceable()) || 963 (!MMO->getValue())) { 964 NewMMOs.push_back(MMO); 965 continue; 966 } 967 unsigned Delta; 968 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 969 int64_t AdjOffset = Delta * Num; 970 NewMMOs.push_back( 971 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 972 } else { 973 NewMMOs.push_back( 974 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 975 } 976 } 977 NewMI.setMemRefs(MF, NewMMOs); 978 } 979 980 /// Clone the instruction for the new pipelined loop and update the 981 /// memory operands, if needed. 982 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 983 unsigned CurStageNum, 984 unsigned InstStageNum) { 985 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 986 // Check for tied operands in inline asm instructions. This should be handled 987 // elsewhere, but I'm not sure of the best solution. 988 if (OldMI->isInlineAsm()) 989 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 990 const auto &MO = OldMI->getOperand(i); 991 if (MO.isReg() && MO.isUse()) 992 break; 993 unsigned UseIdx; 994 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 995 NewMI->tieOperands(i, UseIdx); 996 } 997 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 998 return NewMI; 999 } 1000 1001 /// Clone the instruction for the new pipelined loop. If needed, this 1002 /// function updates the instruction using the values saved in the 1003 /// InstrChanges structure. 1004 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1005 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1006 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1007 auto It = InstrChanges.find(OldMI); 1008 if (It != InstrChanges.end()) { 1009 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1010 unsigned BasePos, OffsetPos; 1011 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1012 return nullptr; 1013 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1014 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1015 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1016 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1017 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1018 } 1019 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1020 return NewMI; 1021 } 1022 1023 /// Update the machine instruction with new virtual registers. This 1024 /// function may change the defintions and/or uses. 1025 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1026 bool LastDef, 1027 unsigned CurStageNum, 1028 unsigned InstrStageNum, 1029 ValueMapTy *VRMap) { 1030 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1031 MachineOperand &MO = NewMI->getOperand(i); 1032 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1033 continue; 1034 Register reg = MO.getReg(); 1035 if (MO.isDef()) { 1036 // Create a new virtual register for the definition. 1037 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1038 Register NewReg = MRI.createVirtualRegister(RC); 1039 MO.setReg(NewReg); 1040 VRMap[CurStageNum][reg] = NewReg; 1041 if (LastDef) 1042 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1043 } else if (MO.isUse()) { 1044 MachineInstr *Def = MRI.getVRegDef(reg); 1045 // Compute the stage that contains the last definition for instruction. 1046 int DefStageNum = Schedule.getStage(Def); 1047 unsigned StageNum = CurStageNum; 1048 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1049 // Compute the difference in stages between the defintion and the use. 1050 unsigned StageDiff = (InstrStageNum - DefStageNum); 1051 // Make an adjustment to get the last definition. 1052 StageNum -= StageDiff; 1053 } 1054 if (VRMap[StageNum].count(reg)) 1055 MO.setReg(VRMap[StageNum][reg]); 1056 } 1057 } 1058 } 1059 1060 /// Return the instruction in the loop that defines the register. 1061 /// If the definition is a Phi, then follow the Phi operand to 1062 /// the instruction in the loop. 1063 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1064 SmallPtrSet<MachineInstr *, 8> Visited; 1065 MachineInstr *Def = MRI.getVRegDef(Reg); 1066 while (Def->isPHI()) { 1067 if (!Visited.insert(Def).second) 1068 break; 1069 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1070 if (Def->getOperand(i + 1).getMBB() == BB) { 1071 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1072 break; 1073 } 1074 } 1075 return Def; 1076 } 1077 1078 /// Return the new name for the value from the previous stage. 1079 unsigned ModuloScheduleExpander::getPrevMapVal( 1080 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1081 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1082 unsigned PrevVal = 0; 1083 if (StageNum > PhiStage) { 1084 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1085 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1086 // The name is defined in the previous stage. 1087 PrevVal = VRMap[StageNum - 1][LoopVal]; 1088 else if (VRMap[StageNum].count(LoopVal)) 1089 // The previous name is defined in the current stage when the instruction 1090 // order is swapped. 1091 PrevVal = VRMap[StageNum][LoopVal]; 1092 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1093 // The loop value hasn't yet been scheduled. 1094 PrevVal = LoopVal; 1095 else if (StageNum == PhiStage + 1) 1096 // The loop value is another phi, which has not been scheduled. 1097 PrevVal = getInitPhiReg(*LoopInst, BB); 1098 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1099 // The loop value is another phi, which has been scheduled. 1100 PrevVal = 1101 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1102 LoopStage, VRMap, BB); 1103 } 1104 return PrevVal; 1105 } 1106 1107 /// Rewrite the Phi values in the specified block to use the mappings 1108 /// from the initial operand. Once the Phi is scheduled, we switch 1109 /// to using the loop value instead of the Phi value, so those names 1110 /// do not need to be rewritten. 1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1112 unsigned StageNum, 1113 ValueMapTy *VRMap, 1114 InstrMapTy &InstrMap) { 1115 for (auto &PHI : BB->phis()) { 1116 unsigned InitVal = 0; 1117 unsigned LoopVal = 0; 1118 getPhiRegs(PHI, BB, InitVal, LoopVal); 1119 Register PhiDef = PHI.getOperand(0).getReg(); 1120 1121 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1122 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1123 unsigned NumPhis = getStagesForPhi(PhiDef); 1124 if (NumPhis > StageNum) 1125 NumPhis = StageNum; 1126 for (unsigned np = 0; np <= NumPhis; ++np) { 1127 unsigned NewVal = 1128 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1129 if (!NewVal) 1130 NewVal = InitVal; 1131 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1132 NewVal); 1133 } 1134 } 1135 } 1136 1137 /// Rewrite a previously scheduled instruction to use the register value 1138 /// from the new instruction. Make sure the instruction occurs in the 1139 /// basic block, and we don't change the uses in the new instruction. 1140 void ModuloScheduleExpander::rewriteScheduledInstr( 1141 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1142 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1143 unsigned PrevReg) { 1144 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1145 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1146 // Rewrite uses that have been scheduled already to use the new 1147 // Phi register. 1148 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1149 EI = MRI.use_end(); 1150 UI != EI;) { 1151 MachineOperand &UseOp = *UI; 1152 MachineInstr *UseMI = UseOp.getParent(); 1153 ++UI; 1154 if (UseMI->getParent() != BB) 1155 continue; 1156 if (UseMI->isPHI()) { 1157 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1158 continue; 1159 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1160 continue; 1161 } 1162 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1163 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1164 MachineInstr *OrigMI = OrigInstr->second; 1165 int StageSched = Schedule.getStage(OrigMI); 1166 int CycleSched = Schedule.getCycle(OrigMI); 1167 unsigned ReplaceReg = 0; 1168 // This is the stage for the scheduled instruction. 1169 if (StagePhi == StageSched && Phi->isPHI()) { 1170 int CyclePhi = Schedule.getCycle(Phi); 1171 if (PrevReg && InProlog) 1172 ReplaceReg = PrevReg; 1173 else if (PrevReg && !isLoopCarried(*Phi) && 1174 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1175 ReplaceReg = PrevReg; 1176 else 1177 ReplaceReg = NewReg; 1178 } 1179 // The scheduled instruction occurs before the scheduled Phi, and the 1180 // Phi is not loop carried. 1181 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1182 ReplaceReg = NewReg; 1183 if (StagePhi > StageSched && Phi->isPHI()) 1184 ReplaceReg = NewReg; 1185 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1186 ReplaceReg = NewReg; 1187 if (ReplaceReg) { 1188 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1189 UseOp.setReg(ReplaceReg); 1190 } 1191 } 1192 } 1193 1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1195 if (!Phi.isPHI()) 1196 return false; 1197 unsigned DefCycle = Schedule.getCycle(&Phi); 1198 int DefStage = Schedule.getStage(&Phi); 1199 1200 unsigned InitVal = 0; 1201 unsigned LoopVal = 0; 1202 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1203 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1204 if (!Use || Use->isPHI()) 1205 return true; 1206 unsigned LoopCycle = Schedule.getCycle(Use); 1207 int LoopStage = Schedule.getStage(Use); 1208 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // PeelingModuloScheduleExpander implementation 1213 //===----------------------------------------------------------------------===// 1214 // This is a reimplementation of ModuloScheduleExpander that works by creating 1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1216 //===----------------------------------------------------------------------===// 1217 1218 namespace { 1219 // Remove any dead phis in MBB. Dead phis either have only one block as input 1220 // (in which case they are the identity) or have no uses. 1221 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1222 LiveIntervals *LIS) { 1223 bool Changed = true; 1224 while (Changed) { 1225 Changed = false; 1226 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { 1227 MachineInstr &MI = *I++; 1228 assert(MI.isPHI()); 1229 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1230 if (LIS) 1231 LIS->RemoveMachineInstrFromMaps(MI); 1232 MI.eraseFromParent(); 1233 Changed = true; 1234 } else if (MI.getNumExplicitOperands() == 3) { 1235 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1236 MRI.getRegClass(MI.getOperand(0).getReg())); 1237 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1238 MI.getOperand(1).getReg()); 1239 if (LIS) 1240 LIS->RemoveMachineInstrFromMaps(MI); 1241 MI.eraseFromParent(); 1242 Changed = true; 1243 } 1244 } 1245 } 1246 } 1247 1248 /// Rewrites the kernel block in-place to adhere to the given schedule. 1249 /// KernelRewriter holds all of the state required to perform the rewriting. 1250 class KernelRewriter { 1251 ModuloSchedule &S; 1252 MachineBasicBlock *BB; 1253 MachineBasicBlock *PreheaderBB, *ExitBB; 1254 MachineRegisterInfo &MRI; 1255 const TargetInstrInfo *TII; 1256 LiveIntervals *LIS; 1257 1258 // Map from register class to canonical undef register for that class. 1259 DenseMap<const TargetRegisterClass *, Register> Undefs; 1260 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1261 // this map is only used when InitReg is non-undef. 1262 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1263 // Map from LoopReg to phi register where the InitReg is undef. 1264 DenseMap<Register, Register> UndefPhis; 1265 1266 // Reg is used by MI. Return the new register MI should use to adhere to the 1267 // schedule. Insert phis as necessary. 1268 Register remapUse(Register Reg, MachineInstr &MI); 1269 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1270 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1271 // or will be chosen so as to share another phi. 1272 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1273 const TargetRegisterClass *RC = nullptr); 1274 // Create an undef register of the given register class. 1275 Register undef(const TargetRegisterClass *RC); 1276 1277 public: 1278 KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1279 LiveIntervals *LIS = nullptr); 1280 void rewrite(); 1281 }; 1282 } // namespace 1283 1284 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1285 LiveIntervals *LIS) 1286 : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), 1287 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1288 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1289 PreheaderBB = *BB->pred_begin(); 1290 if (PreheaderBB == BB) 1291 PreheaderBB = *std::next(BB->pred_begin()); 1292 } 1293 1294 void KernelRewriter::rewrite() { 1295 // Rearrange the loop to be in schedule order. Note that the schedule may 1296 // contain instructions that are not owned by the loop block (InstrChanges and 1297 // friends), so we gracefully handle unowned instructions and delete any 1298 // instructions that weren't in the schedule. 1299 auto InsertPt = BB->getFirstTerminator(); 1300 MachineInstr *FirstMI = nullptr; 1301 for (MachineInstr *MI : S.getInstructions()) { 1302 if (MI->isPHI()) 1303 continue; 1304 if (MI->getParent()) 1305 MI->removeFromParent(); 1306 BB->insert(InsertPt, MI); 1307 if (!FirstMI) 1308 FirstMI = MI; 1309 } 1310 1311 // At this point all of the scheduled instructions are between FirstMI 1312 // and the end of the block. Kill from the first non-phi to FirstMI. 1313 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1314 if (LIS) 1315 LIS->RemoveMachineInstrFromMaps(*I); 1316 (I++)->eraseFromParent(); 1317 } 1318 1319 // Now remap every instruction in the loop. 1320 for (MachineInstr &MI : *BB) { 1321 if (MI.isPHI()) 1322 continue; 1323 for (MachineOperand &MO : MI.uses()) { 1324 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1325 continue; 1326 Register Reg = remapUse(MO.getReg(), MI); 1327 MO.setReg(Reg); 1328 } 1329 } 1330 EliminateDeadPhis(BB, MRI, LIS); 1331 1332 // Ensure a phi exists for all instructions that are either referenced by 1333 // an illegal phi or by an instruction outside the loop. This allows us to 1334 // treat remaps of these values the same as "normal" values that come from 1335 // loop-carried phis. 1336 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1337 if (MI->isPHI()) { 1338 Register R = MI->getOperand(0).getReg(); 1339 phi(R); 1340 continue; 1341 } 1342 1343 for (MachineOperand &Def : MI->defs()) { 1344 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1345 if (MI.getParent() != BB) { 1346 phi(Def.getReg()); 1347 break; 1348 } 1349 } 1350 } 1351 } 1352 } 1353 1354 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1355 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1356 if (!Producer) 1357 return Reg; 1358 1359 int ConsumerStage = S.getStage(&MI); 1360 if (!Producer->isPHI()) { 1361 // Non-phi producers are simple to remap. Insert as many phis as the 1362 // difference between the consumer and producer stages. 1363 if (Producer->getParent() != BB) 1364 // Producer was not inside the loop. Use the register as-is. 1365 return Reg; 1366 int ProducerStage = S.getStage(Producer); 1367 assert(ConsumerStage != -1 && 1368 "In-loop consumer should always be scheduled!"); 1369 assert(ConsumerStage >= ProducerStage); 1370 unsigned StageDiff = ConsumerStage - ProducerStage; 1371 1372 for (unsigned I = 0; I < StageDiff; ++I) 1373 Reg = phi(Reg); 1374 return Reg; 1375 } 1376 1377 // First, dive through the phi chain to find the defaults for the generated 1378 // phis. 1379 SmallVector<Optional<Register>, 4> Defaults; 1380 Register LoopReg = Reg; 1381 auto LoopProducer = Producer; 1382 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1383 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1384 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1385 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1386 assert(LoopProducer); 1387 } 1388 int LoopProducerStage = S.getStage(LoopProducer); 1389 1390 Optional<Register> IllegalPhiDefault; 1391 1392 if (LoopProducerStage == -1) { 1393 // Do nothing. 1394 } else if (LoopProducerStage > ConsumerStage) { 1395 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1396 // In addition, Consumer's cycle must be scheduled after Producer in the 1397 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1398 // functions. 1399 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1400 int LoopProducerCycle = S.getCycle(LoopProducer); 1401 int ConsumerCycle = S.getCycle(&MI); 1402 #endif 1403 assert(LoopProducerCycle <= ConsumerCycle); 1404 assert(LoopProducerStage == ConsumerStage + 1); 1405 // Peel off the first phi from Defaults and insert a phi between producer 1406 // and consumer. This phi will not be at the front of the block so we 1407 // consider it illegal. It will only exist during the rewrite process; it 1408 // needs to exist while we peel off prologs because these could take the 1409 // default value. After that we can replace all uses with the loop producer 1410 // value. 1411 IllegalPhiDefault = Defaults.front(); 1412 Defaults.erase(Defaults.begin()); 1413 } else { 1414 assert(ConsumerStage >= LoopProducerStage); 1415 int StageDiff = ConsumerStage - LoopProducerStage; 1416 if (StageDiff > 0) { 1417 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1418 << " to " << (Defaults.size() + StageDiff) << "\n"); 1419 // If we need more phis than we have defaults for, pad out with undefs for 1420 // the earliest phis, which are at the end of the defaults chain (the 1421 // chain is in reverse order). 1422 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1423 ? Optional<Register>() 1424 : Defaults.back()); 1425 } 1426 } 1427 1428 // Now we know the number of stages to jump back, insert the phi chain. 1429 auto DefaultI = Defaults.rbegin(); 1430 while (DefaultI != Defaults.rend()) 1431 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1432 1433 if (IllegalPhiDefault.hasValue()) { 1434 // The consumer optionally consumes LoopProducer in the same iteration 1435 // (because the producer is scheduled at an earlier cycle than the consumer) 1436 // or the initial value. To facilitate this we create an illegal block here 1437 // by embedding a phi in the middle of the block. We will fix this up 1438 // immediately prior to pruning. 1439 auto RC = MRI.getRegClass(Reg); 1440 Register R = MRI.createVirtualRegister(RC); 1441 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1442 .addReg(IllegalPhiDefault.getValue()) 1443 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1444 .addReg(LoopReg) 1445 .addMBB(BB); // Block choice is arbitrary and has no effect. 1446 return R; 1447 } 1448 1449 return LoopReg; 1450 } 1451 1452 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1453 const TargetRegisterClass *RC) { 1454 // If the init register is not undef, try and find an existing phi. 1455 if (InitReg.hasValue()) { 1456 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1457 if (I != Phis.end()) 1458 return I->second; 1459 } else { 1460 for (auto &KV : Phis) { 1461 if (KV.first.first == LoopReg) 1462 return KV.second; 1463 } 1464 } 1465 1466 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1467 // find a phi that takes undef as input. 1468 auto I = UndefPhis.find(LoopReg); 1469 if (I != UndefPhis.end()) { 1470 Register R = I->second; 1471 if (!InitReg.hasValue()) 1472 // Found a phi taking undef as input, and this input is undef so return 1473 // without any more changes. 1474 return R; 1475 // Found a phi taking undef as input, so rewrite it to take InitReg. 1476 MachineInstr *MI = MRI.getVRegDef(R); 1477 MI->getOperand(1).setReg(InitReg.getValue()); 1478 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1479 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1480 UndefPhis.erase(I); 1481 return R; 1482 } 1483 1484 // Failed to find any existing phi to reuse, so create a new one. 1485 if (!RC) 1486 RC = MRI.getRegClass(LoopReg); 1487 Register R = MRI.createVirtualRegister(RC); 1488 if (InitReg.hasValue()) 1489 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1490 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1491 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1492 .addMBB(PreheaderBB) 1493 .addReg(LoopReg) 1494 .addMBB(BB); 1495 if (!InitReg.hasValue()) 1496 UndefPhis[LoopReg] = R; 1497 else 1498 Phis[{LoopReg, *InitReg}] = R; 1499 return R; 1500 } 1501 1502 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1503 Register &R = Undefs[RC]; 1504 if (R == 0) { 1505 // Create an IMPLICIT_DEF that defines this register if we need it. 1506 // All uses of this should be removed by the time we have finished unrolling 1507 // prologs and epilogs. 1508 R = MRI.createVirtualRegister(RC); 1509 auto *InsertBB = &PreheaderBB->getParent()->front(); 1510 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1511 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1512 } 1513 return R; 1514 } 1515 1516 namespace { 1517 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1518 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1519 /// through and defaults for these phis. 1520 class KernelOperandInfo { 1521 MachineBasicBlock *BB; 1522 MachineRegisterInfo &MRI; 1523 SmallVector<Register, 4> PhiDefaults; 1524 MachineOperand *Source; 1525 MachineOperand *Target; 1526 1527 public: 1528 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1529 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1530 : MRI(MRI) { 1531 Source = MO; 1532 BB = MO->getParent()->getParent(); 1533 while (isRegInLoop(MO)) { 1534 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1535 if (MI->isFullCopy()) { 1536 MO = &MI->getOperand(1); 1537 continue; 1538 } 1539 if (!MI->isPHI()) 1540 break; 1541 // If this is an illegal phi, don't count it in distance. 1542 if (IllegalPhis.count(MI)) { 1543 MO = &MI->getOperand(3); 1544 continue; 1545 } 1546 1547 Register Default = getInitPhiReg(*MI, BB); 1548 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1549 : &MI->getOperand(3); 1550 PhiDefaults.push_back(Default); 1551 } 1552 Target = MO; 1553 } 1554 1555 bool operator==(const KernelOperandInfo &Other) const { 1556 return PhiDefaults.size() == Other.PhiDefaults.size(); 1557 } 1558 1559 void print(raw_ostream &OS) const { 1560 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1561 << *Source->getParent(); 1562 } 1563 1564 private: 1565 bool isRegInLoop(MachineOperand *MO) { 1566 return MO->isReg() && MO->getReg().isVirtual() && 1567 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1568 } 1569 }; 1570 } // namespace 1571 1572 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1573 BB = Schedule.getLoop()->getTopBlock(); 1574 Preheader = Schedule.getLoop()->getLoopPreheader(); 1575 1576 // Dump the schedule before we invalidate and remap all its instructions. 1577 // Stash it in a string so we can print it if we found an error. 1578 std::string ScheduleDump; 1579 raw_string_ostream OS(ScheduleDump); 1580 Schedule.print(OS); 1581 OS.flush(); 1582 1583 // First, run the normal ModuleScheduleExpander. We don't support any 1584 // InstrChanges. 1585 assert(LIS && "Requires LiveIntervals!"); 1586 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 1587 ModuloScheduleExpander::InstrChangesTy()); 1588 MSE.expand(); 1589 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 1590 if (!ExpandedKernel) { 1591 // The expander optimized away the kernel. We can't do any useful checking. 1592 MSE.cleanup(); 1593 return; 1594 } 1595 // Before running the KernelRewriter, re-add BB into the CFG. 1596 Preheader->addSuccessor(BB); 1597 1598 // Now run the new expansion algorithm. 1599 KernelRewriter KR(*Schedule.getLoop(), Schedule); 1600 KR.rewrite(); 1601 1602 // Collect all illegal phis that the new algorithm created. We'll give these 1603 // to KernelOperandInfo. 1604 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 1605 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 1606 if (NI->isPHI()) 1607 IllegalPhis.insert(&*NI); 1608 } 1609 1610 // Co-iterate across both kernels. We expect them to be identical apart from 1611 // phis and full COPYs (we look through both). 1612 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 1613 auto OI = ExpandedKernel->begin(); 1614 auto NI = BB->begin(); 1615 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 1616 while (OI->isPHI() || OI->isFullCopy()) 1617 ++OI; 1618 while (NI->isPHI() || NI->isFullCopy()) 1619 ++NI; 1620 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 1621 // Analyze every operand separately. 1622 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 1623 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 1624 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 1625 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 1626 } 1627 1628 bool Failed = false; 1629 for (auto &OldAndNew : KOIs) { 1630 if (OldAndNew.first == OldAndNew.second) 1631 continue; 1632 Failed = true; 1633 errs() << "Modulo kernel validation error: [\n"; 1634 errs() << " [golden] "; 1635 OldAndNew.first.print(errs()); 1636 errs() << " "; 1637 OldAndNew.second.print(errs()); 1638 errs() << "]\n"; 1639 } 1640 1641 if (Failed) { 1642 errs() << "Golden reference kernel:\n"; 1643 ExpandedKernel->print(errs()); 1644 errs() << "New kernel:\n"; 1645 BB->print(errs()); 1646 errs() << ScheduleDump; 1647 report_fatal_error( 1648 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 1649 } 1650 1651 // Cleanup by removing BB from the CFG again as the original 1652 // ModuloScheduleExpander intended. 1653 Preheader->removeSuccessor(BB); 1654 MSE.cleanup(); 1655 } 1656 1657 //===----------------------------------------------------------------------===// 1658 // ModuloScheduleTestPass implementation 1659 //===----------------------------------------------------------------------===// 1660 // This pass constructs a ModuloSchedule from its module and runs 1661 // ModuloScheduleExpander. 1662 // 1663 // The module is expected to contain a single-block analyzable loop. 1664 // The total order of instructions is taken from the loop as-is. 1665 // Instructions are expected to be annotated with a PostInstrSymbol. 1666 // This PostInstrSymbol must have the following format: 1667 // "Stage=%d Cycle=%d". 1668 //===----------------------------------------------------------------------===// 1669 1670 class ModuloScheduleTest : public MachineFunctionPass { 1671 public: 1672 static char ID; 1673 1674 ModuloScheduleTest() : MachineFunctionPass(ID) { 1675 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 1676 } 1677 1678 bool runOnMachineFunction(MachineFunction &MF) override; 1679 void runOnLoop(MachineFunction &MF, MachineLoop &L); 1680 1681 void getAnalysisUsage(AnalysisUsage &AU) const override { 1682 AU.addRequired<MachineLoopInfo>(); 1683 AU.addRequired<LiveIntervals>(); 1684 MachineFunctionPass::getAnalysisUsage(AU); 1685 } 1686 }; 1687 1688 char ModuloScheduleTest::ID = 0; 1689 1690 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 1691 "Modulo Schedule test pass", false, false) 1692 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 1693 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1694 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 1695 "Modulo Schedule test pass", false, false) 1696 1697 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 1698 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 1699 for (auto *L : MLI) { 1700 if (L->getTopBlock() != L->getBottomBlock()) 1701 continue; 1702 runOnLoop(MF, *L); 1703 return false; 1704 } 1705 return false; 1706 } 1707 1708 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 1709 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 1710 std::pair<StringRef, StringRef> StageTokenAndValue = 1711 getToken(StageAndCycle.first, "-"); 1712 std::pair<StringRef, StringRef> CycleTokenAndValue = 1713 getToken(StageAndCycle.second, "-"); 1714 if (StageTokenAndValue.first != "Stage" || 1715 CycleTokenAndValue.first != "_Cycle") { 1716 llvm_unreachable( 1717 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 1718 return; 1719 } 1720 1721 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 1722 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 1723 1724 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 1725 } 1726 1727 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 1728 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 1729 MachineBasicBlock *BB = L.getTopBlock(); 1730 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 1731 1732 DenseMap<MachineInstr *, int> Cycle, Stage; 1733 std::vector<MachineInstr *> Instrs; 1734 for (MachineInstr &MI : *BB) { 1735 if (MI.isTerminator()) 1736 continue; 1737 Instrs.push_back(&MI); 1738 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 1739 dbgs() << "Parsing post-instr symbol for " << MI; 1740 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 1741 } 1742 } 1743 1744 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 1745 std::move(Stage)); 1746 ModuloScheduleExpander MSE( 1747 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 1748 MSE.expand(); 1749 MSE.cleanup(); 1750 } 1751 1752 //===----------------------------------------------------------------------===// 1753 // ModuloScheduleTestAnnotater implementation 1754 //===----------------------------------------------------------------------===// 1755 1756 void ModuloScheduleTestAnnotater::annotate() { 1757 for (MachineInstr *MI : S.getInstructions()) { 1758 SmallVector<char, 16> SV; 1759 raw_svector_ostream OS(SV); 1760 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 1761 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 1762 MI->setPostInstrSymbol(MF, Sym); 1763 } 1764 } 1765