1790a779fSJames Molloy //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2790a779fSJames Molloy // 3790a779fSJames Molloy // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4790a779fSJames Molloy // See https://llvm.org/LICENSE.txt for license information. 5790a779fSJames Molloy // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6790a779fSJames Molloy // 7790a779fSJames Molloy //===----------------------------------------------------------------------===// 8790a779fSJames Molloy 9790a779fSJames Molloy #include "llvm/CodeGen/ModuloSchedule.h" 1093549957SJames Molloy #include "llvm/ADT/StringExtras.h" 111815b77cSSimon Pilgrim #include "llvm/Analysis/MemoryLocation.h" 12790a779fSJames Molloy #include "llvm/CodeGen/LiveIntervals.h" 13790a779fSJames Molloy #include "llvm/CodeGen/MachineInstrBuilder.h" 14fef9f590SJames Molloy #include "llvm/CodeGen/MachineRegisterInfo.h" 1505da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 1693549957SJames Molloy #include "llvm/MC/MCContext.h" 17790a779fSJames Molloy #include "llvm/Support/Debug.h" 18fef9f590SJames Molloy #include "llvm/Support/ErrorHandling.h" 19fef9f590SJames Molloy #include "llvm/Support/raw_ostream.h" 20790a779fSJames Molloy 21790a779fSJames Molloy #define DEBUG_TYPE "pipeliner" 22790a779fSJames Molloy using namespace llvm; 23790a779fSJames Molloy 24fef9f590SJames Molloy void ModuloSchedule::print(raw_ostream &OS) { 25fef9f590SJames Molloy for (MachineInstr *MI : ScheduledInstrs) 26fef9f590SJames Molloy OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27fef9f590SJames Molloy } 28fef9f590SJames Molloy 2993549957SJames Molloy //===----------------------------------------------------------------------===// 3093549957SJames Molloy // ModuloScheduleExpander implementation 3193549957SJames Molloy //===----------------------------------------------------------------------===// 3293549957SJames Molloy 33790a779fSJames Molloy /// Return the register values for the operands of a Phi instruction. 34790a779fSJames Molloy /// This function assume the instruction is a Phi. 35790a779fSJames Molloy static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36790a779fSJames Molloy unsigned &InitVal, unsigned &LoopVal) { 37790a779fSJames Molloy assert(Phi.isPHI() && "Expecting a Phi."); 38790a779fSJames Molloy 39790a779fSJames Molloy InitVal = 0; 40790a779fSJames Molloy LoopVal = 0; 41790a779fSJames Molloy for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42790a779fSJames Molloy if (Phi.getOperand(i + 1).getMBB() != Loop) 43790a779fSJames Molloy InitVal = Phi.getOperand(i).getReg(); 44790a779fSJames Molloy else 45790a779fSJames Molloy LoopVal = Phi.getOperand(i).getReg(); 46790a779fSJames Molloy 47790a779fSJames Molloy assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48790a779fSJames Molloy } 49790a779fSJames Molloy 50790a779fSJames Molloy /// Return the Phi register value that comes from the incoming block. 51790a779fSJames Molloy static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52790a779fSJames Molloy for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53790a779fSJames Molloy if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54790a779fSJames Molloy return Phi.getOperand(i).getReg(); 55790a779fSJames Molloy return 0; 56790a779fSJames Molloy } 57790a779fSJames Molloy 58790a779fSJames Molloy /// Return the Phi register value that comes the loop block. 59790a779fSJames Molloy static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60790a779fSJames Molloy for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61790a779fSJames Molloy if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62790a779fSJames Molloy return Phi.getOperand(i).getReg(); 63790a779fSJames Molloy return 0; 64790a779fSJames Molloy } 65790a779fSJames Molloy 66790a779fSJames Molloy void ModuloScheduleExpander::expand() { 67790a779fSJames Molloy BB = Schedule.getLoop()->getTopBlock(); 68790a779fSJames Molloy Preheader = *BB->pred_begin(); 69790a779fSJames Molloy if (Preheader == BB) 70790a779fSJames Molloy Preheader = *std::next(BB->pred_begin()); 71790a779fSJames Molloy 72790a779fSJames Molloy // Iterate over the definitions in each instruction, and compute the 73790a779fSJames Molloy // stage difference for each use. Keep the maximum value. 74790a779fSJames Molloy for (MachineInstr *MI : Schedule.getInstructions()) { 75790a779fSJames Molloy int DefStage = Schedule.getStage(MI); 76790a779fSJames Molloy for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77790a779fSJames Molloy MachineOperand &Op = MI->getOperand(i); 78790a779fSJames Molloy if (!Op.isReg() || !Op.isDef()) 79790a779fSJames Molloy continue; 80790a779fSJames Molloy 81790a779fSJames Molloy Register Reg = Op.getReg(); 82790a779fSJames Molloy unsigned MaxDiff = 0; 83790a779fSJames Molloy bool PhiIsSwapped = false; 84790a779fSJames Molloy for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85790a779fSJames Molloy EI = MRI.use_end(); 86790a779fSJames Molloy UI != EI; ++UI) { 87790a779fSJames Molloy MachineOperand &UseOp = *UI; 88790a779fSJames Molloy MachineInstr *UseMI = UseOp.getParent(); 89790a779fSJames Molloy int UseStage = Schedule.getStage(UseMI); 90790a779fSJames Molloy unsigned Diff = 0; 91790a779fSJames Molloy if (UseStage != -1 && UseStage >= DefStage) 92790a779fSJames Molloy Diff = UseStage - DefStage; 93790a779fSJames Molloy if (MI->isPHI()) { 94790a779fSJames Molloy if (isLoopCarried(*MI)) 95790a779fSJames Molloy ++Diff; 96790a779fSJames Molloy else 97790a779fSJames Molloy PhiIsSwapped = true; 98790a779fSJames Molloy } 99790a779fSJames Molloy MaxDiff = std::max(Diff, MaxDiff); 100790a779fSJames Molloy } 101790a779fSJames Molloy RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102790a779fSJames Molloy } 103790a779fSJames Molloy } 104790a779fSJames Molloy 105790a779fSJames Molloy generatePipelinedLoop(); 106790a779fSJames Molloy } 107790a779fSJames Molloy 108790a779fSJames Molloy void ModuloScheduleExpander::generatePipelinedLoop() { 1098a74eca3SJames Molloy LoopInfo = TII->analyzeLoopForPipelining(BB); 1108a74eca3SJames Molloy assert(LoopInfo && "Must be able to analyze loop!"); 1118a74eca3SJames Molloy 112790a779fSJames Molloy // Create a new basic block for the kernel and add it to the CFG. 113790a779fSJames Molloy MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114790a779fSJames Molloy 115790a779fSJames Molloy unsigned MaxStageCount = Schedule.getNumStages() - 1; 116790a779fSJames Molloy 117790a779fSJames Molloy // Remember the registers that are used in different stages. The index is 118790a779fSJames Molloy // the iteration, or stage, that the instruction is scheduled in. This is 119790a779fSJames Molloy // a map between register names in the original block and the names created 120790a779fSJames Molloy // in each stage of the pipelined loop. 121790a779fSJames Molloy ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122790a779fSJames Molloy InstrMapTy InstrMap; 123790a779fSJames Molloy 124790a779fSJames Molloy SmallVector<MachineBasicBlock *, 4> PrologBBs; 125790a779fSJames Molloy 126790a779fSJames Molloy // Generate the prolog instructions that set up the pipeline. 127790a779fSJames Molloy generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128790a779fSJames Molloy MF.insert(BB->getIterator(), KernelBB); 129790a779fSJames Molloy 130790a779fSJames Molloy // Rearrange the instructions to generate the new, pipelined loop, 131790a779fSJames Molloy // and update register names as needed. 132790a779fSJames Molloy for (MachineInstr *CI : Schedule.getInstructions()) { 133790a779fSJames Molloy if (CI->isPHI()) 134790a779fSJames Molloy continue; 135790a779fSJames Molloy unsigned StageNum = Schedule.getStage(CI); 136790a779fSJames Molloy MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137790a779fSJames Molloy updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138790a779fSJames Molloy KernelBB->push_back(NewMI); 139790a779fSJames Molloy InstrMap[NewMI] = CI; 140790a779fSJames Molloy } 141790a779fSJames Molloy 142790a779fSJames Molloy // Copy any terminator instructions to the new kernel, and update 143790a779fSJames Molloy // names as needed. 14472710af2SKazu Hirata for (MachineInstr &MI : BB->terminators()) { 14572710af2SKazu Hirata MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 146790a779fSJames Molloy updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 147790a779fSJames Molloy KernelBB->push_back(NewMI); 14872710af2SKazu Hirata InstrMap[NewMI] = &MI; 149790a779fSJames Molloy } 150790a779fSJames Molloy 151fef9f590SJames Molloy NewKernel = KernelBB; 152790a779fSJames Molloy KernelBB->transferSuccessors(BB); 153790a779fSJames Molloy KernelBB->replaceSuccessor(BB, KernelBB); 154790a779fSJames Molloy 155790a779fSJames Molloy generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 156790a779fSJames Molloy InstrMap, MaxStageCount, MaxStageCount, false); 157790a779fSJames Molloy generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 158790a779fSJames Molloy MaxStageCount, MaxStageCount, false); 159790a779fSJames Molloy 160790a779fSJames Molloy LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 161790a779fSJames Molloy 162790a779fSJames Molloy SmallVector<MachineBasicBlock *, 4> EpilogBBs; 163790a779fSJames Molloy // Generate the epilog instructions to complete the pipeline. 164790a779fSJames Molloy generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 165790a779fSJames Molloy 166790a779fSJames Molloy // We need this step because the register allocation doesn't handle some 167790a779fSJames Molloy // situations well, so we insert copies to help out. 168790a779fSJames Molloy splitLifetimes(KernelBB, EpilogBBs); 169790a779fSJames Molloy 170790a779fSJames Molloy // Remove dead instructions due to loop induction variables. 171790a779fSJames Molloy removeDeadInstructions(KernelBB, EpilogBBs); 172790a779fSJames Molloy 173790a779fSJames Molloy // Add branches between prolog and epilog blocks. 174790a779fSJames Molloy addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 175790a779fSJames Molloy 176fef9f590SJames Molloy delete[] VRMap; 177fef9f590SJames Molloy } 178fef9f590SJames Molloy 179fef9f590SJames Molloy void ModuloScheduleExpander::cleanup() { 180790a779fSJames Molloy // Remove the original loop since it's no longer referenced. 181790a779fSJames Molloy for (auto &I : *BB) 182790a779fSJames Molloy LIS.RemoveMachineInstrFromMaps(I); 183790a779fSJames Molloy BB->clear(); 184790a779fSJames Molloy BB->eraseFromParent(); 185790a779fSJames Molloy } 186790a779fSJames Molloy 187790a779fSJames Molloy /// Generate the pipeline prolog code. 188790a779fSJames Molloy void ModuloScheduleExpander::generateProlog(unsigned LastStage, 189790a779fSJames Molloy MachineBasicBlock *KernelBB, 190790a779fSJames Molloy ValueMapTy *VRMap, 191790a779fSJames Molloy MBBVectorTy &PrologBBs) { 192790a779fSJames Molloy MachineBasicBlock *PredBB = Preheader; 193790a779fSJames Molloy InstrMapTy InstrMap; 194790a779fSJames Molloy 195790a779fSJames Molloy // Generate a basic block for each stage, not including the last stage, 196790a779fSJames Molloy // which will be generated in the kernel. Each basic block may contain 197790a779fSJames Molloy // instructions from multiple stages/iterations. 198790a779fSJames Molloy for (unsigned i = 0; i < LastStage; ++i) { 199790a779fSJames Molloy // Create and insert the prolog basic block prior to the original loop 200790a779fSJames Molloy // basic block. The original loop is removed later. 201790a779fSJames Molloy MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 202790a779fSJames Molloy PrologBBs.push_back(NewBB); 203790a779fSJames Molloy MF.insert(BB->getIterator(), NewBB); 204790a779fSJames Molloy NewBB->transferSuccessors(PredBB); 205790a779fSJames Molloy PredBB->addSuccessor(NewBB); 206790a779fSJames Molloy PredBB = NewBB; 207790a779fSJames Molloy 208790a779fSJames Molloy // Generate instructions for each appropriate stage. Process instructions 209790a779fSJames Molloy // in original program order. 210790a779fSJames Molloy for (int StageNum = i; StageNum >= 0; --StageNum) { 211790a779fSJames Molloy for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 212790a779fSJames Molloy BBE = BB->getFirstTerminator(); 213790a779fSJames Molloy BBI != BBE; ++BBI) { 214790a779fSJames Molloy if (Schedule.getStage(&*BBI) == StageNum) { 215790a779fSJames Molloy if (BBI->isPHI()) 216790a779fSJames Molloy continue; 217790a779fSJames Molloy MachineInstr *NewMI = 218790a779fSJames Molloy cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 219790a779fSJames Molloy updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 220790a779fSJames Molloy NewBB->push_back(NewMI); 221790a779fSJames Molloy InstrMap[NewMI] = &*BBI; 222790a779fSJames Molloy } 223790a779fSJames Molloy } 224790a779fSJames Molloy } 225790a779fSJames Molloy rewritePhiValues(NewBB, i, VRMap, InstrMap); 226790a779fSJames Molloy LLVM_DEBUG({ 227790a779fSJames Molloy dbgs() << "prolog:\n"; 228790a779fSJames Molloy NewBB->dump(); 229790a779fSJames Molloy }); 230790a779fSJames Molloy } 231790a779fSJames Molloy 232790a779fSJames Molloy PredBB->replaceSuccessor(BB, KernelBB); 233790a779fSJames Molloy 234790a779fSJames Molloy // Check if we need to remove the branch from the preheader to the original 235790a779fSJames Molloy // loop, and replace it with a branch to the new loop. 236790a779fSJames Molloy unsigned numBranches = TII->removeBranch(*Preheader); 237790a779fSJames Molloy if (numBranches) { 238790a779fSJames Molloy SmallVector<MachineOperand, 0> Cond; 239790a779fSJames Molloy TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 240790a779fSJames Molloy } 241790a779fSJames Molloy } 242790a779fSJames Molloy 243790a779fSJames Molloy /// Generate the pipeline epilog code. The epilog code finishes the iterations 244790a779fSJames Molloy /// that were started in either the prolog or the kernel. We create a basic 245790a779fSJames Molloy /// block for each stage that needs to complete. 246790a779fSJames Molloy void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 247790a779fSJames Molloy MachineBasicBlock *KernelBB, 248790a779fSJames Molloy ValueMapTy *VRMap, 249790a779fSJames Molloy MBBVectorTy &EpilogBBs, 250790a779fSJames Molloy MBBVectorTy &PrologBBs) { 251790a779fSJames Molloy // We need to change the branch from the kernel to the first epilog block, so 252790a779fSJames Molloy // this call to analyze branch uses the kernel rather than the original BB. 253790a779fSJames Molloy MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 254790a779fSJames Molloy SmallVector<MachineOperand, 4> Cond; 255790a779fSJames Molloy bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 256790a779fSJames Molloy assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 257790a779fSJames Molloy if (checkBranch) 258790a779fSJames Molloy return; 259790a779fSJames Molloy 260790a779fSJames Molloy MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 261790a779fSJames Molloy if (*LoopExitI == KernelBB) 262790a779fSJames Molloy ++LoopExitI; 263790a779fSJames Molloy assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 264790a779fSJames Molloy MachineBasicBlock *LoopExitBB = *LoopExitI; 265790a779fSJames Molloy 266790a779fSJames Molloy MachineBasicBlock *PredBB = KernelBB; 267790a779fSJames Molloy MachineBasicBlock *EpilogStart = LoopExitBB; 268790a779fSJames Molloy InstrMapTy InstrMap; 269790a779fSJames Molloy 270790a779fSJames Molloy // Generate a basic block for each stage, not including the last stage, 271790a779fSJames Molloy // which was generated for the kernel. Each basic block may contain 272790a779fSJames Molloy // instructions from multiple stages/iterations. 273790a779fSJames Molloy int EpilogStage = LastStage + 1; 274790a779fSJames Molloy for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 275790a779fSJames Molloy MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 276790a779fSJames Molloy EpilogBBs.push_back(NewBB); 277790a779fSJames Molloy MF.insert(BB->getIterator(), NewBB); 278790a779fSJames Molloy 279790a779fSJames Molloy PredBB->replaceSuccessor(LoopExitBB, NewBB); 280790a779fSJames Molloy NewBB->addSuccessor(LoopExitBB); 281790a779fSJames Molloy 282790a779fSJames Molloy if (EpilogStart == LoopExitBB) 283790a779fSJames Molloy EpilogStart = NewBB; 284790a779fSJames Molloy 285790a779fSJames Molloy // Add instructions to the epilog depending on the current block. 286790a779fSJames Molloy // Process instructions in original program order. 287790a779fSJames Molloy for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 288790a779fSJames Molloy for (auto &BBI : *BB) { 289790a779fSJames Molloy if (BBI.isPHI()) 290790a779fSJames Molloy continue; 291790a779fSJames Molloy MachineInstr *In = &BBI; 292790a779fSJames Molloy if ((unsigned)Schedule.getStage(In) == StageNum) { 293790a779fSJames Molloy // Instructions with memoperands in the epilog are updated with 294790a779fSJames Molloy // conservative values. 295790a779fSJames Molloy MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 296790a779fSJames Molloy updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 297790a779fSJames Molloy NewBB->push_back(NewMI); 298790a779fSJames Molloy InstrMap[NewMI] = In; 299790a779fSJames Molloy } 300790a779fSJames Molloy } 301790a779fSJames Molloy } 302790a779fSJames Molloy generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 303790a779fSJames Molloy InstrMap, LastStage, EpilogStage, i == 1); 304790a779fSJames Molloy generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 305790a779fSJames Molloy LastStage, EpilogStage, i == 1); 306790a779fSJames Molloy PredBB = NewBB; 307790a779fSJames Molloy 308790a779fSJames Molloy LLVM_DEBUG({ 309790a779fSJames Molloy dbgs() << "epilog:\n"; 310790a779fSJames Molloy NewBB->dump(); 311790a779fSJames Molloy }); 312790a779fSJames Molloy } 313790a779fSJames Molloy 314790a779fSJames Molloy // Fix any Phi nodes in the loop exit block. 315790a779fSJames Molloy LoopExitBB->replacePhiUsesWith(BB, PredBB); 316790a779fSJames Molloy 317790a779fSJames Molloy // Create a branch to the new epilog from the kernel. 318790a779fSJames Molloy // Remove the original branch and add a new branch to the epilog. 319790a779fSJames Molloy TII->removeBranch(*KernelBB); 320790a779fSJames Molloy TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 321790a779fSJames Molloy // Add a branch to the loop exit. 322790a779fSJames Molloy if (EpilogBBs.size() > 0) { 323790a779fSJames Molloy MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 324790a779fSJames Molloy SmallVector<MachineOperand, 4> Cond1; 325790a779fSJames Molloy TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 326790a779fSJames Molloy } 327790a779fSJames Molloy } 328790a779fSJames Molloy 329790a779fSJames Molloy /// Replace all uses of FromReg that appear outside the specified 330790a779fSJames Molloy /// basic block with ToReg. 331790a779fSJames Molloy static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 332790a779fSJames Molloy MachineBasicBlock *MBB, 333790a779fSJames Molloy MachineRegisterInfo &MRI, 334790a779fSJames Molloy LiveIntervals &LIS) { 335642a361bSKazu Hirata for (MachineOperand &O : 336642a361bSKazu Hirata llvm::make_early_inc_range(MRI.use_operands(FromReg))) 337790a779fSJames Molloy if (O.getParent()->getParent() != MBB) 338790a779fSJames Molloy O.setReg(ToReg); 339790a779fSJames Molloy if (!LIS.hasInterval(ToReg)) 340790a779fSJames Molloy LIS.createEmptyInterval(ToReg); 341790a779fSJames Molloy } 342790a779fSJames Molloy 343790a779fSJames Molloy /// Return true if the register has a use that occurs outside the 344790a779fSJames Molloy /// specified loop. 345790a779fSJames Molloy static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 346790a779fSJames Molloy MachineRegisterInfo &MRI) { 347790a779fSJames Molloy for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 348790a779fSJames Molloy E = MRI.use_end(); 349790a779fSJames Molloy I != E; ++I) 350790a779fSJames Molloy if (I->getParent()->getParent() != BB) 351790a779fSJames Molloy return true; 352790a779fSJames Molloy return false; 353790a779fSJames Molloy } 354790a779fSJames Molloy 355790a779fSJames Molloy /// Generate Phis for the specific block in the generated pipelined code. 356790a779fSJames Molloy /// This function looks at the Phis from the original code to guide the 357790a779fSJames Molloy /// creation of new Phis. 358790a779fSJames Molloy void ModuloScheduleExpander::generateExistingPhis( 359790a779fSJames Molloy MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 360790a779fSJames Molloy MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 361790a779fSJames Molloy unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 362790a779fSJames Molloy // Compute the stage number for the initial value of the Phi, which 363790a779fSJames Molloy // comes from the prolog. The prolog to use depends on to which kernel/ 364790a779fSJames Molloy // epilog that we're adding the Phi. 365790a779fSJames Molloy unsigned PrologStage = 0; 366790a779fSJames Molloy unsigned PrevStage = 0; 367790a779fSJames Molloy bool InKernel = (LastStageNum == CurStageNum); 368790a779fSJames Molloy if (InKernel) { 369790a779fSJames Molloy PrologStage = LastStageNum - 1; 370790a779fSJames Molloy PrevStage = CurStageNum; 371790a779fSJames Molloy } else { 372790a779fSJames Molloy PrologStage = LastStageNum - (CurStageNum - LastStageNum); 373790a779fSJames Molloy PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 374790a779fSJames Molloy } 375790a779fSJames Molloy 376790a779fSJames Molloy for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 377790a779fSJames Molloy BBE = BB->getFirstNonPHI(); 378790a779fSJames Molloy BBI != BBE; ++BBI) { 379790a779fSJames Molloy Register Def = BBI->getOperand(0).getReg(); 380790a779fSJames Molloy 381790a779fSJames Molloy unsigned InitVal = 0; 382790a779fSJames Molloy unsigned LoopVal = 0; 383790a779fSJames Molloy getPhiRegs(*BBI, BB, InitVal, LoopVal); 384790a779fSJames Molloy 385790a779fSJames Molloy unsigned PhiOp1 = 0; 386790a779fSJames Molloy // The Phi value from the loop body typically is defined in the loop, but 387790a779fSJames Molloy // not always. So, we need to check if the value is defined in the loop. 388790a779fSJames Molloy unsigned PhiOp2 = LoopVal; 389790a779fSJames Molloy if (VRMap[LastStageNum].count(LoopVal)) 390790a779fSJames Molloy PhiOp2 = VRMap[LastStageNum][LoopVal]; 391790a779fSJames Molloy 392790a779fSJames Molloy int StageScheduled = Schedule.getStage(&*BBI); 393790a779fSJames Molloy int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 394790a779fSJames Molloy unsigned NumStages = getStagesForReg(Def, CurStageNum); 395790a779fSJames Molloy if (NumStages == 0) { 396790a779fSJames Molloy // We don't need to generate a Phi anymore, but we need to rename any uses 397790a779fSJames Molloy // of the Phi value. 398790a779fSJames Molloy unsigned NewReg = VRMap[PrevStage][LoopVal]; 399790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 400790a779fSJames Molloy InitVal, NewReg); 401790a779fSJames Molloy if (VRMap[CurStageNum].count(LoopVal)) 402790a779fSJames Molloy VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 403790a779fSJames Molloy } 404790a779fSJames Molloy // Adjust the number of Phis needed depending on the number of prologs left, 405790a779fSJames Molloy // and the distance from where the Phi is first scheduled. The number of 406790a779fSJames Molloy // Phis cannot exceed the number of prolog stages. Each stage can 407790a779fSJames Molloy // potentially define two values. 408790a779fSJames Molloy unsigned MaxPhis = PrologStage + 2; 409790a779fSJames Molloy if (!InKernel && (int)PrologStage <= LoopValStage) 410790a779fSJames Molloy MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 411790a779fSJames Molloy unsigned NumPhis = std::min(NumStages, MaxPhis); 412790a779fSJames Molloy 413790a779fSJames Molloy unsigned NewReg = 0; 414790a779fSJames Molloy unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 415790a779fSJames Molloy // In the epilog, we may need to look back one stage to get the correct 4168a6a2c4cSHendrik Greving // Phi name, because the epilog and prolog blocks execute the same stage. 417790a779fSJames Molloy // The correct name is from the previous block only when the Phi has 418790a779fSJames Molloy // been completely scheduled prior to the epilog, and Phi value is not 419790a779fSJames Molloy // needed in multiple stages. 420790a779fSJames Molloy int StageDiff = 0; 421790a779fSJames Molloy if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 422790a779fSJames Molloy NumPhis == 1) 423790a779fSJames Molloy StageDiff = 1; 424790a779fSJames Molloy // Adjust the computations below when the phi and the loop definition 425790a779fSJames Molloy // are scheduled in different stages. 426790a779fSJames Molloy if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 427790a779fSJames Molloy StageDiff = StageScheduled - LoopValStage; 428790a779fSJames Molloy for (unsigned np = 0; np < NumPhis; ++np) { 429790a779fSJames Molloy // If the Phi hasn't been scheduled, then use the initial Phi operand 430790a779fSJames Molloy // value. Otherwise, use the scheduled version of the instruction. This 431790a779fSJames Molloy // is a little complicated when a Phi references another Phi. 432790a779fSJames Molloy if (np > PrologStage || StageScheduled >= (int)LastStageNum) 433790a779fSJames Molloy PhiOp1 = InitVal; 434790a779fSJames Molloy // Check if the Phi has already been scheduled in a prolog stage. 435790a779fSJames Molloy else if (PrologStage >= AccessStage + StageDiff + np && 436790a779fSJames Molloy VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 437790a779fSJames Molloy PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 438790a779fSJames Molloy // Check if the Phi has already been scheduled, but the loop instruction 439790a779fSJames Molloy // is either another Phi, or doesn't occur in the loop. 440790a779fSJames Molloy else if (PrologStage >= AccessStage + StageDiff + np) { 441790a779fSJames Molloy // If the Phi references another Phi, we need to examine the other 442790a779fSJames Molloy // Phi to get the correct value. 443790a779fSJames Molloy PhiOp1 = LoopVal; 444790a779fSJames Molloy MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 445790a779fSJames Molloy int Indirects = 1; 446790a779fSJames Molloy while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 447790a779fSJames Molloy int PhiStage = Schedule.getStage(InstOp1); 448790a779fSJames Molloy if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 449790a779fSJames Molloy PhiOp1 = getInitPhiReg(*InstOp1, BB); 450790a779fSJames Molloy else 451790a779fSJames Molloy PhiOp1 = getLoopPhiReg(*InstOp1, BB); 452790a779fSJames Molloy InstOp1 = MRI.getVRegDef(PhiOp1); 453790a779fSJames Molloy int PhiOpStage = Schedule.getStage(InstOp1); 454790a779fSJames Molloy int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 455790a779fSJames Molloy if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 456790a779fSJames Molloy VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 457790a779fSJames Molloy PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 458790a779fSJames Molloy break; 459790a779fSJames Molloy } 460790a779fSJames Molloy ++Indirects; 461790a779fSJames Molloy } 462790a779fSJames Molloy } else 463790a779fSJames Molloy PhiOp1 = InitVal; 464790a779fSJames Molloy // If this references a generated Phi in the kernel, get the Phi operand 465790a779fSJames Molloy // from the incoming block. 466790a779fSJames Molloy if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 467790a779fSJames Molloy if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 468790a779fSJames Molloy PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 469790a779fSJames Molloy 470790a779fSJames Molloy MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 471790a779fSJames Molloy bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 472790a779fSJames Molloy // In the epilog, a map lookup is needed to get the value from the kernel, 473790a779fSJames Molloy // or previous epilog block. How is does this depends on if the 474790a779fSJames Molloy // instruction is scheduled in the previous block. 475790a779fSJames Molloy if (!InKernel) { 476790a779fSJames Molloy int StageDiffAdj = 0; 477790a779fSJames Molloy if (LoopValStage != -1 && StageScheduled > LoopValStage) 478790a779fSJames Molloy StageDiffAdj = StageScheduled - LoopValStage; 479790a779fSJames Molloy // Use the loop value defined in the kernel, unless the kernel 480790a779fSJames Molloy // contains the last definition of the Phi. 481790a779fSJames Molloy if (np == 0 && PrevStage == LastStageNum && 482790a779fSJames Molloy (StageScheduled != 0 || LoopValStage != 0) && 483790a779fSJames Molloy VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 484790a779fSJames Molloy PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 485790a779fSJames Molloy // Use the value defined by the Phi. We add one because we switch 486790a779fSJames Molloy // from looking at the loop value to the Phi definition. 487790a779fSJames Molloy else if (np > 0 && PrevStage == LastStageNum && 488790a779fSJames Molloy VRMap[PrevStage - np + 1].count(Def)) 489790a779fSJames Molloy PhiOp2 = VRMap[PrevStage - np + 1][Def]; 490790a779fSJames Molloy // Use the loop value defined in the kernel. 491790a779fSJames Molloy else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 492790a779fSJames Molloy VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 493790a779fSJames Molloy PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 494790a779fSJames Molloy // Use the value defined by the Phi, unless we're generating the first 495790a779fSJames Molloy // epilog and the Phi refers to a Phi in a different stage. 496790a779fSJames Molloy else if (VRMap[PrevStage - np].count(Def) && 497790a779fSJames Molloy (!LoopDefIsPhi || (PrevStage != LastStageNum) || 498790a779fSJames Molloy (LoopValStage == StageScheduled))) 499790a779fSJames Molloy PhiOp2 = VRMap[PrevStage - np][Def]; 500790a779fSJames Molloy } 501790a779fSJames Molloy 502790a779fSJames Molloy // Check if we can reuse an existing Phi. This occurs when a Phi 503790a779fSJames Molloy // references another Phi, and the other Phi is scheduled in an 504790a779fSJames Molloy // earlier stage. We can try to reuse an existing Phi up until the last 505790a779fSJames Molloy // stage of the current Phi. 506790a779fSJames Molloy if (LoopDefIsPhi) { 507790a779fSJames Molloy if (static_cast<int>(PrologStage - np) >= StageScheduled) { 508790a779fSJames Molloy int LVNumStages = getStagesForPhi(LoopVal); 509790a779fSJames Molloy int StageDiff = (StageScheduled - LoopValStage); 510790a779fSJames Molloy LVNumStages -= StageDiff; 511790a779fSJames Molloy // Make sure the loop value Phi has been processed already. 512790a779fSJames Molloy if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 513790a779fSJames Molloy NewReg = PhiOp2; 514790a779fSJames Molloy unsigned ReuseStage = CurStageNum; 515790a779fSJames Molloy if (isLoopCarried(*PhiInst)) 516790a779fSJames Molloy ReuseStage -= LVNumStages; 517790a779fSJames Molloy // Check if the Phi to reuse has been generated yet. If not, then 518790a779fSJames Molloy // there is nothing to reuse. 519790a779fSJames Molloy if (VRMap[ReuseStage - np].count(LoopVal)) { 520790a779fSJames Molloy NewReg = VRMap[ReuseStage - np][LoopVal]; 521790a779fSJames Molloy 522790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 523790a779fSJames Molloy Def, NewReg); 524790a779fSJames Molloy // Update the map with the new Phi name. 525790a779fSJames Molloy VRMap[CurStageNum - np][Def] = NewReg; 526790a779fSJames Molloy PhiOp2 = NewReg; 527790a779fSJames Molloy if (VRMap[LastStageNum - np - 1].count(LoopVal)) 528790a779fSJames Molloy PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 529790a779fSJames Molloy 530790a779fSJames Molloy if (IsLast && np == NumPhis - 1) 531790a779fSJames Molloy replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 532790a779fSJames Molloy continue; 533790a779fSJames Molloy } 534790a779fSJames Molloy } 535790a779fSJames Molloy } 536790a779fSJames Molloy if (InKernel && StageDiff > 0 && 537790a779fSJames Molloy VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 538790a779fSJames Molloy PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 539790a779fSJames Molloy } 540790a779fSJames Molloy 541790a779fSJames Molloy const TargetRegisterClass *RC = MRI.getRegClass(Def); 542790a779fSJames Molloy NewReg = MRI.createVirtualRegister(RC); 543790a779fSJames Molloy 544790a779fSJames Molloy MachineInstrBuilder NewPhi = 545790a779fSJames Molloy BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 546790a779fSJames Molloy TII->get(TargetOpcode::PHI), NewReg); 547790a779fSJames Molloy NewPhi.addReg(PhiOp1).addMBB(BB1); 548790a779fSJames Molloy NewPhi.addReg(PhiOp2).addMBB(BB2); 549790a779fSJames Molloy if (np == 0) 550790a779fSJames Molloy InstrMap[NewPhi] = &*BBI; 551790a779fSJames Molloy 552790a779fSJames Molloy // We define the Phis after creating the new pipelined code, so 553790a779fSJames Molloy // we need to rename the Phi values in scheduled instructions. 554790a779fSJames Molloy 555790a779fSJames Molloy unsigned PrevReg = 0; 556790a779fSJames Molloy if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 557790a779fSJames Molloy PrevReg = VRMap[PrevStage - np][LoopVal]; 558790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 559790a779fSJames Molloy NewReg, PrevReg); 560790a779fSJames Molloy // If the Phi has been scheduled, use the new name for rewriting. 561790a779fSJames Molloy if (VRMap[CurStageNum - np].count(Def)) { 562790a779fSJames Molloy unsigned R = VRMap[CurStageNum - np][Def]; 563790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 564790a779fSJames Molloy NewReg); 565790a779fSJames Molloy } 566790a779fSJames Molloy 567790a779fSJames Molloy // Check if we need to rename any uses that occurs after the loop. The 568790a779fSJames Molloy // register to replace depends on whether the Phi is scheduled in the 569790a779fSJames Molloy // epilog. 570790a779fSJames Molloy if (IsLast && np == NumPhis - 1) 571790a779fSJames Molloy replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 572790a779fSJames Molloy 573790a779fSJames Molloy // In the kernel, a dependent Phi uses the value from this Phi. 574790a779fSJames Molloy if (InKernel) 575790a779fSJames Molloy PhiOp2 = NewReg; 576790a779fSJames Molloy 577790a779fSJames Molloy // Update the map with the new Phi name. 578790a779fSJames Molloy VRMap[CurStageNum - np][Def] = NewReg; 579790a779fSJames Molloy } 580790a779fSJames Molloy 581790a779fSJames Molloy while (NumPhis++ < NumStages) { 582790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 583790a779fSJames Molloy NewReg, 0); 584790a779fSJames Molloy } 585790a779fSJames Molloy 586790a779fSJames Molloy // Check if we need to rename a Phi that has been eliminated due to 587790a779fSJames Molloy // scheduling. 588790a779fSJames Molloy if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 589790a779fSJames Molloy replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 590790a779fSJames Molloy } 591790a779fSJames Molloy } 592790a779fSJames Molloy 593790a779fSJames Molloy /// Generate Phis for the specified block in the generated pipelined code. 594790a779fSJames Molloy /// These are new Phis needed because the definition is scheduled after the 595790a779fSJames Molloy /// use in the pipelined sequence. 596790a779fSJames Molloy void ModuloScheduleExpander::generatePhis( 597790a779fSJames Molloy MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 598790a779fSJames Molloy MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 599790a779fSJames Molloy unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 600790a779fSJames Molloy // Compute the stage number that contains the initial Phi value, and 601790a779fSJames Molloy // the Phi from the previous stage. 602790a779fSJames Molloy unsigned PrologStage = 0; 603790a779fSJames Molloy unsigned PrevStage = 0; 604790a779fSJames Molloy unsigned StageDiff = CurStageNum - LastStageNum; 605790a779fSJames Molloy bool InKernel = (StageDiff == 0); 606790a779fSJames Molloy if (InKernel) { 607790a779fSJames Molloy PrologStage = LastStageNum - 1; 608790a779fSJames Molloy PrevStage = CurStageNum; 609790a779fSJames Molloy } else { 610790a779fSJames Molloy PrologStage = LastStageNum - StageDiff; 611790a779fSJames Molloy PrevStage = LastStageNum + StageDiff - 1; 612790a779fSJames Molloy } 613790a779fSJames Molloy 614790a779fSJames Molloy for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 615790a779fSJames Molloy BBE = BB->instr_end(); 616790a779fSJames Molloy BBI != BBE; ++BBI) { 617790a779fSJames Molloy for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 618790a779fSJames Molloy MachineOperand &MO = BBI->getOperand(i); 619790a779fSJames Molloy if (!MO.isReg() || !MO.isDef() || 620790a779fSJames Molloy !Register::isVirtualRegister(MO.getReg())) 621790a779fSJames Molloy continue; 622790a779fSJames Molloy 623790a779fSJames Molloy int StageScheduled = Schedule.getStage(&*BBI); 624790a779fSJames Molloy assert(StageScheduled != -1 && "Expecting scheduled instruction."); 625790a779fSJames Molloy Register Def = MO.getReg(); 626790a779fSJames Molloy unsigned NumPhis = getStagesForReg(Def, CurStageNum); 627790a779fSJames Molloy // An instruction scheduled in stage 0 and is used after the loop 628790a779fSJames Molloy // requires a phi in the epilog for the last definition from either 629790a779fSJames Molloy // the kernel or prolog. 630790a779fSJames Molloy if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 631790a779fSJames Molloy hasUseAfterLoop(Def, BB, MRI)) 632790a779fSJames Molloy NumPhis = 1; 633790a779fSJames Molloy if (!InKernel && (unsigned)StageScheduled > PrologStage) 634790a779fSJames Molloy continue; 635790a779fSJames Molloy 636790a779fSJames Molloy unsigned PhiOp2 = VRMap[PrevStage][Def]; 637790a779fSJames Molloy if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 638790a779fSJames Molloy if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 639790a779fSJames Molloy PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 640790a779fSJames Molloy // The number of Phis can't exceed the number of prolog stages. The 641790a779fSJames Molloy // prolog stage number is zero based. 642790a779fSJames Molloy if (NumPhis > PrologStage + 1 - StageScheduled) 643790a779fSJames Molloy NumPhis = PrologStage + 1 - StageScheduled; 644790a779fSJames Molloy for (unsigned np = 0; np < NumPhis; ++np) { 645790a779fSJames Molloy unsigned PhiOp1 = VRMap[PrologStage][Def]; 646790a779fSJames Molloy if (np <= PrologStage) 647790a779fSJames Molloy PhiOp1 = VRMap[PrologStage - np][Def]; 648790a779fSJames Molloy if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 649790a779fSJames Molloy if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 650790a779fSJames Molloy PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 651790a779fSJames Molloy if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 652790a779fSJames Molloy PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 653790a779fSJames Molloy } 654790a779fSJames Molloy if (!InKernel) 655790a779fSJames Molloy PhiOp2 = VRMap[PrevStage - np][Def]; 656790a779fSJames Molloy 657790a779fSJames Molloy const TargetRegisterClass *RC = MRI.getRegClass(Def); 658790a779fSJames Molloy Register NewReg = MRI.createVirtualRegister(RC); 659790a779fSJames Molloy 660790a779fSJames Molloy MachineInstrBuilder NewPhi = 661790a779fSJames Molloy BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 662790a779fSJames Molloy TII->get(TargetOpcode::PHI), NewReg); 663790a779fSJames Molloy NewPhi.addReg(PhiOp1).addMBB(BB1); 664790a779fSJames Molloy NewPhi.addReg(PhiOp2).addMBB(BB2); 665790a779fSJames Molloy if (np == 0) 666790a779fSJames Molloy InstrMap[NewPhi] = &*BBI; 667790a779fSJames Molloy 668790a779fSJames Molloy // Rewrite uses and update the map. The actions depend upon whether 669790a779fSJames Molloy // we generating code for the kernel or epilog blocks. 670790a779fSJames Molloy if (InKernel) { 671790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 672790a779fSJames Molloy NewReg); 673790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 674790a779fSJames Molloy NewReg); 675790a779fSJames Molloy 676790a779fSJames Molloy PhiOp2 = NewReg; 677790a779fSJames Molloy VRMap[PrevStage - np - 1][Def] = NewReg; 678790a779fSJames Molloy } else { 679790a779fSJames Molloy VRMap[CurStageNum - np][Def] = NewReg; 680790a779fSJames Molloy if (np == NumPhis - 1) 681790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 682790a779fSJames Molloy NewReg); 683790a779fSJames Molloy } 684790a779fSJames Molloy if (IsLast && np == NumPhis - 1) 685790a779fSJames Molloy replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 686790a779fSJames Molloy } 687790a779fSJames Molloy } 688790a779fSJames Molloy } 689790a779fSJames Molloy } 690790a779fSJames Molloy 691790a779fSJames Molloy /// Remove instructions that generate values with no uses. 692790a779fSJames Molloy /// Typically, these are induction variable operations that generate values 693790a779fSJames Molloy /// used in the loop itself. A dead instruction has a definition with 694790a779fSJames Molloy /// no uses, or uses that occur in the original loop only. 695790a779fSJames Molloy void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 696790a779fSJames Molloy MBBVectorTy &EpilogBBs) { 697790a779fSJames Molloy // For each epilog block, check that the value defined by each instruction 698790a779fSJames Molloy // is used. If not, delete it. 699843d1edaSKazu Hirata for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 700843d1edaSKazu Hirata for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 701843d1edaSKazu Hirata ME = MBB->instr_rend(); 702790a779fSJames Molloy MI != ME;) { 703790a779fSJames Molloy // From DeadMachineInstructionElem. Don't delete inline assembly. 704790a779fSJames Molloy if (MI->isInlineAsm()) { 705790a779fSJames Molloy ++MI; 706790a779fSJames Molloy continue; 707790a779fSJames Molloy } 708790a779fSJames Molloy bool SawStore = false; 709790a779fSJames Molloy // Check if it's safe to remove the instruction due to side effects. 710790a779fSJames Molloy // We can, and want to, remove Phis here. 711790a779fSJames Molloy if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 712790a779fSJames Molloy ++MI; 713790a779fSJames Molloy continue; 714790a779fSJames Molloy } 715790a779fSJames Molloy bool used = true; 716*ce227ce3SKazu Hirata for (const MachineOperand &MO : MI->operands()) { 717*ce227ce3SKazu Hirata if (!MO.isReg() || !MO.isDef()) 718790a779fSJames Molloy continue; 719*ce227ce3SKazu Hirata Register reg = MO.getReg(); 720790a779fSJames Molloy // Assume physical registers are used, unless they are marked dead. 721790a779fSJames Molloy if (Register::isPhysicalRegister(reg)) { 722*ce227ce3SKazu Hirata used = !MO.isDead(); 723790a779fSJames Molloy if (used) 724790a779fSJames Molloy break; 725790a779fSJames Molloy continue; 726790a779fSJames Molloy } 727790a779fSJames Molloy unsigned realUses = 0; 728790a779fSJames Molloy for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 729790a779fSJames Molloy EI = MRI.use_end(); 730790a779fSJames Molloy UI != EI; ++UI) { 731790a779fSJames Molloy // Check if there are any uses that occur only in the original 732790a779fSJames Molloy // loop. If so, that's not a real use. 733790a779fSJames Molloy if (UI->getParent()->getParent() != BB) { 734790a779fSJames Molloy realUses++; 735790a779fSJames Molloy used = true; 736790a779fSJames Molloy break; 737790a779fSJames Molloy } 738790a779fSJames Molloy } 739790a779fSJames Molloy if (realUses > 0) 740790a779fSJames Molloy break; 741790a779fSJames Molloy used = false; 742790a779fSJames Molloy } 743790a779fSJames Molloy if (!used) { 744790a779fSJames Molloy LIS.RemoveMachineInstrFromMaps(*MI); 745790a779fSJames Molloy MI++->eraseFromParent(); 746790a779fSJames Molloy continue; 747790a779fSJames Molloy } 748790a779fSJames Molloy ++MI; 749790a779fSJames Molloy } 750790a779fSJames Molloy // In the kernel block, check if we can remove a Phi that generates a value 751790a779fSJames Molloy // used in an instruction removed in the epilog block. 752c3e698e2SKazu Hirata for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 753c3e698e2SKazu Hirata Register reg = MI.getOperand(0).getReg(); 754790a779fSJames Molloy if (MRI.use_begin(reg) == MRI.use_end()) { 755c3e698e2SKazu Hirata LIS.RemoveMachineInstrFromMaps(MI); 756c3e698e2SKazu Hirata MI.eraseFromParent(); 757790a779fSJames Molloy } 758790a779fSJames Molloy } 759790a779fSJames Molloy } 760790a779fSJames Molloy 761790a779fSJames Molloy /// For loop carried definitions, we split the lifetime of a virtual register 762790a779fSJames Molloy /// that has uses past the definition in the next iteration. A copy with a new 763790a779fSJames Molloy /// virtual register is inserted before the definition, which helps with 764790a779fSJames Molloy /// generating a better register assignment. 765790a779fSJames Molloy /// 766790a779fSJames Molloy /// v1 = phi(a, v2) v1 = phi(a, v2) 767790a779fSJames Molloy /// v2 = phi(b, v3) v2 = phi(b, v3) 768790a779fSJames Molloy /// v3 = .. v4 = copy v1 769790a779fSJames Molloy /// .. = V1 v3 = .. 770790a779fSJames Molloy /// .. = v4 771790a779fSJames Molloy void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 772790a779fSJames Molloy MBBVectorTy &EpilogBBs) { 773790a779fSJames Molloy const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 774790a779fSJames Molloy for (auto &PHI : KernelBB->phis()) { 775790a779fSJames Molloy Register Def = PHI.getOperand(0).getReg(); 776790a779fSJames Molloy // Check for any Phi definition that used as an operand of another Phi 777790a779fSJames Molloy // in the same block. 778790a779fSJames Molloy for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 779790a779fSJames Molloy E = MRI.use_instr_end(); 780790a779fSJames Molloy I != E; ++I) { 781790a779fSJames Molloy if (I->isPHI() && I->getParent() == KernelBB) { 782790a779fSJames Molloy // Get the loop carried definition. 783790a779fSJames Molloy unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 784790a779fSJames Molloy if (!LCDef) 785790a779fSJames Molloy continue; 786790a779fSJames Molloy MachineInstr *MI = MRI.getVRegDef(LCDef); 787790a779fSJames Molloy if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 788790a779fSJames Molloy continue; 789790a779fSJames Molloy // Search through the rest of the block looking for uses of the Phi 790790a779fSJames Molloy // definition. If one occurs, then split the lifetime. 791790a779fSJames Molloy unsigned SplitReg = 0; 792790a779fSJames Molloy for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 793790a779fSJames Molloy KernelBB->instr_end())) 794790a779fSJames Molloy if (BBJ.readsRegister(Def)) { 795790a779fSJames Molloy // We split the lifetime when we find the first use. 796790a779fSJames Molloy if (SplitReg == 0) { 797790a779fSJames Molloy SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 798790a779fSJames Molloy BuildMI(*KernelBB, MI, MI->getDebugLoc(), 799790a779fSJames Molloy TII->get(TargetOpcode::COPY), SplitReg) 800790a779fSJames Molloy .addReg(Def); 801790a779fSJames Molloy } 802790a779fSJames Molloy BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 803790a779fSJames Molloy } 804790a779fSJames Molloy if (!SplitReg) 805790a779fSJames Molloy continue; 806790a779fSJames Molloy // Search through each of the epilog blocks for any uses to be renamed. 807790a779fSJames Molloy for (auto &Epilog : EpilogBBs) 808790a779fSJames Molloy for (auto &I : *Epilog) 809790a779fSJames Molloy if (I.readsRegister(Def)) 810790a779fSJames Molloy I.substituteRegister(Def, SplitReg, 0, *TRI); 811790a779fSJames Molloy break; 812790a779fSJames Molloy } 813790a779fSJames Molloy } 814790a779fSJames Molloy } 815790a779fSJames Molloy } 816790a779fSJames Molloy 817790a779fSJames Molloy /// Remove the incoming block from the Phis in a basic block. 818790a779fSJames Molloy static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 819790a779fSJames Molloy for (MachineInstr &MI : *BB) { 820790a779fSJames Molloy if (!MI.isPHI()) 821790a779fSJames Molloy break; 822790a779fSJames Molloy for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 823790a779fSJames Molloy if (MI.getOperand(i + 1).getMBB() == Incoming) { 824790a779fSJames Molloy MI.RemoveOperand(i + 1); 825790a779fSJames Molloy MI.RemoveOperand(i); 826790a779fSJames Molloy break; 827790a779fSJames Molloy } 828790a779fSJames Molloy } 829790a779fSJames Molloy } 830790a779fSJames Molloy 831790a779fSJames Molloy /// Create branches from each prolog basic block to the appropriate epilog 832790a779fSJames Molloy /// block. These edges are needed if the loop ends before reaching the 833790a779fSJames Molloy /// kernel. 834790a779fSJames Molloy void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 835790a779fSJames Molloy MBBVectorTy &PrologBBs, 836790a779fSJames Molloy MachineBasicBlock *KernelBB, 837790a779fSJames Molloy MBBVectorTy &EpilogBBs, 838790a779fSJames Molloy ValueMapTy *VRMap) { 839790a779fSJames Molloy assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 840790a779fSJames Molloy MachineBasicBlock *LastPro = KernelBB; 841790a779fSJames Molloy MachineBasicBlock *LastEpi = KernelBB; 842790a779fSJames Molloy 843790a779fSJames Molloy // Start from the blocks connected to the kernel and work "out" 844790a779fSJames Molloy // to the first prolog and the last epilog blocks. 845790a779fSJames Molloy SmallVector<MachineInstr *, 4> PrevInsts; 846790a779fSJames Molloy unsigned MaxIter = PrologBBs.size() - 1; 847790a779fSJames Molloy for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 848790a779fSJames Molloy // Add branches to the prolog that go to the corresponding 849790a779fSJames Molloy // epilog, and the fall-thru prolog/kernel block. 850790a779fSJames Molloy MachineBasicBlock *Prolog = PrologBBs[j]; 851790a779fSJames Molloy MachineBasicBlock *Epilog = EpilogBBs[i]; 8528a74eca3SJames Molloy 853790a779fSJames Molloy SmallVector<MachineOperand, 4> Cond; 8548a74eca3SJames Molloy Optional<bool> StaticallyGreater = 8558a74eca3SJames Molloy LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 856790a779fSJames Molloy unsigned numAdded = 0; 8578a74eca3SJames Molloy if (!StaticallyGreater.hasValue()) { 858790a779fSJames Molloy Prolog->addSuccessor(Epilog); 859790a779fSJames Molloy numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 8608a74eca3SJames Molloy } else if (*StaticallyGreater == false) { 861790a779fSJames Molloy Prolog->addSuccessor(Epilog); 862790a779fSJames Molloy Prolog->removeSuccessor(LastPro); 863790a779fSJames Molloy LastEpi->removeSuccessor(Epilog); 864790a779fSJames Molloy numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 865790a779fSJames Molloy removePhis(Epilog, LastEpi); 866790a779fSJames Molloy // Remove the blocks that are no longer referenced. 867790a779fSJames Molloy if (LastPro != LastEpi) { 868790a779fSJames Molloy LastEpi->clear(); 869790a779fSJames Molloy LastEpi->eraseFromParent(); 870790a779fSJames Molloy } 8718a74eca3SJames Molloy if (LastPro == KernelBB) { 8728a74eca3SJames Molloy LoopInfo->disposed(); 8738a74eca3SJames Molloy NewKernel = nullptr; 8748a74eca3SJames Molloy } 875790a779fSJames Molloy LastPro->clear(); 876790a779fSJames Molloy LastPro->eraseFromParent(); 877790a779fSJames Molloy } else { 878790a779fSJames Molloy numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 879790a779fSJames Molloy removePhis(Epilog, Prolog); 880790a779fSJames Molloy } 881790a779fSJames Molloy LastPro = Prolog; 882790a779fSJames Molloy LastEpi = Epilog; 883790a779fSJames Molloy for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 884790a779fSJames Molloy E = Prolog->instr_rend(); 885790a779fSJames Molloy I != E && numAdded > 0; ++I, --numAdded) 886790a779fSJames Molloy updateInstruction(&*I, false, j, 0, VRMap); 887790a779fSJames Molloy } 8888a74eca3SJames Molloy 8898a74eca3SJames Molloy if (NewKernel) { 8908a74eca3SJames Molloy LoopInfo->setPreheader(PrologBBs[MaxIter]); 8918a74eca3SJames Molloy LoopInfo->adjustTripCount(-(MaxIter + 1)); 8928a74eca3SJames Molloy } 893790a779fSJames Molloy } 894790a779fSJames Molloy 895790a779fSJames Molloy /// Return true if we can compute the amount the instruction changes 896790a779fSJames Molloy /// during each iteration. Set Delta to the amount of the change. 897790a779fSJames Molloy bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 898790a779fSJames Molloy const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 899790a779fSJames Molloy const MachineOperand *BaseOp; 900790a779fSJames Molloy int64_t Offset; 9018fbc9258SSander de Smalen bool OffsetIsScalable; 9028fbc9258SSander de Smalen if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 9038fbc9258SSander de Smalen return false; 9048fbc9258SSander de Smalen 9058fbc9258SSander de Smalen // FIXME: This algorithm assumes instructions have fixed-size offsets. 9068fbc9258SSander de Smalen if (OffsetIsScalable) 907790a779fSJames Molloy return false; 908790a779fSJames Molloy 909790a779fSJames Molloy if (!BaseOp->isReg()) 910790a779fSJames Molloy return false; 911790a779fSJames Molloy 912790a779fSJames Molloy Register BaseReg = BaseOp->getReg(); 913790a779fSJames Molloy 914790a779fSJames Molloy MachineRegisterInfo &MRI = MF.getRegInfo(); 915790a779fSJames Molloy // Check if there is a Phi. If so, get the definition in the loop. 916790a779fSJames Molloy MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 917790a779fSJames Molloy if (BaseDef && BaseDef->isPHI()) { 918790a779fSJames Molloy BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 919790a779fSJames Molloy BaseDef = MRI.getVRegDef(BaseReg); 920790a779fSJames Molloy } 921790a779fSJames Molloy if (!BaseDef) 922790a779fSJames Molloy return false; 923790a779fSJames Molloy 924790a779fSJames Molloy int D = 0; 925790a779fSJames Molloy if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 926790a779fSJames Molloy return false; 927790a779fSJames Molloy 928790a779fSJames Molloy Delta = D; 929790a779fSJames Molloy return true; 930790a779fSJames Molloy } 931790a779fSJames Molloy 932790a779fSJames Molloy /// Update the memory operand with a new offset when the pipeliner 933790a779fSJames Molloy /// generates a new copy of the instruction that refers to a 934790a779fSJames Molloy /// different memory location. 935790a779fSJames Molloy void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 936790a779fSJames Molloy MachineInstr &OldMI, 937790a779fSJames Molloy unsigned Num) { 938790a779fSJames Molloy if (Num == 0) 939790a779fSJames Molloy return; 940790a779fSJames Molloy // If the instruction has memory operands, then adjust the offset 941790a779fSJames Molloy // when the instruction appears in different stages. 942790a779fSJames Molloy if (NewMI.memoperands_empty()) 943790a779fSJames Molloy return; 944790a779fSJames Molloy SmallVector<MachineMemOperand *, 2> NewMMOs; 945790a779fSJames Molloy for (MachineMemOperand *MMO : NewMI.memoperands()) { 946790a779fSJames Molloy // TODO: Figure out whether isAtomic is really necessary (see D57601). 947790a779fSJames Molloy if (MMO->isVolatile() || MMO->isAtomic() || 948790a779fSJames Molloy (MMO->isInvariant() && MMO->isDereferenceable()) || 949790a779fSJames Molloy (!MMO->getValue())) { 950790a779fSJames Molloy NewMMOs.push_back(MMO); 951790a779fSJames Molloy continue; 952790a779fSJames Molloy } 953790a779fSJames Molloy unsigned Delta; 954790a779fSJames Molloy if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 955790a779fSJames Molloy int64_t AdjOffset = Delta * Num; 956790a779fSJames Molloy NewMMOs.push_back( 957790a779fSJames Molloy MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 958790a779fSJames Molloy } else { 959790a779fSJames Molloy NewMMOs.push_back( 960790a779fSJames Molloy MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 961790a779fSJames Molloy } 962790a779fSJames Molloy } 963790a779fSJames Molloy NewMI.setMemRefs(MF, NewMMOs); 964790a779fSJames Molloy } 965790a779fSJames Molloy 966790a779fSJames Molloy /// Clone the instruction for the new pipelined loop and update the 967790a779fSJames Molloy /// memory operands, if needed. 968790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 969790a779fSJames Molloy unsigned CurStageNum, 970790a779fSJames Molloy unsigned InstStageNum) { 971790a779fSJames Molloy MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 972790a779fSJames Molloy // Check for tied operands in inline asm instructions. This should be handled 973790a779fSJames Molloy // elsewhere, but I'm not sure of the best solution. 974790a779fSJames Molloy if (OldMI->isInlineAsm()) 975790a779fSJames Molloy for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 976790a779fSJames Molloy const auto &MO = OldMI->getOperand(i); 977790a779fSJames Molloy if (MO.isReg() && MO.isUse()) 978790a779fSJames Molloy break; 979790a779fSJames Molloy unsigned UseIdx; 980790a779fSJames Molloy if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 981790a779fSJames Molloy NewMI->tieOperands(i, UseIdx); 982790a779fSJames Molloy } 983790a779fSJames Molloy updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 984790a779fSJames Molloy return NewMI; 985790a779fSJames Molloy } 986790a779fSJames Molloy 987790a779fSJames Molloy /// Clone the instruction for the new pipelined loop. If needed, this 988790a779fSJames Molloy /// function updates the instruction using the values saved in the 989790a779fSJames Molloy /// InstrChanges structure. 990790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 991790a779fSJames Molloy MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 992790a779fSJames Molloy MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 993790a779fSJames Molloy auto It = InstrChanges.find(OldMI); 994790a779fSJames Molloy if (It != InstrChanges.end()) { 995790a779fSJames Molloy std::pair<unsigned, int64_t> RegAndOffset = It->second; 996790a779fSJames Molloy unsigned BasePos, OffsetPos; 997790a779fSJames Molloy if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 998790a779fSJames Molloy return nullptr; 999790a779fSJames Molloy int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1000790a779fSJames Molloy MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1001790a779fSJames Molloy if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1002790a779fSJames Molloy NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1003790a779fSJames Molloy NewMI->getOperand(OffsetPos).setImm(NewOffset); 1004790a779fSJames Molloy } 1005790a779fSJames Molloy updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1006790a779fSJames Molloy return NewMI; 1007790a779fSJames Molloy } 1008790a779fSJames Molloy 1009790a779fSJames Molloy /// Update the machine instruction with new virtual registers. This 1010790a779fSJames Molloy /// function may change the defintions and/or uses. 1011790a779fSJames Molloy void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1012790a779fSJames Molloy bool LastDef, 1013790a779fSJames Molloy unsigned CurStageNum, 1014790a779fSJames Molloy unsigned InstrStageNum, 1015790a779fSJames Molloy ValueMapTy *VRMap) { 1016790a779fSJames Molloy for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1017790a779fSJames Molloy MachineOperand &MO = NewMI->getOperand(i); 1018790a779fSJames Molloy if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1019790a779fSJames Molloy continue; 1020790a779fSJames Molloy Register reg = MO.getReg(); 1021790a779fSJames Molloy if (MO.isDef()) { 1022790a779fSJames Molloy // Create a new virtual register for the definition. 1023790a779fSJames Molloy const TargetRegisterClass *RC = MRI.getRegClass(reg); 1024790a779fSJames Molloy Register NewReg = MRI.createVirtualRegister(RC); 1025790a779fSJames Molloy MO.setReg(NewReg); 1026790a779fSJames Molloy VRMap[CurStageNum][reg] = NewReg; 1027790a779fSJames Molloy if (LastDef) 1028790a779fSJames Molloy replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1029790a779fSJames Molloy } else if (MO.isUse()) { 1030790a779fSJames Molloy MachineInstr *Def = MRI.getVRegDef(reg); 1031790a779fSJames Molloy // Compute the stage that contains the last definition for instruction. 1032790a779fSJames Molloy int DefStageNum = Schedule.getStage(Def); 1033790a779fSJames Molloy unsigned StageNum = CurStageNum; 1034790a779fSJames Molloy if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1035790a779fSJames Molloy // Compute the difference in stages between the defintion and the use. 1036790a779fSJames Molloy unsigned StageDiff = (InstrStageNum - DefStageNum); 1037790a779fSJames Molloy // Make an adjustment to get the last definition. 1038790a779fSJames Molloy StageNum -= StageDiff; 1039790a779fSJames Molloy } 1040790a779fSJames Molloy if (VRMap[StageNum].count(reg)) 1041790a779fSJames Molloy MO.setReg(VRMap[StageNum][reg]); 1042790a779fSJames Molloy } 1043790a779fSJames Molloy } 1044790a779fSJames Molloy } 1045790a779fSJames Molloy 1046790a779fSJames Molloy /// Return the instruction in the loop that defines the register. 1047790a779fSJames Molloy /// If the definition is a Phi, then follow the Phi operand to 1048790a779fSJames Molloy /// the instruction in the loop. 1049790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1050790a779fSJames Molloy SmallPtrSet<MachineInstr *, 8> Visited; 1051790a779fSJames Molloy MachineInstr *Def = MRI.getVRegDef(Reg); 1052790a779fSJames Molloy while (Def->isPHI()) { 1053790a779fSJames Molloy if (!Visited.insert(Def).second) 1054790a779fSJames Molloy break; 1055790a779fSJames Molloy for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1056790a779fSJames Molloy if (Def->getOperand(i + 1).getMBB() == BB) { 1057790a779fSJames Molloy Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1058790a779fSJames Molloy break; 1059790a779fSJames Molloy } 1060790a779fSJames Molloy } 1061790a779fSJames Molloy return Def; 1062790a779fSJames Molloy } 1063790a779fSJames Molloy 1064790a779fSJames Molloy /// Return the new name for the value from the previous stage. 1065790a779fSJames Molloy unsigned ModuloScheduleExpander::getPrevMapVal( 1066790a779fSJames Molloy unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1067790a779fSJames Molloy ValueMapTy *VRMap, MachineBasicBlock *BB) { 1068790a779fSJames Molloy unsigned PrevVal = 0; 1069790a779fSJames Molloy if (StageNum > PhiStage) { 1070790a779fSJames Molloy MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1071790a779fSJames Molloy if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1072790a779fSJames Molloy // The name is defined in the previous stage. 1073790a779fSJames Molloy PrevVal = VRMap[StageNum - 1][LoopVal]; 1074790a779fSJames Molloy else if (VRMap[StageNum].count(LoopVal)) 1075790a779fSJames Molloy // The previous name is defined in the current stage when the instruction 1076790a779fSJames Molloy // order is swapped. 1077790a779fSJames Molloy PrevVal = VRMap[StageNum][LoopVal]; 1078790a779fSJames Molloy else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1079790a779fSJames Molloy // The loop value hasn't yet been scheduled. 1080790a779fSJames Molloy PrevVal = LoopVal; 1081790a779fSJames Molloy else if (StageNum == PhiStage + 1) 1082790a779fSJames Molloy // The loop value is another phi, which has not been scheduled. 1083790a779fSJames Molloy PrevVal = getInitPhiReg(*LoopInst, BB); 1084790a779fSJames Molloy else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1085790a779fSJames Molloy // The loop value is another phi, which has been scheduled. 1086790a779fSJames Molloy PrevVal = 1087790a779fSJames Molloy getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1088790a779fSJames Molloy LoopStage, VRMap, BB); 1089790a779fSJames Molloy } 1090790a779fSJames Molloy return PrevVal; 1091790a779fSJames Molloy } 1092790a779fSJames Molloy 1093790a779fSJames Molloy /// Rewrite the Phi values in the specified block to use the mappings 1094790a779fSJames Molloy /// from the initial operand. Once the Phi is scheduled, we switch 1095790a779fSJames Molloy /// to using the loop value instead of the Phi value, so those names 1096790a779fSJames Molloy /// do not need to be rewritten. 1097790a779fSJames Molloy void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1098790a779fSJames Molloy unsigned StageNum, 1099790a779fSJames Molloy ValueMapTy *VRMap, 1100790a779fSJames Molloy InstrMapTy &InstrMap) { 1101790a779fSJames Molloy for (auto &PHI : BB->phis()) { 1102790a779fSJames Molloy unsigned InitVal = 0; 1103790a779fSJames Molloy unsigned LoopVal = 0; 1104790a779fSJames Molloy getPhiRegs(PHI, BB, InitVal, LoopVal); 1105790a779fSJames Molloy Register PhiDef = PHI.getOperand(0).getReg(); 1106790a779fSJames Molloy 1107790a779fSJames Molloy unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1108790a779fSJames Molloy unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1109790a779fSJames Molloy unsigned NumPhis = getStagesForPhi(PhiDef); 1110790a779fSJames Molloy if (NumPhis > StageNum) 1111790a779fSJames Molloy NumPhis = StageNum; 1112790a779fSJames Molloy for (unsigned np = 0; np <= NumPhis; ++np) { 1113790a779fSJames Molloy unsigned NewVal = 1114790a779fSJames Molloy getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1115790a779fSJames Molloy if (!NewVal) 1116790a779fSJames Molloy NewVal = InitVal; 1117790a779fSJames Molloy rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1118790a779fSJames Molloy NewVal); 1119790a779fSJames Molloy } 1120790a779fSJames Molloy } 1121790a779fSJames Molloy } 1122790a779fSJames Molloy 1123790a779fSJames Molloy /// Rewrite a previously scheduled instruction to use the register value 1124790a779fSJames Molloy /// from the new instruction. Make sure the instruction occurs in the 1125790a779fSJames Molloy /// basic block, and we don't change the uses in the new instruction. 1126790a779fSJames Molloy void ModuloScheduleExpander::rewriteScheduledInstr( 1127790a779fSJames Molloy MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1128790a779fSJames Molloy unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1129790a779fSJames Molloy unsigned PrevReg) { 1130790a779fSJames Molloy bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1131790a779fSJames Molloy int StagePhi = Schedule.getStage(Phi) + PhiNum; 1132790a779fSJames Molloy // Rewrite uses that have been scheduled already to use the new 1133790a779fSJames Molloy // Phi register. 1134642a361bSKazu Hirata for (MachineOperand &UseOp : 1135642a361bSKazu Hirata llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1136790a779fSJames Molloy MachineInstr *UseMI = UseOp.getParent(); 1137790a779fSJames Molloy if (UseMI->getParent() != BB) 1138790a779fSJames Molloy continue; 1139790a779fSJames Molloy if (UseMI->isPHI()) { 1140790a779fSJames Molloy if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1141790a779fSJames Molloy continue; 1142790a779fSJames Molloy if (getLoopPhiReg(*UseMI, BB) != OldReg) 1143790a779fSJames Molloy continue; 1144790a779fSJames Molloy } 1145790a779fSJames Molloy InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1146790a779fSJames Molloy assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1147790a779fSJames Molloy MachineInstr *OrigMI = OrigInstr->second; 1148790a779fSJames Molloy int StageSched = Schedule.getStage(OrigMI); 1149790a779fSJames Molloy int CycleSched = Schedule.getCycle(OrigMI); 1150790a779fSJames Molloy unsigned ReplaceReg = 0; 1151790a779fSJames Molloy // This is the stage for the scheduled instruction. 1152790a779fSJames Molloy if (StagePhi == StageSched && Phi->isPHI()) { 1153790a779fSJames Molloy int CyclePhi = Schedule.getCycle(Phi); 1154790a779fSJames Molloy if (PrevReg && InProlog) 1155790a779fSJames Molloy ReplaceReg = PrevReg; 1156790a779fSJames Molloy else if (PrevReg && !isLoopCarried(*Phi) && 1157790a779fSJames Molloy (CyclePhi <= CycleSched || OrigMI->isPHI())) 1158790a779fSJames Molloy ReplaceReg = PrevReg; 1159790a779fSJames Molloy else 1160790a779fSJames Molloy ReplaceReg = NewReg; 1161790a779fSJames Molloy } 1162790a779fSJames Molloy // The scheduled instruction occurs before the scheduled Phi, and the 1163790a779fSJames Molloy // Phi is not loop carried. 1164790a779fSJames Molloy if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1165790a779fSJames Molloy ReplaceReg = NewReg; 1166790a779fSJames Molloy if (StagePhi > StageSched && Phi->isPHI()) 1167790a779fSJames Molloy ReplaceReg = NewReg; 1168790a779fSJames Molloy if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1169790a779fSJames Molloy ReplaceReg = NewReg; 1170790a779fSJames Molloy if (ReplaceReg) { 1171790a779fSJames Molloy MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1172790a779fSJames Molloy UseOp.setReg(ReplaceReg); 1173790a779fSJames Molloy } 1174790a779fSJames Molloy } 1175790a779fSJames Molloy } 1176790a779fSJames Molloy 1177790a779fSJames Molloy bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1178790a779fSJames Molloy if (!Phi.isPHI()) 1179790a779fSJames Molloy return false; 1180caabb713SThomas Raoux int DefCycle = Schedule.getCycle(&Phi); 1181790a779fSJames Molloy int DefStage = Schedule.getStage(&Phi); 1182790a779fSJames Molloy 1183790a779fSJames Molloy unsigned InitVal = 0; 1184790a779fSJames Molloy unsigned LoopVal = 0; 1185790a779fSJames Molloy getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1186790a779fSJames Molloy MachineInstr *Use = MRI.getVRegDef(LoopVal); 1187790a779fSJames Molloy if (!Use || Use->isPHI()) 1188790a779fSJames Molloy return true; 1189caabb713SThomas Raoux int LoopCycle = Schedule.getCycle(Use); 1190790a779fSJames Molloy int LoopStage = Schedule.getStage(Use); 1191790a779fSJames Molloy return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1192790a779fSJames Molloy } 119393549957SJames Molloy 119493549957SJames Molloy //===----------------------------------------------------------------------===// 1195fef9f590SJames Molloy // PeelingModuloScheduleExpander implementation 1196fef9f590SJames Molloy //===----------------------------------------------------------------------===// 1197fef9f590SJames Molloy // This is a reimplementation of ModuloScheduleExpander that works by creating 1198fef9f590SJames Molloy // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1199fef9f590SJames Molloy //===----------------------------------------------------------------------===// 1200fef9f590SJames Molloy 1201fef9f590SJames Molloy namespace { 1202fef9f590SJames Molloy // Remove any dead phis in MBB. Dead phis either have only one block as input 1203fef9f590SJames Molloy // (in which case they are the identity) or have no uses. 1204fef9f590SJames Molloy void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1205e0297a8bSThomas Raoux LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1206fef9f590SJames Molloy bool Changed = true; 1207fef9f590SJames Molloy while (Changed) { 1208fef9f590SJames Molloy Changed = false; 1209c3e698e2SKazu Hirata for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1210fef9f590SJames Molloy assert(MI.isPHI()); 1211fef9f590SJames Molloy if (MRI.use_empty(MI.getOperand(0).getReg())) { 1212fef9f590SJames Molloy if (LIS) 1213fef9f590SJames Molloy LIS->RemoveMachineInstrFromMaps(MI); 1214fef9f590SJames Molloy MI.eraseFromParent(); 1215fef9f590SJames Molloy Changed = true; 1216e0297a8bSThomas Raoux } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1217fef9f590SJames Molloy MRI.constrainRegClass(MI.getOperand(1).getReg(), 1218fef9f590SJames Molloy MRI.getRegClass(MI.getOperand(0).getReg())); 1219fef9f590SJames Molloy MRI.replaceRegWith(MI.getOperand(0).getReg(), 1220fef9f590SJames Molloy MI.getOperand(1).getReg()); 1221fef9f590SJames Molloy if (LIS) 1222fef9f590SJames Molloy LIS->RemoveMachineInstrFromMaps(MI); 1223fef9f590SJames Molloy MI.eraseFromParent(); 1224fef9f590SJames Molloy Changed = true; 1225fef9f590SJames Molloy } 1226fef9f590SJames Molloy } 1227fef9f590SJames Molloy } 1228fef9f590SJames Molloy } 1229fef9f590SJames Molloy 1230fef9f590SJames Molloy /// Rewrites the kernel block in-place to adhere to the given schedule. 1231fef9f590SJames Molloy /// KernelRewriter holds all of the state required to perform the rewriting. 1232fef9f590SJames Molloy class KernelRewriter { 1233fef9f590SJames Molloy ModuloSchedule &S; 1234fef9f590SJames Molloy MachineBasicBlock *BB; 1235fef9f590SJames Molloy MachineBasicBlock *PreheaderBB, *ExitBB; 1236fef9f590SJames Molloy MachineRegisterInfo &MRI; 1237fef9f590SJames Molloy const TargetInstrInfo *TII; 1238fef9f590SJames Molloy LiveIntervals *LIS; 1239fef9f590SJames Molloy 1240fef9f590SJames Molloy // Map from register class to canonical undef register for that class. 1241fef9f590SJames Molloy DenseMap<const TargetRegisterClass *, Register> Undefs; 1242fef9f590SJames Molloy // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1243fef9f590SJames Molloy // this map is only used when InitReg is non-undef. 1244fef9f590SJames Molloy DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1245fef9f590SJames Molloy // Map from LoopReg to phi register where the InitReg is undef. 1246fef9f590SJames Molloy DenseMap<Register, Register> UndefPhis; 1247fef9f590SJames Molloy 1248fef9f590SJames Molloy // Reg is used by MI. Return the new register MI should use to adhere to the 1249fef9f590SJames Molloy // schedule. Insert phis as necessary. 1250fef9f590SJames Molloy Register remapUse(Register Reg, MachineInstr &MI); 1251fef9f590SJames Molloy // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1252fef9f590SJames Molloy // If InitReg is not given it is chosen arbitrarily. It will either be undef 1253fef9f590SJames Molloy // or will be chosen so as to share another phi. 1254fef9f590SJames Molloy Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1255fef9f590SJames Molloy const TargetRegisterClass *RC = nullptr); 1256fef9f590SJames Molloy // Create an undef register of the given register class. 1257fef9f590SJames Molloy Register undef(const TargetRegisterClass *RC); 1258fef9f590SJames Molloy 1259fef9f590SJames Molloy public: 1260e15e1417SHendrik Greving KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1261fef9f590SJames Molloy LiveIntervals *LIS = nullptr); 1262fef9f590SJames Molloy void rewrite(); 1263fef9f590SJames Molloy }; 1264fef9f590SJames Molloy } // namespace 1265fef9f590SJames Molloy 1266fef9f590SJames Molloy KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1267e15e1417SHendrik Greving MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1268e15e1417SHendrik Greving : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1269fef9f590SJames Molloy ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1270fef9f590SJames Molloy TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1271fef9f590SJames Molloy PreheaderBB = *BB->pred_begin(); 1272fef9f590SJames Molloy if (PreheaderBB == BB) 1273fef9f590SJames Molloy PreheaderBB = *std::next(BB->pred_begin()); 1274fef9f590SJames Molloy } 1275fef9f590SJames Molloy 1276fef9f590SJames Molloy void KernelRewriter::rewrite() { 1277fef9f590SJames Molloy // Rearrange the loop to be in schedule order. Note that the schedule may 1278fef9f590SJames Molloy // contain instructions that are not owned by the loop block (InstrChanges and 1279fef9f590SJames Molloy // friends), so we gracefully handle unowned instructions and delete any 1280fef9f590SJames Molloy // instructions that weren't in the schedule. 1281fef9f590SJames Molloy auto InsertPt = BB->getFirstTerminator(); 1282fef9f590SJames Molloy MachineInstr *FirstMI = nullptr; 1283fef9f590SJames Molloy for (MachineInstr *MI : S.getInstructions()) { 1284fef9f590SJames Molloy if (MI->isPHI()) 1285fef9f590SJames Molloy continue; 1286fef9f590SJames Molloy if (MI->getParent()) 1287fef9f590SJames Molloy MI->removeFromParent(); 1288fef9f590SJames Molloy BB->insert(InsertPt, MI); 1289fef9f590SJames Molloy if (!FirstMI) 1290fef9f590SJames Molloy FirstMI = MI; 1291fef9f590SJames Molloy } 12929942c077SSimon Pilgrim assert(FirstMI && "Failed to find first MI in schedule"); 1293fef9f590SJames Molloy 1294fef9f590SJames Molloy // At this point all of the scheduled instructions are between FirstMI 1295fef9f590SJames Molloy // and the end of the block. Kill from the first non-phi to FirstMI. 1296fef9f590SJames Molloy for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1297fef9f590SJames Molloy if (LIS) 1298fef9f590SJames Molloy LIS->RemoveMachineInstrFromMaps(*I); 1299fef9f590SJames Molloy (I++)->eraseFromParent(); 1300fef9f590SJames Molloy } 1301fef9f590SJames Molloy 1302fef9f590SJames Molloy // Now remap every instruction in the loop. 1303fef9f590SJames Molloy for (MachineInstr &MI : *BB) { 13049baac83aSJames Molloy if (MI.isPHI() || MI.isTerminator()) 1305fef9f590SJames Molloy continue; 1306fef9f590SJames Molloy for (MachineOperand &MO : MI.uses()) { 1307fef9f590SJames Molloy if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1308fef9f590SJames Molloy continue; 1309fef9f590SJames Molloy Register Reg = remapUse(MO.getReg(), MI); 1310fef9f590SJames Molloy MO.setReg(Reg); 1311fef9f590SJames Molloy } 1312fef9f590SJames Molloy } 1313fef9f590SJames Molloy EliminateDeadPhis(BB, MRI, LIS); 1314fef9f590SJames Molloy 1315fef9f590SJames Molloy // Ensure a phi exists for all instructions that are either referenced by 1316fef9f590SJames Molloy // an illegal phi or by an instruction outside the loop. This allows us to 1317fef9f590SJames Molloy // treat remaps of these values the same as "normal" values that come from 1318fef9f590SJames Molloy // loop-carried phis. 1319fef9f590SJames Molloy for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1320fef9f590SJames Molloy if (MI->isPHI()) { 1321fef9f590SJames Molloy Register R = MI->getOperand(0).getReg(); 1322fef9f590SJames Molloy phi(R); 1323fef9f590SJames Molloy continue; 1324fef9f590SJames Molloy } 1325fef9f590SJames Molloy 1326fef9f590SJames Molloy for (MachineOperand &Def : MI->defs()) { 1327fef9f590SJames Molloy for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1328fef9f590SJames Molloy if (MI.getParent() != BB) { 1329fef9f590SJames Molloy phi(Def.getReg()); 1330fef9f590SJames Molloy break; 1331fef9f590SJames Molloy } 1332fef9f590SJames Molloy } 1333fef9f590SJames Molloy } 1334fef9f590SJames Molloy } 1335fef9f590SJames Molloy } 1336fef9f590SJames Molloy 1337fef9f590SJames Molloy Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1338fef9f590SJames Molloy MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1339fef9f590SJames Molloy if (!Producer) 1340fef9f590SJames Molloy return Reg; 1341fef9f590SJames Molloy 1342fef9f590SJames Molloy int ConsumerStage = S.getStage(&MI); 1343fef9f590SJames Molloy if (!Producer->isPHI()) { 1344fef9f590SJames Molloy // Non-phi producers are simple to remap. Insert as many phis as the 1345fef9f590SJames Molloy // difference between the consumer and producer stages. 1346fef9f590SJames Molloy if (Producer->getParent() != BB) 1347fef9f590SJames Molloy // Producer was not inside the loop. Use the register as-is. 1348fef9f590SJames Molloy return Reg; 1349fef9f590SJames Molloy int ProducerStage = S.getStage(Producer); 1350fef9f590SJames Molloy assert(ConsumerStage != -1 && 1351fef9f590SJames Molloy "In-loop consumer should always be scheduled!"); 1352fef9f590SJames Molloy assert(ConsumerStage >= ProducerStage); 1353fef9f590SJames Molloy unsigned StageDiff = ConsumerStage - ProducerStage; 1354fef9f590SJames Molloy 1355fef9f590SJames Molloy for (unsigned I = 0; I < StageDiff; ++I) 1356fef9f590SJames Molloy Reg = phi(Reg); 1357fef9f590SJames Molloy return Reg; 1358fef9f590SJames Molloy } 1359fef9f590SJames Molloy 1360fef9f590SJames Molloy // First, dive through the phi chain to find the defaults for the generated 1361fef9f590SJames Molloy // phis. 1362fef9f590SJames Molloy SmallVector<Optional<Register>, 4> Defaults; 1363fef9f590SJames Molloy Register LoopReg = Reg; 1364fef9f590SJames Molloy auto LoopProducer = Producer; 1365fef9f590SJames Molloy while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1366fef9f590SJames Molloy LoopReg = getLoopPhiReg(*LoopProducer, BB); 1367fef9f590SJames Molloy Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1368fef9f590SJames Molloy LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1369fef9f590SJames Molloy assert(LoopProducer); 1370fef9f590SJames Molloy } 1371fef9f590SJames Molloy int LoopProducerStage = S.getStage(LoopProducer); 1372fef9f590SJames Molloy 1373fef9f590SJames Molloy Optional<Register> IllegalPhiDefault; 1374fef9f590SJames Molloy 1375fef9f590SJames Molloy if (LoopProducerStage == -1) { 1376fef9f590SJames Molloy // Do nothing. 1377fef9f590SJames Molloy } else if (LoopProducerStage > ConsumerStage) { 1378fef9f590SJames Molloy // This schedule is only representable if ProducerStage == ConsumerStage+1. 1379fef9f590SJames Molloy // In addition, Consumer's cycle must be scheduled after Producer in the 138011f0f7f5SJames Molloy // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 138111f0f7f5SJames Molloy // functions. 138211f0f7f5SJames Molloy #ifndef NDEBUG // Silence unused variables in non-asserts mode. 138311f0f7f5SJames Molloy int LoopProducerCycle = S.getCycle(LoopProducer); 138411f0f7f5SJames Molloy int ConsumerCycle = S.getCycle(&MI); 138511f0f7f5SJames Molloy #endif 1386fef9f590SJames Molloy assert(LoopProducerCycle <= ConsumerCycle); 1387fef9f590SJames Molloy assert(LoopProducerStage == ConsumerStage + 1); 1388fef9f590SJames Molloy // Peel off the first phi from Defaults and insert a phi between producer 1389fef9f590SJames Molloy // and consumer. This phi will not be at the front of the block so we 1390fef9f590SJames Molloy // consider it illegal. It will only exist during the rewrite process; it 1391fef9f590SJames Molloy // needs to exist while we peel off prologs because these could take the 1392fef9f590SJames Molloy // default value. After that we can replace all uses with the loop producer 1393fef9f590SJames Molloy // value. 1394fef9f590SJames Molloy IllegalPhiDefault = Defaults.front(); 1395fef9f590SJames Molloy Defaults.erase(Defaults.begin()); 1396fef9f590SJames Molloy } else { 1397fef9f590SJames Molloy assert(ConsumerStage >= LoopProducerStage); 1398fef9f590SJames Molloy int StageDiff = ConsumerStage - LoopProducerStage; 1399fef9f590SJames Molloy if (StageDiff > 0) { 1400fef9f590SJames Molloy LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1401fef9f590SJames Molloy << " to " << (Defaults.size() + StageDiff) << "\n"); 1402fef9f590SJames Molloy // If we need more phis than we have defaults for, pad out with undefs for 1403fef9f590SJames Molloy // the earliest phis, which are at the end of the defaults chain (the 1404fef9f590SJames Molloy // chain is in reverse order). 1405fef9f590SJames Molloy Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1406fef9f590SJames Molloy ? Optional<Register>() 1407fef9f590SJames Molloy : Defaults.back()); 1408fef9f590SJames Molloy } 1409fef9f590SJames Molloy } 1410fef9f590SJames Molloy 1411fef9f590SJames Molloy // Now we know the number of stages to jump back, insert the phi chain. 1412fef9f590SJames Molloy auto DefaultI = Defaults.rbegin(); 1413fef9f590SJames Molloy while (DefaultI != Defaults.rend()) 1414fef9f590SJames Molloy LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1415fef9f590SJames Molloy 1416fef9f590SJames Molloy if (IllegalPhiDefault.hasValue()) { 1417fef9f590SJames Molloy // The consumer optionally consumes LoopProducer in the same iteration 1418fef9f590SJames Molloy // (because the producer is scheduled at an earlier cycle than the consumer) 1419fef9f590SJames Molloy // or the initial value. To facilitate this we create an illegal block here 1420fef9f590SJames Molloy // by embedding a phi in the middle of the block. We will fix this up 1421fef9f590SJames Molloy // immediately prior to pruning. 1422fef9f590SJames Molloy auto RC = MRI.getRegClass(Reg); 1423fef9f590SJames Molloy Register R = MRI.createVirtualRegister(RC); 1424dc26dec3SThomas Raoux MachineInstr *IllegalPhi = 1425fef9f590SJames Molloy BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1426fef9f590SJames Molloy .addReg(IllegalPhiDefault.getValue()) 1427fef9f590SJames Molloy .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1428fef9f590SJames Molloy .addReg(LoopReg) 1429fef9f590SJames Molloy .addMBB(BB); // Block choice is arbitrary and has no effect. 1430dc26dec3SThomas Raoux // Illegal phi should belong to the producer stage so that it can be 1431dc26dec3SThomas Raoux // filtered correctly during peeling. 1432dc26dec3SThomas Raoux S.setStage(IllegalPhi, LoopProducerStage); 1433fef9f590SJames Molloy return R; 1434fef9f590SJames Molloy } 1435fef9f590SJames Molloy 1436fef9f590SJames Molloy return LoopReg; 1437fef9f590SJames Molloy } 1438fef9f590SJames Molloy 1439fef9f590SJames Molloy Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1440fef9f590SJames Molloy const TargetRegisterClass *RC) { 1441fef9f590SJames Molloy // If the init register is not undef, try and find an existing phi. 1442fef9f590SJames Molloy if (InitReg.hasValue()) { 1443fef9f590SJames Molloy auto I = Phis.find({LoopReg, InitReg.getValue()}); 1444fef9f590SJames Molloy if (I != Phis.end()) 1445fef9f590SJames Molloy return I->second; 1446fef9f590SJames Molloy } else { 1447fef9f590SJames Molloy for (auto &KV : Phis) { 1448fef9f590SJames Molloy if (KV.first.first == LoopReg) 1449fef9f590SJames Molloy return KV.second; 1450fef9f590SJames Molloy } 1451fef9f590SJames Molloy } 1452fef9f590SJames Molloy 1453fef9f590SJames Molloy // InitReg is either undef or no existing phi takes InitReg as input. Try and 1454fef9f590SJames Molloy // find a phi that takes undef as input. 1455fef9f590SJames Molloy auto I = UndefPhis.find(LoopReg); 1456fef9f590SJames Molloy if (I != UndefPhis.end()) { 1457fef9f590SJames Molloy Register R = I->second; 1458fef9f590SJames Molloy if (!InitReg.hasValue()) 1459fef9f590SJames Molloy // Found a phi taking undef as input, and this input is undef so return 1460fef9f590SJames Molloy // without any more changes. 1461fef9f590SJames Molloy return R; 1462fef9f590SJames Molloy // Found a phi taking undef as input, so rewrite it to take InitReg. 1463fef9f590SJames Molloy MachineInstr *MI = MRI.getVRegDef(R); 1464fef9f590SJames Molloy MI->getOperand(1).setReg(InitReg.getValue()); 1465fef9f590SJames Molloy Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1466fef9f590SJames Molloy MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1467fef9f590SJames Molloy UndefPhis.erase(I); 1468fef9f590SJames Molloy return R; 1469fef9f590SJames Molloy } 1470fef9f590SJames Molloy 1471fef9f590SJames Molloy // Failed to find any existing phi to reuse, so create a new one. 1472fef9f590SJames Molloy if (!RC) 1473fef9f590SJames Molloy RC = MRI.getRegClass(LoopReg); 1474fef9f590SJames Molloy Register R = MRI.createVirtualRegister(RC); 1475fef9f590SJames Molloy if (InitReg.hasValue()) 1476fef9f590SJames Molloy MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1477fef9f590SJames Molloy BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1478fef9f590SJames Molloy .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1479fef9f590SJames Molloy .addMBB(PreheaderBB) 1480fef9f590SJames Molloy .addReg(LoopReg) 1481fef9f590SJames Molloy .addMBB(BB); 1482fef9f590SJames Molloy if (!InitReg.hasValue()) 1483fef9f590SJames Molloy UndefPhis[LoopReg] = R; 1484fef9f590SJames Molloy else 1485fef9f590SJames Molloy Phis[{LoopReg, *InitReg}] = R; 1486fef9f590SJames Molloy return R; 1487fef9f590SJames Molloy } 1488fef9f590SJames Molloy 1489fef9f590SJames Molloy Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1490fef9f590SJames Molloy Register &R = Undefs[RC]; 1491fef9f590SJames Molloy if (R == 0) { 1492fef9f590SJames Molloy // Create an IMPLICIT_DEF that defines this register if we need it. 1493fef9f590SJames Molloy // All uses of this should be removed by the time we have finished unrolling 1494fef9f590SJames Molloy // prologs and epilogs. 1495fef9f590SJames Molloy R = MRI.createVirtualRegister(RC); 1496fef9f590SJames Molloy auto *InsertBB = &PreheaderBB->getParent()->front(); 1497fef9f590SJames Molloy BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1498fef9f590SJames Molloy TII->get(TargetOpcode::IMPLICIT_DEF), R); 1499fef9f590SJames Molloy } 1500fef9f590SJames Molloy return R; 1501fef9f590SJames Molloy } 1502fef9f590SJames Molloy 1503fef9f590SJames Molloy namespace { 1504fef9f590SJames Molloy /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1505fef9f590SJames Molloy /// the operand are discovered, such as how many in-loop PHIs it has to jump 1506fef9f590SJames Molloy /// through and defaults for these phis. 1507fef9f590SJames Molloy class KernelOperandInfo { 1508fef9f590SJames Molloy MachineBasicBlock *BB; 1509fef9f590SJames Molloy MachineRegisterInfo &MRI; 1510fef9f590SJames Molloy SmallVector<Register, 4> PhiDefaults; 1511fef9f590SJames Molloy MachineOperand *Source; 1512fef9f590SJames Molloy MachineOperand *Target; 1513fef9f590SJames Molloy 1514fef9f590SJames Molloy public: 1515fef9f590SJames Molloy KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1516fef9f590SJames Molloy const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1517fef9f590SJames Molloy : MRI(MRI) { 1518fef9f590SJames Molloy Source = MO; 1519fef9f590SJames Molloy BB = MO->getParent()->getParent(); 1520fef9f590SJames Molloy while (isRegInLoop(MO)) { 1521fef9f590SJames Molloy MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1522fef9f590SJames Molloy if (MI->isFullCopy()) { 1523fef9f590SJames Molloy MO = &MI->getOperand(1); 1524fef9f590SJames Molloy continue; 1525fef9f590SJames Molloy } 1526fef9f590SJames Molloy if (!MI->isPHI()) 1527fef9f590SJames Molloy break; 1528fef9f590SJames Molloy // If this is an illegal phi, don't count it in distance. 1529fef9f590SJames Molloy if (IllegalPhis.count(MI)) { 1530fef9f590SJames Molloy MO = &MI->getOperand(3); 1531fef9f590SJames Molloy continue; 1532fef9f590SJames Molloy } 1533fef9f590SJames Molloy 1534fef9f590SJames Molloy Register Default = getInitPhiReg(*MI, BB); 1535fef9f590SJames Molloy MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1536fef9f590SJames Molloy : &MI->getOperand(3); 1537fef9f590SJames Molloy PhiDefaults.push_back(Default); 1538fef9f590SJames Molloy } 1539fef9f590SJames Molloy Target = MO; 1540fef9f590SJames Molloy } 1541fef9f590SJames Molloy 1542fef9f590SJames Molloy bool operator==(const KernelOperandInfo &Other) const { 1543fef9f590SJames Molloy return PhiDefaults.size() == Other.PhiDefaults.size(); 1544fef9f590SJames Molloy } 1545fef9f590SJames Molloy 1546fef9f590SJames Molloy void print(raw_ostream &OS) const { 1547fef9f590SJames Molloy OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1548fef9f590SJames Molloy << *Source->getParent(); 1549fef9f590SJames Molloy } 1550fef9f590SJames Molloy 1551fef9f590SJames Molloy private: 1552fef9f590SJames Molloy bool isRegInLoop(MachineOperand *MO) { 1553fef9f590SJames Molloy return MO->isReg() && MO->getReg().isVirtual() && 1554fef9f590SJames Molloy MRI.getVRegDef(MO->getReg())->getParent() == BB; 1555fef9f590SJames Molloy } 1556fef9f590SJames Molloy }; 1557fef9f590SJames Molloy } // namespace 1558fef9f590SJames Molloy 15599026518eSJames Molloy MachineBasicBlock * 15609026518eSJames Molloy PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 15619026518eSJames Molloy MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 15629026518eSJames Molloy if (LPD == LPD_Front) 15639026518eSJames Molloy PeeledFront.push_back(NewBB); 15649026518eSJames Molloy else 15659026518eSJames Molloy PeeledBack.push_front(NewBB); 15669026518eSJames Molloy for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 15679026518eSJames Molloy ++I, ++NI) { 15689026518eSJames Molloy CanonicalMIs[&*I] = &*I; 15699026518eSJames Molloy CanonicalMIs[&*NI] = &*I; 15709026518eSJames Molloy BlockMIs[{NewBB, &*I}] = &*NI; 15719026518eSJames Molloy BlockMIs[{BB, &*I}] = &*I; 15729026518eSJames Molloy } 15739026518eSJames Molloy return NewBB; 15749026518eSJames Molloy } 15759026518eSJames Molloy 1576e0f1d9d8SThomas Raoux void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1577e0f1d9d8SThomas Raoux int MinStage) { 1578e0f1d9d8SThomas Raoux for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1579e0f1d9d8SThomas Raoux I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1580e0f1d9d8SThomas Raoux MachineInstr *MI = &*I++; 1581e0f1d9d8SThomas Raoux int Stage = getStage(MI); 1582e0f1d9d8SThomas Raoux if (Stage == -1 || Stage >= MinStage) 1583e0f1d9d8SThomas Raoux continue; 1584e0f1d9d8SThomas Raoux 1585e0f1d9d8SThomas Raoux for (MachineOperand &DefMO : MI->defs()) { 1586e0f1d9d8SThomas Raoux SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1587e0f1d9d8SThomas Raoux for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1588e0f1d9d8SThomas Raoux // Only PHIs can use values from this block by construction. 1589e0f1d9d8SThomas Raoux // Match with the equivalent PHI in B. 1590e0f1d9d8SThomas Raoux assert(UseMI.isPHI()); 1591e0f1d9d8SThomas Raoux Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1592e0f1d9d8SThomas Raoux MI->getParent()); 1593e0f1d9d8SThomas Raoux Subs.emplace_back(&UseMI, Reg); 1594e0f1d9d8SThomas Raoux } 1595e0f1d9d8SThomas Raoux for (auto &Sub : Subs) 1596e0f1d9d8SThomas Raoux Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1597e0f1d9d8SThomas Raoux *MRI.getTargetRegisterInfo()); 1598e0f1d9d8SThomas Raoux } 1599e0f1d9d8SThomas Raoux if (LIS) 1600e0f1d9d8SThomas Raoux LIS->RemoveMachineInstrFromMaps(*MI); 1601e0f1d9d8SThomas Raoux MI->eraseFromParent(); 1602e0f1d9d8SThomas Raoux } 1603e0f1d9d8SThomas Raoux } 1604e0f1d9d8SThomas Raoux 1605e0f1d9d8SThomas Raoux void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1606e0f1d9d8SThomas Raoux MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1607e0f1d9d8SThomas Raoux auto InsertPt = DestBB->getFirstNonPHI(); 1608e0f1d9d8SThomas Raoux DenseMap<Register, Register> Remaps; 16096bdb61c5SKazu Hirata for (MachineInstr &MI : llvm::make_early_inc_range( 16106bdb61c5SKazu Hirata llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 16116bdb61c5SKazu Hirata if (MI.isPHI()) { 1612e0f1d9d8SThomas Raoux // This is an illegal PHI. If we move any instructions using an illegal 1613d8f2814cSHendrik Greving // PHI, we need to create a legal Phi. 16146bdb61c5SKazu Hirata if (getStage(&MI) != Stage) { 1615d8f2814cSHendrik Greving // The legal Phi is not necessary if the illegal phi's stage 1616d8f2814cSHendrik Greving // is being moved. 16176bdb61c5SKazu Hirata Register PhiR = MI.getOperand(0).getReg(); 1618e0f1d9d8SThomas Raoux auto RC = MRI.getRegClass(PhiR); 1619e0f1d9d8SThomas Raoux Register NR = MRI.createVirtualRegister(RC); 1620d8f2814cSHendrik Greving MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1621d8f2814cSHendrik Greving DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1622e0f1d9d8SThomas Raoux .addReg(PhiR) 1623e0f1d9d8SThomas Raoux .addMBB(SourceBB); 16246bdb61c5SKazu Hirata BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 16256bdb61c5SKazu Hirata CanonicalMIs[NI] = CanonicalMIs[&MI]; 1626e0f1d9d8SThomas Raoux Remaps[PhiR] = NR; 1627d8f2814cSHendrik Greving } 1628e0f1d9d8SThomas Raoux } 16296bdb61c5SKazu Hirata if (getStage(&MI) != Stage) 1630e0f1d9d8SThomas Raoux continue; 16316bdb61c5SKazu Hirata MI.removeFromParent(); 16326bdb61c5SKazu Hirata DestBB->insert(InsertPt, &MI); 16336bdb61c5SKazu Hirata auto *KernelMI = CanonicalMIs[&MI]; 16346bdb61c5SKazu Hirata BlockMIs[{DestBB, KernelMI}] = &MI; 1635e0f1d9d8SThomas Raoux BlockMIs.erase({SourceBB, KernelMI}); 1636e0f1d9d8SThomas Raoux } 1637e0f1d9d8SThomas Raoux SmallVector<MachineInstr *, 4> PhiToDelete; 1638e0f1d9d8SThomas Raoux for (MachineInstr &MI : DestBB->phis()) { 1639e0f1d9d8SThomas Raoux assert(MI.getNumOperands() == 3); 1640e0f1d9d8SThomas Raoux MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1641e0f1d9d8SThomas Raoux // If the instruction referenced by the phi is moved inside the block 1642e0f1d9d8SThomas Raoux // we don't need the phi anymore. 1643e0f1d9d8SThomas Raoux if (getStage(Def) == Stage) { 1644e0f1d9d8SThomas Raoux Register PhiReg = MI.getOperand(0).getReg(); 164520c0527aSThomas Raoux assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 164620c0527aSThomas Raoux MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1647e0f1d9d8SThomas Raoux MI.getOperand(0).setReg(PhiReg); 1648e0f1d9d8SThomas Raoux PhiToDelete.push_back(&MI); 1649e0f1d9d8SThomas Raoux } 1650e0f1d9d8SThomas Raoux } 1651e0f1d9d8SThomas Raoux for (auto *P : PhiToDelete) 1652e0f1d9d8SThomas Raoux P->eraseFromParent(); 1653e0f1d9d8SThomas Raoux InsertPt = DestBB->getFirstNonPHI(); 1654e0297a8bSThomas Raoux // Helper to clone Phi instructions into the destination block. We clone Phi 1655e0297a8bSThomas Raoux // greedily to avoid combinatorial explosion of Phi instructions. 1656e0297a8bSThomas Raoux auto clonePhi = [&](MachineInstr *Phi) { 1657e0297a8bSThomas Raoux MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1658e0f1d9d8SThomas Raoux DestBB->insert(InsertPt, NewMI); 1659e0297a8bSThomas Raoux Register OrigR = Phi->getOperand(0).getReg(); 1660e0f1d9d8SThomas Raoux Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1661e0f1d9d8SThomas Raoux NewMI->getOperand(0).setReg(R); 1662e0f1d9d8SThomas Raoux NewMI->getOperand(1).setReg(OrigR); 1663e0f1d9d8SThomas Raoux NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1664e0f1d9d8SThomas Raoux Remaps[OrigR] = R; 1665e0297a8bSThomas Raoux CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1666e0297a8bSThomas Raoux BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1667e0297a8bSThomas Raoux PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1668e0297a8bSThomas Raoux return R; 1669e0297a8bSThomas Raoux }; 1670e0297a8bSThomas Raoux for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1671e0297a8bSThomas Raoux for (MachineOperand &MO : I->uses()) { 1672e0297a8bSThomas Raoux if (!MO.isReg()) 1673e0297a8bSThomas Raoux continue; 1674e0297a8bSThomas Raoux if (Remaps.count(MO.getReg())) 1675e0f1d9d8SThomas Raoux MO.setReg(Remaps[MO.getReg()]); 1676e0297a8bSThomas Raoux else { 1677e0297a8bSThomas Raoux // If we are using a phi from the source block we need to add a new phi 1678e0297a8bSThomas Raoux // pointing to the old one. 1679e0297a8bSThomas Raoux MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1680e0297a8bSThomas Raoux if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1681e0297a8bSThomas Raoux Register R = clonePhi(Use); 1682e0297a8bSThomas Raoux MO.setReg(R); 1683e0297a8bSThomas Raoux } 1684e0297a8bSThomas Raoux } 1685e0297a8bSThomas Raoux } 1686e0297a8bSThomas Raoux } 1687e0297a8bSThomas Raoux } 1688e0297a8bSThomas Raoux 1689e0297a8bSThomas Raoux Register 1690e0297a8bSThomas Raoux PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1691e0297a8bSThomas Raoux MachineInstr *Phi) { 1692e0297a8bSThomas Raoux unsigned distance = PhiNodeLoopIteration[Phi]; 1693e0297a8bSThomas Raoux MachineInstr *CanonicalUse = CanonicalPhi; 1694f3d8a939SHendrik Greving Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1695e0297a8bSThomas Raoux for (unsigned I = 0; I < distance; ++I) { 1696e0297a8bSThomas Raoux assert(CanonicalUse->isPHI()); 1697e0297a8bSThomas Raoux assert(CanonicalUse->getNumOperands() == 5); 1698e0297a8bSThomas Raoux unsigned LoopRegIdx = 3, InitRegIdx = 1; 1699e0297a8bSThomas Raoux if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1700e0297a8bSThomas Raoux std::swap(LoopRegIdx, InitRegIdx); 1701f3d8a939SHendrik Greving CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1702f3d8a939SHendrik Greving CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1703e0297a8bSThomas Raoux } 1704f3d8a939SHendrik Greving return CanonicalUseReg; 1705e0f1d9d8SThomas Raoux } 1706e0f1d9d8SThomas Raoux 17079026518eSJames Molloy void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 17089026518eSJames Molloy BitVector LS(Schedule.getNumStages(), true); 17099026518eSJames Molloy BitVector AS(Schedule.getNumStages(), true); 17109026518eSJames Molloy LiveStages[BB] = LS; 17119026518eSJames Molloy AvailableStages[BB] = AS; 17129026518eSJames Molloy 17139026518eSJames Molloy // Peel out the prologs. 17149026518eSJames Molloy LS.reset(); 17159026518eSJames Molloy for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 17169026518eSJames Molloy LS[I] = 1; 17179026518eSJames Molloy Prologs.push_back(peelKernel(LPD_Front)); 17189026518eSJames Molloy LiveStages[Prologs.back()] = LS; 17199026518eSJames Molloy AvailableStages[Prologs.back()] = LS; 17209026518eSJames Molloy } 17219026518eSJames Molloy 17229026518eSJames Molloy // Create a block that will end up as the new loop exiting block (dominated by 17239026518eSJames Molloy // all prologs and epilogs). It will only contain PHIs, in the same order as 17249026518eSJames Molloy // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 17259026518eSJames Molloy // that the exiting block is a (sub) clone of BB. This in turn gives us the 17269026518eSJames Molloy // property that any value deffed in BB but used outside of BB is used by a 17279026518eSJames Molloy // PHI in the exiting block. 17289026518eSJames Molloy MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1729e0297a8bSThomas Raoux EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 17309026518eSJames Molloy // Push out the epilogs, again in reverse order. 17319026518eSJames Molloy // We can't assume anything about the minumum loop trip count at this point, 1732e0f1d9d8SThomas Raoux // so emit a fairly complex epilog. 1733e0f1d9d8SThomas Raoux 1734e0f1d9d8SThomas Raoux // We first peel number of stages minus one epilogue. Then we remove dead 1735e0f1d9d8SThomas Raoux // stages and reorder instructions based on their stage. If we have 3 stages 1736e0f1d9d8SThomas Raoux // we generate first: 1737e0f1d9d8SThomas Raoux // E0[3, 2, 1] 1738e0f1d9d8SThomas Raoux // E1[3', 2'] 1739e0f1d9d8SThomas Raoux // E2[3''] 1740e0f1d9d8SThomas Raoux // And then we move instructions based on their stages to have: 1741e0f1d9d8SThomas Raoux // E0[3] 1742e0f1d9d8SThomas Raoux // E1[2, 3'] 1743e0f1d9d8SThomas Raoux // E2[1, 2', 3''] 1744e0f1d9d8SThomas Raoux // The transformation is legal because we only move instructions past 1745e0f1d9d8SThomas Raoux // instructions of a previous loop iteration. 17469026518eSJames Molloy for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1747e0f1d9d8SThomas Raoux Epilogs.push_back(peelKernel(LPD_Back)); 1748e0297a8bSThomas Raoux MachineBasicBlock *B = Epilogs.back(); 1749e0297a8bSThomas Raoux filterInstructions(B, Schedule.getNumStages() - I); 1750e0297a8bSThomas Raoux // Keep track at which iteration each phi belongs to. We need it to know 1751e0297a8bSThomas Raoux // what version of the variable to use during prologue/epilogue stitching. 1752e0297a8bSThomas Raoux EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1753c3e698e2SKazu Hirata for (MachineInstr &Phi : B->phis()) 1754c3e698e2SKazu Hirata PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 17559026518eSJames Molloy } 1756e0f1d9d8SThomas Raoux for (size_t I = 0; I < Epilogs.size(); I++) { 1757e0f1d9d8SThomas Raoux LS.reset(); 1758e0f1d9d8SThomas Raoux for (size_t J = I; J < Epilogs.size(); J++) { 1759e0f1d9d8SThomas Raoux int Iteration = J; 1760e0f1d9d8SThomas Raoux unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1761e0f1d9d8SThomas Raoux // Move stage one block at a time so that Phi nodes are updated correctly. 1762e0f1d9d8SThomas Raoux for (size_t K = Iteration; K > I; K--) 1763e0f1d9d8SThomas Raoux moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1764e0f1d9d8SThomas Raoux LS[Stage] = 1; 1765e0f1d9d8SThomas Raoux } 1766e0f1d9d8SThomas Raoux LiveStages[Epilogs[I]] = LS; 1767e0f1d9d8SThomas Raoux AvailableStages[Epilogs[I]] = AS; 17689026518eSJames Molloy } 17699026518eSJames Molloy 17709026518eSJames Molloy // Now we've defined all the prolog and epilog blocks as a fallthrough 17719026518eSJames Molloy // sequence, add the edges that will be followed if the loop trip count is 17729026518eSJames Molloy // lower than the number of stages (connecting prologs directly with epilogs). 17739026518eSJames Molloy auto PI = Prologs.begin(); 17749026518eSJames Molloy auto EI = Epilogs.begin(); 17759026518eSJames Molloy assert(Prologs.size() == Epilogs.size()); 17769026518eSJames Molloy for (; PI != Prologs.end(); ++PI, ++EI) { 17779026518eSJames Molloy MachineBasicBlock *Pred = *(*EI)->pred_begin(); 17789026518eSJames Molloy (*PI)->addSuccessor(*EI); 17799026518eSJames Molloy for (MachineInstr &MI : (*EI)->phis()) { 17809026518eSJames Molloy Register Reg = MI.getOperand(1).getReg(); 17819026518eSJames Molloy MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1782e0297a8bSThomas Raoux if (Use && Use->getParent() == Pred) { 1783e0297a8bSThomas Raoux MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1784e0297a8bSThomas Raoux if (CanonicalUse->isPHI()) { 1785e0297a8bSThomas Raoux // If the use comes from a phi we need to skip as many phi as the 1786e0297a8bSThomas Raoux // distance between the epilogue and the kernel. Trace through the phi 1787e0297a8bSThomas Raoux // chain to find the right value. 1788e0297a8bSThomas Raoux Reg = getPhiCanonicalReg(CanonicalUse, Use); 1789e0297a8bSThomas Raoux } 17909026518eSJames Molloy Reg = getEquivalentRegisterIn(Reg, *PI); 1791e0297a8bSThomas Raoux } 17929026518eSJames Molloy MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 17939026518eSJames Molloy MI.addOperand(MachineOperand::CreateMBB(*PI)); 17949026518eSJames Molloy } 17959026518eSJames Molloy } 17969026518eSJames Molloy 17979026518eSJames Molloy // Create a list of all blocks in order. 17989026518eSJames Molloy SmallVector<MachineBasicBlock *, 8> Blocks; 17999026518eSJames Molloy llvm::copy(PeeledFront, std::back_inserter(Blocks)); 18009026518eSJames Molloy Blocks.push_back(BB); 18019026518eSJames Molloy llvm::copy(PeeledBack, std::back_inserter(Blocks)); 18029026518eSJames Molloy 18039026518eSJames Molloy // Iterate in reverse order over all instructions, remapping as we go. 18049026518eSJames Molloy for (MachineBasicBlock *B : reverse(Blocks)) { 18059026518eSJames Molloy for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 18069026518eSJames Molloy I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 18079026518eSJames Molloy MachineInstr *MI = &*I++; 18089026518eSJames Molloy rewriteUsesOf(MI); 18099026518eSJames Molloy } 18109026518eSJames Molloy } 1811e0f1d9d8SThomas Raoux for (auto *MI : IllegalPhisToDelete) { 1812e0f1d9d8SThomas Raoux if (LIS) 1813e0f1d9d8SThomas Raoux LIS->RemoveMachineInstrFromMaps(*MI); 1814e0f1d9d8SThomas Raoux MI->eraseFromParent(); 1815e0f1d9d8SThomas Raoux } 1816e0f1d9d8SThomas Raoux IllegalPhisToDelete.clear(); 1817e0f1d9d8SThomas Raoux 18189026518eSJames Molloy // Now all remapping has been done, we're free to optimize the generated code. 18199026518eSJames Molloy for (MachineBasicBlock *B : reverse(Blocks)) 18209026518eSJames Molloy EliminateDeadPhis(B, MRI, LIS); 18219026518eSJames Molloy EliminateDeadPhis(ExitingBB, MRI, LIS); 18229026518eSJames Molloy } 18239026518eSJames Molloy 18249026518eSJames Molloy MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 18259026518eSJames Molloy MachineFunction &MF = *BB->getParent(); 18269026518eSJames Molloy MachineBasicBlock *Exit = *BB->succ_begin(); 18279026518eSJames Molloy if (Exit == BB) 18289026518eSJames Molloy Exit = *std::next(BB->succ_begin()); 18299026518eSJames Molloy 18309026518eSJames Molloy MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 18319026518eSJames Molloy MF.insert(std::next(BB->getIterator()), NewBB); 18329026518eSJames Molloy 18339026518eSJames Molloy // Clone all phis in BB into NewBB and rewrite. 18349026518eSJames Molloy for (MachineInstr &MI : BB->phis()) { 18359026518eSJames Molloy auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 18369026518eSJames Molloy Register OldR = MI.getOperand(3).getReg(); 18379026518eSJames Molloy Register R = MRI.createVirtualRegister(RC); 18389026518eSJames Molloy SmallVector<MachineInstr *, 4> Uses; 18399026518eSJames Molloy for (MachineInstr &Use : MRI.use_instructions(OldR)) 18409026518eSJames Molloy if (Use.getParent() != BB) 18419026518eSJames Molloy Uses.push_back(&Use); 18429026518eSJames Molloy for (MachineInstr *Use : Uses) 18439026518eSJames Molloy Use->substituteRegister(OldR, R, /*SubIdx=*/0, 18449026518eSJames Molloy *MRI.getTargetRegisterInfo()); 18459026518eSJames Molloy MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 18469026518eSJames Molloy .addReg(OldR) 18479026518eSJames Molloy .addMBB(BB); 18489026518eSJames Molloy BlockMIs[{NewBB, &MI}] = NI; 18499026518eSJames Molloy CanonicalMIs[NI] = &MI; 18509026518eSJames Molloy } 18519026518eSJames Molloy BB->replaceSuccessor(Exit, NewBB); 18529026518eSJames Molloy Exit->replacePhiUsesWith(BB, NewBB); 18539026518eSJames Molloy NewBB->addSuccessor(Exit); 18549026518eSJames Molloy 18559026518eSJames Molloy MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 18569026518eSJames Molloy SmallVector<MachineOperand, 4> Cond; 18579026518eSJames Molloy bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 18589026518eSJames Molloy (void)CanAnalyzeBr; 18599026518eSJames Molloy assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 18609026518eSJames Molloy TII->removeBranch(*BB); 18619026518eSJames Molloy TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 18629026518eSJames Molloy Cond, DebugLoc()); 18639026518eSJames Molloy TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 18649026518eSJames Molloy return NewBB; 18659026518eSJames Molloy } 18669026518eSJames Molloy 18679026518eSJames Molloy Register 18689026518eSJames Molloy PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 18699026518eSJames Molloy MachineBasicBlock *BB) { 18709026518eSJames Molloy MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 18719026518eSJames Molloy unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 18729026518eSJames Molloy return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 18739026518eSJames Molloy } 18749026518eSJames Molloy 18759026518eSJames Molloy void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 18769026518eSJames Molloy if (MI->isPHI()) { 18779026518eSJames Molloy // This is an illegal PHI. The loop-carried (desired) value is operand 3, 18789026518eSJames Molloy // and it is produced by this block. 18799026518eSJames Molloy Register PhiR = MI->getOperand(0).getReg(); 18809026518eSJames Molloy Register R = MI->getOperand(3).getReg(); 18819026518eSJames Molloy int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 18829026518eSJames Molloy if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 18839026518eSJames Molloy R = MI->getOperand(1).getReg(); 18849026518eSJames Molloy MRI.setRegClass(R, MRI.getRegClass(PhiR)); 18859026518eSJames Molloy MRI.replaceRegWith(PhiR, R); 1886e0f1d9d8SThomas Raoux // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1887e0f1d9d8SThomas Raoux // later to figure out how to remap registers. 1888e0f1d9d8SThomas Raoux MI->getOperand(0).setReg(PhiR); 1889e0f1d9d8SThomas Raoux IllegalPhisToDelete.push_back(MI); 18909026518eSJames Molloy return; 18919026518eSJames Molloy } 18929026518eSJames Molloy 18939026518eSJames Molloy int Stage = getStage(MI); 18949026518eSJames Molloy if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 18959026518eSJames Molloy LiveStages[MI->getParent()].test(Stage)) 18969026518eSJames Molloy // Instruction is live, no rewriting to do. 18979026518eSJames Molloy return; 18989026518eSJames Molloy 18999026518eSJames Molloy for (MachineOperand &DefMO : MI->defs()) { 19009026518eSJames Molloy SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 19019026518eSJames Molloy for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 19029026518eSJames Molloy // Only PHIs can use values from this block by construction. 19039026518eSJames Molloy // Match with the equivalent PHI in B. 19049026518eSJames Molloy assert(UseMI.isPHI()); 19059026518eSJames Molloy Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 19069026518eSJames Molloy MI->getParent()); 19079026518eSJames Molloy Subs.emplace_back(&UseMI, Reg); 19089026518eSJames Molloy } 19099026518eSJames Molloy for (auto &Sub : Subs) 19109026518eSJames Molloy Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 19119026518eSJames Molloy *MRI.getTargetRegisterInfo()); 19129026518eSJames Molloy } 19139026518eSJames Molloy if (LIS) 19149026518eSJames Molloy LIS->RemoveMachineInstrFromMaps(*MI); 19159026518eSJames Molloy MI->eraseFromParent(); 19169026518eSJames Molloy } 19179026518eSJames Molloy 19189026518eSJames Molloy void PeelingModuloScheduleExpander::fixupBranches() { 19199026518eSJames Molloy // Work outwards from the kernel. 19209026518eSJames Molloy bool KernelDisposed = false; 19219026518eSJames Molloy int TC = Schedule.getNumStages() - 1; 19229026518eSJames Molloy for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 19239026518eSJames Molloy ++PI, ++EI, --TC) { 19249026518eSJames Molloy MachineBasicBlock *Prolog = *PI; 19259026518eSJames Molloy MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 19269026518eSJames Molloy MachineBasicBlock *Epilog = *EI; 19279026518eSJames Molloy SmallVector<MachineOperand, 4> Cond; 19289972c992SJames Molloy TII->removeBranch(*Prolog); 19299026518eSJames Molloy Optional<bool> StaticallyGreater = 193050ac7ce9SHendrik Greving LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 19319026518eSJames Molloy if (!StaticallyGreater.hasValue()) { 19329026518eSJames Molloy LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 19339026518eSJames Molloy // Dynamically branch based on Cond. 19349026518eSJames Molloy TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 19359026518eSJames Molloy } else if (*StaticallyGreater == false) { 19369026518eSJames Molloy LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 19379026518eSJames Molloy // Prolog never falls through; branch to epilog and orphan interior 19389026518eSJames Molloy // blocks. Leave it to unreachable-block-elim to clean up. 19399026518eSJames Molloy Prolog->removeSuccessor(Fallthrough); 19409026518eSJames Molloy for (MachineInstr &P : Fallthrough->phis()) { 19419026518eSJames Molloy P.RemoveOperand(2); 19429026518eSJames Molloy P.RemoveOperand(1); 19439026518eSJames Molloy } 19449026518eSJames Molloy TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 19459026518eSJames Molloy KernelDisposed = true; 19469026518eSJames Molloy } else { 19479026518eSJames Molloy LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 19489026518eSJames Molloy // Prolog always falls through; remove incoming values in epilog. 19499026518eSJames Molloy Prolog->removeSuccessor(Epilog); 19509026518eSJames Molloy for (MachineInstr &P : Epilog->phis()) { 19519026518eSJames Molloy P.RemoveOperand(4); 19529026518eSJames Molloy P.RemoveOperand(3); 19539026518eSJames Molloy } 19549026518eSJames Molloy } 19559026518eSJames Molloy } 19569026518eSJames Molloy 19579026518eSJames Molloy if (!KernelDisposed) { 195850ac7ce9SHendrik Greving LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 195950ac7ce9SHendrik Greving LoopInfo->setPreheader(Prologs.back()); 19609026518eSJames Molloy } else { 196150ac7ce9SHendrik Greving LoopInfo->disposed(); 19629026518eSJames Molloy } 19639026518eSJames Molloy } 19649026518eSJames Molloy 19659026518eSJames Molloy void PeelingModuloScheduleExpander::rewriteKernel() { 1966e15e1417SHendrik Greving KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 19679026518eSJames Molloy KR.rewrite(); 19689026518eSJames Molloy } 19699026518eSJames Molloy 19709026518eSJames Molloy void PeelingModuloScheduleExpander::expand() { 19719026518eSJames Molloy BB = Schedule.getLoop()->getTopBlock(); 19729026518eSJames Molloy Preheader = Schedule.getLoop()->getLoopPreheader(); 19739026518eSJames Molloy LLVM_DEBUG(Schedule.dump()); 197450ac7ce9SHendrik Greving LoopInfo = TII->analyzeLoopForPipelining(BB); 197550ac7ce9SHendrik Greving assert(LoopInfo); 19769026518eSJames Molloy 19779026518eSJames Molloy rewriteKernel(); 19789026518eSJames Molloy peelPrologAndEpilogs(); 19799026518eSJames Molloy fixupBranches(); 19809026518eSJames Molloy } 19819026518eSJames Molloy 1982fef9f590SJames Molloy void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1983fef9f590SJames Molloy BB = Schedule.getLoop()->getTopBlock(); 1984fef9f590SJames Molloy Preheader = Schedule.getLoop()->getLoopPreheader(); 1985fef9f590SJames Molloy 1986fef9f590SJames Molloy // Dump the schedule before we invalidate and remap all its instructions. 1987fef9f590SJames Molloy // Stash it in a string so we can print it if we found an error. 1988fef9f590SJames Molloy std::string ScheduleDump; 1989fef9f590SJames Molloy raw_string_ostream OS(ScheduleDump); 1990fef9f590SJames Molloy Schedule.print(OS); 1991fef9f590SJames Molloy OS.flush(); 1992fef9f590SJames Molloy 1993fef9f590SJames Molloy // First, run the normal ModuleScheduleExpander. We don't support any 1994fef9f590SJames Molloy // InstrChanges. 1995fef9f590SJames Molloy assert(LIS && "Requires LiveIntervals!"); 1996fef9f590SJames Molloy ModuloScheduleExpander MSE(MF, Schedule, *LIS, 1997fef9f590SJames Molloy ModuloScheduleExpander::InstrChangesTy()); 1998fef9f590SJames Molloy MSE.expand(); 1999fef9f590SJames Molloy MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2000fef9f590SJames Molloy if (!ExpandedKernel) { 2001fef9f590SJames Molloy // The expander optimized away the kernel. We can't do any useful checking. 2002fef9f590SJames Molloy MSE.cleanup(); 2003fef9f590SJames Molloy return; 2004fef9f590SJames Molloy } 2005fef9f590SJames Molloy // Before running the KernelRewriter, re-add BB into the CFG. 2006fef9f590SJames Molloy Preheader->addSuccessor(BB); 2007fef9f590SJames Molloy 2008fef9f590SJames Molloy // Now run the new expansion algorithm. 2009e15e1417SHendrik Greving KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2010fef9f590SJames Molloy KR.rewrite(); 20119026518eSJames Molloy peelPrologAndEpilogs(); 2012fef9f590SJames Molloy 2013fef9f590SJames Molloy // Collect all illegal phis that the new algorithm created. We'll give these 2014fef9f590SJames Molloy // to KernelOperandInfo. 2015fef9f590SJames Molloy SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2016fef9f590SJames Molloy for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2017fef9f590SJames Molloy if (NI->isPHI()) 2018fef9f590SJames Molloy IllegalPhis.insert(&*NI); 2019fef9f590SJames Molloy } 2020fef9f590SJames Molloy 2021fef9f590SJames Molloy // Co-iterate across both kernels. We expect them to be identical apart from 2022fef9f590SJames Molloy // phis and full COPYs (we look through both). 2023fef9f590SJames Molloy SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2024fef9f590SJames Molloy auto OI = ExpandedKernel->begin(); 2025fef9f590SJames Molloy auto NI = BB->begin(); 2026fef9f590SJames Molloy for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2027fef9f590SJames Molloy while (OI->isPHI() || OI->isFullCopy()) 2028fef9f590SJames Molloy ++OI; 2029fef9f590SJames Molloy while (NI->isPHI() || NI->isFullCopy()) 2030fef9f590SJames Molloy ++NI; 2031fef9f590SJames Molloy assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2032fef9f590SJames Molloy // Analyze every operand separately. 2033fef9f590SJames Molloy for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2034fef9f590SJames Molloy OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2035fef9f590SJames Molloy KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2036fef9f590SJames Molloy KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2037fef9f590SJames Molloy } 2038fef9f590SJames Molloy 2039fef9f590SJames Molloy bool Failed = false; 2040fef9f590SJames Molloy for (auto &OldAndNew : KOIs) { 2041fef9f590SJames Molloy if (OldAndNew.first == OldAndNew.second) 2042fef9f590SJames Molloy continue; 2043fef9f590SJames Molloy Failed = true; 2044fef9f590SJames Molloy errs() << "Modulo kernel validation error: [\n"; 2045fef9f590SJames Molloy errs() << " [golden] "; 2046fef9f590SJames Molloy OldAndNew.first.print(errs()); 2047fef9f590SJames Molloy errs() << " "; 2048fef9f590SJames Molloy OldAndNew.second.print(errs()); 2049fef9f590SJames Molloy errs() << "]\n"; 2050fef9f590SJames Molloy } 2051fef9f590SJames Molloy 2052fef9f590SJames Molloy if (Failed) { 2053fef9f590SJames Molloy errs() << "Golden reference kernel:\n"; 205411f0f7f5SJames Molloy ExpandedKernel->print(errs()); 2055fef9f590SJames Molloy errs() << "New kernel:\n"; 205611f0f7f5SJames Molloy BB->print(errs()); 2057fef9f590SJames Molloy errs() << ScheduleDump; 2058fef9f590SJames Molloy report_fatal_error( 2059fef9f590SJames Molloy "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2060fef9f590SJames Molloy } 2061fef9f590SJames Molloy 2062fef9f590SJames Molloy // Cleanup by removing BB from the CFG again as the original 2063fef9f590SJames Molloy // ModuloScheduleExpander intended. 2064fef9f590SJames Molloy Preheader->removeSuccessor(BB); 2065fef9f590SJames Molloy MSE.cleanup(); 2066fef9f590SJames Molloy } 2067fef9f590SJames Molloy 2068fef9f590SJames Molloy //===----------------------------------------------------------------------===// 206993549957SJames Molloy // ModuloScheduleTestPass implementation 207093549957SJames Molloy //===----------------------------------------------------------------------===// 207193549957SJames Molloy // This pass constructs a ModuloSchedule from its module and runs 207293549957SJames Molloy // ModuloScheduleExpander. 207393549957SJames Molloy // 207493549957SJames Molloy // The module is expected to contain a single-block analyzable loop. 207593549957SJames Molloy // The total order of instructions is taken from the loop as-is. 207693549957SJames Molloy // Instructions are expected to be annotated with a PostInstrSymbol. 207793549957SJames Molloy // This PostInstrSymbol must have the following format: 207893549957SJames Molloy // "Stage=%d Cycle=%d". 207993549957SJames Molloy //===----------------------------------------------------------------------===// 208093549957SJames Molloy 2081df4b9a3fSBenjamin Kramer namespace { 208293549957SJames Molloy class ModuloScheduleTest : public MachineFunctionPass { 208393549957SJames Molloy public: 208493549957SJames Molloy static char ID; 208593549957SJames Molloy 208693549957SJames Molloy ModuloScheduleTest() : MachineFunctionPass(ID) { 208793549957SJames Molloy initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 208893549957SJames Molloy } 208993549957SJames Molloy 209093549957SJames Molloy bool runOnMachineFunction(MachineFunction &MF) override; 209193549957SJames Molloy void runOnLoop(MachineFunction &MF, MachineLoop &L); 209293549957SJames Molloy 209393549957SJames Molloy void getAnalysisUsage(AnalysisUsage &AU) const override { 209493549957SJames Molloy AU.addRequired<MachineLoopInfo>(); 209593549957SJames Molloy AU.addRequired<LiveIntervals>(); 209693549957SJames Molloy MachineFunctionPass::getAnalysisUsage(AU); 209793549957SJames Molloy } 209893549957SJames Molloy }; 2099df4b9a3fSBenjamin Kramer } // namespace 210093549957SJames Molloy 210193549957SJames Molloy char ModuloScheduleTest::ID = 0; 210293549957SJames Molloy 210393549957SJames Molloy INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 210493549957SJames Molloy "Modulo Schedule test pass", false, false) 210593549957SJames Molloy INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 210693549957SJames Molloy INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 210793549957SJames Molloy INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 210893549957SJames Molloy "Modulo Schedule test pass", false, false) 210993549957SJames Molloy 211093549957SJames Molloy bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 211193549957SJames Molloy MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 211293549957SJames Molloy for (auto *L : MLI) { 211393549957SJames Molloy if (L->getTopBlock() != L->getBottomBlock()) 211493549957SJames Molloy continue; 211593549957SJames Molloy runOnLoop(MF, *L); 211693549957SJames Molloy return false; 211793549957SJames Molloy } 211893549957SJames Molloy return false; 211993549957SJames Molloy } 212093549957SJames Molloy 212193549957SJames Molloy static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 212293549957SJames Molloy std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 212393549957SJames Molloy std::pair<StringRef, StringRef> StageTokenAndValue = 212493549957SJames Molloy getToken(StageAndCycle.first, "-"); 212593549957SJames Molloy std::pair<StringRef, StringRef> CycleTokenAndValue = 212693549957SJames Molloy getToken(StageAndCycle.second, "-"); 212793549957SJames Molloy if (StageTokenAndValue.first != "Stage" || 212893549957SJames Molloy CycleTokenAndValue.first != "_Cycle") { 212993549957SJames Molloy llvm_unreachable( 213093549957SJames Molloy "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 213193549957SJames Molloy return; 213293549957SJames Molloy } 213393549957SJames Molloy 213493549957SJames Molloy StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 213593549957SJames Molloy CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 213693549957SJames Molloy 213793549957SJames Molloy dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 213893549957SJames Molloy } 213993549957SJames Molloy 214093549957SJames Molloy void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 214193549957SJames Molloy LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 214293549957SJames Molloy MachineBasicBlock *BB = L.getTopBlock(); 214393549957SJames Molloy dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 214493549957SJames Molloy 214593549957SJames Molloy DenseMap<MachineInstr *, int> Cycle, Stage; 214693549957SJames Molloy std::vector<MachineInstr *> Instrs; 214793549957SJames Molloy for (MachineInstr &MI : *BB) { 214893549957SJames Molloy if (MI.isTerminator()) 214993549957SJames Molloy continue; 215093549957SJames Molloy Instrs.push_back(&MI); 215193549957SJames Molloy if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 215293549957SJames Molloy dbgs() << "Parsing post-instr symbol for " << MI; 215393549957SJames Molloy parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 215493549957SJames Molloy } 215593549957SJames Molloy } 215693549957SJames Molloy 2157fef9f590SJames Molloy ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2158fef9f590SJames Molloy std::move(Stage)); 215993549957SJames Molloy ModuloScheduleExpander MSE( 216093549957SJames Molloy MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 216193549957SJames Molloy MSE.expand(); 2162fef9f590SJames Molloy MSE.cleanup(); 216393549957SJames Molloy } 216493549957SJames Molloy 216593549957SJames Molloy //===----------------------------------------------------------------------===// 216693549957SJames Molloy // ModuloScheduleTestAnnotater implementation 216793549957SJames Molloy //===----------------------------------------------------------------------===// 216893549957SJames Molloy 216993549957SJames Molloy void ModuloScheduleTestAnnotater::annotate() { 217093549957SJames Molloy for (MachineInstr *MI : S.getInstructions()) { 217193549957SJames Molloy SmallVector<char, 16> SV; 217293549957SJames Molloy raw_svector_ostream OS(SV); 217393549957SJames Molloy OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 217493549957SJames Molloy MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 217593549957SJames Molloy MI->setPostInstrSymbol(MF, Sym); 217693549957SJames Molloy } 217793549957SJames Molloy } 2178