1790a779fSJames Molloy //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2790a779fSJames Molloy //
3790a779fSJames Molloy // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4790a779fSJames Molloy // See https://llvm.org/LICENSE.txt for license information.
5790a779fSJames Molloy // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6790a779fSJames Molloy //
7790a779fSJames Molloy //===----------------------------------------------------------------------===//
8790a779fSJames Molloy 
9790a779fSJames Molloy #include "llvm/CodeGen/ModuloSchedule.h"
1093549957SJames Molloy #include "llvm/ADT/StringExtras.h"
111815b77cSSimon Pilgrim #include "llvm/Analysis/MemoryLocation.h"
12790a779fSJames Molloy #include "llvm/CodeGen/LiveIntervals.h"
13790a779fSJames Molloy #include "llvm/CodeGen/MachineInstrBuilder.h"
14fef9f590SJames Molloy #include "llvm/CodeGen/MachineRegisterInfo.h"
1505da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
1693549957SJames Molloy #include "llvm/MC/MCContext.h"
17790a779fSJames Molloy #include "llvm/Support/Debug.h"
18fef9f590SJames Molloy #include "llvm/Support/ErrorHandling.h"
19fef9f590SJames Molloy #include "llvm/Support/raw_ostream.h"
20790a779fSJames Molloy 
21790a779fSJames Molloy #define DEBUG_TYPE "pipeliner"
22790a779fSJames Molloy using namespace llvm;
23790a779fSJames Molloy 
24fef9f590SJames Molloy void ModuloSchedule::print(raw_ostream &OS) {
25fef9f590SJames Molloy   for (MachineInstr *MI : ScheduledInstrs)
26fef9f590SJames Molloy     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27fef9f590SJames Molloy }
28fef9f590SJames Molloy 
2993549957SJames Molloy //===----------------------------------------------------------------------===//
3093549957SJames Molloy // ModuloScheduleExpander implementation
3193549957SJames Molloy //===----------------------------------------------------------------------===//
3293549957SJames Molloy 
33790a779fSJames Molloy /// Return the register values for  the operands of a Phi instruction.
34790a779fSJames Molloy /// This function assume the instruction is a Phi.
35790a779fSJames Molloy static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36790a779fSJames Molloy                        unsigned &InitVal, unsigned &LoopVal) {
37790a779fSJames Molloy   assert(Phi.isPHI() && "Expecting a Phi.");
38790a779fSJames Molloy 
39790a779fSJames Molloy   InitVal = 0;
40790a779fSJames Molloy   LoopVal = 0;
41790a779fSJames Molloy   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42790a779fSJames Molloy     if (Phi.getOperand(i + 1).getMBB() != Loop)
43790a779fSJames Molloy       InitVal = Phi.getOperand(i).getReg();
44790a779fSJames Molloy     else
45790a779fSJames Molloy       LoopVal = Phi.getOperand(i).getReg();
46790a779fSJames Molloy 
47790a779fSJames Molloy   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48790a779fSJames Molloy }
49790a779fSJames Molloy 
50790a779fSJames Molloy /// Return the Phi register value that comes from the incoming block.
51790a779fSJames Molloy static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52790a779fSJames Molloy   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53790a779fSJames Molloy     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54790a779fSJames Molloy       return Phi.getOperand(i).getReg();
55790a779fSJames Molloy   return 0;
56790a779fSJames Molloy }
57790a779fSJames Molloy 
58790a779fSJames Molloy /// Return the Phi register value that comes the loop block.
59790a779fSJames Molloy static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60790a779fSJames Molloy   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61790a779fSJames Molloy     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62790a779fSJames Molloy       return Phi.getOperand(i).getReg();
63790a779fSJames Molloy   return 0;
64790a779fSJames Molloy }
65790a779fSJames Molloy 
66790a779fSJames Molloy void ModuloScheduleExpander::expand() {
67790a779fSJames Molloy   BB = Schedule.getLoop()->getTopBlock();
68790a779fSJames Molloy   Preheader = *BB->pred_begin();
69790a779fSJames Molloy   if (Preheader == BB)
70790a779fSJames Molloy     Preheader = *std::next(BB->pred_begin());
71790a779fSJames Molloy 
72790a779fSJames Molloy   // Iterate over the definitions in each instruction, and compute the
73790a779fSJames Molloy   // stage difference for each use.  Keep the maximum value.
74790a779fSJames Molloy   for (MachineInstr *MI : Schedule.getInstructions()) {
75790a779fSJames Molloy     int DefStage = Schedule.getStage(MI);
76790a779fSJames Molloy     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77790a779fSJames Molloy       MachineOperand &Op = MI->getOperand(i);
78790a779fSJames Molloy       if (!Op.isReg() || !Op.isDef())
79790a779fSJames Molloy         continue;
80790a779fSJames Molloy 
81790a779fSJames Molloy       Register Reg = Op.getReg();
82790a779fSJames Molloy       unsigned MaxDiff = 0;
83790a779fSJames Molloy       bool PhiIsSwapped = false;
84790a779fSJames Molloy       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85790a779fSJames Molloy                                              EI = MRI.use_end();
86790a779fSJames Molloy            UI != EI; ++UI) {
87790a779fSJames Molloy         MachineOperand &UseOp = *UI;
88790a779fSJames Molloy         MachineInstr *UseMI = UseOp.getParent();
89790a779fSJames Molloy         int UseStage = Schedule.getStage(UseMI);
90790a779fSJames Molloy         unsigned Diff = 0;
91790a779fSJames Molloy         if (UseStage != -1 && UseStage >= DefStage)
92790a779fSJames Molloy           Diff = UseStage - DefStage;
93790a779fSJames Molloy         if (MI->isPHI()) {
94790a779fSJames Molloy           if (isLoopCarried(*MI))
95790a779fSJames Molloy             ++Diff;
96790a779fSJames Molloy           else
97790a779fSJames Molloy             PhiIsSwapped = true;
98790a779fSJames Molloy         }
99790a779fSJames Molloy         MaxDiff = std::max(Diff, MaxDiff);
100790a779fSJames Molloy       }
101790a779fSJames Molloy       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102790a779fSJames Molloy     }
103790a779fSJames Molloy   }
104790a779fSJames Molloy 
105790a779fSJames Molloy   generatePipelinedLoop();
106790a779fSJames Molloy }
107790a779fSJames Molloy 
108790a779fSJames Molloy void ModuloScheduleExpander::generatePipelinedLoop() {
1098a74eca3SJames Molloy   LoopInfo = TII->analyzeLoopForPipelining(BB);
1108a74eca3SJames Molloy   assert(LoopInfo && "Must be able to analyze loop!");
1118a74eca3SJames Molloy 
112790a779fSJames Molloy   // Create a new basic block for the kernel and add it to the CFG.
113790a779fSJames Molloy   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114790a779fSJames Molloy 
115790a779fSJames Molloy   unsigned MaxStageCount = Schedule.getNumStages() - 1;
116790a779fSJames Molloy 
117790a779fSJames Molloy   // Remember the registers that are used in different stages. The index is
118790a779fSJames Molloy   // the iteration, or stage, that the instruction is scheduled in.  This is
119790a779fSJames Molloy   // a map between register names in the original block and the names created
120790a779fSJames Molloy   // in each stage of the pipelined loop.
121790a779fSJames Molloy   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122790a779fSJames Molloy   InstrMapTy InstrMap;
123790a779fSJames Molloy 
124790a779fSJames Molloy   SmallVector<MachineBasicBlock *, 4> PrologBBs;
125790a779fSJames Molloy 
126790a779fSJames Molloy   // Generate the prolog instructions that set up the pipeline.
127790a779fSJames Molloy   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128790a779fSJames Molloy   MF.insert(BB->getIterator(), KernelBB);
129790a779fSJames Molloy 
130790a779fSJames Molloy   // Rearrange the instructions to generate the new, pipelined loop,
131790a779fSJames Molloy   // and update register names as needed.
132790a779fSJames Molloy   for (MachineInstr *CI : Schedule.getInstructions()) {
133790a779fSJames Molloy     if (CI->isPHI())
134790a779fSJames Molloy       continue;
135790a779fSJames Molloy     unsigned StageNum = Schedule.getStage(CI);
136790a779fSJames Molloy     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137790a779fSJames Molloy     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138790a779fSJames Molloy     KernelBB->push_back(NewMI);
139790a779fSJames Molloy     InstrMap[NewMI] = CI;
140790a779fSJames Molloy   }
141790a779fSJames Molloy 
142790a779fSJames Molloy   // Copy any terminator instructions to the new kernel, and update
143790a779fSJames Molloy   // names as needed.
14472710af2SKazu Hirata   for (MachineInstr &MI : BB->terminators()) {
14572710af2SKazu Hirata     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
146790a779fSJames Molloy     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
147790a779fSJames Molloy     KernelBB->push_back(NewMI);
14872710af2SKazu Hirata     InstrMap[NewMI] = &MI;
149790a779fSJames Molloy   }
150790a779fSJames Molloy 
151fef9f590SJames Molloy   NewKernel = KernelBB;
152790a779fSJames Molloy   KernelBB->transferSuccessors(BB);
153790a779fSJames Molloy   KernelBB->replaceSuccessor(BB, KernelBB);
154790a779fSJames Molloy 
155790a779fSJames Molloy   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
156790a779fSJames Molloy                        InstrMap, MaxStageCount, MaxStageCount, false);
157790a779fSJames Molloy   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
158790a779fSJames Molloy                MaxStageCount, MaxStageCount, false);
159790a779fSJames Molloy 
160790a779fSJames Molloy   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
161790a779fSJames Molloy 
162790a779fSJames Molloy   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
163790a779fSJames Molloy   // Generate the epilog instructions to complete the pipeline.
164790a779fSJames Molloy   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
165790a779fSJames Molloy 
166790a779fSJames Molloy   // We need this step because the register allocation doesn't handle some
167790a779fSJames Molloy   // situations well, so we insert copies to help out.
168790a779fSJames Molloy   splitLifetimes(KernelBB, EpilogBBs);
169790a779fSJames Molloy 
170790a779fSJames Molloy   // Remove dead instructions due to loop induction variables.
171790a779fSJames Molloy   removeDeadInstructions(KernelBB, EpilogBBs);
172790a779fSJames Molloy 
173790a779fSJames Molloy   // Add branches between prolog and epilog blocks.
174790a779fSJames Molloy   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
175790a779fSJames Molloy 
176fef9f590SJames Molloy   delete[] VRMap;
177fef9f590SJames Molloy }
178fef9f590SJames Molloy 
179fef9f590SJames Molloy void ModuloScheduleExpander::cleanup() {
180790a779fSJames Molloy   // Remove the original loop since it's no longer referenced.
181790a779fSJames Molloy   for (auto &I : *BB)
182790a779fSJames Molloy     LIS.RemoveMachineInstrFromMaps(I);
183790a779fSJames Molloy   BB->clear();
184790a779fSJames Molloy   BB->eraseFromParent();
185790a779fSJames Molloy }
186790a779fSJames Molloy 
187790a779fSJames Molloy /// Generate the pipeline prolog code.
188790a779fSJames Molloy void ModuloScheduleExpander::generateProlog(unsigned LastStage,
189790a779fSJames Molloy                                             MachineBasicBlock *KernelBB,
190790a779fSJames Molloy                                             ValueMapTy *VRMap,
191790a779fSJames Molloy                                             MBBVectorTy &PrologBBs) {
192790a779fSJames Molloy   MachineBasicBlock *PredBB = Preheader;
193790a779fSJames Molloy   InstrMapTy InstrMap;
194790a779fSJames Molloy 
195790a779fSJames Molloy   // Generate a basic block for each stage, not including the last stage,
196790a779fSJames Molloy   // which will be generated in the kernel. Each basic block may contain
197790a779fSJames Molloy   // instructions from multiple stages/iterations.
198790a779fSJames Molloy   for (unsigned i = 0; i < LastStage; ++i) {
199790a779fSJames Molloy     // Create and insert the prolog basic block prior to the original loop
200790a779fSJames Molloy     // basic block.  The original loop is removed later.
201790a779fSJames Molloy     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
202790a779fSJames Molloy     PrologBBs.push_back(NewBB);
203790a779fSJames Molloy     MF.insert(BB->getIterator(), NewBB);
204790a779fSJames Molloy     NewBB->transferSuccessors(PredBB);
205790a779fSJames Molloy     PredBB->addSuccessor(NewBB);
206790a779fSJames Molloy     PredBB = NewBB;
207790a779fSJames Molloy 
208790a779fSJames Molloy     // Generate instructions for each appropriate stage. Process instructions
209790a779fSJames Molloy     // in original program order.
210790a779fSJames Molloy     for (int StageNum = i; StageNum >= 0; --StageNum) {
211790a779fSJames Molloy       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
212790a779fSJames Molloy                                        BBE = BB->getFirstTerminator();
213790a779fSJames Molloy            BBI != BBE; ++BBI) {
214790a779fSJames Molloy         if (Schedule.getStage(&*BBI) == StageNum) {
215790a779fSJames Molloy           if (BBI->isPHI())
216790a779fSJames Molloy             continue;
217790a779fSJames Molloy           MachineInstr *NewMI =
218790a779fSJames Molloy               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
219790a779fSJames Molloy           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
220790a779fSJames Molloy           NewBB->push_back(NewMI);
221790a779fSJames Molloy           InstrMap[NewMI] = &*BBI;
222790a779fSJames Molloy         }
223790a779fSJames Molloy       }
224790a779fSJames Molloy     }
225790a779fSJames Molloy     rewritePhiValues(NewBB, i, VRMap, InstrMap);
226790a779fSJames Molloy     LLVM_DEBUG({
227790a779fSJames Molloy       dbgs() << "prolog:\n";
228790a779fSJames Molloy       NewBB->dump();
229790a779fSJames Molloy     });
230790a779fSJames Molloy   }
231790a779fSJames Molloy 
232790a779fSJames Molloy   PredBB->replaceSuccessor(BB, KernelBB);
233790a779fSJames Molloy 
234790a779fSJames Molloy   // Check if we need to remove the branch from the preheader to the original
235790a779fSJames Molloy   // loop, and replace it with a branch to the new loop.
236790a779fSJames Molloy   unsigned numBranches = TII->removeBranch(*Preheader);
237790a779fSJames Molloy   if (numBranches) {
238790a779fSJames Molloy     SmallVector<MachineOperand, 0> Cond;
239790a779fSJames Molloy     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
240790a779fSJames Molloy   }
241790a779fSJames Molloy }
242790a779fSJames Molloy 
243790a779fSJames Molloy /// Generate the pipeline epilog code. The epilog code finishes the iterations
244790a779fSJames Molloy /// that were started in either the prolog or the kernel.  We create a basic
245790a779fSJames Molloy /// block for each stage that needs to complete.
246790a779fSJames Molloy void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
247790a779fSJames Molloy                                             MachineBasicBlock *KernelBB,
248790a779fSJames Molloy                                             ValueMapTy *VRMap,
249790a779fSJames Molloy                                             MBBVectorTy &EpilogBBs,
250790a779fSJames Molloy                                             MBBVectorTy &PrologBBs) {
251790a779fSJames Molloy   // We need to change the branch from the kernel to the first epilog block, so
252790a779fSJames Molloy   // this call to analyze branch uses the kernel rather than the original BB.
253790a779fSJames Molloy   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
254790a779fSJames Molloy   SmallVector<MachineOperand, 4> Cond;
255790a779fSJames Molloy   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
256790a779fSJames Molloy   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
257790a779fSJames Molloy   if (checkBranch)
258790a779fSJames Molloy     return;
259790a779fSJames Molloy 
260790a779fSJames Molloy   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
261790a779fSJames Molloy   if (*LoopExitI == KernelBB)
262790a779fSJames Molloy     ++LoopExitI;
263790a779fSJames Molloy   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
264790a779fSJames Molloy   MachineBasicBlock *LoopExitBB = *LoopExitI;
265790a779fSJames Molloy 
266790a779fSJames Molloy   MachineBasicBlock *PredBB = KernelBB;
267790a779fSJames Molloy   MachineBasicBlock *EpilogStart = LoopExitBB;
268790a779fSJames Molloy   InstrMapTy InstrMap;
269790a779fSJames Molloy 
270790a779fSJames Molloy   // Generate a basic block for each stage, not including the last stage,
271790a779fSJames Molloy   // which was generated for the kernel.  Each basic block may contain
272790a779fSJames Molloy   // instructions from multiple stages/iterations.
273790a779fSJames Molloy   int EpilogStage = LastStage + 1;
274790a779fSJames Molloy   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
275790a779fSJames Molloy     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
276790a779fSJames Molloy     EpilogBBs.push_back(NewBB);
277790a779fSJames Molloy     MF.insert(BB->getIterator(), NewBB);
278790a779fSJames Molloy 
279790a779fSJames Molloy     PredBB->replaceSuccessor(LoopExitBB, NewBB);
280790a779fSJames Molloy     NewBB->addSuccessor(LoopExitBB);
281790a779fSJames Molloy 
282790a779fSJames Molloy     if (EpilogStart == LoopExitBB)
283790a779fSJames Molloy       EpilogStart = NewBB;
284790a779fSJames Molloy 
285790a779fSJames Molloy     // Add instructions to the epilog depending on the current block.
286790a779fSJames Molloy     // Process instructions in original program order.
287790a779fSJames Molloy     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
288790a779fSJames Molloy       for (auto &BBI : *BB) {
289790a779fSJames Molloy         if (BBI.isPHI())
290790a779fSJames Molloy           continue;
291790a779fSJames Molloy         MachineInstr *In = &BBI;
292790a779fSJames Molloy         if ((unsigned)Schedule.getStage(In) == StageNum) {
293790a779fSJames Molloy           // Instructions with memoperands in the epilog are updated with
294790a779fSJames Molloy           // conservative values.
295790a779fSJames Molloy           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
296790a779fSJames Molloy           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
297790a779fSJames Molloy           NewBB->push_back(NewMI);
298790a779fSJames Molloy           InstrMap[NewMI] = In;
299790a779fSJames Molloy         }
300790a779fSJames Molloy       }
301790a779fSJames Molloy     }
302790a779fSJames Molloy     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
303790a779fSJames Molloy                          InstrMap, LastStage, EpilogStage, i == 1);
304790a779fSJames Molloy     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
305790a779fSJames Molloy                  LastStage, EpilogStage, i == 1);
306790a779fSJames Molloy     PredBB = NewBB;
307790a779fSJames Molloy 
308790a779fSJames Molloy     LLVM_DEBUG({
309790a779fSJames Molloy       dbgs() << "epilog:\n";
310790a779fSJames Molloy       NewBB->dump();
311790a779fSJames Molloy     });
312790a779fSJames Molloy   }
313790a779fSJames Molloy 
314790a779fSJames Molloy   // Fix any Phi nodes in the loop exit block.
315790a779fSJames Molloy   LoopExitBB->replacePhiUsesWith(BB, PredBB);
316790a779fSJames Molloy 
317790a779fSJames Molloy   // Create a branch to the new epilog from the kernel.
318790a779fSJames Molloy   // Remove the original branch and add a new branch to the epilog.
319790a779fSJames Molloy   TII->removeBranch(*KernelBB);
320790a779fSJames Molloy   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
321790a779fSJames Molloy   // Add a branch to the loop exit.
322790a779fSJames Molloy   if (EpilogBBs.size() > 0) {
323790a779fSJames Molloy     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
324790a779fSJames Molloy     SmallVector<MachineOperand, 4> Cond1;
325790a779fSJames Molloy     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
326790a779fSJames Molloy   }
327790a779fSJames Molloy }
328790a779fSJames Molloy 
329790a779fSJames Molloy /// Replace all uses of FromReg that appear outside the specified
330790a779fSJames Molloy /// basic block with ToReg.
331790a779fSJames Molloy static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
332790a779fSJames Molloy                                     MachineBasicBlock *MBB,
333790a779fSJames Molloy                                     MachineRegisterInfo &MRI,
334790a779fSJames Molloy                                     LiveIntervals &LIS) {
335642a361bSKazu Hirata   for (MachineOperand &O :
336642a361bSKazu Hirata        llvm::make_early_inc_range(MRI.use_operands(FromReg)))
337790a779fSJames Molloy     if (O.getParent()->getParent() != MBB)
338790a779fSJames Molloy       O.setReg(ToReg);
339790a779fSJames Molloy   if (!LIS.hasInterval(ToReg))
340790a779fSJames Molloy     LIS.createEmptyInterval(ToReg);
341790a779fSJames Molloy }
342790a779fSJames Molloy 
343790a779fSJames Molloy /// Return true if the register has a use that occurs outside the
344790a779fSJames Molloy /// specified loop.
345790a779fSJames Molloy static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
346790a779fSJames Molloy                             MachineRegisterInfo &MRI) {
347790a779fSJames Molloy   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
348790a779fSJames Molloy                                          E = MRI.use_end();
349790a779fSJames Molloy        I != E; ++I)
350790a779fSJames Molloy     if (I->getParent()->getParent() != BB)
351790a779fSJames Molloy       return true;
352790a779fSJames Molloy   return false;
353790a779fSJames Molloy }
354790a779fSJames Molloy 
355790a779fSJames Molloy /// Generate Phis for the specific block in the generated pipelined code.
356790a779fSJames Molloy /// This function looks at the Phis from the original code to guide the
357790a779fSJames Molloy /// creation of new Phis.
358790a779fSJames Molloy void ModuloScheduleExpander::generateExistingPhis(
359790a779fSJames Molloy     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
360790a779fSJames Molloy     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
361790a779fSJames Molloy     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
362790a779fSJames Molloy   // Compute the stage number for the initial value of the Phi, which
363790a779fSJames Molloy   // comes from the prolog. The prolog to use depends on to which kernel/
364790a779fSJames Molloy   // epilog that we're adding the Phi.
365790a779fSJames Molloy   unsigned PrologStage = 0;
366790a779fSJames Molloy   unsigned PrevStage = 0;
367790a779fSJames Molloy   bool InKernel = (LastStageNum == CurStageNum);
368790a779fSJames Molloy   if (InKernel) {
369790a779fSJames Molloy     PrologStage = LastStageNum - 1;
370790a779fSJames Molloy     PrevStage = CurStageNum;
371790a779fSJames Molloy   } else {
372790a779fSJames Molloy     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
373790a779fSJames Molloy     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
374790a779fSJames Molloy   }
375790a779fSJames Molloy 
376790a779fSJames Molloy   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
377790a779fSJames Molloy                                    BBE = BB->getFirstNonPHI();
378790a779fSJames Molloy        BBI != BBE; ++BBI) {
379790a779fSJames Molloy     Register Def = BBI->getOperand(0).getReg();
380790a779fSJames Molloy 
381790a779fSJames Molloy     unsigned InitVal = 0;
382790a779fSJames Molloy     unsigned LoopVal = 0;
383790a779fSJames Molloy     getPhiRegs(*BBI, BB, InitVal, LoopVal);
384790a779fSJames Molloy 
385790a779fSJames Molloy     unsigned PhiOp1 = 0;
386790a779fSJames Molloy     // The Phi value from the loop body typically is defined in the loop, but
387790a779fSJames Molloy     // not always. So, we need to check if the value is defined in the loop.
388790a779fSJames Molloy     unsigned PhiOp2 = LoopVal;
389790a779fSJames Molloy     if (VRMap[LastStageNum].count(LoopVal))
390790a779fSJames Molloy       PhiOp2 = VRMap[LastStageNum][LoopVal];
391790a779fSJames Molloy 
392790a779fSJames Molloy     int StageScheduled = Schedule.getStage(&*BBI);
393790a779fSJames Molloy     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
394790a779fSJames Molloy     unsigned NumStages = getStagesForReg(Def, CurStageNum);
395790a779fSJames Molloy     if (NumStages == 0) {
396790a779fSJames Molloy       // We don't need to generate a Phi anymore, but we need to rename any uses
397790a779fSJames Molloy       // of the Phi value.
398790a779fSJames Molloy       unsigned NewReg = VRMap[PrevStage][LoopVal];
399790a779fSJames Molloy       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
400790a779fSJames Molloy                             InitVal, NewReg);
401790a779fSJames Molloy       if (VRMap[CurStageNum].count(LoopVal))
402790a779fSJames Molloy         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
403790a779fSJames Molloy     }
404790a779fSJames Molloy     // Adjust the number of Phis needed depending on the number of prologs left,
405790a779fSJames Molloy     // and the distance from where the Phi is first scheduled. The number of
406790a779fSJames Molloy     // Phis cannot exceed the number of prolog stages. Each stage can
407790a779fSJames Molloy     // potentially define two values.
408790a779fSJames Molloy     unsigned MaxPhis = PrologStage + 2;
409790a779fSJames Molloy     if (!InKernel && (int)PrologStage <= LoopValStage)
410790a779fSJames Molloy       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
411790a779fSJames Molloy     unsigned NumPhis = std::min(NumStages, MaxPhis);
412790a779fSJames Molloy 
413790a779fSJames Molloy     unsigned NewReg = 0;
414790a779fSJames Molloy     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
415790a779fSJames Molloy     // In the epilog, we may need to look back one stage to get the correct
4168a6a2c4cSHendrik Greving     // Phi name, because the epilog and prolog blocks execute the same stage.
417790a779fSJames Molloy     // The correct name is from the previous block only when the Phi has
418790a779fSJames Molloy     // been completely scheduled prior to the epilog, and Phi value is not
419790a779fSJames Molloy     // needed in multiple stages.
420790a779fSJames Molloy     int StageDiff = 0;
421790a779fSJames Molloy     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
422790a779fSJames Molloy         NumPhis == 1)
423790a779fSJames Molloy       StageDiff = 1;
424790a779fSJames Molloy     // Adjust the computations below when the phi and the loop definition
425790a779fSJames Molloy     // are scheduled in different stages.
426790a779fSJames Molloy     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
427790a779fSJames Molloy       StageDiff = StageScheduled - LoopValStage;
428790a779fSJames Molloy     for (unsigned np = 0; np < NumPhis; ++np) {
429790a779fSJames Molloy       // If the Phi hasn't been scheduled, then use the initial Phi operand
430790a779fSJames Molloy       // value. Otherwise, use the scheduled version of the instruction. This
431790a779fSJames Molloy       // is a little complicated when a Phi references another Phi.
432790a779fSJames Molloy       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
433790a779fSJames Molloy         PhiOp1 = InitVal;
434790a779fSJames Molloy       // Check if the Phi has already been scheduled in a prolog stage.
435790a779fSJames Molloy       else if (PrologStage >= AccessStage + StageDiff + np &&
436790a779fSJames Molloy                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
437790a779fSJames Molloy         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
438790a779fSJames Molloy       // Check if the Phi has already been scheduled, but the loop instruction
439790a779fSJames Molloy       // is either another Phi, or doesn't occur in the loop.
440790a779fSJames Molloy       else if (PrologStage >= AccessStage + StageDiff + np) {
441790a779fSJames Molloy         // If the Phi references another Phi, we need to examine the other
442790a779fSJames Molloy         // Phi to get the correct value.
443790a779fSJames Molloy         PhiOp1 = LoopVal;
444790a779fSJames Molloy         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
445790a779fSJames Molloy         int Indirects = 1;
446790a779fSJames Molloy         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
447790a779fSJames Molloy           int PhiStage = Schedule.getStage(InstOp1);
448790a779fSJames Molloy           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
449790a779fSJames Molloy             PhiOp1 = getInitPhiReg(*InstOp1, BB);
450790a779fSJames Molloy           else
451790a779fSJames Molloy             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
452790a779fSJames Molloy           InstOp1 = MRI.getVRegDef(PhiOp1);
453790a779fSJames Molloy           int PhiOpStage = Schedule.getStage(InstOp1);
454790a779fSJames Molloy           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
455790a779fSJames Molloy           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
456790a779fSJames Molloy               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
457790a779fSJames Molloy             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
458790a779fSJames Molloy             break;
459790a779fSJames Molloy           }
460790a779fSJames Molloy           ++Indirects;
461790a779fSJames Molloy         }
462790a779fSJames Molloy       } else
463790a779fSJames Molloy         PhiOp1 = InitVal;
464790a779fSJames Molloy       // If this references a generated Phi in the kernel, get the Phi operand
465790a779fSJames Molloy       // from the incoming block.
466790a779fSJames Molloy       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
467790a779fSJames Molloy         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
468790a779fSJames Molloy           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
469790a779fSJames Molloy 
470790a779fSJames Molloy       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
471790a779fSJames Molloy       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
472790a779fSJames Molloy       // In the epilog, a map lookup is needed to get the value from the kernel,
473790a779fSJames Molloy       // or previous epilog block. How is does this depends on if the
474790a779fSJames Molloy       // instruction is scheduled in the previous block.
475790a779fSJames Molloy       if (!InKernel) {
476790a779fSJames Molloy         int StageDiffAdj = 0;
477790a779fSJames Molloy         if (LoopValStage != -1 && StageScheduled > LoopValStage)
478790a779fSJames Molloy           StageDiffAdj = StageScheduled - LoopValStage;
479790a779fSJames Molloy         // Use the loop value defined in the kernel, unless the kernel
480790a779fSJames Molloy         // contains the last definition of the Phi.
481790a779fSJames Molloy         if (np == 0 && PrevStage == LastStageNum &&
482790a779fSJames Molloy             (StageScheduled != 0 || LoopValStage != 0) &&
483790a779fSJames Molloy             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
484790a779fSJames Molloy           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
485790a779fSJames Molloy         // Use the value defined by the Phi. We add one because we switch
486790a779fSJames Molloy         // from looking at the loop value to the Phi definition.
487790a779fSJames Molloy         else if (np > 0 && PrevStage == LastStageNum &&
488790a779fSJames Molloy                  VRMap[PrevStage - np + 1].count(Def))
489790a779fSJames Molloy           PhiOp2 = VRMap[PrevStage - np + 1][Def];
490790a779fSJames Molloy         // Use the loop value defined in the kernel.
491790a779fSJames Molloy         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
492790a779fSJames Molloy                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
493790a779fSJames Molloy           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
494790a779fSJames Molloy         // Use the value defined by the Phi, unless we're generating the first
495790a779fSJames Molloy         // epilog and the Phi refers to a Phi in a different stage.
496790a779fSJames Molloy         else if (VRMap[PrevStage - np].count(Def) &&
497790a779fSJames Molloy                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
498790a779fSJames Molloy                   (LoopValStage == StageScheduled)))
499790a779fSJames Molloy           PhiOp2 = VRMap[PrevStage - np][Def];
500790a779fSJames Molloy       }
501790a779fSJames Molloy 
502790a779fSJames Molloy       // Check if we can reuse an existing Phi. This occurs when a Phi
503790a779fSJames Molloy       // references another Phi, and the other Phi is scheduled in an
504790a779fSJames Molloy       // earlier stage. We can try to reuse an existing Phi up until the last
505790a779fSJames Molloy       // stage of the current Phi.
506790a779fSJames Molloy       if (LoopDefIsPhi) {
507790a779fSJames Molloy         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
508790a779fSJames Molloy           int LVNumStages = getStagesForPhi(LoopVal);
509790a779fSJames Molloy           int StageDiff = (StageScheduled - LoopValStage);
510790a779fSJames Molloy           LVNumStages -= StageDiff;
511790a779fSJames Molloy           // Make sure the loop value Phi has been processed already.
512790a779fSJames Molloy           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
513790a779fSJames Molloy             NewReg = PhiOp2;
514790a779fSJames Molloy             unsigned ReuseStage = CurStageNum;
515790a779fSJames Molloy             if (isLoopCarried(*PhiInst))
516790a779fSJames Molloy               ReuseStage -= LVNumStages;
517790a779fSJames Molloy             // Check if the Phi to reuse has been generated yet. If not, then
518790a779fSJames Molloy             // there is nothing to reuse.
519790a779fSJames Molloy             if (VRMap[ReuseStage - np].count(LoopVal)) {
520790a779fSJames Molloy               NewReg = VRMap[ReuseStage - np][LoopVal];
521790a779fSJames Molloy 
522790a779fSJames Molloy               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
523790a779fSJames Molloy                                     Def, NewReg);
524790a779fSJames Molloy               // Update the map with the new Phi name.
525790a779fSJames Molloy               VRMap[CurStageNum - np][Def] = NewReg;
526790a779fSJames Molloy               PhiOp2 = NewReg;
527790a779fSJames Molloy               if (VRMap[LastStageNum - np - 1].count(LoopVal))
528790a779fSJames Molloy                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
529790a779fSJames Molloy 
530790a779fSJames Molloy               if (IsLast && np == NumPhis - 1)
531790a779fSJames Molloy                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
532790a779fSJames Molloy               continue;
533790a779fSJames Molloy             }
534790a779fSJames Molloy           }
535790a779fSJames Molloy         }
536790a779fSJames Molloy         if (InKernel && StageDiff > 0 &&
537790a779fSJames Molloy             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
538790a779fSJames Molloy           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
539790a779fSJames Molloy       }
540790a779fSJames Molloy 
541790a779fSJames Molloy       const TargetRegisterClass *RC = MRI.getRegClass(Def);
542790a779fSJames Molloy       NewReg = MRI.createVirtualRegister(RC);
543790a779fSJames Molloy 
544790a779fSJames Molloy       MachineInstrBuilder NewPhi =
545790a779fSJames Molloy           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
546790a779fSJames Molloy                   TII->get(TargetOpcode::PHI), NewReg);
547790a779fSJames Molloy       NewPhi.addReg(PhiOp1).addMBB(BB1);
548790a779fSJames Molloy       NewPhi.addReg(PhiOp2).addMBB(BB2);
549790a779fSJames Molloy       if (np == 0)
550790a779fSJames Molloy         InstrMap[NewPhi] = &*BBI;
551790a779fSJames Molloy 
552790a779fSJames Molloy       // We define the Phis after creating the new pipelined code, so
553790a779fSJames Molloy       // we need to rename the Phi values in scheduled instructions.
554790a779fSJames Molloy 
555790a779fSJames Molloy       unsigned PrevReg = 0;
556790a779fSJames Molloy       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
557790a779fSJames Molloy         PrevReg = VRMap[PrevStage - np][LoopVal];
558790a779fSJames Molloy       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
559790a779fSJames Molloy                             NewReg, PrevReg);
560790a779fSJames Molloy       // If the Phi has been scheduled, use the new name for rewriting.
561790a779fSJames Molloy       if (VRMap[CurStageNum - np].count(Def)) {
562790a779fSJames Molloy         unsigned R = VRMap[CurStageNum - np][Def];
563790a779fSJames Molloy         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
564790a779fSJames Molloy                               NewReg);
565790a779fSJames Molloy       }
566790a779fSJames Molloy 
567790a779fSJames Molloy       // Check if we need to rename any uses that occurs after the loop. The
568790a779fSJames Molloy       // register to replace depends on whether the Phi is scheduled in the
569790a779fSJames Molloy       // epilog.
570790a779fSJames Molloy       if (IsLast && np == NumPhis - 1)
571790a779fSJames Molloy         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
572790a779fSJames Molloy 
573790a779fSJames Molloy       // In the kernel, a dependent Phi uses the value from this Phi.
574790a779fSJames Molloy       if (InKernel)
575790a779fSJames Molloy         PhiOp2 = NewReg;
576790a779fSJames Molloy 
577790a779fSJames Molloy       // Update the map with the new Phi name.
578790a779fSJames Molloy       VRMap[CurStageNum - np][Def] = NewReg;
579790a779fSJames Molloy     }
580790a779fSJames Molloy 
581790a779fSJames Molloy     while (NumPhis++ < NumStages) {
582790a779fSJames Molloy       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
583790a779fSJames Molloy                             NewReg, 0);
584790a779fSJames Molloy     }
585790a779fSJames Molloy 
586790a779fSJames Molloy     // Check if we need to rename a Phi that has been eliminated due to
587790a779fSJames Molloy     // scheduling.
588790a779fSJames Molloy     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
589790a779fSJames Molloy       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
590790a779fSJames Molloy   }
591790a779fSJames Molloy }
592790a779fSJames Molloy 
593790a779fSJames Molloy /// Generate Phis for the specified block in the generated pipelined code.
594790a779fSJames Molloy /// These are new Phis needed because the definition is scheduled after the
595790a779fSJames Molloy /// use in the pipelined sequence.
596790a779fSJames Molloy void ModuloScheduleExpander::generatePhis(
597790a779fSJames Molloy     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
598790a779fSJames Molloy     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
599790a779fSJames Molloy     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
600790a779fSJames Molloy   // Compute the stage number that contains the initial Phi value, and
601790a779fSJames Molloy   // the Phi from the previous stage.
602790a779fSJames Molloy   unsigned PrologStage = 0;
603790a779fSJames Molloy   unsigned PrevStage = 0;
604790a779fSJames Molloy   unsigned StageDiff = CurStageNum - LastStageNum;
605790a779fSJames Molloy   bool InKernel = (StageDiff == 0);
606790a779fSJames Molloy   if (InKernel) {
607790a779fSJames Molloy     PrologStage = LastStageNum - 1;
608790a779fSJames Molloy     PrevStage = CurStageNum;
609790a779fSJames Molloy   } else {
610790a779fSJames Molloy     PrologStage = LastStageNum - StageDiff;
611790a779fSJames Molloy     PrevStage = LastStageNum + StageDiff - 1;
612790a779fSJames Molloy   }
613790a779fSJames Molloy 
614790a779fSJames Molloy   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
615790a779fSJames Molloy                                    BBE = BB->instr_end();
616790a779fSJames Molloy        BBI != BBE; ++BBI) {
617790a779fSJames Molloy     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
618790a779fSJames Molloy       MachineOperand &MO = BBI->getOperand(i);
619790a779fSJames Molloy       if (!MO.isReg() || !MO.isDef() ||
620790a779fSJames Molloy           !Register::isVirtualRegister(MO.getReg()))
621790a779fSJames Molloy         continue;
622790a779fSJames Molloy 
623790a779fSJames Molloy       int StageScheduled = Schedule.getStage(&*BBI);
624790a779fSJames Molloy       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
625790a779fSJames Molloy       Register Def = MO.getReg();
626790a779fSJames Molloy       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
627790a779fSJames Molloy       // An instruction scheduled in stage 0 and is used after the loop
628790a779fSJames Molloy       // requires a phi in the epilog for the last definition from either
629790a779fSJames Molloy       // the kernel or prolog.
630790a779fSJames Molloy       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
631790a779fSJames Molloy           hasUseAfterLoop(Def, BB, MRI))
632790a779fSJames Molloy         NumPhis = 1;
633790a779fSJames Molloy       if (!InKernel && (unsigned)StageScheduled > PrologStage)
634790a779fSJames Molloy         continue;
635790a779fSJames Molloy 
636790a779fSJames Molloy       unsigned PhiOp2 = VRMap[PrevStage][Def];
637790a779fSJames Molloy       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
638790a779fSJames Molloy         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
639790a779fSJames Molloy           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
640790a779fSJames Molloy       // The number of Phis can't exceed the number of prolog stages. The
641790a779fSJames Molloy       // prolog stage number is zero based.
642790a779fSJames Molloy       if (NumPhis > PrologStage + 1 - StageScheduled)
643790a779fSJames Molloy         NumPhis = PrologStage + 1 - StageScheduled;
644790a779fSJames Molloy       for (unsigned np = 0; np < NumPhis; ++np) {
645790a779fSJames Molloy         unsigned PhiOp1 = VRMap[PrologStage][Def];
646790a779fSJames Molloy         if (np <= PrologStage)
647790a779fSJames Molloy           PhiOp1 = VRMap[PrologStage - np][Def];
648790a779fSJames Molloy         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
649790a779fSJames Molloy           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
650790a779fSJames Molloy             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
651790a779fSJames Molloy           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
652790a779fSJames Molloy             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
653790a779fSJames Molloy         }
654790a779fSJames Molloy         if (!InKernel)
655790a779fSJames Molloy           PhiOp2 = VRMap[PrevStage - np][Def];
656790a779fSJames Molloy 
657790a779fSJames Molloy         const TargetRegisterClass *RC = MRI.getRegClass(Def);
658790a779fSJames Molloy         Register NewReg = MRI.createVirtualRegister(RC);
659790a779fSJames Molloy 
660790a779fSJames Molloy         MachineInstrBuilder NewPhi =
661790a779fSJames Molloy             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
662790a779fSJames Molloy                     TII->get(TargetOpcode::PHI), NewReg);
663790a779fSJames Molloy         NewPhi.addReg(PhiOp1).addMBB(BB1);
664790a779fSJames Molloy         NewPhi.addReg(PhiOp2).addMBB(BB2);
665790a779fSJames Molloy         if (np == 0)
666790a779fSJames Molloy           InstrMap[NewPhi] = &*BBI;
667790a779fSJames Molloy 
668790a779fSJames Molloy         // Rewrite uses and update the map. The actions depend upon whether
669790a779fSJames Molloy         // we generating code for the kernel or epilog blocks.
670790a779fSJames Molloy         if (InKernel) {
671790a779fSJames Molloy           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
672790a779fSJames Molloy                                 NewReg);
673790a779fSJames Molloy           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
674790a779fSJames Molloy                                 NewReg);
675790a779fSJames Molloy 
676790a779fSJames Molloy           PhiOp2 = NewReg;
677790a779fSJames Molloy           VRMap[PrevStage - np - 1][Def] = NewReg;
678790a779fSJames Molloy         } else {
679790a779fSJames Molloy           VRMap[CurStageNum - np][Def] = NewReg;
680790a779fSJames Molloy           if (np == NumPhis - 1)
681790a779fSJames Molloy             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
682790a779fSJames Molloy                                   NewReg);
683790a779fSJames Molloy         }
684790a779fSJames Molloy         if (IsLast && np == NumPhis - 1)
685790a779fSJames Molloy           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
686790a779fSJames Molloy       }
687790a779fSJames Molloy     }
688790a779fSJames Molloy   }
689790a779fSJames Molloy }
690790a779fSJames Molloy 
691790a779fSJames Molloy /// Remove instructions that generate values with no uses.
692790a779fSJames Molloy /// Typically, these are induction variable operations that generate values
693790a779fSJames Molloy /// used in the loop itself.  A dead instruction has a definition with
694790a779fSJames Molloy /// no uses, or uses that occur in the original loop only.
695790a779fSJames Molloy void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
696790a779fSJames Molloy                                                     MBBVectorTy &EpilogBBs) {
697790a779fSJames Molloy   // For each epilog block, check that the value defined by each instruction
698790a779fSJames Molloy   // is used.  If not, delete it.
699843d1edaSKazu Hirata   for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
700843d1edaSKazu Hirata     for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
701843d1edaSKazu Hirata                                                    ME = MBB->instr_rend();
702790a779fSJames Molloy          MI != ME;) {
703790a779fSJames Molloy       // From DeadMachineInstructionElem. Don't delete inline assembly.
704790a779fSJames Molloy       if (MI->isInlineAsm()) {
705790a779fSJames Molloy         ++MI;
706790a779fSJames Molloy         continue;
707790a779fSJames Molloy       }
708790a779fSJames Molloy       bool SawStore = false;
709790a779fSJames Molloy       // Check if it's safe to remove the instruction due to side effects.
710790a779fSJames Molloy       // We can, and want to, remove Phis here.
711790a779fSJames Molloy       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
712790a779fSJames Molloy         ++MI;
713790a779fSJames Molloy         continue;
714790a779fSJames Molloy       }
715790a779fSJames Molloy       bool used = true;
716*ce227ce3SKazu Hirata       for (const MachineOperand &MO : MI->operands()) {
717*ce227ce3SKazu Hirata         if (!MO.isReg() || !MO.isDef())
718790a779fSJames Molloy           continue;
719*ce227ce3SKazu Hirata         Register reg = MO.getReg();
720790a779fSJames Molloy         // Assume physical registers are used, unless they are marked dead.
721790a779fSJames Molloy         if (Register::isPhysicalRegister(reg)) {
722*ce227ce3SKazu Hirata           used = !MO.isDead();
723790a779fSJames Molloy           if (used)
724790a779fSJames Molloy             break;
725790a779fSJames Molloy           continue;
726790a779fSJames Molloy         }
727790a779fSJames Molloy         unsigned realUses = 0;
728790a779fSJames Molloy         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
729790a779fSJames Molloy                                                EI = MRI.use_end();
730790a779fSJames Molloy              UI != EI; ++UI) {
731790a779fSJames Molloy           // Check if there are any uses that occur only in the original
732790a779fSJames Molloy           // loop.  If so, that's not a real use.
733790a779fSJames Molloy           if (UI->getParent()->getParent() != BB) {
734790a779fSJames Molloy             realUses++;
735790a779fSJames Molloy             used = true;
736790a779fSJames Molloy             break;
737790a779fSJames Molloy           }
738790a779fSJames Molloy         }
739790a779fSJames Molloy         if (realUses > 0)
740790a779fSJames Molloy           break;
741790a779fSJames Molloy         used = false;
742790a779fSJames Molloy       }
743790a779fSJames Molloy       if (!used) {
744790a779fSJames Molloy         LIS.RemoveMachineInstrFromMaps(*MI);
745790a779fSJames Molloy         MI++->eraseFromParent();
746790a779fSJames Molloy         continue;
747790a779fSJames Molloy       }
748790a779fSJames Molloy       ++MI;
749790a779fSJames Molloy     }
750790a779fSJames Molloy   // In the kernel block, check if we can remove a Phi that generates a value
751790a779fSJames Molloy   // used in an instruction removed in the epilog block.
752c3e698e2SKazu Hirata   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
753c3e698e2SKazu Hirata     Register reg = MI.getOperand(0).getReg();
754790a779fSJames Molloy     if (MRI.use_begin(reg) == MRI.use_end()) {
755c3e698e2SKazu Hirata       LIS.RemoveMachineInstrFromMaps(MI);
756c3e698e2SKazu Hirata       MI.eraseFromParent();
757790a779fSJames Molloy     }
758790a779fSJames Molloy   }
759790a779fSJames Molloy }
760790a779fSJames Molloy 
761790a779fSJames Molloy /// For loop carried definitions, we split the lifetime of a virtual register
762790a779fSJames Molloy /// that has uses past the definition in the next iteration. A copy with a new
763790a779fSJames Molloy /// virtual register is inserted before the definition, which helps with
764790a779fSJames Molloy /// generating a better register assignment.
765790a779fSJames Molloy ///
766790a779fSJames Molloy ///   v1 = phi(a, v2)     v1 = phi(a, v2)
767790a779fSJames Molloy ///   v2 = phi(b, v3)     v2 = phi(b, v3)
768790a779fSJames Molloy ///   v3 = ..             v4 = copy v1
769790a779fSJames Molloy ///   .. = V1             v3 = ..
770790a779fSJames Molloy ///                       .. = v4
771790a779fSJames Molloy void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
772790a779fSJames Molloy                                             MBBVectorTy &EpilogBBs) {
773790a779fSJames Molloy   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
774790a779fSJames Molloy   for (auto &PHI : KernelBB->phis()) {
775790a779fSJames Molloy     Register Def = PHI.getOperand(0).getReg();
776790a779fSJames Molloy     // Check for any Phi definition that used as an operand of another Phi
777790a779fSJames Molloy     // in the same block.
778790a779fSJames Molloy     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
779790a779fSJames Molloy                                                  E = MRI.use_instr_end();
780790a779fSJames Molloy          I != E; ++I) {
781790a779fSJames Molloy       if (I->isPHI() && I->getParent() == KernelBB) {
782790a779fSJames Molloy         // Get the loop carried definition.
783790a779fSJames Molloy         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
784790a779fSJames Molloy         if (!LCDef)
785790a779fSJames Molloy           continue;
786790a779fSJames Molloy         MachineInstr *MI = MRI.getVRegDef(LCDef);
787790a779fSJames Molloy         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
788790a779fSJames Molloy           continue;
789790a779fSJames Molloy         // Search through the rest of the block looking for uses of the Phi
790790a779fSJames Molloy         // definition. If one occurs, then split the lifetime.
791790a779fSJames Molloy         unsigned SplitReg = 0;
792790a779fSJames Molloy         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
793790a779fSJames Molloy                                     KernelBB->instr_end()))
794790a779fSJames Molloy           if (BBJ.readsRegister(Def)) {
795790a779fSJames Molloy             // We split the lifetime when we find the first use.
796790a779fSJames Molloy             if (SplitReg == 0) {
797790a779fSJames Molloy               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
798790a779fSJames Molloy               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
799790a779fSJames Molloy                       TII->get(TargetOpcode::COPY), SplitReg)
800790a779fSJames Molloy                   .addReg(Def);
801790a779fSJames Molloy             }
802790a779fSJames Molloy             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
803790a779fSJames Molloy           }
804790a779fSJames Molloy         if (!SplitReg)
805790a779fSJames Molloy           continue;
806790a779fSJames Molloy         // Search through each of the epilog blocks for any uses to be renamed.
807790a779fSJames Molloy         for (auto &Epilog : EpilogBBs)
808790a779fSJames Molloy           for (auto &I : *Epilog)
809790a779fSJames Molloy             if (I.readsRegister(Def))
810790a779fSJames Molloy               I.substituteRegister(Def, SplitReg, 0, *TRI);
811790a779fSJames Molloy         break;
812790a779fSJames Molloy       }
813790a779fSJames Molloy     }
814790a779fSJames Molloy   }
815790a779fSJames Molloy }
816790a779fSJames Molloy 
817790a779fSJames Molloy /// Remove the incoming block from the Phis in a basic block.
818790a779fSJames Molloy static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
819790a779fSJames Molloy   for (MachineInstr &MI : *BB) {
820790a779fSJames Molloy     if (!MI.isPHI())
821790a779fSJames Molloy       break;
822790a779fSJames Molloy     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
823790a779fSJames Molloy       if (MI.getOperand(i + 1).getMBB() == Incoming) {
824790a779fSJames Molloy         MI.RemoveOperand(i + 1);
825790a779fSJames Molloy         MI.RemoveOperand(i);
826790a779fSJames Molloy         break;
827790a779fSJames Molloy       }
828790a779fSJames Molloy   }
829790a779fSJames Molloy }
830790a779fSJames Molloy 
831790a779fSJames Molloy /// Create branches from each prolog basic block to the appropriate epilog
832790a779fSJames Molloy /// block.  These edges are needed if the loop ends before reaching the
833790a779fSJames Molloy /// kernel.
834790a779fSJames Molloy void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
835790a779fSJames Molloy                                          MBBVectorTy &PrologBBs,
836790a779fSJames Molloy                                          MachineBasicBlock *KernelBB,
837790a779fSJames Molloy                                          MBBVectorTy &EpilogBBs,
838790a779fSJames Molloy                                          ValueMapTy *VRMap) {
839790a779fSJames Molloy   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
840790a779fSJames Molloy   MachineBasicBlock *LastPro = KernelBB;
841790a779fSJames Molloy   MachineBasicBlock *LastEpi = KernelBB;
842790a779fSJames Molloy 
843790a779fSJames Molloy   // Start from the blocks connected to the kernel and work "out"
844790a779fSJames Molloy   // to the first prolog and the last epilog blocks.
845790a779fSJames Molloy   SmallVector<MachineInstr *, 4> PrevInsts;
846790a779fSJames Molloy   unsigned MaxIter = PrologBBs.size() - 1;
847790a779fSJames Molloy   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
848790a779fSJames Molloy     // Add branches to the prolog that go to the corresponding
849790a779fSJames Molloy     // epilog, and the fall-thru prolog/kernel block.
850790a779fSJames Molloy     MachineBasicBlock *Prolog = PrologBBs[j];
851790a779fSJames Molloy     MachineBasicBlock *Epilog = EpilogBBs[i];
8528a74eca3SJames Molloy 
853790a779fSJames Molloy     SmallVector<MachineOperand, 4> Cond;
8548a74eca3SJames Molloy     Optional<bool> StaticallyGreater =
8558a74eca3SJames Molloy         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
856790a779fSJames Molloy     unsigned numAdded = 0;
8578a74eca3SJames Molloy     if (!StaticallyGreater.hasValue()) {
858790a779fSJames Molloy       Prolog->addSuccessor(Epilog);
859790a779fSJames Molloy       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
8608a74eca3SJames Molloy     } else if (*StaticallyGreater == false) {
861790a779fSJames Molloy       Prolog->addSuccessor(Epilog);
862790a779fSJames Molloy       Prolog->removeSuccessor(LastPro);
863790a779fSJames Molloy       LastEpi->removeSuccessor(Epilog);
864790a779fSJames Molloy       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
865790a779fSJames Molloy       removePhis(Epilog, LastEpi);
866790a779fSJames Molloy       // Remove the blocks that are no longer referenced.
867790a779fSJames Molloy       if (LastPro != LastEpi) {
868790a779fSJames Molloy         LastEpi->clear();
869790a779fSJames Molloy         LastEpi->eraseFromParent();
870790a779fSJames Molloy       }
8718a74eca3SJames Molloy       if (LastPro == KernelBB) {
8728a74eca3SJames Molloy         LoopInfo->disposed();
8738a74eca3SJames Molloy         NewKernel = nullptr;
8748a74eca3SJames Molloy       }
875790a779fSJames Molloy       LastPro->clear();
876790a779fSJames Molloy       LastPro->eraseFromParent();
877790a779fSJames Molloy     } else {
878790a779fSJames Molloy       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
879790a779fSJames Molloy       removePhis(Epilog, Prolog);
880790a779fSJames Molloy     }
881790a779fSJames Molloy     LastPro = Prolog;
882790a779fSJames Molloy     LastEpi = Epilog;
883790a779fSJames Molloy     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
884790a779fSJames Molloy                                                    E = Prolog->instr_rend();
885790a779fSJames Molloy          I != E && numAdded > 0; ++I, --numAdded)
886790a779fSJames Molloy       updateInstruction(&*I, false, j, 0, VRMap);
887790a779fSJames Molloy   }
8888a74eca3SJames Molloy 
8898a74eca3SJames Molloy   if (NewKernel) {
8908a74eca3SJames Molloy     LoopInfo->setPreheader(PrologBBs[MaxIter]);
8918a74eca3SJames Molloy     LoopInfo->adjustTripCount(-(MaxIter + 1));
8928a74eca3SJames Molloy   }
893790a779fSJames Molloy }
894790a779fSJames Molloy 
895790a779fSJames Molloy /// Return true if we can compute the amount the instruction changes
896790a779fSJames Molloy /// during each iteration. Set Delta to the amount of the change.
897790a779fSJames Molloy bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
898790a779fSJames Molloy   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
899790a779fSJames Molloy   const MachineOperand *BaseOp;
900790a779fSJames Molloy   int64_t Offset;
9018fbc9258SSander de Smalen   bool OffsetIsScalable;
9028fbc9258SSander de Smalen   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
9038fbc9258SSander de Smalen     return false;
9048fbc9258SSander de Smalen 
9058fbc9258SSander de Smalen   // FIXME: This algorithm assumes instructions have fixed-size offsets.
9068fbc9258SSander de Smalen   if (OffsetIsScalable)
907790a779fSJames Molloy     return false;
908790a779fSJames Molloy 
909790a779fSJames Molloy   if (!BaseOp->isReg())
910790a779fSJames Molloy     return false;
911790a779fSJames Molloy 
912790a779fSJames Molloy   Register BaseReg = BaseOp->getReg();
913790a779fSJames Molloy 
914790a779fSJames Molloy   MachineRegisterInfo &MRI = MF.getRegInfo();
915790a779fSJames Molloy   // Check if there is a Phi. If so, get the definition in the loop.
916790a779fSJames Molloy   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
917790a779fSJames Molloy   if (BaseDef && BaseDef->isPHI()) {
918790a779fSJames Molloy     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
919790a779fSJames Molloy     BaseDef = MRI.getVRegDef(BaseReg);
920790a779fSJames Molloy   }
921790a779fSJames Molloy   if (!BaseDef)
922790a779fSJames Molloy     return false;
923790a779fSJames Molloy 
924790a779fSJames Molloy   int D = 0;
925790a779fSJames Molloy   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
926790a779fSJames Molloy     return false;
927790a779fSJames Molloy 
928790a779fSJames Molloy   Delta = D;
929790a779fSJames Molloy   return true;
930790a779fSJames Molloy }
931790a779fSJames Molloy 
932790a779fSJames Molloy /// Update the memory operand with a new offset when the pipeliner
933790a779fSJames Molloy /// generates a new copy of the instruction that refers to a
934790a779fSJames Molloy /// different memory location.
935790a779fSJames Molloy void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
936790a779fSJames Molloy                                                MachineInstr &OldMI,
937790a779fSJames Molloy                                                unsigned Num) {
938790a779fSJames Molloy   if (Num == 0)
939790a779fSJames Molloy     return;
940790a779fSJames Molloy   // If the instruction has memory operands, then adjust the offset
941790a779fSJames Molloy   // when the instruction appears in different stages.
942790a779fSJames Molloy   if (NewMI.memoperands_empty())
943790a779fSJames Molloy     return;
944790a779fSJames Molloy   SmallVector<MachineMemOperand *, 2> NewMMOs;
945790a779fSJames Molloy   for (MachineMemOperand *MMO : NewMI.memoperands()) {
946790a779fSJames Molloy     // TODO: Figure out whether isAtomic is really necessary (see D57601).
947790a779fSJames Molloy     if (MMO->isVolatile() || MMO->isAtomic() ||
948790a779fSJames Molloy         (MMO->isInvariant() && MMO->isDereferenceable()) ||
949790a779fSJames Molloy         (!MMO->getValue())) {
950790a779fSJames Molloy       NewMMOs.push_back(MMO);
951790a779fSJames Molloy       continue;
952790a779fSJames Molloy     }
953790a779fSJames Molloy     unsigned Delta;
954790a779fSJames Molloy     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
955790a779fSJames Molloy       int64_t AdjOffset = Delta * Num;
956790a779fSJames Molloy       NewMMOs.push_back(
957790a779fSJames Molloy           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
958790a779fSJames Molloy     } else {
959790a779fSJames Molloy       NewMMOs.push_back(
960790a779fSJames Molloy           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
961790a779fSJames Molloy     }
962790a779fSJames Molloy   }
963790a779fSJames Molloy   NewMI.setMemRefs(MF, NewMMOs);
964790a779fSJames Molloy }
965790a779fSJames Molloy 
966790a779fSJames Molloy /// Clone the instruction for the new pipelined loop and update the
967790a779fSJames Molloy /// memory operands, if needed.
968790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
969790a779fSJames Molloy                                                  unsigned CurStageNum,
970790a779fSJames Molloy                                                  unsigned InstStageNum) {
971790a779fSJames Molloy   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
972790a779fSJames Molloy   // Check for tied operands in inline asm instructions. This should be handled
973790a779fSJames Molloy   // elsewhere, but I'm not sure of the best solution.
974790a779fSJames Molloy   if (OldMI->isInlineAsm())
975790a779fSJames Molloy     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
976790a779fSJames Molloy       const auto &MO = OldMI->getOperand(i);
977790a779fSJames Molloy       if (MO.isReg() && MO.isUse())
978790a779fSJames Molloy         break;
979790a779fSJames Molloy       unsigned UseIdx;
980790a779fSJames Molloy       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
981790a779fSJames Molloy         NewMI->tieOperands(i, UseIdx);
982790a779fSJames Molloy     }
983790a779fSJames Molloy   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
984790a779fSJames Molloy   return NewMI;
985790a779fSJames Molloy }
986790a779fSJames Molloy 
987790a779fSJames Molloy /// Clone the instruction for the new pipelined loop. If needed, this
988790a779fSJames Molloy /// function updates the instruction using the values saved in the
989790a779fSJames Molloy /// InstrChanges structure.
990790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
991790a779fSJames Molloy     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
992790a779fSJames Molloy   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
993790a779fSJames Molloy   auto It = InstrChanges.find(OldMI);
994790a779fSJames Molloy   if (It != InstrChanges.end()) {
995790a779fSJames Molloy     std::pair<unsigned, int64_t> RegAndOffset = It->second;
996790a779fSJames Molloy     unsigned BasePos, OffsetPos;
997790a779fSJames Molloy     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
998790a779fSJames Molloy       return nullptr;
999790a779fSJames Molloy     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1000790a779fSJames Molloy     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1001790a779fSJames Molloy     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1002790a779fSJames Molloy       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1003790a779fSJames Molloy     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1004790a779fSJames Molloy   }
1005790a779fSJames Molloy   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1006790a779fSJames Molloy   return NewMI;
1007790a779fSJames Molloy }
1008790a779fSJames Molloy 
1009790a779fSJames Molloy /// Update the machine instruction with new virtual registers.  This
1010790a779fSJames Molloy /// function may change the defintions and/or uses.
1011790a779fSJames Molloy void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1012790a779fSJames Molloy                                                bool LastDef,
1013790a779fSJames Molloy                                                unsigned CurStageNum,
1014790a779fSJames Molloy                                                unsigned InstrStageNum,
1015790a779fSJames Molloy                                                ValueMapTy *VRMap) {
1016790a779fSJames Molloy   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1017790a779fSJames Molloy     MachineOperand &MO = NewMI->getOperand(i);
1018790a779fSJames Molloy     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1019790a779fSJames Molloy       continue;
1020790a779fSJames Molloy     Register reg = MO.getReg();
1021790a779fSJames Molloy     if (MO.isDef()) {
1022790a779fSJames Molloy       // Create a new virtual register for the definition.
1023790a779fSJames Molloy       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1024790a779fSJames Molloy       Register NewReg = MRI.createVirtualRegister(RC);
1025790a779fSJames Molloy       MO.setReg(NewReg);
1026790a779fSJames Molloy       VRMap[CurStageNum][reg] = NewReg;
1027790a779fSJames Molloy       if (LastDef)
1028790a779fSJames Molloy         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1029790a779fSJames Molloy     } else if (MO.isUse()) {
1030790a779fSJames Molloy       MachineInstr *Def = MRI.getVRegDef(reg);
1031790a779fSJames Molloy       // Compute the stage that contains the last definition for instruction.
1032790a779fSJames Molloy       int DefStageNum = Schedule.getStage(Def);
1033790a779fSJames Molloy       unsigned StageNum = CurStageNum;
1034790a779fSJames Molloy       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1035790a779fSJames Molloy         // Compute the difference in stages between the defintion and the use.
1036790a779fSJames Molloy         unsigned StageDiff = (InstrStageNum - DefStageNum);
1037790a779fSJames Molloy         // Make an adjustment to get the last definition.
1038790a779fSJames Molloy         StageNum -= StageDiff;
1039790a779fSJames Molloy       }
1040790a779fSJames Molloy       if (VRMap[StageNum].count(reg))
1041790a779fSJames Molloy         MO.setReg(VRMap[StageNum][reg]);
1042790a779fSJames Molloy     }
1043790a779fSJames Molloy   }
1044790a779fSJames Molloy }
1045790a779fSJames Molloy 
1046790a779fSJames Molloy /// Return the instruction in the loop that defines the register.
1047790a779fSJames Molloy /// If the definition is a Phi, then follow the Phi operand to
1048790a779fSJames Molloy /// the instruction in the loop.
1049790a779fSJames Molloy MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1050790a779fSJames Molloy   SmallPtrSet<MachineInstr *, 8> Visited;
1051790a779fSJames Molloy   MachineInstr *Def = MRI.getVRegDef(Reg);
1052790a779fSJames Molloy   while (Def->isPHI()) {
1053790a779fSJames Molloy     if (!Visited.insert(Def).second)
1054790a779fSJames Molloy       break;
1055790a779fSJames Molloy     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1056790a779fSJames Molloy       if (Def->getOperand(i + 1).getMBB() == BB) {
1057790a779fSJames Molloy         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1058790a779fSJames Molloy         break;
1059790a779fSJames Molloy       }
1060790a779fSJames Molloy   }
1061790a779fSJames Molloy   return Def;
1062790a779fSJames Molloy }
1063790a779fSJames Molloy 
1064790a779fSJames Molloy /// Return the new name for the value from the previous stage.
1065790a779fSJames Molloy unsigned ModuloScheduleExpander::getPrevMapVal(
1066790a779fSJames Molloy     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1067790a779fSJames Molloy     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1068790a779fSJames Molloy   unsigned PrevVal = 0;
1069790a779fSJames Molloy   if (StageNum > PhiStage) {
1070790a779fSJames Molloy     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1071790a779fSJames Molloy     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1072790a779fSJames Molloy       // The name is defined in the previous stage.
1073790a779fSJames Molloy       PrevVal = VRMap[StageNum - 1][LoopVal];
1074790a779fSJames Molloy     else if (VRMap[StageNum].count(LoopVal))
1075790a779fSJames Molloy       // The previous name is defined in the current stage when the instruction
1076790a779fSJames Molloy       // order is swapped.
1077790a779fSJames Molloy       PrevVal = VRMap[StageNum][LoopVal];
1078790a779fSJames Molloy     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1079790a779fSJames Molloy       // The loop value hasn't yet been scheduled.
1080790a779fSJames Molloy       PrevVal = LoopVal;
1081790a779fSJames Molloy     else if (StageNum == PhiStage + 1)
1082790a779fSJames Molloy       // The loop value is another phi, which has not been scheduled.
1083790a779fSJames Molloy       PrevVal = getInitPhiReg(*LoopInst, BB);
1084790a779fSJames Molloy     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1085790a779fSJames Molloy       // The loop value is another phi, which has been scheduled.
1086790a779fSJames Molloy       PrevVal =
1087790a779fSJames Molloy           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1088790a779fSJames Molloy                         LoopStage, VRMap, BB);
1089790a779fSJames Molloy   }
1090790a779fSJames Molloy   return PrevVal;
1091790a779fSJames Molloy }
1092790a779fSJames Molloy 
1093790a779fSJames Molloy /// Rewrite the Phi values in the specified block to use the mappings
1094790a779fSJames Molloy /// from the initial operand. Once the Phi is scheduled, we switch
1095790a779fSJames Molloy /// to using the loop value instead of the Phi value, so those names
1096790a779fSJames Molloy /// do not need to be rewritten.
1097790a779fSJames Molloy void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1098790a779fSJames Molloy                                               unsigned StageNum,
1099790a779fSJames Molloy                                               ValueMapTy *VRMap,
1100790a779fSJames Molloy                                               InstrMapTy &InstrMap) {
1101790a779fSJames Molloy   for (auto &PHI : BB->phis()) {
1102790a779fSJames Molloy     unsigned InitVal = 0;
1103790a779fSJames Molloy     unsigned LoopVal = 0;
1104790a779fSJames Molloy     getPhiRegs(PHI, BB, InitVal, LoopVal);
1105790a779fSJames Molloy     Register PhiDef = PHI.getOperand(0).getReg();
1106790a779fSJames Molloy 
1107790a779fSJames Molloy     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1108790a779fSJames Molloy     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1109790a779fSJames Molloy     unsigned NumPhis = getStagesForPhi(PhiDef);
1110790a779fSJames Molloy     if (NumPhis > StageNum)
1111790a779fSJames Molloy       NumPhis = StageNum;
1112790a779fSJames Molloy     for (unsigned np = 0; np <= NumPhis; ++np) {
1113790a779fSJames Molloy       unsigned NewVal =
1114790a779fSJames Molloy           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1115790a779fSJames Molloy       if (!NewVal)
1116790a779fSJames Molloy         NewVal = InitVal;
1117790a779fSJames Molloy       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1118790a779fSJames Molloy                             NewVal);
1119790a779fSJames Molloy     }
1120790a779fSJames Molloy   }
1121790a779fSJames Molloy }
1122790a779fSJames Molloy 
1123790a779fSJames Molloy /// Rewrite a previously scheduled instruction to use the register value
1124790a779fSJames Molloy /// from the new instruction. Make sure the instruction occurs in the
1125790a779fSJames Molloy /// basic block, and we don't change the uses in the new instruction.
1126790a779fSJames Molloy void ModuloScheduleExpander::rewriteScheduledInstr(
1127790a779fSJames Molloy     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1128790a779fSJames Molloy     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1129790a779fSJames Molloy     unsigned PrevReg) {
1130790a779fSJames Molloy   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1131790a779fSJames Molloy   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1132790a779fSJames Molloy   // Rewrite uses that have been scheduled already to use the new
1133790a779fSJames Molloy   // Phi register.
1134642a361bSKazu Hirata   for (MachineOperand &UseOp :
1135642a361bSKazu Hirata        llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1136790a779fSJames Molloy     MachineInstr *UseMI = UseOp.getParent();
1137790a779fSJames Molloy     if (UseMI->getParent() != BB)
1138790a779fSJames Molloy       continue;
1139790a779fSJames Molloy     if (UseMI->isPHI()) {
1140790a779fSJames Molloy       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1141790a779fSJames Molloy         continue;
1142790a779fSJames Molloy       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1143790a779fSJames Molloy         continue;
1144790a779fSJames Molloy     }
1145790a779fSJames Molloy     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1146790a779fSJames Molloy     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1147790a779fSJames Molloy     MachineInstr *OrigMI = OrigInstr->second;
1148790a779fSJames Molloy     int StageSched = Schedule.getStage(OrigMI);
1149790a779fSJames Molloy     int CycleSched = Schedule.getCycle(OrigMI);
1150790a779fSJames Molloy     unsigned ReplaceReg = 0;
1151790a779fSJames Molloy     // This is the stage for the scheduled instruction.
1152790a779fSJames Molloy     if (StagePhi == StageSched && Phi->isPHI()) {
1153790a779fSJames Molloy       int CyclePhi = Schedule.getCycle(Phi);
1154790a779fSJames Molloy       if (PrevReg && InProlog)
1155790a779fSJames Molloy         ReplaceReg = PrevReg;
1156790a779fSJames Molloy       else if (PrevReg && !isLoopCarried(*Phi) &&
1157790a779fSJames Molloy                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1158790a779fSJames Molloy         ReplaceReg = PrevReg;
1159790a779fSJames Molloy       else
1160790a779fSJames Molloy         ReplaceReg = NewReg;
1161790a779fSJames Molloy     }
1162790a779fSJames Molloy     // The scheduled instruction occurs before the scheduled Phi, and the
1163790a779fSJames Molloy     // Phi is not loop carried.
1164790a779fSJames Molloy     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1165790a779fSJames Molloy       ReplaceReg = NewReg;
1166790a779fSJames Molloy     if (StagePhi > StageSched && Phi->isPHI())
1167790a779fSJames Molloy       ReplaceReg = NewReg;
1168790a779fSJames Molloy     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1169790a779fSJames Molloy       ReplaceReg = NewReg;
1170790a779fSJames Molloy     if (ReplaceReg) {
1171790a779fSJames Molloy       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1172790a779fSJames Molloy       UseOp.setReg(ReplaceReg);
1173790a779fSJames Molloy     }
1174790a779fSJames Molloy   }
1175790a779fSJames Molloy }
1176790a779fSJames Molloy 
1177790a779fSJames Molloy bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1178790a779fSJames Molloy   if (!Phi.isPHI())
1179790a779fSJames Molloy     return false;
1180caabb713SThomas Raoux   int DefCycle = Schedule.getCycle(&Phi);
1181790a779fSJames Molloy   int DefStage = Schedule.getStage(&Phi);
1182790a779fSJames Molloy 
1183790a779fSJames Molloy   unsigned InitVal = 0;
1184790a779fSJames Molloy   unsigned LoopVal = 0;
1185790a779fSJames Molloy   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1186790a779fSJames Molloy   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1187790a779fSJames Molloy   if (!Use || Use->isPHI())
1188790a779fSJames Molloy     return true;
1189caabb713SThomas Raoux   int LoopCycle = Schedule.getCycle(Use);
1190790a779fSJames Molloy   int LoopStage = Schedule.getStage(Use);
1191790a779fSJames Molloy   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1192790a779fSJames Molloy }
119393549957SJames Molloy 
119493549957SJames Molloy //===----------------------------------------------------------------------===//
1195fef9f590SJames Molloy // PeelingModuloScheduleExpander implementation
1196fef9f590SJames Molloy //===----------------------------------------------------------------------===//
1197fef9f590SJames Molloy // This is a reimplementation of ModuloScheduleExpander that works by creating
1198fef9f590SJames Molloy // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1199fef9f590SJames Molloy //===----------------------------------------------------------------------===//
1200fef9f590SJames Molloy 
1201fef9f590SJames Molloy namespace {
1202fef9f590SJames Molloy // Remove any dead phis in MBB. Dead phis either have only one block as input
1203fef9f590SJames Molloy // (in which case they are the identity) or have no uses.
1204fef9f590SJames Molloy void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1205e0297a8bSThomas Raoux                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1206fef9f590SJames Molloy   bool Changed = true;
1207fef9f590SJames Molloy   while (Changed) {
1208fef9f590SJames Molloy     Changed = false;
1209c3e698e2SKazu Hirata     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1210fef9f590SJames Molloy       assert(MI.isPHI());
1211fef9f590SJames Molloy       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1212fef9f590SJames Molloy         if (LIS)
1213fef9f590SJames Molloy           LIS->RemoveMachineInstrFromMaps(MI);
1214fef9f590SJames Molloy         MI.eraseFromParent();
1215fef9f590SJames Molloy         Changed = true;
1216e0297a8bSThomas Raoux       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1217fef9f590SJames Molloy         MRI.constrainRegClass(MI.getOperand(1).getReg(),
1218fef9f590SJames Molloy                               MRI.getRegClass(MI.getOperand(0).getReg()));
1219fef9f590SJames Molloy         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1220fef9f590SJames Molloy                            MI.getOperand(1).getReg());
1221fef9f590SJames Molloy         if (LIS)
1222fef9f590SJames Molloy           LIS->RemoveMachineInstrFromMaps(MI);
1223fef9f590SJames Molloy         MI.eraseFromParent();
1224fef9f590SJames Molloy         Changed = true;
1225fef9f590SJames Molloy       }
1226fef9f590SJames Molloy     }
1227fef9f590SJames Molloy   }
1228fef9f590SJames Molloy }
1229fef9f590SJames Molloy 
1230fef9f590SJames Molloy /// Rewrites the kernel block in-place to adhere to the given schedule.
1231fef9f590SJames Molloy /// KernelRewriter holds all of the state required to perform the rewriting.
1232fef9f590SJames Molloy class KernelRewriter {
1233fef9f590SJames Molloy   ModuloSchedule &S;
1234fef9f590SJames Molloy   MachineBasicBlock *BB;
1235fef9f590SJames Molloy   MachineBasicBlock *PreheaderBB, *ExitBB;
1236fef9f590SJames Molloy   MachineRegisterInfo &MRI;
1237fef9f590SJames Molloy   const TargetInstrInfo *TII;
1238fef9f590SJames Molloy   LiveIntervals *LIS;
1239fef9f590SJames Molloy 
1240fef9f590SJames Molloy   // Map from register class to canonical undef register for that class.
1241fef9f590SJames Molloy   DenseMap<const TargetRegisterClass *, Register> Undefs;
1242fef9f590SJames Molloy   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1243fef9f590SJames Molloy   // this map is only used when InitReg is non-undef.
1244fef9f590SJames Molloy   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1245fef9f590SJames Molloy   // Map from LoopReg to phi register where the InitReg is undef.
1246fef9f590SJames Molloy   DenseMap<Register, Register> UndefPhis;
1247fef9f590SJames Molloy 
1248fef9f590SJames Molloy   // Reg is used by MI. Return the new register MI should use to adhere to the
1249fef9f590SJames Molloy   // schedule. Insert phis as necessary.
1250fef9f590SJames Molloy   Register remapUse(Register Reg, MachineInstr &MI);
1251fef9f590SJames Molloy   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1252fef9f590SJames Molloy   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1253fef9f590SJames Molloy   // or will be chosen so as to share another phi.
1254fef9f590SJames Molloy   Register phi(Register LoopReg, Optional<Register> InitReg = {},
1255fef9f590SJames Molloy                const TargetRegisterClass *RC = nullptr);
1256fef9f590SJames Molloy   // Create an undef register of the given register class.
1257fef9f590SJames Molloy   Register undef(const TargetRegisterClass *RC);
1258fef9f590SJames Molloy 
1259fef9f590SJames Molloy public:
1260e15e1417SHendrik Greving   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1261fef9f590SJames Molloy                  LiveIntervals *LIS = nullptr);
1262fef9f590SJames Molloy   void rewrite();
1263fef9f590SJames Molloy };
1264fef9f590SJames Molloy } // namespace
1265fef9f590SJames Molloy 
1266fef9f590SJames Molloy KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1267e15e1417SHendrik Greving                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1268e15e1417SHendrik Greving     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1269fef9f590SJames Molloy       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1270fef9f590SJames Molloy       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1271fef9f590SJames Molloy   PreheaderBB = *BB->pred_begin();
1272fef9f590SJames Molloy   if (PreheaderBB == BB)
1273fef9f590SJames Molloy     PreheaderBB = *std::next(BB->pred_begin());
1274fef9f590SJames Molloy }
1275fef9f590SJames Molloy 
1276fef9f590SJames Molloy void KernelRewriter::rewrite() {
1277fef9f590SJames Molloy   // Rearrange the loop to be in schedule order. Note that the schedule may
1278fef9f590SJames Molloy   // contain instructions that are not owned by the loop block (InstrChanges and
1279fef9f590SJames Molloy   // friends), so we gracefully handle unowned instructions and delete any
1280fef9f590SJames Molloy   // instructions that weren't in the schedule.
1281fef9f590SJames Molloy   auto InsertPt = BB->getFirstTerminator();
1282fef9f590SJames Molloy   MachineInstr *FirstMI = nullptr;
1283fef9f590SJames Molloy   for (MachineInstr *MI : S.getInstructions()) {
1284fef9f590SJames Molloy     if (MI->isPHI())
1285fef9f590SJames Molloy       continue;
1286fef9f590SJames Molloy     if (MI->getParent())
1287fef9f590SJames Molloy       MI->removeFromParent();
1288fef9f590SJames Molloy     BB->insert(InsertPt, MI);
1289fef9f590SJames Molloy     if (!FirstMI)
1290fef9f590SJames Molloy       FirstMI = MI;
1291fef9f590SJames Molloy   }
12929942c077SSimon Pilgrim   assert(FirstMI && "Failed to find first MI in schedule");
1293fef9f590SJames Molloy 
1294fef9f590SJames Molloy   // At this point all of the scheduled instructions are between FirstMI
1295fef9f590SJames Molloy   // and the end of the block. Kill from the first non-phi to FirstMI.
1296fef9f590SJames Molloy   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1297fef9f590SJames Molloy     if (LIS)
1298fef9f590SJames Molloy       LIS->RemoveMachineInstrFromMaps(*I);
1299fef9f590SJames Molloy     (I++)->eraseFromParent();
1300fef9f590SJames Molloy   }
1301fef9f590SJames Molloy 
1302fef9f590SJames Molloy   // Now remap every instruction in the loop.
1303fef9f590SJames Molloy   for (MachineInstr &MI : *BB) {
13049baac83aSJames Molloy     if (MI.isPHI() || MI.isTerminator())
1305fef9f590SJames Molloy       continue;
1306fef9f590SJames Molloy     for (MachineOperand &MO : MI.uses()) {
1307fef9f590SJames Molloy       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1308fef9f590SJames Molloy         continue;
1309fef9f590SJames Molloy       Register Reg = remapUse(MO.getReg(), MI);
1310fef9f590SJames Molloy       MO.setReg(Reg);
1311fef9f590SJames Molloy     }
1312fef9f590SJames Molloy   }
1313fef9f590SJames Molloy   EliminateDeadPhis(BB, MRI, LIS);
1314fef9f590SJames Molloy 
1315fef9f590SJames Molloy   // Ensure a phi exists for all instructions that are either referenced by
1316fef9f590SJames Molloy   // an illegal phi or by an instruction outside the loop. This allows us to
1317fef9f590SJames Molloy   // treat remaps of these values the same as "normal" values that come from
1318fef9f590SJames Molloy   // loop-carried phis.
1319fef9f590SJames Molloy   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1320fef9f590SJames Molloy     if (MI->isPHI()) {
1321fef9f590SJames Molloy       Register R = MI->getOperand(0).getReg();
1322fef9f590SJames Molloy       phi(R);
1323fef9f590SJames Molloy       continue;
1324fef9f590SJames Molloy     }
1325fef9f590SJames Molloy 
1326fef9f590SJames Molloy     for (MachineOperand &Def : MI->defs()) {
1327fef9f590SJames Molloy       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1328fef9f590SJames Molloy         if (MI.getParent() != BB) {
1329fef9f590SJames Molloy           phi(Def.getReg());
1330fef9f590SJames Molloy           break;
1331fef9f590SJames Molloy         }
1332fef9f590SJames Molloy       }
1333fef9f590SJames Molloy     }
1334fef9f590SJames Molloy   }
1335fef9f590SJames Molloy }
1336fef9f590SJames Molloy 
1337fef9f590SJames Molloy Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1338fef9f590SJames Molloy   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1339fef9f590SJames Molloy   if (!Producer)
1340fef9f590SJames Molloy     return Reg;
1341fef9f590SJames Molloy 
1342fef9f590SJames Molloy   int ConsumerStage = S.getStage(&MI);
1343fef9f590SJames Molloy   if (!Producer->isPHI()) {
1344fef9f590SJames Molloy     // Non-phi producers are simple to remap. Insert as many phis as the
1345fef9f590SJames Molloy     // difference between the consumer and producer stages.
1346fef9f590SJames Molloy     if (Producer->getParent() != BB)
1347fef9f590SJames Molloy       // Producer was not inside the loop. Use the register as-is.
1348fef9f590SJames Molloy       return Reg;
1349fef9f590SJames Molloy     int ProducerStage = S.getStage(Producer);
1350fef9f590SJames Molloy     assert(ConsumerStage != -1 &&
1351fef9f590SJames Molloy            "In-loop consumer should always be scheduled!");
1352fef9f590SJames Molloy     assert(ConsumerStage >= ProducerStage);
1353fef9f590SJames Molloy     unsigned StageDiff = ConsumerStage - ProducerStage;
1354fef9f590SJames Molloy 
1355fef9f590SJames Molloy     for (unsigned I = 0; I < StageDiff; ++I)
1356fef9f590SJames Molloy       Reg = phi(Reg);
1357fef9f590SJames Molloy     return Reg;
1358fef9f590SJames Molloy   }
1359fef9f590SJames Molloy 
1360fef9f590SJames Molloy   // First, dive through the phi chain to find the defaults for the generated
1361fef9f590SJames Molloy   // phis.
1362fef9f590SJames Molloy   SmallVector<Optional<Register>, 4> Defaults;
1363fef9f590SJames Molloy   Register LoopReg = Reg;
1364fef9f590SJames Molloy   auto LoopProducer = Producer;
1365fef9f590SJames Molloy   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1366fef9f590SJames Molloy     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1367fef9f590SJames Molloy     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1368fef9f590SJames Molloy     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1369fef9f590SJames Molloy     assert(LoopProducer);
1370fef9f590SJames Molloy   }
1371fef9f590SJames Molloy   int LoopProducerStage = S.getStage(LoopProducer);
1372fef9f590SJames Molloy 
1373fef9f590SJames Molloy   Optional<Register> IllegalPhiDefault;
1374fef9f590SJames Molloy 
1375fef9f590SJames Molloy   if (LoopProducerStage == -1) {
1376fef9f590SJames Molloy     // Do nothing.
1377fef9f590SJames Molloy   } else if (LoopProducerStage > ConsumerStage) {
1378fef9f590SJames Molloy     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1379fef9f590SJames Molloy     // In addition, Consumer's cycle must be scheduled after Producer in the
138011f0f7f5SJames Molloy     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
138111f0f7f5SJames Molloy     // functions.
138211f0f7f5SJames Molloy #ifndef NDEBUG // Silence unused variables in non-asserts mode.
138311f0f7f5SJames Molloy     int LoopProducerCycle = S.getCycle(LoopProducer);
138411f0f7f5SJames Molloy     int ConsumerCycle = S.getCycle(&MI);
138511f0f7f5SJames Molloy #endif
1386fef9f590SJames Molloy     assert(LoopProducerCycle <= ConsumerCycle);
1387fef9f590SJames Molloy     assert(LoopProducerStage == ConsumerStage + 1);
1388fef9f590SJames Molloy     // Peel off the first phi from Defaults and insert a phi between producer
1389fef9f590SJames Molloy     // and consumer. This phi will not be at the front of the block so we
1390fef9f590SJames Molloy     // consider it illegal. It will only exist during the rewrite process; it
1391fef9f590SJames Molloy     // needs to exist while we peel off prologs because these could take the
1392fef9f590SJames Molloy     // default value. After that we can replace all uses with the loop producer
1393fef9f590SJames Molloy     // value.
1394fef9f590SJames Molloy     IllegalPhiDefault = Defaults.front();
1395fef9f590SJames Molloy     Defaults.erase(Defaults.begin());
1396fef9f590SJames Molloy   } else {
1397fef9f590SJames Molloy     assert(ConsumerStage >= LoopProducerStage);
1398fef9f590SJames Molloy     int StageDiff = ConsumerStage - LoopProducerStage;
1399fef9f590SJames Molloy     if (StageDiff > 0) {
1400fef9f590SJames Molloy       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1401fef9f590SJames Molloy                         << " to " << (Defaults.size() + StageDiff) << "\n");
1402fef9f590SJames Molloy       // If we need more phis than we have defaults for, pad out with undefs for
1403fef9f590SJames Molloy       // the earliest phis, which are at the end of the defaults chain (the
1404fef9f590SJames Molloy       // chain is in reverse order).
1405fef9f590SJames Molloy       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1406fef9f590SJames Molloy                                                        ? Optional<Register>()
1407fef9f590SJames Molloy                                                        : Defaults.back());
1408fef9f590SJames Molloy     }
1409fef9f590SJames Molloy   }
1410fef9f590SJames Molloy 
1411fef9f590SJames Molloy   // Now we know the number of stages to jump back, insert the phi chain.
1412fef9f590SJames Molloy   auto DefaultI = Defaults.rbegin();
1413fef9f590SJames Molloy   while (DefaultI != Defaults.rend())
1414fef9f590SJames Molloy     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1415fef9f590SJames Molloy 
1416fef9f590SJames Molloy   if (IllegalPhiDefault.hasValue()) {
1417fef9f590SJames Molloy     // The consumer optionally consumes LoopProducer in the same iteration
1418fef9f590SJames Molloy     // (because the producer is scheduled at an earlier cycle than the consumer)
1419fef9f590SJames Molloy     // or the initial value. To facilitate this we create an illegal block here
1420fef9f590SJames Molloy     // by embedding a phi in the middle of the block. We will fix this up
1421fef9f590SJames Molloy     // immediately prior to pruning.
1422fef9f590SJames Molloy     auto RC = MRI.getRegClass(Reg);
1423fef9f590SJames Molloy     Register R = MRI.createVirtualRegister(RC);
1424dc26dec3SThomas Raoux     MachineInstr *IllegalPhi =
1425fef9f590SJames Molloy         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1426fef9f590SJames Molloy             .addReg(IllegalPhiDefault.getValue())
1427fef9f590SJames Molloy             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1428fef9f590SJames Molloy             .addReg(LoopReg)
1429fef9f590SJames Molloy             .addMBB(BB); // Block choice is arbitrary and has no effect.
1430dc26dec3SThomas Raoux     // Illegal phi should belong to the producer stage so that it can be
1431dc26dec3SThomas Raoux     // filtered correctly during peeling.
1432dc26dec3SThomas Raoux     S.setStage(IllegalPhi, LoopProducerStage);
1433fef9f590SJames Molloy     return R;
1434fef9f590SJames Molloy   }
1435fef9f590SJames Molloy 
1436fef9f590SJames Molloy   return LoopReg;
1437fef9f590SJames Molloy }
1438fef9f590SJames Molloy 
1439fef9f590SJames Molloy Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1440fef9f590SJames Molloy                              const TargetRegisterClass *RC) {
1441fef9f590SJames Molloy   // If the init register is not undef, try and find an existing phi.
1442fef9f590SJames Molloy   if (InitReg.hasValue()) {
1443fef9f590SJames Molloy     auto I = Phis.find({LoopReg, InitReg.getValue()});
1444fef9f590SJames Molloy     if (I != Phis.end())
1445fef9f590SJames Molloy       return I->second;
1446fef9f590SJames Molloy   } else {
1447fef9f590SJames Molloy     for (auto &KV : Phis) {
1448fef9f590SJames Molloy       if (KV.first.first == LoopReg)
1449fef9f590SJames Molloy         return KV.second;
1450fef9f590SJames Molloy     }
1451fef9f590SJames Molloy   }
1452fef9f590SJames Molloy 
1453fef9f590SJames Molloy   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1454fef9f590SJames Molloy   // find a phi that takes undef as input.
1455fef9f590SJames Molloy   auto I = UndefPhis.find(LoopReg);
1456fef9f590SJames Molloy   if (I != UndefPhis.end()) {
1457fef9f590SJames Molloy     Register R = I->second;
1458fef9f590SJames Molloy     if (!InitReg.hasValue())
1459fef9f590SJames Molloy       // Found a phi taking undef as input, and this input is undef so return
1460fef9f590SJames Molloy       // without any more changes.
1461fef9f590SJames Molloy       return R;
1462fef9f590SJames Molloy     // Found a phi taking undef as input, so rewrite it to take InitReg.
1463fef9f590SJames Molloy     MachineInstr *MI = MRI.getVRegDef(R);
1464fef9f590SJames Molloy     MI->getOperand(1).setReg(InitReg.getValue());
1465fef9f590SJames Molloy     Phis.insert({{LoopReg, InitReg.getValue()}, R});
1466fef9f590SJames Molloy     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1467fef9f590SJames Molloy     UndefPhis.erase(I);
1468fef9f590SJames Molloy     return R;
1469fef9f590SJames Molloy   }
1470fef9f590SJames Molloy 
1471fef9f590SJames Molloy   // Failed to find any existing phi to reuse, so create a new one.
1472fef9f590SJames Molloy   if (!RC)
1473fef9f590SJames Molloy     RC = MRI.getRegClass(LoopReg);
1474fef9f590SJames Molloy   Register R = MRI.createVirtualRegister(RC);
1475fef9f590SJames Molloy   if (InitReg.hasValue())
1476fef9f590SJames Molloy     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1477fef9f590SJames Molloy   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1478fef9f590SJames Molloy       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1479fef9f590SJames Molloy       .addMBB(PreheaderBB)
1480fef9f590SJames Molloy       .addReg(LoopReg)
1481fef9f590SJames Molloy       .addMBB(BB);
1482fef9f590SJames Molloy   if (!InitReg.hasValue())
1483fef9f590SJames Molloy     UndefPhis[LoopReg] = R;
1484fef9f590SJames Molloy   else
1485fef9f590SJames Molloy     Phis[{LoopReg, *InitReg}] = R;
1486fef9f590SJames Molloy   return R;
1487fef9f590SJames Molloy }
1488fef9f590SJames Molloy 
1489fef9f590SJames Molloy Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1490fef9f590SJames Molloy   Register &R = Undefs[RC];
1491fef9f590SJames Molloy   if (R == 0) {
1492fef9f590SJames Molloy     // Create an IMPLICIT_DEF that defines this register if we need it.
1493fef9f590SJames Molloy     // All uses of this should be removed by the time we have finished unrolling
1494fef9f590SJames Molloy     // prologs and epilogs.
1495fef9f590SJames Molloy     R = MRI.createVirtualRegister(RC);
1496fef9f590SJames Molloy     auto *InsertBB = &PreheaderBB->getParent()->front();
1497fef9f590SJames Molloy     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1498fef9f590SJames Molloy             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1499fef9f590SJames Molloy   }
1500fef9f590SJames Molloy   return R;
1501fef9f590SJames Molloy }
1502fef9f590SJames Molloy 
1503fef9f590SJames Molloy namespace {
1504fef9f590SJames Molloy /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1505fef9f590SJames Molloy /// the operand are discovered, such as how many in-loop PHIs it has to jump
1506fef9f590SJames Molloy /// through and defaults for these phis.
1507fef9f590SJames Molloy class KernelOperandInfo {
1508fef9f590SJames Molloy   MachineBasicBlock *BB;
1509fef9f590SJames Molloy   MachineRegisterInfo &MRI;
1510fef9f590SJames Molloy   SmallVector<Register, 4> PhiDefaults;
1511fef9f590SJames Molloy   MachineOperand *Source;
1512fef9f590SJames Molloy   MachineOperand *Target;
1513fef9f590SJames Molloy 
1514fef9f590SJames Molloy public:
1515fef9f590SJames Molloy   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1516fef9f590SJames Molloy                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1517fef9f590SJames Molloy       : MRI(MRI) {
1518fef9f590SJames Molloy     Source = MO;
1519fef9f590SJames Molloy     BB = MO->getParent()->getParent();
1520fef9f590SJames Molloy     while (isRegInLoop(MO)) {
1521fef9f590SJames Molloy       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1522fef9f590SJames Molloy       if (MI->isFullCopy()) {
1523fef9f590SJames Molloy         MO = &MI->getOperand(1);
1524fef9f590SJames Molloy         continue;
1525fef9f590SJames Molloy       }
1526fef9f590SJames Molloy       if (!MI->isPHI())
1527fef9f590SJames Molloy         break;
1528fef9f590SJames Molloy       // If this is an illegal phi, don't count it in distance.
1529fef9f590SJames Molloy       if (IllegalPhis.count(MI)) {
1530fef9f590SJames Molloy         MO = &MI->getOperand(3);
1531fef9f590SJames Molloy         continue;
1532fef9f590SJames Molloy       }
1533fef9f590SJames Molloy 
1534fef9f590SJames Molloy       Register Default = getInitPhiReg(*MI, BB);
1535fef9f590SJames Molloy       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1536fef9f590SJames Molloy                                             : &MI->getOperand(3);
1537fef9f590SJames Molloy       PhiDefaults.push_back(Default);
1538fef9f590SJames Molloy     }
1539fef9f590SJames Molloy     Target = MO;
1540fef9f590SJames Molloy   }
1541fef9f590SJames Molloy 
1542fef9f590SJames Molloy   bool operator==(const KernelOperandInfo &Other) const {
1543fef9f590SJames Molloy     return PhiDefaults.size() == Other.PhiDefaults.size();
1544fef9f590SJames Molloy   }
1545fef9f590SJames Molloy 
1546fef9f590SJames Molloy   void print(raw_ostream &OS) const {
1547fef9f590SJames Molloy     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1548fef9f590SJames Molloy        << *Source->getParent();
1549fef9f590SJames Molloy   }
1550fef9f590SJames Molloy 
1551fef9f590SJames Molloy private:
1552fef9f590SJames Molloy   bool isRegInLoop(MachineOperand *MO) {
1553fef9f590SJames Molloy     return MO->isReg() && MO->getReg().isVirtual() &&
1554fef9f590SJames Molloy            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1555fef9f590SJames Molloy   }
1556fef9f590SJames Molloy };
1557fef9f590SJames Molloy } // namespace
1558fef9f590SJames Molloy 
15599026518eSJames Molloy MachineBasicBlock *
15609026518eSJames Molloy PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
15619026518eSJames Molloy   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
15629026518eSJames Molloy   if (LPD == LPD_Front)
15639026518eSJames Molloy     PeeledFront.push_back(NewBB);
15649026518eSJames Molloy   else
15659026518eSJames Molloy     PeeledBack.push_front(NewBB);
15669026518eSJames Molloy   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
15679026518eSJames Molloy        ++I, ++NI) {
15689026518eSJames Molloy     CanonicalMIs[&*I] = &*I;
15699026518eSJames Molloy     CanonicalMIs[&*NI] = &*I;
15709026518eSJames Molloy     BlockMIs[{NewBB, &*I}] = &*NI;
15719026518eSJames Molloy     BlockMIs[{BB, &*I}] = &*I;
15729026518eSJames Molloy   }
15739026518eSJames Molloy   return NewBB;
15749026518eSJames Molloy }
15759026518eSJames Molloy 
1576e0f1d9d8SThomas Raoux void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1577e0f1d9d8SThomas Raoux                                                        int MinStage) {
1578e0f1d9d8SThomas Raoux   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1579e0f1d9d8SThomas Raoux        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1580e0f1d9d8SThomas Raoux     MachineInstr *MI = &*I++;
1581e0f1d9d8SThomas Raoux     int Stage = getStage(MI);
1582e0f1d9d8SThomas Raoux     if (Stage == -1 || Stage >= MinStage)
1583e0f1d9d8SThomas Raoux       continue;
1584e0f1d9d8SThomas Raoux 
1585e0f1d9d8SThomas Raoux     for (MachineOperand &DefMO : MI->defs()) {
1586e0f1d9d8SThomas Raoux       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1587e0f1d9d8SThomas Raoux       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1588e0f1d9d8SThomas Raoux         // Only PHIs can use values from this block by construction.
1589e0f1d9d8SThomas Raoux         // Match with the equivalent PHI in B.
1590e0f1d9d8SThomas Raoux         assert(UseMI.isPHI());
1591e0f1d9d8SThomas Raoux         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1592e0f1d9d8SThomas Raoux                                                MI->getParent());
1593e0f1d9d8SThomas Raoux         Subs.emplace_back(&UseMI, Reg);
1594e0f1d9d8SThomas Raoux       }
1595e0f1d9d8SThomas Raoux       for (auto &Sub : Subs)
1596e0f1d9d8SThomas Raoux         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1597e0f1d9d8SThomas Raoux                                       *MRI.getTargetRegisterInfo());
1598e0f1d9d8SThomas Raoux     }
1599e0f1d9d8SThomas Raoux     if (LIS)
1600e0f1d9d8SThomas Raoux       LIS->RemoveMachineInstrFromMaps(*MI);
1601e0f1d9d8SThomas Raoux     MI->eraseFromParent();
1602e0f1d9d8SThomas Raoux   }
1603e0f1d9d8SThomas Raoux }
1604e0f1d9d8SThomas Raoux 
1605e0f1d9d8SThomas Raoux void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1606e0f1d9d8SThomas Raoux     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1607e0f1d9d8SThomas Raoux   auto InsertPt = DestBB->getFirstNonPHI();
1608e0f1d9d8SThomas Raoux   DenseMap<Register, Register> Remaps;
16096bdb61c5SKazu Hirata   for (MachineInstr &MI : llvm::make_early_inc_range(
16106bdb61c5SKazu Hirata            llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
16116bdb61c5SKazu Hirata     if (MI.isPHI()) {
1612e0f1d9d8SThomas Raoux       // This is an illegal PHI. If we move any instructions using an illegal
1613d8f2814cSHendrik Greving       // PHI, we need to create a legal Phi.
16146bdb61c5SKazu Hirata       if (getStage(&MI) != Stage) {
1615d8f2814cSHendrik Greving         // The legal Phi is not necessary if the illegal phi's stage
1616d8f2814cSHendrik Greving         // is being moved.
16176bdb61c5SKazu Hirata         Register PhiR = MI.getOperand(0).getReg();
1618e0f1d9d8SThomas Raoux         auto RC = MRI.getRegClass(PhiR);
1619e0f1d9d8SThomas Raoux         Register NR = MRI.createVirtualRegister(RC);
1620d8f2814cSHendrik Greving         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1621d8f2814cSHendrik Greving                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1622e0f1d9d8SThomas Raoux                                .addReg(PhiR)
1623e0f1d9d8SThomas Raoux                                .addMBB(SourceBB);
16246bdb61c5SKazu Hirata         BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
16256bdb61c5SKazu Hirata         CanonicalMIs[NI] = CanonicalMIs[&MI];
1626e0f1d9d8SThomas Raoux         Remaps[PhiR] = NR;
1627d8f2814cSHendrik Greving       }
1628e0f1d9d8SThomas Raoux     }
16296bdb61c5SKazu Hirata     if (getStage(&MI) != Stage)
1630e0f1d9d8SThomas Raoux       continue;
16316bdb61c5SKazu Hirata     MI.removeFromParent();
16326bdb61c5SKazu Hirata     DestBB->insert(InsertPt, &MI);
16336bdb61c5SKazu Hirata     auto *KernelMI = CanonicalMIs[&MI];
16346bdb61c5SKazu Hirata     BlockMIs[{DestBB, KernelMI}] = &MI;
1635e0f1d9d8SThomas Raoux     BlockMIs.erase({SourceBB, KernelMI});
1636e0f1d9d8SThomas Raoux   }
1637e0f1d9d8SThomas Raoux   SmallVector<MachineInstr *, 4> PhiToDelete;
1638e0f1d9d8SThomas Raoux   for (MachineInstr &MI : DestBB->phis()) {
1639e0f1d9d8SThomas Raoux     assert(MI.getNumOperands() == 3);
1640e0f1d9d8SThomas Raoux     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1641e0f1d9d8SThomas Raoux     // If the instruction referenced by the phi is moved inside the block
1642e0f1d9d8SThomas Raoux     // we don't need the phi anymore.
1643e0f1d9d8SThomas Raoux     if (getStage(Def) == Stage) {
1644e0f1d9d8SThomas Raoux       Register PhiReg = MI.getOperand(0).getReg();
164520c0527aSThomas Raoux       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
164620c0527aSThomas Raoux       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1647e0f1d9d8SThomas Raoux       MI.getOperand(0).setReg(PhiReg);
1648e0f1d9d8SThomas Raoux       PhiToDelete.push_back(&MI);
1649e0f1d9d8SThomas Raoux     }
1650e0f1d9d8SThomas Raoux   }
1651e0f1d9d8SThomas Raoux   for (auto *P : PhiToDelete)
1652e0f1d9d8SThomas Raoux     P->eraseFromParent();
1653e0f1d9d8SThomas Raoux   InsertPt = DestBB->getFirstNonPHI();
1654e0297a8bSThomas Raoux   // Helper to clone Phi instructions into the destination block. We clone Phi
1655e0297a8bSThomas Raoux   // greedily to avoid combinatorial explosion of Phi instructions.
1656e0297a8bSThomas Raoux   auto clonePhi = [&](MachineInstr *Phi) {
1657e0297a8bSThomas Raoux     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1658e0f1d9d8SThomas Raoux     DestBB->insert(InsertPt, NewMI);
1659e0297a8bSThomas Raoux     Register OrigR = Phi->getOperand(0).getReg();
1660e0f1d9d8SThomas Raoux     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1661e0f1d9d8SThomas Raoux     NewMI->getOperand(0).setReg(R);
1662e0f1d9d8SThomas Raoux     NewMI->getOperand(1).setReg(OrigR);
1663e0f1d9d8SThomas Raoux     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1664e0f1d9d8SThomas Raoux     Remaps[OrigR] = R;
1665e0297a8bSThomas Raoux     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1666e0297a8bSThomas Raoux     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1667e0297a8bSThomas Raoux     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1668e0297a8bSThomas Raoux     return R;
1669e0297a8bSThomas Raoux   };
1670e0297a8bSThomas Raoux   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1671e0297a8bSThomas Raoux     for (MachineOperand &MO : I->uses()) {
1672e0297a8bSThomas Raoux       if (!MO.isReg())
1673e0297a8bSThomas Raoux         continue;
1674e0297a8bSThomas Raoux       if (Remaps.count(MO.getReg()))
1675e0f1d9d8SThomas Raoux         MO.setReg(Remaps[MO.getReg()]);
1676e0297a8bSThomas Raoux       else {
1677e0297a8bSThomas Raoux         // If we are using a phi from the source block we need to add a new phi
1678e0297a8bSThomas Raoux         // pointing to the old one.
1679e0297a8bSThomas Raoux         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1680e0297a8bSThomas Raoux         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1681e0297a8bSThomas Raoux           Register R = clonePhi(Use);
1682e0297a8bSThomas Raoux           MO.setReg(R);
1683e0297a8bSThomas Raoux         }
1684e0297a8bSThomas Raoux       }
1685e0297a8bSThomas Raoux     }
1686e0297a8bSThomas Raoux   }
1687e0297a8bSThomas Raoux }
1688e0297a8bSThomas Raoux 
1689e0297a8bSThomas Raoux Register
1690e0297a8bSThomas Raoux PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1691e0297a8bSThomas Raoux                                                   MachineInstr *Phi) {
1692e0297a8bSThomas Raoux   unsigned distance = PhiNodeLoopIteration[Phi];
1693e0297a8bSThomas Raoux   MachineInstr *CanonicalUse = CanonicalPhi;
1694f3d8a939SHendrik Greving   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1695e0297a8bSThomas Raoux   for (unsigned I = 0; I < distance; ++I) {
1696e0297a8bSThomas Raoux     assert(CanonicalUse->isPHI());
1697e0297a8bSThomas Raoux     assert(CanonicalUse->getNumOperands() == 5);
1698e0297a8bSThomas Raoux     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1699e0297a8bSThomas Raoux     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1700e0297a8bSThomas Raoux       std::swap(LoopRegIdx, InitRegIdx);
1701f3d8a939SHendrik Greving     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1702f3d8a939SHendrik Greving     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1703e0297a8bSThomas Raoux   }
1704f3d8a939SHendrik Greving   return CanonicalUseReg;
1705e0f1d9d8SThomas Raoux }
1706e0f1d9d8SThomas Raoux 
17079026518eSJames Molloy void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
17089026518eSJames Molloy   BitVector LS(Schedule.getNumStages(), true);
17099026518eSJames Molloy   BitVector AS(Schedule.getNumStages(), true);
17109026518eSJames Molloy   LiveStages[BB] = LS;
17119026518eSJames Molloy   AvailableStages[BB] = AS;
17129026518eSJames Molloy 
17139026518eSJames Molloy   // Peel out the prologs.
17149026518eSJames Molloy   LS.reset();
17159026518eSJames Molloy   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
17169026518eSJames Molloy     LS[I] = 1;
17179026518eSJames Molloy     Prologs.push_back(peelKernel(LPD_Front));
17189026518eSJames Molloy     LiveStages[Prologs.back()] = LS;
17199026518eSJames Molloy     AvailableStages[Prologs.back()] = LS;
17209026518eSJames Molloy   }
17219026518eSJames Molloy 
17229026518eSJames Molloy   // Create a block that will end up as the new loop exiting block (dominated by
17239026518eSJames Molloy   // all prologs and epilogs). It will only contain PHIs, in the same order as
17249026518eSJames Molloy   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
17259026518eSJames Molloy   // that the exiting block is a (sub) clone of BB. This in turn gives us the
17269026518eSJames Molloy   // property that any value deffed in BB but used outside of BB is used by a
17279026518eSJames Molloy   // PHI in the exiting block.
17289026518eSJames Molloy   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1729e0297a8bSThomas Raoux   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
17309026518eSJames Molloy   // Push out the epilogs, again in reverse order.
17319026518eSJames Molloy   // We can't assume anything about the minumum loop trip count at this point,
1732e0f1d9d8SThomas Raoux   // so emit a fairly complex epilog.
1733e0f1d9d8SThomas Raoux 
1734e0f1d9d8SThomas Raoux   // We first peel number of stages minus one epilogue. Then we remove dead
1735e0f1d9d8SThomas Raoux   // stages and reorder instructions based on their stage. If we have 3 stages
1736e0f1d9d8SThomas Raoux   // we generate first:
1737e0f1d9d8SThomas Raoux   // E0[3, 2, 1]
1738e0f1d9d8SThomas Raoux   // E1[3', 2']
1739e0f1d9d8SThomas Raoux   // E2[3'']
1740e0f1d9d8SThomas Raoux   // And then we move instructions based on their stages to have:
1741e0f1d9d8SThomas Raoux   // E0[3]
1742e0f1d9d8SThomas Raoux   // E1[2, 3']
1743e0f1d9d8SThomas Raoux   // E2[1, 2', 3'']
1744e0f1d9d8SThomas Raoux   // The transformation is legal because we only move instructions past
1745e0f1d9d8SThomas Raoux   // instructions of a previous loop iteration.
17469026518eSJames Molloy   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1747e0f1d9d8SThomas Raoux     Epilogs.push_back(peelKernel(LPD_Back));
1748e0297a8bSThomas Raoux     MachineBasicBlock *B = Epilogs.back();
1749e0297a8bSThomas Raoux     filterInstructions(B, Schedule.getNumStages() - I);
1750e0297a8bSThomas Raoux     // Keep track at which iteration each phi belongs to. We need it to know
1751e0297a8bSThomas Raoux     // what version of the variable to use during prologue/epilogue stitching.
1752e0297a8bSThomas Raoux     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1753c3e698e2SKazu Hirata     for (MachineInstr &Phi : B->phis())
1754c3e698e2SKazu Hirata       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
17559026518eSJames Molloy   }
1756e0f1d9d8SThomas Raoux   for (size_t I = 0; I < Epilogs.size(); I++) {
1757e0f1d9d8SThomas Raoux     LS.reset();
1758e0f1d9d8SThomas Raoux     for (size_t J = I; J < Epilogs.size(); J++) {
1759e0f1d9d8SThomas Raoux       int Iteration = J;
1760e0f1d9d8SThomas Raoux       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1761e0f1d9d8SThomas Raoux       // Move stage one block at a time so that Phi nodes are updated correctly.
1762e0f1d9d8SThomas Raoux       for (size_t K = Iteration; K > I; K--)
1763e0f1d9d8SThomas Raoux         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1764e0f1d9d8SThomas Raoux       LS[Stage] = 1;
1765e0f1d9d8SThomas Raoux     }
1766e0f1d9d8SThomas Raoux     LiveStages[Epilogs[I]] = LS;
1767e0f1d9d8SThomas Raoux     AvailableStages[Epilogs[I]] = AS;
17689026518eSJames Molloy   }
17699026518eSJames Molloy 
17709026518eSJames Molloy   // Now we've defined all the prolog and epilog blocks as a fallthrough
17719026518eSJames Molloy   // sequence, add the edges that will be followed if the loop trip count is
17729026518eSJames Molloy   // lower than the number of stages (connecting prologs directly with epilogs).
17739026518eSJames Molloy   auto PI = Prologs.begin();
17749026518eSJames Molloy   auto EI = Epilogs.begin();
17759026518eSJames Molloy   assert(Prologs.size() == Epilogs.size());
17769026518eSJames Molloy   for (; PI != Prologs.end(); ++PI, ++EI) {
17779026518eSJames Molloy     MachineBasicBlock *Pred = *(*EI)->pred_begin();
17789026518eSJames Molloy     (*PI)->addSuccessor(*EI);
17799026518eSJames Molloy     for (MachineInstr &MI : (*EI)->phis()) {
17809026518eSJames Molloy       Register Reg = MI.getOperand(1).getReg();
17819026518eSJames Molloy       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1782e0297a8bSThomas Raoux       if (Use && Use->getParent() == Pred) {
1783e0297a8bSThomas Raoux         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1784e0297a8bSThomas Raoux         if (CanonicalUse->isPHI()) {
1785e0297a8bSThomas Raoux           // If the use comes from a phi we need to skip as many phi as the
1786e0297a8bSThomas Raoux           // distance between the epilogue and the kernel. Trace through the phi
1787e0297a8bSThomas Raoux           // chain to find the right value.
1788e0297a8bSThomas Raoux           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1789e0297a8bSThomas Raoux         }
17909026518eSJames Molloy         Reg = getEquivalentRegisterIn(Reg, *PI);
1791e0297a8bSThomas Raoux       }
17929026518eSJames Molloy       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
17939026518eSJames Molloy       MI.addOperand(MachineOperand::CreateMBB(*PI));
17949026518eSJames Molloy     }
17959026518eSJames Molloy   }
17969026518eSJames Molloy 
17979026518eSJames Molloy   // Create a list of all blocks in order.
17989026518eSJames Molloy   SmallVector<MachineBasicBlock *, 8> Blocks;
17999026518eSJames Molloy   llvm::copy(PeeledFront, std::back_inserter(Blocks));
18009026518eSJames Molloy   Blocks.push_back(BB);
18019026518eSJames Molloy   llvm::copy(PeeledBack, std::back_inserter(Blocks));
18029026518eSJames Molloy 
18039026518eSJames Molloy   // Iterate in reverse order over all instructions, remapping as we go.
18049026518eSJames Molloy   for (MachineBasicBlock *B : reverse(Blocks)) {
18059026518eSJames Molloy     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
18069026518eSJames Molloy          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
18079026518eSJames Molloy       MachineInstr *MI = &*I++;
18089026518eSJames Molloy       rewriteUsesOf(MI);
18099026518eSJames Molloy     }
18109026518eSJames Molloy   }
1811e0f1d9d8SThomas Raoux   for (auto *MI : IllegalPhisToDelete) {
1812e0f1d9d8SThomas Raoux     if (LIS)
1813e0f1d9d8SThomas Raoux       LIS->RemoveMachineInstrFromMaps(*MI);
1814e0f1d9d8SThomas Raoux     MI->eraseFromParent();
1815e0f1d9d8SThomas Raoux   }
1816e0f1d9d8SThomas Raoux   IllegalPhisToDelete.clear();
1817e0f1d9d8SThomas Raoux 
18189026518eSJames Molloy   // Now all remapping has been done, we're free to optimize the generated code.
18199026518eSJames Molloy   for (MachineBasicBlock *B : reverse(Blocks))
18209026518eSJames Molloy     EliminateDeadPhis(B, MRI, LIS);
18219026518eSJames Molloy   EliminateDeadPhis(ExitingBB, MRI, LIS);
18229026518eSJames Molloy }
18239026518eSJames Molloy 
18249026518eSJames Molloy MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
18259026518eSJames Molloy   MachineFunction &MF = *BB->getParent();
18269026518eSJames Molloy   MachineBasicBlock *Exit = *BB->succ_begin();
18279026518eSJames Molloy   if (Exit == BB)
18289026518eSJames Molloy     Exit = *std::next(BB->succ_begin());
18299026518eSJames Molloy 
18309026518eSJames Molloy   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
18319026518eSJames Molloy   MF.insert(std::next(BB->getIterator()), NewBB);
18329026518eSJames Molloy 
18339026518eSJames Molloy   // Clone all phis in BB into NewBB and rewrite.
18349026518eSJames Molloy   for (MachineInstr &MI : BB->phis()) {
18359026518eSJames Molloy     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
18369026518eSJames Molloy     Register OldR = MI.getOperand(3).getReg();
18379026518eSJames Molloy     Register R = MRI.createVirtualRegister(RC);
18389026518eSJames Molloy     SmallVector<MachineInstr *, 4> Uses;
18399026518eSJames Molloy     for (MachineInstr &Use : MRI.use_instructions(OldR))
18409026518eSJames Molloy       if (Use.getParent() != BB)
18419026518eSJames Molloy         Uses.push_back(&Use);
18429026518eSJames Molloy     for (MachineInstr *Use : Uses)
18439026518eSJames Molloy       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
18449026518eSJames Molloy                               *MRI.getTargetRegisterInfo());
18459026518eSJames Molloy     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
18469026518eSJames Molloy         .addReg(OldR)
18479026518eSJames Molloy         .addMBB(BB);
18489026518eSJames Molloy     BlockMIs[{NewBB, &MI}] = NI;
18499026518eSJames Molloy     CanonicalMIs[NI] = &MI;
18509026518eSJames Molloy   }
18519026518eSJames Molloy   BB->replaceSuccessor(Exit, NewBB);
18529026518eSJames Molloy   Exit->replacePhiUsesWith(BB, NewBB);
18539026518eSJames Molloy   NewBB->addSuccessor(Exit);
18549026518eSJames Molloy 
18559026518eSJames Molloy   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
18569026518eSJames Molloy   SmallVector<MachineOperand, 4> Cond;
18579026518eSJames Molloy   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
18589026518eSJames Molloy   (void)CanAnalyzeBr;
18599026518eSJames Molloy   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
18609026518eSJames Molloy   TII->removeBranch(*BB);
18619026518eSJames Molloy   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
18629026518eSJames Molloy                     Cond, DebugLoc());
18639026518eSJames Molloy   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
18649026518eSJames Molloy   return NewBB;
18659026518eSJames Molloy }
18669026518eSJames Molloy 
18679026518eSJames Molloy Register
18689026518eSJames Molloy PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
18699026518eSJames Molloy                                                        MachineBasicBlock *BB) {
18709026518eSJames Molloy   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
18719026518eSJames Molloy   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
18729026518eSJames Molloy   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
18739026518eSJames Molloy }
18749026518eSJames Molloy 
18759026518eSJames Molloy void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
18769026518eSJames Molloy   if (MI->isPHI()) {
18779026518eSJames Molloy     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
18789026518eSJames Molloy     // and it is produced by this block.
18799026518eSJames Molloy     Register PhiR = MI->getOperand(0).getReg();
18809026518eSJames Molloy     Register R = MI->getOperand(3).getReg();
18819026518eSJames Molloy     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
18829026518eSJames Molloy     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
18839026518eSJames Molloy       R = MI->getOperand(1).getReg();
18849026518eSJames Molloy     MRI.setRegClass(R, MRI.getRegClass(PhiR));
18859026518eSJames Molloy     MRI.replaceRegWith(PhiR, R);
1886e0f1d9d8SThomas Raoux     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1887e0f1d9d8SThomas Raoux     // later to figure out how to remap registers.
1888e0f1d9d8SThomas Raoux     MI->getOperand(0).setReg(PhiR);
1889e0f1d9d8SThomas Raoux     IllegalPhisToDelete.push_back(MI);
18909026518eSJames Molloy     return;
18919026518eSJames Molloy   }
18929026518eSJames Molloy 
18939026518eSJames Molloy   int Stage = getStage(MI);
18949026518eSJames Molloy   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
18959026518eSJames Molloy       LiveStages[MI->getParent()].test(Stage))
18969026518eSJames Molloy     // Instruction is live, no rewriting to do.
18979026518eSJames Molloy     return;
18989026518eSJames Molloy 
18999026518eSJames Molloy   for (MachineOperand &DefMO : MI->defs()) {
19009026518eSJames Molloy     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
19019026518eSJames Molloy     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
19029026518eSJames Molloy       // Only PHIs can use values from this block by construction.
19039026518eSJames Molloy       // Match with the equivalent PHI in B.
19049026518eSJames Molloy       assert(UseMI.isPHI());
19059026518eSJames Molloy       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
19069026518eSJames Molloy                                              MI->getParent());
19079026518eSJames Molloy       Subs.emplace_back(&UseMI, Reg);
19089026518eSJames Molloy     }
19099026518eSJames Molloy     for (auto &Sub : Subs)
19109026518eSJames Molloy       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
19119026518eSJames Molloy                                     *MRI.getTargetRegisterInfo());
19129026518eSJames Molloy   }
19139026518eSJames Molloy   if (LIS)
19149026518eSJames Molloy     LIS->RemoveMachineInstrFromMaps(*MI);
19159026518eSJames Molloy   MI->eraseFromParent();
19169026518eSJames Molloy }
19179026518eSJames Molloy 
19189026518eSJames Molloy void PeelingModuloScheduleExpander::fixupBranches() {
19199026518eSJames Molloy   // Work outwards from the kernel.
19209026518eSJames Molloy   bool KernelDisposed = false;
19219026518eSJames Molloy   int TC = Schedule.getNumStages() - 1;
19229026518eSJames Molloy   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
19239026518eSJames Molloy        ++PI, ++EI, --TC) {
19249026518eSJames Molloy     MachineBasicBlock *Prolog = *PI;
19259026518eSJames Molloy     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
19269026518eSJames Molloy     MachineBasicBlock *Epilog = *EI;
19279026518eSJames Molloy     SmallVector<MachineOperand, 4> Cond;
19289972c992SJames Molloy     TII->removeBranch(*Prolog);
19299026518eSJames Molloy     Optional<bool> StaticallyGreater =
193050ac7ce9SHendrik Greving         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
19319026518eSJames Molloy     if (!StaticallyGreater.hasValue()) {
19329026518eSJames Molloy       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
19339026518eSJames Molloy       // Dynamically branch based on Cond.
19349026518eSJames Molloy       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
19359026518eSJames Molloy     } else if (*StaticallyGreater == false) {
19369026518eSJames Molloy       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
19379026518eSJames Molloy       // Prolog never falls through; branch to epilog and orphan interior
19389026518eSJames Molloy       // blocks. Leave it to unreachable-block-elim to clean up.
19399026518eSJames Molloy       Prolog->removeSuccessor(Fallthrough);
19409026518eSJames Molloy       for (MachineInstr &P : Fallthrough->phis()) {
19419026518eSJames Molloy         P.RemoveOperand(2);
19429026518eSJames Molloy         P.RemoveOperand(1);
19439026518eSJames Molloy       }
19449026518eSJames Molloy       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
19459026518eSJames Molloy       KernelDisposed = true;
19469026518eSJames Molloy     } else {
19479026518eSJames Molloy       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
19489026518eSJames Molloy       // Prolog always falls through; remove incoming values in epilog.
19499026518eSJames Molloy       Prolog->removeSuccessor(Epilog);
19509026518eSJames Molloy       for (MachineInstr &P : Epilog->phis()) {
19519026518eSJames Molloy         P.RemoveOperand(4);
19529026518eSJames Molloy         P.RemoveOperand(3);
19539026518eSJames Molloy       }
19549026518eSJames Molloy     }
19559026518eSJames Molloy   }
19569026518eSJames Molloy 
19579026518eSJames Molloy   if (!KernelDisposed) {
195850ac7ce9SHendrik Greving     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
195950ac7ce9SHendrik Greving     LoopInfo->setPreheader(Prologs.back());
19609026518eSJames Molloy   } else {
196150ac7ce9SHendrik Greving     LoopInfo->disposed();
19629026518eSJames Molloy   }
19639026518eSJames Molloy }
19649026518eSJames Molloy 
19659026518eSJames Molloy void PeelingModuloScheduleExpander::rewriteKernel() {
1966e15e1417SHendrik Greving   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
19679026518eSJames Molloy   KR.rewrite();
19689026518eSJames Molloy }
19699026518eSJames Molloy 
19709026518eSJames Molloy void PeelingModuloScheduleExpander::expand() {
19719026518eSJames Molloy   BB = Schedule.getLoop()->getTopBlock();
19729026518eSJames Molloy   Preheader = Schedule.getLoop()->getLoopPreheader();
19739026518eSJames Molloy   LLVM_DEBUG(Schedule.dump());
197450ac7ce9SHendrik Greving   LoopInfo = TII->analyzeLoopForPipelining(BB);
197550ac7ce9SHendrik Greving   assert(LoopInfo);
19769026518eSJames Molloy 
19779026518eSJames Molloy   rewriteKernel();
19789026518eSJames Molloy   peelPrologAndEpilogs();
19799026518eSJames Molloy   fixupBranches();
19809026518eSJames Molloy }
19819026518eSJames Molloy 
1982fef9f590SJames Molloy void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1983fef9f590SJames Molloy   BB = Schedule.getLoop()->getTopBlock();
1984fef9f590SJames Molloy   Preheader = Schedule.getLoop()->getLoopPreheader();
1985fef9f590SJames Molloy 
1986fef9f590SJames Molloy   // Dump the schedule before we invalidate and remap all its instructions.
1987fef9f590SJames Molloy   // Stash it in a string so we can print it if we found an error.
1988fef9f590SJames Molloy   std::string ScheduleDump;
1989fef9f590SJames Molloy   raw_string_ostream OS(ScheduleDump);
1990fef9f590SJames Molloy   Schedule.print(OS);
1991fef9f590SJames Molloy   OS.flush();
1992fef9f590SJames Molloy 
1993fef9f590SJames Molloy   // First, run the normal ModuleScheduleExpander. We don't support any
1994fef9f590SJames Molloy   // InstrChanges.
1995fef9f590SJames Molloy   assert(LIS && "Requires LiveIntervals!");
1996fef9f590SJames Molloy   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
1997fef9f590SJames Molloy                              ModuloScheduleExpander::InstrChangesTy());
1998fef9f590SJames Molloy   MSE.expand();
1999fef9f590SJames Molloy   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2000fef9f590SJames Molloy   if (!ExpandedKernel) {
2001fef9f590SJames Molloy     // The expander optimized away the kernel. We can't do any useful checking.
2002fef9f590SJames Molloy     MSE.cleanup();
2003fef9f590SJames Molloy     return;
2004fef9f590SJames Molloy   }
2005fef9f590SJames Molloy   // Before running the KernelRewriter, re-add BB into the CFG.
2006fef9f590SJames Molloy   Preheader->addSuccessor(BB);
2007fef9f590SJames Molloy 
2008fef9f590SJames Molloy   // Now run the new expansion algorithm.
2009e15e1417SHendrik Greving   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2010fef9f590SJames Molloy   KR.rewrite();
20119026518eSJames Molloy   peelPrologAndEpilogs();
2012fef9f590SJames Molloy 
2013fef9f590SJames Molloy   // Collect all illegal phis that the new algorithm created. We'll give these
2014fef9f590SJames Molloy   // to KernelOperandInfo.
2015fef9f590SJames Molloy   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2016fef9f590SJames Molloy   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2017fef9f590SJames Molloy     if (NI->isPHI())
2018fef9f590SJames Molloy       IllegalPhis.insert(&*NI);
2019fef9f590SJames Molloy   }
2020fef9f590SJames Molloy 
2021fef9f590SJames Molloy   // Co-iterate across both kernels. We expect them to be identical apart from
2022fef9f590SJames Molloy   // phis and full COPYs (we look through both).
2023fef9f590SJames Molloy   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2024fef9f590SJames Molloy   auto OI = ExpandedKernel->begin();
2025fef9f590SJames Molloy   auto NI = BB->begin();
2026fef9f590SJames Molloy   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2027fef9f590SJames Molloy     while (OI->isPHI() || OI->isFullCopy())
2028fef9f590SJames Molloy       ++OI;
2029fef9f590SJames Molloy     while (NI->isPHI() || NI->isFullCopy())
2030fef9f590SJames Molloy       ++NI;
2031fef9f590SJames Molloy     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2032fef9f590SJames Molloy     // Analyze every operand separately.
2033fef9f590SJames Molloy     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2034fef9f590SJames Molloy          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2035fef9f590SJames Molloy       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2036fef9f590SJames Molloy                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2037fef9f590SJames Molloy   }
2038fef9f590SJames Molloy 
2039fef9f590SJames Molloy   bool Failed = false;
2040fef9f590SJames Molloy   for (auto &OldAndNew : KOIs) {
2041fef9f590SJames Molloy     if (OldAndNew.first == OldAndNew.second)
2042fef9f590SJames Molloy       continue;
2043fef9f590SJames Molloy     Failed = true;
2044fef9f590SJames Molloy     errs() << "Modulo kernel validation error: [\n";
2045fef9f590SJames Molloy     errs() << " [golden] ";
2046fef9f590SJames Molloy     OldAndNew.first.print(errs());
2047fef9f590SJames Molloy     errs() << "          ";
2048fef9f590SJames Molloy     OldAndNew.second.print(errs());
2049fef9f590SJames Molloy     errs() << "]\n";
2050fef9f590SJames Molloy   }
2051fef9f590SJames Molloy 
2052fef9f590SJames Molloy   if (Failed) {
2053fef9f590SJames Molloy     errs() << "Golden reference kernel:\n";
205411f0f7f5SJames Molloy     ExpandedKernel->print(errs());
2055fef9f590SJames Molloy     errs() << "New kernel:\n";
205611f0f7f5SJames Molloy     BB->print(errs());
2057fef9f590SJames Molloy     errs() << ScheduleDump;
2058fef9f590SJames Molloy     report_fatal_error(
2059fef9f590SJames Molloy         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2060fef9f590SJames Molloy   }
2061fef9f590SJames Molloy 
2062fef9f590SJames Molloy   // Cleanup by removing BB from the CFG again as the original
2063fef9f590SJames Molloy   // ModuloScheduleExpander intended.
2064fef9f590SJames Molloy   Preheader->removeSuccessor(BB);
2065fef9f590SJames Molloy   MSE.cleanup();
2066fef9f590SJames Molloy }
2067fef9f590SJames Molloy 
2068fef9f590SJames Molloy //===----------------------------------------------------------------------===//
206993549957SJames Molloy // ModuloScheduleTestPass implementation
207093549957SJames Molloy //===----------------------------------------------------------------------===//
207193549957SJames Molloy // This pass constructs a ModuloSchedule from its module and runs
207293549957SJames Molloy // ModuloScheduleExpander.
207393549957SJames Molloy //
207493549957SJames Molloy // The module is expected to contain a single-block analyzable loop.
207593549957SJames Molloy // The total order of instructions is taken from the loop as-is.
207693549957SJames Molloy // Instructions are expected to be annotated with a PostInstrSymbol.
207793549957SJames Molloy // This PostInstrSymbol must have the following format:
207893549957SJames Molloy //  "Stage=%d Cycle=%d".
207993549957SJames Molloy //===----------------------------------------------------------------------===//
208093549957SJames Molloy 
2081df4b9a3fSBenjamin Kramer namespace {
208293549957SJames Molloy class ModuloScheduleTest : public MachineFunctionPass {
208393549957SJames Molloy public:
208493549957SJames Molloy   static char ID;
208593549957SJames Molloy 
208693549957SJames Molloy   ModuloScheduleTest() : MachineFunctionPass(ID) {
208793549957SJames Molloy     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
208893549957SJames Molloy   }
208993549957SJames Molloy 
209093549957SJames Molloy   bool runOnMachineFunction(MachineFunction &MF) override;
209193549957SJames Molloy   void runOnLoop(MachineFunction &MF, MachineLoop &L);
209293549957SJames Molloy 
209393549957SJames Molloy   void getAnalysisUsage(AnalysisUsage &AU) const override {
209493549957SJames Molloy     AU.addRequired<MachineLoopInfo>();
209593549957SJames Molloy     AU.addRequired<LiveIntervals>();
209693549957SJames Molloy     MachineFunctionPass::getAnalysisUsage(AU);
209793549957SJames Molloy   }
209893549957SJames Molloy };
2099df4b9a3fSBenjamin Kramer } // namespace
210093549957SJames Molloy 
210193549957SJames Molloy char ModuloScheduleTest::ID = 0;
210293549957SJames Molloy 
210393549957SJames Molloy INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
210493549957SJames Molloy                       "Modulo Schedule test pass", false, false)
210593549957SJames Molloy INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
210693549957SJames Molloy INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
210793549957SJames Molloy INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
210893549957SJames Molloy                     "Modulo Schedule test pass", false, false)
210993549957SJames Molloy 
211093549957SJames Molloy bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
211193549957SJames Molloy   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
211293549957SJames Molloy   for (auto *L : MLI) {
211393549957SJames Molloy     if (L->getTopBlock() != L->getBottomBlock())
211493549957SJames Molloy       continue;
211593549957SJames Molloy     runOnLoop(MF, *L);
211693549957SJames Molloy     return false;
211793549957SJames Molloy   }
211893549957SJames Molloy   return false;
211993549957SJames Molloy }
212093549957SJames Molloy 
212193549957SJames Molloy static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
212293549957SJames Molloy   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
212393549957SJames Molloy   std::pair<StringRef, StringRef> StageTokenAndValue =
212493549957SJames Molloy       getToken(StageAndCycle.first, "-");
212593549957SJames Molloy   std::pair<StringRef, StringRef> CycleTokenAndValue =
212693549957SJames Molloy       getToken(StageAndCycle.second, "-");
212793549957SJames Molloy   if (StageTokenAndValue.first != "Stage" ||
212893549957SJames Molloy       CycleTokenAndValue.first != "_Cycle") {
212993549957SJames Molloy     llvm_unreachable(
213093549957SJames Molloy         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
213193549957SJames Molloy     return;
213293549957SJames Molloy   }
213393549957SJames Molloy 
213493549957SJames Molloy   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
213593549957SJames Molloy   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
213693549957SJames Molloy 
213793549957SJames Molloy   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
213893549957SJames Molloy }
213993549957SJames Molloy 
214093549957SJames Molloy void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
214193549957SJames Molloy   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
214293549957SJames Molloy   MachineBasicBlock *BB = L.getTopBlock();
214393549957SJames Molloy   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
214493549957SJames Molloy 
214593549957SJames Molloy   DenseMap<MachineInstr *, int> Cycle, Stage;
214693549957SJames Molloy   std::vector<MachineInstr *> Instrs;
214793549957SJames Molloy   for (MachineInstr &MI : *BB) {
214893549957SJames Molloy     if (MI.isTerminator())
214993549957SJames Molloy       continue;
215093549957SJames Molloy     Instrs.push_back(&MI);
215193549957SJames Molloy     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
215293549957SJames Molloy       dbgs() << "Parsing post-instr symbol for " << MI;
215393549957SJames Molloy       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
215493549957SJames Molloy     }
215593549957SJames Molloy   }
215693549957SJames Molloy 
2157fef9f590SJames Molloy   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2158fef9f590SJames Molloy                     std::move(Stage));
215993549957SJames Molloy   ModuloScheduleExpander MSE(
216093549957SJames Molloy       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
216193549957SJames Molloy   MSE.expand();
2162fef9f590SJames Molloy   MSE.cleanup();
216393549957SJames Molloy }
216493549957SJames Molloy 
216593549957SJames Molloy //===----------------------------------------------------------------------===//
216693549957SJames Molloy // ModuloScheduleTestAnnotater implementation
216793549957SJames Molloy //===----------------------------------------------------------------------===//
216893549957SJames Molloy 
216993549957SJames Molloy void ModuloScheduleTestAnnotater::annotate() {
217093549957SJames Molloy   for (MachineInstr *MI : S.getInstructions()) {
217193549957SJames Molloy     SmallVector<char, 16> SV;
217293549957SJames Molloy     raw_svector_ostream OS(SV);
217393549957SJames Molloy     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
217493549957SJames Molloy     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
217593549957SJames Molloy     MI->setPostInstrSymbol(MF, Sym);
217693549957SJames Molloy   }
217793549957SJames Molloy }
2178