1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetOperations.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/ADT/iterator_range.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/CodeGen/DFAPacketizer.h" 48 #include "llvm/CodeGen/LiveIntervals.h" 49 #include "llvm/CodeGen/MachineBasicBlock.h" 50 #include "llvm/CodeGen/MachineDominators.h" 51 #include "llvm/CodeGen/MachineFunction.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstr.h" 54 #include "llvm/CodeGen/MachineInstrBuilder.h" 55 #include "llvm/CodeGen/MachineLoopInfo.h" 56 #include "llvm/CodeGen/MachineMemOperand.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachinePipeliner.h" 59 #include "llvm/CodeGen/MachineRegisterInfo.h" 60 #include "llvm/CodeGen/ModuloSchedule.h" 61 #include "llvm/CodeGen/RegisterPressure.h" 62 #include "llvm/CodeGen/ScheduleDAG.h" 63 #include "llvm/CodeGen/ScheduleDAGMutation.h" 64 #include "llvm/CodeGen/TargetOpcodes.h" 65 #include "llvm/CodeGen/TargetRegisterInfo.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/Config/llvm-config.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 #include "llvm/MC/MCInstrItineraries.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <deque> 86 #include <functional> 87 #include <iterator> 88 #include <map> 89 #include <memory> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "pipeliner" 97 98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 99 STATISTIC(NumPipelined, "Number of loops software pipelined"); 100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 109 110 /// A command line option to turn software pipelining on or off. 111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 112 cl::ZeroOrMore, 113 cl::desc("Enable Software Pipelining")); 114 115 /// A command line option to enable SWP at -Os. 116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 117 cl::desc("Enable SWP at Os."), cl::Hidden, 118 cl::init(false)); 119 120 /// A command line argument to limit minimum initial interval for pipelining. 121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 122 cl::desc("Size limit for the MII."), 123 cl::Hidden, cl::init(27)); 124 125 /// A command line argument to limit the number of stages in the pipeline. 126 static cl::opt<int> 127 SwpMaxStages("pipeliner-max-stages", 128 cl::desc("Maximum stages allowed in the generated scheduled."), 129 cl::Hidden, cl::init(3)); 130 131 /// A command line option to disable the pruning of chain dependences due to 132 /// an unrelated Phi. 133 static cl::opt<bool> 134 SwpPruneDeps("pipeliner-prune-deps", 135 cl::desc("Prune dependences between unrelated Phi nodes."), 136 cl::Hidden, cl::init(true)); 137 138 /// A command line option to disable the pruning of loop carried order 139 /// dependences. 140 static cl::opt<bool> 141 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 142 cl::desc("Prune loop carried order dependences."), 143 cl::Hidden, cl::init(true)); 144 145 #ifndef NDEBUG 146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 147 #endif 148 149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 150 cl::ReallyHidden, cl::init(false), 151 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 152 153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 154 cl::init(false)); 155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 156 cl::init(false)); 157 158 static cl::opt<bool> EmitTestAnnotations( 159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 160 cl::desc("Instead of emitting the pipelined code, annotate instructions " 161 "with the generated schedule for feeding into the " 162 "-modulo-schedule-test pass")); 163 164 static cl::opt<bool> ExperimentalCodeGen( 165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 166 cl::desc( 167 "Use the experimental peeling code generator for software pipelining")); 168 169 namespace llvm { 170 171 // A command line option to enable the CopyToPhi DAG mutation. 172 cl::opt<bool> 173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 174 cl::init(true), cl::ZeroOrMore, 175 cl::desc("Enable CopyToPhi DAG Mutation")); 176 177 } // end namespace llvm 178 179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 180 char MachinePipeliner::ID = 0; 181 #ifndef NDEBUG 182 int MachinePipeliner::NumTries = 0; 183 #endif 184 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 185 186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 187 "Modulo Software Pipelining", false, false) 188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 193 "Modulo Software Pipelining", false, false) 194 195 /// The "main" function for implementing Swing Modulo Scheduling. 196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 197 if (skipFunction(mf.getFunction())) 198 return false; 199 200 if (!EnableSWP) 201 return false; 202 203 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 221 TII = MF->getSubtarget().getInstrInfo(); 222 RegClassInfo.runOnMachineFunction(*MF); 223 224 for (auto &L : *MLI) 225 scheduleLoop(*L); 226 227 return false; 228 } 229 230 /// Attempt to perform the SMS algorithm on the specified loop. This function is 231 /// the main entry point for the algorithm. The function identifies candidate 232 /// loops, calculates the minimum initiation interval, and attempts to schedule 233 /// the loop. 234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 235 bool Changed = false; 236 for (auto &InnerLoop : L) 237 Changed |= scheduleLoop(*InnerLoop); 238 239 #ifndef NDEBUG 240 // Stop trying after reaching the limit (if any). 241 int Limit = SwpLoopLimit; 242 if (Limit >= 0) { 243 if (NumTries >= SwpLoopLimit) 244 return Changed; 245 NumTries++; 246 } 247 #endif 248 249 setPragmaPipelineOptions(L); 250 if (!canPipelineLoop(L)) { 251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 252 ORE->emit([&]() { 253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 254 L.getStartLoc(), L.getHeader()) 255 << "Failed to pipeline loop"; 256 }); 257 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 II_setByPragma = 0; 272 273 MachineBasicBlock *LBLK = L.getTopBlock(); 274 275 if (LBLK == nullptr) 276 return; 277 278 const BasicBlock *BBLK = LBLK->getBasicBlock(); 279 if (BBLK == nullptr) 280 return; 281 282 const Instruction *TI = BBLK->getTerminator(); 283 if (TI == nullptr) 284 return; 285 286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 287 if (LoopID == nullptr) 288 return; 289 290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 291 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 292 293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 295 296 if (MD == nullptr) 297 continue; 298 299 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 300 301 if (S == nullptr) 302 continue; 303 304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 305 assert(MD->getNumOperands() == 2 && 306 "Pipeline initiation interval hint metadata should have two operands."); 307 II_setByPragma = 308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 310 } else if (S->getString() == "llvm.loop.pipeline.disable") { 311 disabledByPragma = true; 312 } 313 } 314 } 315 316 /// Return true if the loop can be software pipelined. The algorithm is 317 /// restricted to loops with a single basic block. Make sure that the 318 /// branch in the loop can be analyzed. 319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 320 if (L.getNumBlocks() != 1) { 321 ORE->emit([&]() { 322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 323 L.getStartLoc(), L.getHeader()) 324 << "Not a single basic block: " 325 << ore::NV("NumBlocks", L.getNumBlocks()); 326 }); 327 return false; 328 } 329 330 if (disabledByPragma) { 331 ORE->emit([&]() { 332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 333 L.getStartLoc(), L.getHeader()) 334 << "Disabled by Pragma."; 335 }); 336 return false; 337 } 338 339 // Check if the branch can't be understood because we can't do pipelining 340 // if that's the case. 341 LI.TBB = nullptr; 342 LI.FBB = nullptr; 343 LI.BrCond.clear(); 344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 346 NumFailBranch++; 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "The branch can't be understood"; 351 }); 352 return false; 353 } 354 355 LI.LoopInductionVar = nullptr; 356 LI.LoopCompare = nullptr; 357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 359 NumFailLoop++; 360 ORE->emit([&]() { 361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 362 L.getStartLoc(), L.getHeader()) 363 << "The loop structure is not supported"; 364 }); 365 return false; 366 } 367 368 if (!L.getLoopPreheader()) { 369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 370 NumFailPreheader++; 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "No loop preheader found"; 375 }); 376 return false; 377 } 378 379 // Remove any subregisters from inputs to phi nodes. 380 preprocessPhiNodes(*L.getHeader()); 381 return true; 382 } 383 384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 385 MachineRegisterInfo &MRI = MF->getRegInfo(); 386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 387 388 for (MachineInstr &PI : B.phis()) { 389 MachineOperand &DefOp = PI.getOperand(0); 390 assert(DefOp.getSubReg() == 0); 391 auto *RC = MRI.getRegClass(DefOp.getReg()); 392 393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 394 MachineOperand &RegOp = PI.getOperand(i); 395 if (RegOp.getSubReg() == 0) 396 continue; 397 398 // If the operand uses a subregister, replace it with a new register 399 // without subregisters, and generate a copy to the new register. 400 Register NewReg = MRI.createVirtualRegister(RC); 401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 402 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 403 const DebugLoc &DL = PredB.findDebugLoc(At); 404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 405 .addReg(RegOp.getReg(), getRegState(RegOp), 406 RegOp.getSubReg()); 407 Slots.insertMachineInstrInMaps(*Copy); 408 RegOp.setReg(NewReg); 409 RegOp.setSubReg(0); 410 } 411 } 412 } 413 414 /// The SMS algorithm consists of the following main steps: 415 /// 1. Computation and analysis of the dependence graph. 416 /// 2. Ordering of the nodes (instructions). 417 /// 3. Attempt to Schedule the loop. 418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 420 421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 422 II_setByPragma); 423 424 MachineBasicBlock *MBB = L.getHeader(); 425 // The kernel should not include any terminator instructions. These 426 // will be added back later. 427 SMS.startBlock(MBB); 428 429 // Compute the number of 'real' instructions in the basic block by 430 // ignoring terminators. 431 unsigned size = MBB->size(); 432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 433 E = MBB->instr_end(); 434 I != E; ++I, --size) 435 ; 436 437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 438 SMS.schedule(); 439 SMS.exitRegion(); 440 441 SMS.finishBlock(); 442 return SMS.hasNewSchedule(); 443 } 444 445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 446 AU.addRequired<AAResultsWrapperPass>(); 447 AU.addPreserved<AAResultsWrapperPass>(); 448 AU.addRequired<MachineLoopInfo>(); 449 AU.addRequired<MachineDominatorTree>(); 450 AU.addRequired<LiveIntervals>(); 451 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 452 MachineFunctionPass::getAnalysisUsage(AU); 453 } 454 455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 456 if (II_setByPragma > 0) 457 MII = II_setByPragma; 458 else 459 MII = std::max(ResMII, RecMII); 460 } 461 462 void SwingSchedulerDAG::setMAX_II() { 463 if (II_setByPragma > 0) 464 MAX_II = II_setByPragma; 465 else 466 MAX_II = MII + 10; 467 } 468 469 /// We override the schedule function in ScheduleDAGInstrs to implement the 470 /// scheduling part of the Swing Modulo Scheduling algorithm. 471 void SwingSchedulerDAG::schedule() { 472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 buildSchedGraph(AA); 474 addLoopCarriedDependences(AA); 475 updatePhiDependences(); 476 Topo.InitDAGTopologicalSorting(); 477 changeDependences(); 478 postprocessDAG(); 479 LLVM_DEBUG(dump()); 480 481 NodeSetType NodeSets; 482 findCircuits(NodeSets); 483 NodeSetType Circuits = NodeSets; 484 485 // Calculate the MII. 486 unsigned ResMII = calculateResMII(); 487 unsigned RecMII = calculateRecMII(NodeSets); 488 489 fuseRecs(NodeSets); 490 491 // This flag is used for testing and can cause correctness problems. 492 if (SwpIgnoreRecMII) 493 RecMII = 0; 494 495 setMII(ResMII, RecMII); 496 setMAX_II(); 497 498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 500 501 // Can't schedule a loop without a valid MII. 502 if (MII == 0) { 503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 504 NumFailZeroMII++; 505 Pass.ORE->emit([&]() { 506 return MachineOptimizationRemarkAnalysis( 507 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 508 << "Invalid Minimal Initiation Interval: 0"; 509 }); 510 return; 511 } 512 513 // Don't pipeline large loops. 514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 516 << ", we don't pipleline large loops\n"); 517 NumFailLargeMaxMII++; 518 Pass.ORE->emit([&]() { 519 return MachineOptimizationRemarkAnalysis( 520 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 521 << "Minimal Initiation Interval too large: " 522 << ore::NV("MII", (int)MII) << " > " 523 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 524 << "Refer to -pipeliner-max-mii."; 525 }); 526 return; 527 } 528 529 computeNodeFunctions(NodeSets); 530 531 registerPressureFilter(NodeSets); 532 533 colocateNodeSets(NodeSets); 534 535 checkNodeSets(NodeSets); 536 537 LLVM_DEBUG({ 538 for (auto &I : NodeSets) { 539 dbgs() << " Rec NodeSet "; 540 I.dump(); 541 } 542 }); 543 544 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 545 546 groupRemainingNodes(NodeSets); 547 548 removeDuplicateNodes(NodeSets); 549 550 LLVM_DEBUG({ 551 for (auto &I : NodeSets) { 552 dbgs() << " NodeSet "; 553 I.dump(); 554 } 555 }); 556 557 computeNodeOrder(NodeSets); 558 559 // check for node order issues 560 checkValidNodeOrder(Circuits); 561 562 SMSchedule Schedule(Pass.MF); 563 Scheduled = schedulePipeline(Schedule); 564 565 if (!Scheduled){ 566 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 567 NumFailNoSchedule++; 568 Pass.ORE->emit([&]() { 569 return MachineOptimizationRemarkAnalysis( 570 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 571 << "Unable to find schedule"; 572 }); 573 return; 574 } 575 576 unsigned numStages = Schedule.getMaxStageCount(); 577 // No need to generate pipeline if there are no overlapped iterations. 578 if (numStages == 0) { 579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 580 NumFailZeroStage++; 581 Pass.ORE->emit([&]() { 582 return MachineOptimizationRemarkAnalysis( 583 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 584 << "No need to pipeline - no overlapped iterations in schedule."; 585 }); 586 return; 587 } 588 // Check that the maximum stage count is less than user-defined limit. 589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 591 << " : too many stages, abort\n"); 592 NumFailLargeMaxStage++; 593 Pass.ORE->emit([&]() { 594 return MachineOptimizationRemarkAnalysis( 595 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 596 << "Too many stages in schedule: " 597 << ore::NV("numStages", (int)numStages) << " > " 598 << ore::NV("SwpMaxStages", SwpMaxStages) 599 << ". Refer to -pipeliner-max-stages."; 600 }); 601 return; 602 } 603 604 Pass.ORE->emit([&]() { 605 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 606 Loop.getHeader()) 607 << "Pipelined succesfully!"; 608 }); 609 610 // Generate the schedule as a ModuloSchedule. 611 DenseMap<MachineInstr *, int> Cycles, Stages; 612 std::vector<MachineInstr *> OrderedInsts; 613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 614 ++Cycle) { 615 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 616 OrderedInsts.push_back(SU->getInstr()); 617 Cycles[SU->getInstr()] = Cycle; 618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 619 } 620 } 621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 622 for (auto &KV : NewMIs) { 623 Cycles[KV.first] = Cycles[KV.second]; 624 Stages[KV.first] = Stages[KV.second]; 625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 626 } 627 628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 629 std::move(Stages)); 630 if (EmitTestAnnotations) { 631 assert(NewInstrChanges.empty() && 632 "Cannot serialize a schedule with InstrChanges!"); 633 ModuloScheduleTestAnnotater MSTI(MF, MS); 634 MSTI.annotate(); 635 return; 636 } 637 // The experimental code generator can't work if there are InstChanges. 638 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 640 MSE.expand(); 641 } else { 642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 643 MSE.expand(); 644 MSE.cleanup(); 645 } 646 ++NumPipelined; 647 } 648 649 /// Clean up after the software pipeliner runs. 650 void SwingSchedulerDAG::finishBlock() { 651 for (auto &KV : NewMIs) 652 MF.DeleteMachineInstr(KV.second); 653 NewMIs.clear(); 654 655 // Call the superclass. 656 ScheduleDAGInstrs::finishBlock(); 657 } 658 659 /// Return the register values for the operands of a Phi instruction. 660 /// This function assume the instruction is a Phi. 661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 662 unsigned &InitVal, unsigned &LoopVal) { 663 assert(Phi.isPHI() && "Expecting a Phi."); 664 665 InitVal = 0; 666 LoopVal = 0; 667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668 if (Phi.getOperand(i + 1).getMBB() != Loop) 669 InitVal = Phi.getOperand(i).getReg(); 670 else 671 LoopVal = Phi.getOperand(i).getReg(); 672 673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 674 } 675 676 /// Return the Phi register value that comes the loop block. 677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 679 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 680 return Phi.getOperand(i).getReg(); 681 return 0; 682 } 683 684 /// Return true if SUb can be reached from SUa following the chain edges. 685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 686 SmallPtrSet<SUnit *, 8> Visited; 687 SmallVector<SUnit *, 8> Worklist; 688 Worklist.push_back(SUa); 689 while (!Worklist.empty()) { 690 const SUnit *SU = Worklist.pop_back_val(); 691 for (auto &SI : SU->Succs) { 692 SUnit *SuccSU = SI.getSUnit(); 693 if (SI.getKind() == SDep::Order) { 694 if (Visited.count(SuccSU)) 695 continue; 696 if (SuccSU == SUb) 697 return true; 698 Worklist.push_back(SuccSU); 699 Visited.insert(SuccSU); 700 } 701 } 702 } 703 return false; 704 } 705 706 /// Return true if the instruction causes a chain between memory 707 /// references before and after it. 708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 709 return MI.isCall() || MI.mayRaiseFPException() || 710 MI.hasUnmodeledSideEffects() || 711 (MI.hasOrderedMemoryRef() && 712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 713 } 714 715 /// Return the underlying objects for the memory references of an instruction. 716 /// This function calls the code in ValueTracking, but first checks that the 717 /// instruction has a memory operand. 718 static void getUnderlyingObjects(const MachineInstr *MI, 719 SmallVectorImpl<const Value *> &Objs) { 720 if (!MI->hasOneMemOperand()) 721 return; 722 MachineMemOperand *MM = *MI->memoperands_begin(); 723 if (!MM->getValue()) 724 return; 725 getUnderlyingObjects(MM->getValue(), Objs); 726 for (const Value *V : Objs) { 727 if (!isIdentifiedObject(V)) { 728 Objs.clear(); 729 return; 730 } 731 Objs.push_back(V); 732 } 733 } 734 735 /// Add a chain edge between a load and store if the store can be an 736 /// alias of the load on a subsequent iteration, i.e., a loop carried 737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 738 /// but that code doesn't create loop carried dependences. 739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 741 Value *UnknownValue = 742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 743 for (auto &SU : SUnits) { 744 MachineInstr &MI = *SU.getInstr(); 745 if (isDependenceBarrier(MI, AA)) 746 PendingLoads.clear(); 747 else if (MI.mayLoad()) { 748 SmallVector<const Value *, 4> Objs; 749 ::getUnderlyingObjects(&MI, Objs); 750 if (Objs.empty()) 751 Objs.push_back(UnknownValue); 752 for (auto V : Objs) { 753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 754 SUs.push_back(&SU); 755 } 756 } else if (MI.mayStore()) { 757 SmallVector<const Value *, 4> Objs; 758 ::getUnderlyingObjects(&MI, Objs); 759 if (Objs.empty()) 760 Objs.push_back(UnknownValue); 761 for (auto V : Objs) { 762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 763 PendingLoads.find(V); 764 if (I == PendingLoads.end()) 765 continue; 766 for (auto Load : I->second) { 767 if (isSuccOrder(Load, &SU)) 768 continue; 769 MachineInstr &LdMI = *Load->getInstr(); 770 // First, perform the cheaper check that compares the base register. 771 // If they are the same and the load offset is less than the store 772 // offset, then mark the dependence as loop carried potentially. 773 const MachineOperand *BaseOp1, *BaseOp2; 774 int64_t Offset1, Offset2; 775 bool Offset1IsScalable, Offset2IsScalable; 776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 777 Offset1IsScalable, TRI) && 778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 779 Offset2IsScalable, TRI)) { 780 if (BaseOp1->isIdenticalTo(*BaseOp2) && 781 Offset1IsScalable == Offset2IsScalable && 782 (int)Offset1 < (int)Offset2) { 783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 784 "What happened to the chain edge?"); 785 SDep Dep(Load, SDep::Barrier); 786 Dep.setLatency(1); 787 SU.addPred(Dep); 788 continue; 789 } 790 } 791 // Second, the more expensive check that uses alias analysis on the 792 // base registers. If they alias, and the load offset is less than 793 // the store offset, the mark the dependence as loop carried. 794 if (!AA) { 795 SDep Dep(Load, SDep::Barrier); 796 Dep.setLatency(1); 797 SU.addPred(Dep); 798 continue; 799 } 800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 801 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 802 if (!MMO1->getValue() || !MMO2->getValue()) { 803 SDep Dep(Load, SDep::Barrier); 804 Dep.setLatency(1); 805 SU.addPred(Dep); 806 continue; 807 } 808 if (MMO1->getValue() == MMO2->getValue() && 809 MMO1->getOffset() <= MMO2->getOffset()) { 810 SDep Dep(Load, SDep::Barrier); 811 Dep.setLatency(1); 812 SU.addPred(Dep); 813 continue; 814 } 815 if (!AA->isNoAlias( 816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 817 MemoryLocation::getAfter(MMO2->getValue(), 818 MMO2->getAAInfo()))) { 819 SDep Dep(Load, SDep::Barrier); 820 Dep.setLatency(1); 821 SU.addPred(Dep); 822 } 823 } 824 } 825 } 826 } 827 } 828 829 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 830 /// processes dependences for PHIs. This function adds true dependences 831 /// from a PHI to a use, and a loop carried dependence from the use to the 832 /// PHI. The loop carried dependence is represented as an anti dependence 833 /// edge. This function also removes chain dependences between unrelated 834 /// PHIs. 835 void SwingSchedulerDAG::updatePhiDependences() { 836 SmallVector<SDep, 4> RemoveDeps; 837 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 838 839 // Iterate over each DAG node. 840 for (SUnit &I : SUnits) { 841 RemoveDeps.clear(); 842 // Set to true if the instruction has an operand defined by a Phi. 843 unsigned HasPhiUse = 0; 844 unsigned HasPhiDef = 0; 845 MachineInstr *MI = I.getInstr(); 846 // Iterate over each operand, and we process the definitions. 847 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 848 MOE = MI->operands_end(); 849 MOI != MOE; ++MOI) { 850 if (!MOI->isReg()) 851 continue; 852 Register Reg = MOI->getReg(); 853 if (MOI->isDef()) { 854 // If the register is used by a Phi, then create an anti dependence. 855 for (MachineRegisterInfo::use_instr_iterator 856 UI = MRI.use_instr_begin(Reg), 857 UE = MRI.use_instr_end(); 858 UI != UE; ++UI) { 859 MachineInstr *UseMI = &*UI; 860 SUnit *SU = getSUnit(UseMI); 861 if (SU != nullptr && UseMI->isPHI()) { 862 if (!MI->isPHI()) { 863 SDep Dep(SU, SDep::Anti, Reg); 864 Dep.setLatency(1); 865 I.addPred(Dep); 866 } else { 867 HasPhiDef = Reg; 868 // Add a chain edge to a dependent Phi that isn't an existing 869 // predecessor. 870 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 871 I.addPred(SDep(SU, SDep::Barrier)); 872 } 873 } 874 } 875 } else if (MOI->isUse()) { 876 // If the register is defined by a Phi, then create a true dependence. 877 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 878 if (DefMI == nullptr) 879 continue; 880 SUnit *SU = getSUnit(DefMI); 881 if (SU != nullptr && DefMI->isPHI()) { 882 if (!MI->isPHI()) { 883 SDep Dep(SU, SDep::Data, Reg); 884 Dep.setLatency(0); 885 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 886 I.addPred(Dep); 887 } else { 888 HasPhiUse = Reg; 889 // Add a chain edge to a dependent Phi that isn't an existing 890 // predecessor. 891 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 892 I.addPred(SDep(SU, SDep::Barrier)); 893 } 894 } 895 } 896 } 897 // Remove order dependences from an unrelated Phi. 898 if (!SwpPruneDeps) 899 continue; 900 for (auto &PI : I.Preds) { 901 MachineInstr *PMI = PI.getSUnit()->getInstr(); 902 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 903 if (I.getInstr()->isPHI()) { 904 if (PMI->getOperand(0).getReg() == HasPhiUse) 905 continue; 906 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 907 continue; 908 } 909 RemoveDeps.push_back(PI); 910 } 911 } 912 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 913 I.removePred(RemoveDeps[i]); 914 } 915 } 916 917 /// Iterate over each DAG node and see if we can change any dependences 918 /// in order to reduce the recurrence MII. 919 void SwingSchedulerDAG::changeDependences() { 920 // See if an instruction can use a value from the previous iteration. 921 // If so, we update the base and offset of the instruction and change 922 // the dependences. 923 for (SUnit &I : SUnits) { 924 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 925 int64_t NewOffset = 0; 926 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 927 NewOffset)) 928 continue; 929 930 // Get the MI and SUnit for the instruction that defines the original base. 931 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 932 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 933 if (!DefMI) 934 continue; 935 SUnit *DefSU = getSUnit(DefMI); 936 if (!DefSU) 937 continue; 938 // Get the MI and SUnit for the instruction that defins the new base. 939 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 940 if (!LastMI) 941 continue; 942 SUnit *LastSU = getSUnit(LastMI); 943 if (!LastSU) 944 continue; 945 946 if (Topo.IsReachable(&I, LastSU)) 947 continue; 948 949 // Remove the dependence. The value now depends on a prior iteration. 950 SmallVector<SDep, 4> Deps; 951 for (const SDep &P : I.Preds) 952 if (P.getSUnit() == DefSU) 953 Deps.push_back(P); 954 for (int i = 0, e = Deps.size(); i != e; i++) { 955 Topo.RemovePred(&I, Deps[i].getSUnit()); 956 I.removePred(Deps[i]); 957 } 958 // Remove the chain dependence between the instructions. 959 Deps.clear(); 960 for (auto &P : LastSU->Preds) 961 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 962 Deps.push_back(P); 963 for (int i = 0, e = Deps.size(); i != e; i++) { 964 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 965 LastSU->removePred(Deps[i]); 966 } 967 968 // Add a dependence between the new instruction and the instruction 969 // that defines the new base. 970 SDep Dep(&I, SDep::Anti, NewBase); 971 Topo.AddPred(LastSU, &I); 972 LastSU->addPred(Dep); 973 974 // Remember the base and offset information so that we can update the 975 // instruction during code generation. 976 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 977 } 978 } 979 980 namespace { 981 982 // FuncUnitSorter - Comparison operator used to sort instructions by 983 // the number of functional unit choices. 984 struct FuncUnitSorter { 985 const InstrItineraryData *InstrItins; 986 const MCSubtargetInfo *STI; 987 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 988 989 FuncUnitSorter(const TargetSubtargetInfo &TSI) 990 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 991 992 // Compute the number of functional unit alternatives needed 993 // at each stage, and take the minimum value. We prioritize the 994 // instructions by the least number of choices first. 995 unsigned minFuncUnits(const MachineInstr *Inst, 996 InstrStage::FuncUnits &F) const { 997 unsigned SchedClass = Inst->getDesc().getSchedClass(); 998 unsigned min = UINT_MAX; 999 if (InstrItins && !InstrItins->isEmpty()) { 1000 for (const InstrStage &IS : 1001 make_range(InstrItins->beginStage(SchedClass), 1002 InstrItins->endStage(SchedClass))) { 1003 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1004 unsigned numAlternatives = countPopulation(funcUnits); 1005 if (numAlternatives < min) { 1006 min = numAlternatives; 1007 F = funcUnits; 1008 } 1009 } 1010 return min; 1011 } 1012 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1013 const MCSchedClassDesc *SCDesc = 1014 STI->getSchedModel().getSchedClassDesc(SchedClass); 1015 if (!SCDesc->isValid()) 1016 // No valid Schedule Class Desc for schedClass, should be 1017 // Pseudo/PostRAPseudo 1018 return min; 1019 1020 for (const MCWriteProcResEntry &PRE : 1021 make_range(STI->getWriteProcResBegin(SCDesc), 1022 STI->getWriteProcResEnd(SCDesc))) { 1023 if (!PRE.Cycles) 1024 continue; 1025 const MCProcResourceDesc *ProcResource = 1026 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1027 unsigned NumUnits = ProcResource->NumUnits; 1028 if (NumUnits < min) { 1029 min = NumUnits; 1030 F = PRE.ProcResourceIdx; 1031 } 1032 } 1033 return min; 1034 } 1035 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1036 } 1037 1038 // Compute the critical resources needed by the instruction. This 1039 // function records the functional units needed by instructions that 1040 // must use only one functional unit. We use this as a tie breaker 1041 // for computing the resource MII. The instrutions that require 1042 // the same, highly used, functional unit have high priority. 1043 void calcCriticalResources(MachineInstr &MI) { 1044 unsigned SchedClass = MI.getDesc().getSchedClass(); 1045 if (InstrItins && !InstrItins->isEmpty()) { 1046 for (const InstrStage &IS : 1047 make_range(InstrItins->beginStage(SchedClass), 1048 InstrItins->endStage(SchedClass))) { 1049 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1050 if (countPopulation(FuncUnits) == 1) 1051 Resources[FuncUnits]++; 1052 } 1053 return; 1054 } 1055 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1056 const MCSchedClassDesc *SCDesc = 1057 STI->getSchedModel().getSchedClassDesc(SchedClass); 1058 if (!SCDesc->isValid()) 1059 // No valid Schedule Class Desc for schedClass, should be 1060 // Pseudo/PostRAPseudo 1061 return; 1062 1063 for (const MCWriteProcResEntry &PRE : 1064 make_range(STI->getWriteProcResBegin(SCDesc), 1065 STI->getWriteProcResEnd(SCDesc))) { 1066 if (!PRE.Cycles) 1067 continue; 1068 Resources[PRE.ProcResourceIdx]++; 1069 } 1070 return; 1071 } 1072 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1073 } 1074 1075 /// Return true if IS1 has less priority than IS2. 1076 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1077 InstrStage::FuncUnits F1 = 0, F2 = 0; 1078 unsigned MFUs1 = minFuncUnits(IS1, F1); 1079 unsigned MFUs2 = minFuncUnits(IS2, F2); 1080 if (MFUs1 == MFUs2) 1081 return Resources.lookup(F1) < Resources.lookup(F2); 1082 return MFUs1 > MFUs2; 1083 } 1084 }; 1085 1086 } // end anonymous namespace 1087 1088 /// Calculate the resource constrained minimum initiation interval for the 1089 /// specified loop. We use the DFA to model the resources needed for 1090 /// each instruction, and we ignore dependences. A different DFA is created 1091 /// for each cycle that is required. When adding a new instruction, we attempt 1092 /// to add it to each existing DFA, until a legal space is found. If the 1093 /// instruction cannot be reserved in an existing DFA, we create a new one. 1094 unsigned SwingSchedulerDAG::calculateResMII() { 1095 1096 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1097 SmallVector<ResourceManager*, 8> Resources; 1098 MachineBasicBlock *MBB = Loop.getHeader(); 1099 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1100 1101 // Sort the instructions by the number of available choices for scheduling, 1102 // least to most. Use the number of critical resources as the tie breaker. 1103 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1104 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1105 E = MBB->getFirstTerminator(); 1106 I != E; ++I) 1107 FUS.calcCriticalResources(*I); 1108 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1109 FuncUnitOrder(FUS); 1110 1111 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1112 E = MBB->getFirstTerminator(); 1113 I != E; ++I) 1114 FuncUnitOrder.push(&*I); 1115 1116 while (!FuncUnitOrder.empty()) { 1117 MachineInstr *MI = FuncUnitOrder.top(); 1118 FuncUnitOrder.pop(); 1119 if (TII->isZeroCost(MI->getOpcode())) 1120 continue; 1121 // Attempt to reserve the instruction in an existing DFA. At least one 1122 // DFA is needed for each cycle. 1123 unsigned NumCycles = getSUnit(MI)->Latency; 1124 unsigned ReservedCycles = 0; 1125 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1126 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1127 LLVM_DEBUG({ 1128 dbgs() << "Trying to reserve resource for " << NumCycles 1129 << " cycles for \n"; 1130 MI->dump(); 1131 }); 1132 for (unsigned C = 0; C < NumCycles; ++C) 1133 while (RI != RE) { 1134 if ((*RI)->canReserveResources(*MI)) { 1135 (*RI)->reserveResources(*MI); 1136 ++ReservedCycles; 1137 break; 1138 } 1139 RI++; 1140 } 1141 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1142 << ", NumCycles:" << NumCycles << "\n"); 1143 // Add new DFAs, if needed, to reserve resources. 1144 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1145 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1146 << "NewResource created to reserve resources" 1147 << "\n"); 1148 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1149 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1150 NewResource->reserveResources(*MI); 1151 Resources.push_back(NewResource); 1152 } 1153 } 1154 int Resmii = Resources.size(); 1155 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1156 // Delete the memory for each of the DFAs that were created earlier. 1157 for (ResourceManager *RI : Resources) { 1158 ResourceManager *D = RI; 1159 delete D; 1160 } 1161 Resources.clear(); 1162 return Resmii; 1163 } 1164 1165 /// Calculate the recurrence-constrainted minimum initiation interval. 1166 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1167 /// for each circuit. The II needs to satisfy the inequality 1168 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1169 /// II that satisfies the inequality, and the RecMII is the maximum 1170 /// of those values. 1171 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1172 unsigned RecMII = 0; 1173 1174 for (NodeSet &Nodes : NodeSets) { 1175 if (Nodes.empty()) 1176 continue; 1177 1178 unsigned Delay = Nodes.getLatency(); 1179 unsigned Distance = 1; 1180 1181 // ii = ceil(delay / distance) 1182 unsigned CurMII = (Delay + Distance - 1) / Distance; 1183 Nodes.setRecMII(CurMII); 1184 if (CurMII > RecMII) 1185 RecMII = CurMII; 1186 } 1187 1188 return RecMII; 1189 } 1190 1191 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1192 /// but we do this to find the circuits, and then change them back. 1193 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1194 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1195 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1196 SUnit *SU = &SUnits[i]; 1197 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1198 IP != EP; ++IP) { 1199 if (IP->getKind() != SDep::Anti) 1200 continue; 1201 DepsAdded.push_back(std::make_pair(SU, *IP)); 1202 } 1203 } 1204 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1205 // Remove this anti dependency and add one in the reverse direction. 1206 SUnit *SU = P.first; 1207 SDep &D = P.second; 1208 SUnit *TargetSU = D.getSUnit(); 1209 unsigned Reg = D.getReg(); 1210 unsigned Lat = D.getLatency(); 1211 SU->removePred(D); 1212 SDep Dep(SU, SDep::Anti, Reg); 1213 Dep.setLatency(Lat); 1214 TargetSU->addPred(Dep); 1215 } 1216 } 1217 1218 /// Create the adjacency structure of the nodes in the graph. 1219 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1220 SwingSchedulerDAG *DAG) { 1221 BitVector Added(SUnits.size()); 1222 DenseMap<int, int> OutputDeps; 1223 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1224 Added.reset(); 1225 // Add any successor to the adjacency matrix and exclude duplicates. 1226 for (auto &SI : SUnits[i].Succs) { 1227 // Only create a back-edge on the first and last nodes of a dependence 1228 // chain. This records any chains and adds them later. 1229 if (SI.getKind() == SDep::Output) { 1230 int N = SI.getSUnit()->NodeNum; 1231 int BackEdge = i; 1232 auto Dep = OutputDeps.find(BackEdge); 1233 if (Dep != OutputDeps.end()) { 1234 BackEdge = Dep->second; 1235 OutputDeps.erase(Dep); 1236 } 1237 OutputDeps[N] = BackEdge; 1238 } 1239 // Do not process a boundary node, an artificial node. 1240 // A back-edge is processed only if it goes to a Phi. 1241 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1242 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1243 continue; 1244 int N = SI.getSUnit()->NodeNum; 1245 if (!Added.test(N)) { 1246 AdjK[i].push_back(N); 1247 Added.set(N); 1248 } 1249 } 1250 // A chain edge between a store and a load is treated as a back-edge in the 1251 // adjacency matrix. 1252 for (auto &PI : SUnits[i].Preds) { 1253 if (!SUnits[i].getInstr()->mayStore() || 1254 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1255 continue; 1256 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1257 int N = PI.getSUnit()->NodeNum; 1258 if (!Added.test(N)) { 1259 AdjK[i].push_back(N); 1260 Added.set(N); 1261 } 1262 } 1263 } 1264 } 1265 // Add back-edges in the adjacency matrix for the output dependences. 1266 for (auto &OD : OutputDeps) 1267 if (!Added.test(OD.second)) { 1268 AdjK[OD.first].push_back(OD.second); 1269 Added.set(OD.second); 1270 } 1271 } 1272 1273 /// Identify an elementary circuit in the dependence graph starting at the 1274 /// specified node. 1275 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1276 bool HasBackedge) { 1277 SUnit *SV = &SUnits[V]; 1278 bool F = false; 1279 Stack.insert(SV); 1280 Blocked.set(V); 1281 1282 for (auto W : AdjK[V]) { 1283 if (NumPaths > MaxPaths) 1284 break; 1285 if (W < S) 1286 continue; 1287 if (W == S) { 1288 if (!HasBackedge) 1289 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1290 F = true; 1291 ++NumPaths; 1292 break; 1293 } else if (!Blocked.test(W)) { 1294 if (circuit(W, S, NodeSets, 1295 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1296 F = true; 1297 } 1298 } 1299 1300 if (F) 1301 unblock(V); 1302 else { 1303 for (auto W : AdjK[V]) { 1304 if (W < S) 1305 continue; 1306 if (B[W].count(SV) == 0) 1307 B[W].insert(SV); 1308 } 1309 } 1310 Stack.pop_back(); 1311 return F; 1312 } 1313 1314 /// Unblock a node in the circuit finding algorithm. 1315 void SwingSchedulerDAG::Circuits::unblock(int U) { 1316 Blocked.reset(U); 1317 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1318 while (!BU.empty()) { 1319 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1320 assert(SI != BU.end() && "Invalid B set."); 1321 SUnit *W = *SI; 1322 BU.erase(W); 1323 if (Blocked.test(W->NodeNum)) 1324 unblock(W->NodeNum); 1325 } 1326 } 1327 1328 /// Identify all the elementary circuits in the dependence graph using 1329 /// Johnson's circuit algorithm. 1330 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1331 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1332 // but we do this to find the circuits, and then change them back. 1333 swapAntiDependences(SUnits); 1334 1335 Circuits Cir(SUnits, Topo); 1336 // Create the adjacency structure. 1337 Cir.createAdjacencyStructure(this); 1338 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1339 Cir.reset(); 1340 Cir.circuit(i, i, NodeSets); 1341 } 1342 1343 // Change the dependences back so that we've created a DAG again. 1344 swapAntiDependences(SUnits); 1345 } 1346 1347 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1348 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1349 // additional copies that are needed across iterations. An artificial dependence 1350 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1351 1352 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1353 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1354 // PHI-------True-Dep------> USEOfPhi 1355 1356 // The mutation creates 1357 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1358 1359 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1360 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1361 // late to avoid additional copies across iterations. The possible scheduling 1362 // order would be 1363 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1364 1365 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1366 for (SUnit &SU : DAG->SUnits) { 1367 // Find the COPY/REG_SEQUENCE instruction. 1368 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1369 continue; 1370 1371 // Record the loop carried PHIs. 1372 SmallVector<SUnit *, 4> PHISUs; 1373 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1374 SmallVector<SUnit *, 4> SrcSUs; 1375 1376 for (auto &Dep : SU.Preds) { 1377 SUnit *TmpSU = Dep.getSUnit(); 1378 MachineInstr *TmpMI = TmpSU->getInstr(); 1379 SDep::Kind DepKind = Dep.getKind(); 1380 // Save the loop carried PHI. 1381 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1382 PHISUs.push_back(TmpSU); 1383 // Save the source of COPY/REG_SEQUENCE. 1384 // If the source has no pre-decessors, we will end up creating cycles. 1385 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1386 SrcSUs.push_back(TmpSU); 1387 } 1388 1389 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1390 continue; 1391 1392 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1393 // SUnit to the container. 1394 SmallVector<SUnit *, 8> UseSUs; 1395 // Do not use iterator based loop here as we are updating the container. 1396 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1397 for (auto &Dep : PHISUs[Index]->Succs) { 1398 if (Dep.getKind() != SDep::Data) 1399 continue; 1400 1401 SUnit *TmpSU = Dep.getSUnit(); 1402 MachineInstr *TmpMI = TmpSU->getInstr(); 1403 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1404 PHISUs.push_back(TmpSU); 1405 continue; 1406 } 1407 UseSUs.push_back(TmpSU); 1408 } 1409 } 1410 1411 if (UseSUs.size() == 0) 1412 continue; 1413 1414 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1415 // Add the artificial dependencies if it does not form a cycle. 1416 for (auto I : UseSUs) { 1417 for (auto Src : SrcSUs) { 1418 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1419 Src->addPred(SDep(I, SDep::Artificial)); 1420 SDAG->Topo.AddPred(Src, I); 1421 } 1422 } 1423 } 1424 } 1425 } 1426 1427 /// Return true for DAG nodes that we ignore when computing the cost functions. 1428 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1429 /// in the calculation of the ASAP, ALAP, etc functions. 1430 static bool ignoreDependence(const SDep &D, bool isPred) { 1431 if (D.isArtificial()) 1432 return true; 1433 return D.getKind() == SDep::Anti && isPred; 1434 } 1435 1436 /// Compute several functions need to order the nodes for scheduling. 1437 /// ASAP - Earliest time to schedule a node. 1438 /// ALAP - Latest time to schedule a node. 1439 /// MOV - Mobility function, difference between ALAP and ASAP. 1440 /// D - Depth of each node. 1441 /// H - Height of each node. 1442 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1443 ScheduleInfo.resize(SUnits.size()); 1444 1445 LLVM_DEBUG({ 1446 for (int I : Topo) { 1447 const SUnit &SU = SUnits[I]; 1448 dumpNode(SU); 1449 } 1450 }); 1451 1452 int maxASAP = 0; 1453 // Compute ASAP and ZeroLatencyDepth. 1454 for (int I : Topo) { 1455 int asap = 0; 1456 int zeroLatencyDepth = 0; 1457 SUnit *SU = &SUnits[I]; 1458 for (const SDep &P : SU->Preds) { 1459 SUnit *pred = P.getSUnit(); 1460 if (P.getLatency() == 0) 1461 zeroLatencyDepth = 1462 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1463 if (ignoreDependence(P, true)) 1464 continue; 1465 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1466 getDistance(pred, SU, P) * MII)); 1467 } 1468 maxASAP = std::max(maxASAP, asap); 1469 ScheduleInfo[I].ASAP = asap; 1470 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1471 } 1472 1473 // Compute ALAP, ZeroLatencyHeight, and MOV. 1474 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1475 E = Topo.rend(); 1476 I != E; ++I) { 1477 int alap = maxASAP; 1478 int zeroLatencyHeight = 0; 1479 SUnit *SU = &SUnits[*I]; 1480 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1481 ES = SU->Succs.end(); 1482 IS != ES; ++IS) { 1483 SUnit *succ = IS->getSUnit(); 1484 if (IS->getLatency() == 0) 1485 zeroLatencyHeight = 1486 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1487 if (ignoreDependence(*IS, true)) 1488 continue; 1489 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1490 getDistance(SU, succ, *IS) * MII)); 1491 } 1492 1493 ScheduleInfo[*I].ALAP = alap; 1494 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1495 } 1496 1497 // After computing the node functions, compute the summary for each node set. 1498 for (NodeSet &I : NodeSets) 1499 I.computeNodeSetInfo(this); 1500 1501 LLVM_DEBUG({ 1502 for (unsigned i = 0; i < SUnits.size(); i++) { 1503 dbgs() << "\tNode " << i << ":\n"; 1504 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1505 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1506 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1507 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1508 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1509 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1510 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1511 } 1512 }); 1513 } 1514 1515 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1516 /// as the predecessors of the elements of NodeOrder that are not also in 1517 /// NodeOrder. 1518 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1519 SmallSetVector<SUnit *, 8> &Preds, 1520 const NodeSet *S = nullptr) { 1521 Preds.clear(); 1522 for (const SUnit *SU : NodeOrder) { 1523 for (const SDep &Pred : SU->Preds) { 1524 if (S && S->count(Pred.getSUnit()) == 0) 1525 continue; 1526 if (ignoreDependence(Pred, true)) 1527 continue; 1528 if (NodeOrder.count(Pred.getSUnit()) == 0) 1529 Preds.insert(Pred.getSUnit()); 1530 } 1531 // Back-edges are predecessors with an anti-dependence. 1532 for (const SDep &Succ : SU->Succs) { 1533 if (Succ.getKind() != SDep::Anti) 1534 continue; 1535 if (S && S->count(Succ.getSUnit()) == 0) 1536 continue; 1537 if (NodeOrder.count(Succ.getSUnit()) == 0) 1538 Preds.insert(Succ.getSUnit()); 1539 } 1540 } 1541 return !Preds.empty(); 1542 } 1543 1544 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1545 /// as the successors of the elements of NodeOrder that are not also in 1546 /// NodeOrder. 1547 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1548 SmallSetVector<SUnit *, 8> &Succs, 1549 const NodeSet *S = nullptr) { 1550 Succs.clear(); 1551 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1552 I != E; ++I) { 1553 for (SDep &Succ : (*I)->Succs) { 1554 if (S && S->count(Succ.getSUnit()) == 0) 1555 continue; 1556 if (ignoreDependence(Succ, false)) 1557 continue; 1558 if (NodeOrder.count(Succ.getSUnit()) == 0) 1559 Succs.insert(Succ.getSUnit()); 1560 } 1561 for (SDep &Pred : (*I)->Preds) { 1562 if (Pred.getKind() != SDep::Anti) 1563 continue; 1564 if (S && S->count(Pred.getSUnit()) == 0) 1565 continue; 1566 if (NodeOrder.count(Pred.getSUnit()) == 0) 1567 Succs.insert(Pred.getSUnit()); 1568 } 1569 } 1570 return !Succs.empty(); 1571 } 1572 1573 /// Return true if there is a path from the specified node to any of the nodes 1574 /// in DestNodes. Keep track and return the nodes in any path. 1575 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1576 SetVector<SUnit *> &DestNodes, 1577 SetVector<SUnit *> &Exclude, 1578 SmallPtrSet<SUnit *, 8> &Visited) { 1579 if (Cur->isBoundaryNode()) 1580 return false; 1581 if (Exclude.contains(Cur)) 1582 return false; 1583 if (DestNodes.contains(Cur)) 1584 return true; 1585 if (!Visited.insert(Cur).second) 1586 return Path.contains(Cur); 1587 bool FoundPath = false; 1588 for (auto &SI : Cur->Succs) 1589 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1590 for (auto &PI : Cur->Preds) 1591 if (PI.getKind() == SDep::Anti) 1592 FoundPath |= 1593 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1594 if (FoundPath) 1595 Path.insert(Cur); 1596 return FoundPath; 1597 } 1598 1599 /// Compute the live-out registers for the instructions in a node-set. 1600 /// The live-out registers are those that are defined in the node-set, 1601 /// but not used. Except for use operands of Phis. 1602 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1603 NodeSet &NS) { 1604 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1605 MachineRegisterInfo &MRI = MF.getRegInfo(); 1606 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1607 SmallSet<unsigned, 4> Uses; 1608 for (SUnit *SU : NS) { 1609 const MachineInstr *MI = SU->getInstr(); 1610 if (MI->isPHI()) 1611 continue; 1612 for (const MachineOperand &MO : MI->operands()) 1613 if (MO.isReg() && MO.isUse()) { 1614 Register Reg = MO.getReg(); 1615 if (Register::isVirtualRegister(Reg)) 1616 Uses.insert(Reg); 1617 else if (MRI.isAllocatable(Reg)) 1618 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1619 ++Units) 1620 Uses.insert(*Units); 1621 } 1622 } 1623 for (SUnit *SU : NS) 1624 for (const MachineOperand &MO : SU->getInstr()->operands()) 1625 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1626 Register Reg = MO.getReg(); 1627 if (Register::isVirtualRegister(Reg)) { 1628 if (!Uses.count(Reg)) 1629 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1630 LaneBitmask::getNone())); 1631 } else if (MRI.isAllocatable(Reg)) { 1632 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1633 ++Units) 1634 if (!Uses.count(*Units)) 1635 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1636 LaneBitmask::getNone())); 1637 } 1638 } 1639 RPTracker.addLiveRegs(LiveOutRegs); 1640 } 1641 1642 /// A heuristic to filter nodes in recurrent node-sets if the register 1643 /// pressure of a set is too high. 1644 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1645 for (auto &NS : NodeSets) { 1646 // Skip small node-sets since they won't cause register pressure problems. 1647 if (NS.size() <= 2) 1648 continue; 1649 IntervalPressure RecRegPressure; 1650 RegPressureTracker RecRPTracker(RecRegPressure); 1651 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1652 computeLiveOuts(MF, RecRPTracker, NS); 1653 RecRPTracker.closeBottom(); 1654 1655 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1656 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1657 return A->NodeNum > B->NodeNum; 1658 }); 1659 1660 for (auto &SU : SUnits) { 1661 // Since we're computing the register pressure for a subset of the 1662 // instructions in a block, we need to set the tracker for each 1663 // instruction in the node-set. The tracker is set to the instruction 1664 // just after the one we're interested in. 1665 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1666 RecRPTracker.setPos(std::next(CurInstI)); 1667 1668 RegPressureDelta RPDelta; 1669 ArrayRef<PressureChange> CriticalPSets; 1670 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1671 CriticalPSets, 1672 RecRegPressure.MaxSetPressure); 1673 if (RPDelta.Excess.isValid()) { 1674 LLVM_DEBUG( 1675 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1676 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1677 << ":" << RPDelta.Excess.getUnitInc()); 1678 NS.setExceedPressure(SU); 1679 break; 1680 } 1681 RecRPTracker.recede(); 1682 } 1683 } 1684 } 1685 1686 /// A heuristic to colocate node sets that have the same set of 1687 /// successors. 1688 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1689 unsigned Colocate = 0; 1690 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1691 NodeSet &N1 = NodeSets[i]; 1692 SmallSetVector<SUnit *, 8> S1; 1693 if (N1.empty() || !succ_L(N1, S1)) 1694 continue; 1695 for (int j = i + 1; j < e; ++j) { 1696 NodeSet &N2 = NodeSets[j]; 1697 if (N1.compareRecMII(N2) != 0) 1698 continue; 1699 SmallSetVector<SUnit *, 8> S2; 1700 if (N2.empty() || !succ_L(N2, S2)) 1701 continue; 1702 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1703 N1.setColocate(++Colocate); 1704 N2.setColocate(Colocate); 1705 break; 1706 } 1707 } 1708 } 1709 } 1710 1711 /// Check if the existing node-sets are profitable. If not, then ignore the 1712 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1713 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1714 /// then it's best to try to schedule all instructions together instead of 1715 /// starting with the recurrent node-sets. 1716 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1717 // Look for loops with a large MII. 1718 if (MII < 17) 1719 return; 1720 // Check if the node-set contains only a simple add recurrence. 1721 for (auto &NS : NodeSets) { 1722 if (NS.getRecMII() > 2) 1723 return; 1724 if (NS.getMaxDepth() > MII) 1725 return; 1726 } 1727 NodeSets.clear(); 1728 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1729 } 1730 1731 /// Add the nodes that do not belong to a recurrence set into groups 1732 /// based upon connected componenets. 1733 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1734 SetVector<SUnit *> NodesAdded; 1735 SmallPtrSet<SUnit *, 8> Visited; 1736 // Add the nodes that are on a path between the previous node sets and 1737 // the current node set. 1738 for (NodeSet &I : NodeSets) { 1739 SmallSetVector<SUnit *, 8> N; 1740 // Add the nodes from the current node set to the previous node set. 1741 if (succ_L(I, N)) { 1742 SetVector<SUnit *> Path; 1743 for (SUnit *NI : N) { 1744 Visited.clear(); 1745 computePath(NI, Path, NodesAdded, I, Visited); 1746 } 1747 if (!Path.empty()) 1748 I.insert(Path.begin(), Path.end()); 1749 } 1750 // Add the nodes from the previous node set to the current node set. 1751 N.clear(); 1752 if (succ_L(NodesAdded, N)) { 1753 SetVector<SUnit *> Path; 1754 for (SUnit *NI : N) { 1755 Visited.clear(); 1756 computePath(NI, Path, I, NodesAdded, Visited); 1757 } 1758 if (!Path.empty()) 1759 I.insert(Path.begin(), Path.end()); 1760 } 1761 NodesAdded.insert(I.begin(), I.end()); 1762 } 1763 1764 // Create a new node set with the connected nodes of any successor of a node 1765 // in a recurrent set. 1766 NodeSet NewSet; 1767 SmallSetVector<SUnit *, 8> N; 1768 if (succ_L(NodesAdded, N)) 1769 for (SUnit *I : N) 1770 addConnectedNodes(I, NewSet, NodesAdded); 1771 if (!NewSet.empty()) 1772 NodeSets.push_back(NewSet); 1773 1774 // Create a new node set with the connected nodes of any predecessor of a node 1775 // in a recurrent set. 1776 NewSet.clear(); 1777 if (pred_L(NodesAdded, N)) 1778 for (SUnit *I : N) 1779 addConnectedNodes(I, NewSet, NodesAdded); 1780 if (!NewSet.empty()) 1781 NodeSets.push_back(NewSet); 1782 1783 // Create new nodes sets with the connected nodes any remaining node that 1784 // has no predecessor. 1785 for (SUnit &SU : SUnits) { 1786 if (NodesAdded.count(&SU) == 0) { 1787 NewSet.clear(); 1788 addConnectedNodes(&SU, NewSet, NodesAdded); 1789 if (!NewSet.empty()) 1790 NodeSets.push_back(NewSet); 1791 } 1792 } 1793 } 1794 1795 /// Add the node to the set, and add all of its connected nodes to the set. 1796 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1797 SetVector<SUnit *> &NodesAdded) { 1798 NewSet.insert(SU); 1799 NodesAdded.insert(SU); 1800 for (auto &SI : SU->Succs) { 1801 SUnit *Successor = SI.getSUnit(); 1802 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1803 addConnectedNodes(Successor, NewSet, NodesAdded); 1804 } 1805 for (auto &PI : SU->Preds) { 1806 SUnit *Predecessor = PI.getSUnit(); 1807 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1808 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1809 } 1810 } 1811 1812 /// Return true if Set1 contains elements in Set2. The elements in common 1813 /// are returned in a different container. 1814 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1815 SmallSetVector<SUnit *, 8> &Result) { 1816 Result.clear(); 1817 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1818 SUnit *SU = Set1[i]; 1819 if (Set2.count(SU) != 0) 1820 Result.insert(SU); 1821 } 1822 return !Result.empty(); 1823 } 1824 1825 /// Merge the recurrence node sets that have the same initial node. 1826 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1827 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1828 ++I) { 1829 NodeSet &NI = *I; 1830 for (NodeSetType::iterator J = I + 1; J != E;) { 1831 NodeSet &NJ = *J; 1832 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1833 if (NJ.compareRecMII(NI) > 0) 1834 NI.setRecMII(NJ.getRecMII()); 1835 for (SUnit *SU : *J) 1836 I->insert(SU); 1837 NodeSets.erase(J); 1838 E = NodeSets.end(); 1839 } else { 1840 ++J; 1841 } 1842 } 1843 } 1844 } 1845 1846 /// Remove nodes that have been scheduled in previous NodeSets. 1847 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1848 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1849 ++I) 1850 for (NodeSetType::iterator J = I + 1; J != E;) { 1851 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1852 1853 if (J->empty()) { 1854 NodeSets.erase(J); 1855 E = NodeSets.end(); 1856 } else { 1857 ++J; 1858 } 1859 } 1860 } 1861 1862 /// Compute an ordered list of the dependence graph nodes, which 1863 /// indicates the order that the nodes will be scheduled. This is a 1864 /// two-level algorithm. First, a partial order is created, which 1865 /// consists of a list of sets ordered from highest to lowest priority. 1866 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1867 SmallSetVector<SUnit *, 8> R; 1868 NodeOrder.clear(); 1869 1870 for (auto &Nodes : NodeSets) { 1871 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1872 OrderKind Order; 1873 SmallSetVector<SUnit *, 8> N; 1874 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1875 R.insert(N.begin(), N.end()); 1876 Order = BottomUp; 1877 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1878 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1879 R.insert(N.begin(), N.end()); 1880 Order = TopDown; 1881 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1882 } else if (isIntersect(N, Nodes, R)) { 1883 // If some of the successors are in the existing node-set, then use the 1884 // top-down ordering. 1885 Order = TopDown; 1886 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1887 } else if (NodeSets.size() == 1) { 1888 for (auto &N : Nodes) 1889 if (N->Succs.size() == 0) 1890 R.insert(N); 1891 Order = BottomUp; 1892 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1893 } else { 1894 // Find the node with the highest ASAP. 1895 SUnit *maxASAP = nullptr; 1896 for (SUnit *SU : Nodes) { 1897 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1898 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1899 maxASAP = SU; 1900 } 1901 R.insert(maxASAP); 1902 Order = BottomUp; 1903 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1904 } 1905 1906 while (!R.empty()) { 1907 if (Order == TopDown) { 1908 // Choose the node with the maximum height. If more than one, choose 1909 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1910 // choose the node with the lowest MOV. 1911 while (!R.empty()) { 1912 SUnit *maxHeight = nullptr; 1913 for (SUnit *I : R) { 1914 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1915 maxHeight = I; 1916 else if (getHeight(I) == getHeight(maxHeight) && 1917 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1918 maxHeight = I; 1919 else if (getHeight(I) == getHeight(maxHeight) && 1920 getZeroLatencyHeight(I) == 1921 getZeroLatencyHeight(maxHeight) && 1922 getMOV(I) < getMOV(maxHeight)) 1923 maxHeight = I; 1924 } 1925 NodeOrder.insert(maxHeight); 1926 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1927 R.remove(maxHeight); 1928 for (const auto &I : maxHeight->Succs) { 1929 if (Nodes.count(I.getSUnit()) == 0) 1930 continue; 1931 if (NodeOrder.contains(I.getSUnit())) 1932 continue; 1933 if (ignoreDependence(I, false)) 1934 continue; 1935 R.insert(I.getSUnit()); 1936 } 1937 // Back-edges are predecessors with an anti-dependence. 1938 for (const auto &I : maxHeight->Preds) { 1939 if (I.getKind() != SDep::Anti) 1940 continue; 1941 if (Nodes.count(I.getSUnit()) == 0) 1942 continue; 1943 if (NodeOrder.contains(I.getSUnit())) 1944 continue; 1945 R.insert(I.getSUnit()); 1946 } 1947 } 1948 Order = BottomUp; 1949 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1950 SmallSetVector<SUnit *, 8> N; 1951 if (pred_L(NodeOrder, N, &Nodes)) 1952 R.insert(N.begin(), N.end()); 1953 } else { 1954 // Choose the node with the maximum depth. If more than one, choose 1955 // the node with the maximum ZeroLatencyDepth. If still more than one, 1956 // choose the node with the lowest MOV. 1957 while (!R.empty()) { 1958 SUnit *maxDepth = nullptr; 1959 for (SUnit *I : R) { 1960 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1961 maxDepth = I; 1962 else if (getDepth(I) == getDepth(maxDepth) && 1963 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1964 maxDepth = I; 1965 else if (getDepth(I) == getDepth(maxDepth) && 1966 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1967 getMOV(I) < getMOV(maxDepth)) 1968 maxDepth = I; 1969 } 1970 NodeOrder.insert(maxDepth); 1971 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1972 R.remove(maxDepth); 1973 if (Nodes.isExceedSU(maxDepth)) { 1974 Order = TopDown; 1975 R.clear(); 1976 R.insert(Nodes.getNode(0)); 1977 break; 1978 } 1979 for (const auto &I : maxDepth->Preds) { 1980 if (Nodes.count(I.getSUnit()) == 0) 1981 continue; 1982 if (NodeOrder.contains(I.getSUnit())) 1983 continue; 1984 R.insert(I.getSUnit()); 1985 } 1986 // Back-edges are predecessors with an anti-dependence. 1987 for (const auto &I : maxDepth->Succs) { 1988 if (I.getKind() != SDep::Anti) 1989 continue; 1990 if (Nodes.count(I.getSUnit()) == 0) 1991 continue; 1992 if (NodeOrder.contains(I.getSUnit())) 1993 continue; 1994 R.insert(I.getSUnit()); 1995 } 1996 } 1997 Order = TopDown; 1998 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1999 SmallSetVector<SUnit *, 8> N; 2000 if (succ_L(NodeOrder, N, &Nodes)) 2001 R.insert(N.begin(), N.end()); 2002 } 2003 } 2004 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2005 } 2006 2007 LLVM_DEBUG({ 2008 dbgs() << "Node order: "; 2009 for (SUnit *I : NodeOrder) 2010 dbgs() << " " << I->NodeNum << " "; 2011 dbgs() << "\n"; 2012 }); 2013 } 2014 2015 /// Process the nodes in the computed order and create the pipelined schedule 2016 /// of the instructions, if possible. Return true if a schedule is found. 2017 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2018 2019 if (NodeOrder.empty()){ 2020 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2021 return false; 2022 } 2023 2024 bool scheduleFound = false; 2025 // Keep increasing II until a valid schedule is found. 2026 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2027 Schedule.reset(); 2028 Schedule.setInitiationInterval(II); 2029 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2030 2031 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2032 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2033 do { 2034 SUnit *SU = *NI; 2035 2036 // Compute the schedule time for the instruction, which is based 2037 // upon the scheduled time for any predecessors/successors. 2038 int EarlyStart = INT_MIN; 2039 int LateStart = INT_MAX; 2040 // These values are set when the size of the schedule window is limited 2041 // due to chain dependences. 2042 int SchedEnd = INT_MAX; 2043 int SchedStart = INT_MIN; 2044 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2045 II, this); 2046 LLVM_DEBUG({ 2047 dbgs() << "\n"; 2048 dbgs() << "Inst (" << SU->NodeNum << ") "; 2049 SU->getInstr()->dump(); 2050 dbgs() << "\n"; 2051 }); 2052 LLVM_DEBUG({ 2053 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2054 LateStart, SchedEnd, SchedStart); 2055 }); 2056 2057 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2058 SchedStart > LateStart) 2059 scheduleFound = false; 2060 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2061 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2062 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2063 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2064 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2065 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2066 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2067 SchedEnd = 2068 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2069 // When scheduling a Phi it is better to start at the late cycle and go 2070 // backwards. The default order may insert the Phi too far away from 2071 // its first dependence. 2072 if (SU->getInstr()->isPHI()) 2073 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2074 else 2075 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2076 } else { 2077 int FirstCycle = Schedule.getFirstCycle(); 2078 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2079 FirstCycle + getASAP(SU) + II - 1, II); 2080 } 2081 // Even if we find a schedule, make sure the schedule doesn't exceed the 2082 // allowable number of stages. We keep trying if this happens. 2083 if (scheduleFound) 2084 if (SwpMaxStages > -1 && 2085 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2086 scheduleFound = false; 2087 2088 LLVM_DEBUG({ 2089 if (!scheduleFound) 2090 dbgs() << "\tCan't schedule\n"; 2091 }); 2092 } while (++NI != NE && scheduleFound); 2093 2094 // If a schedule is found, check if it is a valid schedule too. 2095 if (scheduleFound) 2096 scheduleFound = Schedule.isValidSchedule(this); 2097 } 2098 2099 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2100 << " (II=" << Schedule.getInitiationInterval() 2101 << ")\n"); 2102 2103 if (scheduleFound) { 2104 Schedule.finalizeSchedule(this); 2105 Pass.ORE->emit([&]() { 2106 return MachineOptimizationRemarkAnalysis( 2107 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2108 << "Schedule found with Initiation Interval: " 2109 << ore::NV("II", Schedule.getInitiationInterval()) 2110 << ", MaxStageCount: " 2111 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2112 }); 2113 } else 2114 Schedule.reset(); 2115 2116 return scheduleFound && Schedule.getMaxStageCount() > 0; 2117 } 2118 2119 /// Return true if we can compute the amount the instruction changes 2120 /// during each iteration. Set Delta to the amount of the change. 2121 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2122 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2123 const MachineOperand *BaseOp; 2124 int64_t Offset; 2125 bool OffsetIsScalable; 2126 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2127 return false; 2128 2129 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2130 if (OffsetIsScalable) 2131 return false; 2132 2133 if (!BaseOp->isReg()) 2134 return false; 2135 2136 Register BaseReg = BaseOp->getReg(); 2137 2138 MachineRegisterInfo &MRI = MF.getRegInfo(); 2139 // Check if there is a Phi. If so, get the definition in the loop. 2140 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2141 if (BaseDef && BaseDef->isPHI()) { 2142 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2143 BaseDef = MRI.getVRegDef(BaseReg); 2144 } 2145 if (!BaseDef) 2146 return false; 2147 2148 int D = 0; 2149 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2150 return false; 2151 2152 Delta = D; 2153 return true; 2154 } 2155 2156 /// Check if we can change the instruction to use an offset value from the 2157 /// previous iteration. If so, return true and set the base and offset values 2158 /// so that we can rewrite the load, if necessary. 2159 /// v1 = Phi(v0, v3) 2160 /// v2 = load v1, 0 2161 /// v3 = post_store v1, 4, x 2162 /// This function enables the load to be rewritten as v2 = load v3, 4. 2163 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2164 unsigned &BasePos, 2165 unsigned &OffsetPos, 2166 unsigned &NewBase, 2167 int64_t &Offset) { 2168 // Get the load instruction. 2169 if (TII->isPostIncrement(*MI)) 2170 return false; 2171 unsigned BasePosLd, OffsetPosLd; 2172 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2173 return false; 2174 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2175 2176 // Look for the Phi instruction. 2177 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2178 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2179 if (!Phi || !Phi->isPHI()) 2180 return false; 2181 // Get the register defined in the loop block. 2182 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2183 if (!PrevReg) 2184 return false; 2185 2186 // Check for the post-increment load/store instruction. 2187 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2188 if (!PrevDef || PrevDef == MI) 2189 return false; 2190 2191 if (!TII->isPostIncrement(*PrevDef)) 2192 return false; 2193 2194 unsigned BasePos1 = 0, OffsetPos1 = 0; 2195 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2196 return false; 2197 2198 // Make sure that the instructions do not access the same memory location in 2199 // the next iteration. 2200 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2201 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2202 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2203 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2204 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2205 MF.DeleteMachineInstr(NewMI); 2206 if (!Disjoint) 2207 return false; 2208 2209 // Set the return value once we determine that we return true. 2210 BasePos = BasePosLd; 2211 OffsetPos = OffsetPosLd; 2212 NewBase = PrevReg; 2213 Offset = StoreOffset; 2214 return true; 2215 } 2216 2217 /// Apply changes to the instruction if needed. The changes are need 2218 /// to improve the scheduling and depend up on the final schedule. 2219 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2220 SMSchedule &Schedule) { 2221 SUnit *SU = getSUnit(MI); 2222 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2223 InstrChanges.find(SU); 2224 if (It != InstrChanges.end()) { 2225 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2226 unsigned BasePos, OffsetPos; 2227 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2228 return; 2229 Register BaseReg = MI->getOperand(BasePos).getReg(); 2230 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2231 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2232 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2233 int BaseStageNum = Schedule.stageScheduled(SU); 2234 int BaseCycleNum = Schedule.cycleScheduled(SU); 2235 if (BaseStageNum < DefStageNum) { 2236 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2237 int OffsetDiff = DefStageNum - BaseStageNum; 2238 if (DefCycleNum < BaseCycleNum) { 2239 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2240 if (OffsetDiff > 0) 2241 --OffsetDiff; 2242 } 2243 int64_t NewOffset = 2244 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2245 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2246 SU->setInstr(NewMI); 2247 MISUnitMap[NewMI] = SU; 2248 NewMIs[MI] = NewMI; 2249 } 2250 } 2251 } 2252 2253 /// Return the instruction in the loop that defines the register. 2254 /// If the definition is a Phi, then follow the Phi operand to 2255 /// the instruction in the loop. 2256 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2257 SmallPtrSet<MachineInstr *, 8> Visited; 2258 MachineInstr *Def = MRI.getVRegDef(Reg); 2259 while (Def->isPHI()) { 2260 if (!Visited.insert(Def).second) 2261 break; 2262 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2263 if (Def->getOperand(i + 1).getMBB() == BB) { 2264 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2265 break; 2266 } 2267 } 2268 return Def; 2269 } 2270 2271 /// Return true for an order or output dependence that is loop carried 2272 /// potentially. A dependence is loop carried if the destination defines a valu 2273 /// that may be used or defined by the source in a subsequent iteration. 2274 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2275 bool isSucc) { 2276 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2277 Dep.isArtificial()) 2278 return false; 2279 2280 if (!SwpPruneLoopCarried) 2281 return true; 2282 2283 if (Dep.getKind() == SDep::Output) 2284 return true; 2285 2286 MachineInstr *SI = Source->getInstr(); 2287 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2288 if (!isSucc) 2289 std::swap(SI, DI); 2290 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2291 2292 // Assume ordered loads and stores may have a loop carried dependence. 2293 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2294 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2295 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2296 return true; 2297 2298 // Only chain dependences between a load and store can be loop carried. 2299 if (!DI->mayStore() || !SI->mayLoad()) 2300 return false; 2301 2302 unsigned DeltaS, DeltaD; 2303 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2304 return true; 2305 2306 const MachineOperand *BaseOpS, *BaseOpD; 2307 int64_t OffsetS, OffsetD; 2308 bool OffsetSIsScalable, OffsetDIsScalable; 2309 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2310 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2311 TRI) || 2312 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2313 TRI)) 2314 return true; 2315 2316 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2317 "Expected offsets to be byte offsets"); 2318 2319 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2320 return true; 2321 2322 // Check that the base register is incremented by a constant value for each 2323 // iteration. 2324 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2325 if (!Def || !Def->isPHI()) 2326 return true; 2327 unsigned InitVal = 0; 2328 unsigned LoopVal = 0; 2329 getPhiRegs(*Def, BB, InitVal, LoopVal); 2330 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2331 int D = 0; 2332 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2333 return true; 2334 2335 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2336 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2337 2338 // This is the main test, which checks the offset values and the loop 2339 // increment value to determine if the accesses may be loop carried. 2340 if (AccessSizeS == MemoryLocation::UnknownSize || 2341 AccessSizeD == MemoryLocation::UnknownSize) 2342 return true; 2343 2344 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2345 return true; 2346 2347 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2348 } 2349 2350 void SwingSchedulerDAG::postprocessDAG() { 2351 for (auto &M : Mutations) 2352 M->apply(this); 2353 } 2354 2355 /// Try to schedule the node at the specified StartCycle and continue 2356 /// until the node is schedule or the EndCycle is reached. This function 2357 /// returns true if the node is scheduled. This routine may search either 2358 /// forward or backward for a place to insert the instruction based upon 2359 /// the relative values of StartCycle and EndCycle. 2360 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2361 bool forward = true; 2362 LLVM_DEBUG({ 2363 dbgs() << "Trying to insert node between " << StartCycle << " and " 2364 << EndCycle << " II: " << II << "\n"; 2365 }); 2366 if (StartCycle > EndCycle) 2367 forward = false; 2368 2369 // The terminating condition depends on the direction. 2370 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2371 for (int curCycle = StartCycle; curCycle != termCycle; 2372 forward ? ++curCycle : --curCycle) { 2373 2374 // Add the already scheduled instructions at the specified cycle to the 2375 // DFA. 2376 ProcItinResources.clearResources(); 2377 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2378 checkCycle <= LastCycle; checkCycle += II) { 2379 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2380 2381 for (SUnit *CI : cycleInstrs) { 2382 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2383 continue; 2384 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2385 "These instructions have already been scheduled."); 2386 ProcItinResources.reserveResources(*CI->getInstr()); 2387 } 2388 } 2389 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2390 ProcItinResources.canReserveResources(*SU->getInstr())) { 2391 LLVM_DEBUG({ 2392 dbgs() << "\tinsert at cycle " << curCycle << " "; 2393 SU->getInstr()->dump(); 2394 }); 2395 2396 ScheduledInstrs[curCycle].push_back(SU); 2397 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2398 if (curCycle > LastCycle) 2399 LastCycle = curCycle; 2400 if (curCycle < FirstCycle) 2401 FirstCycle = curCycle; 2402 return true; 2403 } 2404 LLVM_DEBUG({ 2405 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2406 SU->getInstr()->dump(); 2407 }); 2408 } 2409 return false; 2410 } 2411 2412 // Return the cycle of the earliest scheduled instruction in the chain. 2413 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2414 SmallPtrSet<SUnit *, 8> Visited; 2415 SmallVector<SDep, 8> Worklist; 2416 Worklist.push_back(Dep); 2417 int EarlyCycle = INT_MAX; 2418 while (!Worklist.empty()) { 2419 const SDep &Cur = Worklist.pop_back_val(); 2420 SUnit *PrevSU = Cur.getSUnit(); 2421 if (Visited.count(PrevSU)) 2422 continue; 2423 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2424 if (it == InstrToCycle.end()) 2425 continue; 2426 EarlyCycle = std::min(EarlyCycle, it->second); 2427 for (const auto &PI : PrevSU->Preds) 2428 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2429 Worklist.push_back(PI); 2430 Visited.insert(PrevSU); 2431 } 2432 return EarlyCycle; 2433 } 2434 2435 // Return the cycle of the latest scheduled instruction in the chain. 2436 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2437 SmallPtrSet<SUnit *, 8> Visited; 2438 SmallVector<SDep, 8> Worklist; 2439 Worklist.push_back(Dep); 2440 int LateCycle = INT_MIN; 2441 while (!Worklist.empty()) { 2442 const SDep &Cur = Worklist.pop_back_val(); 2443 SUnit *SuccSU = Cur.getSUnit(); 2444 if (Visited.count(SuccSU)) 2445 continue; 2446 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2447 if (it == InstrToCycle.end()) 2448 continue; 2449 LateCycle = std::max(LateCycle, it->second); 2450 for (const auto &SI : SuccSU->Succs) 2451 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2452 Worklist.push_back(SI); 2453 Visited.insert(SuccSU); 2454 } 2455 return LateCycle; 2456 } 2457 2458 /// If an instruction has a use that spans multiple iterations, then 2459 /// return true. These instructions are characterized by having a back-ege 2460 /// to a Phi, which contains a reference to another Phi. 2461 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2462 for (auto &P : SU->Preds) 2463 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2464 for (auto &S : P.getSUnit()->Succs) 2465 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2466 return P.getSUnit(); 2467 return nullptr; 2468 } 2469 2470 /// Compute the scheduling start slot for the instruction. The start slot 2471 /// depends on any predecessor or successor nodes scheduled already. 2472 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2473 int *MinEnd, int *MaxStart, int II, 2474 SwingSchedulerDAG *DAG) { 2475 // Iterate over each instruction that has been scheduled already. The start 2476 // slot computation depends on whether the previously scheduled instruction 2477 // is a predecessor or successor of the specified instruction. 2478 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2479 2480 // Iterate over each instruction in the current cycle. 2481 for (SUnit *I : getInstructions(cycle)) { 2482 // Because we're processing a DAG for the dependences, we recognize 2483 // the back-edge in recurrences by anti dependences. 2484 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2485 const SDep &Dep = SU->Preds[i]; 2486 if (Dep.getSUnit() == I) { 2487 if (!DAG->isBackedge(SU, Dep)) { 2488 int EarlyStart = cycle + Dep.getLatency() - 2489 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2490 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2491 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2492 int End = earliestCycleInChain(Dep) + (II - 1); 2493 *MinEnd = std::min(*MinEnd, End); 2494 } 2495 } else { 2496 int LateStart = cycle - Dep.getLatency() + 2497 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2498 *MinLateStart = std::min(*MinLateStart, LateStart); 2499 } 2500 } 2501 // For instruction that requires multiple iterations, make sure that 2502 // the dependent instruction is not scheduled past the definition. 2503 SUnit *BE = multipleIterations(I, DAG); 2504 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2505 !SU->isPred(I)) 2506 *MinLateStart = std::min(*MinLateStart, cycle); 2507 } 2508 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2509 if (SU->Succs[i].getSUnit() == I) { 2510 const SDep &Dep = SU->Succs[i]; 2511 if (!DAG->isBackedge(SU, Dep)) { 2512 int LateStart = cycle - Dep.getLatency() + 2513 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2514 *MinLateStart = std::min(*MinLateStart, LateStart); 2515 if (DAG->isLoopCarriedDep(SU, Dep)) { 2516 int Start = latestCycleInChain(Dep) + 1 - II; 2517 *MaxStart = std::max(*MaxStart, Start); 2518 } 2519 } else { 2520 int EarlyStart = cycle + Dep.getLatency() - 2521 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2522 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2523 } 2524 } 2525 } 2526 } 2527 } 2528 } 2529 2530 /// Order the instructions within a cycle so that the definitions occur 2531 /// before the uses. Returns true if the instruction is added to the start 2532 /// of the list, or false if added to the end. 2533 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2534 std::deque<SUnit *> &Insts) { 2535 MachineInstr *MI = SU->getInstr(); 2536 bool OrderBeforeUse = false; 2537 bool OrderAfterDef = false; 2538 bool OrderBeforeDef = false; 2539 unsigned MoveDef = 0; 2540 unsigned MoveUse = 0; 2541 int StageInst1 = stageScheduled(SU); 2542 2543 unsigned Pos = 0; 2544 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2545 ++I, ++Pos) { 2546 for (MachineOperand &MO : MI->operands()) { 2547 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2548 continue; 2549 2550 Register Reg = MO.getReg(); 2551 unsigned BasePos, OffsetPos; 2552 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2553 if (MI->getOperand(BasePos).getReg() == Reg) 2554 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2555 Reg = NewReg; 2556 bool Reads, Writes; 2557 std::tie(Reads, Writes) = 2558 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2559 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2560 OrderBeforeUse = true; 2561 if (MoveUse == 0) 2562 MoveUse = Pos; 2563 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2564 // Add the instruction after the scheduled instruction. 2565 OrderAfterDef = true; 2566 MoveDef = Pos; 2567 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2568 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2569 OrderBeforeUse = true; 2570 if (MoveUse == 0) 2571 MoveUse = Pos; 2572 } else { 2573 OrderAfterDef = true; 2574 MoveDef = Pos; 2575 } 2576 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2577 OrderBeforeUse = true; 2578 if (MoveUse == 0) 2579 MoveUse = Pos; 2580 if (MoveUse != 0) { 2581 OrderAfterDef = true; 2582 MoveDef = Pos - 1; 2583 } 2584 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2585 // Add the instruction before the scheduled instruction. 2586 OrderBeforeUse = true; 2587 if (MoveUse == 0) 2588 MoveUse = Pos; 2589 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2590 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2591 if (MoveUse == 0) { 2592 OrderBeforeDef = true; 2593 MoveUse = Pos; 2594 } 2595 } 2596 } 2597 // Check for order dependences between instructions. Make sure the source 2598 // is ordered before the destination. 2599 for (auto &S : SU->Succs) { 2600 if (S.getSUnit() != *I) 2601 continue; 2602 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2603 OrderBeforeUse = true; 2604 if (Pos < MoveUse) 2605 MoveUse = Pos; 2606 } 2607 // We did not handle HW dependences in previous for loop, 2608 // and we normally set Latency = 0 for Anti deps, 2609 // so may have nodes in same cycle with Anti denpendent on HW regs. 2610 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2611 OrderBeforeUse = true; 2612 if ((MoveUse == 0) || (Pos < MoveUse)) 2613 MoveUse = Pos; 2614 } 2615 } 2616 for (auto &P : SU->Preds) { 2617 if (P.getSUnit() != *I) 2618 continue; 2619 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2620 OrderAfterDef = true; 2621 MoveDef = Pos; 2622 } 2623 } 2624 } 2625 2626 // A circular dependence. 2627 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2628 OrderBeforeUse = false; 2629 2630 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2631 // to a loop-carried dependence. 2632 if (OrderBeforeDef) 2633 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2634 2635 // The uncommon case when the instruction order needs to be updated because 2636 // there is both a use and def. 2637 if (OrderBeforeUse && OrderAfterDef) { 2638 SUnit *UseSU = Insts.at(MoveUse); 2639 SUnit *DefSU = Insts.at(MoveDef); 2640 if (MoveUse > MoveDef) { 2641 Insts.erase(Insts.begin() + MoveUse); 2642 Insts.erase(Insts.begin() + MoveDef); 2643 } else { 2644 Insts.erase(Insts.begin() + MoveDef); 2645 Insts.erase(Insts.begin() + MoveUse); 2646 } 2647 orderDependence(SSD, UseSU, Insts); 2648 orderDependence(SSD, SU, Insts); 2649 orderDependence(SSD, DefSU, Insts); 2650 return; 2651 } 2652 // Put the new instruction first if there is a use in the list. Otherwise, 2653 // put it at the end of the list. 2654 if (OrderBeforeUse) 2655 Insts.push_front(SU); 2656 else 2657 Insts.push_back(SU); 2658 } 2659 2660 /// Return true if the scheduled Phi has a loop carried operand. 2661 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2662 if (!Phi.isPHI()) 2663 return false; 2664 assert(Phi.isPHI() && "Expecting a Phi."); 2665 SUnit *DefSU = SSD->getSUnit(&Phi); 2666 unsigned DefCycle = cycleScheduled(DefSU); 2667 int DefStage = stageScheduled(DefSU); 2668 2669 unsigned InitVal = 0; 2670 unsigned LoopVal = 0; 2671 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2672 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2673 if (!UseSU) 2674 return true; 2675 if (UseSU->getInstr()->isPHI()) 2676 return true; 2677 unsigned LoopCycle = cycleScheduled(UseSU); 2678 int LoopStage = stageScheduled(UseSU); 2679 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2680 } 2681 2682 /// Return true if the instruction is a definition that is loop carried 2683 /// and defines the use on the next iteration. 2684 /// v1 = phi(v2, v3) 2685 /// (Def) v3 = op v1 2686 /// (MO) = v1 2687 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2688 /// register. 2689 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2690 MachineInstr *Def, MachineOperand &MO) { 2691 if (!MO.isReg()) 2692 return false; 2693 if (Def->isPHI()) 2694 return false; 2695 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2696 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2697 return false; 2698 if (!isLoopCarried(SSD, *Phi)) 2699 return false; 2700 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2701 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2702 MachineOperand &DMO = Def->getOperand(i); 2703 if (!DMO.isReg() || !DMO.isDef()) 2704 continue; 2705 if (DMO.getReg() == LoopReg) 2706 return true; 2707 } 2708 return false; 2709 } 2710 2711 // Check if the generated schedule is valid. This function checks if 2712 // an instruction that uses a physical register is scheduled in a 2713 // different stage than the definition. The pipeliner does not handle 2714 // physical register values that may cross a basic block boundary. 2715 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2716 for (SUnit &SU : SSD->SUnits) { 2717 if (!SU.hasPhysRegDefs) 2718 continue; 2719 int StageDef = stageScheduled(&SU); 2720 assert(StageDef != -1 && "Instruction should have been scheduled."); 2721 for (auto &SI : SU.Succs) 2722 if (SI.isAssignedRegDep()) 2723 if (Register::isPhysicalRegister(SI.getReg())) 2724 if (stageScheduled(SI.getSUnit()) != StageDef) 2725 return false; 2726 } 2727 return true; 2728 } 2729 2730 /// A property of the node order in swing-modulo-scheduling is 2731 /// that for nodes outside circuits the following holds: 2732 /// none of them is scheduled after both a successor and a 2733 /// predecessor. 2734 /// The method below checks whether the property is met. 2735 /// If not, debug information is printed and statistics information updated. 2736 /// Note that we do not use an assert statement. 2737 /// The reason is that although an invalid node oder may prevent 2738 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2739 /// it does not lead to the generation of incorrect code. 2740 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2741 2742 // a sorted vector that maps each SUnit to its index in the NodeOrder 2743 typedef std::pair<SUnit *, unsigned> UnitIndex; 2744 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2745 2746 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2747 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2748 2749 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2750 return std::get<0>(i1) < std::get<0>(i2); 2751 }; 2752 2753 // sort, so that we can perform a binary search 2754 llvm::sort(Indices, CompareKey); 2755 2756 bool Valid = true; 2757 (void)Valid; 2758 // for each SUnit in the NodeOrder, check whether 2759 // it appears after both a successor and a predecessor 2760 // of the SUnit. If this is the case, and the SUnit 2761 // is not part of circuit, then the NodeOrder is not 2762 // valid. 2763 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2764 SUnit *SU = NodeOrder[i]; 2765 unsigned Index = i; 2766 2767 bool PredBefore = false; 2768 bool SuccBefore = false; 2769 2770 SUnit *Succ; 2771 SUnit *Pred; 2772 (void)Succ; 2773 (void)Pred; 2774 2775 for (SDep &PredEdge : SU->Preds) { 2776 SUnit *PredSU = PredEdge.getSUnit(); 2777 unsigned PredIndex = std::get<1>( 2778 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2779 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2780 PredBefore = true; 2781 Pred = PredSU; 2782 break; 2783 } 2784 } 2785 2786 for (SDep &SuccEdge : SU->Succs) { 2787 SUnit *SuccSU = SuccEdge.getSUnit(); 2788 // Do not process a boundary node, it was not included in NodeOrder, 2789 // hence not in Indices either, call to std::lower_bound() below will 2790 // return Indices.end(). 2791 if (SuccSU->isBoundaryNode()) 2792 continue; 2793 unsigned SuccIndex = std::get<1>( 2794 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2795 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2796 SuccBefore = true; 2797 Succ = SuccSU; 2798 break; 2799 } 2800 } 2801 2802 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2803 // instructions in circuits are allowed to be scheduled 2804 // after both a successor and predecessor. 2805 bool InCircuit = llvm::any_of( 2806 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2807 if (InCircuit) 2808 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2809 else { 2810 Valid = false; 2811 NumNodeOrderIssues++; 2812 LLVM_DEBUG(dbgs() << "Predecessor ";); 2813 } 2814 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2815 << " are scheduled before node " << SU->NodeNum 2816 << "\n";); 2817 } 2818 } 2819 2820 LLVM_DEBUG({ 2821 if (!Valid) 2822 dbgs() << "Invalid node order found!\n"; 2823 }); 2824 } 2825 2826 /// Attempt to fix the degenerate cases when the instruction serialization 2827 /// causes the register lifetimes to overlap. For example, 2828 /// p' = store_pi(p, b) 2829 /// = load p, offset 2830 /// In this case p and p' overlap, which means that two registers are needed. 2831 /// Instead, this function changes the load to use p' and updates the offset. 2832 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2833 unsigned OverlapReg = 0; 2834 unsigned NewBaseReg = 0; 2835 for (SUnit *SU : Instrs) { 2836 MachineInstr *MI = SU->getInstr(); 2837 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2838 const MachineOperand &MO = MI->getOperand(i); 2839 // Look for an instruction that uses p. The instruction occurs in the 2840 // same cycle but occurs later in the serialized order. 2841 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2842 // Check that the instruction appears in the InstrChanges structure, 2843 // which contains instructions that can have the offset updated. 2844 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2845 InstrChanges.find(SU); 2846 if (It != InstrChanges.end()) { 2847 unsigned BasePos, OffsetPos; 2848 // Update the base register and adjust the offset. 2849 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2850 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2851 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2852 int64_t NewOffset = 2853 MI->getOperand(OffsetPos).getImm() - It->second.second; 2854 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2855 SU->setInstr(NewMI); 2856 MISUnitMap[NewMI] = SU; 2857 NewMIs[MI] = NewMI; 2858 } 2859 } 2860 OverlapReg = 0; 2861 NewBaseReg = 0; 2862 break; 2863 } 2864 // Look for an instruction of the form p' = op(p), which uses and defines 2865 // two virtual registers that get allocated to the same physical register. 2866 unsigned TiedUseIdx = 0; 2867 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2868 // OverlapReg is p in the example above. 2869 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2870 // NewBaseReg is p' in the example above. 2871 NewBaseReg = MI->getOperand(i).getReg(); 2872 break; 2873 } 2874 } 2875 } 2876 } 2877 2878 /// After the schedule has been formed, call this function to combine 2879 /// the instructions from the different stages/cycles. That is, this 2880 /// function creates a schedule that represents a single iteration. 2881 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2882 // Move all instructions to the first stage from later stages. 2883 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2884 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2885 ++stage) { 2886 std::deque<SUnit *> &cycleInstrs = 2887 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2888 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2889 E = cycleInstrs.rend(); 2890 I != E; ++I) 2891 ScheduledInstrs[cycle].push_front(*I); 2892 } 2893 } 2894 2895 // Erase all the elements in the later stages. Only one iteration should 2896 // remain in the scheduled list, and it contains all the instructions. 2897 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2898 ScheduledInstrs.erase(cycle); 2899 2900 // Change the registers in instruction as specified in the InstrChanges 2901 // map. We need to use the new registers to create the correct order. 2902 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2903 SUnit *SU = &SSD->SUnits[i]; 2904 SSD->applyInstrChange(SU->getInstr(), *this); 2905 } 2906 2907 // Reorder the instructions in each cycle to fix and improve the 2908 // generated code. 2909 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2910 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2911 std::deque<SUnit *> newOrderPhi; 2912 for (SUnit *SU : cycleInstrs) { 2913 if (SU->getInstr()->isPHI()) 2914 newOrderPhi.push_back(SU); 2915 } 2916 std::deque<SUnit *> newOrderI; 2917 for (SUnit *SU : cycleInstrs) { 2918 if (!SU->getInstr()->isPHI()) 2919 orderDependence(SSD, SU, newOrderI); 2920 } 2921 // Replace the old order with the new order. 2922 cycleInstrs.swap(newOrderPhi); 2923 llvm::append_range(cycleInstrs, newOrderI); 2924 SSD->fixupRegisterOverlaps(cycleInstrs); 2925 } 2926 2927 LLVM_DEBUG(dump();); 2928 } 2929 2930 void NodeSet::print(raw_ostream &os) const { 2931 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2932 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2933 for (const auto &I : Nodes) 2934 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2935 os << "\n"; 2936 } 2937 2938 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2939 /// Print the schedule information to the given output. 2940 void SMSchedule::print(raw_ostream &os) const { 2941 // Iterate over each cycle. 2942 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2943 // Iterate over each instruction in the cycle. 2944 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2945 for (SUnit *CI : cycleInstrs->second) { 2946 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2947 os << "(" << CI->NodeNum << ") "; 2948 CI->getInstr()->print(os); 2949 os << "\n"; 2950 } 2951 } 2952 } 2953 2954 /// Utility function used for debugging to print the schedule. 2955 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2956 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2957 2958 #endif 2959 2960 void ResourceManager::initProcResourceVectors( 2961 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2962 unsigned ProcResourceID = 0; 2963 2964 // We currently limit the resource kinds to 64 and below so that we can use 2965 // uint64_t for Masks 2966 assert(SM.getNumProcResourceKinds() < 64 && 2967 "Too many kinds of resources, unsupported"); 2968 // Create a unique bitmask for every processor resource unit. 2969 // Skip resource at index 0, since it always references 'InvalidUnit'. 2970 Masks.resize(SM.getNumProcResourceKinds()); 2971 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2972 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2973 if (Desc.SubUnitsIdxBegin) 2974 continue; 2975 Masks[I] = 1ULL << ProcResourceID; 2976 ProcResourceID++; 2977 } 2978 // Create a unique bitmask for every processor resource group. 2979 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2980 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2981 if (!Desc.SubUnitsIdxBegin) 2982 continue; 2983 Masks[I] = 1ULL << ProcResourceID; 2984 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2985 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2986 ProcResourceID++; 2987 } 2988 LLVM_DEBUG({ 2989 if (SwpShowResMask) { 2990 dbgs() << "ProcResourceDesc:\n"; 2991 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2992 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2993 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 2994 ProcResource->Name, I, Masks[I], 2995 ProcResource->NumUnits); 2996 } 2997 dbgs() << " -----------------\n"; 2998 } 2999 }); 3000 } 3001 3002 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3003 3004 LLVM_DEBUG({ 3005 if (SwpDebugResource) 3006 dbgs() << "canReserveResources:\n"; 3007 }); 3008 if (UseDFA) 3009 return DFAResources->canReserveResources(MID); 3010 3011 unsigned InsnClass = MID->getSchedClass(); 3012 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3013 if (!SCDesc->isValid()) { 3014 LLVM_DEBUG({ 3015 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3016 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3017 }); 3018 return true; 3019 } 3020 3021 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3022 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3023 for (; I != E; ++I) { 3024 if (!I->Cycles) 3025 continue; 3026 const MCProcResourceDesc *ProcResource = 3027 SM.getProcResource(I->ProcResourceIdx); 3028 unsigned NumUnits = ProcResource->NumUnits; 3029 LLVM_DEBUG({ 3030 if (SwpDebugResource) 3031 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3032 ProcResource->Name, I->ProcResourceIdx, 3033 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3034 I->Cycles); 3035 }); 3036 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3037 return false; 3038 } 3039 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3040 return true; 3041 } 3042 3043 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3044 LLVM_DEBUG({ 3045 if (SwpDebugResource) 3046 dbgs() << "reserveResources:\n"; 3047 }); 3048 if (UseDFA) 3049 return DFAResources->reserveResources(MID); 3050 3051 unsigned InsnClass = MID->getSchedClass(); 3052 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3053 if (!SCDesc->isValid()) { 3054 LLVM_DEBUG({ 3055 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3056 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3057 }); 3058 return; 3059 } 3060 for (const MCWriteProcResEntry &PRE : 3061 make_range(STI->getWriteProcResBegin(SCDesc), 3062 STI->getWriteProcResEnd(SCDesc))) { 3063 if (!PRE.Cycles) 3064 continue; 3065 ++ProcResourceCount[PRE.ProcResourceIdx]; 3066 LLVM_DEBUG({ 3067 if (SwpDebugResource) { 3068 const MCProcResourceDesc *ProcResource = 3069 SM.getProcResource(PRE.ProcResourceIdx); 3070 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3071 ProcResource->Name, PRE.ProcResourceIdx, 3072 ProcResourceCount[PRE.ProcResourceIdx], 3073 ProcResource->NumUnits, PRE.Cycles); 3074 } 3075 }); 3076 } 3077 LLVM_DEBUG({ 3078 if (SwpDebugResource) 3079 dbgs() << "reserveResources: done!\n\n"; 3080 }); 3081 } 3082 3083 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3084 return canReserveResources(&MI.getDesc()); 3085 } 3086 3087 void ResourceManager::reserveResources(const MachineInstr &MI) { 3088 return reserveResources(&MI.getDesc()); 3089 } 3090 3091 void ResourceManager::clearResources() { 3092 if (UseDFA) 3093 return DFAResources->clearResources(); 3094 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3095 } 3096