1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/CodeGen/DFAPacketizer.h"
50 #include "llvm/CodeGen/LiveIntervals.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineDominators.h"
53 #include "llvm/CodeGen/MachineFunction.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstr.h"
56 #include "llvm/CodeGen/MachineInstrBuilder.h"
57 #include "llvm/CodeGen/MachineLoopInfo.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineOperand.h"
60 #include "llvm/CodeGen/MachineRegisterInfo.h"
61 #include "llvm/CodeGen/ModuloSchedule.h"
62 #include "llvm/CodeGen/RegisterPressure.h"
63 #include "llvm/CodeGen/ScheduleDAG.h"
64 #include "llvm/CodeGen/ScheduleDAGMutation.h"
65 #include "llvm/CodeGen/TargetOpcodes.h"
66 #include "llvm/CodeGen/TargetRegisterInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/Config/llvm-config.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
93
94 using namespace llvm;
95
96 #define DEBUG_TYPE "pipeliner"
97
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112 cl::desc("Enable Software Pipelining"));
113
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116 cl::desc("Enable SWP at Os."), cl::Hidden,
117 cl::init(false));
118
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121 cl::desc("Size limit for the MII."),
122 cl::Hidden, cl::init(27));
123
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126 SwpMaxStages("pipeliner-max-stages",
127 cl::desc("Maximum stages allowed in the generated scheduled."),
128 cl::Hidden, cl::init(3));
129
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133 SwpPruneDeps("pipeliner-prune-deps",
134 cl::desc("Prune dependences between unrelated Phi nodes."),
135 cl::Hidden, cl::init(true));
136
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141 cl::desc("Prune loop carried order dependences."),
142 cl::Hidden, cl::init(true));
143
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
147
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149 cl::ReallyHidden,
150 cl::desc("Ignore RecMII"));
151
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153 cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155 cl::init(false));
156
157 static cl::opt<bool> EmitTestAnnotations(
158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159 cl::desc("Instead of emitting the pipelined code, annotate instructions "
160 "with the generated schedule for feeding into the "
161 "-modulo-schedule-test pass"));
162
163 static cl::opt<bool> ExperimentalCodeGen(
164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165 cl::desc(
166 "Use the experimental peeling code generator for software pipelining"));
167
168 namespace llvm {
169
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
172 cl::init(true),
173 cl::desc("Enable CopyToPhi DAG Mutation"));
174
175 } // end namespace llvm
176
177 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
178 char MachinePipeliner::ID = 0;
179 #ifndef NDEBUG
180 int MachinePipeliner::NumTries = 0;
181 #endif
182 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
183
184 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
185 "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)186 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
190 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
191 "Modulo Software Pipelining", false, false)
192
193 /// The "main" function for implementing Swing Modulo Scheduling.
194 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
195 if (skipFunction(mf.getFunction()))
196 return false;
197
198 if (!EnableSWP)
199 return false;
200
201 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
202 !EnableSWPOptSize.getPosition())
203 return false;
204
205 if (!mf.getSubtarget().enableMachinePipeliner())
206 return false;
207
208 // Cannot pipeline loops without instruction itineraries if we are using
209 // DFA for the pipeliner.
210 if (mf.getSubtarget().useDFAforSMS() &&
211 (!mf.getSubtarget().getInstrItineraryData() ||
212 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
213 return false;
214
215 MF = &mf;
216 MLI = &getAnalysis<MachineLoopInfo>();
217 MDT = &getAnalysis<MachineDominatorTree>();
218 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
219 TII = MF->getSubtarget().getInstrInfo();
220 RegClassInfo.runOnMachineFunction(*MF);
221
222 for (const auto &L : *MLI)
223 scheduleLoop(*L);
224
225 return false;
226 }
227
228 /// Attempt to perform the SMS algorithm on the specified loop. This function is
229 /// the main entry point for the algorithm. The function identifies candidate
230 /// loops, calculates the minimum initiation interval, and attempts to schedule
231 /// the loop.
scheduleLoop(MachineLoop & L)232 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
233 bool Changed = false;
234 for (const auto &InnerLoop : L)
235 Changed |= scheduleLoop(*InnerLoop);
236
237 #ifndef NDEBUG
238 // Stop trying after reaching the limit (if any).
239 int Limit = SwpLoopLimit;
240 if (Limit >= 0) {
241 if (NumTries >= SwpLoopLimit)
242 return Changed;
243 NumTries++;
244 }
245 #endif
246
247 setPragmaPipelineOptions(L);
248 if (!canPipelineLoop(L)) {
249 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
250 ORE->emit([&]() {
251 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
252 L.getStartLoc(), L.getHeader())
253 << "Failed to pipeline loop";
254 });
255
256 LI.LoopPipelinerInfo.reset();
257 return Changed;
258 }
259
260 ++NumTrytoPipeline;
261
262 Changed = swingModuloScheduler(L);
263
264 LI.LoopPipelinerInfo.reset();
265 return Changed;
266 }
267
setPragmaPipelineOptions(MachineLoop & L)268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269 // Reset the pragma for the next loop in iteration.
270 disabledByPragma = false;
271 II_setByPragma = 0;
272
273 MachineBasicBlock *LBLK = L.getTopBlock();
274
275 if (LBLK == nullptr)
276 return;
277
278 const BasicBlock *BBLK = LBLK->getBasicBlock();
279 if (BBLK == nullptr)
280 return;
281
282 const Instruction *TI = BBLK->getTerminator();
283 if (TI == nullptr)
284 return;
285
286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287 if (LoopID == nullptr)
288 return;
289
290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
292
293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
295
296 if (MD == nullptr)
297 continue;
298
299 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
300
301 if (S == nullptr)
302 continue;
303
304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305 assert(MD->getNumOperands() == 2 &&
306 "Pipeline initiation interval hint metadata should have two operands.");
307 II_setByPragma =
308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310 } else if (S->getString() == "llvm.loop.pipeline.disable") {
311 disabledByPragma = true;
312 }
313 }
314 }
315
316 /// Return true if the loop can be software pipelined. The algorithm is
317 /// restricted to loops with a single basic block. Make sure that the
318 /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320 if (L.getNumBlocks() != 1) {
321 ORE->emit([&]() {
322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323 L.getStartLoc(), L.getHeader())
324 << "Not a single basic block: "
325 << ore::NV("NumBlocks", L.getNumBlocks());
326 });
327 return false;
328 }
329
330 if (disabledByPragma) {
331 ORE->emit([&]() {
332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333 L.getStartLoc(), L.getHeader())
334 << "Disabled by Pragma.";
335 });
336 return false;
337 }
338
339 // Check if the branch can't be understood because we can't do pipelining
340 // if that's the case.
341 LI.TBB = nullptr;
342 LI.FBB = nullptr;
343 LI.BrCond.clear();
344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346 NumFailBranch++;
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "The branch can't be understood";
351 });
352 return false;
353 }
354
355 LI.LoopInductionVar = nullptr;
356 LI.LoopCompare = nullptr;
357 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
358 if (!LI.LoopPipelinerInfo) {
359 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
360 NumFailLoop++;
361 ORE->emit([&]() {
362 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
363 L.getStartLoc(), L.getHeader())
364 << "The loop structure is not supported";
365 });
366 return false;
367 }
368
369 if (!L.getLoopPreheader()) {
370 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
371 NumFailPreheader++;
372 ORE->emit([&]() {
373 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
374 L.getStartLoc(), L.getHeader())
375 << "No loop preheader found";
376 });
377 return false;
378 }
379
380 // Remove any subregisters from inputs to phi nodes.
381 preprocessPhiNodes(*L.getHeader());
382 return true;
383 }
384
preprocessPhiNodes(MachineBasicBlock & B)385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
386 MachineRegisterInfo &MRI = MF->getRegInfo();
387 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
388
389 for (MachineInstr &PI : B.phis()) {
390 MachineOperand &DefOp = PI.getOperand(0);
391 assert(DefOp.getSubReg() == 0);
392 auto *RC = MRI.getRegClass(DefOp.getReg());
393
394 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
395 MachineOperand &RegOp = PI.getOperand(i);
396 if (RegOp.getSubReg() == 0)
397 continue;
398
399 // If the operand uses a subregister, replace it with a new register
400 // without subregisters, and generate a copy to the new register.
401 Register NewReg = MRI.createVirtualRegister(RC);
402 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
403 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
404 const DebugLoc &DL = PredB.findDebugLoc(At);
405 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
406 .addReg(RegOp.getReg(), getRegState(RegOp),
407 RegOp.getSubReg());
408 Slots.insertMachineInstrInMaps(*Copy);
409 RegOp.setReg(NewReg);
410 RegOp.setSubReg(0);
411 }
412 }
413 }
414
415 /// The SMS algorithm consists of the following main steps:
416 /// 1. Computation and analysis of the dependence graph.
417 /// 2. Ordering of the nodes (instructions).
418 /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
420 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
421
422 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
423 II_setByPragma, LI.LoopPipelinerInfo.get());
424
425 MachineBasicBlock *MBB = L.getHeader();
426 // The kernel should not include any terminator instructions. These
427 // will be added back later.
428 SMS.startBlock(MBB);
429
430 // Compute the number of 'real' instructions in the basic block by
431 // ignoring terminators.
432 unsigned size = MBB->size();
433 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
434 E = MBB->instr_end();
435 I != E; ++I, --size)
436 ;
437
438 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
439 SMS.schedule();
440 SMS.exitRegion();
441
442 SMS.finishBlock();
443 return SMS.hasNewSchedule();
444 }
445
getAnalysisUsage(AnalysisUsage & AU) const446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
447 AU.addRequired<AAResultsWrapperPass>();
448 AU.addPreserved<AAResultsWrapperPass>();
449 AU.addRequired<MachineLoopInfo>();
450 AU.addRequired<MachineDominatorTree>();
451 AU.addRequired<LiveIntervals>();
452 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
453 MachineFunctionPass::getAnalysisUsage(AU);
454 }
455
setMII(unsigned ResMII,unsigned RecMII)456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
457 if (II_setByPragma > 0)
458 MII = II_setByPragma;
459 else
460 MII = std::max(ResMII, RecMII);
461 }
462
setMAX_II()463 void SwingSchedulerDAG::setMAX_II() {
464 if (II_setByPragma > 0)
465 MAX_II = II_setByPragma;
466 else
467 MAX_II = MII + 10;
468 }
469
470 /// We override the schedule function in ScheduleDAGInstrs to implement the
471 /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()472 void SwingSchedulerDAG::schedule() {
473 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
474 buildSchedGraph(AA);
475 addLoopCarriedDependences(AA);
476 updatePhiDependences();
477 Topo.InitDAGTopologicalSorting();
478 changeDependences();
479 postprocessDAG();
480 LLVM_DEBUG(dump());
481
482 NodeSetType NodeSets;
483 findCircuits(NodeSets);
484 NodeSetType Circuits = NodeSets;
485
486 // Calculate the MII.
487 unsigned ResMII = calculateResMII();
488 unsigned RecMII = calculateRecMII(NodeSets);
489
490 fuseRecs(NodeSets);
491
492 // This flag is used for testing and can cause correctness problems.
493 if (SwpIgnoreRecMII)
494 RecMII = 0;
495
496 setMII(ResMII, RecMII);
497 setMAX_II();
498
499 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
500 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
501
502 // Can't schedule a loop without a valid MII.
503 if (MII == 0) {
504 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
505 NumFailZeroMII++;
506 Pass.ORE->emit([&]() {
507 return MachineOptimizationRemarkAnalysis(
508 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
509 << "Invalid Minimal Initiation Interval: 0";
510 });
511 return;
512 }
513
514 // Don't pipeline large loops.
515 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
516 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
517 << ", we don't pipeline large loops\n");
518 NumFailLargeMaxMII++;
519 Pass.ORE->emit([&]() {
520 return MachineOptimizationRemarkAnalysis(
521 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
522 << "Minimal Initiation Interval too large: "
523 << ore::NV("MII", (int)MII) << " > "
524 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
525 << "Refer to -pipeliner-max-mii.";
526 });
527 return;
528 }
529
530 computeNodeFunctions(NodeSets);
531
532 registerPressureFilter(NodeSets);
533
534 colocateNodeSets(NodeSets);
535
536 checkNodeSets(NodeSets);
537
538 LLVM_DEBUG({
539 for (auto &I : NodeSets) {
540 dbgs() << " Rec NodeSet ";
541 I.dump();
542 }
543 });
544
545 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
546
547 groupRemainingNodes(NodeSets);
548
549 removeDuplicateNodes(NodeSets);
550
551 LLVM_DEBUG({
552 for (auto &I : NodeSets) {
553 dbgs() << " NodeSet ";
554 I.dump();
555 }
556 });
557
558 computeNodeOrder(NodeSets);
559
560 // check for node order issues
561 checkValidNodeOrder(Circuits);
562
563 SMSchedule Schedule(Pass.MF);
564 Scheduled = schedulePipeline(Schedule);
565
566 if (!Scheduled){
567 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
568 NumFailNoSchedule++;
569 Pass.ORE->emit([&]() {
570 return MachineOptimizationRemarkAnalysis(
571 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
572 << "Unable to find schedule";
573 });
574 return;
575 }
576
577 unsigned numStages = Schedule.getMaxStageCount();
578 // No need to generate pipeline if there are no overlapped iterations.
579 if (numStages == 0) {
580 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
581 NumFailZeroStage++;
582 Pass.ORE->emit([&]() {
583 return MachineOptimizationRemarkAnalysis(
584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
585 << "No need to pipeline - no overlapped iterations in schedule.";
586 });
587 return;
588 }
589 // Check that the maximum stage count is less than user-defined limit.
590 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
591 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
592 << " : too many stages, abort\n");
593 NumFailLargeMaxStage++;
594 Pass.ORE->emit([&]() {
595 return MachineOptimizationRemarkAnalysis(
596 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
597 << "Too many stages in schedule: "
598 << ore::NV("numStages", (int)numStages) << " > "
599 << ore::NV("SwpMaxStages", SwpMaxStages)
600 << ". Refer to -pipeliner-max-stages.";
601 });
602 return;
603 }
604
605 Pass.ORE->emit([&]() {
606 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
607 Loop.getHeader())
608 << "Pipelined succesfully!";
609 });
610
611 // Generate the schedule as a ModuloSchedule.
612 DenseMap<MachineInstr *, int> Cycles, Stages;
613 std::vector<MachineInstr *> OrderedInsts;
614 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
615 ++Cycle) {
616 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
617 OrderedInsts.push_back(SU->getInstr());
618 Cycles[SU->getInstr()] = Cycle;
619 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
620 }
621 }
622 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
623 for (auto &KV : NewMIs) {
624 Cycles[KV.first] = Cycles[KV.second];
625 Stages[KV.first] = Stages[KV.second];
626 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
627 }
628
629 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
630 std::move(Stages));
631 if (EmitTestAnnotations) {
632 assert(NewInstrChanges.empty() &&
633 "Cannot serialize a schedule with InstrChanges!");
634 ModuloScheduleTestAnnotater MSTI(MF, MS);
635 MSTI.annotate();
636 return;
637 }
638 // The experimental code generator can't work if there are InstChanges.
639 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
640 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
641 MSE.expand();
642 } else {
643 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
644 MSE.expand();
645 MSE.cleanup();
646 }
647 ++NumPipelined;
648 }
649
650 /// Clean up after the software pipeliner runs.
finishBlock()651 void SwingSchedulerDAG::finishBlock() {
652 for (auto &KV : NewMIs)
653 MF.deleteMachineInstr(KV.second);
654 NewMIs.clear();
655
656 // Call the superclass.
657 ScheduleDAGInstrs::finishBlock();
658 }
659
660 /// Return the register values for the operands of a Phi instruction.
661 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
663 unsigned &InitVal, unsigned &LoopVal) {
664 assert(Phi.isPHI() && "Expecting a Phi.");
665
666 InitVal = 0;
667 LoopVal = 0;
668 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
669 if (Phi.getOperand(i + 1).getMBB() != Loop)
670 InitVal = Phi.getOperand(i).getReg();
671 else
672 LoopVal = Phi.getOperand(i).getReg();
673
674 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
675 }
676
677 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
679 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
680 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
681 return Phi.getOperand(i).getReg();
682 return 0;
683 }
684
685 /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
687 SmallPtrSet<SUnit *, 8> Visited;
688 SmallVector<SUnit *, 8> Worklist;
689 Worklist.push_back(SUa);
690 while (!Worklist.empty()) {
691 const SUnit *SU = Worklist.pop_back_val();
692 for (const auto &SI : SU->Succs) {
693 SUnit *SuccSU = SI.getSUnit();
694 if (SI.getKind() == SDep::Order) {
695 if (Visited.count(SuccSU))
696 continue;
697 if (SuccSU == SUb)
698 return true;
699 Worklist.push_back(SuccSU);
700 Visited.insert(SuccSU);
701 }
702 }
703 }
704 return false;
705 }
706
707 /// Return true if the instruction causes a chain between memory
708 /// references before and after it.
isDependenceBarrier(MachineInstr & MI)709 static bool isDependenceBarrier(MachineInstr &MI) {
710 return MI.isCall() || MI.mayRaiseFPException() ||
711 MI.hasUnmodeledSideEffects() ||
712 (MI.hasOrderedMemoryRef() &&
713 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
714 }
715
716 /// Return the underlying objects for the memory references of an instruction.
717 /// This function calls the code in ValueTracking, but first checks that the
718 /// instruction has a memory operand.
getUnderlyingObjects(const MachineInstr * MI,SmallVectorImpl<const Value * > & Objs)719 static void getUnderlyingObjects(const MachineInstr *MI,
720 SmallVectorImpl<const Value *> &Objs) {
721 if (!MI->hasOneMemOperand())
722 return;
723 MachineMemOperand *MM = *MI->memoperands_begin();
724 if (!MM->getValue())
725 return;
726 getUnderlyingObjects(MM->getValue(), Objs);
727 for (const Value *V : Objs) {
728 if (!isIdentifiedObject(V)) {
729 Objs.clear();
730 return;
731 }
732 Objs.push_back(V);
733 }
734 }
735
736 /// Add a chain edge between a load and store if the store can be an
737 /// alias of the load on a subsequent iteration, i.e., a loop carried
738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
739 /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
741 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
742 Value *UnknownValue =
743 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
744 for (auto &SU : SUnits) {
745 MachineInstr &MI = *SU.getInstr();
746 if (isDependenceBarrier(MI))
747 PendingLoads.clear();
748 else if (MI.mayLoad()) {
749 SmallVector<const Value *, 4> Objs;
750 ::getUnderlyingObjects(&MI, Objs);
751 if (Objs.empty())
752 Objs.push_back(UnknownValue);
753 for (const auto *V : Objs) {
754 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
755 SUs.push_back(&SU);
756 }
757 } else if (MI.mayStore()) {
758 SmallVector<const Value *, 4> Objs;
759 ::getUnderlyingObjects(&MI, Objs);
760 if (Objs.empty())
761 Objs.push_back(UnknownValue);
762 for (const auto *V : Objs) {
763 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
764 PendingLoads.find(V);
765 if (I == PendingLoads.end())
766 continue;
767 for (auto *Load : I->second) {
768 if (isSuccOrder(Load, &SU))
769 continue;
770 MachineInstr &LdMI = *Load->getInstr();
771 // First, perform the cheaper check that compares the base register.
772 // If they are the same and the load offset is less than the store
773 // offset, then mark the dependence as loop carried potentially.
774 const MachineOperand *BaseOp1, *BaseOp2;
775 int64_t Offset1, Offset2;
776 bool Offset1IsScalable, Offset2IsScalable;
777 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
778 Offset1IsScalable, TRI) &&
779 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
780 Offset2IsScalable, TRI)) {
781 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
782 Offset1IsScalable == Offset2IsScalable &&
783 (int)Offset1 < (int)Offset2) {
784 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
785 "What happened to the chain edge?");
786 SDep Dep(Load, SDep::Barrier);
787 Dep.setLatency(1);
788 SU.addPred(Dep);
789 continue;
790 }
791 }
792 // Second, the more expensive check that uses alias analysis on the
793 // base registers. If they alias, and the load offset is less than
794 // the store offset, the mark the dependence as loop carried.
795 if (!AA) {
796 SDep Dep(Load, SDep::Barrier);
797 Dep.setLatency(1);
798 SU.addPred(Dep);
799 continue;
800 }
801 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
802 MachineMemOperand *MMO2 = *MI.memoperands_begin();
803 if (!MMO1->getValue() || !MMO2->getValue()) {
804 SDep Dep(Load, SDep::Barrier);
805 Dep.setLatency(1);
806 SU.addPred(Dep);
807 continue;
808 }
809 if (MMO1->getValue() == MMO2->getValue() &&
810 MMO1->getOffset() <= MMO2->getOffset()) {
811 SDep Dep(Load, SDep::Barrier);
812 Dep.setLatency(1);
813 SU.addPred(Dep);
814 continue;
815 }
816 if (!AA->isNoAlias(
817 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
818 MemoryLocation::getAfter(MMO2->getValue(),
819 MMO2->getAAInfo()))) {
820 SDep Dep(Load, SDep::Barrier);
821 Dep.setLatency(1);
822 SU.addPred(Dep);
823 }
824 }
825 }
826 }
827 }
828 }
829
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
updatePhiDependences()836 void SwingSchedulerDAG::updatePhiDependences() {
837 SmallVector<SDep, 4> RemoveDeps;
838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839
840 // Iterate over each DAG node.
841 for (SUnit &I : SUnits) {
842 RemoveDeps.clear();
843 // Set to true if the instruction has an operand defined by a Phi.
844 unsigned HasPhiUse = 0;
845 unsigned HasPhiDef = 0;
846 MachineInstr *MI = I.getInstr();
847 // Iterate over each operand, and we process the definitions.
848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849 MOE = MI->operands_end();
850 MOI != MOE; ++MOI) {
851 if (!MOI->isReg())
852 continue;
853 Register Reg = MOI->getReg();
854 if (MOI->isDef()) {
855 // If the register is used by a Phi, then create an anti dependence.
856 for (MachineRegisterInfo::use_instr_iterator
857 UI = MRI.use_instr_begin(Reg),
858 UE = MRI.use_instr_end();
859 UI != UE; ++UI) {
860 MachineInstr *UseMI = &*UI;
861 SUnit *SU = getSUnit(UseMI);
862 if (SU != nullptr && UseMI->isPHI()) {
863 if (!MI->isPHI()) {
864 SDep Dep(SU, SDep::Anti, Reg);
865 Dep.setLatency(1);
866 I.addPred(Dep);
867 } else {
868 HasPhiDef = Reg;
869 // Add a chain edge to a dependent Phi that isn't an existing
870 // predecessor.
871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872 I.addPred(SDep(SU, SDep::Barrier));
873 }
874 }
875 }
876 } else if (MOI->isUse()) {
877 // If the register is defined by a Phi, then create a true dependence.
878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879 if (DefMI == nullptr)
880 continue;
881 SUnit *SU = getSUnit(DefMI);
882 if (SU != nullptr && DefMI->isPHI()) {
883 if (!MI->isPHI()) {
884 SDep Dep(SU, SDep::Data, Reg);
885 Dep.setLatency(0);
886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887 I.addPred(Dep);
888 } else {
889 HasPhiUse = Reg;
890 // Add a chain edge to a dependent Phi that isn't an existing
891 // predecessor.
892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893 I.addPred(SDep(SU, SDep::Barrier));
894 }
895 }
896 }
897 }
898 // Remove order dependences from an unrelated Phi.
899 if (!SwpPruneDeps)
900 continue;
901 for (auto &PI : I.Preds) {
902 MachineInstr *PMI = PI.getSUnit()->getInstr();
903 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904 if (I.getInstr()->isPHI()) {
905 if (PMI->getOperand(0).getReg() == HasPhiUse)
906 continue;
907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908 continue;
909 }
910 RemoveDeps.push_back(PI);
911 }
912 }
913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914 I.removePred(RemoveDeps[i]);
915 }
916 }
917
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
changeDependences()920 void SwingSchedulerDAG::changeDependences() {
921 // See if an instruction can use a value from the previous iteration.
922 // If so, we update the base and offset of the instruction and change
923 // the dependences.
924 for (SUnit &I : SUnits) {
925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926 int64_t NewOffset = 0;
927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928 NewOffset))
929 continue;
930
931 // Get the MI and SUnit for the instruction that defines the original base.
932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934 if (!DefMI)
935 continue;
936 SUnit *DefSU = getSUnit(DefMI);
937 if (!DefSU)
938 continue;
939 // Get the MI and SUnit for the instruction that defins the new base.
940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941 if (!LastMI)
942 continue;
943 SUnit *LastSU = getSUnit(LastMI);
944 if (!LastSU)
945 continue;
946
947 if (Topo.IsReachable(&I, LastSU))
948 continue;
949
950 // Remove the dependence. The value now depends on a prior iteration.
951 SmallVector<SDep, 4> Deps;
952 for (const SDep &P : I.Preds)
953 if (P.getSUnit() == DefSU)
954 Deps.push_back(P);
955 for (int i = 0, e = Deps.size(); i != e; i++) {
956 Topo.RemovePred(&I, Deps[i].getSUnit());
957 I.removePred(Deps[i]);
958 }
959 // Remove the chain dependence between the instructions.
960 Deps.clear();
961 for (auto &P : LastSU->Preds)
962 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
963 Deps.push_back(P);
964 for (int i = 0, e = Deps.size(); i != e; i++) {
965 Topo.RemovePred(LastSU, Deps[i].getSUnit());
966 LastSU->removePred(Deps[i]);
967 }
968
969 // Add a dependence between the new instruction and the instruction
970 // that defines the new base.
971 SDep Dep(&I, SDep::Anti, NewBase);
972 Topo.AddPred(LastSU, &I);
973 LastSU->addPred(Dep);
974
975 // Remember the base and offset information so that we can update the
976 // instruction during code generation.
977 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
978 }
979 }
980
981 namespace {
982
983 // FuncUnitSorter - Comparison operator used to sort instructions by
984 // the number of functional unit choices.
985 struct FuncUnitSorter {
986 const InstrItineraryData *InstrItins;
987 const MCSubtargetInfo *STI;
988 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
989
FuncUnitSorter__anon58791d410d11::FuncUnitSorter990 FuncUnitSorter(const TargetSubtargetInfo &TSI)
991 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
992
993 // Compute the number of functional unit alternatives needed
994 // at each stage, and take the minimum value. We prioritize the
995 // instructions by the least number of choices first.
minFuncUnits__anon58791d410d11::FuncUnitSorter996 unsigned minFuncUnits(const MachineInstr *Inst,
997 InstrStage::FuncUnits &F) const {
998 unsigned SchedClass = Inst->getDesc().getSchedClass();
999 unsigned min = UINT_MAX;
1000 if (InstrItins && !InstrItins->isEmpty()) {
1001 for (const InstrStage &IS :
1002 make_range(InstrItins->beginStage(SchedClass),
1003 InstrItins->endStage(SchedClass))) {
1004 InstrStage::FuncUnits funcUnits = IS.getUnits();
1005 unsigned numAlternatives = countPopulation(funcUnits);
1006 if (numAlternatives < min) {
1007 min = numAlternatives;
1008 F = funcUnits;
1009 }
1010 }
1011 return min;
1012 }
1013 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1014 const MCSchedClassDesc *SCDesc =
1015 STI->getSchedModel().getSchedClassDesc(SchedClass);
1016 if (!SCDesc->isValid())
1017 // No valid Schedule Class Desc for schedClass, should be
1018 // Pseudo/PostRAPseudo
1019 return min;
1020
1021 for (const MCWriteProcResEntry &PRE :
1022 make_range(STI->getWriteProcResBegin(SCDesc),
1023 STI->getWriteProcResEnd(SCDesc))) {
1024 if (!PRE.Cycles)
1025 continue;
1026 const MCProcResourceDesc *ProcResource =
1027 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1028 unsigned NumUnits = ProcResource->NumUnits;
1029 if (NumUnits < min) {
1030 min = NumUnits;
1031 F = PRE.ProcResourceIdx;
1032 }
1033 }
1034 return min;
1035 }
1036 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1037 }
1038
1039 // Compute the critical resources needed by the instruction. This
1040 // function records the functional units needed by instructions that
1041 // must use only one functional unit. We use this as a tie breaker
1042 // for computing the resource MII. The instrutions that require
1043 // the same, highly used, functional unit have high priority.
calcCriticalResources__anon58791d410d11::FuncUnitSorter1044 void calcCriticalResources(MachineInstr &MI) {
1045 unsigned SchedClass = MI.getDesc().getSchedClass();
1046 if (InstrItins && !InstrItins->isEmpty()) {
1047 for (const InstrStage &IS :
1048 make_range(InstrItins->beginStage(SchedClass),
1049 InstrItins->endStage(SchedClass))) {
1050 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1051 if (countPopulation(FuncUnits) == 1)
1052 Resources[FuncUnits]++;
1053 }
1054 return;
1055 }
1056 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1057 const MCSchedClassDesc *SCDesc =
1058 STI->getSchedModel().getSchedClassDesc(SchedClass);
1059 if (!SCDesc->isValid())
1060 // No valid Schedule Class Desc for schedClass, should be
1061 // Pseudo/PostRAPseudo
1062 return;
1063
1064 for (const MCWriteProcResEntry &PRE :
1065 make_range(STI->getWriteProcResBegin(SCDesc),
1066 STI->getWriteProcResEnd(SCDesc))) {
1067 if (!PRE.Cycles)
1068 continue;
1069 Resources[PRE.ProcResourceIdx]++;
1070 }
1071 return;
1072 }
1073 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1074 }
1075
1076 /// Return true if IS1 has less priority than IS2.
operator ()__anon58791d410d11::FuncUnitSorter1077 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1078 InstrStage::FuncUnits F1 = 0, F2 = 0;
1079 unsigned MFUs1 = minFuncUnits(IS1, F1);
1080 unsigned MFUs2 = minFuncUnits(IS2, F2);
1081 if (MFUs1 == MFUs2)
1082 return Resources.lookup(F1) < Resources.lookup(F2);
1083 return MFUs1 > MFUs2;
1084 }
1085 };
1086
1087 } // end anonymous namespace
1088
1089 /// Calculate the resource constrained minimum initiation interval for the
1090 /// specified loop. We use the DFA to model the resources needed for
1091 /// each instruction, and we ignore dependences. A different DFA is created
1092 /// for each cycle that is required. When adding a new instruction, we attempt
1093 /// to add it to each existing DFA, until a legal space is found. If the
1094 /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()1095 unsigned SwingSchedulerDAG::calculateResMII() {
1096
1097 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1098 SmallVector<ResourceManager*, 8> Resources;
1099 MachineBasicBlock *MBB = Loop.getHeader();
1100 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1101
1102 // Sort the instructions by the number of available choices for scheduling,
1103 // least to most. Use the number of critical resources as the tie breaker.
1104 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1105 for (MachineInstr &MI :
1106 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1107 FUS.calcCriticalResources(MI);
1108 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1109 FuncUnitOrder(FUS);
1110
1111 for (MachineInstr &MI :
1112 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1113 FuncUnitOrder.push(&MI);
1114
1115 while (!FuncUnitOrder.empty()) {
1116 MachineInstr *MI = FuncUnitOrder.top();
1117 FuncUnitOrder.pop();
1118 if (TII->isZeroCost(MI->getOpcode()))
1119 continue;
1120 // Attempt to reserve the instruction in an existing DFA. At least one
1121 // DFA is needed for each cycle.
1122 unsigned NumCycles = getSUnit(MI)->Latency;
1123 unsigned ReservedCycles = 0;
1124 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1125 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1126 LLVM_DEBUG({
1127 dbgs() << "Trying to reserve resource for " << NumCycles
1128 << " cycles for \n";
1129 MI->dump();
1130 });
1131 for (unsigned C = 0; C < NumCycles; ++C)
1132 while (RI != RE) {
1133 if ((*RI)->canReserveResources(*MI)) {
1134 (*RI)->reserveResources(*MI);
1135 ++ReservedCycles;
1136 break;
1137 }
1138 RI++;
1139 }
1140 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1141 << ", NumCycles:" << NumCycles << "\n");
1142 // Add new DFAs, if needed, to reserve resources.
1143 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1144 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1145 << "NewResource created to reserve resources"
1146 << "\n");
1147 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1148 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1149 NewResource->reserveResources(*MI);
1150 Resources.push_back(NewResource);
1151 }
1152 }
1153 int Resmii = Resources.size();
1154 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1155 // Delete the memory for each of the DFAs that were created earlier.
1156 for (ResourceManager *RI : Resources) {
1157 ResourceManager *D = RI;
1158 delete D;
1159 }
1160 Resources.clear();
1161 return Resmii;
1162 }
1163
1164 /// Calculate the recurrence-constrainted minimum initiation interval.
1165 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1166 /// for each circuit. The II needs to satisfy the inequality
1167 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1168 /// II that satisfies the inequality, and the RecMII is the maximum
1169 /// of those values.
calculateRecMII(NodeSetType & NodeSets)1170 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1171 unsigned RecMII = 0;
1172
1173 for (NodeSet &Nodes : NodeSets) {
1174 if (Nodes.empty())
1175 continue;
1176
1177 unsigned Delay = Nodes.getLatency();
1178 unsigned Distance = 1;
1179
1180 // ii = ceil(delay / distance)
1181 unsigned CurMII = (Delay + Distance - 1) / Distance;
1182 Nodes.setRecMII(CurMII);
1183 if (CurMII > RecMII)
1184 RecMII = CurMII;
1185 }
1186
1187 return RecMII;
1188 }
1189
1190 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1191 /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)1192 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1193 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1194 for (SUnit &SU : SUnits) {
1195 for (SDep &Pred : SU.Preds)
1196 if (Pred.getKind() == SDep::Anti)
1197 DepsAdded.push_back(std::make_pair(&SU, Pred));
1198 }
1199 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1200 // Remove this anti dependency and add one in the reverse direction.
1201 SUnit *SU = P.first;
1202 SDep &D = P.second;
1203 SUnit *TargetSU = D.getSUnit();
1204 unsigned Reg = D.getReg();
1205 unsigned Lat = D.getLatency();
1206 SU->removePred(D);
1207 SDep Dep(SU, SDep::Anti, Reg);
1208 Dep.setLatency(Lat);
1209 TargetSU->addPred(Dep);
1210 }
1211 }
1212
1213 /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)1214 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1215 SwingSchedulerDAG *DAG) {
1216 BitVector Added(SUnits.size());
1217 DenseMap<int, int> OutputDeps;
1218 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1219 Added.reset();
1220 // Add any successor to the adjacency matrix and exclude duplicates.
1221 for (auto &SI : SUnits[i].Succs) {
1222 // Only create a back-edge on the first and last nodes of a dependence
1223 // chain. This records any chains and adds them later.
1224 if (SI.getKind() == SDep::Output) {
1225 int N = SI.getSUnit()->NodeNum;
1226 int BackEdge = i;
1227 auto Dep = OutputDeps.find(BackEdge);
1228 if (Dep != OutputDeps.end()) {
1229 BackEdge = Dep->second;
1230 OutputDeps.erase(Dep);
1231 }
1232 OutputDeps[N] = BackEdge;
1233 }
1234 // Do not process a boundary node, an artificial node.
1235 // A back-edge is processed only if it goes to a Phi.
1236 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1237 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1238 continue;
1239 int N = SI.getSUnit()->NodeNum;
1240 if (!Added.test(N)) {
1241 AdjK[i].push_back(N);
1242 Added.set(N);
1243 }
1244 }
1245 // A chain edge between a store and a load is treated as a back-edge in the
1246 // adjacency matrix.
1247 for (auto &PI : SUnits[i].Preds) {
1248 if (!SUnits[i].getInstr()->mayStore() ||
1249 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1250 continue;
1251 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1252 int N = PI.getSUnit()->NodeNum;
1253 if (!Added.test(N)) {
1254 AdjK[i].push_back(N);
1255 Added.set(N);
1256 }
1257 }
1258 }
1259 }
1260 // Add back-edges in the adjacency matrix for the output dependences.
1261 for (auto &OD : OutputDeps)
1262 if (!Added.test(OD.second)) {
1263 AdjK[OD.first].push_back(OD.second);
1264 Added.set(OD.second);
1265 }
1266 }
1267
1268 /// Identify an elementary circuit in the dependence graph starting at the
1269 /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)1270 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1271 bool HasBackedge) {
1272 SUnit *SV = &SUnits[V];
1273 bool F = false;
1274 Stack.insert(SV);
1275 Blocked.set(V);
1276
1277 for (auto W : AdjK[V]) {
1278 if (NumPaths > MaxPaths)
1279 break;
1280 if (W < S)
1281 continue;
1282 if (W == S) {
1283 if (!HasBackedge)
1284 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1285 F = true;
1286 ++NumPaths;
1287 break;
1288 } else if (!Blocked.test(W)) {
1289 if (circuit(W, S, NodeSets,
1290 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1291 F = true;
1292 }
1293 }
1294
1295 if (F)
1296 unblock(V);
1297 else {
1298 for (auto W : AdjK[V]) {
1299 if (W < S)
1300 continue;
1301 B[W].insert(SV);
1302 }
1303 }
1304 Stack.pop_back();
1305 return F;
1306 }
1307
1308 /// Unblock a node in the circuit finding algorithm.
unblock(int U)1309 void SwingSchedulerDAG::Circuits::unblock(int U) {
1310 Blocked.reset(U);
1311 SmallPtrSet<SUnit *, 4> &BU = B[U];
1312 while (!BU.empty()) {
1313 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1314 assert(SI != BU.end() && "Invalid B set.");
1315 SUnit *W = *SI;
1316 BU.erase(W);
1317 if (Blocked.test(W->NodeNum))
1318 unblock(W->NodeNum);
1319 }
1320 }
1321
1322 /// Identify all the elementary circuits in the dependence graph using
1323 /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1324 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1325 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1326 // but we do this to find the circuits, and then change them back.
1327 swapAntiDependences(SUnits);
1328
1329 Circuits Cir(SUnits, Topo);
1330 // Create the adjacency structure.
1331 Cir.createAdjacencyStructure(this);
1332 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1333 Cir.reset();
1334 Cir.circuit(i, i, NodeSets);
1335 }
1336
1337 // Change the dependences back so that we've created a DAG again.
1338 swapAntiDependences(SUnits);
1339 }
1340
1341 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1342 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1343 // additional copies that are needed across iterations. An artificial dependence
1344 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1345
1346 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1347 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1348 // PHI-------True-Dep------> USEOfPhi
1349
1350 // The mutation creates
1351 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1352
1353 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1354 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1355 // late to avoid additional copies across iterations. The possible scheduling
1356 // order would be
1357 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1358
apply(ScheduleDAGInstrs * DAG)1359 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1360 for (SUnit &SU : DAG->SUnits) {
1361 // Find the COPY/REG_SEQUENCE instruction.
1362 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1363 continue;
1364
1365 // Record the loop carried PHIs.
1366 SmallVector<SUnit *, 4> PHISUs;
1367 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1368 SmallVector<SUnit *, 4> SrcSUs;
1369
1370 for (auto &Dep : SU.Preds) {
1371 SUnit *TmpSU = Dep.getSUnit();
1372 MachineInstr *TmpMI = TmpSU->getInstr();
1373 SDep::Kind DepKind = Dep.getKind();
1374 // Save the loop carried PHI.
1375 if (DepKind == SDep::Anti && TmpMI->isPHI())
1376 PHISUs.push_back(TmpSU);
1377 // Save the source of COPY/REG_SEQUENCE.
1378 // If the source has no pre-decessors, we will end up creating cycles.
1379 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1380 SrcSUs.push_back(TmpSU);
1381 }
1382
1383 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1384 continue;
1385
1386 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1387 // SUnit to the container.
1388 SmallVector<SUnit *, 8> UseSUs;
1389 // Do not use iterator based loop here as we are updating the container.
1390 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1391 for (auto &Dep : PHISUs[Index]->Succs) {
1392 if (Dep.getKind() != SDep::Data)
1393 continue;
1394
1395 SUnit *TmpSU = Dep.getSUnit();
1396 MachineInstr *TmpMI = TmpSU->getInstr();
1397 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1398 PHISUs.push_back(TmpSU);
1399 continue;
1400 }
1401 UseSUs.push_back(TmpSU);
1402 }
1403 }
1404
1405 if (UseSUs.size() == 0)
1406 continue;
1407
1408 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1409 // Add the artificial dependencies if it does not form a cycle.
1410 for (auto *I : UseSUs) {
1411 for (auto *Src : SrcSUs) {
1412 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1413 Src->addPred(SDep(I, SDep::Artificial));
1414 SDAG->Topo.AddPred(Src, I);
1415 }
1416 }
1417 }
1418 }
1419 }
1420
1421 /// Return true for DAG nodes that we ignore when computing the cost functions.
1422 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1423 /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1424 static bool ignoreDependence(const SDep &D, bool isPred) {
1425 if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1426 return true;
1427 return D.getKind() == SDep::Anti && isPred;
1428 }
1429
1430 /// Compute several functions need to order the nodes for scheduling.
1431 /// ASAP - Earliest time to schedule a node.
1432 /// ALAP - Latest time to schedule a node.
1433 /// MOV - Mobility function, difference between ALAP and ASAP.
1434 /// D - Depth of each node.
1435 /// H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1436 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1437 ScheduleInfo.resize(SUnits.size());
1438
1439 LLVM_DEBUG({
1440 for (int I : Topo) {
1441 const SUnit &SU = SUnits[I];
1442 dumpNode(SU);
1443 }
1444 });
1445
1446 int maxASAP = 0;
1447 // Compute ASAP and ZeroLatencyDepth.
1448 for (int I : Topo) {
1449 int asap = 0;
1450 int zeroLatencyDepth = 0;
1451 SUnit *SU = &SUnits[I];
1452 for (const SDep &P : SU->Preds) {
1453 SUnit *pred = P.getSUnit();
1454 if (P.getLatency() == 0)
1455 zeroLatencyDepth =
1456 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1457 if (ignoreDependence(P, true))
1458 continue;
1459 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1460 getDistance(pred, SU, P) * MII));
1461 }
1462 maxASAP = std::max(maxASAP, asap);
1463 ScheduleInfo[I].ASAP = asap;
1464 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1465 }
1466
1467 // Compute ALAP, ZeroLatencyHeight, and MOV.
1468 for (int I : llvm::reverse(Topo)) {
1469 int alap = maxASAP;
1470 int zeroLatencyHeight = 0;
1471 SUnit *SU = &SUnits[I];
1472 for (const SDep &S : SU->Succs) {
1473 SUnit *succ = S.getSUnit();
1474 if (succ->isBoundaryNode())
1475 continue;
1476 if (S.getLatency() == 0)
1477 zeroLatencyHeight =
1478 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1479 if (ignoreDependence(S, true))
1480 continue;
1481 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1482 getDistance(SU, succ, S) * MII));
1483 }
1484
1485 ScheduleInfo[I].ALAP = alap;
1486 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1487 }
1488
1489 // After computing the node functions, compute the summary for each node set.
1490 for (NodeSet &I : NodeSets)
1491 I.computeNodeSetInfo(this);
1492
1493 LLVM_DEBUG({
1494 for (unsigned i = 0; i < SUnits.size(); i++) {
1495 dbgs() << "\tNode " << i << ":\n";
1496 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1497 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1498 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1499 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1500 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1501 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1502 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1503 }
1504 });
1505 }
1506
1507 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1508 /// as the predecessors of the elements of NodeOrder that are not also in
1509 /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1510 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1511 SmallSetVector<SUnit *, 8> &Preds,
1512 const NodeSet *S = nullptr) {
1513 Preds.clear();
1514 for (const SUnit *SU : NodeOrder) {
1515 for (const SDep &Pred : SU->Preds) {
1516 if (S && S->count(Pred.getSUnit()) == 0)
1517 continue;
1518 if (ignoreDependence(Pred, true))
1519 continue;
1520 if (NodeOrder.count(Pred.getSUnit()) == 0)
1521 Preds.insert(Pred.getSUnit());
1522 }
1523 // Back-edges are predecessors with an anti-dependence.
1524 for (const SDep &Succ : SU->Succs) {
1525 if (Succ.getKind() != SDep::Anti)
1526 continue;
1527 if (S && S->count(Succ.getSUnit()) == 0)
1528 continue;
1529 if (NodeOrder.count(Succ.getSUnit()) == 0)
1530 Preds.insert(Succ.getSUnit());
1531 }
1532 }
1533 return !Preds.empty();
1534 }
1535
1536 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1537 /// as the successors of the elements of NodeOrder that are not also in
1538 /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1539 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1540 SmallSetVector<SUnit *, 8> &Succs,
1541 const NodeSet *S = nullptr) {
1542 Succs.clear();
1543 for (const SUnit *SU : NodeOrder) {
1544 for (const SDep &Succ : SU->Succs) {
1545 if (S && S->count(Succ.getSUnit()) == 0)
1546 continue;
1547 if (ignoreDependence(Succ, false))
1548 continue;
1549 if (NodeOrder.count(Succ.getSUnit()) == 0)
1550 Succs.insert(Succ.getSUnit());
1551 }
1552 for (const SDep &Pred : SU->Preds) {
1553 if (Pred.getKind() != SDep::Anti)
1554 continue;
1555 if (S && S->count(Pred.getSUnit()) == 0)
1556 continue;
1557 if (NodeOrder.count(Pred.getSUnit()) == 0)
1558 Succs.insert(Pred.getSUnit());
1559 }
1560 }
1561 return !Succs.empty();
1562 }
1563
1564 /// Return true if there is a path from the specified node to any of the nodes
1565 /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1566 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1567 SetVector<SUnit *> &DestNodes,
1568 SetVector<SUnit *> &Exclude,
1569 SmallPtrSet<SUnit *, 8> &Visited) {
1570 if (Cur->isBoundaryNode())
1571 return false;
1572 if (Exclude.contains(Cur))
1573 return false;
1574 if (DestNodes.contains(Cur))
1575 return true;
1576 if (!Visited.insert(Cur).second)
1577 return Path.contains(Cur);
1578 bool FoundPath = false;
1579 for (auto &SI : Cur->Succs)
1580 if (!ignoreDependence(SI, false))
1581 FoundPath |=
1582 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1583 for (auto &PI : Cur->Preds)
1584 if (PI.getKind() == SDep::Anti)
1585 FoundPath |=
1586 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1587 if (FoundPath)
1588 Path.insert(Cur);
1589 return FoundPath;
1590 }
1591
1592 /// Compute the live-out registers for the instructions in a node-set.
1593 /// The live-out registers are those that are defined in the node-set,
1594 /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1595 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1596 NodeSet &NS) {
1597 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1598 MachineRegisterInfo &MRI = MF.getRegInfo();
1599 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1600 SmallSet<unsigned, 4> Uses;
1601 for (SUnit *SU : NS) {
1602 const MachineInstr *MI = SU->getInstr();
1603 if (MI->isPHI())
1604 continue;
1605 for (const MachineOperand &MO : MI->operands())
1606 if (MO.isReg() && MO.isUse()) {
1607 Register Reg = MO.getReg();
1608 if (Register::isVirtualRegister(Reg))
1609 Uses.insert(Reg);
1610 else if (MRI.isAllocatable(Reg))
1611 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1612 ++Units)
1613 Uses.insert(*Units);
1614 }
1615 }
1616 for (SUnit *SU : NS)
1617 for (const MachineOperand &MO : SU->getInstr()->operands())
1618 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1619 Register Reg = MO.getReg();
1620 if (Register::isVirtualRegister(Reg)) {
1621 if (!Uses.count(Reg))
1622 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1623 LaneBitmask::getNone()));
1624 } else if (MRI.isAllocatable(Reg)) {
1625 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1626 ++Units)
1627 if (!Uses.count(*Units))
1628 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1629 LaneBitmask::getNone()));
1630 }
1631 }
1632 RPTracker.addLiveRegs(LiveOutRegs);
1633 }
1634
1635 /// A heuristic to filter nodes in recurrent node-sets if the register
1636 /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1637 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1638 for (auto &NS : NodeSets) {
1639 // Skip small node-sets since they won't cause register pressure problems.
1640 if (NS.size() <= 2)
1641 continue;
1642 IntervalPressure RecRegPressure;
1643 RegPressureTracker RecRPTracker(RecRegPressure);
1644 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1645 computeLiveOuts(MF, RecRPTracker, NS);
1646 RecRPTracker.closeBottom();
1647
1648 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1649 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1650 return A->NodeNum > B->NodeNum;
1651 });
1652
1653 for (auto &SU : SUnits) {
1654 // Since we're computing the register pressure for a subset of the
1655 // instructions in a block, we need to set the tracker for each
1656 // instruction in the node-set. The tracker is set to the instruction
1657 // just after the one we're interested in.
1658 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1659 RecRPTracker.setPos(std::next(CurInstI));
1660
1661 RegPressureDelta RPDelta;
1662 ArrayRef<PressureChange> CriticalPSets;
1663 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1664 CriticalPSets,
1665 RecRegPressure.MaxSetPressure);
1666 if (RPDelta.Excess.isValid()) {
1667 LLVM_DEBUG(
1668 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1669 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1670 << ":" << RPDelta.Excess.getUnitInc() << "\n");
1671 NS.setExceedPressure(SU);
1672 break;
1673 }
1674 RecRPTracker.recede();
1675 }
1676 }
1677 }
1678
1679 /// A heuristic to colocate node sets that have the same set of
1680 /// successors.
colocateNodeSets(NodeSetType & NodeSets)1681 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1682 unsigned Colocate = 0;
1683 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1684 NodeSet &N1 = NodeSets[i];
1685 SmallSetVector<SUnit *, 8> S1;
1686 if (N1.empty() || !succ_L(N1, S1))
1687 continue;
1688 for (int j = i + 1; j < e; ++j) {
1689 NodeSet &N2 = NodeSets[j];
1690 if (N1.compareRecMII(N2) != 0)
1691 continue;
1692 SmallSetVector<SUnit *, 8> S2;
1693 if (N2.empty() || !succ_L(N2, S2))
1694 continue;
1695 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1696 N1.setColocate(++Colocate);
1697 N2.setColocate(Colocate);
1698 break;
1699 }
1700 }
1701 }
1702 }
1703
1704 /// Check if the existing node-sets are profitable. If not, then ignore the
1705 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1706 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1707 /// then it's best to try to schedule all instructions together instead of
1708 /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1709 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1710 // Look for loops with a large MII.
1711 if (MII < 17)
1712 return;
1713 // Check if the node-set contains only a simple add recurrence.
1714 for (auto &NS : NodeSets) {
1715 if (NS.getRecMII() > 2)
1716 return;
1717 if (NS.getMaxDepth() > MII)
1718 return;
1719 }
1720 NodeSets.clear();
1721 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1722 }
1723
1724 /// Add the nodes that do not belong to a recurrence set into groups
1725 /// based upon connected components.
groupRemainingNodes(NodeSetType & NodeSets)1726 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1727 SetVector<SUnit *> NodesAdded;
1728 SmallPtrSet<SUnit *, 8> Visited;
1729 // Add the nodes that are on a path between the previous node sets and
1730 // the current node set.
1731 for (NodeSet &I : NodeSets) {
1732 SmallSetVector<SUnit *, 8> N;
1733 // Add the nodes from the current node set to the previous node set.
1734 if (succ_L(I, N)) {
1735 SetVector<SUnit *> Path;
1736 for (SUnit *NI : N) {
1737 Visited.clear();
1738 computePath(NI, Path, NodesAdded, I, Visited);
1739 }
1740 if (!Path.empty())
1741 I.insert(Path.begin(), Path.end());
1742 }
1743 // Add the nodes from the previous node set to the current node set.
1744 N.clear();
1745 if (succ_L(NodesAdded, N)) {
1746 SetVector<SUnit *> Path;
1747 for (SUnit *NI : N) {
1748 Visited.clear();
1749 computePath(NI, Path, I, NodesAdded, Visited);
1750 }
1751 if (!Path.empty())
1752 I.insert(Path.begin(), Path.end());
1753 }
1754 NodesAdded.insert(I.begin(), I.end());
1755 }
1756
1757 // Create a new node set with the connected nodes of any successor of a node
1758 // in a recurrent set.
1759 NodeSet NewSet;
1760 SmallSetVector<SUnit *, 8> N;
1761 if (succ_L(NodesAdded, N))
1762 for (SUnit *I : N)
1763 addConnectedNodes(I, NewSet, NodesAdded);
1764 if (!NewSet.empty())
1765 NodeSets.push_back(NewSet);
1766
1767 // Create a new node set with the connected nodes of any predecessor of a node
1768 // in a recurrent set.
1769 NewSet.clear();
1770 if (pred_L(NodesAdded, N))
1771 for (SUnit *I : N)
1772 addConnectedNodes(I, NewSet, NodesAdded);
1773 if (!NewSet.empty())
1774 NodeSets.push_back(NewSet);
1775
1776 // Create new nodes sets with the connected nodes any remaining node that
1777 // has no predecessor.
1778 for (SUnit &SU : SUnits) {
1779 if (NodesAdded.count(&SU) == 0) {
1780 NewSet.clear();
1781 addConnectedNodes(&SU, NewSet, NodesAdded);
1782 if (!NewSet.empty())
1783 NodeSets.push_back(NewSet);
1784 }
1785 }
1786 }
1787
1788 /// Add the node to the set, and add all of its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)1789 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1790 SetVector<SUnit *> &NodesAdded) {
1791 NewSet.insert(SU);
1792 NodesAdded.insert(SU);
1793 for (auto &SI : SU->Succs) {
1794 SUnit *Successor = SI.getSUnit();
1795 if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1796 NodesAdded.count(Successor) == 0)
1797 addConnectedNodes(Successor, NewSet, NodesAdded);
1798 }
1799 for (auto &PI : SU->Preds) {
1800 SUnit *Predecessor = PI.getSUnit();
1801 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1802 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1803 }
1804 }
1805
1806 /// Return true if Set1 contains elements in Set2. The elements in common
1807 /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)1808 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1809 SmallSetVector<SUnit *, 8> &Result) {
1810 Result.clear();
1811 for (SUnit *SU : Set1) {
1812 if (Set2.count(SU) != 0)
1813 Result.insert(SU);
1814 }
1815 return !Result.empty();
1816 }
1817
1818 /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)1819 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1820 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1821 ++I) {
1822 NodeSet &NI = *I;
1823 for (NodeSetType::iterator J = I + 1; J != E;) {
1824 NodeSet &NJ = *J;
1825 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1826 if (NJ.compareRecMII(NI) > 0)
1827 NI.setRecMII(NJ.getRecMII());
1828 for (SUnit *SU : *J)
1829 I->insert(SU);
1830 NodeSets.erase(J);
1831 E = NodeSets.end();
1832 } else {
1833 ++J;
1834 }
1835 }
1836 }
1837 }
1838
1839 /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)1840 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1841 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1842 ++I)
1843 for (NodeSetType::iterator J = I + 1; J != E;) {
1844 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1845
1846 if (J->empty()) {
1847 NodeSets.erase(J);
1848 E = NodeSets.end();
1849 } else {
1850 ++J;
1851 }
1852 }
1853 }
1854
1855 /// Compute an ordered list of the dependence graph nodes, which
1856 /// indicates the order that the nodes will be scheduled. This is a
1857 /// two-level algorithm. First, a partial order is created, which
1858 /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)1859 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1860 SmallSetVector<SUnit *, 8> R;
1861 NodeOrder.clear();
1862
1863 for (auto &Nodes : NodeSets) {
1864 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1865 OrderKind Order;
1866 SmallSetVector<SUnit *, 8> N;
1867 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1868 R.insert(N.begin(), N.end());
1869 Order = BottomUp;
1870 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1871 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1872 R.insert(N.begin(), N.end());
1873 Order = TopDown;
1874 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1875 } else if (isIntersect(N, Nodes, R)) {
1876 // If some of the successors are in the existing node-set, then use the
1877 // top-down ordering.
1878 Order = TopDown;
1879 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1880 } else if (NodeSets.size() == 1) {
1881 for (const auto &N : Nodes)
1882 if (N->Succs.size() == 0)
1883 R.insert(N);
1884 Order = BottomUp;
1885 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1886 } else {
1887 // Find the node with the highest ASAP.
1888 SUnit *maxASAP = nullptr;
1889 for (SUnit *SU : Nodes) {
1890 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1891 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1892 maxASAP = SU;
1893 }
1894 R.insert(maxASAP);
1895 Order = BottomUp;
1896 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1897 }
1898
1899 while (!R.empty()) {
1900 if (Order == TopDown) {
1901 // Choose the node with the maximum height. If more than one, choose
1902 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1903 // choose the node with the lowest MOV.
1904 while (!R.empty()) {
1905 SUnit *maxHeight = nullptr;
1906 for (SUnit *I : R) {
1907 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1908 maxHeight = I;
1909 else if (getHeight(I) == getHeight(maxHeight) &&
1910 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1911 maxHeight = I;
1912 else if (getHeight(I) == getHeight(maxHeight) &&
1913 getZeroLatencyHeight(I) ==
1914 getZeroLatencyHeight(maxHeight) &&
1915 getMOV(I) < getMOV(maxHeight))
1916 maxHeight = I;
1917 }
1918 NodeOrder.insert(maxHeight);
1919 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1920 R.remove(maxHeight);
1921 for (const auto &I : maxHeight->Succs) {
1922 if (Nodes.count(I.getSUnit()) == 0)
1923 continue;
1924 if (NodeOrder.contains(I.getSUnit()))
1925 continue;
1926 if (ignoreDependence(I, false))
1927 continue;
1928 R.insert(I.getSUnit());
1929 }
1930 // Back-edges are predecessors with an anti-dependence.
1931 for (const auto &I : maxHeight->Preds) {
1932 if (I.getKind() != SDep::Anti)
1933 continue;
1934 if (Nodes.count(I.getSUnit()) == 0)
1935 continue;
1936 if (NodeOrder.contains(I.getSUnit()))
1937 continue;
1938 R.insert(I.getSUnit());
1939 }
1940 }
1941 Order = BottomUp;
1942 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1943 SmallSetVector<SUnit *, 8> N;
1944 if (pred_L(NodeOrder, N, &Nodes))
1945 R.insert(N.begin(), N.end());
1946 } else {
1947 // Choose the node with the maximum depth. If more than one, choose
1948 // the node with the maximum ZeroLatencyDepth. If still more than one,
1949 // choose the node with the lowest MOV.
1950 while (!R.empty()) {
1951 SUnit *maxDepth = nullptr;
1952 for (SUnit *I : R) {
1953 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1954 maxDepth = I;
1955 else if (getDepth(I) == getDepth(maxDepth) &&
1956 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1957 maxDepth = I;
1958 else if (getDepth(I) == getDepth(maxDepth) &&
1959 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1960 getMOV(I) < getMOV(maxDepth))
1961 maxDepth = I;
1962 }
1963 NodeOrder.insert(maxDepth);
1964 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1965 R.remove(maxDepth);
1966 if (Nodes.isExceedSU(maxDepth)) {
1967 Order = TopDown;
1968 R.clear();
1969 R.insert(Nodes.getNode(0));
1970 break;
1971 }
1972 for (const auto &I : maxDepth->Preds) {
1973 if (Nodes.count(I.getSUnit()) == 0)
1974 continue;
1975 if (NodeOrder.contains(I.getSUnit()))
1976 continue;
1977 R.insert(I.getSUnit());
1978 }
1979 // Back-edges are predecessors with an anti-dependence.
1980 for (const auto &I : maxDepth->Succs) {
1981 if (I.getKind() != SDep::Anti)
1982 continue;
1983 if (Nodes.count(I.getSUnit()) == 0)
1984 continue;
1985 if (NodeOrder.contains(I.getSUnit()))
1986 continue;
1987 R.insert(I.getSUnit());
1988 }
1989 }
1990 Order = TopDown;
1991 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1992 SmallSetVector<SUnit *, 8> N;
1993 if (succ_L(NodeOrder, N, &Nodes))
1994 R.insert(N.begin(), N.end());
1995 }
1996 }
1997 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1998 }
1999
2000 LLVM_DEBUG({
2001 dbgs() << "Node order: ";
2002 for (SUnit *I : NodeOrder)
2003 dbgs() << " " << I->NodeNum << " ";
2004 dbgs() << "\n";
2005 });
2006 }
2007
2008 /// Process the nodes in the computed order and create the pipelined schedule
2009 /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)2010 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2011
2012 if (NodeOrder.empty()){
2013 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2014 return false;
2015 }
2016
2017 bool scheduleFound = false;
2018 // Keep increasing II until a valid schedule is found.
2019 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2020 Schedule.reset();
2021 Schedule.setInitiationInterval(II);
2022 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2023
2024 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2025 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2026 do {
2027 SUnit *SU = *NI;
2028
2029 // Compute the schedule time for the instruction, which is based
2030 // upon the scheduled time for any predecessors/successors.
2031 int EarlyStart = INT_MIN;
2032 int LateStart = INT_MAX;
2033 // These values are set when the size of the schedule window is limited
2034 // due to chain dependences.
2035 int SchedEnd = INT_MAX;
2036 int SchedStart = INT_MIN;
2037 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2038 II, this);
2039 LLVM_DEBUG({
2040 dbgs() << "\n";
2041 dbgs() << "Inst (" << SU->NodeNum << ") ";
2042 SU->getInstr()->dump();
2043 dbgs() << "\n";
2044 });
2045 LLVM_DEBUG({
2046 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2047 LateStart, SchedEnd, SchedStart);
2048 });
2049
2050 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2051 SchedStart > LateStart)
2052 scheduleFound = false;
2053 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2054 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2055 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2056 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2057 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2058 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2059 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2060 SchedEnd =
2061 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2062 // When scheduling a Phi it is better to start at the late cycle and go
2063 // backwards. The default order may insert the Phi too far away from
2064 // its first dependence.
2065 if (SU->getInstr()->isPHI())
2066 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2067 else
2068 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2069 } else {
2070 int FirstCycle = Schedule.getFirstCycle();
2071 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2072 FirstCycle + getASAP(SU) + II - 1, II);
2073 }
2074 // Even if we find a schedule, make sure the schedule doesn't exceed the
2075 // allowable number of stages. We keep trying if this happens.
2076 if (scheduleFound)
2077 if (SwpMaxStages > -1 &&
2078 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2079 scheduleFound = false;
2080
2081 LLVM_DEBUG({
2082 if (!scheduleFound)
2083 dbgs() << "\tCan't schedule\n";
2084 });
2085 } while (++NI != NE && scheduleFound);
2086
2087 // If a schedule is found, ensure non-pipelined instructions are in stage 0
2088 if (scheduleFound)
2089 scheduleFound =
2090 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2091
2092 // If a schedule is found, check if it is a valid schedule too.
2093 if (scheduleFound)
2094 scheduleFound = Schedule.isValidSchedule(this);
2095 }
2096
2097 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2098 << " (II=" << Schedule.getInitiationInterval()
2099 << ")\n");
2100
2101 if (scheduleFound) {
2102 Schedule.finalizeSchedule(this);
2103 Pass.ORE->emit([&]() {
2104 return MachineOptimizationRemarkAnalysis(
2105 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2106 << "Schedule found with Initiation Interval: "
2107 << ore::NV("II", Schedule.getInitiationInterval())
2108 << ", MaxStageCount: "
2109 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2110 });
2111 } else
2112 Schedule.reset();
2113
2114 return scheduleFound && Schedule.getMaxStageCount() > 0;
2115 }
2116
2117 /// Return true if we can compute the amount the instruction changes
2118 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)2119 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2120 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2121 const MachineOperand *BaseOp;
2122 int64_t Offset;
2123 bool OffsetIsScalable;
2124 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2125 return false;
2126
2127 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2128 if (OffsetIsScalable)
2129 return false;
2130
2131 if (!BaseOp->isReg())
2132 return false;
2133
2134 Register BaseReg = BaseOp->getReg();
2135
2136 MachineRegisterInfo &MRI = MF.getRegInfo();
2137 // Check if there is a Phi. If so, get the definition in the loop.
2138 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2139 if (BaseDef && BaseDef->isPHI()) {
2140 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2141 BaseDef = MRI.getVRegDef(BaseReg);
2142 }
2143 if (!BaseDef)
2144 return false;
2145
2146 int D = 0;
2147 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2148 return false;
2149
2150 Delta = D;
2151 return true;
2152 }
2153
2154 /// Check if we can change the instruction to use an offset value from the
2155 /// previous iteration. If so, return true and set the base and offset values
2156 /// so that we can rewrite the load, if necessary.
2157 /// v1 = Phi(v0, v3)
2158 /// v2 = load v1, 0
2159 /// v3 = post_store v1, 4, x
2160 /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)2161 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2162 unsigned &BasePos,
2163 unsigned &OffsetPos,
2164 unsigned &NewBase,
2165 int64_t &Offset) {
2166 // Get the load instruction.
2167 if (TII->isPostIncrement(*MI))
2168 return false;
2169 unsigned BasePosLd, OffsetPosLd;
2170 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2171 return false;
2172 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2173
2174 // Look for the Phi instruction.
2175 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2176 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2177 if (!Phi || !Phi->isPHI())
2178 return false;
2179 // Get the register defined in the loop block.
2180 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2181 if (!PrevReg)
2182 return false;
2183
2184 // Check for the post-increment load/store instruction.
2185 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2186 if (!PrevDef || PrevDef == MI)
2187 return false;
2188
2189 if (!TII->isPostIncrement(*PrevDef))
2190 return false;
2191
2192 unsigned BasePos1 = 0, OffsetPos1 = 0;
2193 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2194 return false;
2195
2196 // Make sure that the instructions do not access the same memory location in
2197 // the next iteration.
2198 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2199 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2200 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2201 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2202 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2203 MF.deleteMachineInstr(NewMI);
2204 if (!Disjoint)
2205 return false;
2206
2207 // Set the return value once we determine that we return true.
2208 BasePos = BasePosLd;
2209 OffsetPos = OffsetPosLd;
2210 NewBase = PrevReg;
2211 Offset = StoreOffset;
2212 return true;
2213 }
2214
2215 /// Apply changes to the instruction if needed. The changes are need
2216 /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)2217 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2218 SMSchedule &Schedule) {
2219 SUnit *SU = getSUnit(MI);
2220 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2221 InstrChanges.find(SU);
2222 if (It != InstrChanges.end()) {
2223 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2224 unsigned BasePos, OffsetPos;
2225 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2226 return;
2227 Register BaseReg = MI->getOperand(BasePos).getReg();
2228 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2229 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2230 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2231 int BaseStageNum = Schedule.stageScheduled(SU);
2232 int BaseCycleNum = Schedule.cycleScheduled(SU);
2233 if (BaseStageNum < DefStageNum) {
2234 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2235 int OffsetDiff = DefStageNum - BaseStageNum;
2236 if (DefCycleNum < BaseCycleNum) {
2237 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2238 if (OffsetDiff > 0)
2239 --OffsetDiff;
2240 }
2241 int64_t NewOffset =
2242 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2243 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2244 SU->setInstr(NewMI);
2245 MISUnitMap[NewMI] = SU;
2246 NewMIs[MI] = NewMI;
2247 }
2248 }
2249 }
2250
2251 /// Return the instruction in the loop that defines the register.
2252 /// If the definition is a Phi, then follow the Phi operand to
2253 /// the instruction in the loop.
findDefInLoop(Register Reg)2254 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2255 SmallPtrSet<MachineInstr *, 8> Visited;
2256 MachineInstr *Def = MRI.getVRegDef(Reg);
2257 while (Def->isPHI()) {
2258 if (!Visited.insert(Def).second)
2259 break;
2260 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2261 if (Def->getOperand(i + 1).getMBB() == BB) {
2262 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2263 break;
2264 }
2265 }
2266 return Def;
2267 }
2268
2269 /// Return true for an order or output dependence that is loop carried
2270 /// potentially. A dependence is loop carried if the destination defines a valu
2271 /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)2272 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2273 bool isSucc) {
2274 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2275 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2276 return false;
2277
2278 if (!SwpPruneLoopCarried)
2279 return true;
2280
2281 if (Dep.getKind() == SDep::Output)
2282 return true;
2283
2284 MachineInstr *SI = Source->getInstr();
2285 MachineInstr *DI = Dep.getSUnit()->getInstr();
2286 if (!isSucc)
2287 std::swap(SI, DI);
2288 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2289
2290 // Assume ordered loads and stores may have a loop carried dependence.
2291 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2292 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2293 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2294 return true;
2295
2296 // Only chain dependences between a load and store can be loop carried.
2297 if (!DI->mayStore() || !SI->mayLoad())
2298 return false;
2299
2300 unsigned DeltaS, DeltaD;
2301 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2302 return true;
2303
2304 const MachineOperand *BaseOpS, *BaseOpD;
2305 int64_t OffsetS, OffsetD;
2306 bool OffsetSIsScalable, OffsetDIsScalable;
2307 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2308 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2309 TRI) ||
2310 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2311 TRI))
2312 return true;
2313
2314 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2315 "Expected offsets to be byte offsets");
2316
2317 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2318 return true;
2319
2320 // Check that the base register is incremented by a constant value for each
2321 // iteration.
2322 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2323 if (!Def || !Def->isPHI())
2324 return true;
2325 unsigned InitVal = 0;
2326 unsigned LoopVal = 0;
2327 getPhiRegs(*Def, BB, InitVal, LoopVal);
2328 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2329 int D = 0;
2330 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2331 return true;
2332
2333 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2334 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2335
2336 // This is the main test, which checks the offset values and the loop
2337 // increment value to determine if the accesses may be loop carried.
2338 if (AccessSizeS == MemoryLocation::UnknownSize ||
2339 AccessSizeD == MemoryLocation::UnknownSize)
2340 return true;
2341
2342 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2343 return true;
2344
2345 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2346 }
2347
postprocessDAG()2348 void SwingSchedulerDAG::postprocessDAG() {
2349 for (auto &M : Mutations)
2350 M->apply(this);
2351 }
2352
2353 /// Try to schedule the node at the specified StartCycle and continue
2354 /// until the node is schedule or the EndCycle is reached. This function
2355 /// returns true if the node is scheduled. This routine may search either
2356 /// forward or backward for a place to insert the instruction based upon
2357 /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)2358 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2359 bool forward = true;
2360 LLVM_DEBUG({
2361 dbgs() << "Trying to insert node between " << StartCycle << " and "
2362 << EndCycle << " II: " << II << "\n";
2363 });
2364 if (StartCycle > EndCycle)
2365 forward = false;
2366
2367 // The terminating condition depends on the direction.
2368 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2369 for (int curCycle = StartCycle; curCycle != termCycle;
2370 forward ? ++curCycle : --curCycle) {
2371
2372 // Add the already scheduled instructions at the specified cycle to the
2373 // DFA.
2374 ProcItinResources.clearResources();
2375 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2376 checkCycle <= LastCycle; checkCycle += II) {
2377 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2378
2379 for (SUnit *CI : cycleInstrs) {
2380 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2381 continue;
2382 assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2383 "These instructions have already been scheduled.");
2384 ProcItinResources.reserveResources(*CI->getInstr());
2385 }
2386 }
2387 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2388 ProcItinResources.canReserveResources(*SU->getInstr())) {
2389 LLVM_DEBUG({
2390 dbgs() << "\tinsert at cycle " << curCycle << " ";
2391 SU->getInstr()->dump();
2392 });
2393
2394 ScheduledInstrs[curCycle].push_back(SU);
2395 InstrToCycle.insert(std::make_pair(SU, curCycle));
2396 if (curCycle > LastCycle)
2397 LastCycle = curCycle;
2398 if (curCycle < FirstCycle)
2399 FirstCycle = curCycle;
2400 return true;
2401 }
2402 LLVM_DEBUG({
2403 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2404 SU->getInstr()->dump();
2405 });
2406 }
2407 return false;
2408 }
2409
2410 // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)2411 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2412 SmallPtrSet<SUnit *, 8> Visited;
2413 SmallVector<SDep, 8> Worklist;
2414 Worklist.push_back(Dep);
2415 int EarlyCycle = INT_MAX;
2416 while (!Worklist.empty()) {
2417 const SDep &Cur = Worklist.pop_back_val();
2418 SUnit *PrevSU = Cur.getSUnit();
2419 if (Visited.count(PrevSU))
2420 continue;
2421 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2422 if (it == InstrToCycle.end())
2423 continue;
2424 EarlyCycle = std::min(EarlyCycle, it->second);
2425 for (const auto &PI : PrevSU->Preds)
2426 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2427 Worklist.push_back(PI);
2428 Visited.insert(PrevSU);
2429 }
2430 return EarlyCycle;
2431 }
2432
2433 // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)2434 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2435 SmallPtrSet<SUnit *, 8> Visited;
2436 SmallVector<SDep, 8> Worklist;
2437 Worklist.push_back(Dep);
2438 int LateCycle = INT_MIN;
2439 while (!Worklist.empty()) {
2440 const SDep &Cur = Worklist.pop_back_val();
2441 SUnit *SuccSU = Cur.getSUnit();
2442 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2443 continue;
2444 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2445 if (it == InstrToCycle.end())
2446 continue;
2447 LateCycle = std::max(LateCycle, it->second);
2448 for (const auto &SI : SuccSU->Succs)
2449 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2450 Worklist.push_back(SI);
2451 Visited.insert(SuccSU);
2452 }
2453 return LateCycle;
2454 }
2455
2456 /// If an instruction has a use that spans multiple iterations, then
2457 /// return true. These instructions are characterized by having a back-ege
2458 /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)2459 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2460 for (auto &P : SU->Preds)
2461 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2462 for (auto &S : P.getSUnit()->Succs)
2463 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2464 return P.getSUnit();
2465 return nullptr;
2466 }
2467
2468 /// Compute the scheduling start slot for the instruction. The start slot
2469 /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)2470 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2471 int *MinEnd, int *MaxStart, int II,
2472 SwingSchedulerDAG *DAG) {
2473 // Iterate over each instruction that has been scheduled already. The start
2474 // slot computation depends on whether the previously scheduled instruction
2475 // is a predecessor or successor of the specified instruction.
2476 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2477
2478 // Iterate over each instruction in the current cycle.
2479 for (SUnit *I : getInstructions(cycle)) {
2480 // Because we're processing a DAG for the dependences, we recognize
2481 // the back-edge in recurrences by anti dependences.
2482 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2483 const SDep &Dep = SU->Preds[i];
2484 if (Dep.getSUnit() == I) {
2485 if (!DAG->isBackedge(SU, Dep)) {
2486 int EarlyStart = cycle + Dep.getLatency() -
2487 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2488 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2489 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2490 int End = earliestCycleInChain(Dep) + (II - 1);
2491 *MinEnd = std::min(*MinEnd, End);
2492 }
2493 } else {
2494 int LateStart = cycle - Dep.getLatency() +
2495 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2496 *MinLateStart = std::min(*MinLateStart, LateStart);
2497 }
2498 }
2499 // For instruction that requires multiple iterations, make sure that
2500 // the dependent instruction is not scheduled past the definition.
2501 SUnit *BE = multipleIterations(I, DAG);
2502 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2503 !SU->isPred(I))
2504 *MinLateStart = std::min(*MinLateStart, cycle);
2505 }
2506 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2507 if (SU->Succs[i].getSUnit() == I) {
2508 const SDep &Dep = SU->Succs[i];
2509 if (!DAG->isBackedge(SU, Dep)) {
2510 int LateStart = cycle - Dep.getLatency() +
2511 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2512 *MinLateStart = std::min(*MinLateStart, LateStart);
2513 if (DAG->isLoopCarriedDep(SU, Dep)) {
2514 int Start = latestCycleInChain(Dep) + 1 - II;
2515 *MaxStart = std::max(*MaxStart, Start);
2516 }
2517 } else {
2518 int EarlyStart = cycle + Dep.getLatency() -
2519 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2520 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2521 }
2522 }
2523 }
2524 }
2525 }
2526 }
2527
2528 /// Order the instructions within a cycle so that the definitions occur
2529 /// before the uses. Returns true if the instruction is added to the start
2530 /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)2531 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2532 std::deque<SUnit *> &Insts) {
2533 MachineInstr *MI = SU->getInstr();
2534 bool OrderBeforeUse = false;
2535 bool OrderAfterDef = false;
2536 bool OrderBeforeDef = false;
2537 unsigned MoveDef = 0;
2538 unsigned MoveUse = 0;
2539 int StageInst1 = stageScheduled(SU);
2540
2541 unsigned Pos = 0;
2542 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2543 ++I, ++Pos) {
2544 for (MachineOperand &MO : MI->operands()) {
2545 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2546 continue;
2547
2548 Register Reg = MO.getReg();
2549 unsigned BasePos, OffsetPos;
2550 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2551 if (MI->getOperand(BasePos).getReg() == Reg)
2552 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2553 Reg = NewReg;
2554 bool Reads, Writes;
2555 std::tie(Reads, Writes) =
2556 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2557 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2558 OrderBeforeUse = true;
2559 if (MoveUse == 0)
2560 MoveUse = Pos;
2561 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2562 // Add the instruction after the scheduled instruction.
2563 OrderAfterDef = true;
2564 MoveDef = Pos;
2565 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2566 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2567 OrderBeforeUse = true;
2568 if (MoveUse == 0)
2569 MoveUse = Pos;
2570 } else {
2571 OrderAfterDef = true;
2572 MoveDef = Pos;
2573 }
2574 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2575 OrderBeforeUse = true;
2576 if (MoveUse == 0)
2577 MoveUse = Pos;
2578 if (MoveUse != 0) {
2579 OrderAfterDef = true;
2580 MoveDef = Pos - 1;
2581 }
2582 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2583 // Add the instruction before the scheduled instruction.
2584 OrderBeforeUse = true;
2585 if (MoveUse == 0)
2586 MoveUse = Pos;
2587 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2588 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2589 if (MoveUse == 0) {
2590 OrderBeforeDef = true;
2591 MoveUse = Pos;
2592 }
2593 }
2594 }
2595 // Check for order dependences between instructions. Make sure the source
2596 // is ordered before the destination.
2597 for (auto &S : SU->Succs) {
2598 if (S.getSUnit() != *I)
2599 continue;
2600 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2601 OrderBeforeUse = true;
2602 if (Pos < MoveUse)
2603 MoveUse = Pos;
2604 }
2605 // We did not handle HW dependences in previous for loop,
2606 // and we normally set Latency = 0 for Anti deps,
2607 // so may have nodes in same cycle with Anti denpendent on HW regs.
2608 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2609 OrderBeforeUse = true;
2610 if ((MoveUse == 0) || (Pos < MoveUse))
2611 MoveUse = Pos;
2612 }
2613 }
2614 for (auto &P : SU->Preds) {
2615 if (P.getSUnit() != *I)
2616 continue;
2617 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2618 OrderAfterDef = true;
2619 MoveDef = Pos;
2620 }
2621 }
2622 }
2623
2624 // A circular dependence.
2625 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2626 OrderBeforeUse = false;
2627
2628 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2629 // to a loop-carried dependence.
2630 if (OrderBeforeDef)
2631 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2632
2633 // The uncommon case when the instruction order needs to be updated because
2634 // there is both a use and def.
2635 if (OrderBeforeUse && OrderAfterDef) {
2636 SUnit *UseSU = Insts.at(MoveUse);
2637 SUnit *DefSU = Insts.at(MoveDef);
2638 if (MoveUse > MoveDef) {
2639 Insts.erase(Insts.begin() + MoveUse);
2640 Insts.erase(Insts.begin() + MoveDef);
2641 } else {
2642 Insts.erase(Insts.begin() + MoveDef);
2643 Insts.erase(Insts.begin() + MoveUse);
2644 }
2645 orderDependence(SSD, UseSU, Insts);
2646 orderDependence(SSD, SU, Insts);
2647 orderDependence(SSD, DefSU, Insts);
2648 return;
2649 }
2650 // Put the new instruction first if there is a use in the list. Otherwise,
2651 // put it at the end of the list.
2652 if (OrderBeforeUse)
2653 Insts.push_front(SU);
2654 else
2655 Insts.push_back(SU);
2656 }
2657
2658 /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)2659 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2660 if (!Phi.isPHI())
2661 return false;
2662 assert(Phi.isPHI() && "Expecting a Phi.");
2663 SUnit *DefSU = SSD->getSUnit(&Phi);
2664 unsigned DefCycle = cycleScheduled(DefSU);
2665 int DefStage = stageScheduled(DefSU);
2666
2667 unsigned InitVal = 0;
2668 unsigned LoopVal = 0;
2669 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2670 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2671 if (!UseSU)
2672 return true;
2673 if (UseSU->getInstr()->isPHI())
2674 return true;
2675 unsigned LoopCycle = cycleScheduled(UseSU);
2676 int LoopStage = stageScheduled(UseSU);
2677 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2678 }
2679
2680 /// Return true if the instruction is a definition that is loop carried
2681 /// and defines the use on the next iteration.
2682 /// v1 = phi(v2, v3)
2683 /// (Def) v3 = op v1
2684 /// (MO) = v1
2685 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2686 /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)2687 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2688 MachineInstr *Def, MachineOperand &MO) {
2689 if (!MO.isReg())
2690 return false;
2691 if (Def->isPHI())
2692 return false;
2693 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2694 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2695 return false;
2696 if (!isLoopCarried(SSD, *Phi))
2697 return false;
2698 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2699 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2700 MachineOperand &DMO = Def->getOperand(i);
2701 if (!DMO.isReg() || !DMO.isDef())
2702 continue;
2703 if (DMO.getReg() == LoopReg)
2704 return true;
2705 }
2706 return false;
2707 }
2708
2709 /// Determine transitive dependences of unpipelineable instructions
computeUnpipelineableNodes(SwingSchedulerDAG * SSD,TargetInstrInfo::PipelinerLoopInfo * PLI)2710 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2711 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2712 SmallSet<SUnit *, 8> DoNotPipeline;
2713 SmallVector<SUnit *, 8> Worklist;
2714
2715 for (auto &SU : SSD->SUnits)
2716 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2717 Worklist.push_back(&SU);
2718
2719 while (!Worklist.empty()) {
2720 auto SU = Worklist.pop_back_val();
2721 if (DoNotPipeline.count(SU))
2722 continue;
2723 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2724 DoNotPipeline.insert(SU);
2725 for (auto &Dep : SU->Preds)
2726 Worklist.push_back(Dep.getSUnit());
2727 if (SU->getInstr()->isPHI())
2728 for (auto &Dep : SU->Succs)
2729 if (Dep.getKind() == SDep::Anti)
2730 Worklist.push_back(Dep.getSUnit());
2731 }
2732 return DoNotPipeline;
2733 }
2734
2735 // Determine all instructions upon which any unpipelineable instruction depends
2736 // and ensure that they are in stage 0. If unable to do so, return false.
normalizeNonPipelinedInstructions(SwingSchedulerDAG * SSD,TargetInstrInfo::PipelinerLoopInfo * PLI)2737 bool SMSchedule::normalizeNonPipelinedInstructions(
2738 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2739 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2740
2741 int NewLastCycle = INT_MIN;
2742 for (SUnit &SU : SSD->SUnits) {
2743 if (!SU.isInstr())
2744 continue;
2745 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2746 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2747 continue;
2748 }
2749
2750 // Put the non-pipelined instruction as early as possible in the schedule
2751 int NewCycle = getFirstCycle();
2752 for (auto &Dep : SU.Preds)
2753 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2754
2755 int OldCycle = InstrToCycle[&SU];
2756 if (OldCycle != NewCycle) {
2757 InstrToCycle[&SU] = NewCycle;
2758 auto &OldS = getInstructions(OldCycle);
2759 llvm::erase_value(OldS, &SU);
2760 getInstructions(NewCycle).emplace_back(&SU);
2761 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2762 << ") is not pipelined; moving from cycle " << OldCycle
2763 << " to " << NewCycle << " Instr:" << *SU.getInstr());
2764 }
2765 NewLastCycle = std::max(NewLastCycle, NewCycle);
2766 }
2767 LastCycle = NewLastCycle;
2768 return true;
2769 }
2770
2771 // Check if the generated schedule is valid. This function checks if
2772 // an instruction that uses a physical register is scheduled in a
2773 // different stage than the definition. The pipeliner does not handle
2774 // physical register values that may cross a basic block boundary.
2775 // Furthermore, if a physical def/use pair is assigned to the same
2776 // cycle, orderDependence does not guarantee def/use ordering, so that
2777 // case should be considered invalid. (The test checks for both
2778 // earlier and same-cycle use to be more robust.)
isValidSchedule(SwingSchedulerDAG * SSD)2779 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2780 for (SUnit &SU : SSD->SUnits) {
2781 if (!SU.hasPhysRegDefs)
2782 continue;
2783 int StageDef = stageScheduled(&SU);
2784 int CycleDef = InstrToCycle[&SU];
2785 assert(StageDef != -1 && "Instruction should have been scheduled.");
2786 for (auto &SI : SU.Succs)
2787 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2788 if (Register::isPhysicalRegister(SI.getReg())) {
2789 if (stageScheduled(SI.getSUnit()) != StageDef)
2790 return false;
2791 if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2792 return false;
2793 }
2794 }
2795 return true;
2796 }
2797
2798 /// A property of the node order in swing-modulo-scheduling is
2799 /// that for nodes outside circuits the following holds:
2800 /// none of them is scheduled after both a successor and a
2801 /// predecessor.
2802 /// The method below checks whether the property is met.
2803 /// If not, debug information is printed and statistics information updated.
2804 /// Note that we do not use an assert statement.
2805 /// The reason is that although an invalid node oder may prevent
2806 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2807 /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const2808 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2809
2810 // a sorted vector that maps each SUnit to its index in the NodeOrder
2811 typedef std::pair<SUnit *, unsigned> UnitIndex;
2812 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2813
2814 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2815 Indices.push_back(std::make_pair(NodeOrder[i], i));
2816
2817 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2818 return std::get<0>(i1) < std::get<0>(i2);
2819 };
2820
2821 // sort, so that we can perform a binary search
2822 llvm::sort(Indices, CompareKey);
2823
2824 bool Valid = true;
2825 (void)Valid;
2826 // for each SUnit in the NodeOrder, check whether
2827 // it appears after both a successor and a predecessor
2828 // of the SUnit. If this is the case, and the SUnit
2829 // is not part of circuit, then the NodeOrder is not
2830 // valid.
2831 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2832 SUnit *SU = NodeOrder[i];
2833 unsigned Index = i;
2834
2835 bool PredBefore = false;
2836 bool SuccBefore = false;
2837
2838 SUnit *Succ;
2839 SUnit *Pred;
2840 (void)Succ;
2841 (void)Pred;
2842
2843 for (SDep &PredEdge : SU->Preds) {
2844 SUnit *PredSU = PredEdge.getSUnit();
2845 unsigned PredIndex = std::get<1>(
2846 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2847 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2848 PredBefore = true;
2849 Pred = PredSU;
2850 break;
2851 }
2852 }
2853
2854 for (SDep &SuccEdge : SU->Succs) {
2855 SUnit *SuccSU = SuccEdge.getSUnit();
2856 // Do not process a boundary node, it was not included in NodeOrder,
2857 // hence not in Indices either, call to std::lower_bound() below will
2858 // return Indices.end().
2859 if (SuccSU->isBoundaryNode())
2860 continue;
2861 unsigned SuccIndex = std::get<1>(
2862 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2863 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2864 SuccBefore = true;
2865 Succ = SuccSU;
2866 break;
2867 }
2868 }
2869
2870 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2871 // instructions in circuits are allowed to be scheduled
2872 // after both a successor and predecessor.
2873 bool InCircuit = llvm::any_of(
2874 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2875 if (InCircuit)
2876 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2877 else {
2878 Valid = false;
2879 NumNodeOrderIssues++;
2880 LLVM_DEBUG(dbgs() << "Predecessor ";);
2881 }
2882 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2883 << " are scheduled before node " << SU->NodeNum
2884 << "\n";);
2885 }
2886 }
2887
2888 LLVM_DEBUG({
2889 if (!Valid)
2890 dbgs() << "Invalid node order found!\n";
2891 });
2892 }
2893
2894 /// Attempt to fix the degenerate cases when the instruction serialization
2895 /// causes the register lifetimes to overlap. For example,
2896 /// p' = store_pi(p, b)
2897 /// = load p, offset
2898 /// In this case p and p' overlap, which means that two registers are needed.
2899 /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)2900 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2901 unsigned OverlapReg = 0;
2902 unsigned NewBaseReg = 0;
2903 for (SUnit *SU : Instrs) {
2904 MachineInstr *MI = SU->getInstr();
2905 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2906 const MachineOperand &MO = MI->getOperand(i);
2907 // Look for an instruction that uses p. The instruction occurs in the
2908 // same cycle but occurs later in the serialized order.
2909 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2910 // Check that the instruction appears in the InstrChanges structure,
2911 // which contains instructions that can have the offset updated.
2912 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2913 InstrChanges.find(SU);
2914 if (It != InstrChanges.end()) {
2915 unsigned BasePos, OffsetPos;
2916 // Update the base register and adjust the offset.
2917 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2918 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2919 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2920 int64_t NewOffset =
2921 MI->getOperand(OffsetPos).getImm() - It->second.second;
2922 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2923 SU->setInstr(NewMI);
2924 MISUnitMap[NewMI] = SU;
2925 NewMIs[MI] = NewMI;
2926 }
2927 }
2928 OverlapReg = 0;
2929 NewBaseReg = 0;
2930 break;
2931 }
2932 // Look for an instruction of the form p' = op(p), which uses and defines
2933 // two virtual registers that get allocated to the same physical register.
2934 unsigned TiedUseIdx = 0;
2935 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2936 // OverlapReg is p in the example above.
2937 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2938 // NewBaseReg is p' in the example above.
2939 NewBaseReg = MI->getOperand(i).getReg();
2940 break;
2941 }
2942 }
2943 }
2944 }
2945
2946 /// After the schedule has been formed, call this function to combine
2947 /// the instructions from the different stages/cycles. That is, this
2948 /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)2949 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2950 // Move all instructions to the first stage from later stages.
2951 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2952 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2953 ++stage) {
2954 std::deque<SUnit *> &cycleInstrs =
2955 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2956 for (SUnit *SU : llvm::reverse(cycleInstrs))
2957 ScheduledInstrs[cycle].push_front(SU);
2958 }
2959 }
2960
2961 // Erase all the elements in the later stages. Only one iteration should
2962 // remain in the scheduled list, and it contains all the instructions.
2963 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2964 ScheduledInstrs.erase(cycle);
2965
2966 // Change the registers in instruction as specified in the InstrChanges
2967 // map. We need to use the new registers to create the correct order.
2968 for (const SUnit &SU : SSD->SUnits)
2969 SSD->applyInstrChange(SU.getInstr(), *this);
2970
2971 // Reorder the instructions in each cycle to fix and improve the
2972 // generated code.
2973 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2974 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2975 std::deque<SUnit *> newOrderPhi;
2976 for (SUnit *SU : cycleInstrs) {
2977 if (SU->getInstr()->isPHI())
2978 newOrderPhi.push_back(SU);
2979 }
2980 std::deque<SUnit *> newOrderI;
2981 for (SUnit *SU : cycleInstrs) {
2982 if (!SU->getInstr()->isPHI())
2983 orderDependence(SSD, SU, newOrderI);
2984 }
2985 // Replace the old order with the new order.
2986 cycleInstrs.swap(newOrderPhi);
2987 llvm::append_range(cycleInstrs, newOrderI);
2988 SSD->fixupRegisterOverlaps(cycleInstrs);
2989 }
2990
2991 LLVM_DEBUG(dump(););
2992 }
2993
print(raw_ostream & os) const2994 void NodeSet::print(raw_ostream &os) const {
2995 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2996 << " depth " << MaxDepth << " col " << Colocate << "\n";
2997 for (const auto &I : Nodes)
2998 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2999 os << "\n";
3000 }
3001
3002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3003 /// Print the schedule information to the given output.
print(raw_ostream & os) const3004 void SMSchedule::print(raw_ostream &os) const {
3005 // Iterate over each cycle.
3006 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3007 // Iterate over each instruction in the cycle.
3008 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3009 for (SUnit *CI : cycleInstrs->second) {
3010 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3011 os << "(" << CI->NodeNum << ") ";
3012 CI->getInstr()->print(os);
3013 os << "\n";
3014 }
3015 }
3016 }
3017
3018 /// Utility function used for debugging to print the schedule.
dump() const3019 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
dump() const3020 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3021
3022 #endif
3023
initProcResourceVectors(const MCSchedModel & SM,SmallVectorImpl<uint64_t> & Masks)3024 void ResourceManager::initProcResourceVectors(
3025 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3026 unsigned ProcResourceID = 0;
3027
3028 // We currently limit the resource kinds to 64 and below so that we can use
3029 // uint64_t for Masks
3030 assert(SM.getNumProcResourceKinds() < 64 &&
3031 "Too many kinds of resources, unsupported");
3032 // Create a unique bitmask for every processor resource unit.
3033 // Skip resource at index 0, since it always references 'InvalidUnit'.
3034 Masks.resize(SM.getNumProcResourceKinds());
3035 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3036 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3037 if (Desc.SubUnitsIdxBegin)
3038 continue;
3039 Masks[I] = 1ULL << ProcResourceID;
3040 ProcResourceID++;
3041 }
3042 // Create a unique bitmask for every processor resource group.
3043 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3044 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3045 if (!Desc.SubUnitsIdxBegin)
3046 continue;
3047 Masks[I] = 1ULL << ProcResourceID;
3048 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3049 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3050 ProcResourceID++;
3051 }
3052 LLVM_DEBUG({
3053 if (SwpShowResMask) {
3054 dbgs() << "ProcResourceDesc:\n";
3055 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3056 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3057 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3058 ProcResource->Name, I, Masks[I],
3059 ProcResource->NumUnits);
3060 }
3061 dbgs() << " -----------------\n";
3062 }
3063 });
3064 }
3065
canReserveResources(const MCInstrDesc * MID) const3066 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3067
3068 LLVM_DEBUG({
3069 if (SwpDebugResource)
3070 dbgs() << "canReserveResources:\n";
3071 });
3072 if (UseDFA)
3073 return DFAResources->canReserveResources(MID);
3074
3075 unsigned InsnClass = MID->getSchedClass();
3076 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3077 if (!SCDesc->isValid()) {
3078 LLVM_DEBUG({
3079 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3080 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";
3081 });
3082 return true;
3083 }
3084
3085 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3086 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3087 for (; I != E; ++I) {
3088 if (!I->Cycles)
3089 continue;
3090 const MCProcResourceDesc *ProcResource =
3091 SM.getProcResource(I->ProcResourceIdx);
3092 unsigned NumUnits = ProcResource->NumUnits;
3093 LLVM_DEBUG({
3094 if (SwpDebugResource)
3095 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3096 ProcResource->Name, I->ProcResourceIdx,
3097 ProcResourceCount[I->ProcResourceIdx], NumUnits,
3098 I->Cycles);
3099 });
3100 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3101 return false;
3102 }
3103 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3104 return true;
3105 }
3106
reserveResources(const MCInstrDesc * MID)3107 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3108 LLVM_DEBUG({
3109 if (SwpDebugResource)
3110 dbgs() << "reserveResources:\n";
3111 });
3112 if (UseDFA)
3113 return DFAResources->reserveResources(MID);
3114
3115 unsigned InsnClass = MID->getSchedClass();
3116 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3117 if (!SCDesc->isValid()) {
3118 LLVM_DEBUG({
3119 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3120 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";
3121 });
3122 return;
3123 }
3124 for (const MCWriteProcResEntry &PRE :
3125 make_range(STI->getWriteProcResBegin(SCDesc),
3126 STI->getWriteProcResEnd(SCDesc))) {
3127 if (!PRE.Cycles)
3128 continue;
3129 ++ProcResourceCount[PRE.ProcResourceIdx];
3130 LLVM_DEBUG({
3131 if (SwpDebugResource) {
3132 const MCProcResourceDesc *ProcResource =
3133 SM.getProcResource(PRE.ProcResourceIdx);
3134 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3135 ProcResource->Name, PRE.ProcResourceIdx,
3136 ProcResourceCount[PRE.ProcResourceIdx],
3137 ProcResource->NumUnits, PRE.Cycles);
3138 }
3139 });
3140 }
3141 LLVM_DEBUG({
3142 if (SwpDebugResource)
3143 dbgs() << "reserveResources: done!\n\n";
3144 });
3145 }
3146
canReserveResources(const MachineInstr & MI) const3147 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3148 return canReserveResources(&MI.getDesc());
3149 }
3150
reserveResources(const MachineInstr & MI)3151 void ResourceManager::reserveResources(const MachineInstr &MI) {
3152 return reserveResources(&MI.getDesc());
3153 }
3154
clearResources()3155 void ResourceManager::clearResources() {
3156 if (UseDFA)
3157 return DFAResources->clearResources();
3158 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3159 }
3160