1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/IR/Attributes.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/Function.h" 95 #include "llvm/MC/LaneBitmask.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCInstrItineraries.h" 98 #include "llvm/MC/MCRegisterInfo.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/CommandLine.h" 101 #include "llvm/Support/Compiler.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/MathExtras.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Target/TargetInstrInfo.h" 106 #include "llvm/Target/TargetOpcodes.h" 107 #include "llvm/Target/TargetRegisterInfo.h" 108 #include "llvm/Target/TargetSubtargetInfo.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 129 /// A command line option to turn software pipelining on or off. 130 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 131 cl::ZeroOrMore, 132 cl::desc("Enable Software Pipelining")); 133 134 /// A command line option to enable SWP at -Os. 135 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 136 cl::desc("Enable SWP at Os."), cl::Hidden, 137 cl::init(false)); 138 139 /// A command line argument to limit minimum initial interval for pipelining. 140 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 141 cl::desc("Size limit for the the MII."), 142 cl::Hidden, cl::init(27)); 143 144 /// A command line argument to limit the number of stages in the pipeline. 145 static cl::opt<int> 146 SwpMaxStages("pipeliner-max-stages", 147 cl::desc("Maximum stages allowed in the generated scheduled."), 148 cl::Hidden, cl::init(3)); 149 150 /// A command line option to disable the pruning of chain dependences due to 151 /// an unrelated Phi. 152 static cl::opt<bool> 153 SwpPruneDeps("pipeliner-prune-deps", 154 cl::desc("Prune dependences between unrelated Phi nodes."), 155 cl::Hidden, cl::init(true)); 156 157 /// A command line option to disable the pruning of loop carried order 158 /// dependences. 159 static cl::opt<bool> 160 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 161 cl::desc("Prune loop carried order dependences."), 162 cl::Hidden, cl::init(true)); 163 164 #ifndef NDEBUG 165 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 166 #endif 167 168 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 169 cl::ReallyHidden, cl::init(false), 170 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 171 172 namespace { 173 174 class NodeSet; 175 class SMSchedule; 176 177 /// The main class in the implementation of the target independent 178 /// software pipeliner pass. 179 class MachinePipeliner : public MachineFunctionPass { 180 public: 181 MachineFunction *MF = nullptr; 182 const MachineLoopInfo *MLI = nullptr; 183 const MachineDominatorTree *MDT = nullptr; 184 const InstrItineraryData *InstrItins; 185 const TargetInstrInfo *TII = nullptr; 186 RegisterClassInfo RegClassInfo; 187 188 #ifndef NDEBUG 189 static int NumTries; 190 #endif 191 192 /// Cache the target analysis information about the loop. 193 struct LoopInfo { 194 MachineBasicBlock *TBB = nullptr; 195 MachineBasicBlock *FBB = nullptr; 196 SmallVector<MachineOperand, 4> BrCond; 197 MachineInstr *LoopInductionVar = nullptr; 198 MachineInstr *LoopCompare = nullptr; 199 }; 200 LoopInfo LI; 201 202 static char ID; 203 204 MachinePipeliner() : MachineFunctionPass(ID) { 205 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 bool runOnMachineFunction(MachineFunction &MF) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addPreserved<AAResultsWrapperPass>(); 213 AU.addRequired<MachineLoopInfo>(); 214 AU.addRequired<MachineDominatorTree>(); 215 AU.addRequired<LiveIntervals>(); 216 MachineFunctionPass::getAnalysisUsage(AU); 217 } 218 219 private: 220 bool canPipelineLoop(MachineLoop &L); 221 bool scheduleLoop(MachineLoop &L); 222 bool swingModuloScheduler(MachineLoop &L); 223 }; 224 225 /// This class builds the dependence graph for the instructions in a loop, 226 /// and attempts to schedule the instructions using the SMS algorithm. 227 class SwingSchedulerDAG : public ScheduleDAGInstrs { 228 MachinePipeliner &Pass; 229 /// The minimum initiation interval between iterations for this schedule. 230 unsigned MII = 0; 231 /// Set to true if a valid pipelined schedule is found for the loop. 232 bool Scheduled = false; 233 MachineLoop &Loop; 234 LiveIntervals &LIS; 235 const RegisterClassInfo &RegClassInfo; 236 237 /// A toplogical ordering of the SUnits, which is needed for changing 238 /// dependences and iterating over the SUnits. 239 ScheduleDAGTopologicalSort Topo; 240 241 struct NodeInfo { 242 int ASAP = 0; 243 int ALAP = 0; 244 245 NodeInfo() = default; 246 }; 247 /// Computed properties for each node in the graph. 248 std::vector<NodeInfo> ScheduleInfo; 249 250 enum OrderKind { BottomUp = 0, TopDown = 1 }; 251 /// Computed node ordering for scheduling. 252 SetVector<SUnit *> NodeOrder; 253 254 using NodeSetType = SmallVector<NodeSet, 8>; 255 using ValueMapTy = DenseMap<unsigned, unsigned>; 256 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 257 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 258 259 /// Instructions to change when emitting the final schedule. 260 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 261 262 /// We may create a new instruction, so remember it because it 263 /// must be deleted when the pass is finished. 264 SmallPtrSet<MachineInstr *, 4> NewMIs; 265 266 /// Ordered list of DAG postprocessing steps. 267 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 268 269 /// Helper class to implement Johnson's circuit finding algorithm. 270 class Circuits { 271 std::vector<SUnit> &SUnits; 272 SetVector<SUnit *> Stack; 273 BitVector Blocked; 274 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 275 SmallVector<SmallVector<int, 4>, 16> AdjK; 276 unsigned NumPaths; 277 static unsigned MaxPaths; 278 279 public: 280 Circuits(std::vector<SUnit> &SUs) 281 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 282 283 /// Reset the data structures used in the circuit algorithm. 284 void reset() { 285 Stack.clear(); 286 Blocked.reset(); 287 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 288 NumPaths = 0; 289 } 290 291 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 292 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 293 void unblock(int U); 294 }; 295 296 public: 297 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 298 const RegisterClassInfo &rci) 299 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 300 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 301 P.MF->getSubtarget().getSMSMutations(Mutations); 302 } 303 304 void schedule() override; 305 void finishBlock() override; 306 307 /// Return true if the loop kernel has been scheduled. 308 bool hasNewSchedule() { return Scheduled; } 309 310 /// Return the earliest time an instruction may be scheduled. 311 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 312 313 /// Return the latest time an instruction my be scheduled. 314 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 315 316 /// The mobility function, which the the number of slots in which 317 /// an instruction may be scheduled. 318 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 319 320 /// The depth, in the dependence graph, for a node. 321 int getDepth(SUnit *Node) { return Node->getDepth(); } 322 323 /// The height, in the dependence graph, for a node. 324 int getHeight(SUnit *Node) { return Node->getHeight(); } 325 326 /// Return true if the dependence is a back-edge in the data dependence graph. 327 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 328 /// using an anti dependence from a Phi to an instruction. 329 bool isBackedge(SUnit *Source, const SDep &Dep) { 330 if (Dep.getKind() != SDep::Anti) 331 return false; 332 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 333 } 334 335 /// Return true if the dependence is an order dependence between non-Phis. 336 static bool isOrder(SUnit *Source, const SDep &Dep) { 337 if (Dep.getKind() != SDep::Order) 338 return false; 339 return (!Source->getInstr()->isPHI() && 340 !Dep.getSUnit()->getInstr()->isPHI()); 341 } 342 343 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 344 345 /// The latency of the dependence. 346 unsigned getLatency(SUnit *Source, const SDep &Dep) { 347 // Anti dependences represent recurrences, so use the latency of the 348 // instruction on the back-edge. 349 if (Dep.getKind() == SDep::Anti) { 350 if (Source->getInstr()->isPHI()) 351 return Dep.getSUnit()->Latency; 352 if (Dep.getSUnit()->getInstr()->isPHI()) 353 return Source->Latency; 354 return Dep.getLatency(); 355 } 356 return Dep.getLatency(); 357 } 358 359 /// The distance function, which indicates that operation V of iteration I 360 /// depends on operations U of iteration I-distance. 361 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 362 // Instructions that feed a Phi have a distance of 1. Computing larger 363 // values for arrays requires data dependence information. 364 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 365 return 1; 366 return 0; 367 } 368 369 /// Set the Minimum Initiation Interval for this schedule attempt. 370 void setMII(unsigned mii) { MII = mii; } 371 372 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, 373 bool UpdateDAG = false); 374 375 /// Return the new base register that was stored away for the changed 376 /// instruction. 377 unsigned getInstrBaseReg(SUnit *SU) { 378 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 379 InstrChanges.find(SU); 380 if (It != InstrChanges.end()) 381 return It->second.first; 382 return 0; 383 } 384 385 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 386 Mutations.push_back(std::move(Mutation)); 387 } 388 389 private: 390 void addLoopCarriedDependences(AliasAnalysis *AA); 391 void updatePhiDependences(); 392 void changeDependences(); 393 unsigned calculateResMII(); 394 unsigned calculateRecMII(NodeSetType &RecNodeSets); 395 void findCircuits(NodeSetType &NodeSets); 396 void fuseRecs(NodeSetType &NodeSets); 397 void removeDuplicateNodes(NodeSetType &NodeSets); 398 void computeNodeFunctions(NodeSetType &NodeSets); 399 void registerPressureFilter(NodeSetType &NodeSets); 400 void colocateNodeSets(NodeSetType &NodeSets); 401 void checkNodeSets(NodeSetType &NodeSets); 402 void groupRemainingNodes(NodeSetType &NodeSets); 403 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 404 SetVector<SUnit *> &NodesAdded); 405 void computeNodeOrder(NodeSetType &NodeSets); 406 bool schedulePipeline(SMSchedule &Schedule); 407 void generatePipelinedLoop(SMSchedule &Schedule); 408 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 409 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 410 MBBVectorTy &PrologBBs); 411 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 412 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 413 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 414 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 415 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 416 SMSchedule &Schedule, ValueMapTy *VRMap, 417 InstrMapTy &InstrMap, unsigned LastStageNum, 418 unsigned CurStageNum, bool IsLast); 419 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 420 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 421 SMSchedule &Schedule, ValueMapTy *VRMap, 422 InstrMapTy &InstrMap, unsigned LastStageNum, 423 unsigned CurStageNum, bool IsLast); 424 void removeDeadInstructions(MachineBasicBlock *KernelBB, 425 MBBVectorTy &EpilogBBs); 426 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 427 SMSchedule &Schedule); 428 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 429 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 430 ValueMapTy *VRMap); 431 bool computeDelta(MachineInstr &MI, unsigned &Delta); 432 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 433 unsigned Num); 434 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 435 unsigned InstStageNum); 436 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 437 unsigned InstStageNum, 438 SMSchedule &Schedule); 439 void updateInstruction(MachineInstr *NewMI, bool LastDef, 440 unsigned CurStageNum, unsigned InstStageNum, 441 SMSchedule &Schedule, ValueMapTy *VRMap); 442 MachineInstr *findDefInLoop(unsigned Reg); 443 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 444 unsigned LoopStage, ValueMapTy *VRMap, 445 MachineBasicBlock *BB); 446 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 447 SMSchedule &Schedule, ValueMapTy *VRMap, 448 InstrMapTy &InstrMap); 449 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 450 InstrMapTy &InstrMap, unsigned CurStageNum, 451 unsigned PhiNum, MachineInstr *Phi, 452 unsigned OldReg, unsigned NewReg, 453 unsigned PrevReg = 0); 454 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 455 unsigned &OffsetPos, unsigned &NewBase, 456 int64_t &NewOffset); 457 void postprocessDAG(); 458 }; 459 460 /// A NodeSet contains a set of SUnit DAG nodes with additional information 461 /// that assigns a priority to the set. 462 class NodeSet { 463 SetVector<SUnit *> Nodes; 464 bool HasRecurrence = false; 465 unsigned RecMII = 0; 466 int MaxMOV = 0; 467 int MaxDepth = 0; 468 unsigned Colocate = 0; 469 SUnit *ExceedPressure = nullptr; 470 471 public: 472 using iterator = SetVector<SUnit *>::const_iterator; 473 474 NodeSet() = default; 475 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 476 477 bool insert(SUnit *SU) { return Nodes.insert(SU); } 478 479 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 480 481 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 482 return Nodes.remove_if(P); 483 } 484 485 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 486 487 bool hasRecurrence() { return HasRecurrence; }; 488 489 unsigned size() const { return Nodes.size(); } 490 491 bool empty() const { return Nodes.empty(); } 492 493 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 494 495 void setRecMII(unsigned mii) { RecMII = mii; }; 496 497 void setColocate(unsigned c) { Colocate = c; }; 498 499 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 500 501 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 502 503 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 504 505 int getRecMII() { return RecMII; } 506 507 /// Summarize node functions for the entire node set. 508 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 509 for (SUnit *SU : *this) { 510 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 511 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 512 } 513 } 514 515 void clear() { 516 Nodes.clear(); 517 RecMII = 0; 518 HasRecurrence = false; 519 MaxMOV = 0; 520 MaxDepth = 0; 521 Colocate = 0; 522 ExceedPressure = nullptr; 523 } 524 525 operator SetVector<SUnit *> &() { return Nodes; } 526 527 /// Sort the node sets by importance. First, rank them by recurrence MII, 528 /// then by mobility (least mobile done first), and finally by depth. 529 /// Each node set may contain a colocate value which is used as the first 530 /// tie breaker, if it's set. 531 bool operator>(const NodeSet &RHS) const { 532 if (RecMII == RHS.RecMII) { 533 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 534 return Colocate < RHS.Colocate; 535 if (MaxMOV == RHS.MaxMOV) 536 return MaxDepth > RHS.MaxDepth; 537 return MaxMOV < RHS.MaxMOV; 538 } 539 return RecMII > RHS.RecMII; 540 } 541 542 bool operator==(const NodeSet &RHS) const { 543 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 544 MaxDepth == RHS.MaxDepth; 545 } 546 547 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 548 549 iterator begin() { return Nodes.begin(); } 550 iterator end() { return Nodes.end(); } 551 552 void print(raw_ostream &os) const { 553 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 554 << " depth " << MaxDepth << " col " << Colocate << "\n"; 555 for (const auto &I : Nodes) 556 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 557 os << "\n"; 558 } 559 560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 561 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 562 #endif 563 }; 564 565 /// This class repesents the scheduled code. The main data structure is a 566 /// map from scheduled cycle to instructions. During scheduling, the 567 /// data structure explicitly represents all stages/iterations. When 568 /// the algorithm finshes, the schedule is collapsed into a single stage, 569 /// which represents instructions from different loop iterations. 570 /// 571 /// The SMS algorithm allows negative values for cycles, so the first cycle 572 /// in the schedule is the smallest cycle value. 573 class SMSchedule { 574 private: 575 /// Map from execution cycle to instructions. 576 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 577 578 /// Map from instruction to execution cycle. 579 std::map<SUnit *, int> InstrToCycle; 580 581 /// Map for each register and the max difference between its uses and def. 582 /// The first element in the pair is the max difference in stages. The 583 /// second is true if the register defines a Phi value and loop value is 584 /// scheduled before the Phi. 585 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 586 587 /// Keep track of the first cycle value in the schedule. It starts 588 /// as zero, but the algorithm allows negative values. 589 int FirstCycle = 0; 590 591 /// Keep track of the last cycle value in the schedule. 592 int LastCycle = 0; 593 594 /// The initiation interval (II) for the schedule. 595 int InitiationInterval = 0; 596 597 /// Target machine information. 598 const TargetSubtargetInfo &ST; 599 600 /// Virtual register information. 601 MachineRegisterInfo &MRI; 602 603 std::unique_ptr<DFAPacketizer> Resources; 604 605 public: 606 SMSchedule(MachineFunction *mf) 607 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 608 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 609 610 void reset() { 611 ScheduledInstrs.clear(); 612 InstrToCycle.clear(); 613 RegToStageDiff.clear(); 614 FirstCycle = 0; 615 LastCycle = 0; 616 InitiationInterval = 0; 617 } 618 619 /// Set the initiation interval for this schedule. 620 void setInitiationInterval(int ii) { InitiationInterval = ii; } 621 622 /// Return the first cycle in the completed schedule. This 623 /// can be a negative value. 624 int getFirstCycle() const { return FirstCycle; } 625 626 /// Return the last cycle in the finalized schedule. 627 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 628 629 /// Return the cycle of the earliest scheduled instruction in the dependence 630 /// chain. 631 int earliestCycleInChain(const SDep &Dep); 632 633 /// Return the cycle of the latest scheduled instruction in the dependence 634 /// chain. 635 int latestCycleInChain(const SDep &Dep); 636 637 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 638 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 639 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 640 641 /// Iterators for the cycle to instruction map. 642 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 643 using const_sched_iterator = 644 DenseMap<int, std::deque<SUnit *>>::const_iterator; 645 646 /// Return true if the instruction is scheduled at the specified stage. 647 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 648 return (stageScheduled(SU) == (int)StageNum); 649 } 650 651 /// Return the stage for a scheduled instruction. Return -1 if 652 /// the instruction has not been scheduled. 653 int stageScheduled(SUnit *SU) const { 654 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 655 if (it == InstrToCycle.end()) 656 return -1; 657 return (it->second - FirstCycle) / InitiationInterval; 658 } 659 660 /// Return the cycle for a scheduled instruction. This function normalizes 661 /// the first cycle to be 0. 662 unsigned cycleScheduled(SUnit *SU) const { 663 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 664 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 665 return (it->second - FirstCycle) % InitiationInterval; 666 } 667 668 /// Return the maximum stage count needed for this schedule. 669 unsigned getMaxStageCount() { 670 return (LastCycle - FirstCycle) / InitiationInterval; 671 } 672 673 /// Return the max. number of stages/iterations that can occur between a 674 /// register definition and its uses. 675 unsigned getStagesForReg(int Reg, unsigned CurStage) { 676 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 677 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 678 return 1; 679 return Stages.first; 680 } 681 682 /// The number of stages for a Phi is a little different than other 683 /// instructions. The minimum value computed in RegToStageDiff is 1 684 /// because we assume the Phi is needed for at least 1 iteration. 685 /// This is not the case if the loop value is scheduled prior to the 686 /// Phi in the same stage. This function returns the number of stages 687 /// or iterations needed between the Phi definition and any uses. 688 unsigned getStagesForPhi(int Reg) { 689 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 690 if (Stages.second) 691 return Stages.first; 692 return Stages.first - 1; 693 } 694 695 /// Return the instructions that are scheduled at the specified cycle. 696 std::deque<SUnit *> &getInstructions(int cycle) { 697 return ScheduledInstrs[cycle]; 698 } 699 700 bool isValidSchedule(SwingSchedulerDAG *SSD); 701 void finalizeSchedule(SwingSchedulerDAG *SSD); 702 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 703 std::deque<SUnit *> &Insts); 704 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 705 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 706 MachineOperand &MO); 707 void print(raw_ostream &os) const; 708 void dump() const; 709 }; 710 711 } // end anonymous namespace 712 713 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 714 char MachinePipeliner::ID = 0; 715 #ifndef NDEBUG 716 int MachinePipeliner::NumTries = 0; 717 #endif 718 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 719 720 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 721 "Modulo Software Pipelining", false, false) 722 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 723 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 724 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 725 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 726 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 727 "Modulo Software Pipelining", false, false) 728 729 /// The "main" function for implementing Swing Modulo Scheduling. 730 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 731 if (skipFunction(*mf.getFunction())) 732 return false; 733 734 if (!EnableSWP) 735 return false; 736 737 if (mf.getFunction()->getAttributes().hasAttribute( 738 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 739 !EnableSWPOptSize.getPosition()) 740 return false; 741 742 MF = &mf; 743 MLI = &getAnalysis<MachineLoopInfo>(); 744 MDT = &getAnalysis<MachineDominatorTree>(); 745 TII = MF->getSubtarget().getInstrInfo(); 746 RegClassInfo.runOnMachineFunction(*MF); 747 748 for (auto &L : *MLI) 749 scheduleLoop(*L); 750 751 return false; 752 } 753 754 /// Attempt to perform the SMS algorithm on the specified loop. This function is 755 /// the main entry point for the algorithm. The function identifies candidate 756 /// loops, calculates the minimum initiation interval, and attempts to schedule 757 /// the loop. 758 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 759 bool Changed = false; 760 for (auto &InnerLoop : L) 761 Changed |= scheduleLoop(*InnerLoop); 762 763 #ifndef NDEBUG 764 // Stop trying after reaching the limit (if any). 765 int Limit = SwpLoopLimit; 766 if (Limit >= 0) { 767 if (NumTries >= SwpLoopLimit) 768 return Changed; 769 NumTries++; 770 } 771 #endif 772 773 if (!canPipelineLoop(L)) 774 return Changed; 775 776 ++NumTrytoPipeline; 777 778 Changed = swingModuloScheduler(L); 779 780 return Changed; 781 } 782 783 /// Return true if the loop can be software pipelined. The algorithm is 784 /// restricted to loops with a single basic block. Make sure that the 785 /// branch in the loop can be analyzed. 786 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 787 if (L.getNumBlocks() != 1) 788 return false; 789 790 // Check if the branch can't be understood because we can't do pipelining 791 // if that's the case. 792 LI.TBB = nullptr; 793 LI.FBB = nullptr; 794 LI.BrCond.clear(); 795 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 796 return false; 797 798 LI.LoopInductionVar = nullptr; 799 LI.LoopCompare = nullptr; 800 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 801 return false; 802 803 if (!L.getLoopPreheader()) 804 return false; 805 806 // If any of the Phis contain subregs, then we can't pipeline 807 // because we don't know how to maintain subreg information in the 808 // VMap structure. 809 MachineBasicBlock *MBB = L.getHeader(); 810 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 811 BBE = MBB->getFirstNonPHI(); 812 BBI != BBE; ++BBI) 813 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 814 if (BBI->getOperand(i).getSubReg() != 0) 815 return false; 816 817 return true; 818 } 819 820 /// The SMS algorithm consists of the following main steps: 821 /// 1. Computation and analysis of the dependence graph. 822 /// 2. Ordering of the nodes (instructions). 823 /// 3. Attempt to Schedule the loop. 824 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 825 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 826 827 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 828 829 MachineBasicBlock *MBB = L.getHeader(); 830 // The kernel should not include any terminator instructions. These 831 // will be added back later. 832 SMS.startBlock(MBB); 833 834 // Compute the number of 'real' instructions in the basic block by 835 // ignoring terminators. 836 unsigned size = MBB->size(); 837 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 838 E = MBB->instr_end(); 839 I != E; ++I, --size) 840 ; 841 842 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 843 SMS.schedule(); 844 SMS.exitRegion(); 845 846 SMS.finishBlock(); 847 return SMS.hasNewSchedule(); 848 } 849 850 /// We override the schedule function in ScheduleDAGInstrs to implement the 851 /// scheduling part of the Swing Modulo Scheduling algorithm. 852 void SwingSchedulerDAG::schedule() { 853 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 854 buildSchedGraph(AA); 855 addLoopCarriedDependences(AA); 856 updatePhiDependences(); 857 Topo.InitDAGTopologicalSorting(); 858 postprocessDAG(); 859 changeDependences(); 860 DEBUG({ 861 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 862 SUnits[su].dumpAll(this); 863 }); 864 865 NodeSetType NodeSets; 866 findCircuits(NodeSets); 867 868 // Calculate the MII. 869 unsigned ResMII = calculateResMII(); 870 unsigned RecMII = calculateRecMII(NodeSets); 871 872 fuseRecs(NodeSets); 873 874 // This flag is used for testing and can cause correctness problems. 875 if (SwpIgnoreRecMII) 876 RecMII = 0; 877 878 MII = std::max(ResMII, RecMII); 879 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 880 << ")\n"); 881 882 // Can't schedule a loop without a valid MII. 883 if (MII == 0) 884 return; 885 886 // Don't pipeline large loops. 887 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 888 return; 889 890 computeNodeFunctions(NodeSets); 891 892 registerPressureFilter(NodeSets); 893 894 colocateNodeSets(NodeSets); 895 896 checkNodeSets(NodeSets); 897 898 DEBUG({ 899 for (auto &I : NodeSets) { 900 dbgs() << " Rec NodeSet "; 901 I.dump(); 902 } 903 }); 904 905 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 906 907 groupRemainingNodes(NodeSets); 908 909 removeDuplicateNodes(NodeSets); 910 911 DEBUG({ 912 for (auto &I : NodeSets) { 913 dbgs() << " NodeSet "; 914 I.dump(); 915 } 916 }); 917 918 computeNodeOrder(NodeSets); 919 920 SMSchedule Schedule(Pass.MF); 921 Scheduled = schedulePipeline(Schedule); 922 923 if (!Scheduled) 924 return; 925 926 unsigned numStages = Schedule.getMaxStageCount(); 927 // No need to generate pipeline if there are no overlapped iterations. 928 if (numStages == 0) 929 return; 930 931 // Check that the maximum stage count is less than user-defined limit. 932 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 933 return; 934 935 generatePipelinedLoop(Schedule); 936 ++NumPipelined; 937 } 938 939 /// Clean up after the software pipeliner runs. 940 void SwingSchedulerDAG::finishBlock() { 941 for (MachineInstr *I : NewMIs) 942 MF.DeleteMachineInstr(I); 943 NewMIs.clear(); 944 945 // Call the superclass. 946 ScheduleDAGInstrs::finishBlock(); 947 } 948 949 /// Return the register values for the operands of a Phi instruction. 950 /// This function assume the instruction is a Phi. 951 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 952 unsigned &InitVal, unsigned &LoopVal) { 953 assert(Phi.isPHI() && "Expecting a Phi."); 954 955 InitVal = 0; 956 LoopVal = 0; 957 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 958 if (Phi.getOperand(i + 1).getMBB() != Loop) 959 InitVal = Phi.getOperand(i).getReg(); 960 else 961 LoopVal = Phi.getOperand(i).getReg(); 962 963 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 964 } 965 966 /// Return the Phi register value that comes from the incoming block. 967 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 968 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 969 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 970 return Phi.getOperand(i).getReg(); 971 return 0; 972 } 973 974 /// Return the Phi register value that comes the the loop block. 975 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 976 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 977 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 978 return Phi.getOperand(i).getReg(); 979 return 0; 980 } 981 982 /// Return true if SUb can be reached from SUa following the chain edges. 983 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 984 SmallPtrSet<SUnit *, 8> Visited; 985 SmallVector<SUnit *, 8> Worklist; 986 Worklist.push_back(SUa); 987 while (!Worklist.empty()) { 988 const SUnit *SU = Worklist.pop_back_val(); 989 for (auto &SI : SU->Succs) { 990 SUnit *SuccSU = SI.getSUnit(); 991 if (SI.getKind() == SDep::Order) { 992 if (Visited.count(SuccSU)) 993 continue; 994 if (SuccSU == SUb) 995 return true; 996 Worklist.push_back(SuccSU); 997 Visited.insert(SuccSU); 998 } 999 } 1000 } 1001 return false; 1002 } 1003 1004 /// Return true if the instruction causes a chain between memory 1005 /// references before and after it. 1006 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1007 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1008 (MI.hasOrderedMemoryRef() && 1009 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1010 } 1011 1012 /// Return the underlying objects for the memory references of an instruction. 1013 /// This function calls the code in ValueTracking, but first checks that the 1014 /// instruction has a memory operand. 1015 static void getUnderlyingObjects(MachineInstr *MI, 1016 SmallVectorImpl<Value *> &Objs, 1017 const DataLayout &DL) { 1018 if (!MI->hasOneMemOperand()) 1019 return; 1020 MachineMemOperand *MM = *MI->memoperands_begin(); 1021 if (!MM->getValue()) 1022 return; 1023 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1024 } 1025 1026 /// Add a chain edge between a load and store if the store can be an 1027 /// alias of the load on a subsequent iteration, i.e., a loop carried 1028 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1029 /// but that code doesn't create loop carried dependences. 1030 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1031 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1032 for (auto &SU : SUnits) { 1033 MachineInstr &MI = *SU.getInstr(); 1034 if (isDependenceBarrier(MI, AA)) 1035 PendingLoads.clear(); 1036 else if (MI.mayLoad()) { 1037 SmallVector<Value *, 4> Objs; 1038 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1039 for (auto V : Objs) { 1040 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1041 SUs.push_back(&SU); 1042 } 1043 } else if (MI.mayStore()) { 1044 SmallVector<Value *, 4> Objs; 1045 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1046 for (auto V : Objs) { 1047 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1048 PendingLoads.find(V); 1049 if (I == PendingLoads.end()) 1050 continue; 1051 for (auto Load : I->second) { 1052 if (isSuccOrder(Load, &SU)) 1053 continue; 1054 MachineInstr &LdMI = *Load->getInstr(); 1055 // First, perform the cheaper check that compares the base register. 1056 // If they are the same and the load offset is less than the store 1057 // offset, then mark the dependence as loop carried potentially. 1058 unsigned BaseReg1, BaseReg2; 1059 int64_t Offset1, Offset2; 1060 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1061 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1062 SU.addPred(SDep(Load, SDep::Barrier)); 1063 continue; 1064 } 1065 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1066 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1067 "What happened to the chain edge?"); 1068 SU.addPred(SDep(Load, SDep::Barrier)); 1069 continue; 1070 } 1071 // Second, the more expensive check that uses alias analysis on the 1072 // base registers. If they alias, and the load offset is less than 1073 // the store offset, the mark the dependence as loop carried. 1074 if (!AA) { 1075 SU.addPred(SDep(Load, SDep::Barrier)); 1076 continue; 1077 } 1078 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1079 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1080 if (!MMO1->getValue() || !MMO2->getValue()) { 1081 SU.addPred(SDep(Load, SDep::Barrier)); 1082 continue; 1083 } 1084 if (MMO1->getValue() == MMO2->getValue() && 1085 MMO1->getOffset() <= MMO2->getOffset()) { 1086 SU.addPred(SDep(Load, SDep::Barrier)); 1087 continue; 1088 } 1089 AliasResult AAResult = AA->alias( 1090 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1091 MMO1->getAAInfo()), 1092 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1093 MMO2->getAAInfo())); 1094 1095 if (AAResult != NoAlias) 1096 SU.addPred(SDep(Load, SDep::Barrier)); 1097 } 1098 } 1099 } 1100 } 1101 } 1102 1103 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1104 /// processes dependences for PHIs. This function adds true dependences 1105 /// from a PHI to a use, and a loop carried dependence from the use to the 1106 /// PHI. The loop carried dependence is represented as an anti dependence 1107 /// edge. This function also removes chain dependences between unrelated 1108 /// PHIs. 1109 void SwingSchedulerDAG::updatePhiDependences() { 1110 SmallVector<SDep, 4> RemoveDeps; 1111 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1112 1113 // Iterate over each DAG node. 1114 for (SUnit &I : SUnits) { 1115 RemoveDeps.clear(); 1116 // Set to true if the instruction has an operand defined by a Phi. 1117 unsigned HasPhiUse = 0; 1118 unsigned HasPhiDef = 0; 1119 MachineInstr *MI = I.getInstr(); 1120 // Iterate over each operand, and we process the definitions. 1121 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1122 MOE = MI->operands_end(); 1123 MOI != MOE; ++MOI) { 1124 if (!MOI->isReg()) 1125 continue; 1126 unsigned Reg = MOI->getReg(); 1127 if (MOI->isDef()) { 1128 // If the register is used by a Phi, then create an anti dependence. 1129 for (MachineRegisterInfo::use_instr_iterator 1130 UI = MRI.use_instr_begin(Reg), 1131 UE = MRI.use_instr_end(); 1132 UI != UE; ++UI) { 1133 MachineInstr *UseMI = &*UI; 1134 SUnit *SU = getSUnit(UseMI); 1135 if (SU != nullptr && UseMI->isPHI()) { 1136 if (!MI->isPHI()) { 1137 SDep Dep(SU, SDep::Anti, Reg); 1138 I.addPred(Dep); 1139 } else { 1140 HasPhiDef = Reg; 1141 // Add a chain edge to a dependent Phi that isn't an existing 1142 // predecessor. 1143 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1144 I.addPred(SDep(SU, SDep::Barrier)); 1145 } 1146 } 1147 } 1148 } else if (MOI->isUse()) { 1149 // If the register is defined by a Phi, then create a true dependence. 1150 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1151 if (DefMI == nullptr) 1152 continue; 1153 SUnit *SU = getSUnit(DefMI); 1154 if (SU != nullptr && DefMI->isPHI()) { 1155 if (!MI->isPHI()) { 1156 SDep Dep(SU, SDep::Data, Reg); 1157 Dep.setLatency(0); 1158 ST.adjustSchedDependency(SU, &I, Dep); 1159 I.addPred(Dep); 1160 } else { 1161 HasPhiUse = Reg; 1162 // Add a chain edge to a dependent Phi that isn't an existing 1163 // predecessor. 1164 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1165 I.addPred(SDep(SU, SDep::Barrier)); 1166 } 1167 } 1168 } 1169 } 1170 // Remove order dependences from an unrelated Phi. 1171 if (!SwpPruneDeps) 1172 continue; 1173 for (auto &PI : I.Preds) { 1174 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1175 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1176 if (I.getInstr()->isPHI()) { 1177 if (PMI->getOperand(0).getReg() == HasPhiUse) 1178 continue; 1179 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1180 continue; 1181 } 1182 RemoveDeps.push_back(PI); 1183 } 1184 } 1185 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1186 I.removePred(RemoveDeps[i]); 1187 } 1188 } 1189 1190 /// Iterate over each DAG node and see if we can change any dependences 1191 /// in order to reduce the recurrence MII. 1192 void SwingSchedulerDAG::changeDependences() { 1193 // See if an instruction can use a value from the previous iteration. 1194 // If so, we update the base and offset of the instruction and change 1195 // the dependences. 1196 for (SUnit &I : SUnits) { 1197 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1198 int64_t NewOffset = 0; 1199 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1200 NewOffset)) 1201 continue; 1202 1203 // Get the MI and SUnit for the instruction that defines the original base. 1204 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1206 if (!DefMI) 1207 continue; 1208 SUnit *DefSU = getSUnit(DefMI); 1209 if (!DefSU) 1210 continue; 1211 // Get the MI and SUnit for the instruction that defins the new base. 1212 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1213 if (!LastMI) 1214 continue; 1215 SUnit *LastSU = getSUnit(LastMI); 1216 if (!LastSU) 1217 continue; 1218 1219 if (Topo.IsReachable(&I, LastSU)) 1220 continue; 1221 1222 // Remove the dependence. The value now depends on a prior iteration. 1223 SmallVector<SDep, 4> Deps; 1224 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1225 ++P) 1226 if (P->getSUnit() == DefSU) 1227 Deps.push_back(*P); 1228 for (int i = 0, e = Deps.size(); i != e; i++) { 1229 Topo.RemovePred(&I, Deps[i].getSUnit()); 1230 I.removePred(Deps[i]); 1231 } 1232 // Remove the chain dependence between the instructions. 1233 Deps.clear(); 1234 for (auto &P : LastSU->Preds) 1235 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1236 Deps.push_back(P); 1237 for (int i = 0, e = Deps.size(); i != e; i++) { 1238 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1239 LastSU->removePred(Deps[i]); 1240 } 1241 1242 // Add a dependence between the new instruction and the instruction 1243 // that defines the new base. 1244 SDep Dep(&I, SDep::Anti, NewBase); 1245 LastSU->addPred(Dep); 1246 1247 // Remember the base and offset information so that we can update the 1248 // instruction during code generation. 1249 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1250 } 1251 } 1252 1253 namespace { 1254 1255 // FuncUnitSorter - Comparison operator used to sort instructions by 1256 // the number of functional unit choices. 1257 struct FuncUnitSorter { 1258 const InstrItineraryData *InstrItins; 1259 DenseMap<unsigned, unsigned> Resources; 1260 1261 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1262 1263 // Compute the number of functional unit alternatives needed 1264 // at each stage, and take the minimum value. We prioritize the 1265 // instructions by the least number of choices first. 1266 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1267 unsigned schedClass = Inst->getDesc().getSchedClass(); 1268 unsigned min = UINT_MAX; 1269 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1270 *IE = InstrItins->endStage(schedClass); 1271 IS != IE; ++IS) { 1272 unsigned funcUnits = IS->getUnits(); 1273 unsigned numAlternatives = countPopulation(funcUnits); 1274 if (numAlternatives < min) { 1275 min = numAlternatives; 1276 F = funcUnits; 1277 } 1278 } 1279 return min; 1280 } 1281 1282 // Compute the critical resources needed by the instruction. This 1283 // function records the functional units needed by instructions that 1284 // must use only one functional unit. We use this as a tie breaker 1285 // for computing the resource MII. The instrutions that require 1286 // the same, highly used, functional unit have high priority. 1287 void calcCriticalResources(MachineInstr &MI) { 1288 unsigned SchedClass = MI.getDesc().getSchedClass(); 1289 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1290 *IE = InstrItins->endStage(SchedClass); 1291 IS != IE; ++IS) { 1292 unsigned FuncUnits = IS->getUnits(); 1293 if (countPopulation(FuncUnits) == 1) 1294 Resources[FuncUnits]++; 1295 } 1296 } 1297 1298 /// Return true if IS1 has less priority than IS2. 1299 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1300 unsigned F1 = 0, F2 = 0; 1301 unsigned MFUs1 = minFuncUnits(IS1, F1); 1302 unsigned MFUs2 = minFuncUnits(IS2, F2); 1303 if (MFUs1 == 1 && MFUs2 == 1) 1304 return Resources.lookup(F1) < Resources.lookup(F2); 1305 return MFUs1 > MFUs2; 1306 } 1307 }; 1308 1309 } // end anonymous namespace 1310 1311 /// Calculate the resource constrained minimum initiation interval for the 1312 /// specified loop. We use the DFA to model the resources needed for 1313 /// each instruction, and we ignore dependences. A different DFA is created 1314 /// for each cycle that is required. When adding a new instruction, we attempt 1315 /// to add it to each existing DFA, until a legal space is found. If the 1316 /// instruction cannot be reserved in an existing DFA, we create a new one. 1317 unsigned SwingSchedulerDAG::calculateResMII() { 1318 SmallVector<DFAPacketizer *, 8> Resources; 1319 MachineBasicBlock *MBB = Loop.getHeader(); 1320 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1321 1322 // Sort the instructions by the number of available choices for scheduling, 1323 // least to most. Use the number of critical resources as the tie breaker. 1324 FuncUnitSorter FUS = 1325 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1326 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1327 E = MBB->getFirstTerminator(); 1328 I != E; ++I) 1329 FUS.calcCriticalResources(*I); 1330 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1331 FuncUnitOrder(FUS); 1332 1333 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1334 E = MBB->getFirstTerminator(); 1335 I != E; ++I) 1336 FuncUnitOrder.push(&*I); 1337 1338 while (!FuncUnitOrder.empty()) { 1339 MachineInstr *MI = FuncUnitOrder.top(); 1340 FuncUnitOrder.pop(); 1341 if (TII->isZeroCost(MI->getOpcode())) 1342 continue; 1343 // Attempt to reserve the instruction in an existing DFA. At least one 1344 // DFA is needed for each cycle. 1345 unsigned NumCycles = getSUnit(MI)->Latency; 1346 unsigned ReservedCycles = 0; 1347 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1348 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1349 for (unsigned C = 0; C < NumCycles; ++C) 1350 while (RI != RE) { 1351 if ((*RI++)->canReserveResources(*MI)) { 1352 ++ReservedCycles; 1353 break; 1354 } 1355 } 1356 // Start reserving resources using existing DFAs. 1357 for (unsigned C = 0; C < ReservedCycles; ++C) { 1358 --RI; 1359 (*RI)->reserveResources(*MI); 1360 } 1361 // Add new DFAs, if needed, to reserve resources. 1362 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1363 DFAPacketizer *NewResource = 1364 TII->CreateTargetScheduleState(MF.getSubtarget()); 1365 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1366 NewResource->reserveResources(*MI); 1367 Resources.push_back(NewResource); 1368 } 1369 } 1370 int Resmii = Resources.size(); 1371 // Delete the memory for each of the DFAs that were created earlier. 1372 for (DFAPacketizer *RI : Resources) { 1373 DFAPacketizer *D = RI; 1374 delete D; 1375 } 1376 Resources.clear(); 1377 return Resmii; 1378 } 1379 1380 /// Calculate the recurrence-constrainted minimum initiation interval. 1381 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1382 /// for each circuit. The II needs to satisfy the inequality 1383 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1384 /// II that satistifies the inequality, and the RecMII is the maximum 1385 /// of those values. 1386 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1387 unsigned RecMII = 0; 1388 1389 for (NodeSet &Nodes : NodeSets) { 1390 if (Nodes.empty()) 1391 continue; 1392 1393 unsigned Delay = Nodes.size() - 1; 1394 unsigned Distance = 1; 1395 1396 // ii = ceil(delay / distance) 1397 unsigned CurMII = (Delay + Distance - 1) / Distance; 1398 Nodes.setRecMII(CurMII); 1399 if (CurMII > RecMII) 1400 RecMII = CurMII; 1401 } 1402 1403 return RecMII; 1404 } 1405 1406 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1407 /// but we do this to find the circuits, and then change them back. 1408 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1409 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1410 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1411 SUnit *SU = &SUnits[i]; 1412 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1413 IP != EP; ++IP) { 1414 if (IP->getKind() != SDep::Anti) 1415 continue; 1416 DepsAdded.push_back(std::make_pair(SU, *IP)); 1417 } 1418 } 1419 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1420 E = DepsAdded.end(); 1421 I != E; ++I) { 1422 // Remove this anti dependency and add one in the reverse direction. 1423 SUnit *SU = I->first; 1424 SDep &D = I->second; 1425 SUnit *TargetSU = D.getSUnit(); 1426 unsigned Reg = D.getReg(); 1427 unsigned Lat = D.getLatency(); 1428 SU->removePred(D); 1429 SDep Dep(SU, SDep::Anti, Reg); 1430 Dep.setLatency(Lat); 1431 TargetSU->addPred(Dep); 1432 } 1433 } 1434 1435 /// Create the adjacency structure of the nodes in the graph. 1436 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1437 SwingSchedulerDAG *DAG) { 1438 BitVector Added(SUnits.size()); 1439 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1440 Added.reset(); 1441 // Add any successor to the adjacency matrix and exclude duplicates. 1442 for (auto &SI : SUnits[i].Succs) { 1443 // Do not process a boundary node and a back-edge is processed only 1444 // if it goes to a Phi. 1445 if (SI.getSUnit()->isBoundaryNode() || 1446 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1447 continue; 1448 int N = SI.getSUnit()->NodeNum; 1449 if (!Added.test(N)) { 1450 AdjK[i].push_back(N); 1451 Added.set(N); 1452 } 1453 } 1454 // A chain edge between a store and a load is treated as a back-edge in the 1455 // adjacency matrix. 1456 for (auto &PI : SUnits[i].Preds) { 1457 if (!SUnits[i].getInstr()->mayStore() || 1458 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1459 continue; 1460 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1461 int N = PI.getSUnit()->NodeNum; 1462 if (!Added.test(N)) { 1463 AdjK[i].push_back(N); 1464 Added.set(N); 1465 } 1466 } 1467 } 1468 } 1469 } 1470 1471 /// Identify an elementary circuit in the dependence graph starting at the 1472 /// specified node. 1473 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1474 bool HasBackedge) { 1475 SUnit *SV = &SUnits[V]; 1476 bool F = false; 1477 Stack.insert(SV); 1478 Blocked.set(V); 1479 1480 for (auto W : AdjK[V]) { 1481 if (NumPaths > MaxPaths) 1482 break; 1483 if (W < S) 1484 continue; 1485 if (W == S) { 1486 if (!HasBackedge) 1487 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1488 F = true; 1489 ++NumPaths; 1490 break; 1491 } else if (!Blocked.test(W)) { 1492 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1493 F = true; 1494 } 1495 } 1496 1497 if (F) 1498 unblock(V); 1499 else { 1500 for (auto W : AdjK[V]) { 1501 if (W < S) 1502 continue; 1503 if (B[W].count(SV) == 0) 1504 B[W].insert(SV); 1505 } 1506 } 1507 Stack.pop_back(); 1508 return F; 1509 } 1510 1511 /// Unblock a node in the circuit finding algorithm. 1512 void SwingSchedulerDAG::Circuits::unblock(int U) { 1513 Blocked.reset(U); 1514 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1515 while (!BU.empty()) { 1516 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1517 assert(SI != BU.end() && "Invalid B set."); 1518 SUnit *W = *SI; 1519 BU.erase(W); 1520 if (Blocked.test(W->NodeNum)) 1521 unblock(W->NodeNum); 1522 } 1523 } 1524 1525 /// Identify all the elementary circuits in the dependence graph using 1526 /// Johnson's circuit algorithm. 1527 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1528 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1529 // but we do this to find the circuits, and then change them back. 1530 swapAntiDependences(SUnits); 1531 1532 Circuits Cir(SUnits); 1533 // Create the adjacency structure. 1534 Cir.createAdjacencyStructure(this); 1535 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1536 Cir.reset(); 1537 Cir.circuit(i, i, NodeSets); 1538 } 1539 1540 // Change the dependences back so that we've created a DAG again. 1541 swapAntiDependences(SUnits); 1542 } 1543 1544 /// Return true for DAG nodes that we ignore when computing the cost functions. 1545 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1546 /// in the calculation of the ASAP, ALAP, etc functions. 1547 static bool ignoreDependence(const SDep &D, bool isPred) { 1548 if (D.isArtificial()) 1549 return true; 1550 return D.getKind() == SDep::Anti && isPred; 1551 } 1552 1553 /// Compute several functions need to order the nodes for scheduling. 1554 /// ASAP - Earliest time to schedule a node. 1555 /// ALAP - Latest time to schedule a node. 1556 /// MOV - Mobility function, difference between ALAP and ASAP. 1557 /// D - Depth of each node. 1558 /// H - Height of each node. 1559 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1560 ScheduleInfo.resize(SUnits.size()); 1561 1562 DEBUG({ 1563 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1564 E = Topo.end(); 1565 I != E; ++I) { 1566 SUnit *SU = &SUnits[*I]; 1567 SU->dump(this); 1568 } 1569 }); 1570 1571 int maxASAP = 0; 1572 // Compute ASAP. 1573 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1574 E = Topo.end(); 1575 I != E; ++I) { 1576 int asap = 0; 1577 SUnit *SU = &SUnits[*I]; 1578 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1579 EP = SU->Preds.end(); 1580 IP != EP; ++IP) { 1581 if (ignoreDependence(*IP, true)) 1582 continue; 1583 SUnit *pred = IP->getSUnit(); 1584 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1585 getDistance(pred, SU, *IP) * MII)); 1586 } 1587 maxASAP = std::max(maxASAP, asap); 1588 ScheduleInfo[*I].ASAP = asap; 1589 } 1590 1591 // Compute ALAP and MOV. 1592 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1593 E = Topo.rend(); 1594 I != E; ++I) { 1595 int alap = maxASAP; 1596 SUnit *SU = &SUnits[*I]; 1597 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1598 ES = SU->Succs.end(); 1599 IS != ES; ++IS) { 1600 if (ignoreDependence(*IS, true)) 1601 continue; 1602 SUnit *succ = IS->getSUnit(); 1603 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1604 getDistance(SU, succ, *IS) * MII)); 1605 } 1606 1607 ScheduleInfo[*I].ALAP = alap; 1608 } 1609 1610 // After computing the node functions, compute the summary for each node set. 1611 for (NodeSet &I : NodeSets) 1612 I.computeNodeSetInfo(this); 1613 1614 DEBUG({ 1615 for (unsigned i = 0; i < SUnits.size(); i++) { 1616 dbgs() << "\tNode " << i << ":\n"; 1617 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1618 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1619 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1620 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1621 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1622 } 1623 }); 1624 } 1625 1626 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1627 /// as the predecessors of the elements of NodeOrder that are not also in 1628 /// NodeOrder. 1629 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1630 SmallSetVector<SUnit *, 8> &Preds, 1631 const NodeSet *S = nullptr) { 1632 Preds.clear(); 1633 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1634 I != E; ++I) { 1635 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1636 PI != PE; ++PI) { 1637 if (S && S->count(PI->getSUnit()) == 0) 1638 continue; 1639 if (ignoreDependence(*PI, true)) 1640 continue; 1641 if (NodeOrder.count(PI->getSUnit()) == 0) 1642 Preds.insert(PI->getSUnit()); 1643 } 1644 // Back-edges are predecessors with an anti-dependence. 1645 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1646 ES = (*I)->Succs.end(); 1647 IS != ES; ++IS) { 1648 if (IS->getKind() != SDep::Anti) 1649 continue; 1650 if (S && S->count(IS->getSUnit()) == 0) 1651 continue; 1652 if (NodeOrder.count(IS->getSUnit()) == 0) 1653 Preds.insert(IS->getSUnit()); 1654 } 1655 } 1656 return !Preds.empty(); 1657 } 1658 1659 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1660 /// as the successors of the elements of NodeOrder that are not also in 1661 /// NodeOrder. 1662 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1663 SmallSetVector<SUnit *, 8> &Succs, 1664 const NodeSet *S = nullptr) { 1665 Succs.clear(); 1666 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1667 I != E; ++I) { 1668 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1669 SI != SE; ++SI) { 1670 if (S && S->count(SI->getSUnit()) == 0) 1671 continue; 1672 if (ignoreDependence(*SI, false)) 1673 continue; 1674 if (NodeOrder.count(SI->getSUnit()) == 0) 1675 Succs.insert(SI->getSUnit()); 1676 } 1677 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1678 PE = (*I)->Preds.end(); 1679 PI != PE; ++PI) { 1680 if (PI->getKind() != SDep::Anti) 1681 continue; 1682 if (S && S->count(PI->getSUnit()) == 0) 1683 continue; 1684 if (NodeOrder.count(PI->getSUnit()) == 0) 1685 Succs.insert(PI->getSUnit()); 1686 } 1687 } 1688 return !Succs.empty(); 1689 } 1690 1691 /// Return true if there is a path from the specified node to any of the nodes 1692 /// in DestNodes. Keep track and return the nodes in any path. 1693 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1694 SetVector<SUnit *> &DestNodes, 1695 SetVector<SUnit *> &Exclude, 1696 SmallPtrSet<SUnit *, 8> &Visited) { 1697 if (Cur->isBoundaryNode()) 1698 return false; 1699 if (Exclude.count(Cur) != 0) 1700 return false; 1701 if (DestNodes.count(Cur) != 0) 1702 return true; 1703 if (!Visited.insert(Cur).second) 1704 return Path.count(Cur) != 0; 1705 bool FoundPath = false; 1706 for (auto &SI : Cur->Succs) 1707 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1708 for (auto &PI : Cur->Preds) 1709 if (PI.getKind() == SDep::Anti) 1710 FoundPath |= 1711 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1712 if (FoundPath) 1713 Path.insert(Cur); 1714 return FoundPath; 1715 } 1716 1717 /// Return true if Set1 is a subset of Set2. 1718 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1719 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1720 if (Set2.count(*I) == 0) 1721 return false; 1722 return true; 1723 } 1724 1725 /// Compute the live-out registers for the instructions in a node-set. 1726 /// The live-out registers are those that are defined in the node-set, 1727 /// but not used. Except for use operands of Phis. 1728 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1729 NodeSet &NS) { 1730 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1731 MachineRegisterInfo &MRI = MF.getRegInfo(); 1732 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1733 SmallSet<unsigned, 4> Uses; 1734 for (SUnit *SU : NS) { 1735 const MachineInstr *MI = SU->getInstr(); 1736 if (MI->isPHI()) 1737 continue; 1738 for (const MachineOperand &MO : MI->operands()) 1739 if (MO.isReg() && MO.isUse()) { 1740 unsigned Reg = MO.getReg(); 1741 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1742 Uses.insert(Reg); 1743 else if (MRI.isAllocatable(Reg)) 1744 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1745 Uses.insert(*Units); 1746 } 1747 } 1748 for (SUnit *SU : NS) 1749 for (const MachineOperand &MO : SU->getInstr()->operands()) 1750 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1751 unsigned Reg = MO.getReg(); 1752 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1753 if (!Uses.count(Reg)) 1754 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1755 LaneBitmask::getNone())); 1756 } else if (MRI.isAllocatable(Reg)) { 1757 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1758 if (!Uses.count(*Units)) 1759 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1760 LaneBitmask::getNone())); 1761 } 1762 } 1763 RPTracker.addLiveRegs(LiveOutRegs); 1764 } 1765 1766 /// A heuristic to filter nodes in recurrent node-sets if the register 1767 /// pressure of a set is too high. 1768 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1769 for (auto &NS : NodeSets) { 1770 // Skip small node-sets since they won't cause register pressure problems. 1771 if (NS.size() <= 2) 1772 continue; 1773 IntervalPressure RecRegPressure; 1774 RegPressureTracker RecRPTracker(RecRegPressure); 1775 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1776 computeLiveOuts(MF, RecRPTracker, NS); 1777 RecRPTracker.closeBottom(); 1778 1779 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1780 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1781 return A->NodeNum > B->NodeNum; 1782 }); 1783 1784 for (auto &SU : SUnits) { 1785 // Since we're computing the register pressure for a subset of the 1786 // instructions in a block, we need to set the tracker for each 1787 // instruction in the node-set. The tracker is set to the instruction 1788 // just after the one we're interested in. 1789 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1790 RecRPTracker.setPos(std::next(CurInstI)); 1791 1792 RegPressureDelta RPDelta; 1793 ArrayRef<PressureChange> CriticalPSets; 1794 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1795 CriticalPSets, 1796 RecRegPressure.MaxSetPressure); 1797 if (RPDelta.Excess.isValid()) { 1798 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1799 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1800 << ":" << RPDelta.Excess.getUnitInc()); 1801 NS.setExceedPressure(SU); 1802 break; 1803 } 1804 RecRPTracker.recede(); 1805 } 1806 } 1807 } 1808 1809 /// A heuristic to colocate node sets that have the same set of 1810 /// successors. 1811 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1812 unsigned Colocate = 0; 1813 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1814 NodeSet &N1 = NodeSets[i]; 1815 SmallSetVector<SUnit *, 8> S1; 1816 if (N1.empty() || !succ_L(N1, S1)) 1817 continue; 1818 for (int j = i + 1; j < e; ++j) { 1819 NodeSet &N2 = NodeSets[j]; 1820 if (N1.compareRecMII(N2) != 0) 1821 continue; 1822 SmallSetVector<SUnit *, 8> S2; 1823 if (N2.empty() || !succ_L(N2, S2)) 1824 continue; 1825 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1826 N1.setColocate(++Colocate); 1827 N2.setColocate(Colocate); 1828 break; 1829 } 1830 } 1831 } 1832 } 1833 1834 /// Check if the existing node-sets are profitable. If not, then ignore the 1835 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1836 /// a heuristic. If the MII is large and there is a non-recurrent node with 1837 /// a large depth compared to the MII, then it's best to try and schedule 1838 /// all instruction together instead of starting with the recurrent node-sets. 1839 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1840 // Look for loops with a large MII. 1841 if (MII <= 20) 1842 return; 1843 // Check if the node-set contains only a simple add recurrence. 1844 for (auto &NS : NodeSets) 1845 if (NS.size() > 2) 1846 return; 1847 // If the depth of any instruction is significantly larger than the MII, then 1848 // ignore the recurrent node-sets and treat all instructions equally. 1849 for (auto &SU : SUnits) 1850 if (SU.getDepth() > MII * 1.5) { 1851 NodeSets.clear(); 1852 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1853 return; 1854 } 1855 } 1856 1857 /// Add the nodes that do not belong to a recurrence set into groups 1858 /// based upon connected componenets. 1859 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1860 SetVector<SUnit *> NodesAdded; 1861 SmallPtrSet<SUnit *, 8> Visited; 1862 // Add the nodes that are on a path between the previous node sets and 1863 // the current node set. 1864 for (NodeSet &I : NodeSets) { 1865 SmallSetVector<SUnit *, 8> N; 1866 // Add the nodes from the current node set to the previous node set. 1867 if (succ_L(I, N)) { 1868 SetVector<SUnit *> Path; 1869 for (SUnit *NI : N) { 1870 Visited.clear(); 1871 computePath(NI, Path, NodesAdded, I, Visited); 1872 } 1873 if (!Path.empty()) 1874 I.insert(Path.begin(), Path.end()); 1875 } 1876 // Add the nodes from the previous node set to the current node set. 1877 N.clear(); 1878 if (succ_L(NodesAdded, N)) { 1879 SetVector<SUnit *> Path; 1880 for (SUnit *NI : N) { 1881 Visited.clear(); 1882 computePath(NI, Path, I, NodesAdded, Visited); 1883 } 1884 if (!Path.empty()) 1885 I.insert(Path.begin(), Path.end()); 1886 } 1887 NodesAdded.insert(I.begin(), I.end()); 1888 } 1889 1890 // Create a new node set with the connected nodes of any successor of a node 1891 // in a recurrent set. 1892 NodeSet NewSet; 1893 SmallSetVector<SUnit *, 8> N; 1894 if (succ_L(NodesAdded, N)) 1895 for (SUnit *I : N) 1896 addConnectedNodes(I, NewSet, NodesAdded); 1897 if (!NewSet.empty()) 1898 NodeSets.push_back(NewSet); 1899 1900 // Create a new node set with the connected nodes of any predecessor of a node 1901 // in a recurrent set. 1902 NewSet.clear(); 1903 if (pred_L(NodesAdded, N)) 1904 for (SUnit *I : N) 1905 addConnectedNodes(I, NewSet, NodesAdded); 1906 if (!NewSet.empty()) 1907 NodeSets.push_back(NewSet); 1908 1909 // Create new nodes sets with the connected nodes any any remaining node that 1910 // has no predecessor. 1911 for (unsigned i = 0; i < SUnits.size(); ++i) { 1912 SUnit *SU = &SUnits[i]; 1913 if (NodesAdded.count(SU) == 0) { 1914 NewSet.clear(); 1915 addConnectedNodes(SU, NewSet, NodesAdded); 1916 if (!NewSet.empty()) 1917 NodeSets.push_back(NewSet); 1918 } 1919 } 1920 } 1921 1922 /// Add the node to the set, and add all is its connected nodes to the set. 1923 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1924 SetVector<SUnit *> &NodesAdded) { 1925 NewSet.insert(SU); 1926 NodesAdded.insert(SU); 1927 for (auto &SI : SU->Succs) { 1928 SUnit *Successor = SI.getSUnit(); 1929 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1930 addConnectedNodes(Successor, NewSet, NodesAdded); 1931 } 1932 for (auto &PI : SU->Preds) { 1933 SUnit *Predecessor = PI.getSUnit(); 1934 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1935 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1936 } 1937 } 1938 1939 /// Return true if Set1 contains elements in Set2. The elements in common 1940 /// are returned in a different container. 1941 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1942 SmallSetVector<SUnit *, 8> &Result) { 1943 Result.clear(); 1944 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1945 SUnit *SU = Set1[i]; 1946 if (Set2.count(SU) != 0) 1947 Result.insert(SU); 1948 } 1949 return !Result.empty(); 1950 } 1951 1952 /// Merge the recurrence node sets that have the same initial node. 1953 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1954 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1955 ++I) { 1956 NodeSet &NI = *I; 1957 for (NodeSetType::iterator J = I + 1; J != E;) { 1958 NodeSet &NJ = *J; 1959 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1960 if (NJ.compareRecMII(NI) > 0) 1961 NI.setRecMII(NJ.getRecMII()); 1962 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1963 ++NII) 1964 I->insert(*NII); 1965 NodeSets.erase(J); 1966 E = NodeSets.end(); 1967 } else { 1968 ++J; 1969 } 1970 } 1971 } 1972 } 1973 1974 /// Remove nodes that have been scheduled in previous NodeSets. 1975 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1976 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1977 ++I) 1978 for (NodeSetType::iterator J = I + 1; J != E;) { 1979 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1980 1981 if (J->empty()) { 1982 NodeSets.erase(J); 1983 E = NodeSets.end(); 1984 } else { 1985 ++J; 1986 } 1987 } 1988 } 1989 1990 /// Return true if Inst1 defines a value that is used in Inst2. 1991 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1992 for (auto &SI : Inst1->Succs) 1993 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1994 return true; 1995 return false; 1996 } 1997 1998 /// Compute an ordered list of the dependence graph nodes, which 1999 /// indicates the order that the nodes will be scheduled. This is a 2000 /// two-level algorithm. First, a partial order is created, which 2001 /// consists of a list of sets ordered from highest to lowest priority. 2002 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2003 SmallSetVector<SUnit *, 8> R; 2004 NodeOrder.clear(); 2005 2006 for (auto &Nodes : NodeSets) { 2007 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2008 OrderKind Order; 2009 SmallSetVector<SUnit *, 8> N; 2010 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2011 R.insert(N.begin(), N.end()); 2012 Order = BottomUp; 2013 DEBUG(dbgs() << " Bottom up (preds) "); 2014 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2015 R.insert(N.begin(), N.end()); 2016 Order = TopDown; 2017 DEBUG(dbgs() << " Top down (succs) "); 2018 } else if (isIntersect(N, Nodes, R)) { 2019 // If some of the successors are in the existing node-set, then use the 2020 // top-down ordering. 2021 Order = TopDown; 2022 DEBUG(dbgs() << " Top down (intersect) "); 2023 } else if (NodeSets.size() == 1) { 2024 for (auto &N : Nodes) 2025 if (N->Succs.size() == 0) 2026 R.insert(N); 2027 Order = BottomUp; 2028 DEBUG(dbgs() << " Bottom up (all) "); 2029 } else { 2030 // Find the node with the highest ASAP. 2031 SUnit *maxASAP = nullptr; 2032 for (SUnit *SU : Nodes) { 2033 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2034 maxASAP = SU; 2035 } 2036 R.insert(maxASAP); 2037 Order = BottomUp; 2038 DEBUG(dbgs() << " Bottom up (default) "); 2039 } 2040 2041 while (!R.empty()) { 2042 if (Order == TopDown) { 2043 // Choose the node with the maximum height. If more than one, choose 2044 // the node with the lowest MOV. If still more than one, check if there 2045 // is a dependence between the instructions. 2046 while (!R.empty()) { 2047 SUnit *maxHeight = nullptr; 2048 for (SUnit *I : R) { 2049 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2050 maxHeight = I; 2051 else if (getHeight(I) == getHeight(maxHeight) && 2052 getMOV(I) < getMOV(maxHeight) && 2053 !hasDataDependence(maxHeight, I)) 2054 maxHeight = I; 2055 else if (hasDataDependence(I, maxHeight)) 2056 maxHeight = I; 2057 } 2058 NodeOrder.insert(maxHeight); 2059 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2060 R.remove(maxHeight); 2061 for (const auto &I : maxHeight->Succs) { 2062 if (Nodes.count(I.getSUnit()) == 0) 2063 continue; 2064 if (NodeOrder.count(I.getSUnit()) != 0) 2065 continue; 2066 if (ignoreDependence(I, false)) 2067 continue; 2068 R.insert(I.getSUnit()); 2069 } 2070 // Back-edges are predecessors with an anti-dependence. 2071 for (const auto &I : maxHeight->Preds) { 2072 if (I.getKind() != SDep::Anti) 2073 continue; 2074 if (Nodes.count(I.getSUnit()) == 0) 2075 continue; 2076 if (NodeOrder.count(I.getSUnit()) != 0) 2077 continue; 2078 R.insert(I.getSUnit()); 2079 } 2080 } 2081 Order = BottomUp; 2082 DEBUG(dbgs() << "\n Switching order to bottom up "); 2083 SmallSetVector<SUnit *, 8> N; 2084 if (pred_L(NodeOrder, N, &Nodes)) 2085 R.insert(N.begin(), N.end()); 2086 } else { 2087 // Choose the node with the maximum depth. If more than one, choose 2088 // the node with the lowest MOV. If there is still more than one, check 2089 // for a dependence between the instructions. 2090 while (!R.empty()) { 2091 SUnit *maxDepth = nullptr; 2092 for (SUnit *I : R) { 2093 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2094 maxDepth = I; 2095 else if (getDepth(I) == getDepth(maxDepth) && 2096 getMOV(I) < getMOV(maxDepth) && 2097 !hasDataDependence(I, maxDepth)) 2098 maxDepth = I; 2099 else if (hasDataDependence(maxDepth, I)) 2100 maxDepth = I; 2101 } 2102 NodeOrder.insert(maxDepth); 2103 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2104 R.remove(maxDepth); 2105 if (Nodes.isExceedSU(maxDepth)) { 2106 Order = TopDown; 2107 R.clear(); 2108 R.insert(Nodes.getNode(0)); 2109 break; 2110 } 2111 for (const auto &I : maxDepth->Preds) { 2112 if (Nodes.count(I.getSUnit()) == 0) 2113 continue; 2114 if (NodeOrder.count(I.getSUnit()) != 0) 2115 continue; 2116 if (I.getKind() == SDep::Anti) 2117 continue; 2118 R.insert(I.getSUnit()); 2119 } 2120 // Back-edges are predecessors with an anti-dependence. 2121 for (const auto &I : maxDepth->Succs) { 2122 if (I.getKind() != SDep::Anti) 2123 continue; 2124 if (Nodes.count(I.getSUnit()) == 0) 2125 continue; 2126 if (NodeOrder.count(I.getSUnit()) != 0) 2127 continue; 2128 R.insert(I.getSUnit()); 2129 } 2130 } 2131 Order = TopDown; 2132 DEBUG(dbgs() << "\n Switching order to top down "); 2133 SmallSetVector<SUnit *, 8> N; 2134 if (succ_L(NodeOrder, N, &Nodes)) 2135 R.insert(N.begin(), N.end()); 2136 } 2137 } 2138 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2139 } 2140 2141 DEBUG({ 2142 dbgs() << "Node order: "; 2143 for (SUnit *I : NodeOrder) 2144 dbgs() << " " << I->NodeNum << " "; 2145 dbgs() << "\n"; 2146 }); 2147 } 2148 2149 /// Process the nodes in the computed order and create the pipelined schedule 2150 /// of the instructions, if possible. Return true if a schedule is found. 2151 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2152 if (NodeOrder.empty()) 2153 return false; 2154 2155 bool scheduleFound = false; 2156 // Keep increasing II until a valid schedule is found. 2157 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2158 Schedule.reset(); 2159 Schedule.setInitiationInterval(II); 2160 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2161 2162 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2163 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2164 do { 2165 SUnit *SU = *NI; 2166 2167 // Compute the schedule time for the instruction, which is based 2168 // upon the scheduled time for any predecessors/successors. 2169 int EarlyStart = INT_MIN; 2170 int LateStart = INT_MAX; 2171 // These values are set when the size of the schedule window is limited 2172 // due to chain dependences. 2173 int SchedEnd = INT_MAX; 2174 int SchedStart = INT_MIN; 2175 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2176 II, this); 2177 DEBUG({ 2178 dbgs() << "Inst (" << SU->NodeNum << ") "; 2179 SU->getInstr()->dump(); 2180 dbgs() << "\n"; 2181 }); 2182 DEBUG({ 2183 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2184 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2185 }); 2186 2187 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2188 SchedStart > LateStart) 2189 scheduleFound = false; 2190 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2191 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2192 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2193 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2194 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2195 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2196 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2197 SchedEnd = 2198 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2199 // When scheduling a Phi it is better to start at the late cycle and go 2200 // backwards. The default order may insert the Phi too far away from 2201 // its first dependence. 2202 if (SU->getInstr()->isPHI()) 2203 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2204 else 2205 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2206 } else { 2207 int FirstCycle = Schedule.getFirstCycle(); 2208 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2209 FirstCycle + getASAP(SU) + II - 1, II); 2210 } 2211 // Even if we find a schedule, make sure the schedule doesn't exceed the 2212 // allowable number of stages. We keep trying if this happens. 2213 if (scheduleFound) 2214 if (SwpMaxStages > -1 && 2215 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2216 scheduleFound = false; 2217 2218 DEBUG({ 2219 if (!scheduleFound) 2220 dbgs() << "\tCan't schedule\n"; 2221 }); 2222 } while (++NI != NE && scheduleFound); 2223 2224 // If a schedule is found, check if it is a valid schedule too. 2225 if (scheduleFound) 2226 scheduleFound = Schedule.isValidSchedule(this); 2227 } 2228 2229 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2230 2231 if (scheduleFound) 2232 Schedule.finalizeSchedule(this); 2233 else 2234 Schedule.reset(); 2235 2236 return scheduleFound && Schedule.getMaxStageCount() > 0; 2237 } 2238 2239 /// Given a schedule for the loop, generate a new version of the loop, 2240 /// and replace the old version. This function generates a prolog 2241 /// that contains the initial iterations in the pipeline, and kernel 2242 /// loop, and the epilogue that contains the code for the final 2243 /// iterations. 2244 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2245 // Create a new basic block for the kernel and add it to the CFG. 2246 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2247 2248 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2249 2250 // Remember the registers that are used in different stages. The index is 2251 // the iteration, or stage, that the instruction is scheduled in. This is 2252 // a map between register names in the orignal block and the names created 2253 // in each stage of the pipelined loop. 2254 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2255 InstrMapTy InstrMap; 2256 2257 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2258 // Generate the prolog instructions that set up the pipeline. 2259 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2260 MF.insert(BB->getIterator(), KernelBB); 2261 2262 // Rearrange the instructions to generate the new, pipelined loop, 2263 // and update register names as needed. 2264 for (int Cycle = Schedule.getFirstCycle(), 2265 LastCycle = Schedule.getFinalCycle(); 2266 Cycle <= LastCycle; ++Cycle) { 2267 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2268 // This inner loop schedules each instruction in the cycle. 2269 for (SUnit *CI : CycleInstrs) { 2270 if (CI->getInstr()->isPHI()) 2271 continue; 2272 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2273 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2274 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2275 KernelBB->push_back(NewMI); 2276 InstrMap[NewMI] = CI->getInstr(); 2277 } 2278 } 2279 2280 // Copy any terminator instructions to the new kernel, and update 2281 // names as needed. 2282 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2283 E = BB->instr_end(); 2284 I != E; ++I) { 2285 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2286 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2287 KernelBB->push_back(NewMI); 2288 InstrMap[NewMI] = &*I; 2289 } 2290 2291 KernelBB->transferSuccessors(BB); 2292 KernelBB->replaceSuccessor(BB, KernelBB); 2293 2294 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2295 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2296 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2297 InstrMap, MaxStageCount, MaxStageCount, false); 2298 2299 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2300 2301 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2302 // Generate the epilog instructions to complete the pipeline. 2303 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2304 PrologBBs); 2305 2306 // We need this step because the register allocation doesn't handle some 2307 // situations well, so we insert copies to help out. 2308 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2309 2310 // Remove dead instructions due to loop induction variables. 2311 removeDeadInstructions(KernelBB, EpilogBBs); 2312 2313 // Add branches between prolog and epilog blocks. 2314 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2315 2316 // Remove the original loop since it's no longer referenced. 2317 BB->clear(); 2318 BB->eraseFromParent(); 2319 2320 delete[] VRMap; 2321 } 2322 2323 /// Generate the pipeline prolog code. 2324 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2325 MachineBasicBlock *KernelBB, 2326 ValueMapTy *VRMap, 2327 MBBVectorTy &PrologBBs) { 2328 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2329 assert(PreheaderBB != nullptr && 2330 "Need to add code to handle loops w/o preheader"); 2331 MachineBasicBlock *PredBB = PreheaderBB; 2332 InstrMapTy InstrMap; 2333 2334 // Generate a basic block for each stage, not including the last stage, 2335 // which will be generated in the kernel. Each basic block may contain 2336 // instructions from multiple stages/iterations. 2337 for (unsigned i = 0; i < LastStage; ++i) { 2338 // Create and insert the prolog basic block prior to the original loop 2339 // basic block. The original loop is removed later. 2340 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2341 PrologBBs.push_back(NewBB); 2342 MF.insert(BB->getIterator(), NewBB); 2343 NewBB->transferSuccessors(PredBB); 2344 PredBB->addSuccessor(NewBB); 2345 PredBB = NewBB; 2346 2347 // Generate instructions for each appropriate stage. Process instructions 2348 // in original program order. 2349 for (int StageNum = i; StageNum >= 0; --StageNum) { 2350 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2351 BBE = BB->getFirstTerminator(); 2352 BBI != BBE; ++BBI) { 2353 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2354 if (BBI->isPHI()) 2355 continue; 2356 MachineInstr *NewMI = 2357 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2358 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2359 VRMap); 2360 NewBB->push_back(NewMI); 2361 InstrMap[NewMI] = &*BBI; 2362 } 2363 } 2364 } 2365 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2366 DEBUG({ 2367 dbgs() << "prolog:\n"; 2368 NewBB->dump(); 2369 }); 2370 } 2371 2372 PredBB->replaceSuccessor(BB, KernelBB); 2373 2374 // Check if we need to remove the branch from the preheader to the original 2375 // loop, and replace it with a branch to the new loop. 2376 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2377 if (numBranches) { 2378 SmallVector<MachineOperand, 0> Cond; 2379 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2380 } 2381 } 2382 2383 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2384 /// that were started in either the prolog or the kernel. We create a basic 2385 /// block for each stage that needs to complete. 2386 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2387 MachineBasicBlock *KernelBB, 2388 ValueMapTy *VRMap, 2389 MBBVectorTy &EpilogBBs, 2390 MBBVectorTy &PrologBBs) { 2391 // We need to change the branch from the kernel to the first epilog block, so 2392 // this call to analyze branch uses the kernel rather than the original BB. 2393 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2394 SmallVector<MachineOperand, 4> Cond; 2395 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2396 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2397 if (checkBranch) 2398 return; 2399 2400 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2401 if (*LoopExitI == KernelBB) 2402 ++LoopExitI; 2403 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2404 MachineBasicBlock *LoopExitBB = *LoopExitI; 2405 2406 MachineBasicBlock *PredBB = KernelBB; 2407 MachineBasicBlock *EpilogStart = LoopExitBB; 2408 InstrMapTy InstrMap; 2409 2410 // Generate a basic block for each stage, not including the last stage, 2411 // which was generated for the kernel. Each basic block may contain 2412 // instructions from multiple stages/iterations. 2413 int EpilogStage = LastStage + 1; 2414 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2415 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2416 EpilogBBs.push_back(NewBB); 2417 MF.insert(BB->getIterator(), NewBB); 2418 2419 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2420 NewBB->addSuccessor(LoopExitBB); 2421 2422 if (EpilogStart == LoopExitBB) 2423 EpilogStart = NewBB; 2424 2425 // Add instructions to the epilog depending on the current block. 2426 // Process instructions in original program order. 2427 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2428 for (auto &BBI : *BB) { 2429 if (BBI.isPHI()) 2430 continue; 2431 MachineInstr *In = &BBI; 2432 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2433 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2434 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2435 NewBB->push_back(NewMI); 2436 InstrMap[NewMI] = In; 2437 } 2438 } 2439 } 2440 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2441 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2442 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2443 InstrMap, LastStage, EpilogStage, i == 1); 2444 PredBB = NewBB; 2445 2446 DEBUG({ 2447 dbgs() << "epilog:\n"; 2448 NewBB->dump(); 2449 }); 2450 } 2451 2452 // Fix any Phi nodes in the loop exit block. 2453 for (MachineInstr &MI : *LoopExitBB) { 2454 if (!MI.isPHI()) 2455 break; 2456 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2457 MachineOperand &MO = MI.getOperand(i); 2458 if (MO.getMBB() == BB) 2459 MO.setMBB(PredBB); 2460 } 2461 } 2462 2463 // Create a branch to the new epilog from the kernel. 2464 // Remove the original branch and add a new branch to the epilog. 2465 TII->removeBranch(*KernelBB); 2466 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2467 // Add a branch to the loop exit. 2468 if (EpilogBBs.size() > 0) { 2469 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2470 SmallVector<MachineOperand, 4> Cond1; 2471 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2472 } 2473 } 2474 2475 /// Replace all uses of FromReg that appear outside the specified 2476 /// basic block with ToReg. 2477 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2478 MachineBasicBlock *MBB, 2479 MachineRegisterInfo &MRI, 2480 LiveIntervals &LIS) { 2481 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2482 E = MRI.use_end(); 2483 I != E;) { 2484 MachineOperand &O = *I; 2485 ++I; 2486 if (O.getParent()->getParent() != MBB) 2487 O.setReg(ToReg); 2488 } 2489 if (!LIS.hasInterval(ToReg)) 2490 LIS.createEmptyInterval(ToReg); 2491 } 2492 2493 /// Return true if the register has a use that occurs outside the 2494 /// specified loop. 2495 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2496 MachineRegisterInfo &MRI) { 2497 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2498 E = MRI.use_end(); 2499 I != E; ++I) 2500 if (I->getParent()->getParent() != BB) 2501 return true; 2502 return false; 2503 } 2504 2505 /// Generate Phis for the specific block in the generated pipelined code. 2506 /// This function looks at the Phis from the original code to guide the 2507 /// creation of new Phis. 2508 void SwingSchedulerDAG::generateExistingPhis( 2509 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2510 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2511 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2512 bool IsLast) { 2513 // Compute the stage number for the initial value of the Phi, which 2514 // comes from the prolog. The prolog to use depends on to which kernel/ 2515 // epilog that we're adding the Phi. 2516 unsigned PrologStage = 0; 2517 unsigned PrevStage = 0; 2518 bool InKernel = (LastStageNum == CurStageNum); 2519 if (InKernel) { 2520 PrologStage = LastStageNum - 1; 2521 PrevStage = CurStageNum; 2522 } else { 2523 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2524 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2525 } 2526 2527 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2528 BBE = BB->getFirstNonPHI(); 2529 BBI != BBE; ++BBI) { 2530 unsigned Def = BBI->getOperand(0).getReg(); 2531 2532 unsigned InitVal = 0; 2533 unsigned LoopVal = 0; 2534 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2535 2536 unsigned PhiOp1 = 0; 2537 // The Phi value from the loop body typically is defined in the loop, but 2538 // not always. So, we need to check if the value is defined in the loop. 2539 unsigned PhiOp2 = LoopVal; 2540 if (VRMap[LastStageNum].count(LoopVal)) 2541 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2542 2543 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2544 int LoopValStage = 2545 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2546 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2547 if (NumStages == 0) { 2548 // We don't need to generate a Phi anymore, but we need to rename any uses 2549 // of the Phi value. 2550 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2551 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2552 Def, NewReg); 2553 if (VRMap[CurStageNum].count(LoopVal)) 2554 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2555 } 2556 // Adjust the number of Phis needed depending on the number of prologs left, 2557 // and the distance from where the Phi is first scheduled. 2558 unsigned NumPhis = NumStages; 2559 if (!InKernel && (int)PrologStage < LoopValStage) 2560 // The NumPhis is the maximum number of new Phis needed during the steady 2561 // state. If the Phi has not been scheduled in current prolog, then we 2562 // need to generate less Phis. 2563 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2564 // The number of Phis cannot exceed the number of prolog stages. Each 2565 // stage can potentially define two values. 2566 NumPhis = std::min(NumPhis, PrologStage + 2); 2567 2568 unsigned NewReg = 0; 2569 2570 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2571 // In the epilog, we may need to look back one stage to get the correct 2572 // Phi name because the epilog and prolog blocks execute the same stage. 2573 // The correct name is from the previous block only when the Phi has 2574 // been completely scheduled prior to the epilog, and Phi value is not 2575 // needed in multiple stages. 2576 int StageDiff = 0; 2577 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2578 NumPhis == 1) 2579 StageDiff = 1; 2580 // Adjust the computations below when the phi and the loop definition 2581 // are scheduled in different stages. 2582 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2583 StageDiff = StageScheduled - LoopValStage; 2584 for (unsigned np = 0; np < NumPhis; ++np) { 2585 // If the Phi hasn't been scheduled, then use the initial Phi operand 2586 // value. Otherwise, use the scheduled version of the instruction. This 2587 // is a little complicated when a Phi references another Phi. 2588 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2589 PhiOp1 = InitVal; 2590 // Check if the Phi has already been scheduled in a prolog stage. 2591 else if (PrologStage >= AccessStage + StageDiff + np && 2592 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2593 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2594 // Check if the Phi has already been scheduled, but the loop intruction 2595 // is either another Phi, or doesn't occur in the loop. 2596 else if (PrologStage >= AccessStage + StageDiff + np) { 2597 // If the Phi references another Phi, we need to examine the other 2598 // Phi to get the correct value. 2599 PhiOp1 = LoopVal; 2600 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2601 int Indirects = 1; 2602 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2603 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2604 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2605 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2606 else 2607 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2608 InstOp1 = MRI.getVRegDef(PhiOp1); 2609 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2610 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2611 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2612 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2613 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2614 break; 2615 } 2616 ++Indirects; 2617 } 2618 } else 2619 PhiOp1 = InitVal; 2620 // If this references a generated Phi in the kernel, get the Phi operand 2621 // from the incoming block. 2622 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2623 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2624 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2625 2626 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2627 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2628 // In the epilog, a map lookup is needed to get the value from the kernel, 2629 // or previous epilog block. How is does this depends on if the 2630 // instruction is scheduled in the previous block. 2631 if (!InKernel) { 2632 int StageDiffAdj = 0; 2633 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2634 StageDiffAdj = StageScheduled - LoopValStage; 2635 // Use the loop value defined in the kernel, unless the kernel 2636 // contains the last definition of the Phi. 2637 if (np == 0 && PrevStage == LastStageNum && 2638 (StageScheduled != 0 || LoopValStage != 0) && 2639 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2640 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2641 // Use the value defined by the Phi. We add one because we switch 2642 // from looking at the loop value to the Phi definition. 2643 else if (np > 0 && PrevStage == LastStageNum && 2644 VRMap[PrevStage - np + 1].count(Def)) 2645 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2646 // Use the loop value defined in the kernel. 2647 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2648 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2649 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2650 // Use the value defined by the Phi, unless we're generating the first 2651 // epilog and the Phi refers to a Phi in a different stage. 2652 else if (VRMap[PrevStage - np].count(Def) && 2653 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2654 PhiOp2 = VRMap[PrevStage - np][Def]; 2655 } 2656 2657 // Check if we can reuse an existing Phi. This occurs when a Phi 2658 // references another Phi, and the other Phi is scheduled in an 2659 // earlier stage. We can try to reuse an existing Phi up until the last 2660 // stage of the current Phi. 2661 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2662 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2663 int StageDiff = (StageScheduled - LoopValStage); 2664 LVNumStages -= StageDiff; 2665 if (LVNumStages > (int)np) { 2666 NewReg = PhiOp2; 2667 unsigned ReuseStage = CurStageNum; 2668 if (Schedule.isLoopCarried(this, *PhiInst)) 2669 ReuseStage -= LVNumStages; 2670 // Check if the Phi to reuse has been generated yet. If not, then 2671 // there is nothing to reuse. 2672 if (VRMap[ReuseStage].count(LoopVal)) { 2673 NewReg = VRMap[ReuseStage][LoopVal]; 2674 2675 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2676 &*BBI, Def, NewReg); 2677 // Update the map with the new Phi name. 2678 VRMap[CurStageNum - np][Def] = NewReg; 2679 PhiOp2 = NewReg; 2680 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2681 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2682 2683 if (IsLast && np == NumPhis - 1) 2684 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2685 continue; 2686 } 2687 } else if (InKernel && StageDiff > 0 && 2688 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2689 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2690 } 2691 2692 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2693 NewReg = MRI.createVirtualRegister(RC); 2694 2695 MachineInstrBuilder NewPhi = 2696 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2697 TII->get(TargetOpcode::PHI), NewReg); 2698 NewPhi.addReg(PhiOp1).addMBB(BB1); 2699 NewPhi.addReg(PhiOp2).addMBB(BB2); 2700 if (np == 0) 2701 InstrMap[NewPhi] = &*BBI; 2702 2703 // We define the Phis after creating the new pipelined code, so 2704 // we need to rename the Phi values in scheduled instructions. 2705 2706 unsigned PrevReg = 0; 2707 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2708 PrevReg = VRMap[PrevStage - np][LoopVal]; 2709 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2710 Def, NewReg, PrevReg); 2711 // If the Phi has been scheduled, use the new name for rewriting. 2712 if (VRMap[CurStageNum - np].count(Def)) { 2713 unsigned R = VRMap[CurStageNum - np][Def]; 2714 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2715 R, NewReg); 2716 } 2717 2718 // Check if we need to rename any uses that occurs after the loop. The 2719 // register to replace depends on whether the Phi is scheduled in the 2720 // epilog. 2721 if (IsLast && np == NumPhis - 1) 2722 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2723 2724 // In the kernel, a dependent Phi uses the value from this Phi. 2725 if (InKernel) 2726 PhiOp2 = NewReg; 2727 2728 // Update the map with the new Phi name. 2729 VRMap[CurStageNum - np][Def] = NewReg; 2730 } 2731 2732 while (NumPhis++ < NumStages) { 2733 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2734 &*BBI, Def, NewReg, 0); 2735 } 2736 2737 // Check if we need to rename a Phi that has been eliminated due to 2738 // scheduling. 2739 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2740 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2741 } 2742 } 2743 2744 /// Generate Phis for the specified block in the generated pipelined code. 2745 /// These are new Phis needed because the definition is scheduled after the 2746 /// use in the pipelened sequence. 2747 void SwingSchedulerDAG::generatePhis( 2748 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2749 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2750 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2751 bool IsLast) { 2752 // Compute the stage number that contains the initial Phi value, and 2753 // the Phi from the previous stage. 2754 unsigned PrologStage = 0; 2755 unsigned PrevStage = 0; 2756 unsigned StageDiff = CurStageNum - LastStageNum; 2757 bool InKernel = (StageDiff == 0); 2758 if (InKernel) { 2759 PrologStage = LastStageNum - 1; 2760 PrevStage = CurStageNum; 2761 } else { 2762 PrologStage = LastStageNum - StageDiff; 2763 PrevStage = LastStageNum + StageDiff - 1; 2764 } 2765 2766 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2767 BBE = BB->instr_end(); 2768 BBI != BBE; ++BBI) { 2769 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2770 MachineOperand &MO = BBI->getOperand(i); 2771 if (!MO.isReg() || !MO.isDef() || 2772 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2773 continue; 2774 2775 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2776 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2777 unsigned Def = MO.getReg(); 2778 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2779 // An instruction scheduled in stage 0 and is used after the loop 2780 // requires a phi in the epilog for the last definition from either 2781 // the kernel or prolog. 2782 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2783 hasUseAfterLoop(Def, BB, MRI)) 2784 NumPhis = 1; 2785 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2786 continue; 2787 2788 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2789 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2790 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2791 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2792 // The number of Phis can't exceed the number of prolog stages. The 2793 // prolog stage number is zero based. 2794 if (NumPhis > PrologStage + 1 - StageScheduled) 2795 NumPhis = PrologStage + 1 - StageScheduled; 2796 for (unsigned np = 0; np < NumPhis; ++np) { 2797 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2798 if (np <= PrologStage) 2799 PhiOp1 = VRMap[PrologStage - np][Def]; 2800 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2801 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2802 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2803 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2804 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2805 } 2806 if (!InKernel) 2807 PhiOp2 = VRMap[PrevStage - np][Def]; 2808 2809 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2810 unsigned NewReg = MRI.createVirtualRegister(RC); 2811 2812 MachineInstrBuilder NewPhi = 2813 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2814 TII->get(TargetOpcode::PHI), NewReg); 2815 NewPhi.addReg(PhiOp1).addMBB(BB1); 2816 NewPhi.addReg(PhiOp2).addMBB(BB2); 2817 if (np == 0) 2818 InstrMap[NewPhi] = &*BBI; 2819 2820 // Rewrite uses and update the map. The actions depend upon whether 2821 // we generating code for the kernel or epilog blocks. 2822 if (InKernel) { 2823 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2824 &*BBI, PhiOp1, NewReg); 2825 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2826 &*BBI, PhiOp2, NewReg); 2827 2828 PhiOp2 = NewReg; 2829 VRMap[PrevStage - np - 1][Def] = NewReg; 2830 } else { 2831 VRMap[CurStageNum - np][Def] = NewReg; 2832 if (np == NumPhis - 1) 2833 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2834 &*BBI, Def, NewReg); 2835 } 2836 if (IsLast && np == NumPhis - 1) 2837 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2838 } 2839 } 2840 } 2841 } 2842 2843 /// Remove instructions that generate values with no uses. 2844 /// Typically, these are induction variable operations that generate values 2845 /// used in the loop itself. A dead instruction has a definition with 2846 /// no uses, or uses that occur in the original loop only. 2847 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2848 MBBVectorTy &EpilogBBs) { 2849 // For each epilog block, check that the value defined by each instruction 2850 // is used. If not, delete it. 2851 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2852 MBE = EpilogBBs.rend(); 2853 MBB != MBE; ++MBB) 2854 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2855 ME = (*MBB)->instr_rend(); 2856 MI != ME;) { 2857 // From DeadMachineInstructionElem. Don't delete inline assembly. 2858 if (MI->isInlineAsm()) { 2859 ++MI; 2860 continue; 2861 } 2862 bool SawStore = false; 2863 // Check if it's safe to remove the instruction due to side effects. 2864 // We can, and want to, remove Phis here. 2865 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2866 ++MI; 2867 continue; 2868 } 2869 bool used = true; 2870 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2871 MOE = MI->operands_end(); 2872 MOI != MOE; ++MOI) { 2873 if (!MOI->isReg() || !MOI->isDef()) 2874 continue; 2875 unsigned reg = MOI->getReg(); 2876 unsigned realUses = 0; 2877 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2878 EI = MRI.use_end(); 2879 UI != EI; ++UI) { 2880 // Check if there are any uses that occur only in the original 2881 // loop. If so, that's not a real use. 2882 if (UI->getParent()->getParent() != BB) { 2883 realUses++; 2884 used = true; 2885 break; 2886 } 2887 } 2888 if (realUses > 0) 2889 break; 2890 used = false; 2891 } 2892 if (!used) { 2893 MI++->eraseFromParent(); 2894 continue; 2895 } 2896 ++MI; 2897 } 2898 // In the kernel block, check if we can remove a Phi that generates a value 2899 // used in an instruction removed in the epilog block. 2900 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2901 BBE = KernelBB->getFirstNonPHI(); 2902 BBI != BBE;) { 2903 MachineInstr *MI = &*BBI; 2904 ++BBI; 2905 unsigned reg = MI->getOperand(0).getReg(); 2906 if (MRI.use_begin(reg) == MRI.use_end()) { 2907 MI->eraseFromParent(); 2908 } 2909 } 2910 } 2911 2912 /// For loop carried definitions, we split the lifetime of a virtual register 2913 /// that has uses past the definition in the next iteration. A copy with a new 2914 /// virtual register is inserted before the definition, which helps with 2915 /// generating a better register assignment. 2916 /// 2917 /// v1 = phi(a, v2) v1 = phi(a, v2) 2918 /// v2 = phi(b, v3) v2 = phi(b, v3) 2919 /// v3 = .. v4 = copy v1 2920 /// .. = V1 v3 = .. 2921 /// .. = v4 2922 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2923 MBBVectorTy &EpilogBBs, 2924 SMSchedule &Schedule) { 2925 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2926 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2927 BBF = KernelBB->getFirstNonPHI(); 2928 BBI != BBF; ++BBI) { 2929 unsigned Def = BBI->getOperand(0).getReg(); 2930 // Check for any Phi definition that used as an operand of another Phi 2931 // in the same block. 2932 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2933 E = MRI.use_instr_end(); 2934 I != E; ++I) { 2935 if (I->isPHI() && I->getParent() == KernelBB) { 2936 // Get the loop carried definition. 2937 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2938 if (!LCDef) 2939 continue; 2940 MachineInstr *MI = MRI.getVRegDef(LCDef); 2941 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2942 continue; 2943 // Search through the rest of the block looking for uses of the Phi 2944 // definition. If one occurs, then split the lifetime. 2945 unsigned SplitReg = 0; 2946 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2947 KernelBB->instr_end())) 2948 if (BBJ.readsRegister(Def)) { 2949 // We split the lifetime when we find the first use. 2950 if (SplitReg == 0) { 2951 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2952 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2953 TII->get(TargetOpcode::COPY), SplitReg) 2954 .addReg(Def); 2955 } 2956 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2957 } 2958 if (!SplitReg) 2959 continue; 2960 // Search through each of the epilog blocks for any uses to be renamed. 2961 for (auto &Epilog : EpilogBBs) 2962 for (auto &I : *Epilog) 2963 if (I.readsRegister(Def)) 2964 I.substituteRegister(Def, SplitReg, 0, *TRI); 2965 break; 2966 } 2967 } 2968 } 2969 } 2970 2971 /// Remove the incoming block from the Phis in a basic block. 2972 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2973 for (MachineInstr &MI : *BB) { 2974 if (!MI.isPHI()) 2975 break; 2976 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2977 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2978 MI.RemoveOperand(i + 1); 2979 MI.RemoveOperand(i); 2980 break; 2981 } 2982 } 2983 } 2984 2985 /// Create branches from each prolog basic block to the appropriate epilog 2986 /// block. These edges are needed if the loop ends before reaching the 2987 /// kernel. 2988 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2989 MachineBasicBlock *KernelBB, 2990 MBBVectorTy &EpilogBBs, 2991 SMSchedule &Schedule, ValueMapTy *VRMap) { 2992 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2993 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2994 MachineInstr *Cmp = Pass.LI.LoopCompare; 2995 MachineBasicBlock *LastPro = KernelBB; 2996 MachineBasicBlock *LastEpi = KernelBB; 2997 2998 // Start from the blocks connected to the kernel and work "out" 2999 // to the first prolog and the last epilog blocks. 3000 SmallVector<MachineInstr *, 4> PrevInsts; 3001 unsigned MaxIter = PrologBBs.size() - 1; 3002 unsigned LC = UINT_MAX; 3003 unsigned LCMin = UINT_MAX; 3004 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3005 // Add branches to the prolog that go to the corresponding 3006 // epilog, and the fall-thru prolog/kernel block. 3007 MachineBasicBlock *Prolog = PrologBBs[j]; 3008 MachineBasicBlock *Epilog = EpilogBBs[i]; 3009 // We've executed one iteration, so decrement the loop count and check for 3010 // the loop end. 3011 SmallVector<MachineOperand, 4> Cond; 3012 // Check if the LOOP0 has already been removed. If so, then there is no need 3013 // to reduce the trip count. 3014 if (LC != 0) 3015 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3016 MaxIter); 3017 3018 // Record the value of the first trip count, which is used to determine if 3019 // branches and blocks can be removed for constant trip counts. 3020 if (LCMin == UINT_MAX) 3021 LCMin = LC; 3022 3023 unsigned numAdded = 0; 3024 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3025 Prolog->addSuccessor(Epilog); 3026 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3027 } else if (j >= LCMin) { 3028 Prolog->addSuccessor(Epilog); 3029 Prolog->removeSuccessor(LastPro); 3030 LastEpi->removeSuccessor(Epilog); 3031 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3032 removePhis(Epilog, LastEpi); 3033 // Remove the blocks that are no longer referenced. 3034 if (LastPro != LastEpi) { 3035 LastEpi->clear(); 3036 LastEpi->eraseFromParent(); 3037 } 3038 LastPro->clear(); 3039 LastPro->eraseFromParent(); 3040 } else { 3041 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3042 removePhis(Epilog, Prolog); 3043 } 3044 LastPro = Prolog; 3045 LastEpi = Epilog; 3046 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3047 E = Prolog->instr_rend(); 3048 I != E && numAdded > 0; ++I, --numAdded) 3049 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3050 } 3051 } 3052 3053 /// Return true if we can compute the amount the instruction changes 3054 /// during each iteration. Set Delta to the amount of the change. 3055 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3056 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3057 unsigned BaseReg; 3058 int64_t Offset; 3059 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3060 return false; 3061 3062 MachineRegisterInfo &MRI = MF.getRegInfo(); 3063 // Check if there is a Phi. If so, get the definition in the loop. 3064 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3065 if (BaseDef && BaseDef->isPHI()) { 3066 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3067 BaseDef = MRI.getVRegDef(BaseReg); 3068 } 3069 if (!BaseDef) 3070 return false; 3071 3072 int D = 0; 3073 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3074 return false; 3075 3076 Delta = D; 3077 return true; 3078 } 3079 3080 /// Update the memory operand with a new offset when the pipeliner 3081 /// generates a new copy of the instruction that refers to a 3082 /// different memory location. 3083 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3084 MachineInstr &OldMI, unsigned Num) { 3085 if (Num == 0) 3086 return; 3087 // If the instruction has memory operands, then adjust the offset 3088 // when the instruction appears in different stages. 3089 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3090 if (NumRefs == 0) 3091 return; 3092 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3093 unsigned Refs = 0; 3094 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3095 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3096 (!MMO->getValue())) { 3097 NewMemRefs[Refs++] = MMO; 3098 continue; 3099 } 3100 unsigned Delta; 3101 if (computeDelta(OldMI, Delta)) { 3102 int64_t AdjOffset = Delta * Num; 3103 NewMemRefs[Refs++] = 3104 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3105 } else 3106 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3107 } 3108 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3109 } 3110 3111 /// Clone the instruction for the new pipelined loop and update the 3112 /// memory operands, if needed. 3113 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3114 unsigned CurStageNum, 3115 unsigned InstStageNum) { 3116 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3117 // Check for tied operands in inline asm instructions. This should be handled 3118 // elsewhere, but I'm not sure of the best solution. 3119 if (OldMI->isInlineAsm()) 3120 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3121 const auto &MO = OldMI->getOperand(i); 3122 if (MO.isReg() && MO.isUse()) 3123 break; 3124 unsigned UseIdx; 3125 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3126 NewMI->tieOperands(i, UseIdx); 3127 } 3128 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3129 return NewMI; 3130 } 3131 3132 /// Clone the instruction for the new pipelined loop. If needed, this 3133 /// function updates the instruction using the values saved in the 3134 /// InstrChanges structure. 3135 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3136 unsigned CurStageNum, 3137 unsigned InstStageNum, 3138 SMSchedule &Schedule) { 3139 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3140 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3141 InstrChanges.find(getSUnit(OldMI)); 3142 if (It != InstrChanges.end()) { 3143 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3144 unsigned BasePos, OffsetPos; 3145 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3146 return nullptr; 3147 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3148 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3149 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3150 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3151 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3152 } 3153 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3154 return NewMI; 3155 } 3156 3157 /// Update the machine instruction with new virtual registers. This 3158 /// function may change the defintions and/or uses. 3159 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3160 unsigned CurStageNum, 3161 unsigned InstrStageNum, 3162 SMSchedule &Schedule, 3163 ValueMapTy *VRMap) { 3164 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3165 MachineOperand &MO = NewMI->getOperand(i); 3166 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3167 continue; 3168 unsigned reg = MO.getReg(); 3169 if (MO.isDef()) { 3170 // Create a new virtual register for the definition. 3171 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3172 unsigned NewReg = MRI.createVirtualRegister(RC); 3173 MO.setReg(NewReg); 3174 VRMap[CurStageNum][reg] = NewReg; 3175 if (LastDef) 3176 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3177 } else if (MO.isUse()) { 3178 MachineInstr *Def = MRI.getVRegDef(reg); 3179 // Compute the stage that contains the last definition for instruction. 3180 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3181 unsigned StageNum = CurStageNum; 3182 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3183 // Compute the difference in stages between the defintion and the use. 3184 unsigned StageDiff = (InstrStageNum - DefStageNum); 3185 // Make an adjustment to get the last definition. 3186 StageNum -= StageDiff; 3187 } 3188 if (VRMap[StageNum].count(reg)) 3189 MO.setReg(VRMap[StageNum][reg]); 3190 } 3191 } 3192 } 3193 3194 /// Return the instruction in the loop that defines the register. 3195 /// If the definition is a Phi, then follow the Phi operand to 3196 /// the instruction in the loop. 3197 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3198 SmallPtrSet<MachineInstr *, 8> Visited; 3199 MachineInstr *Def = MRI.getVRegDef(Reg); 3200 while (Def->isPHI()) { 3201 if (!Visited.insert(Def).second) 3202 break; 3203 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3204 if (Def->getOperand(i + 1).getMBB() == BB) { 3205 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3206 break; 3207 } 3208 } 3209 return Def; 3210 } 3211 3212 /// Return the new name for the value from the previous stage. 3213 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3214 unsigned LoopVal, unsigned LoopStage, 3215 ValueMapTy *VRMap, 3216 MachineBasicBlock *BB) { 3217 unsigned PrevVal = 0; 3218 if (StageNum > PhiStage) { 3219 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3220 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3221 // The name is defined in the previous stage. 3222 PrevVal = VRMap[StageNum - 1][LoopVal]; 3223 else if (VRMap[StageNum].count(LoopVal)) 3224 // The previous name is defined in the current stage when the instruction 3225 // order is swapped. 3226 PrevVal = VRMap[StageNum][LoopVal]; 3227 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3228 // The loop value hasn't yet been scheduled. 3229 PrevVal = LoopVal; 3230 else if (StageNum == PhiStage + 1) 3231 // The loop value is another phi, which has not been scheduled. 3232 PrevVal = getInitPhiReg(*LoopInst, BB); 3233 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3234 // The loop value is another phi, which has been scheduled. 3235 PrevVal = 3236 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3237 LoopStage, VRMap, BB); 3238 } 3239 return PrevVal; 3240 } 3241 3242 /// Rewrite the Phi values in the specified block to use the mappings 3243 /// from the initial operand. Once the Phi is scheduled, we switch 3244 /// to using the loop value instead of the Phi value, so those names 3245 /// do not need to be rewritten. 3246 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3247 unsigned StageNum, 3248 SMSchedule &Schedule, 3249 ValueMapTy *VRMap, 3250 InstrMapTy &InstrMap) { 3251 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3252 BBE = BB->getFirstNonPHI(); 3253 BBI != BBE; ++BBI) { 3254 unsigned InitVal = 0; 3255 unsigned LoopVal = 0; 3256 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3257 unsigned PhiDef = BBI->getOperand(0).getReg(); 3258 3259 unsigned PhiStage = 3260 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3261 unsigned LoopStage = 3262 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3263 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3264 if (NumPhis > StageNum) 3265 NumPhis = StageNum; 3266 for (unsigned np = 0; np <= NumPhis; ++np) { 3267 unsigned NewVal = 3268 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3269 if (!NewVal) 3270 NewVal = InitVal; 3271 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3272 PhiDef, NewVal); 3273 } 3274 } 3275 } 3276 3277 /// Rewrite a previously scheduled instruction to use the register value 3278 /// from the new instruction. Make sure the instruction occurs in the 3279 /// basic block, and we don't change the uses in the new instruction. 3280 void SwingSchedulerDAG::rewriteScheduledInstr( 3281 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3282 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3283 unsigned NewReg, unsigned PrevReg) { 3284 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3285 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3286 // Rewrite uses that have been scheduled already to use the new 3287 // Phi register. 3288 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3289 EI = MRI.use_end(); 3290 UI != EI;) { 3291 MachineOperand &UseOp = *UI; 3292 MachineInstr *UseMI = UseOp.getParent(); 3293 ++UI; 3294 if (UseMI->getParent() != BB) 3295 continue; 3296 if (UseMI->isPHI()) { 3297 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3298 continue; 3299 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3300 continue; 3301 } 3302 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3303 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3304 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3305 int StageSched = Schedule.stageScheduled(OrigMISU); 3306 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3307 unsigned ReplaceReg = 0; 3308 // This is the stage for the scheduled instruction. 3309 if (StagePhi == StageSched && Phi->isPHI()) { 3310 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3311 if (PrevReg && InProlog) 3312 ReplaceReg = PrevReg; 3313 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3314 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3315 ReplaceReg = PrevReg; 3316 else 3317 ReplaceReg = NewReg; 3318 } 3319 // The scheduled instruction occurs before the scheduled Phi, and the 3320 // Phi is not loop carried. 3321 if (!InProlog && StagePhi + 1 == StageSched && 3322 !Schedule.isLoopCarried(this, *Phi)) 3323 ReplaceReg = NewReg; 3324 if (StagePhi > StageSched && Phi->isPHI()) 3325 ReplaceReg = NewReg; 3326 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3327 ReplaceReg = NewReg; 3328 if (ReplaceReg) { 3329 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3330 UseOp.setReg(ReplaceReg); 3331 } 3332 } 3333 } 3334 3335 /// Check if we can change the instruction to use an offset value from the 3336 /// previous iteration. If so, return true and set the base and offset values 3337 /// so that we can rewrite the load, if necessary. 3338 /// v1 = Phi(v0, v3) 3339 /// v2 = load v1, 0 3340 /// v3 = post_store v1, 4, x 3341 /// This function enables the load to be rewritten as v2 = load v3, 4. 3342 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3343 unsigned &BasePos, 3344 unsigned &OffsetPos, 3345 unsigned &NewBase, 3346 int64_t &Offset) { 3347 // Get the load instruction. 3348 if (TII->isPostIncrement(*MI)) 3349 return false; 3350 unsigned BasePosLd, OffsetPosLd; 3351 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3352 return false; 3353 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3354 3355 // Look for the Phi instruction. 3356 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 3357 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3358 if (!Phi || !Phi->isPHI()) 3359 return false; 3360 // Get the register defined in the loop block. 3361 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3362 if (!PrevReg) 3363 return false; 3364 3365 // Check for the post-increment load/store instruction. 3366 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3367 if (!PrevDef || PrevDef == MI) 3368 return false; 3369 3370 if (!TII->isPostIncrement(*PrevDef)) 3371 return false; 3372 3373 unsigned BasePos1 = 0, OffsetPos1 = 0; 3374 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3375 return false; 3376 3377 // Make sure offset values are both positive or both negative. 3378 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3379 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3380 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3381 return false; 3382 3383 // Set the return value once we determine that we return true. 3384 BasePos = BasePosLd; 3385 OffsetPos = OffsetPosLd; 3386 NewBase = PrevReg; 3387 Offset = StoreOffset; 3388 return true; 3389 } 3390 3391 /// Apply changes to the instruction if needed. The changes are need 3392 /// to improve the scheduling and depend up on the final schedule. 3393 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3394 SMSchedule &Schedule, 3395 bool UpdateDAG) { 3396 SUnit *SU = getSUnit(MI); 3397 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3398 InstrChanges.find(SU); 3399 if (It != InstrChanges.end()) { 3400 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3401 unsigned BasePos, OffsetPos; 3402 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3403 return nullptr; 3404 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3405 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3406 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3407 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3408 int BaseStageNum = Schedule.stageScheduled(SU); 3409 int BaseCycleNum = Schedule.cycleScheduled(SU); 3410 if (BaseStageNum < DefStageNum) { 3411 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3412 int OffsetDiff = DefStageNum - BaseStageNum; 3413 if (DefCycleNum < BaseCycleNum) { 3414 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3415 if (OffsetDiff > 0) 3416 --OffsetDiff; 3417 } 3418 int64_t NewOffset = 3419 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3420 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3421 if (UpdateDAG) { 3422 SU->setInstr(NewMI); 3423 MISUnitMap[NewMI] = SU; 3424 } 3425 NewMIs.insert(NewMI); 3426 return NewMI; 3427 } 3428 } 3429 return nullptr; 3430 } 3431 3432 /// Return true for an order dependence that is loop carried potentially. 3433 /// An order dependence is loop carried if the destination defines a value 3434 /// that may be used by the source in a subsequent iteration. 3435 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3436 bool isSucc) { 3437 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3438 return false; 3439 3440 if (!SwpPruneLoopCarried) 3441 return true; 3442 3443 MachineInstr *SI = Source->getInstr(); 3444 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3445 if (!isSucc) 3446 std::swap(SI, DI); 3447 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3448 3449 // Assume ordered loads and stores may have a loop carried dependence. 3450 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3451 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3452 return true; 3453 3454 // Only chain dependences between a load and store can be loop carried. 3455 if (!DI->mayStore() || !SI->mayLoad()) 3456 return false; 3457 3458 unsigned DeltaS, DeltaD; 3459 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3460 return true; 3461 3462 unsigned BaseRegS, BaseRegD; 3463 int64_t OffsetS, OffsetD; 3464 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3465 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3466 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3467 return true; 3468 3469 if (BaseRegS != BaseRegD) 3470 return true; 3471 3472 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3473 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3474 3475 // This is the main test, which checks the offset values and the loop 3476 // increment value to determine if the accesses may be loop carried. 3477 if (OffsetS >= OffsetD) 3478 return OffsetS + AccessSizeS > DeltaS; 3479 else 3480 return OffsetD + AccessSizeD > DeltaD; 3481 3482 return true; 3483 } 3484 3485 void SwingSchedulerDAG::postprocessDAG() { 3486 for (auto &M : Mutations) 3487 M->apply(this); 3488 } 3489 3490 /// Try to schedule the node at the specified StartCycle and continue 3491 /// until the node is schedule or the EndCycle is reached. This function 3492 /// returns true if the node is scheduled. This routine may search either 3493 /// forward or backward for a place to insert the instruction based upon 3494 /// the relative values of StartCycle and EndCycle. 3495 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3496 bool forward = true; 3497 if (StartCycle > EndCycle) 3498 forward = false; 3499 3500 // The terminating condition depends on the direction. 3501 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3502 for (int curCycle = StartCycle; curCycle != termCycle; 3503 forward ? ++curCycle : --curCycle) { 3504 3505 // Add the already scheduled instructions at the specified cycle to the DFA. 3506 Resources->clearResources(); 3507 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3508 checkCycle <= LastCycle; checkCycle += II) { 3509 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3510 3511 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3512 E = cycleInstrs.end(); 3513 I != E; ++I) { 3514 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3515 continue; 3516 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3517 "These instructions have already been scheduled."); 3518 Resources->reserveResources(*(*I)->getInstr()); 3519 } 3520 } 3521 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3522 Resources->canReserveResources(*SU->getInstr())) { 3523 DEBUG({ 3524 dbgs() << "\tinsert at cycle " << curCycle << " "; 3525 SU->getInstr()->dump(); 3526 }); 3527 3528 ScheduledInstrs[curCycle].push_back(SU); 3529 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3530 if (curCycle > LastCycle) 3531 LastCycle = curCycle; 3532 if (curCycle < FirstCycle) 3533 FirstCycle = curCycle; 3534 return true; 3535 } 3536 DEBUG({ 3537 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3538 SU->getInstr()->dump(); 3539 }); 3540 } 3541 return false; 3542 } 3543 3544 // Return the cycle of the earliest scheduled instruction in the chain. 3545 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3546 SmallPtrSet<SUnit *, 8> Visited; 3547 SmallVector<SDep, 8> Worklist; 3548 Worklist.push_back(Dep); 3549 int EarlyCycle = INT_MAX; 3550 while (!Worklist.empty()) { 3551 const SDep &Cur = Worklist.pop_back_val(); 3552 SUnit *PrevSU = Cur.getSUnit(); 3553 if (Visited.count(PrevSU)) 3554 continue; 3555 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3556 if (it == InstrToCycle.end()) 3557 continue; 3558 EarlyCycle = std::min(EarlyCycle, it->second); 3559 for (const auto &PI : PrevSU->Preds) 3560 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3561 Worklist.push_back(PI); 3562 Visited.insert(PrevSU); 3563 } 3564 return EarlyCycle; 3565 } 3566 3567 // Return the cycle of the latest scheduled instruction in the chain. 3568 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3569 SmallPtrSet<SUnit *, 8> Visited; 3570 SmallVector<SDep, 8> Worklist; 3571 Worklist.push_back(Dep); 3572 int LateCycle = INT_MIN; 3573 while (!Worklist.empty()) { 3574 const SDep &Cur = Worklist.pop_back_val(); 3575 SUnit *SuccSU = Cur.getSUnit(); 3576 if (Visited.count(SuccSU)) 3577 continue; 3578 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3579 if (it == InstrToCycle.end()) 3580 continue; 3581 LateCycle = std::max(LateCycle, it->second); 3582 for (const auto &SI : SuccSU->Succs) 3583 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3584 Worklist.push_back(SI); 3585 Visited.insert(SuccSU); 3586 } 3587 return LateCycle; 3588 } 3589 3590 /// If an instruction has a use that spans multiple iterations, then 3591 /// return true. These instructions are characterized by having a back-ege 3592 /// to a Phi, which contains a reference to another Phi. 3593 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3594 for (auto &P : SU->Preds) 3595 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3596 for (auto &S : P.getSUnit()->Succs) 3597 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3598 return P.getSUnit(); 3599 return nullptr; 3600 } 3601 3602 /// Compute the scheduling start slot for the instruction. The start slot 3603 /// depends on any predecessor or successor nodes scheduled already. 3604 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3605 int *MinEnd, int *MaxStart, int II, 3606 SwingSchedulerDAG *DAG) { 3607 // Iterate over each instruction that has been scheduled already. The start 3608 // slot computuation depends on whether the previously scheduled instruction 3609 // is a predecessor or successor of the specified instruction. 3610 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3611 3612 // Iterate over each instruction in the current cycle. 3613 for (SUnit *I : getInstructions(cycle)) { 3614 // Because we're processing a DAG for the dependences, we recognize 3615 // the back-edge in recurrences by anti dependences. 3616 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3617 const SDep &Dep = SU->Preds[i]; 3618 if (Dep.getSUnit() == I) { 3619 if (!DAG->isBackedge(SU, Dep)) { 3620 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3621 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3622 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3623 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3624 int End = earliestCycleInChain(Dep) + (II - 1); 3625 *MinEnd = std::min(*MinEnd, End); 3626 } 3627 } else { 3628 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3629 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3630 *MinLateStart = std::min(*MinLateStart, LateStart); 3631 } 3632 } 3633 // For instruction that requires multiple iterations, make sure that 3634 // the dependent instruction is not scheduled past the definition. 3635 SUnit *BE = multipleIterations(I, DAG); 3636 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3637 !SU->isPred(I)) 3638 *MinLateStart = std::min(*MinLateStart, cycle); 3639 } 3640 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3641 if (SU->Succs[i].getSUnit() == I) { 3642 const SDep &Dep = SU->Succs[i]; 3643 if (!DAG->isBackedge(SU, Dep)) { 3644 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3645 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3646 *MinLateStart = std::min(*MinLateStart, LateStart); 3647 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3648 int Start = latestCycleInChain(Dep) + 1 - II; 3649 *MaxStart = std::max(*MaxStart, Start); 3650 } 3651 } else { 3652 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3653 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3654 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3655 } 3656 } 3657 } 3658 } 3659 } 3660 3661 /// Order the instructions within a cycle so that the definitions occur 3662 /// before the uses. Returns true if the instruction is added to the start 3663 /// of the list, or false if added to the end. 3664 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3665 std::deque<SUnit *> &Insts) { 3666 MachineInstr *MI = SU->getInstr(); 3667 bool OrderBeforeUse = false; 3668 bool OrderAfterDef = false; 3669 bool OrderBeforeDef = false; 3670 unsigned MoveDef = 0; 3671 unsigned MoveUse = 0; 3672 int StageInst1 = stageScheduled(SU); 3673 3674 unsigned Pos = 0; 3675 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3676 ++I, ++Pos) { 3677 // Relative order of Phis does not matter. 3678 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3679 continue; 3680 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3681 MachineOperand &MO = MI->getOperand(i); 3682 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3683 continue; 3684 unsigned Reg = MO.getReg(); 3685 unsigned BasePos, OffsetPos; 3686 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3687 if (MI->getOperand(BasePos).getReg() == Reg) 3688 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3689 Reg = NewReg; 3690 bool Reads, Writes; 3691 std::tie(Reads, Writes) = 3692 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3693 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3694 OrderBeforeUse = true; 3695 MoveUse = Pos; 3696 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3697 // Add the instruction after the scheduled instruction. 3698 OrderAfterDef = true; 3699 MoveDef = Pos; 3700 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3701 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3702 OrderBeforeUse = true; 3703 MoveUse = Pos; 3704 } else { 3705 OrderAfterDef = true; 3706 MoveDef = Pos; 3707 } 3708 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3709 OrderBeforeUse = true; 3710 MoveUse = Pos; 3711 if (MoveUse != 0) { 3712 OrderAfterDef = true; 3713 MoveDef = Pos - 1; 3714 } 3715 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3716 // Add the instruction before the scheduled instruction. 3717 OrderBeforeUse = true; 3718 MoveUse = Pos; 3719 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3720 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3721 OrderBeforeDef = true; 3722 MoveUse = Pos; 3723 } 3724 } 3725 // Check for order dependences between instructions. Make sure the source 3726 // is ordered before the destination. 3727 for (auto &S : SU->Succs) 3728 if (S.getKind() == SDep::Order) { 3729 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3730 OrderBeforeUse = true; 3731 MoveUse = Pos; 3732 } 3733 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3734 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3735 if (S.isAssignedRegDep()) { 3736 OrderAfterDef = true; 3737 MoveDef = Pos; 3738 } 3739 } else { 3740 OrderBeforeUse = true; 3741 MoveUse = Pos; 3742 } 3743 } 3744 for (auto &P : SU->Preds) 3745 if (P.getKind() == SDep::Order) { 3746 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3747 OrderAfterDef = true; 3748 MoveDef = Pos; 3749 } 3750 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3751 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3752 if (P.isAssignedRegDep()) { 3753 OrderBeforeUse = true; 3754 MoveUse = Pos; 3755 } 3756 } else { 3757 OrderAfterDef = true; 3758 MoveDef = Pos; 3759 } 3760 } 3761 } 3762 3763 // A circular dependence. 3764 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3765 OrderBeforeUse = false; 3766 3767 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3768 // to a loop-carried dependence. 3769 if (OrderBeforeDef) 3770 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3771 3772 // The uncommon case when the instruction order needs to be updated because 3773 // there is both a use and def. 3774 if (OrderBeforeUse && OrderAfterDef) { 3775 SUnit *UseSU = Insts.at(MoveUse); 3776 SUnit *DefSU = Insts.at(MoveDef); 3777 if (MoveUse > MoveDef) { 3778 Insts.erase(Insts.begin() + MoveUse); 3779 Insts.erase(Insts.begin() + MoveDef); 3780 } else { 3781 Insts.erase(Insts.begin() + MoveDef); 3782 Insts.erase(Insts.begin() + MoveUse); 3783 } 3784 if (orderDependence(SSD, UseSU, Insts)) { 3785 Insts.push_front(SU); 3786 orderDependence(SSD, DefSU, Insts); 3787 return true; 3788 } 3789 Insts.pop_back(); 3790 Insts.push_back(SU); 3791 Insts.push_back(UseSU); 3792 orderDependence(SSD, DefSU, Insts); 3793 return false; 3794 } 3795 // Put the new instruction first if there is a use in the list. Otherwise, 3796 // put it at the end of the list. 3797 if (OrderBeforeUse) 3798 Insts.push_front(SU); 3799 else 3800 Insts.push_back(SU); 3801 return OrderBeforeUse; 3802 } 3803 3804 /// Return true if the scheduled Phi has a loop carried operand. 3805 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3806 if (!Phi.isPHI()) 3807 return false; 3808 assert(Phi.isPHI() && "Expecing a Phi."); 3809 SUnit *DefSU = SSD->getSUnit(&Phi); 3810 unsigned DefCycle = cycleScheduled(DefSU); 3811 int DefStage = stageScheduled(DefSU); 3812 3813 unsigned InitVal = 0; 3814 unsigned LoopVal = 0; 3815 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3816 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3817 if (!UseSU) 3818 return true; 3819 if (UseSU->getInstr()->isPHI()) 3820 return true; 3821 unsigned LoopCycle = cycleScheduled(UseSU); 3822 int LoopStage = stageScheduled(UseSU); 3823 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3824 } 3825 3826 /// Return true if the instruction is a definition that is loop carried 3827 /// and defines the use on the next iteration. 3828 /// v1 = phi(v2, v3) 3829 /// (Def) v3 = op v1 3830 /// (MO) = v1 3831 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3832 /// register. 3833 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3834 MachineInstr *Def, MachineOperand &MO) { 3835 if (!MO.isReg()) 3836 return false; 3837 if (Def->isPHI()) 3838 return false; 3839 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3840 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3841 return false; 3842 if (!isLoopCarried(SSD, *Phi)) 3843 return false; 3844 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3845 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3846 MachineOperand &DMO = Def->getOperand(i); 3847 if (!DMO.isReg() || !DMO.isDef()) 3848 continue; 3849 if (DMO.getReg() == LoopReg) 3850 return true; 3851 } 3852 return false; 3853 } 3854 3855 // Check if the generated schedule is valid. This function checks if 3856 // an instruction that uses a physical register is scheduled in a 3857 // different stage than the definition. The pipeliner does not handle 3858 // physical register values that may cross a basic block boundary. 3859 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3860 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3861 SUnit &SU = SSD->SUnits[i]; 3862 if (!SU.hasPhysRegDefs) 3863 continue; 3864 int StageDef = stageScheduled(&SU); 3865 assert(StageDef != -1 && "Instruction should have been scheduled."); 3866 for (auto &SI : SU.Succs) 3867 if (SI.isAssignedRegDep()) 3868 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3869 if (stageScheduled(SI.getSUnit()) != StageDef) 3870 return false; 3871 } 3872 return true; 3873 } 3874 3875 /// After the schedule has been formed, call this function to combine 3876 /// the instructions from the different stages/cycles. That is, this 3877 /// function creates a schedule that represents a single iteration. 3878 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3879 // Move all instructions to the first stage from later stages. 3880 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3881 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3882 ++stage) { 3883 std::deque<SUnit *> &cycleInstrs = 3884 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3885 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3886 E = cycleInstrs.rend(); 3887 I != E; ++I) 3888 ScheduledInstrs[cycle].push_front(*I); 3889 } 3890 } 3891 // Iterate over the definitions in each instruction, and compute the 3892 // stage difference for each use. Keep the maximum value. 3893 for (auto &I : InstrToCycle) { 3894 int DefStage = stageScheduled(I.first); 3895 MachineInstr *MI = I.first->getInstr(); 3896 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3897 MachineOperand &Op = MI->getOperand(i); 3898 if (!Op.isReg() || !Op.isDef()) 3899 continue; 3900 3901 unsigned Reg = Op.getReg(); 3902 unsigned MaxDiff = 0; 3903 bool PhiIsSwapped = false; 3904 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3905 EI = MRI.use_end(); 3906 UI != EI; ++UI) { 3907 MachineOperand &UseOp = *UI; 3908 MachineInstr *UseMI = UseOp.getParent(); 3909 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3910 int UseStage = stageScheduled(SUnitUse); 3911 unsigned Diff = 0; 3912 if (UseStage != -1 && UseStage >= DefStage) 3913 Diff = UseStage - DefStage; 3914 if (MI->isPHI()) { 3915 if (isLoopCarried(SSD, *MI)) 3916 ++Diff; 3917 else 3918 PhiIsSwapped = true; 3919 } 3920 MaxDiff = std::max(Diff, MaxDiff); 3921 } 3922 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3923 } 3924 } 3925 3926 // Erase all the elements in the later stages. Only one iteration should 3927 // remain in the scheduled list, and it contains all the instructions. 3928 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3929 ScheduledInstrs.erase(cycle); 3930 3931 // Change the registers in instruction as specified in the InstrChanges 3932 // map. We need to use the new registers to create the correct order. 3933 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3934 SUnit *SU = &SSD->SUnits[i]; 3935 SSD->applyInstrChange(SU->getInstr(), *this, true); 3936 } 3937 3938 // Reorder the instructions in each cycle to fix and improve the 3939 // generated code. 3940 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3941 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3942 std::deque<SUnit *> newOrderZC; 3943 // Put the zero-cost, pseudo instructions at the start of the cycle. 3944 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3945 SUnit *SU = cycleInstrs[i]; 3946 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3947 orderDependence(SSD, SU, newOrderZC); 3948 } 3949 std::deque<SUnit *> newOrderI; 3950 // Then, add the regular instructions back. 3951 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3952 SUnit *SU = cycleInstrs[i]; 3953 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3954 orderDependence(SSD, SU, newOrderI); 3955 } 3956 // Replace the old order with the new order. 3957 cycleInstrs.swap(newOrderZC); 3958 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3959 } 3960 3961 DEBUG(dump();); 3962 } 3963 3964 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3965 /// Print the schedule information to the given output. 3966 void SMSchedule::print(raw_ostream &os) const { 3967 // Iterate over each cycle. 3968 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3969 // Iterate over each instruction in the cycle. 3970 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3971 for (SUnit *CI : cycleInstrs->second) { 3972 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3973 os << "(" << CI->NodeNum << ") "; 3974 CI->getInstr()->print(os); 3975 os << "\n"; 3976 } 3977 } 3978 } 3979 3980 /// Utility function used for debugging to print the schedule. 3981 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3982 #endif 3983