1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/RegisterPressure.h" 60 #include "llvm/CodeGen/ScheduleDAG.h" 61 #include "llvm/CodeGen/ScheduleDAGMutation.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/Config/llvm-config.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/MC/LaneBitmask.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCInstrItineraries.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <deque> 84 #include <functional> 85 #include <iterator> 86 #include <map> 87 #include <memory> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "pipeliner" 95 96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 97 STATISTIC(NumPipelined, "Number of loops software pipelined"); 98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 99 100 /// A command line option to turn software pipelining on or off. 101 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 102 cl::ZeroOrMore, 103 cl::desc("Enable Software Pipelining")); 104 105 /// A command line option to enable SWP at -Os. 106 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 107 cl::desc("Enable SWP at Os."), cl::Hidden, 108 cl::init(false)); 109 110 /// A command line argument to limit minimum initial interval for pipelining. 111 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 112 cl::desc("Size limit for the MII."), 113 cl::Hidden, cl::init(27)); 114 115 /// A command line argument to limit the number of stages in the pipeline. 116 static cl::opt<int> 117 SwpMaxStages("pipeliner-max-stages", 118 cl::desc("Maximum stages allowed in the generated scheduled."), 119 cl::Hidden, cl::init(3)); 120 121 /// A command line option to disable the pruning of chain dependences due to 122 /// an unrelated Phi. 123 static cl::opt<bool> 124 SwpPruneDeps("pipeliner-prune-deps", 125 cl::desc("Prune dependences between unrelated Phi nodes."), 126 cl::Hidden, cl::init(true)); 127 128 /// A command line option to disable the pruning of loop carried order 129 /// dependences. 130 static cl::opt<bool> 131 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 132 cl::desc("Prune loop carried order dependences."), 133 cl::Hidden, cl::init(true)); 134 135 #ifndef NDEBUG 136 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 137 #endif 138 139 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 140 cl::ReallyHidden, cl::init(false), 141 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 142 143 namespace llvm { 144 145 // A command line option to enable the CopyToPhi DAG mutation. 146 cl::opt<bool> 147 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 148 cl::init(true), cl::ZeroOrMore, 149 cl::desc("Enable CopyToPhi DAG Mutation")); 150 151 } // end namespace llvm 152 153 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 154 char MachinePipeliner::ID = 0; 155 #ifndef NDEBUG 156 int MachinePipeliner::NumTries = 0; 157 #endif 158 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 159 160 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 161 "Modulo Software Pipelining", false, false) 162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 164 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 165 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 166 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 167 "Modulo Software Pipelining", false, false) 168 169 /// The "main" function for implementing Swing Modulo Scheduling. 170 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 171 if (skipFunction(mf.getFunction())) 172 return false; 173 174 if (!EnableSWP) 175 return false; 176 177 if (mf.getFunction().getAttributes().hasAttribute( 178 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 179 !EnableSWPOptSize.getPosition()) 180 return false; 181 182 // Cannot pipeline loops without instruction itineraries if we are using 183 // DFA for the pipeliner. 184 if (mf.getSubtarget().useDFAforSMS() && 185 (!mf.getSubtarget().getInstrItineraryData() || 186 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 187 return false; 188 189 MF = &mf; 190 MLI = &getAnalysis<MachineLoopInfo>(); 191 MDT = &getAnalysis<MachineDominatorTree>(); 192 TII = MF->getSubtarget().getInstrInfo(); 193 RegClassInfo.runOnMachineFunction(*MF); 194 195 for (auto &L : *MLI) 196 scheduleLoop(*L); 197 198 return false; 199 } 200 201 /// Attempt to perform the SMS algorithm on the specified loop. This function is 202 /// the main entry point for the algorithm. The function identifies candidate 203 /// loops, calculates the minimum initiation interval, and attempts to schedule 204 /// the loop. 205 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 206 bool Changed = false; 207 for (auto &InnerLoop : L) 208 Changed |= scheduleLoop(*InnerLoop); 209 210 #ifndef NDEBUG 211 // Stop trying after reaching the limit (if any). 212 int Limit = SwpLoopLimit; 213 if (Limit >= 0) { 214 if (NumTries >= SwpLoopLimit) 215 return Changed; 216 NumTries++; 217 } 218 #endif 219 220 setPragmaPipelineOptions(L); 221 if (!canPipelineLoop(L)) { 222 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 223 return Changed; 224 } 225 226 ++NumTrytoPipeline; 227 228 Changed = swingModuloScheduler(L); 229 230 return Changed; 231 } 232 233 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 234 MachineBasicBlock *LBLK = L.getTopBlock(); 235 236 if (LBLK == nullptr) 237 return; 238 239 const BasicBlock *BBLK = LBLK->getBasicBlock(); 240 if (BBLK == nullptr) 241 return; 242 243 const Instruction *TI = BBLK->getTerminator(); 244 if (TI == nullptr) 245 return; 246 247 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 248 if (LoopID == nullptr) 249 return; 250 251 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 252 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 253 254 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 255 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 256 257 if (MD == nullptr) 258 continue; 259 260 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 261 262 if (S == nullptr) 263 continue; 264 265 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 266 assert(MD->getNumOperands() == 2 && 267 "Pipeline initiation interval hint metadata should have two operands."); 268 II_setByPragma = 269 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 270 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 271 } else if (S->getString() == "llvm.loop.pipeline.disable") { 272 disabledByPragma = true; 273 } 274 } 275 } 276 277 /// Return true if the loop can be software pipelined. The algorithm is 278 /// restricted to loops with a single basic block. Make sure that the 279 /// branch in the loop can be analyzed. 280 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 281 if (L.getNumBlocks() != 1) 282 return false; 283 284 if (disabledByPragma) 285 return false; 286 287 // Check if the branch can't be understood because we can't do pipelining 288 // if that's the case. 289 LI.TBB = nullptr; 290 LI.FBB = nullptr; 291 LI.BrCond.clear(); 292 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 293 return false; 294 295 LI.LoopInductionVar = nullptr; 296 LI.LoopCompare = nullptr; 297 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 298 return false; 299 300 if (!L.getLoopPreheader()) 301 return false; 302 303 // Remove any subregisters from inputs to phi nodes. 304 preprocessPhiNodes(*L.getHeader()); 305 return true; 306 } 307 308 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 309 MachineRegisterInfo &MRI = MF->getRegInfo(); 310 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 311 312 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 313 MachineOperand &DefOp = PI.getOperand(0); 314 assert(DefOp.getSubReg() == 0); 315 auto *RC = MRI.getRegClass(DefOp.getReg()); 316 317 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 318 MachineOperand &RegOp = PI.getOperand(i); 319 if (RegOp.getSubReg() == 0) 320 continue; 321 322 // If the operand uses a subregister, replace it with a new register 323 // without subregisters, and generate a copy to the new register. 324 unsigned NewReg = MRI.createVirtualRegister(RC); 325 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 326 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 327 const DebugLoc &DL = PredB.findDebugLoc(At); 328 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 329 .addReg(RegOp.getReg(), getRegState(RegOp), 330 RegOp.getSubReg()); 331 Slots.insertMachineInstrInMaps(*Copy); 332 RegOp.setReg(NewReg); 333 RegOp.setSubReg(0); 334 } 335 } 336 } 337 338 /// The SMS algorithm consists of the following main steps: 339 /// 1. Computation and analysis of the dependence graph. 340 /// 2. Ordering of the nodes (instructions). 341 /// 3. Attempt to Schedule the loop. 342 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 343 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 344 345 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 346 II_setByPragma); 347 348 MachineBasicBlock *MBB = L.getHeader(); 349 // The kernel should not include any terminator instructions. These 350 // will be added back later. 351 SMS.startBlock(MBB); 352 353 // Compute the number of 'real' instructions in the basic block by 354 // ignoring terminators. 355 unsigned size = MBB->size(); 356 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 357 E = MBB->instr_end(); 358 I != E; ++I, --size) 359 ; 360 361 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 362 SMS.schedule(); 363 SMS.exitRegion(); 364 365 SMS.finishBlock(); 366 return SMS.hasNewSchedule(); 367 } 368 369 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 370 if (II_setByPragma > 0) 371 MII = II_setByPragma; 372 else 373 MII = std::max(ResMII, RecMII); 374 } 375 376 void SwingSchedulerDAG::setMAX_II() { 377 if (II_setByPragma > 0) 378 MAX_II = II_setByPragma; 379 else 380 MAX_II = MII + 10; 381 } 382 383 /// We override the schedule function in ScheduleDAGInstrs to implement the 384 /// scheduling part of the Swing Modulo Scheduling algorithm. 385 void SwingSchedulerDAG::schedule() { 386 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 387 buildSchedGraph(AA); 388 addLoopCarriedDependences(AA); 389 updatePhiDependences(); 390 Topo.InitDAGTopologicalSorting(); 391 changeDependences(); 392 postprocessDAG(); 393 LLVM_DEBUG(dump()); 394 395 NodeSetType NodeSets; 396 findCircuits(NodeSets); 397 NodeSetType Circuits = NodeSets; 398 399 // Calculate the MII. 400 unsigned ResMII = calculateResMII(); 401 unsigned RecMII = calculateRecMII(NodeSets); 402 403 fuseRecs(NodeSets); 404 405 // This flag is used for testing and can cause correctness problems. 406 if (SwpIgnoreRecMII) 407 RecMII = 0; 408 409 setMII(ResMII, RecMII); 410 setMAX_II(); 411 412 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 413 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 414 415 // Can't schedule a loop without a valid MII. 416 if (MII == 0) 417 return; 418 419 // Don't pipeline large loops. 420 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 421 return; 422 423 computeNodeFunctions(NodeSets); 424 425 registerPressureFilter(NodeSets); 426 427 colocateNodeSets(NodeSets); 428 429 checkNodeSets(NodeSets); 430 431 LLVM_DEBUG({ 432 for (auto &I : NodeSets) { 433 dbgs() << " Rec NodeSet "; 434 I.dump(); 435 } 436 }); 437 438 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 439 440 groupRemainingNodes(NodeSets); 441 442 removeDuplicateNodes(NodeSets); 443 444 LLVM_DEBUG({ 445 for (auto &I : NodeSets) { 446 dbgs() << " NodeSet "; 447 I.dump(); 448 } 449 }); 450 451 computeNodeOrder(NodeSets); 452 453 // check for node order issues 454 checkValidNodeOrder(Circuits); 455 456 SMSchedule Schedule(Pass.MF); 457 Scheduled = schedulePipeline(Schedule); 458 459 if (!Scheduled) 460 return; 461 462 unsigned numStages = Schedule.getMaxStageCount(); 463 // No need to generate pipeline if there are no overlapped iterations. 464 if (numStages == 0) 465 return; 466 467 // Check that the maximum stage count is less than user-defined limit. 468 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 469 return; 470 471 generatePipelinedLoop(Schedule); 472 ++NumPipelined; 473 } 474 475 /// Clean up after the software pipeliner runs. 476 void SwingSchedulerDAG::finishBlock() { 477 for (MachineInstr *I : NewMIs) 478 MF.DeleteMachineInstr(I); 479 NewMIs.clear(); 480 481 // Call the superclass. 482 ScheduleDAGInstrs::finishBlock(); 483 } 484 485 /// Return the register values for the operands of a Phi instruction. 486 /// This function assume the instruction is a Phi. 487 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 488 unsigned &InitVal, unsigned &LoopVal) { 489 assert(Phi.isPHI() && "Expecting a Phi."); 490 491 InitVal = 0; 492 LoopVal = 0; 493 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 494 if (Phi.getOperand(i + 1).getMBB() != Loop) 495 InitVal = Phi.getOperand(i).getReg(); 496 else 497 LoopVal = Phi.getOperand(i).getReg(); 498 499 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 500 } 501 502 /// Return the Phi register value that comes from the incoming block. 503 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 504 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 505 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 506 return Phi.getOperand(i).getReg(); 507 return 0; 508 } 509 510 /// Return the Phi register value that comes the loop block. 511 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 512 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 513 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 514 return Phi.getOperand(i).getReg(); 515 return 0; 516 } 517 518 /// Return true if SUb can be reached from SUa following the chain edges. 519 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 520 SmallPtrSet<SUnit *, 8> Visited; 521 SmallVector<SUnit *, 8> Worklist; 522 Worklist.push_back(SUa); 523 while (!Worklist.empty()) { 524 const SUnit *SU = Worklist.pop_back_val(); 525 for (auto &SI : SU->Succs) { 526 SUnit *SuccSU = SI.getSUnit(); 527 if (SI.getKind() == SDep::Order) { 528 if (Visited.count(SuccSU)) 529 continue; 530 if (SuccSU == SUb) 531 return true; 532 Worklist.push_back(SuccSU); 533 Visited.insert(SuccSU); 534 } 535 } 536 } 537 return false; 538 } 539 540 /// Return true if the instruction causes a chain between memory 541 /// references before and after it. 542 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 543 return MI.isCall() || MI.hasUnmodeledSideEffects() || 544 (MI.hasOrderedMemoryRef() && 545 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 546 } 547 548 /// Return the underlying objects for the memory references of an instruction. 549 /// This function calls the code in ValueTracking, but first checks that the 550 /// instruction has a memory operand. 551 static void getUnderlyingObjects(const MachineInstr *MI, 552 SmallVectorImpl<const Value *> &Objs, 553 const DataLayout &DL) { 554 if (!MI->hasOneMemOperand()) 555 return; 556 MachineMemOperand *MM = *MI->memoperands_begin(); 557 if (!MM->getValue()) 558 return; 559 GetUnderlyingObjects(MM->getValue(), Objs, DL); 560 for (const Value *V : Objs) { 561 if (!isIdentifiedObject(V)) { 562 Objs.clear(); 563 return; 564 } 565 Objs.push_back(V); 566 } 567 } 568 569 /// Add a chain edge between a load and store if the store can be an 570 /// alias of the load on a subsequent iteration, i.e., a loop carried 571 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 572 /// but that code doesn't create loop carried dependences. 573 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 574 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 575 Value *UnknownValue = 576 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 577 for (auto &SU : SUnits) { 578 MachineInstr &MI = *SU.getInstr(); 579 if (isDependenceBarrier(MI, AA)) 580 PendingLoads.clear(); 581 else if (MI.mayLoad()) { 582 SmallVector<const Value *, 4> Objs; 583 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 584 if (Objs.empty()) 585 Objs.push_back(UnknownValue); 586 for (auto V : Objs) { 587 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 588 SUs.push_back(&SU); 589 } 590 } else if (MI.mayStore()) { 591 SmallVector<const Value *, 4> Objs; 592 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 593 if (Objs.empty()) 594 Objs.push_back(UnknownValue); 595 for (auto V : Objs) { 596 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 597 PendingLoads.find(V); 598 if (I == PendingLoads.end()) 599 continue; 600 for (auto Load : I->second) { 601 if (isSuccOrder(Load, &SU)) 602 continue; 603 MachineInstr &LdMI = *Load->getInstr(); 604 // First, perform the cheaper check that compares the base register. 605 // If they are the same and the load offset is less than the store 606 // offset, then mark the dependence as loop carried potentially. 607 const MachineOperand *BaseOp1, *BaseOp2; 608 int64_t Offset1, Offset2; 609 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 610 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 611 if (BaseOp1->isIdenticalTo(*BaseOp2) && 612 (int)Offset1 < (int)Offset2) { 613 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 614 "What happened to the chain edge?"); 615 SDep Dep(Load, SDep::Barrier); 616 Dep.setLatency(1); 617 SU.addPred(Dep); 618 continue; 619 } 620 } 621 // Second, the more expensive check that uses alias analysis on the 622 // base registers. If they alias, and the load offset is less than 623 // the store offset, the mark the dependence as loop carried. 624 if (!AA) { 625 SDep Dep(Load, SDep::Barrier); 626 Dep.setLatency(1); 627 SU.addPred(Dep); 628 continue; 629 } 630 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 631 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 632 if (!MMO1->getValue() || !MMO2->getValue()) { 633 SDep Dep(Load, SDep::Barrier); 634 Dep.setLatency(1); 635 SU.addPred(Dep); 636 continue; 637 } 638 if (MMO1->getValue() == MMO2->getValue() && 639 MMO1->getOffset() <= MMO2->getOffset()) { 640 SDep Dep(Load, SDep::Barrier); 641 Dep.setLatency(1); 642 SU.addPred(Dep); 643 continue; 644 } 645 AliasResult AAResult = AA->alias( 646 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 647 MMO1->getAAInfo()), 648 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 649 MMO2->getAAInfo())); 650 651 if (AAResult != NoAlias) { 652 SDep Dep(Load, SDep::Barrier); 653 Dep.setLatency(1); 654 SU.addPred(Dep); 655 } 656 } 657 } 658 } 659 } 660 } 661 662 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 663 /// processes dependences for PHIs. This function adds true dependences 664 /// from a PHI to a use, and a loop carried dependence from the use to the 665 /// PHI. The loop carried dependence is represented as an anti dependence 666 /// edge. This function also removes chain dependences between unrelated 667 /// PHIs. 668 void SwingSchedulerDAG::updatePhiDependences() { 669 SmallVector<SDep, 4> RemoveDeps; 670 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 671 672 // Iterate over each DAG node. 673 for (SUnit &I : SUnits) { 674 RemoveDeps.clear(); 675 // Set to true if the instruction has an operand defined by a Phi. 676 unsigned HasPhiUse = 0; 677 unsigned HasPhiDef = 0; 678 MachineInstr *MI = I.getInstr(); 679 // Iterate over each operand, and we process the definitions. 680 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 681 MOE = MI->operands_end(); 682 MOI != MOE; ++MOI) { 683 if (!MOI->isReg()) 684 continue; 685 unsigned Reg = MOI->getReg(); 686 if (MOI->isDef()) { 687 // If the register is used by a Phi, then create an anti dependence. 688 for (MachineRegisterInfo::use_instr_iterator 689 UI = MRI.use_instr_begin(Reg), 690 UE = MRI.use_instr_end(); 691 UI != UE; ++UI) { 692 MachineInstr *UseMI = &*UI; 693 SUnit *SU = getSUnit(UseMI); 694 if (SU != nullptr && UseMI->isPHI()) { 695 if (!MI->isPHI()) { 696 SDep Dep(SU, SDep::Anti, Reg); 697 Dep.setLatency(1); 698 I.addPred(Dep); 699 } else { 700 HasPhiDef = Reg; 701 // Add a chain edge to a dependent Phi that isn't an existing 702 // predecessor. 703 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 704 I.addPred(SDep(SU, SDep::Barrier)); 705 } 706 } 707 } 708 } else if (MOI->isUse()) { 709 // If the register is defined by a Phi, then create a true dependence. 710 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 711 if (DefMI == nullptr) 712 continue; 713 SUnit *SU = getSUnit(DefMI); 714 if (SU != nullptr && DefMI->isPHI()) { 715 if (!MI->isPHI()) { 716 SDep Dep(SU, SDep::Data, Reg); 717 Dep.setLatency(0); 718 ST.adjustSchedDependency(SU, &I, Dep); 719 I.addPred(Dep); 720 } else { 721 HasPhiUse = Reg; 722 // Add a chain edge to a dependent Phi that isn't an existing 723 // predecessor. 724 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 725 I.addPred(SDep(SU, SDep::Barrier)); 726 } 727 } 728 } 729 } 730 // Remove order dependences from an unrelated Phi. 731 if (!SwpPruneDeps) 732 continue; 733 for (auto &PI : I.Preds) { 734 MachineInstr *PMI = PI.getSUnit()->getInstr(); 735 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 736 if (I.getInstr()->isPHI()) { 737 if (PMI->getOperand(0).getReg() == HasPhiUse) 738 continue; 739 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 740 continue; 741 } 742 RemoveDeps.push_back(PI); 743 } 744 } 745 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 746 I.removePred(RemoveDeps[i]); 747 } 748 } 749 750 /// Iterate over each DAG node and see if we can change any dependences 751 /// in order to reduce the recurrence MII. 752 void SwingSchedulerDAG::changeDependences() { 753 // See if an instruction can use a value from the previous iteration. 754 // If so, we update the base and offset of the instruction and change 755 // the dependences. 756 for (SUnit &I : SUnits) { 757 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 758 int64_t NewOffset = 0; 759 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 760 NewOffset)) 761 continue; 762 763 // Get the MI and SUnit for the instruction that defines the original base. 764 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 765 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 766 if (!DefMI) 767 continue; 768 SUnit *DefSU = getSUnit(DefMI); 769 if (!DefSU) 770 continue; 771 // Get the MI and SUnit for the instruction that defins the new base. 772 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 773 if (!LastMI) 774 continue; 775 SUnit *LastSU = getSUnit(LastMI); 776 if (!LastSU) 777 continue; 778 779 if (Topo.IsReachable(&I, LastSU)) 780 continue; 781 782 // Remove the dependence. The value now depends on a prior iteration. 783 SmallVector<SDep, 4> Deps; 784 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 785 ++P) 786 if (P->getSUnit() == DefSU) 787 Deps.push_back(*P); 788 for (int i = 0, e = Deps.size(); i != e; i++) { 789 Topo.RemovePred(&I, Deps[i].getSUnit()); 790 I.removePred(Deps[i]); 791 } 792 // Remove the chain dependence between the instructions. 793 Deps.clear(); 794 for (auto &P : LastSU->Preds) 795 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 796 Deps.push_back(P); 797 for (int i = 0, e = Deps.size(); i != e; i++) { 798 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 799 LastSU->removePred(Deps[i]); 800 } 801 802 // Add a dependence between the new instruction and the instruction 803 // that defines the new base. 804 SDep Dep(&I, SDep::Anti, NewBase); 805 Topo.AddPred(LastSU, &I); 806 LastSU->addPred(Dep); 807 808 // Remember the base and offset information so that we can update the 809 // instruction during code generation. 810 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 811 } 812 } 813 814 namespace { 815 816 // FuncUnitSorter - Comparison operator used to sort instructions by 817 // the number of functional unit choices. 818 struct FuncUnitSorter { 819 const InstrItineraryData *InstrItins; 820 const MCSubtargetInfo *STI; 821 DenseMap<unsigned, unsigned> Resources; 822 823 FuncUnitSorter(const TargetSubtargetInfo &TSI) 824 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 825 826 // Compute the number of functional unit alternatives needed 827 // at each stage, and take the minimum value. We prioritize the 828 // instructions by the least number of choices first. 829 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 830 unsigned SchedClass = Inst->getDesc().getSchedClass(); 831 unsigned min = UINT_MAX; 832 if (InstrItins && !InstrItins->isEmpty()) { 833 for (const InstrStage &IS : 834 make_range(InstrItins->beginStage(SchedClass), 835 InstrItins->endStage(SchedClass))) { 836 unsigned funcUnits = IS.getUnits(); 837 unsigned numAlternatives = countPopulation(funcUnits); 838 if (numAlternatives < min) { 839 min = numAlternatives; 840 F = funcUnits; 841 } 842 } 843 return min; 844 } 845 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 846 const MCSchedClassDesc *SCDesc = 847 STI->getSchedModel().getSchedClassDesc(SchedClass); 848 if (!SCDesc->isValid()) 849 // No valid Schedule Class Desc for schedClass, should be 850 // Pseudo/PostRAPseudo 851 return min; 852 853 for (const MCWriteProcResEntry &PRE : 854 make_range(STI->getWriteProcResBegin(SCDesc), 855 STI->getWriteProcResEnd(SCDesc))) { 856 if (!PRE.Cycles) 857 continue; 858 const MCProcResourceDesc *ProcResource = 859 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 860 unsigned NumUnits = ProcResource->NumUnits; 861 if (NumUnits < min) { 862 min = NumUnits; 863 F = PRE.ProcResourceIdx; 864 } 865 } 866 return min; 867 } 868 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 869 } 870 871 // Compute the critical resources needed by the instruction. This 872 // function records the functional units needed by instructions that 873 // must use only one functional unit. We use this as a tie breaker 874 // for computing the resource MII. The instrutions that require 875 // the same, highly used, functional unit have high priority. 876 void calcCriticalResources(MachineInstr &MI) { 877 unsigned SchedClass = MI.getDesc().getSchedClass(); 878 if (InstrItins && !InstrItins->isEmpty()) { 879 for (const InstrStage &IS : 880 make_range(InstrItins->beginStage(SchedClass), 881 InstrItins->endStage(SchedClass))) { 882 unsigned FuncUnits = IS.getUnits(); 883 if (countPopulation(FuncUnits) == 1) 884 Resources[FuncUnits]++; 885 } 886 return; 887 } 888 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 889 const MCSchedClassDesc *SCDesc = 890 STI->getSchedModel().getSchedClassDesc(SchedClass); 891 if (!SCDesc->isValid()) 892 // No valid Schedule Class Desc for schedClass, should be 893 // Pseudo/PostRAPseudo 894 return; 895 896 for (const MCWriteProcResEntry &PRE : 897 make_range(STI->getWriteProcResBegin(SCDesc), 898 STI->getWriteProcResEnd(SCDesc))) { 899 if (!PRE.Cycles) 900 continue; 901 Resources[PRE.ProcResourceIdx]++; 902 } 903 return; 904 } 905 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 906 } 907 908 /// Return true if IS1 has less priority than IS2. 909 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 910 unsigned F1 = 0, F2 = 0; 911 unsigned MFUs1 = minFuncUnits(IS1, F1); 912 unsigned MFUs2 = minFuncUnits(IS2, F2); 913 if (MFUs1 == 1 && MFUs2 == 1) 914 return Resources.lookup(F1) < Resources.lookup(F2); 915 return MFUs1 > MFUs2; 916 } 917 }; 918 919 } // end anonymous namespace 920 921 /// Calculate the resource constrained minimum initiation interval for the 922 /// specified loop. We use the DFA to model the resources needed for 923 /// each instruction, and we ignore dependences. A different DFA is created 924 /// for each cycle that is required. When adding a new instruction, we attempt 925 /// to add it to each existing DFA, until a legal space is found. If the 926 /// instruction cannot be reserved in an existing DFA, we create a new one. 927 unsigned SwingSchedulerDAG::calculateResMII() { 928 929 SmallVector<ResourceManager*, 8> Resources; 930 MachineBasicBlock *MBB = Loop.getHeader(); 931 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 932 933 // Sort the instructions by the number of available choices for scheduling, 934 // least to most. Use the number of critical resources as the tie breaker. 935 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 936 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 937 E = MBB->getFirstTerminator(); 938 I != E; ++I) 939 FUS.calcCriticalResources(*I); 940 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 941 FuncUnitOrder(FUS); 942 943 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 944 E = MBB->getFirstTerminator(); 945 I != E; ++I) 946 FuncUnitOrder.push(&*I); 947 948 while (!FuncUnitOrder.empty()) { 949 MachineInstr *MI = FuncUnitOrder.top(); 950 FuncUnitOrder.pop(); 951 if (TII->isZeroCost(MI->getOpcode())) 952 continue; 953 // Attempt to reserve the instruction in an existing DFA. At least one 954 // DFA is needed for each cycle. 955 unsigned NumCycles = getSUnit(MI)->Latency; 956 unsigned ReservedCycles = 0; 957 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 958 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 959 for (unsigned C = 0; C < NumCycles; ++C) 960 while (RI != RE) { 961 if ((*RI++)->canReserveResources(*MI)) { 962 ++ReservedCycles; 963 break; 964 } 965 } 966 // Start reserving resources using existing DFAs. 967 for (unsigned C = 0; C < ReservedCycles; ++C) { 968 --RI; 969 (*RI)->reserveResources(*MI); 970 } 971 // Add new DFAs, if needed, to reserve resources. 972 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 973 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 974 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 975 NewResource->reserveResources(*MI); 976 Resources.push_back(NewResource); 977 } 978 } 979 int Resmii = Resources.size(); 980 // Delete the memory for each of the DFAs that were created earlier. 981 for (ResourceManager *RI : Resources) { 982 ResourceManager *D = RI; 983 delete D; 984 } 985 Resources.clear(); 986 return Resmii; 987 } 988 989 /// Calculate the recurrence-constrainted minimum initiation interval. 990 /// Iterate over each circuit. Compute the delay(c) and distance(c) 991 /// for each circuit. The II needs to satisfy the inequality 992 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 993 /// II that satisfies the inequality, and the RecMII is the maximum 994 /// of those values. 995 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 996 unsigned RecMII = 0; 997 998 for (NodeSet &Nodes : NodeSets) { 999 if (Nodes.empty()) 1000 continue; 1001 1002 unsigned Delay = Nodes.getLatency(); 1003 unsigned Distance = 1; 1004 1005 // ii = ceil(delay / distance) 1006 unsigned CurMII = (Delay + Distance - 1) / Distance; 1007 Nodes.setRecMII(CurMII); 1008 if (CurMII > RecMII) 1009 RecMII = CurMII; 1010 } 1011 1012 return RecMII; 1013 } 1014 1015 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1016 /// but we do this to find the circuits, and then change them back. 1017 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1018 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1019 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1020 SUnit *SU = &SUnits[i]; 1021 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1022 IP != EP; ++IP) { 1023 if (IP->getKind() != SDep::Anti) 1024 continue; 1025 DepsAdded.push_back(std::make_pair(SU, *IP)); 1026 } 1027 } 1028 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1029 E = DepsAdded.end(); 1030 I != E; ++I) { 1031 // Remove this anti dependency and add one in the reverse direction. 1032 SUnit *SU = I->first; 1033 SDep &D = I->second; 1034 SUnit *TargetSU = D.getSUnit(); 1035 unsigned Reg = D.getReg(); 1036 unsigned Lat = D.getLatency(); 1037 SU->removePred(D); 1038 SDep Dep(SU, SDep::Anti, Reg); 1039 Dep.setLatency(Lat); 1040 TargetSU->addPred(Dep); 1041 } 1042 } 1043 1044 /// Create the adjacency structure of the nodes in the graph. 1045 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1046 SwingSchedulerDAG *DAG) { 1047 BitVector Added(SUnits.size()); 1048 DenseMap<int, int> OutputDeps; 1049 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1050 Added.reset(); 1051 // Add any successor to the adjacency matrix and exclude duplicates. 1052 for (auto &SI : SUnits[i].Succs) { 1053 // Only create a back-edge on the first and last nodes of a dependence 1054 // chain. This records any chains and adds them later. 1055 if (SI.getKind() == SDep::Output) { 1056 int N = SI.getSUnit()->NodeNum; 1057 int BackEdge = i; 1058 auto Dep = OutputDeps.find(BackEdge); 1059 if (Dep != OutputDeps.end()) { 1060 BackEdge = Dep->second; 1061 OutputDeps.erase(Dep); 1062 } 1063 OutputDeps[N] = BackEdge; 1064 } 1065 // Do not process a boundary node, an artificial node. 1066 // A back-edge is processed only if it goes to a Phi. 1067 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1068 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1069 continue; 1070 int N = SI.getSUnit()->NodeNum; 1071 if (!Added.test(N)) { 1072 AdjK[i].push_back(N); 1073 Added.set(N); 1074 } 1075 } 1076 // A chain edge between a store and a load is treated as a back-edge in the 1077 // adjacency matrix. 1078 for (auto &PI : SUnits[i].Preds) { 1079 if (!SUnits[i].getInstr()->mayStore() || 1080 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1081 continue; 1082 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1083 int N = PI.getSUnit()->NodeNum; 1084 if (!Added.test(N)) { 1085 AdjK[i].push_back(N); 1086 Added.set(N); 1087 } 1088 } 1089 } 1090 } 1091 // Add back-edges in the adjacency matrix for the output dependences. 1092 for (auto &OD : OutputDeps) 1093 if (!Added.test(OD.second)) { 1094 AdjK[OD.first].push_back(OD.second); 1095 Added.set(OD.second); 1096 } 1097 } 1098 1099 /// Identify an elementary circuit in the dependence graph starting at the 1100 /// specified node. 1101 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1102 bool HasBackedge) { 1103 SUnit *SV = &SUnits[V]; 1104 bool F = false; 1105 Stack.insert(SV); 1106 Blocked.set(V); 1107 1108 for (auto W : AdjK[V]) { 1109 if (NumPaths > MaxPaths) 1110 break; 1111 if (W < S) 1112 continue; 1113 if (W == S) { 1114 if (!HasBackedge) 1115 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1116 F = true; 1117 ++NumPaths; 1118 break; 1119 } else if (!Blocked.test(W)) { 1120 if (circuit(W, S, NodeSets, 1121 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1122 F = true; 1123 } 1124 } 1125 1126 if (F) 1127 unblock(V); 1128 else { 1129 for (auto W : AdjK[V]) { 1130 if (W < S) 1131 continue; 1132 if (B[W].count(SV) == 0) 1133 B[W].insert(SV); 1134 } 1135 } 1136 Stack.pop_back(); 1137 return F; 1138 } 1139 1140 /// Unblock a node in the circuit finding algorithm. 1141 void SwingSchedulerDAG::Circuits::unblock(int U) { 1142 Blocked.reset(U); 1143 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1144 while (!BU.empty()) { 1145 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1146 assert(SI != BU.end() && "Invalid B set."); 1147 SUnit *W = *SI; 1148 BU.erase(W); 1149 if (Blocked.test(W->NodeNum)) 1150 unblock(W->NodeNum); 1151 } 1152 } 1153 1154 /// Identify all the elementary circuits in the dependence graph using 1155 /// Johnson's circuit algorithm. 1156 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1157 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1158 // but we do this to find the circuits, and then change them back. 1159 swapAntiDependences(SUnits); 1160 1161 Circuits Cir(SUnits, Topo); 1162 // Create the adjacency structure. 1163 Cir.createAdjacencyStructure(this); 1164 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1165 Cir.reset(); 1166 Cir.circuit(i, i, NodeSets); 1167 } 1168 1169 // Change the dependences back so that we've created a DAG again. 1170 swapAntiDependences(SUnits); 1171 } 1172 1173 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1174 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1175 // additional copies that are needed across iterations. An artificial dependence 1176 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1177 1178 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1179 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1180 // PHI-------True-Dep------> USEOfPhi 1181 1182 // The mutation creates 1183 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1184 1185 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1186 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1187 // late to avoid additional copies across iterations. The possible scheduling 1188 // order would be 1189 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1190 1191 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1192 for (SUnit &SU : DAG->SUnits) { 1193 // Find the COPY/REG_SEQUENCE instruction. 1194 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1195 continue; 1196 1197 // Record the loop carried PHIs. 1198 SmallVector<SUnit *, 4> PHISUs; 1199 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1200 SmallVector<SUnit *, 4> SrcSUs; 1201 1202 for (auto &Dep : SU.Preds) { 1203 SUnit *TmpSU = Dep.getSUnit(); 1204 MachineInstr *TmpMI = TmpSU->getInstr(); 1205 SDep::Kind DepKind = Dep.getKind(); 1206 // Save the loop carried PHI. 1207 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1208 PHISUs.push_back(TmpSU); 1209 // Save the source of COPY/REG_SEQUENCE. 1210 // If the source has no pre-decessors, we will end up creating cycles. 1211 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1212 SrcSUs.push_back(TmpSU); 1213 } 1214 1215 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1216 continue; 1217 1218 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1219 // SUnit to the container. 1220 SmallVector<SUnit *, 8> UseSUs; 1221 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1222 for (auto &Dep : (*I)->Succs) { 1223 if (Dep.getKind() != SDep::Data) 1224 continue; 1225 1226 SUnit *TmpSU = Dep.getSUnit(); 1227 MachineInstr *TmpMI = TmpSU->getInstr(); 1228 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1229 PHISUs.push_back(TmpSU); 1230 continue; 1231 } 1232 UseSUs.push_back(TmpSU); 1233 } 1234 } 1235 1236 if (UseSUs.size() == 0) 1237 continue; 1238 1239 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1240 // Add the artificial dependencies if it does not form a cycle. 1241 for (auto I : UseSUs) { 1242 for (auto Src : SrcSUs) { 1243 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1244 Src->addPred(SDep(I, SDep::Artificial)); 1245 SDAG->Topo.AddPred(Src, I); 1246 } 1247 } 1248 } 1249 } 1250 } 1251 1252 /// Return true for DAG nodes that we ignore when computing the cost functions. 1253 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1254 /// in the calculation of the ASAP, ALAP, etc functions. 1255 static bool ignoreDependence(const SDep &D, bool isPred) { 1256 if (D.isArtificial()) 1257 return true; 1258 return D.getKind() == SDep::Anti && isPred; 1259 } 1260 1261 /// Compute several functions need to order the nodes for scheduling. 1262 /// ASAP - Earliest time to schedule a node. 1263 /// ALAP - Latest time to schedule a node. 1264 /// MOV - Mobility function, difference between ALAP and ASAP. 1265 /// D - Depth of each node. 1266 /// H - Height of each node. 1267 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1268 ScheduleInfo.resize(SUnits.size()); 1269 1270 LLVM_DEBUG({ 1271 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1272 E = Topo.end(); 1273 I != E; ++I) { 1274 const SUnit &SU = SUnits[*I]; 1275 dumpNode(SU); 1276 } 1277 }); 1278 1279 int maxASAP = 0; 1280 // Compute ASAP and ZeroLatencyDepth. 1281 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1282 E = Topo.end(); 1283 I != E; ++I) { 1284 int asap = 0; 1285 int zeroLatencyDepth = 0; 1286 SUnit *SU = &SUnits[*I]; 1287 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1288 EP = SU->Preds.end(); 1289 IP != EP; ++IP) { 1290 SUnit *pred = IP->getSUnit(); 1291 if (IP->getLatency() == 0) 1292 zeroLatencyDepth = 1293 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1294 if (ignoreDependence(*IP, true)) 1295 continue; 1296 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1297 getDistance(pred, SU, *IP) * MII)); 1298 } 1299 maxASAP = std::max(maxASAP, asap); 1300 ScheduleInfo[*I].ASAP = asap; 1301 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1302 } 1303 1304 // Compute ALAP, ZeroLatencyHeight, and MOV. 1305 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1306 E = Topo.rend(); 1307 I != E; ++I) { 1308 int alap = maxASAP; 1309 int zeroLatencyHeight = 0; 1310 SUnit *SU = &SUnits[*I]; 1311 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1312 ES = SU->Succs.end(); 1313 IS != ES; ++IS) { 1314 SUnit *succ = IS->getSUnit(); 1315 if (IS->getLatency() == 0) 1316 zeroLatencyHeight = 1317 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1318 if (ignoreDependence(*IS, true)) 1319 continue; 1320 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1321 getDistance(SU, succ, *IS) * MII)); 1322 } 1323 1324 ScheduleInfo[*I].ALAP = alap; 1325 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1326 } 1327 1328 // After computing the node functions, compute the summary for each node set. 1329 for (NodeSet &I : NodeSets) 1330 I.computeNodeSetInfo(this); 1331 1332 LLVM_DEBUG({ 1333 for (unsigned i = 0; i < SUnits.size(); i++) { 1334 dbgs() << "\tNode " << i << ":\n"; 1335 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1336 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1337 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1338 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1339 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1340 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1341 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1342 } 1343 }); 1344 } 1345 1346 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1347 /// as the predecessors of the elements of NodeOrder that are not also in 1348 /// NodeOrder. 1349 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1350 SmallSetVector<SUnit *, 8> &Preds, 1351 const NodeSet *S = nullptr) { 1352 Preds.clear(); 1353 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1354 I != E; ++I) { 1355 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1356 PI != PE; ++PI) { 1357 if (S && S->count(PI->getSUnit()) == 0) 1358 continue; 1359 if (ignoreDependence(*PI, true)) 1360 continue; 1361 if (NodeOrder.count(PI->getSUnit()) == 0) 1362 Preds.insert(PI->getSUnit()); 1363 } 1364 // Back-edges are predecessors with an anti-dependence. 1365 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1366 ES = (*I)->Succs.end(); 1367 IS != ES; ++IS) { 1368 if (IS->getKind() != SDep::Anti) 1369 continue; 1370 if (S && S->count(IS->getSUnit()) == 0) 1371 continue; 1372 if (NodeOrder.count(IS->getSUnit()) == 0) 1373 Preds.insert(IS->getSUnit()); 1374 } 1375 } 1376 return !Preds.empty(); 1377 } 1378 1379 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1380 /// as the successors of the elements of NodeOrder that are not also in 1381 /// NodeOrder. 1382 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1383 SmallSetVector<SUnit *, 8> &Succs, 1384 const NodeSet *S = nullptr) { 1385 Succs.clear(); 1386 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1387 I != E; ++I) { 1388 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1389 SI != SE; ++SI) { 1390 if (S && S->count(SI->getSUnit()) == 0) 1391 continue; 1392 if (ignoreDependence(*SI, false)) 1393 continue; 1394 if (NodeOrder.count(SI->getSUnit()) == 0) 1395 Succs.insert(SI->getSUnit()); 1396 } 1397 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1398 PE = (*I)->Preds.end(); 1399 PI != PE; ++PI) { 1400 if (PI->getKind() != SDep::Anti) 1401 continue; 1402 if (S && S->count(PI->getSUnit()) == 0) 1403 continue; 1404 if (NodeOrder.count(PI->getSUnit()) == 0) 1405 Succs.insert(PI->getSUnit()); 1406 } 1407 } 1408 return !Succs.empty(); 1409 } 1410 1411 /// Return true if there is a path from the specified node to any of the nodes 1412 /// in DestNodes. Keep track and return the nodes in any path. 1413 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1414 SetVector<SUnit *> &DestNodes, 1415 SetVector<SUnit *> &Exclude, 1416 SmallPtrSet<SUnit *, 8> &Visited) { 1417 if (Cur->isBoundaryNode()) 1418 return false; 1419 if (Exclude.count(Cur) != 0) 1420 return false; 1421 if (DestNodes.count(Cur) != 0) 1422 return true; 1423 if (!Visited.insert(Cur).second) 1424 return Path.count(Cur) != 0; 1425 bool FoundPath = false; 1426 for (auto &SI : Cur->Succs) 1427 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1428 for (auto &PI : Cur->Preds) 1429 if (PI.getKind() == SDep::Anti) 1430 FoundPath |= 1431 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1432 if (FoundPath) 1433 Path.insert(Cur); 1434 return FoundPath; 1435 } 1436 1437 /// Return true if Set1 is a subset of Set2. 1438 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1439 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1440 if (Set2.count(*I) == 0) 1441 return false; 1442 return true; 1443 } 1444 1445 /// Compute the live-out registers for the instructions in a node-set. 1446 /// The live-out registers are those that are defined in the node-set, 1447 /// but not used. Except for use operands of Phis. 1448 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1449 NodeSet &NS) { 1450 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1451 MachineRegisterInfo &MRI = MF.getRegInfo(); 1452 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1453 SmallSet<unsigned, 4> Uses; 1454 for (SUnit *SU : NS) { 1455 const MachineInstr *MI = SU->getInstr(); 1456 if (MI->isPHI()) 1457 continue; 1458 for (const MachineOperand &MO : MI->operands()) 1459 if (MO.isReg() && MO.isUse()) { 1460 unsigned Reg = MO.getReg(); 1461 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1462 Uses.insert(Reg); 1463 else if (MRI.isAllocatable(Reg)) 1464 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1465 Uses.insert(*Units); 1466 } 1467 } 1468 for (SUnit *SU : NS) 1469 for (const MachineOperand &MO : SU->getInstr()->operands()) 1470 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1471 unsigned Reg = MO.getReg(); 1472 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1473 if (!Uses.count(Reg)) 1474 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1475 LaneBitmask::getNone())); 1476 } else if (MRI.isAllocatable(Reg)) { 1477 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1478 if (!Uses.count(*Units)) 1479 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1480 LaneBitmask::getNone())); 1481 } 1482 } 1483 RPTracker.addLiveRegs(LiveOutRegs); 1484 } 1485 1486 /// A heuristic to filter nodes in recurrent node-sets if the register 1487 /// pressure of a set is too high. 1488 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1489 for (auto &NS : NodeSets) { 1490 // Skip small node-sets since they won't cause register pressure problems. 1491 if (NS.size() <= 2) 1492 continue; 1493 IntervalPressure RecRegPressure; 1494 RegPressureTracker RecRPTracker(RecRegPressure); 1495 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1496 computeLiveOuts(MF, RecRPTracker, NS); 1497 RecRPTracker.closeBottom(); 1498 1499 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1500 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1501 return A->NodeNum > B->NodeNum; 1502 }); 1503 1504 for (auto &SU : SUnits) { 1505 // Since we're computing the register pressure for a subset of the 1506 // instructions in a block, we need to set the tracker for each 1507 // instruction in the node-set. The tracker is set to the instruction 1508 // just after the one we're interested in. 1509 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1510 RecRPTracker.setPos(std::next(CurInstI)); 1511 1512 RegPressureDelta RPDelta; 1513 ArrayRef<PressureChange> CriticalPSets; 1514 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1515 CriticalPSets, 1516 RecRegPressure.MaxSetPressure); 1517 if (RPDelta.Excess.isValid()) { 1518 LLVM_DEBUG( 1519 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1520 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1521 << ":" << RPDelta.Excess.getUnitInc()); 1522 NS.setExceedPressure(SU); 1523 break; 1524 } 1525 RecRPTracker.recede(); 1526 } 1527 } 1528 } 1529 1530 /// A heuristic to colocate node sets that have the same set of 1531 /// successors. 1532 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1533 unsigned Colocate = 0; 1534 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1535 NodeSet &N1 = NodeSets[i]; 1536 SmallSetVector<SUnit *, 8> S1; 1537 if (N1.empty() || !succ_L(N1, S1)) 1538 continue; 1539 for (int j = i + 1; j < e; ++j) { 1540 NodeSet &N2 = NodeSets[j]; 1541 if (N1.compareRecMII(N2) != 0) 1542 continue; 1543 SmallSetVector<SUnit *, 8> S2; 1544 if (N2.empty() || !succ_L(N2, S2)) 1545 continue; 1546 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1547 N1.setColocate(++Colocate); 1548 N2.setColocate(Colocate); 1549 break; 1550 } 1551 } 1552 } 1553 } 1554 1555 /// Check if the existing node-sets are profitable. If not, then ignore the 1556 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1557 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1558 /// then it's best to try to schedule all instructions together instead of 1559 /// starting with the recurrent node-sets. 1560 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1561 // Look for loops with a large MII. 1562 if (MII < 17) 1563 return; 1564 // Check if the node-set contains only a simple add recurrence. 1565 for (auto &NS : NodeSets) { 1566 if (NS.getRecMII() > 2) 1567 return; 1568 if (NS.getMaxDepth() > MII) 1569 return; 1570 } 1571 NodeSets.clear(); 1572 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1573 return; 1574 } 1575 1576 /// Add the nodes that do not belong to a recurrence set into groups 1577 /// based upon connected componenets. 1578 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1579 SetVector<SUnit *> NodesAdded; 1580 SmallPtrSet<SUnit *, 8> Visited; 1581 // Add the nodes that are on a path between the previous node sets and 1582 // the current node set. 1583 for (NodeSet &I : NodeSets) { 1584 SmallSetVector<SUnit *, 8> N; 1585 // Add the nodes from the current node set to the previous node set. 1586 if (succ_L(I, N)) { 1587 SetVector<SUnit *> Path; 1588 for (SUnit *NI : N) { 1589 Visited.clear(); 1590 computePath(NI, Path, NodesAdded, I, Visited); 1591 } 1592 if (!Path.empty()) 1593 I.insert(Path.begin(), Path.end()); 1594 } 1595 // Add the nodes from the previous node set to the current node set. 1596 N.clear(); 1597 if (succ_L(NodesAdded, N)) { 1598 SetVector<SUnit *> Path; 1599 for (SUnit *NI : N) { 1600 Visited.clear(); 1601 computePath(NI, Path, I, NodesAdded, Visited); 1602 } 1603 if (!Path.empty()) 1604 I.insert(Path.begin(), Path.end()); 1605 } 1606 NodesAdded.insert(I.begin(), I.end()); 1607 } 1608 1609 // Create a new node set with the connected nodes of any successor of a node 1610 // in a recurrent set. 1611 NodeSet NewSet; 1612 SmallSetVector<SUnit *, 8> N; 1613 if (succ_L(NodesAdded, N)) 1614 for (SUnit *I : N) 1615 addConnectedNodes(I, NewSet, NodesAdded); 1616 if (!NewSet.empty()) 1617 NodeSets.push_back(NewSet); 1618 1619 // Create a new node set with the connected nodes of any predecessor of a node 1620 // in a recurrent set. 1621 NewSet.clear(); 1622 if (pred_L(NodesAdded, N)) 1623 for (SUnit *I : N) 1624 addConnectedNodes(I, NewSet, NodesAdded); 1625 if (!NewSet.empty()) 1626 NodeSets.push_back(NewSet); 1627 1628 // Create new nodes sets with the connected nodes any remaining node that 1629 // has no predecessor. 1630 for (unsigned i = 0; i < SUnits.size(); ++i) { 1631 SUnit *SU = &SUnits[i]; 1632 if (NodesAdded.count(SU) == 0) { 1633 NewSet.clear(); 1634 addConnectedNodes(SU, NewSet, NodesAdded); 1635 if (!NewSet.empty()) 1636 NodeSets.push_back(NewSet); 1637 } 1638 } 1639 } 1640 1641 /// Add the node to the set, and add all of its connected nodes to the set. 1642 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1643 SetVector<SUnit *> &NodesAdded) { 1644 NewSet.insert(SU); 1645 NodesAdded.insert(SU); 1646 for (auto &SI : SU->Succs) { 1647 SUnit *Successor = SI.getSUnit(); 1648 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1649 addConnectedNodes(Successor, NewSet, NodesAdded); 1650 } 1651 for (auto &PI : SU->Preds) { 1652 SUnit *Predecessor = PI.getSUnit(); 1653 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1654 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1655 } 1656 } 1657 1658 /// Return true if Set1 contains elements in Set2. The elements in common 1659 /// are returned in a different container. 1660 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1661 SmallSetVector<SUnit *, 8> &Result) { 1662 Result.clear(); 1663 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1664 SUnit *SU = Set1[i]; 1665 if (Set2.count(SU) != 0) 1666 Result.insert(SU); 1667 } 1668 return !Result.empty(); 1669 } 1670 1671 /// Merge the recurrence node sets that have the same initial node. 1672 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1673 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1674 ++I) { 1675 NodeSet &NI = *I; 1676 for (NodeSetType::iterator J = I + 1; J != E;) { 1677 NodeSet &NJ = *J; 1678 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1679 if (NJ.compareRecMII(NI) > 0) 1680 NI.setRecMII(NJ.getRecMII()); 1681 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1682 ++NII) 1683 I->insert(*NII); 1684 NodeSets.erase(J); 1685 E = NodeSets.end(); 1686 } else { 1687 ++J; 1688 } 1689 } 1690 } 1691 } 1692 1693 /// Remove nodes that have been scheduled in previous NodeSets. 1694 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1695 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1696 ++I) 1697 for (NodeSetType::iterator J = I + 1; J != E;) { 1698 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1699 1700 if (J->empty()) { 1701 NodeSets.erase(J); 1702 E = NodeSets.end(); 1703 } else { 1704 ++J; 1705 } 1706 } 1707 } 1708 1709 /// Compute an ordered list of the dependence graph nodes, which 1710 /// indicates the order that the nodes will be scheduled. This is a 1711 /// two-level algorithm. First, a partial order is created, which 1712 /// consists of a list of sets ordered from highest to lowest priority. 1713 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1714 SmallSetVector<SUnit *, 8> R; 1715 NodeOrder.clear(); 1716 1717 for (auto &Nodes : NodeSets) { 1718 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1719 OrderKind Order; 1720 SmallSetVector<SUnit *, 8> N; 1721 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1722 R.insert(N.begin(), N.end()); 1723 Order = BottomUp; 1724 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1725 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1726 R.insert(N.begin(), N.end()); 1727 Order = TopDown; 1728 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1729 } else if (isIntersect(N, Nodes, R)) { 1730 // If some of the successors are in the existing node-set, then use the 1731 // top-down ordering. 1732 Order = TopDown; 1733 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1734 } else if (NodeSets.size() == 1) { 1735 for (auto &N : Nodes) 1736 if (N->Succs.size() == 0) 1737 R.insert(N); 1738 Order = BottomUp; 1739 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1740 } else { 1741 // Find the node with the highest ASAP. 1742 SUnit *maxASAP = nullptr; 1743 for (SUnit *SU : Nodes) { 1744 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1745 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1746 maxASAP = SU; 1747 } 1748 R.insert(maxASAP); 1749 Order = BottomUp; 1750 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1751 } 1752 1753 while (!R.empty()) { 1754 if (Order == TopDown) { 1755 // Choose the node with the maximum height. If more than one, choose 1756 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1757 // choose the node with the lowest MOV. 1758 while (!R.empty()) { 1759 SUnit *maxHeight = nullptr; 1760 for (SUnit *I : R) { 1761 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1762 maxHeight = I; 1763 else if (getHeight(I) == getHeight(maxHeight) && 1764 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1765 maxHeight = I; 1766 else if (getHeight(I) == getHeight(maxHeight) && 1767 getZeroLatencyHeight(I) == 1768 getZeroLatencyHeight(maxHeight) && 1769 getMOV(I) < getMOV(maxHeight)) 1770 maxHeight = I; 1771 } 1772 NodeOrder.insert(maxHeight); 1773 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1774 R.remove(maxHeight); 1775 for (const auto &I : maxHeight->Succs) { 1776 if (Nodes.count(I.getSUnit()) == 0) 1777 continue; 1778 if (NodeOrder.count(I.getSUnit()) != 0) 1779 continue; 1780 if (ignoreDependence(I, false)) 1781 continue; 1782 R.insert(I.getSUnit()); 1783 } 1784 // Back-edges are predecessors with an anti-dependence. 1785 for (const auto &I : maxHeight->Preds) { 1786 if (I.getKind() != SDep::Anti) 1787 continue; 1788 if (Nodes.count(I.getSUnit()) == 0) 1789 continue; 1790 if (NodeOrder.count(I.getSUnit()) != 0) 1791 continue; 1792 R.insert(I.getSUnit()); 1793 } 1794 } 1795 Order = BottomUp; 1796 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1797 SmallSetVector<SUnit *, 8> N; 1798 if (pred_L(NodeOrder, N, &Nodes)) 1799 R.insert(N.begin(), N.end()); 1800 } else { 1801 // Choose the node with the maximum depth. If more than one, choose 1802 // the node with the maximum ZeroLatencyDepth. If still more than one, 1803 // choose the node with the lowest MOV. 1804 while (!R.empty()) { 1805 SUnit *maxDepth = nullptr; 1806 for (SUnit *I : R) { 1807 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1808 maxDepth = I; 1809 else if (getDepth(I) == getDepth(maxDepth) && 1810 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1811 maxDepth = I; 1812 else if (getDepth(I) == getDepth(maxDepth) && 1813 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1814 getMOV(I) < getMOV(maxDepth)) 1815 maxDepth = I; 1816 } 1817 NodeOrder.insert(maxDepth); 1818 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1819 R.remove(maxDepth); 1820 if (Nodes.isExceedSU(maxDepth)) { 1821 Order = TopDown; 1822 R.clear(); 1823 R.insert(Nodes.getNode(0)); 1824 break; 1825 } 1826 for (const auto &I : maxDepth->Preds) { 1827 if (Nodes.count(I.getSUnit()) == 0) 1828 continue; 1829 if (NodeOrder.count(I.getSUnit()) != 0) 1830 continue; 1831 R.insert(I.getSUnit()); 1832 } 1833 // Back-edges are predecessors with an anti-dependence. 1834 for (const auto &I : maxDepth->Succs) { 1835 if (I.getKind() != SDep::Anti) 1836 continue; 1837 if (Nodes.count(I.getSUnit()) == 0) 1838 continue; 1839 if (NodeOrder.count(I.getSUnit()) != 0) 1840 continue; 1841 R.insert(I.getSUnit()); 1842 } 1843 } 1844 Order = TopDown; 1845 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1846 SmallSetVector<SUnit *, 8> N; 1847 if (succ_L(NodeOrder, N, &Nodes)) 1848 R.insert(N.begin(), N.end()); 1849 } 1850 } 1851 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1852 } 1853 1854 LLVM_DEBUG({ 1855 dbgs() << "Node order: "; 1856 for (SUnit *I : NodeOrder) 1857 dbgs() << " " << I->NodeNum << " "; 1858 dbgs() << "\n"; 1859 }); 1860 } 1861 1862 /// Process the nodes in the computed order and create the pipelined schedule 1863 /// of the instructions, if possible. Return true if a schedule is found. 1864 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1865 if (NodeOrder.empty()) 1866 return false; 1867 1868 bool scheduleFound = false; 1869 unsigned II = 0; 1870 // Keep increasing II until a valid schedule is found. 1871 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1872 Schedule.reset(); 1873 Schedule.setInitiationInterval(II); 1874 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1875 1876 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1877 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1878 do { 1879 SUnit *SU = *NI; 1880 1881 // Compute the schedule time for the instruction, which is based 1882 // upon the scheduled time for any predecessors/successors. 1883 int EarlyStart = INT_MIN; 1884 int LateStart = INT_MAX; 1885 // These values are set when the size of the schedule window is limited 1886 // due to chain dependences. 1887 int SchedEnd = INT_MAX; 1888 int SchedStart = INT_MIN; 1889 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1890 II, this); 1891 LLVM_DEBUG({ 1892 dbgs() << "Inst (" << SU->NodeNum << ") "; 1893 SU->getInstr()->dump(); 1894 dbgs() << "\n"; 1895 }); 1896 LLVM_DEBUG({ 1897 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 1898 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 1899 }); 1900 1901 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1902 SchedStart > LateStart) 1903 scheduleFound = false; 1904 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1905 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1906 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1907 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1908 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1909 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1910 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1911 SchedEnd = 1912 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1913 // When scheduling a Phi it is better to start at the late cycle and go 1914 // backwards. The default order may insert the Phi too far away from 1915 // its first dependence. 1916 if (SU->getInstr()->isPHI()) 1917 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1918 else 1919 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1920 } else { 1921 int FirstCycle = Schedule.getFirstCycle(); 1922 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1923 FirstCycle + getASAP(SU) + II - 1, II); 1924 } 1925 // Even if we find a schedule, make sure the schedule doesn't exceed the 1926 // allowable number of stages. We keep trying if this happens. 1927 if (scheduleFound) 1928 if (SwpMaxStages > -1 && 1929 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1930 scheduleFound = false; 1931 1932 LLVM_DEBUG({ 1933 if (!scheduleFound) 1934 dbgs() << "\tCan't schedule\n"; 1935 }); 1936 } while (++NI != NE && scheduleFound); 1937 1938 // If a schedule is found, check if it is a valid schedule too. 1939 if (scheduleFound) 1940 scheduleFound = Schedule.isValidSchedule(this); 1941 } 1942 1943 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 1944 << ")\n"); 1945 1946 if (scheduleFound) 1947 Schedule.finalizeSchedule(this); 1948 else 1949 Schedule.reset(); 1950 1951 return scheduleFound && Schedule.getMaxStageCount() > 0; 1952 } 1953 1954 /// Given a schedule for the loop, generate a new version of the loop, 1955 /// and replace the old version. This function generates a prolog 1956 /// that contains the initial iterations in the pipeline, and kernel 1957 /// loop, and the epilogue that contains the code for the final 1958 /// iterations. 1959 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 1960 // Create a new basic block for the kernel and add it to the CFG. 1961 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1962 1963 unsigned MaxStageCount = Schedule.getMaxStageCount(); 1964 1965 // Remember the registers that are used in different stages. The index is 1966 // the iteration, or stage, that the instruction is scheduled in. This is 1967 // a map between register names in the original block and the names created 1968 // in each stage of the pipelined loop. 1969 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 1970 InstrMapTy InstrMap; 1971 1972 SmallVector<MachineBasicBlock *, 4> PrologBBs; 1973 // Generate the prolog instructions that set up the pipeline. 1974 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 1975 MF.insert(BB->getIterator(), KernelBB); 1976 1977 // Rearrange the instructions to generate the new, pipelined loop, 1978 // and update register names as needed. 1979 for (int Cycle = Schedule.getFirstCycle(), 1980 LastCycle = Schedule.getFinalCycle(); 1981 Cycle <= LastCycle; ++Cycle) { 1982 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 1983 // This inner loop schedules each instruction in the cycle. 1984 for (SUnit *CI : CycleInstrs) { 1985 if (CI->getInstr()->isPHI()) 1986 continue; 1987 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 1988 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 1989 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 1990 KernelBB->push_back(NewMI); 1991 InstrMap[NewMI] = CI->getInstr(); 1992 } 1993 } 1994 1995 // Copy any terminator instructions to the new kernel, and update 1996 // names as needed. 1997 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 1998 E = BB->instr_end(); 1999 I != E; ++I) { 2000 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2001 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2002 KernelBB->push_back(NewMI); 2003 InstrMap[NewMI] = &*I; 2004 } 2005 2006 KernelBB->transferSuccessors(BB); 2007 KernelBB->replaceSuccessor(BB, KernelBB); 2008 2009 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2010 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2011 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2012 InstrMap, MaxStageCount, MaxStageCount, false); 2013 2014 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2015 2016 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2017 // Generate the epilog instructions to complete the pipeline. 2018 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2019 PrologBBs); 2020 2021 // We need this step because the register allocation doesn't handle some 2022 // situations well, so we insert copies to help out. 2023 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2024 2025 // Remove dead instructions due to loop induction variables. 2026 removeDeadInstructions(KernelBB, EpilogBBs); 2027 2028 // Add branches between prolog and epilog blocks. 2029 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2030 2031 // Remove the original loop since it's no longer referenced. 2032 for (auto &I : *BB) 2033 LIS.RemoveMachineInstrFromMaps(I); 2034 BB->clear(); 2035 BB->eraseFromParent(); 2036 2037 delete[] VRMap; 2038 } 2039 2040 /// Generate the pipeline prolog code. 2041 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2042 MachineBasicBlock *KernelBB, 2043 ValueMapTy *VRMap, 2044 MBBVectorTy &PrologBBs) { 2045 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2046 assert(PreheaderBB != nullptr && 2047 "Need to add code to handle loops w/o preheader"); 2048 MachineBasicBlock *PredBB = PreheaderBB; 2049 InstrMapTy InstrMap; 2050 2051 // Generate a basic block for each stage, not including the last stage, 2052 // which will be generated in the kernel. Each basic block may contain 2053 // instructions from multiple stages/iterations. 2054 for (unsigned i = 0; i < LastStage; ++i) { 2055 // Create and insert the prolog basic block prior to the original loop 2056 // basic block. The original loop is removed later. 2057 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2058 PrologBBs.push_back(NewBB); 2059 MF.insert(BB->getIterator(), NewBB); 2060 NewBB->transferSuccessors(PredBB); 2061 PredBB->addSuccessor(NewBB); 2062 PredBB = NewBB; 2063 2064 // Generate instructions for each appropriate stage. Process instructions 2065 // in original program order. 2066 for (int StageNum = i; StageNum >= 0; --StageNum) { 2067 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2068 BBE = BB->getFirstTerminator(); 2069 BBI != BBE; ++BBI) { 2070 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2071 if (BBI->isPHI()) 2072 continue; 2073 MachineInstr *NewMI = 2074 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2075 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2076 VRMap); 2077 NewBB->push_back(NewMI); 2078 InstrMap[NewMI] = &*BBI; 2079 } 2080 } 2081 } 2082 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2083 LLVM_DEBUG({ 2084 dbgs() << "prolog:\n"; 2085 NewBB->dump(); 2086 }); 2087 } 2088 2089 PredBB->replaceSuccessor(BB, KernelBB); 2090 2091 // Check if we need to remove the branch from the preheader to the original 2092 // loop, and replace it with a branch to the new loop. 2093 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2094 if (numBranches) { 2095 SmallVector<MachineOperand, 0> Cond; 2096 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2097 } 2098 } 2099 2100 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2101 /// that were started in either the prolog or the kernel. We create a basic 2102 /// block for each stage that needs to complete. 2103 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2104 MachineBasicBlock *KernelBB, 2105 ValueMapTy *VRMap, 2106 MBBVectorTy &EpilogBBs, 2107 MBBVectorTy &PrologBBs) { 2108 // We need to change the branch from the kernel to the first epilog block, so 2109 // this call to analyze branch uses the kernel rather than the original BB. 2110 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2111 SmallVector<MachineOperand, 4> Cond; 2112 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2113 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2114 if (checkBranch) 2115 return; 2116 2117 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2118 if (*LoopExitI == KernelBB) 2119 ++LoopExitI; 2120 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2121 MachineBasicBlock *LoopExitBB = *LoopExitI; 2122 2123 MachineBasicBlock *PredBB = KernelBB; 2124 MachineBasicBlock *EpilogStart = LoopExitBB; 2125 InstrMapTy InstrMap; 2126 2127 // Generate a basic block for each stage, not including the last stage, 2128 // which was generated for the kernel. Each basic block may contain 2129 // instructions from multiple stages/iterations. 2130 int EpilogStage = LastStage + 1; 2131 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2132 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2133 EpilogBBs.push_back(NewBB); 2134 MF.insert(BB->getIterator(), NewBB); 2135 2136 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2137 NewBB->addSuccessor(LoopExitBB); 2138 2139 if (EpilogStart == LoopExitBB) 2140 EpilogStart = NewBB; 2141 2142 // Add instructions to the epilog depending on the current block. 2143 // Process instructions in original program order. 2144 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2145 for (auto &BBI : *BB) { 2146 if (BBI.isPHI()) 2147 continue; 2148 MachineInstr *In = &BBI; 2149 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2150 // Instructions with memoperands in the epilog are updated with 2151 // conservative values. 2152 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2153 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2154 NewBB->push_back(NewMI); 2155 InstrMap[NewMI] = In; 2156 } 2157 } 2158 } 2159 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2160 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2161 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2162 InstrMap, LastStage, EpilogStage, i == 1); 2163 PredBB = NewBB; 2164 2165 LLVM_DEBUG({ 2166 dbgs() << "epilog:\n"; 2167 NewBB->dump(); 2168 }); 2169 } 2170 2171 // Fix any Phi nodes in the loop exit block. 2172 for (MachineInstr &MI : *LoopExitBB) { 2173 if (!MI.isPHI()) 2174 break; 2175 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2176 MachineOperand &MO = MI.getOperand(i); 2177 if (MO.getMBB() == BB) 2178 MO.setMBB(PredBB); 2179 } 2180 } 2181 2182 // Create a branch to the new epilog from the kernel. 2183 // Remove the original branch and add a new branch to the epilog. 2184 TII->removeBranch(*KernelBB); 2185 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2186 // Add a branch to the loop exit. 2187 if (EpilogBBs.size() > 0) { 2188 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2189 SmallVector<MachineOperand, 4> Cond1; 2190 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2191 } 2192 } 2193 2194 /// Replace all uses of FromReg that appear outside the specified 2195 /// basic block with ToReg. 2196 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2197 MachineBasicBlock *MBB, 2198 MachineRegisterInfo &MRI, 2199 LiveIntervals &LIS) { 2200 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2201 E = MRI.use_end(); 2202 I != E;) { 2203 MachineOperand &O = *I; 2204 ++I; 2205 if (O.getParent()->getParent() != MBB) 2206 O.setReg(ToReg); 2207 } 2208 if (!LIS.hasInterval(ToReg)) 2209 LIS.createEmptyInterval(ToReg); 2210 } 2211 2212 /// Return true if the register has a use that occurs outside the 2213 /// specified loop. 2214 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2215 MachineRegisterInfo &MRI) { 2216 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2217 E = MRI.use_end(); 2218 I != E; ++I) 2219 if (I->getParent()->getParent() != BB) 2220 return true; 2221 return false; 2222 } 2223 2224 /// Generate Phis for the specific block in the generated pipelined code. 2225 /// This function looks at the Phis from the original code to guide the 2226 /// creation of new Phis. 2227 void SwingSchedulerDAG::generateExistingPhis( 2228 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2229 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2230 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2231 bool IsLast) { 2232 // Compute the stage number for the initial value of the Phi, which 2233 // comes from the prolog. The prolog to use depends on to which kernel/ 2234 // epilog that we're adding the Phi. 2235 unsigned PrologStage = 0; 2236 unsigned PrevStage = 0; 2237 bool InKernel = (LastStageNum == CurStageNum); 2238 if (InKernel) { 2239 PrologStage = LastStageNum - 1; 2240 PrevStage = CurStageNum; 2241 } else { 2242 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2243 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2244 } 2245 2246 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2247 BBE = BB->getFirstNonPHI(); 2248 BBI != BBE; ++BBI) { 2249 unsigned Def = BBI->getOperand(0).getReg(); 2250 2251 unsigned InitVal = 0; 2252 unsigned LoopVal = 0; 2253 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2254 2255 unsigned PhiOp1 = 0; 2256 // The Phi value from the loop body typically is defined in the loop, but 2257 // not always. So, we need to check if the value is defined in the loop. 2258 unsigned PhiOp2 = LoopVal; 2259 if (VRMap[LastStageNum].count(LoopVal)) 2260 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2261 2262 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2263 int LoopValStage = 2264 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2265 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2266 if (NumStages == 0) { 2267 // We don't need to generate a Phi anymore, but we need to rename any uses 2268 // of the Phi value. 2269 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2270 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2271 Def, InitVal, NewReg); 2272 if (VRMap[CurStageNum].count(LoopVal)) 2273 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2274 } 2275 // Adjust the number of Phis needed depending on the number of prologs left, 2276 // and the distance from where the Phi is first scheduled. The number of 2277 // Phis cannot exceed the number of prolog stages. Each stage can 2278 // potentially define two values. 2279 unsigned MaxPhis = PrologStage + 2; 2280 if (!InKernel && (int)PrologStage <= LoopValStage) 2281 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2282 unsigned NumPhis = std::min(NumStages, MaxPhis); 2283 2284 unsigned NewReg = 0; 2285 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2286 // In the epilog, we may need to look back one stage to get the correct 2287 // Phi name because the epilog and prolog blocks execute the same stage. 2288 // The correct name is from the previous block only when the Phi has 2289 // been completely scheduled prior to the epilog, and Phi value is not 2290 // needed in multiple stages. 2291 int StageDiff = 0; 2292 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2293 NumPhis == 1) 2294 StageDiff = 1; 2295 // Adjust the computations below when the phi and the loop definition 2296 // are scheduled in different stages. 2297 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2298 StageDiff = StageScheduled - LoopValStage; 2299 for (unsigned np = 0; np < NumPhis; ++np) { 2300 // If the Phi hasn't been scheduled, then use the initial Phi operand 2301 // value. Otherwise, use the scheduled version of the instruction. This 2302 // is a little complicated when a Phi references another Phi. 2303 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2304 PhiOp1 = InitVal; 2305 // Check if the Phi has already been scheduled in a prolog stage. 2306 else if (PrologStage >= AccessStage + StageDiff + np && 2307 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2308 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2309 // Check if the Phi has already been scheduled, but the loop instruction 2310 // is either another Phi, or doesn't occur in the loop. 2311 else if (PrologStage >= AccessStage + StageDiff + np) { 2312 // If the Phi references another Phi, we need to examine the other 2313 // Phi to get the correct value. 2314 PhiOp1 = LoopVal; 2315 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2316 int Indirects = 1; 2317 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2318 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2319 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2320 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2321 else 2322 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2323 InstOp1 = MRI.getVRegDef(PhiOp1); 2324 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2325 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2326 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2327 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2328 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2329 break; 2330 } 2331 ++Indirects; 2332 } 2333 } else 2334 PhiOp1 = InitVal; 2335 // If this references a generated Phi in the kernel, get the Phi operand 2336 // from the incoming block. 2337 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2338 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2339 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2340 2341 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2342 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2343 // In the epilog, a map lookup is needed to get the value from the kernel, 2344 // or previous epilog block. How is does this depends on if the 2345 // instruction is scheduled in the previous block. 2346 if (!InKernel) { 2347 int StageDiffAdj = 0; 2348 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2349 StageDiffAdj = StageScheduled - LoopValStage; 2350 // Use the loop value defined in the kernel, unless the kernel 2351 // contains the last definition of the Phi. 2352 if (np == 0 && PrevStage == LastStageNum && 2353 (StageScheduled != 0 || LoopValStage != 0) && 2354 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2355 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2356 // Use the value defined by the Phi. We add one because we switch 2357 // from looking at the loop value to the Phi definition. 2358 else if (np > 0 && PrevStage == LastStageNum && 2359 VRMap[PrevStage - np + 1].count(Def)) 2360 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2361 // Use the loop value defined in the kernel. 2362 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2363 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2364 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2365 // Use the value defined by the Phi, unless we're generating the first 2366 // epilog and the Phi refers to a Phi in a different stage. 2367 else if (VRMap[PrevStage - np].count(Def) && 2368 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2369 PhiOp2 = VRMap[PrevStage - np][Def]; 2370 } 2371 2372 // Check if we can reuse an existing Phi. This occurs when a Phi 2373 // references another Phi, and the other Phi is scheduled in an 2374 // earlier stage. We can try to reuse an existing Phi up until the last 2375 // stage of the current Phi. 2376 if (LoopDefIsPhi) { 2377 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2378 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2379 int StageDiff = (StageScheduled - LoopValStage); 2380 LVNumStages -= StageDiff; 2381 // Make sure the loop value Phi has been processed already. 2382 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2383 NewReg = PhiOp2; 2384 unsigned ReuseStage = CurStageNum; 2385 if (Schedule.isLoopCarried(this, *PhiInst)) 2386 ReuseStage -= LVNumStages; 2387 // Check if the Phi to reuse has been generated yet. If not, then 2388 // there is nothing to reuse. 2389 if (VRMap[ReuseStage - np].count(LoopVal)) { 2390 NewReg = VRMap[ReuseStage - np][LoopVal]; 2391 2392 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2393 &*BBI, Def, NewReg); 2394 // Update the map with the new Phi name. 2395 VRMap[CurStageNum - np][Def] = NewReg; 2396 PhiOp2 = NewReg; 2397 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2398 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2399 2400 if (IsLast && np == NumPhis - 1) 2401 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2402 continue; 2403 } 2404 } 2405 } 2406 if (InKernel && StageDiff > 0 && 2407 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2408 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2409 } 2410 2411 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2412 NewReg = MRI.createVirtualRegister(RC); 2413 2414 MachineInstrBuilder NewPhi = 2415 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2416 TII->get(TargetOpcode::PHI), NewReg); 2417 NewPhi.addReg(PhiOp1).addMBB(BB1); 2418 NewPhi.addReg(PhiOp2).addMBB(BB2); 2419 if (np == 0) 2420 InstrMap[NewPhi] = &*BBI; 2421 2422 // We define the Phis after creating the new pipelined code, so 2423 // we need to rename the Phi values in scheduled instructions. 2424 2425 unsigned PrevReg = 0; 2426 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2427 PrevReg = VRMap[PrevStage - np][LoopVal]; 2428 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2429 Def, NewReg, PrevReg); 2430 // If the Phi has been scheduled, use the new name for rewriting. 2431 if (VRMap[CurStageNum - np].count(Def)) { 2432 unsigned R = VRMap[CurStageNum - np][Def]; 2433 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2434 R, NewReg); 2435 } 2436 2437 // Check if we need to rename any uses that occurs after the loop. The 2438 // register to replace depends on whether the Phi is scheduled in the 2439 // epilog. 2440 if (IsLast && np == NumPhis - 1) 2441 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2442 2443 // In the kernel, a dependent Phi uses the value from this Phi. 2444 if (InKernel) 2445 PhiOp2 = NewReg; 2446 2447 // Update the map with the new Phi name. 2448 VRMap[CurStageNum - np][Def] = NewReg; 2449 } 2450 2451 while (NumPhis++ < NumStages) { 2452 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2453 &*BBI, Def, NewReg, 0); 2454 } 2455 2456 // Check if we need to rename a Phi that has been eliminated due to 2457 // scheduling. 2458 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2459 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2460 } 2461 } 2462 2463 /// Generate Phis for the specified block in the generated pipelined code. 2464 /// These are new Phis needed because the definition is scheduled after the 2465 /// use in the pipelined sequence. 2466 void SwingSchedulerDAG::generatePhis( 2467 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2468 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2469 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2470 bool IsLast) { 2471 // Compute the stage number that contains the initial Phi value, and 2472 // the Phi from the previous stage. 2473 unsigned PrologStage = 0; 2474 unsigned PrevStage = 0; 2475 unsigned StageDiff = CurStageNum - LastStageNum; 2476 bool InKernel = (StageDiff == 0); 2477 if (InKernel) { 2478 PrologStage = LastStageNum - 1; 2479 PrevStage = CurStageNum; 2480 } else { 2481 PrologStage = LastStageNum - StageDiff; 2482 PrevStage = LastStageNum + StageDiff - 1; 2483 } 2484 2485 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2486 BBE = BB->instr_end(); 2487 BBI != BBE; ++BBI) { 2488 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2489 MachineOperand &MO = BBI->getOperand(i); 2490 if (!MO.isReg() || !MO.isDef() || 2491 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2492 continue; 2493 2494 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2495 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2496 unsigned Def = MO.getReg(); 2497 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2498 // An instruction scheduled in stage 0 and is used after the loop 2499 // requires a phi in the epilog for the last definition from either 2500 // the kernel or prolog. 2501 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2502 hasUseAfterLoop(Def, BB, MRI)) 2503 NumPhis = 1; 2504 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2505 continue; 2506 2507 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2508 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2509 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2510 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2511 // The number of Phis can't exceed the number of prolog stages. The 2512 // prolog stage number is zero based. 2513 if (NumPhis > PrologStage + 1 - StageScheduled) 2514 NumPhis = PrologStage + 1 - StageScheduled; 2515 for (unsigned np = 0; np < NumPhis; ++np) { 2516 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2517 if (np <= PrologStage) 2518 PhiOp1 = VRMap[PrologStage - np][Def]; 2519 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2520 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2521 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2522 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2523 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2524 } 2525 if (!InKernel) 2526 PhiOp2 = VRMap[PrevStage - np][Def]; 2527 2528 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2529 unsigned NewReg = MRI.createVirtualRegister(RC); 2530 2531 MachineInstrBuilder NewPhi = 2532 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2533 TII->get(TargetOpcode::PHI), NewReg); 2534 NewPhi.addReg(PhiOp1).addMBB(BB1); 2535 NewPhi.addReg(PhiOp2).addMBB(BB2); 2536 if (np == 0) 2537 InstrMap[NewPhi] = &*BBI; 2538 2539 // Rewrite uses and update the map. The actions depend upon whether 2540 // we generating code for the kernel or epilog blocks. 2541 if (InKernel) { 2542 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2543 &*BBI, PhiOp1, NewReg); 2544 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2545 &*BBI, PhiOp2, NewReg); 2546 2547 PhiOp2 = NewReg; 2548 VRMap[PrevStage - np - 1][Def] = NewReg; 2549 } else { 2550 VRMap[CurStageNum - np][Def] = NewReg; 2551 if (np == NumPhis - 1) 2552 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2553 &*BBI, Def, NewReg); 2554 } 2555 if (IsLast && np == NumPhis - 1) 2556 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2557 } 2558 } 2559 } 2560 } 2561 2562 /// Remove instructions that generate values with no uses. 2563 /// Typically, these are induction variable operations that generate values 2564 /// used in the loop itself. A dead instruction has a definition with 2565 /// no uses, or uses that occur in the original loop only. 2566 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2567 MBBVectorTy &EpilogBBs) { 2568 // For each epilog block, check that the value defined by each instruction 2569 // is used. If not, delete it. 2570 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2571 MBE = EpilogBBs.rend(); 2572 MBB != MBE; ++MBB) 2573 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2574 ME = (*MBB)->instr_rend(); 2575 MI != ME;) { 2576 // From DeadMachineInstructionElem. Don't delete inline assembly. 2577 if (MI->isInlineAsm()) { 2578 ++MI; 2579 continue; 2580 } 2581 bool SawStore = false; 2582 // Check if it's safe to remove the instruction due to side effects. 2583 // We can, and want to, remove Phis here. 2584 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2585 ++MI; 2586 continue; 2587 } 2588 bool used = true; 2589 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2590 MOE = MI->operands_end(); 2591 MOI != MOE; ++MOI) { 2592 if (!MOI->isReg() || !MOI->isDef()) 2593 continue; 2594 unsigned reg = MOI->getReg(); 2595 // Assume physical registers are used, unless they are marked dead. 2596 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2597 used = !MOI->isDead(); 2598 if (used) 2599 break; 2600 continue; 2601 } 2602 unsigned realUses = 0; 2603 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2604 EI = MRI.use_end(); 2605 UI != EI; ++UI) { 2606 // Check if there are any uses that occur only in the original 2607 // loop. If so, that's not a real use. 2608 if (UI->getParent()->getParent() != BB) { 2609 realUses++; 2610 used = true; 2611 break; 2612 } 2613 } 2614 if (realUses > 0) 2615 break; 2616 used = false; 2617 } 2618 if (!used) { 2619 LIS.RemoveMachineInstrFromMaps(*MI); 2620 MI++->eraseFromParent(); 2621 continue; 2622 } 2623 ++MI; 2624 } 2625 // In the kernel block, check if we can remove a Phi that generates a value 2626 // used in an instruction removed in the epilog block. 2627 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2628 BBE = KernelBB->getFirstNonPHI(); 2629 BBI != BBE;) { 2630 MachineInstr *MI = &*BBI; 2631 ++BBI; 2632 unsigned reg = MI->getOperand(0).getReg(); 2633 if (MRI.use_begin(reg) == MRI.use_end()) { 2634 LIS.RemoveMachineInstrFromMaps(*MI); 2635 MI->eraseFromParent(); 2636 } 2637 } 2638 } 2639 2640 /// For loop carried definitions, we split the lifetime of a virtual register 2641 /// that has uses past the definition in the next iteration. A copy with a new 2642 /// virtual register is inserted before the definition, which helps with 2643 /// generating a better register assignment. 2644 /// 2645 /// v1 = phi(a, v2) v1 = phi(a, v2) 2646 /// v2 = phi(b, v3) v2 = phi(b, v3) 2647 /// v3 = .. v4 = copy v1 2648 /// .. = V1 v3 = .. 2649 /// .. = v4 2650 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2651 MBBVectorTy &EpilogBBs, 2652 SMSchedule &Schedule) { 2653 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2654 for (auto &PHI : KernelBB->phis()) { 2655 unsigned Def = PHI.getOperand(0).getReg(); 2656 // Check for any Phi definition that used as an operand of another Phi 2657 // in the same block. 2658 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2659 E = MRI.use_instr_end(); 2660 I != E; ++I) { 2661 if (I->isPHI() && I->getParent() == KernelBB) { 2662 // Get the loop carried definition. 2663 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2664 if (!LCDef) 2665 continue; 2666 MachineInstr *MI = MRI.getVRegDef(LCDef); 2667 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2668 continue; 2669 // Search through the rest of the block looking for uses of the Phi 2670 // definition. If one occurs, then split the lifetime. 2671 unsigned SplitReg = 0; 2672 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2673 KernelBB->instr_end())) 2674 if (BBJ.readsRegister(Def)) { 2675 // We split the lifetime when we find the first use. 2676 if (SplitReg == 0) { 2677 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2678 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2679 TII->get(TargetOpcode::COPY), SplitReg) 2680 .addReg(Def); 2681 } 2682 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2683 } 2684 if (!SplitReg) 2685 continue; 2686 // Search through each of the epilog blocks for any uses to be renamed. 2687 for (auto &Epilog : EpilogBBs) 2688 for (auto &I : *Epilog) 2689 if (I.readsRegister(Def)) 2690 I.substituteRegister(Def, SplitReg, 0, *TRI); 2691 break; 2692 } 2693 } 2694 } 2695 } 2696 2697 /// Remove the incoming block from the Phis in a basic block. 2698 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2699 for (MachineInstr &MI : *BB) { 2700 if (!MI.isPHI()) 2701 break; 2702 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2703 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2704 MI.RemoveOperand(i + 1); 2705 MI.RemoveOperand(i); 2706 break; 2707 } 2708 } 2709 } 2710 2711 /// Create branches from each prolog basic block to the appropriate epilog 2712 /// block. These edges are needed if the loop ends before reaching the 2713 /// kernel. 2714 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2715 MachineBasicBlock *KernelBB, 2716 MBBVectorTy &EpilogBBs, 2717 SMSchedule &Schedule, ValueMapTy *VRMap) { 2718 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2719 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2720 MachineInstr *Cmp = Pass.LI.LoopCompare; 2721 MachineBasicBlock *LastPro = KernelBB; 2722 MachineBasicBlock *LastEpi = KernelBB; 2723 2724 // Start from the blocks connected to the kernel and work "out" 2725 // to the first prolog and the last epilog blocks. 2726 SmallVector<MachineInstr *, 4> PrevInsts; 2727 unsigned MaxIter = PrologBBs.size() - 1; 2728 unsigned LC = UINT_MAX; 2729 unsigned LCMin = UINT_MAX; 2730 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2731 // Add branches to the prolog that go to the corresponding 2732 // epilog, and the fall-thru prolog/kernel block. 2733 MachineBasicBlock *Prolog = PrologBBs[j]; 2734 MachineBasicBlock *Epilog = EpilogBBs[i]; 2735 // We've executed one iteration, so decrement the loop count and check for 2736 // the loop end. 2737 SmallVector<MachineOperand, 4> Cond; 2738 // Check if the LOOP0 has already been removed. If so, then there is no need 2739 // to reduce the trip count. 2740 if (LC != 0) 2741 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 2742 MaxIter); 2743 2744 // Record the value of the first trip count, which is used to determine if 2745 // branches and blocks can be removed for constant trip counts. 2746 if (LCMin == UINT_MAX) 2747 LCMin = LC; 2748 2749 unsigned numAdded = 0; 2750 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2751 Prolog->addSuccessor(Epilog); 2752 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2753 } else if (j >= LCMin) { 2754 Prolog->addSuccessor(Epilog); 2755 Prolog->removeSuccessor(LastPro); 2756 LastEpi->removeSuccessor(Epilog); 2757 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2758 removePhis(Epilog, LastEpi); 2759 // Remove the blocks that are no longer referenced. 2760 if (LastPro != LastEpi) { 2761 LastEpi->clear(); 2762 LastEpi->eraseFromParent(); 2763 } 2764 LastPro->clear(); 2765 LastPro->eraseFromParent(); 2766 } else { 2767 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2768 removePhis(Epilog, Prolog); 2769 } 2770 LastPro = Prolog; 2771 LastEpi = Epilog; 2772 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2773 E = Prolog->instr_rend(); 2774 I != E && numAdded > 0; ++I, --numAdded) 2775 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2776 } 2777 } 2778 2779 /// Return true if we can compute the amount the instruction changes 2780 /// during each iteration. Set Delta to the amount of the change. 2781 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2782 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2783 const MachineOperand *BaseOp; 2784 int64_t Offset; 2785 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2786 return false; 2787 2788 if (!BaseOp->isReg()) 2789 return false; 2790 2791 unsigned BaseReg = BaseOp->getReg(); 2792 2793 MachineRegisterInfo &MRI = MF.getRegInfo(); 2794 // Check if there is a Phi. If so, get the definition in the loop. 2795 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2796 if (BaseDef && BaseDef->isPHI()) { 2797 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2798 BaseDef = MRI.getVRegDef(BaseReg); 2799 } 2800 if (!BaseDef) 2801 return false; 2802 2803 int D = 0; 2804 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2805 return false; 2806 2807 Delta = D; 2808 return true; 2809 } 2810 2811 /// Update the memory operand with a new offset when the pipeliner 2812 /// generates a new copy of the instruction that refers to a 2813 /// different memory location. 2814 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2815 MachineInstr &OldMI, unsigned Num) { 2816 if (Num == 0) 2817 return; 2818 // If the instruction has memory operands, then adjust the offset 2819 // when the instruction appears in different stages. 2820 if (NewMI.memoperands_empty()) 2821 return; 2822 SmallVector<MachineMemOperand *, 2> NewMMOs; 2823 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2824 // TODO: Figure out whether isAtomic is really necessary (see D57601). 2825 if (MMO->isVolatile() || MMO->isAtomic() || 2826 (MMO->isInvariant() && MMO->isDereferenceable()) || 2827 (!MMO->getValue())) { 2828 NewMMOs.push_back(MMO); 2829 continue; 2830 } 2831 unsigned Delta; 2832 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2833 int64_t AdjOffset = Delta * Num; 2834 NewMMOs.push_back( 2835 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2836 } else { 2837 NewMMOs.push_back( 2838 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2839 } 2840 } 2841 NewMI.setMemRefs(MF, NewMMOs); 2842 } 2843 2844 /// Clone the instruction for the new pipelined loop and update the 2845 /// memory operands, if needed. 2846 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2847 unsigned CurStageNum, 2848 unsigned InstStageNum) { 2849 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2850 // Check for tied operands in inline asm instructions. This should be handled 2851 // elsewhere, but I'm not sure of the best solution. 2852 if (OldMI->isInlineAsm()) 2853 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2854 const auto &MO = OldMI->getOperand(i); 2855 if (MO.isReg() && MO.isUse()) 2856 break; 2857 unsigned UseIdx; 2858 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2859 NewMI->tieOperands(i, UseIdx); 2860 } 2861 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2862 return NewMI; 2863 } 2864 2865 /// Clone the instruction for the new pipelined loop. If needed, this 2866 /// function updates the instruction using the values saved in the 2867 /// InstrChanges structure. 2868 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2869 unsigned CurStageNum, 2870 unsigned InstStageNum, 2871 SMSchedule &Schedule) { 2872 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2873 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2874 InstrChanges.find(getSUnit(OldMI)); 2875 if (It != InstrChanges.end()) { 2876 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2877 unsigned BasePos, OffsetPos; 2878 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2879 return nullptr; 2880 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2881 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2882 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2883 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2884 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2885 } 2886 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2887 return NewMI; 2888 } 2889 2890 /// Update the machine instruction with new virtual registers. This 2891 /// function may change the defintions and/or uses. 2892 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2893 unsigned CurStageNum, 2894 unsigned InstrStageNum, 2895 SMSchedule &Schedule, 2896 ValueMapTy *VRMap) { 2897 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2898 MachineOperand &MO = NewMI->getOperand(i); 2899 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2900 continue; 2901 unsigned reg = MO.getReg(); 2902 if (MO.isDef()) { 2903 // Create a new virtual register for the definition. 2904 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2905 unsigned NewReg = MRI.createVirtualRegister(RC); 2906 MO.setReg(NewReg); 2907 VRMap[CurStageNum][reg] = NewReg; 2908 if (LastDef) 2909 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2910 } else if (MO.isUse()) { 2911 MachineInstr *Def = MRI.getVRegDef(reg); 2912 // Compute the stage that contains the last definition for instruction. 2913 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2914 unsigned StageNum = CurStageNum; 2915 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2916 // Compute the difference in stages between the defintion and the use. 2917 unsigned StageDiff = (InstrStageNum - DefStageNum); 2918 // Make an adjustment to get the last definition. 2919 StageNum -= StageDiff; 2920 } 2921 if (VRMap[StageNum].count(reg)) 2922 MO.setReg(VRMap[StageNum][reg]); 2923 } 2924 } 2925 } 2926 2927 /// Return the instruction in the loop that defines the register. 2928 /// If the definition is a Phi, then follow the Phi operand to 2929 /// the instruction in the loop. 2930 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2931 SmallPtrSet<MachineInstr *, 8> Visited; 2932 MachineInstr *Def = MRI.getVRegDef(Reg); 2933 while (Def->isPHI()) { 2934 if (!Visited.insert(Def).second) 2935 break; 2936 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2937 if (Def->getOperand(i + 1).getMBB() == BB) { 2938 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2939 break; 2940 } 2941 } 2942 return Def; 2943 } 2944 2945 /// Return the new name for the value from the previous stage. 2946 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 2947 unsigned LoopVal, unsigned LoopStage, 2948 ValueMapTy *VRMap, 2949 MachineBasicBlock *BB) { 2950 unsigned PrevVal = 0; 2951 if (StageNum > PhiStage) { 2952 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 2953 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 2954 // The name is defined in the previous stage. 2955 PrevVal = VRMap[StageNum - 1][LoopVal]; 2956 else if (VRMap[StageNum].count(LoopVal)) 2957 // The previous name is defined in the current stage when the instruction 2958 // order is swapped. 2959 PrevVal = VRMap[StageNum][LoopVal]; 2960 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 2961 // The loop value hasn't yet been scheduled. 2962 PrevVal = LoopVal; 2963 else if (StageNum == PhiStage + 1) 2964 // The loop value is another phi, which has not been scheduled. 2965 PrevVal = getInitPhiReg(*LoopInst, BB); 2966 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 2967 // The loop value is another phi, which has been scheduled. 2968 PrevVal = 2969 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 2970 LoopStage, VRMap, BB); 2971 } 2972 return PrevVal; 2973 } 2974 2975 /// Rewrite the Phi values in the specified block to use the mappings 2976 /// from the initial operand. Once the Phi is scheduled, we switch 2977 /// to using the loop value instead of the Phi value, so those names 2978 /// do not need to be rewritten. 2979 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 2980 unsigned StageNum, 2981 SMSchedule &Schedule, 2982 ValueMapTy *VRMap, 2983 InstrMapTy &InstrMap) { 2984 for (auto &PHI : BB->phis()) { 2985 unsigned InitVal = 0; 2986 unsigned LoopVal = 0; 2987 getPhiRegs(PHI, BB, InitVal, LoopVal); 2988 unsigned PhiDef = PHI.getOperand(0).getReg(); 2989 2990 unsigned PhiStage = 2991 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 2992 unsigned LoopStage = 2993 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2994 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 2995 if (NumPhis > StageNum) 2996 NumPhis = StageNum; 2997 for (unsigned np = 0; np <= NumPhis; ++np) { 2998 unsigned NewVal = 2999 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3000 if (!NewVal) 3001 NewVal = InitVal; 3002 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3003 PhiDef, NewVal); 3004 } 3005 } 3006 } 3007 3008 /// Rewrite a previously scheduled instruction to use the register value 3009 /// from the new instruction. Make sure the instruction occurs in the 3010 /// basic block, and we don't change the uses in the new instruction. 3011 void SwingSchedulerDAG::rewriteScheduledInstr( 3012 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3013 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3014 unsigned NewReg, unsigned PrevReg) { 3015 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3016 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3017 // Rewrite uses that have been scheduled already to use the new 3018 // Phi register. 3019 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3020 EI = MRI.use_end(); 3021 UI != EI;) { 3022 MachineOperand &UseOp = *UI; 3023 MachineInstr *UseMI = UseOp.getParent(); 3024 ++UI; 3025 if (UseMI->getParent() != BB) 3026 continue; 3027 if (UseMI->isPHI()) { 3028 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3029 continue; 3030 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3031 continue; 3032 } 3033 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3034 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3035 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3036 int StageSched = Schedule.stageScheduled(OrigMISU); 3037 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3038 unsigned ReplaceReg = 0; 3039 // This is the stage for the scheduled instruction. 3040 if (StagePhi == StageSched && Phi->isPHI()) { 3041 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3042 if (PrevReg && InProlog) 3043 ReplaceReg = PrevReg; 3044 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3045 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3046 ReplaceReg = PrevReg; 3047 else 3048 ReplaceReg = NewReg; 3049 } 3050 // The scheduled instruction occurs before the scheduled Phi, and the 3051 // Phi is not loop carried. 3052 if (!InProlog && StagePhi + 1 == StageSched && 3053 !Schedule.isLoopCarried(this, *Phi)) 3054 ReplaceReg = NewReg; 3055 if (StagePhi > StageSched && Phi->isPHI()) 3056 ReplaceReg = NewReg; 3057 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3058 ReplaceReg = NewReg; 3059 if (ReplaceReg) { 3060 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3061 UseOp.setReg(ReplaceReg); 3062 } 3063 } 3064 } 3065 3066 /// Check if we can change the instruction to use an offset value from the 3067 /// previous iteration. If so, return true and set the base and offset values 3068 /// so that we can rewrite the load, if necessary. 3069 /// v1 = Phi(v0, v3) 3070 /// v2 = load v1, 0 3071 /// v3 = post_store v1, 4, x 3072 /// This function enables the load to be rewritten as v2 = load v3, 4. 3073 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3074 unsigned &BasePos, 3075 unsigned &OffsetPos, 3076 unsigned &NewBase, 3077 int64_t &Offset) { 3078 // Get the load instruction. 3079 if (TII->isPostIncrement(*MI)) 3080 return false; 3081 unsigned BasePosLd, OffsetPosLd; 3082 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3083 return false; 3084 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3085 3086 // Look for the Phi instruction. 3087 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3088 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3089 if (!Phi || !Phi->isPHI()) 3090 return false; 3091 // Get the register defined in the loop block. 3092 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3093 if (!PrevReg) 3094 return false; 3095 3096 // Check for the post-increment load/store instruction. 3097 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3098 if (!PrevDef || PrevDef == MI) 3099 return false; 3100 3101 if (!TII->isPostIncrement(*PrevDef)) 3102 return false; 3103 3104 unsigned BasePos1 = 0, OffsetPos1 = 0; 3105 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3106 return false; 3107 3108 // Make sure that the instructions do not access the same memory location in 3109 // the next iteration. 3110 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3111 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3112 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3113 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3114 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3115 MF.DeleteMachineInstr(NewMI); 3116 if (!Disjoint) 3117 return false; 3118 3119 // Set the return value once we determine that we return true. 3120 BasePos = BasePosLd; 3121 OffsetPos = OffsetPosLd; 3122 NewBase = PrevReg; 3123 Offset = StoreOffset; 3124 return true; 3125 } 3126 3127 /// Apply changes to the instruction if needed. The changes are need 3128 /// to improve the scheduling and depend up on the final schedule. 3129 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3130 SMSchedule &Schedule) { 3131 SUnit *SU = getSUnit(MI); 3132 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3133 InstrChanges.find(SU); 3134 if (It != InstrChanges.end()) { 3135 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3136 unsigned BasePos, OffsetPos; 3137 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3138 return; 3139 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3140 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3141 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3142 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3143 int BaseStageNum = Schedule.stageScheduled(SU); 3144 int BaseCycleNum = Schedule.cycleScheduled(SU); 3145 if (BaseStageNum < DefStageNum) { 3146 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3147 int OffsetDiff = DefStageNum - BaseStageNum; 3148 if (DefCycleNum < BaseCycleNum) { 3149 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3150 if (OffsetDiff > 0) 3151 --OffsetDiff; 3152 } 3153 int64_t NewOffset = 3154 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3155 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3156 SU->setInstr(NewMI); 3157 MISUnitMap[NewMI] = SU; 3158 NewMIs.insert(NewMI); 3159 } 3160 } 3161 } 3162 3163 /// Return true for an order or output dependence that is loop carried 3164 /// potentially. A dependence is loop carried if the destination defines a valu 3165 /// that may be used or defined by the source in a subsequent iteration. 3166 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3167 bool isSucc) { 3168 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3169 Dep.isArtificial()) 3170 return false; 3171 3172 if (!SwpPruneLoopCarried) 3173 return true; 3174 3175 if (Dep.getKind() == SDep::Output) 3176 return true; 3177 3178 MachineInstr *SI = Source->getInstr(); 3179 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3180 if (!isSucc) 3181 std::swap(SI, DI); 3182 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3183 3184 // Assume ordered loads and stores may have a loop carried dependence. 3185 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3186 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3187 return true; 3188 3189 // Only chain dependences between a load and store can be loop carried. 3190 if (!DI->mayStore() || !SI->mayLoad()) 3191 return false; 3192 3193 unsigned DeltaS, DeltaD; 3194 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3195 return true; 3196 3197 const MachineOperand *BaseOpS, *BaseOpD; 3198 int64_t OffsetS, OffsetD; 3199 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3200 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3201 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3202 return true; 3203 3204 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3205 return true; 3206 3207 // Check that the base register is incremented by a constant value for each 3208 // iteration. 3209 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3210 if (!Def || !Def->isPHI()) 3211 return true; 3212 unsigned InitVal = 0; 3213 unsigned LoopVal = 0; 3214 getPhiRegs(*Def, BB, InitVal, LoopVal); 3215 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3216 int D = 0; 3217 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3218 return true; 3219 3220 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3221 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3222 3223 // This is the main test, which checks the offset values and the loop 3224 // increment value to determine if the accesses may be loop carried. 3225 if (AccessSizeS == MemoryLocation::UnknownSize || 3226 AccessSizeD == MemoryLocation::UnknownSize) 3227 return true; 3228 3229 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 3230 return true; 3231 3232 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 3233 } 3234 3235 void SwingSchedulerDAG::postprocessDAG() { 3236 for (auto &M : Mutations) 3237 M->apply(this); 3238 } 3239 3240 /// Try to schedule the node at the specified StartCycle and continue 3241 /// until the node is schedule or the EndCycle is reached. This function 3242 /// returns true if the node is scheduled. This routine may search either 3243 /// forward or backward for a place to insert the instruction based upon 3244 /// the relative values of StartCycle and EndCycle. 3245 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3246 bool forward = true; 3247 if (StartCycle > EndCycle) 3248 forward = false; 3249 3250 // The terminating condition depends on the direction. 3251 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3252 for (int curCycle = StartCycle; curCycle != termCycle; 3253 forward ? ++curCycle : --curCycle) { 3254 3255 // Add the already scheduled instructions at the specified cycle to the 3256 // DFA. 3257 ProcItinResources.clearResources(); 3258 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3259 checkCycle <= LastCycle; checkCycle += II) { 3260 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3261 3262 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3263 E = cycleInstrs.end(); 3264 I != E; ++I) { 3265 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3266 continue; 3267 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 3268 "These instructions have already been scheduled."); 3269 ProcItinResources.reserveResources(*(*I)->getInstr()); 3270 } 3271 } 3272 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3273 ProcItinResources.canReserveResources(*SU->getInstr())) { 3274 LLVM_DEBUG({ 3275 dbgs() << "\tinsert at cycle " << curCycle << " "; 3276 SU->getInstr()->dump(); 3277 }); 3278 3279 ScheduledInstrs[curCycle].push_back(SU); 3280 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3281 if (curCycle > LastCycle) 3282 LastCycle = curCycle; 3283 if (curCycle < FirstCycle) 3284 FirstCycle = curCycle; 3285 return true; 3286 } 3287 LLVM_DEBUG({ 3288 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3289 SU->getInstr()->dump(); 3290 }); 3291 } 3292 return false; 3293 } 3294 3295 // Return the cycle of the earliest scheduled instruction in the chain. 3296 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3297 SmallPtrSet<SUnit *, 8> Visited; 3298 SmallVector<SDep, 8> Worklist; 3299 Worklist.push_back(Dep); 3300 int EarlyCycle = INT_MAX; 3301 while (!Worklist.empty()) { 3302 const SDep &Cur = Worklist.pop_back_val(); 3303 SUnit *PrevSU = Cur.getSUnit(); 3304 if (Visited.count(PrevSU)) 3305 continue; 3306 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3307 if (it == InstrToCycle.end()) 3308 continue; 3309 EarlyCycle = std::min(EarlyCycle, it->second); 3310 for (const auto &PI : PrevSU->Preds) 3311 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3312 Worklist.push_back(PI); 3313 Visited.insert(PrevSU); 3314 } 3315 return EarlyCycle; 3316 } 3317 3318 // Return the cycle of the latest scheduled instruction in the chain. 3319 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3320 SmallPtrSet<SUnit *, 8> Visited; 3321 SmallVector<SDep, 8> Worklist; 3322 Worklist.push_back(Dep); 3323 int LateCycle = INT_MIN; 3324 while (!Worklist.empty()) { 3325 const SDep &Cur = Worklist.pop_back_val(); 3326 SUnit *SuccSU = Cur.getSUnit(); 3327 if (Visited.count(SuccSU)) 3328 continue; 3329 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3330 if (it == InstrToCycle.end()) 3331 continue; 3332 LateCycle = std::max(LateCycle, it->second); 3333 for (const auto &SI : SuccSU->Succs) 3334 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3335 Worklist.push_back(SI); 3336 Visited.insert(SuccSU); 3337 } 3338 return LateCycle; 3339 } 3340 3341 /// If an instruction has a use that spans multiple iterations, then 3342 /// return true. These instructions are characterized by having a back-ege 3343 /// to a Phi, which contains a reference to another Phi. 3344 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3345 for (auto &P : SU->Preds) 3346 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3347 for (auto &S : P.getSUnit()->Succs) 3348 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3349 return P.getSUnit(); 3350 return nullptr; 3351 } 3352 3353 /// Compute the scheduling start slot for the instruction. The start slot 3354 /// depends on any predecessor or successor nodes scheduled already. 3355 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3356 int *MinEnd, int *MaxStart, int II, 3357 SwingSchedulerDAG *DAG) { 3358 // Iterate over each instruction that has been scheduled already. The start 3359 // slot computation depends on whether the previously scheduled instruction 3360 // is a predecessor or successor of the specified instruction. 3361 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3362 3363 // Iterate over each instruction in the current cycle. 3364 for (SUnit *I : getInstructions(cycle)) { 3365 // Because we're processing a DAG for the dependences, we recognize 3366 // the back-edge in recurrences by anti dependences. 3367 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3368 const SDep &Dep = SU->Preds[i]; 3369 if (Dep.getSUnit() == I) { 3370 if (!DAG->isBackedge(SU, Dep)) { 3371 int EarlyStart = cycle + Dep.getLatency() - 3372 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3373 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3374 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3375 int End = earliestCycleInChain(Dep) + (II - 1); 3376 *MinEnd = std::min(*MinEnd, End); 3377 } 3378 } else { 3379 int LateStart = cycle - Dep.getLatency() + 3380 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3381 *MinLateStart = std::min(*MinLateStart, LateStart); 3382 } 3383 } 3384 // For instruction that requires multiple iterations, make sure that 3385 // the dependent instruction is not scheduled past the definition. 3386 SUnit *BE = multipleIterations(I, DAG); 3387 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3388 !SU->isPred(I)) 3389 *MinLateStart = std::min(*MinLateStart, cycle); 3390 } 3391 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3392 if (SU->Succs[i].getSUnit() == I) { 3393 const SDep &Dep = SU->Succs[i]; 3394 if (!DAG->isBackedge(SU, Dep)) { 3395 int LateStart = cycle - Dep.getLatency() + 3396 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3397 *MinLateStart = std::min(*MinLateStart, LateStart); 3398 if (DAG->isLoopCarriedDep(SU, Dep)) { 3399 int Start = latestCycleInChain(Dep) + 1 - II; 3400 *MaxStart = std::max(*MaxStart, Start); 3401 } 3402 } else { 3403 int EarlyStart = cycle + Dep.getLatency() - 3404 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3405 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3406 } 3407 } 3408 } 3409 } 3410 } 3411 } 3412 3413 /// Order the instructions within a cycle so that the definitions occur 3414 /// before the uses. Returns true if the instruction is added to the start 3415 /// of the list, or false if added to the end. 3416 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3417 std::deque<SUnit *> &Insts) { 3418 MachineInstr *MI = SU->getInstr(); 3419 bool OrderBeforeUse = false; 3420 bool OrderAfterDef = false; 3421 bool OrderBeforeDef = false; 3422 unsigned MoveDef = 0; 3423 unsigned MoveUse = 0; 3424 int StageInst1 = stageScheduled(SU); 3425 3426 unsigned Pos = 0; 3427 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3428 ++I, ++Pos) { 3429 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3430 MachineOperand &MO = MI->getOperand(i); 3431 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3432 continue; 3433 3434 unsigned Reg = MO.getReg(); 3435 unsigned BasePos, OffsetPos; 3436 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3437 if (MI->getOperand(BasePos).getReg() == Reg) 3438 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3439 Reg = NewReg; 3440 bool Reads, Writes; 3441 std::tie(Reads, Writes) = 3442 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3443 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3444 OrderBeforeUse = true; 3445 if (MoveUse == 0) 3446 MoveUse = Pos; 3447 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3448 // Add the instruction after the scheduled instruction. 3449 OrderAfterDef = true; 3450 MoveDef = Pos; 3451 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3452 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3453 OrderBeforeUse = true; 3454 if (MoveUse == 0) 3455 MoveUse = Pos; 3456 } else { 3457 OrderAfterDef = true; 3458 MoveDef = Pos; 3459 } 3460 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3461 OrderBeforeUse = true; 3462 if (MoveUse == 0) 3463 MoveUse = Pos; 3464 if (MoveUse != 0) { 3465 OrderAfterDef = true; 3466 MoveDef = Pos - 1; 3467 } 3468 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3469 // Add the instruction before the scheduled instruction. 3470 OrderBeforeUse = true; 3471 if (MoveUse == 0) 3472 MoveUse = Pos; 3473 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3474 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3475 if (MoveUse == 0) { 3476 OrderBeforeDef = true; 3477 MoveUse = Pos; 3478 } 3479 } 3480 } 3481 // Check for order dependences between instructions. Make sure the source 3482 // is ordered before the destination. 3483 for (auto &S : SU->Succs) { 3484 if (S.getSUnit() != *I) 3485 continue; 3486 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3487 OrderBeforeUse = true; 3488 if (Pos < MoveUse) 3489 MoveUse = Pos; 3490 } 3491 } 3492 for (auto &P : SU->Preds) { 3493 if (P.getSUnit() != *I) 3494 continue; 3495 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3496 OrderAfterDef = true; 3497 MoveDef = Pos; 3498 } 3499 } 3500 } 3501 3502 // A circular dependence. 3503 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3504 OrderBeforeUse = false; 3505 3506 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3507 // to a loop-carried dependence. 3508 if (OrderBeforeDef) 3509 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3510 3511 // The uncommon case when the instruction order needs to be updated because 3512 // there is both a use and def. 3513 if (OrderBeforeUse && OrderAfterDef) { 3514 SUnit *UseSU = Insts.at(MoveUse); 3515 SUnit *DefSU = Insts.at(MoveDef); 3516 if (MoveUse > MoveDef) { 3517 Insts.erase(Insts.begin() + MoveUse); 3518 Insts.erase(Insts.begin() + MoveDef); 3519 } else { 3520 Insts.erase(Insts.begin() + MoveDef); 3521 Insts.erase(Insts.begin() + MoveUse); 3522 } 3523 orderDependence(SSD, UseSU, Insts); 3524 orderDependence(SSD, SU, Insts); 3525 orderDependence(SSD, DefSU, Insts); 3526 return; 3527 } 3528 // Put the new instruction first if there is a use in the list. Otherwise, 3529 // put it at the end of the list. 3530 if (OrderBeforeUse) 3531 Insts.push_front(SU); 3532 else 3533 Insts.push_back(SU); 3534 } 3535 3536 /// Return true if the scheduled Phi has a loop carried operand. 3537 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3538 if (!Phi.isPHI()) 3539 return false; 3540 assert(Phi.isPHI() && "Expecting a Phi."); 3541 SUnit *DefSU = SSD->getSUnit(&Phi); 3542 unsigned DefCycle = cycleScheduled(DefSU); 3543 int DefStage = stageScheduled(DefSU); 3544 3545 unsigned InitVal = 0; 3546 unsigned LoopVal = 0; 3547 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3548 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3549 if (!UseSU) 3550 return true; 3551 if (UseSU->getInstr()->isPHI()) 3552 return true; 3553 unsigned LoopCycle = cycleScheduled(UseSU); 3554 int LoopStage = stageScheduled(UseSU); 3555 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3556 } 3557 3558 /// Return true if the instruction is a definition that is loop carried 3559 /// and defines the use on the next iteration. 3560 /// v1 = phi(v2, v3) 3561 /// (Def) v3 = op v1 3562 /// (MO) = v1 3563 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3564 /// register. 3565 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3566 MachineInstr *Def, MachineOperand &MO) { 3567 if (!MO.isReg()) 3568 return false; 3569 if (Def->isPHI()) 3570 return false; 3571 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3572 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3573 return false; 3574 if (!isLoopCarried(SSD, *Phi)) 3575 return false; 3576 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3577 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3578 MachineOperand &DMO = Def->getOperand(i); 3579 if (!DMO.isReg() || !DMO.isDef()) 3580 continue; 3581 if (DMO.getReg() == LoopReg) 3582 return true; 3583 } 3584 return false; 3585 } 3586 3587 // Check if the generated schedule is valid. This function checks if 3588 // an instruction that uses a physical register is scheduled in a 3589 // different stage than the definition. The pipeliner does not handle 3590 // physical register values that may cross a basic block boundary. 3591 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3592 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3593 SUnit &SU = SSD->SUnits[i]; 3594 if (!SU.hasPhysRegDefs) 3595 continue; 3596 int StageDef = stageScheduled(&SU); 3597 assert(StageDef != -1 && "Instruction should have been scheduled."); 3598 for (auto &SI : SU.Succs) 3599 if (SI.isAssignedRegDep()) 3600 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3601 if (stageScheduled(SI.getSUnit()) != StageDef) 3602 return false; 3603 } 3604 return true; 3605 } 3606 3607 /// A property of the node order in swing-modulo-scheduling is 3608 /// that for nodes outside circuits the following holds: 3609 /// none of them is scheduled after both a successor and a 3610 /// predecessor. 3611 /// The method below checks whether the property is met. 3612 /// If not, debug information is printed and statistics information updated. 3613 /// Note that we do not use an assert statement. 3614 /// The reason is that although an invalid node oder may prevent 3615 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3616 /// it does not lead to the generation of incorrect code. 3617 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3618 3619 // a sorted vector that maps each SUnit to its index in the NodeOrder 3620 typedef std::pair<SUnit *, unsigned> UnitIndex; 3621 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3622 3623 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3624 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3625 3626 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3627 return std::get<0>(i1) < std::get<0>(i2); 3628 }; 3629 3630 // sort, so that we can perform a binary search 3631 llvm::sort(Indices, CompareKey); 3632 3633 bool Valid = true; 3634 (void)Valid; 3635 // for each SUnit in the NodeOrder, check whether 3636 // it appears after both a successor and a predecessor 3637 // of the SUnit. If this is the case, and the SUnit 3638 // is not part of circuit, then the NodeOrder is not 3639 // valid. 3640 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3641 SUnit *SU = NodeOrder[i]; 3642 unsigned Index = i; 3643 3644 bool PredBefore = false; 3645 bool SuccBefore = false; 3646 3647 SUnit *Succ; 3648 SUnit *Pred; 3649 (void)Succ; 3650 (void)Pred; 3651 3652 for (SDep &PredEdge : SU->Preds) { 3653 SUnit *PredSU = PredEdge.getSUnit(); 3654 unsigned PredIndex = 3655 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3656 std::make_pair(PredSU, 0), CompareKey)); 3657 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3658 PredBefore = true; 3659 Pred = PredSU; 3660 break; 3661 } 3662 } 3663 3664 for (SDep &SuccEdge : SU->Succs) { 3665 SUnit *SuccSU = SuccEdge.getSUnit(); 3666 unsigned SuccIndex = 3667 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3668 std::make_pair(SuccSU, 0), CompareKey)); 3669 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3670 SuccBefore = true; 3671 Succ = SuccSU; 3672 break; 3673 } 3674 } 3675 3676 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3677 // instructions in circuits are allowed to be scheduled 3678 // after both a successor and predecessor. 3679 bool InCircuit = std::any_of( 3680 Circuits.begin(), Circuits.end(), 3681 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3682 if (InCircuit) 3683 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3684 else { 3685 Valid = false; 3686 NumNodeOrderIssues++; 3687 LLVM_DEBUG(dbgs() << "Predecessor ";); 3688 } 3689 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3690 << " are scheduled before node " << SU->NodeNum 3691 << "\n";); 3692 } 3693 } 3694 3695 LLVM_DEBUG({ 3696 if (!Valid) 3697 dbgs() << "Invalid node order found!\n"; 3698 }); 3699 } 3700 3701 /// Attempt to fix the degenerate cases when the instruction serialization 3702 /// causes the register lifetimes to overlap. For example, 3703 /// p' = store_pi(p, b) 3704 /// = load p, offset 3705 /// In this case p and p' overlap, which means that two registers are needed. 3706 /// Instead, this function changes the load to use p' and updates the offset. 3707 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3708 unsigned OverlapReg = 0; 3709 unsigned NewBaseReg = 0; 3710 for (SUnit *SU : Instrs) { 3711 MachineInstr *MI = SU->getInstr(); 3712 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3713 const MachineOperand &MO = MI->getOperand(i); 3714 // Look for an instruction that uses p. The instruction occurs in the 3715 // same cycle but occurs later in the serialized order. 3716 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3717 // Check that the instruction appears in the InstrChanges structure, 3718 // which contains instructions that can have the offset updated. 3719 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3720 InstrChanges.find(SU); 3721 if (It != InstrChanges.end()) { 3722 unsigned BasePos, OffsetPos; 3723 // Update the base register and adjust the offset. 3724 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3725 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3726 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3727 int64_t NewOffset = 3728 MI->getOperand(OffsetPos).getImm() - It->second.second; 3729 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3730 SU->setInstr(NewMI); 3731 MISUnitMap[NewMI] = SU; 3732 NewMIs.insert(NewMI); 3733 } 3734 } 3735 OverlapReg = 0; 3736 NewBaseReg = 0; 3737 break; 3738 } 3739 // Look for an instruction of the form p' = op(p), which uses and defines 3740 // two virtual registers that get allocated to the same physical register. 3741 unsigned TiedUseIdx = 0; 3742 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3743 // OverlapReg is p in the example above. 3744 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3745 // NewBaseReg is p' in the example above. 3746 NewBaseReg = MI->getOperand(i).getReg(); 3747 break; 3748 } 3749 } 3750 } 3751 } 3752 3753 /// After the schedule has been formed, call this function to combine 3754 /// the instructions from the different stages/cycles. That is, this 3755 /// function creates a schedule that represents a single iteration. 3756 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3757 // Move all instructions to the first stage from later stages. 3758 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3759 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3760 ++stage) { 3761 std::deque<SUnit *> &cycleInstrs = 3762 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3763 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3764 E = cycleInstrs.rend(); 3765 I != E; ++I) 3766 ScheduledInstrs[cycle].push_front(*I); 3767 } 3768 } 3769 // Iterate over the definitions in each instruction, and compute the 3770 // stage difference for each use. Keep the maximum value. 3771 for (auto &I : InstrToCycle) { 3772 int DefStage = stageScheduled(I.first); 3773 MachineInstr *MI = I.first->getInstr(); 3774 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3775 MachineOperand &Op = MI->getOperand(i); 3776 if (!Op.isReg() || !Op.isDef()) 3777 continue; 3778 3779 unsigned Reg = Op.getReg(); 3780 unsigned MaxDiff = 0; 3781 bool PhiIsSwapped = false; 3782 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3783 EI = MRI.use_end(); 3784 UI != EI; ++UI) { 3785 MachineOperand &UseOp = *UI; 3786 MachineInstr *UseMI = UseOp.getParent(); 3787 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3788 int UseStage = stageScheduled(SUnitUse); 3789 unsigned Diff = 0; 3790 if (UseStage != -1 && UseStage >= DefStage) 3791 Diff = UseStage - DefStage; 3792 if (MI->isPHI()) { 3793 if (isLoopCarried(SSD, *MI)) 3794 ++Diff; 3795 else 3796 PhiIsSwapped = true; 3797 } 3798 MaxDiff = std::max(Diff, MaxDiff); 3799 } 3800 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3801 } 3802 } 3803 3804 // Erase all the elements in the later stages. Only one iteration should 3805 // remain in the scheduled list, and it contains all the instructions. 3806 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3807 ScheduledInstrs.erase(cycle); 3808 3809 // Change the registers in instruction as specified in the InstrChanges 3810 // map. We need to use the new registers to create the correct order. 3811 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3812 SUnit *SU = &SSD->SUnits[i]; 3813 SSD->applyInstrChange(SU->getInstr(), *this); 3814 } 3815 3816 // Reorder the instructions in each cycle to fix and improve the 3817 // generated code. 3818 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3819 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3820 std::deque<SUnit *> newOrderPhi; 3821 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3822 SUnit *SU = cycleInstrs[i]; 3823 if (SU->getInstr()->isPHI()) 3824 newOrderPhi.push_back(SU); 3825 } 3826 std::deque<SUnit *> newOrderI; 3827 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3828 SUnit *SU = cycleInstrs[i]; 3829 if (!SU->getInstr()->isPHI()) 3830 orderDependence(SSD, SU, newOrderI); 3831 } 3832 // Replace the old order with the new order. 3833 cycleInstrs.swap(newOrderPhi); 3834 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3835 SSD->fixupRegisterOverlaps(cycleInstrs); 3836 } 3837 3838 LLVM_DEBUG(dump();); 3839 } 3840 3841 void NodeSet::print(raw_ostream &os) const { 3842 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3843 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3844 for (const auto &I : Nodes) 3845 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3846 os << "\n"; 3847 } 3848 3849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3850 /// Print the schedule information to the given output. 3851 void SMSchedule::print(raw_ostream &os) const { 3852 // Iterate over each cycle. 3853 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3854 // Iterate over each instruction in the cycle. 3855 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3856 for (SUnit *CI : cycleInstrs->second) { 3857 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3858 os << "(" << CI->NodeNum << ") "; 3859 CI->getInstr()->print(os); 3860 os << "\n"; 3861 } 3862 } 3863 } 3864 3865 /// Utility function used for debugging to print the schedule. 3866 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3867 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3868 3869 #endif 3870 3871 void ResourceManager::initProcResourceVectors( 3872 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3873 unsigned ProcResourceID = 0; 3874 3875 // We currently limit the resource kinds to 64 and below so that we can use 3876 // uint64_t for Masks 3877 assert(SM.getNumProcResourceKinds() < 64 && 3878 "Too many kinds of resources, unsupported"); 3879 // Create a unique bitmask for every processor resource unit. 3880 // Skip resource at index 0, since it always references 'InvalidUnit'. 3881 Masks.resize(SM.getNumProcResourceKinds()); 3882 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3883 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3884 if (Desc.SubUnitsIdxBegin) 3885 continue; 3886 Masks[I] = 1ULL << ProcResourceID; 3887 ProcResourceID++; 3888 } 3889 // Create a unique bitmask for every processor resource group. 3890 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3891 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3892 if (!Desc.SubUnitsIdxBegin) 3893 continue; 3894 Masks[I] = 1ULL << ProcResourceID; 3895 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3896 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3897 ProcResourceID++; 3898 } 3899 LLVM_DEBUG({ 3900 dbgs() << "ProcResourceDesc:\n"; 3901 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3902 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3903 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3904 ProcResource->Name, I, Masks[I], ProcResource->NumUnits); 3905 } 3906 dbgs() << " -----------------\n"; 3907 }); 3908 } 3909 3910 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3911 3912 LLVM_DEBUG({ dbgs() << "canReserveResources:\n"; }); 3913 if (UseDFA) 3914 return DFAResources->canReserveResources(MID); 3915 3916 unsigned InsnClass = MID->getSchedClass(); 3917 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3918 if (!SCDesc->isValid()) { 3919 LLVM_DEBUG({ 3920 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3921 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3922 }); 3923 return true; 3924 } 3925 3926 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3927 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3928 for (; I != E; ++I) { 3929 if (!I->Cycles) 3930 continue; 3931 const MCProcResourceDesc *ProcResource = 3932 SM.getProcResource(I->ProcResourceIdx); 3933 unsigned NumUnits = ProcResource->NumUnits; 3934 LLVM_DEBUG({ 3935 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3936 ProcResource->Name, I->ProcResourceIdx, 3937 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3938 I->Cycles); 3939 }); 3940 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3941 return false; 3942 } 3943 LLVM_DEBUG(dbgs() << "return true\n\n";); 3944 return true; 3945 } 3946 3947 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3948 LLVM_DEBUG({ dbgs() << "reserveResources:\n"; }); 3949 if (UseDFA) 3950 return DFAResources->reserveResources(MID); 3951 3952 unsigned InsnClass = MID->getSchedClass(); 3953 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3954 if (!SCDesc->isValid()) { 3955 LLVM_DEBUG({ 3956 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3957 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3958 }); 3959 return; 3960 } 3961 for (const MCWriteProcResEntry &PRE : 3962 make_range(STI->getWriteProcResBegin(SCDesc), 3963 STI->getWriteProcResEnd(SCDesc))) { 3964 if (!PRE.Cycles) 3965 continue; 3966 ++ProcResourceCount[PRE.ProcResourceIdx]; 3967 LLVM_DEBUG({ 3968 const MCProcResourceDesc *ProcResource = 3969 SM.getProcResource(PRE.ProcResourceIdx); 3970 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3971 ProcResource->Name, PRE.ProcResourceIdx, 3972 ProcResourceCount[PRE.ProcResourceIdx], 3973 ProcResource->NumUnits, PRE.Cycles); 3974 }); 3975 } 3976 LLVM_DEBUG({ dbgs() << "reserveResources: done!\n\n"; }); 3977 } 3978 3979 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3980 return canReserveResources(&MI.getDesc()); 3981 } 3982 3983 void ResourceManager::reserveResources(const MachineInstr &MI) { 3984 return reserveResources(&MI.getDesc()); 3985 } 3986 3987 void ResourceManager::clearResources() { 3988 if (UseDFA) 3989 return DFAResources->clearResources(); 3990 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3991 } 3992 3993