1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/Config/llvm-config.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/DebugLoc.h" 99 #include "llvm/IR/Function.h" 100 #include "llvm/MC/LaneBitmask.h" 101 #include "llvm/MC/MCInstrDesc.h" 102 #include "llvm/MC/MCInstrItineraries.h" 103 #include "llvm/MC/MCRegisterInfo.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <climits> 113 #include <cstdint> 114 #include <deque> 115 #include <functional> 116 #include <iterator> 117 #include <map> 118 #include <memory> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "pipeliner" 126 127 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 128 STATISTIC(NumPipelined, "Number of loops software pipelined"); 129 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 130 131 /// A command line option to turn software pipelining on or off. 132 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 133 cl::ZeroOrMore, 134 cl::desc("Enable Software Pipelining")); 135 136 /// A command line option to enable SWP at -Os. 137 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 138 cl::desc("Enable SWP at Os."), cl::Hidden, 139 cl::init(false)); 140 141 /// A command line argument to limit minimum initial interval for pipelining. 142 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 143 cl::desc("Size limit for the MII."), 144 cl::Hidden, cl::init(27)); 145 146 /// A command line argument to limit the number of stages in the pipeline. 147 static cl::opt<int> 148 SwpMaxStages("pipeliner-max-stages", 149 cl::desc("Maximum stages allowed in the generated scheduled."), 150 cl::Hidden, cl::init(3)); 151 152 /// A command line option to disable the pruning of chain dependences due to 153 /// an unrelated Phi. 154 static cl::opt<bool> 155 SwpPruneDeps("pipeliner-prune-deps", 156 cl::desc("Prune dependences between unrelated Phi nodes."), 157 cl::Hidden, cl::init(true)); 158 159 /// A command line option to disable the pruning of loop carried order 160 /// dependences. 161 static cl::opt<bool> 162 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 163 cl::desc("Prune loop carried order dependences."), 164 cl::Hidden, cl::init(true)); 165 166 #ifndef NDEBUG 167 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 168 #endif 169 170 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 171 cl::ReallyHidden, cl::init(false), 172 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 173 174 // A command line option to enable the CopyToPhi DAG mutation. 175 static cl::opt<bool> 176 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 177 cl::init(true), cl::ZeroOrMore, 178 cl::desc("Enable CopyToPhi DAG Mutation")); 179 180 namespace { 181 182 class NodeSet; 183 class SMSchedule; 184 185 /// The main class in the implementation of the target independent 186 /// software pipeliner pass. 187 class MachinePipeliner : public MachineFunctionPass { 188 public: 189 MachineFunction *MF = nullptr; 190 const MachineLoopInfo *MLI = nullptr; 191 const MachineDominatorTree *MDT = nullptr; 192 const InstrItineraryData *InstrItins; 193 const TargetInstrInfo *TII = nullptr; 194 RegisterClassInfo RegClassInfo; 195 196 #ifndef NDEBUG 197 static int NumTries; 198 #endif 199 200 /// Cache the target analysis information about the loop. 201 struct LoopInfo { 202 MachineBasicBlock *TBB = nullptr; 203 MachineBasicBlock *FBB = nullptr; 204 SmallVector<MachineOperand, 4> BrCond; 205 MachineInstr *LoopInductionVar = nullptr; 206 MachineInstr *LoopCompare = nullptr; 207 }; 208 LoopInfo LI; 209 210 static char ID; 211 212 MachinePipeliner() : MachineFunctionPass(ID) { 213 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 214 } 215 216 bool runOnMachineFunction(MachineFunction &MF) override; 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<AAResultsWrapperPass>(); 220 AU.addPreserved<AAResultsWrapperPass>(); 221 AU.addRequired<MachineLoopInfo>(); 222 AU.addRequired<MachineDominatorTree>(); 223 AU.addRequired<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 private: 228 void preprocessPhiNodes(MachineBasicBlock &B); 229 bool canPipelineLoop(MachineLoop &L); 230 bool scheduleLoop(MachineLoop &L); 231 bool swingModuloScheduler(MachineLoop &L); 232 }; 233 234 /// This class builds the dependence graph for the instructions in a loop, 235 /// and attempts to schedule the instructions using the SMS algorithm. 236 class SwingSchedulerDAG : public ScheduleDAGInstrs { 237 MachinePipeliner &Pass; 238 /// The minimum initiation interval between iterations for this schedule. 239 unsigned MII = 0; 240 /// Set to true if a valid pipelined schedule is found for the loop. 241 bool Scheduled = false; 242 MachineLoop &Loop; 243 LiveIntervals &LIS; 244 const RegisterClassInfo &RegClassInfo; 245 246 /// A toplogical ordering of the SUnits, which is needed for changing 247 /// dependences and iterating over the SUnits. 248 ScheduleDAGTopologicalSort Topo; 249 250 struct NodeInfo { 251 int ASAP = 0; 252 int ALAP = 0; 253 int ZeroLatencyDepth = 0; 254 int ZeroLatencyHeight = 0; 255 256 NodeInfo() = default; 257 }; 258 /// Computed properties for each node in the graph. 259 std::vector<NodeInfo> ScheduleInfo; 260 261 enum OrderKind { BottomUp = 0, TopDown = 1 }; 262 /// Computed node ordering for scheduling. 263 SetVector<SUnit *> NodeOrder; 264 265 using NodeSetType = SmallVector<NodeSet, 8>; 266 using ValueMapTy = DenseMap<unsigned, unsigned>; 267 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 268 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 269 270 /// Instructions to change when emitting the final schedule. 271 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 272 273 /// We may create a new instruction, so remember it because it 274 /// must be deleted when the pass is finished. 275 SmallPtrSet<MachineInstr *, 4> NewMIs; 276 277 /// Ordered list of DAG postprocessing steps. 278 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 279 280 /// Helper class to implement Johnson's circuit finding algorithm. 281 class Circuits { 282 std::vector<SUnit> &SUnits; 283 SetVector<SUnit *> Stack; 284 BitVector Blocked; 285 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 286 SmallVector<SmallVector<int, 4>, 16> AdjK; 287 // Node to Index from ScheduleDAGTopologicalSort 288 std::vector<int> *Node2Idx; 289 unsigned NumPaths; 290 static unsigned MaxPaths; 291 292 public: 293 Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo) 294 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) { 295 Node2Idx = new std::vector<int>(SUs.size()); 296 unsigned Idx = 0; 297 for (const auto &NodeNum : Topo) 298 Node2Idx->at(NodeNum) = Idx++; 299 } 300 301 ~Circuits() { delete Node2Idx; } 302 303 /// Reset the data structures used in the circuit algorithm. 304 void reset() { 305 Stack.clear(); 306 Blocked.reset(); 307 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 308 NumPaths = 0; 309 } 310 311 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 312 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 313 void unblock(int U); 314 }; 315 316 struct CopyToPhiMutation : public ScheduleDAGMutation { 317 void apply(ScheduleDAGInstrs *DAG) override; 318 }; 319 320 public: 321 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 322 const RegisterClassInfo &rci) 323 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 324 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 325 P.MF->getSubtarget().getSMSMutations(Mutations); 326 if (SwpEnableCopyToPhi) 327 Mutations.push_back(llvm::make_unique<CopyToPhiMutation>()); 328 } 329 330 void schedule() override; 331 void finishBlock() override; 332 333 /// Return true if the loop kernel has been scheduled. 334 bool hasNewSchedule() { return Scheduled; } 335 336 /// Return the earliest time an instruction may be scheduled. 337 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 338 339 /// Return the latest time an instruction my be scheduled. 340 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 341 342 /// The mobility function, which the number of slots in which 343 /// an instruction may be scheduled. 344 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 345 346 /// The depth, in the dependence graph, for a node. 347 unsigned getDepth(SUnit *Node) { return Node->getDepth(); } 348 349 /// The maximum unweighted length of a path from an arbitrary node to the 350 /// given node in which each edge has latency 0 351 int getZeroLatencyDepth(SUnit *Node) { 352 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 353 } 354 355 /// The height, in the dependence graph, for a node. 356 unsigned getHeight(SUnit *Node) { return Node->getHeight(); } 357 358 /// The maximum unweighted length of a path from the given node to an 359 /// arbitrary node in which each edge has latency 0 360 int getZeroLatencyHeight(SUnit *Node) { 361 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 362 } 363 364 /// Return true if the dependence is a back-edge in the data dependence graph. 365 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 366 /// using an anti dependence from a Phi to an instruction. 367 bool isBackedge(SUnit *Source, const SDep &Dep) { 368 if (Dep.getKind() != SDep::Anti) 369 return false; 370 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 371 } 372 373 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); 374 375 /// The distance function, which indicates that operation V of iteration I 376 /// depends on operations U of iteration I-distance. 377 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 378 // Instructions that feed a Phi have a distance of 1. Computing larger 379 // values for arrays requires data dependence information. 380 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 381 return 1; 382 return 0; 383 } 384 385 /// Set the Minimum Initiation Interval for this schedule attempt. 386 void setMII(unsigned mii) { MII = mii; } 387 388 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 389 390 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 391 392 /// Return the new base register that was stored away for the changed 393 /// instruction. 394 unsigned getInstrBaseReg(SUnit *SU) { 395 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 396 InstrChanges.find(SU); 397 if (It != InstrChanges.end()) 398 return It->second.first; 399 return 0; 400 } 401 402 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 403 Mutations.push_back(std::move(Mutation)); 404 } 405 406 static bool classof(const ScheduleDAGInstrs *DAG) { return true; } 407 408 private: 409 void addLoopCarriedDependences(AliasAnalysis *AA); 410 void updatePhiDependences(); 411 void changeDependences(); 412 unsigned calculateResMII(); 413 unsigned calculateRecMII(NodeSetType &RecNodeSets); 414 void findCircuits(NodeSetType &NodeSets); 415 void fuseRecs(NodeSetType &NodeSets); 416 void removeDuplicateNodes(NodeSetType &NodeSets); 417 void computeNodeFunctions(NodeSetType &NodeSets); 418 void registerPressureFilter(NodeSetType &NodeSets); 419 void colocateNodeSets(NodeSetType &NodeSets); 420 void checkNodeSets(NodeSetType &NodeSets); 421 void groupRemainingNodes(NodeSetType &NodeSets); 422 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 423 SetVector<SUnit *> &NodesAdded); 424 void computeNodeOrder(NodeSetType &NodeSets); 425 void checkValidNodeOrder(const NodeSetType &Circuits) const; 426 bool schedulePipeline(SMSchedule &Schedule); 427 void generatePipelinedLoop(SMSchedule &Schedule); 428 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 429 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 430 MBBVectorTy &PrologBBs); 431 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 432 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 433 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 434 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 435 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 436 SMSchedule &Schedule, ValueMapTy *VRMap, 437 InstrMapTy &InstrMap, unsigned LastStageNum, 438 unsigned CurStageNum, bool IsLast); 439 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 440 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 441 SMSchedule &Schedule, ValueMapTy *VRMap, 442 InstrMapTy &InstrMap, unsigned LastStageNum, 443 unsigned CurStageNum, bool IsLast); 444 void removeDeadInstructions(MachineBasicBlock *KernelBB, 445 MBBVectorTy &EpilogBBs); 446 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 447 SMSchedule &Schedule); 448 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 449 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 450 ValueMapTy *VRMap); 451 bool computeDelta(MachineInstr &MI, unsigned &Delta); 452 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 453 unsigned Num); 454 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 455 unsigned InstStageNum); 456 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 457 unsigned InstStageNum, 458 SMSchedule &Schedule); 459 void updateInstruction(MachineInstr *NewMI, bool LastDef, 460 unsigned CurStageNum, unsigned InstrStageNum, 461 SMSchedule &Schedule, ValueMapTy *VRMap); 462 MachineInstr *findDefInLoop(unsigned Reg); 463 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 464 unsigned LoopStage, ValueMapTy *VRMap, 465 MachineBasicBlock *BB); 466 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 467 SMSchedule &Schedule, ValueMapTy *VRMap, 468 InstrMapTy &InstrMap); 469 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 470 InstrMapTy &InstrMap, unsigned CurStageNum, 471 unsigned PhiNum, MachineInstr *Phi, 472 unsigned OldReg, unsigned NewReg, 473 unsigned PrevReg = 0); 474 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 475 unsigned &OffsetPos, unsigned &NewBase, 476 int64_t &NewOffset); 477 void postprocessDAG(); 478 }; 479 480 /// A NodeSet contains a set of SUnit DAG nodes with additional information 481 /// that assigns a priority to the set. 482 class NodeSet { 483 SetVector<SUnit *> Nodes; 484 bool HasRecurrence = false; 485 unsigned RecMII = 0; 486 int MaxMOV = 0; 487 unsigned MaxDepth = 0; 488 unsigned Colocate = 0; 489 SUnit *ExceedPressure = nullptr; 490 unsigned Latency = 0; 491 492 public: 493 using iterator = SetVector<SUnit *>::const_iterator; 494 495 NodeSet() = default; 496 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { 497 Latency = 0; 498 for (unsigned i = 0, e = Nodes.size(); i < e; ++i) 499 for (const SDep &Succ : Nodes[i]->Succs) 500 if (Nodes.count(Succ.getSUnit())) 501 Latency += Succ.getLatency(); 502 } 503 504 bool insert(SUnit *SU) { return Nodes.insert(SU); } 505 506 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 507 508 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 509 return Nodes.remove_if(P); 510 } 511 512 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 513 514 bool hasRecurrence() { return HasRecurrence; }; 515 516 unsigned size() const { return Nodes.size(); } 517 518 bool empty() const { return Nodes.empty(); } 519 520 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 521 522 void setRecMII(unsigned mii) { RecMII = mii; }; 523 524 void setColocate(unsigned c) { Colocate = c; }; 525 526 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 527 528 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 529 530 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 531 532 int getRecMII() { return RecMII; } 533 534 /// Summarize node functions for the entire node set. 535 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 536 for (SUnit *SU : *this) { 537 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 538 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 539 } 540 } 541 542 unsigned getLatency() { return Latency; } 543 544 unsigned getMaxDepth() { return MaxDepth; } 545 546 void clear() { 547 Nodes.clear(); 548 RecMII = 0; 549 HasRecurrence = false; 550 MaxMOV = 0; 551 MaxDepth = 0; 552 Colocate = 0; 553 ExceedPressure = nullptr; 554 } 555 556 operator SetVector<SUnit *> &() { return Nodes; } 557 558 /// Sort the node sets by importance. First, rank them by recurrence MII, 559 /// then by mobility (least mobile done first), and finally by depth. 560 /// Each node set may contain a colocate value which is used as the first 561 /// tie breaker, if it's set. 562 bool operator>(const NodeSet &RHS) const { 563 if (RecMII == RHS.RecMII) { 564 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 565 return Colocate < RHS.Colocate; 566 if (MaxMOV == RHS.MaxMOV) 567 return MaxDepth > RHS.MaxDepth; 568 return MaxMOV < RHS.MaxMOV; 569 } 570 return RecMII > RHS.RecMII; 571 } 572 573 bool operator==(const NodeSet &RHS) const { 574 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 575 MaxDepth == RHS.MaxDepth; 576 } 577 578 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 579 580 iterator begin() { return Nodes.begin(); } 581 iterator end() { return Nodes.end(); } 582 583 void print(raw_ostream &os) const { 584 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 585 << " depth " << MaxDepth << " col " << Colocate << "\n"; 586 for (const auto &I : Nodes) 587 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 588 os << "\n"; 589 } 590 591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 592 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 593 #endif 594 }; 595 596 /// This class represents the scheduled code. The main data structure is a 597 /// map from scheduled cycle to instructions. During scheduling, the 598 /// data structure explicitly represents all stages/iterations. When 599 /// the algorithm finshes, the schedule is collapsed into a single stage, 600 /// which represents instructions from different loop iterations. 601 /// 602 /// The SMS algorithm allows negative values for cycles, so the first cycle 603 /// in the schedule is the smallest cycle value. 604 class SMSchedule { 605 private: 606 /// Map from execution cycle to instructions. 607 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 608 609 /// Map from instruction to execution cycle. 610 std::map<SUnit *, int> InstrToCycle; 611 612 /// Map for each register and the max difference between its uses and def. 613 /// The first element in the pair is the max difference in stages. The 614 /// second is true if the register defines a Phi value and loop value is 615 /// scheduled before the Phi. 616 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 617 618 /// Keep track of the first cycle value in the schedule. It starts 619 /// as zero, but the algorithm allows negative values. 620 int FirstCycle = 0; 621 622 /// Keep track of the last cycle value in the schedule. 623 int LastCycle = 0; 624 625 /// The initiation interval (II) for the schedule. 626 int InitiationInterval = 0; 627 628 /// Target machine information. 629 const TargetSubtargetInfo &ST; 630 631 /// Virtual register information. 632 MachineRegisterInfo &MRI; 633 634 std::unique_ptr<DFAPacketizer> Resources; 635 636 public: 637 SMSchedule(MachineFunction *mf) 638 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 639 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 640 641 void reset() { 642 ScheduledInstrs.clear(); 643 InstrToCycle.clear(); 644 RegToStageDiff.clear(); 645 FirstCycle = 0; 646 LastCycle = 0; 647 InitiationInterval = 0; 648 } 649 650 /// Set the initiation interval for this schedule. 651 void setInitiationInterval(int ii) { InitiationInterval = ii; } 652 653 /// Return the first cycle in the completed schedule. This 654 /// can be a negative value. 655 int getFirstCycle() const { return FirstCycle; } 656 657 /// Return the last cycle in the finalized schedule. 658 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 659 660 /// Return the cycle of the earliest scheduled instruction in the dependence 661 /// chain. 662 int earliestCycleInChain(const SDep &Dep); 663 664 /// Return the cycle of the latest scheduled instruction in the dependence 665 /// chain. 666 int latestCycleInChain(const SDep &Dep); 667 668 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 669 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 670 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 671 672 /// Iterators for the cycle to instruction map. 673 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 674 using const_sched_iterator = 675 DenseMap<int, std::deque<SUnit *>>::const_iterator; 676 677 /// Return true if the instruction is scheduled at the specified stage. 678 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 679 return (stageScheduled(SU) == (int)StageNum); 680 } 681 682 /// Return the stage for a scheduled instruction. Return -1 if 683 /// the instruction has not been scheduled. 684 int stageScheduled(SUnit *SU) const { 685 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 686 if (it == InstrToCycle.end()) 687 return -1; 688 return (it->second - FirstCycle) / InitiationInterval; 689 } 690 691 /// Return the cycle for a scheduled instruction. This function normalizes 692 /// the first cycle to be 0. 693 unsigned cycleScheduled(SUnit *SU) const { 694 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 695 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 696 return (it->second - FirstCycle) % InitiationInterval; 697 } 698 699 /// Return the maximum stage count needed for this schedule. 700 unsigned getMaxStageCount() { 701 return (LastCycle - FirstCycle) / InitiationInterval; 702 } 703 704 /// Return the max. number of stages/iterations that can occur between a 705 /// register definition and its uses. 706 unsigned getStagesForReg(int Reg, unsigned CurStage) { 707 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 708 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 709 return 1; 710 return Stages.first; 711 } 712 713 /// The number of stages for a Phi is a little different than other 714 /// instructions. The minimum value computed in RegToStageDiff is 1 715 /// because we assume the Phi is needed for at least 1 iteration. 716 /// This is not the case if the loop value is scheduled prior to the 717 /// Phi in the same stage. This function returns the number of stages 718 /// or iterations needed between the Phi definition and any uses. 719 unsigned getStagesForPhi(int Reg) { 720 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 721 if (Stages.second) 722 return Stages.first; 723 return Stages.first - 1; 724 } 725 726 /// Return the instructions that are scheduled at the specified cycle. 727 std::deque<SUnit *> &getInstructions(int cycle) { 728 return ScheduledInstrs[cycle]; 729 } 730 731 bool isValidSchedule(SwingSchedulerDAG *SSD); 732 void finalizeSchedule(SwingSchedulerDAG *SSD); 733 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 734 std::deque<SUnit *> &Insts); 735 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 736 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, 737 MachineOperand &MO); 738 void print(raw_ostream &os) const; 739 void dump() const; 740 }; 741 742 } // end anonymous namespace 743 744 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 745 char MachinePipeliner::ID = 0; 746 #ifndef NDEBUG 747 int MachinePipeliner::NumTries = 0; 748 #endif 749 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 750 751 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 752 "Modulo Software Pipelining", false, false) 753 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 754 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 755 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 756 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 757 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 758 "Modulo Software Pipelining", false, false) 759 760 /// The "main" function for implementing Swing Modulo Scheduling. 761 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 762 if (skipFunction(mf.getFunction())) 763 return false; 764 765 if (!EnableSWP) 766 return false; 767 768 if (mf.getFunction().getAttributes().hasAttribute( 769 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 770 !EnableSWPOptSize.getPosition()) 771 return false; 772 773 MF = &mf; 774 MLI = &getAnalysis<MachineLoopInfo>(); 775 MDT = &getAnalysis<MachineDominatorTree>(); 776 TII = MF->getSubtarget().getInstrInfo(); 777 RegClassInfo.runOnMachineFunction(*MF); 778 779 for (auto &L : *MLI) 780 scheduleLoop(*L); 781 782 return false; 783 } 784 785 /// Attempt to perform the SMS algorithm on the specified loop. This function is 786 /// the main entry point for the algorithm. The function identifies candidate 787 /// loops, calculates the minimum initiation interval, and attempts to schedule 788 /// the loop. 789 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 790 bool Changed = false; 791 for (auto &InnerLoop : L) 792 Changed |= scheduleLoop(*InnerLoop); 793 794 #ifndef NDEBUG 795 // Stop trying after reaching the limit (if any). 796 int Limit = SwpLoopLimit; 797 if (Limit >= 0) { 798 if (NumTries >= SwpLoopLimit) 799 return Changed; 800 NumTries++; 801 } 802 #endif 803 804 if (!canPipelineLoop(L)) 805 return Changed; 806 807 ++NumTrytoPipeline; 808 809 Changed = swingModuloScheduler(L); 810 811 return Changed; 812 } 813 814 /// Return true if the loop can be software pipelined. The algorithm is 815 /// restricted to loops with a single basic block. Make sure that the 816 /// branch in the loop can be analyzed. 817 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 818 if (L.getNumBlocks() != 1) 819 return false; 820 821 // Check if the branch can't be understood because we can't do pipelining 822 // if that's the case. 823 LI.TBB = nullptr; 824 LI.FBB = nullptr; 825 LI.BrCond.clear(); 826 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 827 return false; 828 829 LI.LoopInductionVar = nullptr; 830 LI.LoopCompare = nullptr; 831 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 832 return false; 833 834 if (!L.getLoopPreheader()) 835 return false; 836 837 // Remove any subregisters from inputs to phi nodes. 838 preprocessPhiNodes(*L.getHeader()); 839 return true; 840 } 841 842 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 843 MachineRegisterInfo &MRI = MF->getRegInfo(); 844 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 845 846 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 847 MachineOperand &DefOp = PI.getOperand(0); 848 assert(DefOp.getSubReg() == 0); 849 auto *RC = MRI.getRegClass(DefOp.getReg()); 850 851 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 852 MachineOperand &RegOp = PI.getOperand(i); 853 if (RegOp.getSubReg() == 0) 854 continue; 855 856 // If the operand uses a subregister, replace it with a new register 857 // without subregisters, and generate a copy to the new register. 858 unsigned NewReg = MRI.createVirtualRegister(RC); 859 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 860 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 861 const DebugLoc &DL = PredB.findDebugLoc(At); 862 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 863 .addReg(RegOp.getReg(), getRegState(RegOp), 864 RegOp.getSubReg()); 865 Slots.insertMachineInstrInMaps(*Copy); 866 RegOp.setReg(NewReg); 867 RegOp.setSubReg(0); 868 } 869 } 870 } 871 872 /// The SMS algorithm consists of the following main steps: 873 /// 1. Computation and analysis of the dependence graph. 874 /// 2. Ordering of the nodes (instructions). 875 /// 3. Attempt to Schedule the loop. 876 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 877 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 878 879 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 880 881 MachineBasicBlock *MBB = L.getHeader(); 882 // The kernel should not include any terminator instructions. These 883 // will be added back later. 884 SMS.startBlock(MBB); 885 886 // Compute the number of 'real' instructions in the basic block by 887 // ignoring terminators. 888 unsigned size = MBB->size(); 889 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 890 E = MBB->instr_end(); 891 I != E; ++I, --size) 892 ; 893 894 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 895 SMS.schedule(); 896 SMS.exitRegion(); 897 898 SMS.finishBlock(); 899 return SMS.hasNewSchedule(); 900 } 901 902 /// We override the schedule function in ScheduleDAGInstrs to implement the 903 /// scheduling part of the Swing Modulo Scheduling algorithm. 904 void SwingSchedulerDAG::schedule() { 905 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 906 buildSchedGraph(AA); 907 addLoopCarriedDependences(AA); 908 updatePhiDependences(); 909 Topo.InitDAGTopologicalSorting(); 910 changeDependences(); 911 postprocessDAG(); 912 LLVM_DEBUG(dump()); 913 914 NodeSetType NodeSets; 915 findCircuits(NodeSets); 916 NodeSetType Circuits = NodeSets; 917 918 // Calculate the MII. 919 unsigned ResMII = calculateResMII(); 920 unsigned RecMII = calculateRecMII(NodeSets); 921 922 fuseRecs(NodeSets); 923 924 // This flag is used for testing and can cause correctness problems. 925 if (SwpIgnoreRecMII) 926 RecMII = 0; 927 928 MII = std::max(ResMII, RecMII); 929 LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII 930 << ", res=" << ResMII << ")\n"); 931 932 // Can't schedule a loop without a valid MII. 933 if (MII == 0) 934 return; 935 936 // Don't pipeline large loops. 937 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 938 return; 939 940 computeNodeFunctions(NodeSets); 941 942 registerPressureFilter(NodeSets); 943 944 colocateNodeSets(NodeSets); 945 946 checkNodeSets(NodeSets); 947 948 LLVM_DEBUG({ 949 for (auto &I : NodeSets) { 950 dbgs() << " Rec NodeSet "; 951 I.dump(); 952 } 953 }); 954 955 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 956 957 groupRemainingNodes(NodeSets); 958 959 removeDuplicateNodes(NodeSets); 960 961 LLVM_DEBUG({ 962 for (auto &I : NodeSets) { 963 dbgs() << " NodeSet "; 964 I.dump(); 965 } 966 }); 967 968 computeNodeOrder(NodeSets); 969 970 // check for node order issues 971 checkValidNodeOrder(Circuits); 972 973 SMSchedule Schedule(Pass.MF); 974 Scheduled = schedulePipeline(Schedule); 975 976 if (!Scheduled) 977 return; 978 979 unsigned numStages = Schedule.getMaxStageCount(); 980 // No need to generate pipeline if there are no overlapped iterations. 981 if (numStages == 0) 982 return; 983 984 // Check that the maximum stage count is less than user-defined limit. 985 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 986 return; 987 988 generatePipelinedLoop(Schedule); 989 ++NumPipelined; 990 } 991 992 /// Clean up after the software pipeliner runs. 993 void SwingSchedulerDAG::finishBlock() { 994 for (MachineInstr *I : NewMIs) 995 MF.DeleteMachineInstr(I); 996 NewMIs.clear(); 997 998 // Call the superclass. 999 ScheduleDAGInstrs::finishBlock(); 1000 } 1001 1002 /// Return the register values for the operands of a Phi instruction. 1003 /// This function assume the instruction is a Phi. 1004 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 1005 unsigned &InitVal, unsigned &LoopVal) { 1006 assert(Phi.isPHI() && "Expecting a Phi."); 1007 1008 InitVal = 0; 1009 LoopVal = 0; 1010 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1011 if (Phi.getOperand(i + 1).getMBB() != Loop) 1012 InitVal = Phi.getOperand(i).getReg(); 1013 else 1014 LoopVal = Phi.getOperand(i).getReg(); 1015 1016 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 1017 } 1018 1019 /// Return the Phi register value that comes from the incoming block. 1020 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1021 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1022 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 1023 return Phi.getOperand(i).getReg(); 1024 return 0; 1025 } 1026 1027 /// Return the Phi register value that comes the loop block. 1028 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1029 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1030 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 1031 return Phi.getOperand(i).getReg(); 1032 return 0; 1033 } 1034 1035 /// Return true if SUb can be reached from SUa following the chain edges. 1036 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1037 SmallPtrSet<SUnit *, 8> Visited; 1038 SmallVector<SUnit *, 8> Worklist; 1039 Worklist.push_back(SUa); 1040 while (!Worklist.empty()) { 1041 const SUnit *SU = Worklist.pop_back_val(); 1042 for (auto &SI : SU->Succs) { 1043 SUnit *SuccSU = SI.getSUnit(); 1044 if (SI.getKind() == SDep::Order) { 1045 if (Visited.count(SuccSU)) 1046 continue; 1047 if (SuccSU == SUb) 1048 return true; 1049 Worklist.push_back(SuccSU); 1050 Visited.insert(SuccSU); 1051 } 1052 } 1053 } 1054 return false; 1055 } 1056 1057 /// Return true if the instruction causes a chain between memory 1058 /// references before and after it. 1059 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1060 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1061 (MI.hasOrderedMemoryRef() && 1062 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1063 } 1064 1065 /// Return the underlying objects for the memory references of an instruction. 1066 /// This function calls the code in ValueTracking, but first checks that the 1067 /// instruction has a memory operand. 1068 static void getUnderlyingObjects(MachineInstr *MI, 1069 SmallVectorImpl<Value *> &Objs, 1070 const DataLayout &DL) { 1071 if (!MI->hasOneMemOperand()) 1072 return; 1073 MachineMemOperand *MM = *MI->memoperands_begin(); 1074 if (!MM->getValue()) 1075 return; 1076 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1077 for (Value *V : Objs) { 1078 if (!isIdentifiedObject(V)) { 1079 Objs.clear(); 1080 return; 1081 } 1082 Objs.push_back(V); 1083 } 1084 } 1085 1086 /// Add a chain edge between a load and store if the store can be an 1087 /// alias of the load on a subsequent iteration, i.e., a loop carried 1088 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1089 /// but that code doesn't create loop carried dependences. 1090 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1091 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1092 Value *UnknownValue = 1093 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 1094 for (auto &SU : SUnits) { 1095 MachineInstr &MI = *SU.getInstr(); 1096 if (isDependenceBarrier(MI, AA)) 1097 PendingLoads.clear(); 1098 else if (MI.mayLoad()) { 1099 SmallVector<Value *, 4> Objs; 1100 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1101 if (Objs.empty()) 1102 Objs.push_back(UnknownValue); 1103 for (auto V : Objs) { 1104 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1105 SUs.push_back(&SU); 1106 } 1107 } else if (MI.mayStore()) { 1108 SmallVector<Value *, 4> Objs; 1109 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1110 if (Objs.empty()) 1111 Objs.push_back(UnknownValue); 1112 for (auto V : Objs) { 1113 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1114 PendingLoads.find(V); 1115 if (I == PendingLoads.end()) 1116 continue; 1117 for (auto Load : I->second) { 1118 if (isSuccOrder(Load, &SU)) 1119 continue; 1120 MachineInstr &LdMI = *Load->getInstr(); 1121 // First, perform the cheaper check that compares the base register. 1122 // If they are the same and the load offset is less than the store 1123 // offset, then mark the dependence as loop carried potentially. 1124 MachineOperand *BaseOp1, *BaseOp2; 1125 int64_t Offset1, Offset2; 1126 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 1127 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 1128 if (BaseOp1->isIdenticalTo(*BaseOp2) && 1129 (int)Offset1 < (int)Offset2) { 1130 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1131 "What happened to the chain edge?"); 1132 SDep Dep(Load, SDep::Barrier); 1133 Dep.setLatency(1); 1134 SU.addPred(Dep); 1135 continue; 1136 } 1137 } 1138 // Second, the more expensive check that uses alias analysis on the 1139 // base registers. If they alias, and the load offset is less than 1140 // the store offset, the mark the dependence as loop carried. 1141 if (!AA) { 1142 SDep Dep(Load, SDep::Barrier); 1143 Dep.setLatency(1); 1144 SU.addPred(Dep); 1145 continue; 1146 } 1147 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1148 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1149 if (!MMO1->getValue() || !MMO2->getValue()) { 1150 SDep Dep(Load, SDep::Barrier); 1151 Dep.setLatency(1); 1152 SU.addPred(Dep); 1153 continue; 1154 } 1155 if (MMO1->getValue() == MMO2->getValue() && 1156 MMO1->getOffset() <= MMO2->getOffset()) { 1157 SDep Dep(Load, SDep::Barrier); 1158 Dep.setLatency(1); 1159 SU.addPred(Dep); 1160 continue; 1161 } 1162 AliasResult AAResult = AA->alias( 1163 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 1164 MMO1->getAAInfo()), 1165 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 1166 MMO2->getAAInfo())); 1167 1168 if (AAResult != NoAlias) { 1169 SDep Dep(Load, SDep::Barrier); 1170 Dep.setLatency(1); 1171 SU.addPred(Dep); 1172 } 1173 } 1174 } 1175 } 1176 } 1177 } 1178 1179 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1180 /// processes dependences for PHIs. This function adds true dependences 1181 /// from a PHI to a use, and a loop carried dependence from the use to the 1182 /// PHI. The loop carried dependence is represented as an anti dependence 1183 /// edge. This function also removes chain dependences between unrelated 1184 /// PHIs. 1185 void SwingSchedulerDAG::updatePhiDependences() { 1186 SmallVector<SDep, 4> RemoveDeps; 1187 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1188 1189 // Iterate over each DAG node. 1190 for (SUnit &I : SUnits) { 1191 RemoveDeps.clear(); 1192 // Set to true if the instruction has an operand defined by a Phi. 1193 unsigned HasPhiUse = 0; 1194 unsigned HasPhiDef = 0; 1195 MachineInstr *MI = I.getInstr(); 1196 // Iterate over each operand, and we process the definitions. 1197 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1198 MOE = MI->operands_end(); 1199 MOI != MOE; ++MOI) { 1200 if (!MOI->isReg()) 1201 continue; 1202 unsigned Reg = MOI->getReg(); 1203 if (MOI->isDef()) { 1204 // If the register is used by a Phi, then create an anti dependence. 1205 for (MachineRegisterInfo::use_instr_iterator 1206 UI = MRI.use_instr_begin(Reg), 1207 UE = MRI.use_instr_end(); 1208 UI != UE; ++UI) { 1209 MachineInstr *UseMI = &*UI; 1210 SUnit *SU = getSUnit(UseMI); 1211 if (SU != nullptr && UseMI->isPHI()) { 1212 if (!MI->isPHI()) { 1213 SDep Dep(SU, SDep::Anti, Reg); 1214 Dep.setLatency(1); 1215 I.addPred(Dep); 1216 } else { 1217 HasPhiDef = Reg; 1218 // Add a chain edge to a dependent Phi that isn't an existing 1219 // predecessor. 1220 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1221 I.addPred(SDep(SU, SDep::Barrier)); 1222 } 1223 } 1224 } 1225 } else if (MOI->isUse()) { 1226 // If the register is defined by a Phi, then create a true dependence. 1227 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1228 if (DefMI == nullptr) 1229 continue; 1230 SUnit *SU = getSUnit(DefMI); 1231 if (SU != nullptr && DefMI->isPHI()) { 1232 if (!MI->isPHI()) { 1233 SDep Dep(SU, SDep::Data, Reg); 1234 Dep.setLatency(0); 1235 ST.adjustSchedDependency(SU, &I, Dep); 1236 I.addPred(Dep); 1237 } else { 1238 HasPhiUse = Reg; 1239 // Add a chain edge to a dependent Phi that isn't an existing 1240 // predecessor. 1241 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1242 I.addPred(SDep(SU, SDep::Barrier)); 1243 } 1244 } 1245 } 1246 } 1247 // Remove order dependences from an unrelated Phi. 1248 if (!SwpPruneDeps) 1249 continue; 1250 for (auto &PI : I.Preds) { 1251 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1252 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1253 if (I.getInstr()->isPHI()) { 1254 if (PMI->getOperand(0).getReg() == HasPhiUse) 1255 continue; 1256 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1257 continue; 1258 } 1259 RemoveDeps.push_back(PI); 1260 } 1261 } 1262 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1263 I.removePred(RemoveDeps[i]); 1264 } 1265 } 1266 1267 /// Iterate over each DAG node and see if we can change any dependences 1268 /// in order to reduce the recurrence MII. 1269 void SwingSchedulerDAG::changeDependences() { 1270 // See if an instruction can use a value from the previous iteration. 1271 // If so, we update the base and offset of the instruction and change 1272 // the dependences. 1273 for (SUnit &I : SUnits) { 1274 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1275 int64_t NewOffset = 0; 1276 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1277 NewOffset)) 1278 continue; 1279 1280 // Get the MI and SUnit for the instruction that defines the original base. 1281 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1282 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1283 if (!DefMI) 1284 continue; 1285 SUnit *DefSU = getSUnit(DefMI); 1286 if (!DefSU) 1287 continue; 1288 // Get the MI and SUnit for the instruction that defins the new base. 1289 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1290 if (!LastMI) 1291 continue; 1292 SUnit *LastSU = getSUnit(LastMI); 1293 if (!LastSU) 1294 continue; 1295 1296 if (Topo.IsReachable(&I, LastSU)) 1297 continue; 1298 1299 // Remove the dependence. The value now depends on a prior iteration. 1300 SmallVector<SDep, 4> Deps; 1301 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1302 ++P) 1303 if (P->getSUnit() == DefSU) 1304 Deps.push_back(*P); 1305 for (int i = 0, e = Deps.size(); i != e; i++) { 1306 Topo.RemovePred(&I, Deps[i].getSUnit()); 1307 I.removePred(Deps[i]); 1308 } 1309 // Remove the chain dependence between the instructions. 1310 Deps.clear(); 1311 for (auto &P : LastSU->Preds) 1312 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1313 Deps.push_back(P); 1314 for (int i = 0, e = Deps.size(); i != e; i++) { 1315 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1316 LastSU->removePred(Deps[i]); 1317 } 1318 1319 // Add a dependence between the new instruction and the instruction 1320 // that defines the new base. 1321 SDep Dep(&I, SDep::Anti, NewBase); 1322 Topo.AddPred(LastSU, &I); 1323 LastSU->addPred(Dep); 1324 1325 // Remember the base and offset information so that we can update the 1326 // instruction during code generation. 1327 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1328 } 1329 } 1330 1331 namespace { 1332 1333 // FuncUnitSorter - Comparison operator used to sort instructions by 1334 // the number of functional unit choices. 1335 struct FuncUnitSorter { 1336 const InstrItineraryData *InstrItins; 1337 DenseMap<unsigned, unsigned> Resources; 1338 1339 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1340 1341 // Compute the number of functional unit alternatives needed 1342 // at each stage, and take the minimum value. We prioritize the 1343 // instructions by the least number of choices first. 1344 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1345 unsigned schedClass = Inst->getDesc().getSchedClass(); 1346 unsigned min = UINT_MAX; 1347 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1348 *IE = InstrItins->endStage(schedClass); 1349 IS != IE; ++IS) { 1350 unsigned funcUnits = IS->getUnits(); 1351 unsigned numAlternatives = countPopulation(funcUnits); 1352 if (numAlternatives < min) { 1353 min = numAlternatives; 1354 F = funcUnits; 1355 } 1356 } 1357 return min; 1358 } 1359 1360 // Compute the critical resources needed by the instruction. This 1361 // function records the functional units needed by instructions that 1362 // must use only one functional unit. We use this as a tie breaker 1363 // for computing the resource MII. The instrutions that require 1364 // the same, highly used, functional unit have high priority. 1365 void calcCriticalResources(MachineInstr &MI) { 1366 unsigned SchedClass = MI.getDesc().getSchedClass(); 1367 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1368 *IE = InstrItins->endStage(SchedClass); 1369 IS != IE; ++IS) { 1370 unsigned FuncUnits = IS->getUnits(); 1371 if (countPopulation(FuncUnits) == 1) 1372 Resources[FuncUnits]++; 1373 } 1374 } 1375 1376 /// Return true if IS1 has less priority than IS2. 1377 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1378 unsigned F1 = 0, F2 = 0; 1379 unsigned MFUs1 = minFuncUnits(IS1, F1); 1380 unsigned MFUs2 = minFuncUnits(IS2, F2); 1381 if (MFUs1 == 1 && MFUs2 == 1) 1382 return Resources.lookup(F1) < Resources.lookup(F2); 1383 return MFUs1 > MFUs2; 1384 } 1385 }; 1386 1387 } // end anonymous namespace 1388 1389 /// Calculate the resource constrained minimum initiation interval for the 1390 /// specified loop. We use the DFA to model the resources needed for 1391 /// each instruction, and we ignore dependences. A different DFA is created 1392 /// for each cycle that is required. When adding a new instruction, we attempt 1393 /// to add it to each existing DFA, until a legal space is found. If the 1394 /// instruction cannot be reserved in an existing DFA, we create a new one. 1395 unsigned SwingSchedulerDAG::calculateResMII() { 1396 SmallVector<DFAPacketizer *, 8> Resources; 1397 MachineBasicBlock *MBB = Loop.getHeader(); 1398 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1399 1400 // Sort the instructions by the number of available choices for scheduling, 1401 // least to most. Use the number of critical resources as the tie breaker. 1402 FuncUnitSorter FUS = 1403 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1404 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1405 E = MBB->getFirstTerminator(); 1406 I != E; ++I) 1407 FUS.calcCriticalResources(*I); 1408 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1409 FuncUnitOrder(FUS); 1410 1411 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1412 E = MBB->getFirstTerminator(); 1413 I != E; ++I) 1414 FuncUnitOrder.push(&*I); 1415 1416 while (!FuncUnitOrder.empty()) { 1417 MachineInstr *MI = FuncUnitOrder.top(); 1418 FuncUnitOrder.pop(); 1419 if (TII->isZeroCost(MI->getOpcode())) 1420 continue; 1421 // Attempt to reserve the instruction in an existing DFA. At least one 1422 // DFA is needed for each cycle. 1423 unsigned NumCycles = getSUnit(MI)->Latency; 1424 unsigned ReservedCycles = 0; 1425 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1426 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1427 for (unsigned C = 0; C < NumCycles; ++C) 1428 while (RI != RE) { 1429 if ((*RI++)->canReserveResources(*MI)) { 1430 ++ReservedCycles; 1431 break; 1432 } 1433 } 1434 // Start reserving resources using existing DFAs. 1435 for (unsigned C = 0; C < ReservedCycles; ++C) { 1436 --RI; 1437 (*RI)->reserveResources(*MI); 1438 } 1439 // Add new DFAs, if needed, to reserve resources. 1440 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1441 DFAPacketizer *NewResource = 1442 TII->CreateTargetScheduleState(MF.getSubtarget()); 1443 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1444 NewResource->reserveResources(*MI); 1445 Resources.push_back(NewResource); 1446 } 1447 } 1448 int Resmii = Resources.size(); 1449 // Delete the memory for each of the DFAs that were created earlier. 1450 for (DFAPacketizer *RI : Resources) { 1451 DFAPacketizer *D = RI; 1452 delete D; 1453 } 1454 Resources.clear(); 1455 return Resmii; 1456 } 1457 1458 /// Calculate the recurrence-constrainted minimum initiation interval. 1459 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1460 /// for each circuit. The II needs to satisfy the inequality 1461 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1462 /// II that satisfies the inequality, and the RecMII is the maximum 1463 /// of those values. 1464 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1465 unsigned RecMII = 0; 1466 1467 for (NodeSet &Nodes : NodeSets) { 1468 if (Nodes.empty()) 1469 continue; 1470 1471 unsigned Delay = Nodes.getLatency(); 1472 unsigned Distance = 1; 1473 1474 // ii = ceil(delay / distance) 1475 unsigned CurMII = (Delay + Distance - 1) / Distance; 1476 Nodes.setRecMII(CurMII); 1477 if (CurMII > RecMII) 1478 RecMII = CurMII; 1479 } 1480 1481 return RecMII; 1482 } 1483 1484 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1485 /// but we do this to find the circuits, and then change them back. 1486 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1487 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1488 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1489 SUnit *SU = &SUnits[i]; 1490 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1491 IP != EP; ++IP) { 1492 if (IP->getKind() != SDep::Anti) 1493 continue; 1494 DepsAdded.push_back(std::make_pair(SU, *IP)); 1495 } 1496 } 1497 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1498 E = DepsAdded.end(); 1499 I != E; ++I) { 1500 // Remove this anti dependency and add one in the reverse direction. 1501 SUnit *SU = I->first; 1502 SDep &D = I->second; 1503 SUnit *TargetSU = D.getSUnit(); 1504 unsigned Reg = D.getReg(); 1505 unsigned Lat = D.getLatency(); 1506 SU->removePred(D); 1507 SDep Dep(SU, SDep::Anti, Reg); 1508 Dep.setLatency(Lat); 1509 TargetSU->addPred(Dep); 1510 } 1511 } 1512 1513 /// Create the adjacency structure of the nodes in the graph. 1514 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1515 SwingSchedulerDAG *DAG) { 1516 BitVector Added(SUnits.size()); 1517 DenseMap<int, int> OutputDeps; 1518 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1519 Added.reset(); 1520 // Add any successor to the adjacency matrix and exclude duplicates. 1521 for (auto &SI : SUnits[i].Succs) { 1522 // Only create a back-edge on the first and last nodes of a dependence 1523 // chain. This records any chains and adds them later. 1524 if (SI.getKind() == SDep::Output) { 1525 int N = SI.getSUnit()->NodeNum; 1526 int BackEdge = i; 1527 auto Dep = OutputDeps.find(BackEdge); 1528 if (Dep != OutputDeps.end()) { 1529 BackEdge = Dep->second; 1530 OutputDeps.erase(Dep); 1531 } 1532 OutputDeps[N] = BackEdge; 1533 } 1534 // Do not process a boundary node, an artificial node. 1535 // A back-edge is processed only if it goes to a Phi. 1536 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1537 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1538 continue; 1539 int N = SI.getSUnit()->NodeNum; 1540 if (!Added.test(N)) { 1541 AdjK[i].push_back(N); 1542 Added.set(N); 1543 } 1544 } 1545 // A chain edge between a store and a load is treated as a back-edge in the 1546 // adjacency matrix. 1547 for (auto &PI : SUnits[i].Preds) { 1548 if (!SUnits[i].getInstr()->mayStore() || 1549 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1550 continue; 1551 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1552 int N = PI.getSUnit()->NodeNum; 1553 if (!Added.test(N)) { 1554 AdjK[i].push_back(N); 1555 Added.set(N); 1556 } 1557 } 1558 } 1559 } 1560 // Add back-eges in the adjacency matrix for the output dependences. 1561 for (auto &OD : OutputDeps) 1562 if (!Added.test(OD.second)) { 1563 AdjK[OD.first].push_back(OD.second); 1564 Added.set(OD.second); 1565 } 1566 } 1567 1568 /// Identify an elementary circuit in the dependence graph starting at the 1569 /// specified node. 1570 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1571 bool HasBackedge) { 1572 SUnit *SV = &SUnits[V]; 1573 bool F = false; 1574 Stack.insert(SV); 1575 Blocked.set(V); 1576 1577 for (auto W : AdjK[V]) { 1578 if (NumPaths > MaxPaths) 1579 break; 1580 if (W < S) 1581 continue; 1582 if (W == S) { 1583 if (!HasBackedge) 1584 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1585 F = true; 1586 ++NumPaths; 1587 break; 1588 } else if (!Blocked.test(W)) { 1589 if (circuit(W, S, NodeSets, 1590 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1591 F = true; 1592 } 1593 } 1594 1595 if (F) 1596 unblock(V); 1597 else { 1598 for (auto W : AdjK[V]) { 1599 if (W < S) 1600 continue; 1601 if (B[W].count(SV) == 0) 1602 B[W].insert(SV); 1603 } 1604 } 1605 Stack.pop_back(); 1606 return F; 1607 } 1608 1609 /// Unblock a node in the circuit finding algorithm. 1610 void SwingSchedulerDAG::Circuits::unblock(int U) { 1611 Blocked.reset(U); 1612 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1613 while (!BU.empty()) { 1614 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1615 assert(SI != BU.end() && "Invalid B set."); 1616 SUnit *W = *SI; 1617 BU.erase(W); 1618 if (Blocked.test(W->NodeNum)) 1619 unblock(W->NodeNum); 1620 } 1621 } 1622 1623 /// Identify all the elementary circuits in the dependence graph using 1624 /// Johnson's circuit algorithm. 1625 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1626 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1627 // but we do this to find the circuits, and then change them back. 1628 swapAntiDependences(SUnits); 1629 1630 Circuits Cir(SUnits, Topo); 1631 // Create the adjacency structure. 1632 Cir.createAdjacencyStructure(this); 1633 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1634 Cir.reset(); 1635 Cir.circuit(i, i, NodeSets); 1636 } 1637 1638 // Change the dependences back so that we've created a DAG again. 1639 swapAntiDependences(SUnits); 1640 } 1641 1642 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1643 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1644 // additional copies that are needed across iterations. An artificial dependence 1645 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1646 1647 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1648 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1649 // PHI-------True-Dep------> USEOfPhi 1650 1651 // The mutation creates 1652 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1653 1654 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1655 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1656 // late to avoid additional copies across iterations. The possible scheduling 1657 // order would be 1658 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1659 1660 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1661 for (SUnit &SU : DAG->SUnits) { 1662 // Find the COPY/REG_SEQUENCE instruction. 1663 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1664 continue; 1665 1666 // Record the loop carried PHIs. 1667 SmallVector<SUnit *, 4> PHISUs; 1668 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1669 SmallVector<SUnit *, 4> SrcSUs; 1670 1671 for (auto &Dep : SU.Preds) { 1672 SUnit *TmpSU = Dep.getSUnit(); 1673 MachineInstr *TmpMI = TmpSU->getInstr(); 1674 SDep::Kind DepKind = Dep.getKind(); 1675 // Save the loop carried PHI. 1676 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1677 PHISUs.push_back(TmpSU); 1678 // Save the source of COPY/REG_SEQUENCE. 1679 // If the source has no pre-decessors, we will end up creating cycles. 1680 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1681 SrcSUs.push_back(TmpSU); 1682 } 1683 1684 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1685 continue; 1686 1687 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1688 // SUnit to the container. 1689 SmallVector<SUnit *, 8> UseSUs; 1690 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1691 for (auto &Dep : (*I)->Succs) { 1692 if (Dep.getKind() != SDep::Data) 1693 continue; 1694 1695 SUnit *TmpSU = Dep.getSUnit(); 1696 MachineInstr *TmpMI = TmpSU->getInstr(); 1697 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1698 PHISUs.push_back(TmpSU); 1699 continue; 1700 } 1701 UseSUs.push_back(TmpSU); 1702 } 1703 } 1704 1705 if (UseSUs.size() == 0) 1706 continue; 1707 1708 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1709 // Add the artificial dependencies if it does not form a cycle. 1710 for (auto I : UseSUs) { 1711 for (auto Src : SrcSUs) { 1712 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1713 Src->addPred(SDep(I, SDep::Artificial)); 1714 SDAG->Topo.AddPred(Src, I); 1715 } 1716 } 1717 } 1718 } 1719 } 1720 1721 /// Return true for DAG nodes that we ignore when computing the cost functions. 1722 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1723 /// in the calculation of the ASAP, ALAP, etc functions. 1724 static bool ignoreDependence(const SDep &D, bool isPred) { 1725 if (D.isArtificial()) 1726 return true; 1727 return D.getKind() == SDep::Anti && isPred; 1728 } 1729 1730 /// Compute several functions need to order the nodes for scheduling. 1731 /// ASAP - Earliest time to schedule a node. 1732 /// ALAP - Latest time to schedule a node. 1733 /// MOV - Mobility function, difference between ALAP and ASAP. 1734 /// D - Depth of each node. 1735 /// H - Height of each node. 1736 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1737 ScheduleInfo.resize(SUnits.size()); 1738 1739 LLVM_DEBUG({ 1740 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1741 E = Topo.end(); 1742 I != E; ++I) { 1743 const SUnit &SU = SUnits[*I]; 1744 dumpNode(SU); 1745 } 1746 }); 1747 1748 int maxASAP = 0; 1749 // Compute ASAP and ZeroLatencyDepth. 1750 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1751 E = Topo.end(); 1752 I != E; ++I) { 1753 int asap = 0; 1754 int zeroLatencyDepth = 0; 1755 SUnit *SU = &SUnits[*I]; 1756 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1757 EP = SU->Preds.end(); 1758 IP != EP; ++IP) { 1759 SUnit *pred = IP->getSUnit(); 1760 if (IP->getLatency() == 0) 1761 zeroLatencyDepth = 1762 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1763 if (ignoreDependence(*IP, true)) 1764 continue; 1765 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1766 getDistance(pred, SU, *IP) * MII)); 1767 } 1768 maxASAP = std::max(maxASAP, asap); 1769 ScheduleInfo[*I].ASAP = asap; 1770 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1771 } 1772 1773 // Compute ALAP, ZeroLatencyHeight, and MOV. 1774 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1775 E = Topo.rend(); 1776 I != E; ++I) { 1777 int alap = maxASAP; 1778 int zeroLatencyHeight = 0; 1779 SUnit *SU = &SUnits[*I]; 1780 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1781 ES = SU->Succs.end(); 1782 IS != ES; ++IS) { 1783 SUnit *succ = IS->getSUnit(); 1784 if (IS->getLatency() == 0) 1785 zeroLatencyHeight = 1786 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1787 if (ignoreDependence(*IS, true)) 1788 continue; 1789 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1790 getDistance(SU, succ, *IS) * MII)); 1791 } 1792 1793 ScheduleInfo[*I].ALAP = alap; 1794 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1795 } 1796 1797 // After computing the node functions, compute the summary for each node set. 1798 for (NodeSet &I : NodeSets) 1799 I.computeNodeSetInfo(this); 1800 1801 LLVM_DEBUG({ 1802 for (unsigned i = 0; i < SUnits.size(); i++) { 1803 dbgs() << "\tNode " << i << ":\n"; 1804 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1805 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1806 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1807 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1808 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1809 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1810 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1811 } 1812 }); 1813 } 1814 1815 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1816 /// as the predecessors of the elements of NodeOrder that are not also in 1817 /// NodeOrder. 1818 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1819 SmallSetVector<SUnit *, 8> &Preds, 1820 const NodeSet *S = nullptr) { 1821 Preds.clear(); 1822 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1823 I != E; ++I) { 1824 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1825 PI != PE; ++PI) { 1826 if (S && S->count(PI->getSUnit()) == 0) 1827 continue; 1828 if (ignoreDependence(*PI, true)) 1829 continue; 1830 if (NodeOrder.count(PI->getSUnit()) == 0) 1831 Preds.insert(PI->getSUnit()); 1832 } 1833 // Back-edges are predecessors with an anti-dependence. 1834 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1835 ES = (*I)->Succs.end(); 1836 IS != ES; ++IS) { 1837 if (IS->getKind() != SDep::Anti) 1838 continue; 1839 if (S && S->count(IS->getSUnit()) == 0) 1840 continue; 1841 if (NodeOrder.count(IS->getSUnit()) == 0) 1842 Preds.insert(IS->getSUnit()); 1843 } 1844 } 1845 return !Preds.empty(); 1846 } 1847 1848 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1849 /// as the successors of the elements of NodeOrder that are not also in 1850 /// NodeOrder. 1851 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1852 SmallSetVector<SUnit *, 8> &Succs, 1853 const NodeSet *S = nullptr) { 1854 Succs.clear(); 1855 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1856 I != E; ++I) { 1857 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1858 SI != SE; ++SI) { 1859 if (S && S->count(SI->getSUnit()) == 0) 1860 continue; 1861 if (ignoreDependence(*SI, false)) 1862 continue; 1863 if (NodeOrder.count(SI->getSUnit()) == 0) 1864 Succs.insert(SI->getSUnit()); 1865 } 1866 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1867 PE = (*I)->Preds.end(); 1868 PI != PE; ++PI) { 1869 if (PI->getKind() != SDep::Anti) 1870 continue; 1871 if (S && S->count(PI->getSUnit()) == 0) 1872 continue; 1873 if (NodeOrder.count(PI->getSUnit()) == 0) 1874 Succs.insert(PI->getSUnit()); 1875 } 1876 } 1877 return !Succs.empty(); 1878 } 1879 1880 /// Return true if there is a path from the specified node to any of the nodes 1881 /// in DestNodes. Keep track and return the nodes in any path. 1882 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1883 SetVector<SUnit *> &DestNodes, 1884 SetVector<SUnit *> &Exclude, 1885 SmallPtrSet<SUnit *, 8> &Visited) { 1886 if (Cur->isBoundaryNode()) 1887 return false; 1888 if (Exclude.count(Cur) != 0) 1889 return false; 1890 if (DestNodes.count(Cur) != 0) 1891 return true; 1892 if (!Visited.insert(Cur).second) 1893 return Path.count(Cur) != 0; 1894 bool FoundPath = false; 1895 for (auto &SI : Cur->Succs) 1896 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1897 for (auto &PI : Cur->Preds) 1898 if (PI.getKind() == SDep::Anti) 1899 FoundPath |= 1900 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1901 if (FoundPath) 1902 Path.insert(Cur); 1903 return FoundPath; 1904 } 1905 1906 /// Return true if Set1 is a subset of Set2. 1907 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1908 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1909 if (Set2.count(*I) == 0) 1910 return false; 1911 return true; 1912 } 1913 1914 /// Compute the live-out registers for the instructions in a node-set. 1915 /// The live-out registers are those that are defined in the node-set, 1916 /// but not used. Except for use operands of Phis. 1917 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1918 NodeSet &NS) { 1919 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1920 MachineRegisterInfo &MRI = MF.getRegInfo(); 1921 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1922 SmallSet<unsigned, 4> Uses; 1923 for (SUnit *SU : NS) { 1924 const MachineInstr *MI = SU->getInstr(); 1925 if (MI->isPHI()) 1926 continue; 1927 for (const MachineOperand &MO : MI->operands()) 1928 if (MO.isReg() && MO.isUse()) { 1929 unsigned Reg = MO.getReg(); 1930 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1931 Uses.insert(Reg); 1932 else if (MRI.isAllocatable(Reg)) 1933 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1934 Uses.insert(*Units); 1935 } 1936 } 1937 for (SUnit *SU : NS) 1938 for (const MachineOperand &MO : SU->getInstr()->operands()) 1939 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1940 unsigned Reg = MO.getReg(); 1941 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1942 if (!Uses.count(Reg)) 1943 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1944 LaneBitmask::getNone())); 1945 } else if (MRI.isAllocatable(Reg)) { 1946 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1947 if (!Uses.count(*Units)) 1948 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1949 LaneBitmask::getNone())); 1950 } 1951 } 1952 RPTracker.addLiveRegs(LiveOutRegs); 1953 } 1954 1955 /// A heuristic to filter nodes in recurrent node-sets if the register 1956 /// pressure of a set is too high. 1957 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1958 for (auto &NS : NodeSets) { 1959 // Skip small node-sets since they won't cause register pressure problems. 1960 if (NS.size() <= 2) 1961 continue; 1962 IntervalPressure RecRegPressure; 1963 RegPressureTracker RecRPTracker(RecRegPressure); 1964 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1965 computeLiveOuts(MF, RecRPTracker, NS); 1966 RecRPTracker.closeBottom(); 1967 1968 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1969 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1970 return A->NodeNum > B->NodeNum; 1971 }); 1972 1973 for (auto &SU : SUnits) { 1974 // Since we're computing the register pressure for a subset of the 1975 // instructions in a block, we need to set the tracker for each 1976 // instruction in the node-set. The tracker is set to the instruction 1977 // just after the one we're interested in. 1978 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1979 RecRPTracker.setPos(std::next(CurInstI)); 1980 1981 RegPressureDelta RPDelta; 1982 ArrayRef<PressureChange> CriticalPSets; 1983 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1984 CriticalPSets, 1985 RecRegPressure.MaxSetPressure); 1986 if (RPDelta.Excess.isValid()) { 1987 LLVM_DEBUG( 1988 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1989 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1990 << ":" << RPDelta.Excess.getUnitInc()); 1991 NS.setExceedPressure(SU); 1992 break; 1993 } 1994 RecRPTracker.recede(); 1995 } 1996 } 1997 } 1998 1999 /// A heuristic to colocate node sets that have the same set of 2000 /// successors. 2001 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2002 unsigned Colocate = 0; 2003 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2004 NodeSet &N1 = NodeSets[i]; 2005 SmallSetVector<SUnit *, 8> S1; 2006 if (N1.empty() || !succ_L(N1, S1)) 2007 continue; 2008 for (int j = i + 1; j < e; ++j) { 2009 NodeSet &N2 = NodeSets[j]; 2010 if (N1.compareRecMII(N2) != 0) 2011 continue; 2012 SmallSetVector<SUnit *, 8> S2; 2013 if (N2.empty() || !succ_L(N2, S2)) 2014 continue; 2015 if (isSubset(S1, S2) && S1.size() == S2.size()) { 2016 N1.setColocate(++Colocate); 2017 N2.setColocate(Colocate); 2018 break; 2019 } 2020 } 2021 } 2022 } 2023 2024 /// Check if the existing node-sets are profitable. If not, then ignore the 2025 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2026 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2027 /// then it's best to try to schedule all instructions together instead of 2028 /// starting with the recurrent node-sets. 2029 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2030 // Look for loops with a large MII. 2031 if (MII < 17) 2032 return; 2033 // Check if the node-set contains only a simple add recurrence. 2034 for (auto &NS : NodeSets) { 2035 if (NS.getRecMII() > 2) 2036 return; 2037 if (NS.getMaxDepth() > MII) 2038 return; 2039 } 2040 NodeSets.clear(); 2041 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2042 return; 2043 } 2044 2045 /// Add the nodes that do not belong to a recurrence set into groups 2046 /// based upon connected componenets. 2047 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2048 SetVector<SUnit *> NodesAdded; 2049 SmallPtrSet<SUnit *, 8> Visited; 2050 // Add the nodes that are on a path between the previous node sets and 2051 // the current node set. 2052 for (NodeSet &I : NodeSets) { 2053 SmallSetVector<SUnit *, 8> N; 2054 // Add the nodes from the current node set to the previous node set. 2055 if (succ_L(I, N)) { 2056 SetVector<SUnit *> Path; 2057 for (SUnit *NI : N) { 2058 Visited.clear(); 2059 computePath(NI, Path, NodesAdded, I, Visited); 2060 } 2061 if (!Path.empty()) 2062 I.insert(Path.begin(), Path.end()); 2063 } 2064 // Add the nodes from the previous node set to the current node set. 2065 N.clear(); 2066 if (succ_L(NodesAdded, N)) { 2067 SetVector<SUnit *> Path; 2068 for (SUnit *NI : N) { 2069 Visited.clear(); 2070 computePath(NI, Path, I, NodesAdded, Visited); 2071 } 2072 if (!Path.empty()) 2073 I.insert(Path.begin(), Path.end()); 2074 } 2075 NodesAdded.insert(I.begin(), I.end()); 2076 } 2077 2078 // Create a new node set with the connected nodes of any successor of a node 2079 // in a recurrent set. 2080 NodeSet NewSet; 2081 SmallSetVector<SUnit *, 8> N; 2082 if (succ_L(NodesAdded, N)) 2083 for (SUnit *I : N) 2084 addConnectedNodes(I, NewSet, NodesAdded); 2085 if (!NewSet.empty()) 2086 NodeSets.push_back(NewSet); 2087 2088 // Create a new node set with the connected nodes of any predecessor of a node 2089 // in a recurrent set. 2090 NewSet.clear(); 2091 if (pred_L(NodesAdded, N)) 2092 for (SUnit *I : N) 2093 addConnectedNodes(I, NewSet, NodesAdded); 2094 if (!NewSet.empty()) 2095 NodeSets.push_back(NewSet); 2096 2097 // Create new nodes sets with the connected nodes any remaining node that 2098 // has no predecessor. 2099 for (unsigned i = 0; i < SUnits.size(); ++i) { 2100 SUnit *SU = &SUnits[i]; 2101 if (NodesAdded.count(SU) == 0) { 2102 NewSet.clear(); 2103 addConnectedNodes(SU, NewSet, NodesAdded); 2104 if (!NewSet.empty()) 2105 NodeSets.push_back(NewSet); 2106 } 2107 } 2108 } 2109 2110 /// Add the node to the set, and add all is its connected nodes to the set. 2111 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2112 SetVector<SUnit *> &NodesAdded) { 2113 NewSet.insert(SU); 2114 NodesAdded.insert(SU); 2115 for (auto &SI : SU->Succs) { 2116 SUnit *Successor = SI.getSUnit(); 2117 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 2118 addConnectedNodes(Successor, NewSet, NodesAdded); 2119 } 2120 for (auto &PI : SU->Preds) { 2121 SUnit *Predecessor = PI.getSUnit(); 2122 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2123 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2124 } 2125 } 2126 2127 /// Return true if Set1 contains elements in Set2. The elements in common 2128 /// are returned in a different container. 2129 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2130 SmallSetVector<SUnit *, 8> &Result) { 2131 Result.clear(); 2132 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 2133 SUnit *SU = Set1[i]; 2134 if (Set2.count(SU) != 0) 2135 Result.insert(SU); 2136 } 2137 return !Result.empty(); 2138 } 2139 2140 /// Merge the recurrence node sets that have the same initial node. 2141 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2142 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2143 ++I) { 2144 NodeSet &NI = *I; 2145 for (NodeSetType::iterator J = I + 1; J != E;) { 2146 NodeSet &NJ = *J; 2147 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2148 if (NJ.compareRecMII(NI) > 0) 2149 NI.setRecMII(NJ.getRecMII()); 2150 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 2151 ++NII) 2152 I->insert(*NII); 2153 NodeSets.erase(J); 2154 E = NodeSets.end(); 2155 } else { 2156 ++J; 2157 } 2158 } 2159 } 2160 } 2161 2162 /// Remove nodes that have been scheduled in previous NodeSets. 2163 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2164 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2165 ++I) 2166 for (NodeSetType::iterator J = I + 1; J != E;) { 2167 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2168 2169 if (J->empty()) { 2170 NodeSets.erase(J); 2171 E = NodeSets.end(); 2172 } else { 2173 ++J; 2174 } 2175 } 2176 } 2177 2178 /// Compute an ordered list of the dependence graph nodes, which 2179 /// indicates the order that the nodes will be scheduled. This is a 2180 /// two-level algorithm. First, a partial order is created, which 2181 /// consists of a list of sets ordered from highest to lowest priority. 2182 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2183 SmallSetVector<SUnit *, 8> R; 2184 NodeOrder.clear(); 2185 2186 for (auto &Nodes : NodeSets) { 2187 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2188 OrderKind Order; 2189 SmallSetVector<SUnit *, 8> N; 2190 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2191 R.insert(N.begin(), N.end()); 2192 Order = BottomUp; 2193 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2194 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2195 R.insert(N.begin(), N.end()); 2196 Order = TopDown; 2197 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2198 } else if (isIntersect(N, Nodes, R)) { 2199 // If some of the successors are in the existing node-set, then use the 2200 // top-down ordering. 2201 Order = TopDown; 2202 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2203 } else if (NodeSets.size() == 1) { 2204 for (auto &N : Nodes) 2205 if (N->Succs.size() == 0) 2206 R.insert(N); 2207 Order = BottomUp; 2208 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2209 } else { 2210 // Find the node with the highest ASAP. 2211 SUnit *maxASAP = nullptr; 2212 for (SUnit *SU : Nodes) { 2213 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2214 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2215 maxASAP = SU; 2216 } 2217 R.insert(maxASAP); 2218 Order = BottomUp; 2219 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2220 } 2221 2222 while (!R.empty()) { 2223 if (Order == TopDown) { 2224 // Choose the node with the maximum height. If more than one, choose 2225 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2226 // choose the node with the lowest MOV. 2227 while (!R.empty()) { 2228 SUnit *maxHeight = nullptr; 2229 for (SUnit *I : R) { 2230 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2231 maxHeight = I; 2232 else if (getHeight(I) == getHeight(maxHeight) && 2233 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2234 maxHeight = I; 2235 else if (getHeight(I) == getHeight(maxHeight) && 2236 getZeroLatencyHeight(I) == 2237 getZeroLatencyHeight(maxHeight) && 2238 getMOV(I) < getMOV(maxHeight)) 2239 maxHeight = I; 2240 } 2241 NodeOrder.insert(maxHeight); 2242 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2243 R.remove(maxHeight); 2244 for (const auto &I : maxHeight->Succs) { 2245 if (Nodes.count(I.getSUnit()) == 0) 2246 continue; 2247 if (NodeOrder.count(I.getSUnit()) != 0) 2248 continue; 2249 if (ignoreDependence(I, false)) 2250 continue; 2251 R.insert(I.getSUnit()); 2252 } 2253 // Back-edges are predecessors with an anti-dependence. 2254 for (const auto &I : maxHeight->Preds) { 2255 if (I.getKind() != SDep::Anti) 2256 continue; 2257 if (Nodes.count(I.getSUnit()) == 0) 2258 continue; 2259 if (NodeOrder.count(I.getSUnit()) != 0) 2260 continue; 2261 R.insert(I.getSUnit()); 2262 } 2263 } 2264 Order = BottomUp; 2265 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2266 SmallSetVector<SUnit *, 8> N; 2267 if (pred_L(NodeOrder, N, &Nodes)) 2268 R.insert(N.begin(), N.end()); 2269 } else { 2270 // Choose the node with the maximum depth. If more than one, choose 2271 // the node with the maximum ZeroLatencyDepth. If still more than one, 2272 // choose the node with the lowest MOV. 2273 while (!R.empty()) { 2274 SUnit *maxDepth = nullptr; 2275 for (SUnit *I : R) { 2276 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2277 maxDepth = I; 2278 else if (getDepth(I) == getDepth(maxDepth) && 2279 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2280 maxDepth = I; 2281 else if (getDepth(I) == getDepth(maxDepth) && 2282 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2283 getMOV(I) < getMOV(maxDepth)) 2284 maxDepth = I; 2285 } 2286 NodeOrder.insert(maxDepth); 2287 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2288 R.remove(maxDepth); 2289 if (Nodes.isExceedSU(maxDepth)) { 2290 Order = TopDown; 2291 R.clear(); 2292 R.insert(Nodes.getNode(0)); 2293 break; 2294 } 2295 for (const auto &I : maxDepth->Preds) { 2296 if (Nodes.count(I.getSUnit()) == 0) 2297 continue; 2298 if (NodeOrder.count(I.getSUnit()) != 0) 2299 continue; 2300 R.insert(I.getSUnit()); 2301 } 2302 // Back-edges are predecessors with an anti-dependence. 2303 for (const auto &I : maxDepth->Succs) { 2304 if (I.getKind() != SDep::Anti) 2305 continue; 2306 if (Nodes.count(I.getSUnit()) == 0) 2307 continue; 2308 if (NodeOrder.count(I.getSUnit()) != 0) 2309 continue; 2310 R.insert(I.getSUnit()); 2311 } 2312 } 2313 Order = TopDown; 2314 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2315 SmallSetVector<SUnit *, 8> N; 2316 if (succ_L(NodeOrder, N, &Nodes)) 2317 R.insert(N.begin(), N.end()); 2318 } 2319 } 2320 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2321 } 2322 2323 LLVM_DEBUG({ 2324 dbgs() << "Node order: "; 2325 for (SUnit *I : NodeOrder) 2326 dbgs() << " " << I->NodeNum << " "; 2327 dbgs() << "\n"; 2328 }); 2329 } 2330 2331 /// Process the nodes in the computed order and create the pipelined schedule 2332 /// of the instructions, if possible. Return true if a schedule is found. 2333 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2334 if (NodeOrder.empty()) 2335 return false; 2336 2337 bool scheduleFound = false; 2338 // Keep increasing II until a valid schedule is found. 2339 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2340 Schedule.reset(); 2341 Schedule.setInitiationInterval(II); 2342 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2343 2344 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2345 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2346 do { 2347 SUnit *SU = *NI; 2348 2349 // Compute the schedule time for the instruction, which is based 2350 // upon the scheduled time for any predecessors/successors. 2351 int EarlyStart = INT_MIN; 2352 int LateStart = INT_MAX; 2353 // These values are set when the size of the schedule window is limited 2354 // due to chain dependences. 2355 int SchedEnd = INT_MAX; 2356 int SchedStart = INT_MIN; 2357 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2358 II, this); 2359 LLVM_DEBUG({ 2360 dbgs() << "Inst (" << SU->NodeNum << ") "; 2361 SU->getInstr()->dump(); 2362 dbgs() << "\n"; 2363 }); 2364 LLVM_DEBUG({ 2365 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2366 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2367 }); 2368 2369 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2370 SchedStart > LateStart) 2371 scheduleFound = false; 2372 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2373 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2374 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2375 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2376 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2377 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2378 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2379 SchedEnd = 2380 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2381 // When scheduling a Phi it is better to start at the late cycle and go 2382 // backwards. The default order may insert the Phi too far away from 2383 // its first dependence. 2384 if (SU->getInstr()->isPHI()) 2385 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2386 else 2387 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2388 } else { 2389 int FirstCycle = Schedule.getFirstCycle(); 2390 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2391 FirstCycle + getASAP(SU) + II - 1, II); 2392 } 2393 // Even if we find a schedule, make sure the schedule doesn't exceed the 2394 // allowable number of stages. We keep trying if this happens. 2395 if (scheduleFound) 2396 if (SwpMaxStages > -1 && 2397 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2398 scheduleFound = false; 2399 2400 LLVM_DEBUG({ 2401 if (!scheduleFound) 2402 dbgs() << "\tCan't schedule\n"; 2403 }); 2404 } while (++NI != NE && scheduleFound); 2405 2406 // If a schedule is found, check if it is a valid schedule too. 2407 if (scheduleFound) 2408 scheduleFound = Schedule.isValidSchedule(this); 2409 } 2410 2411 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2412 2413 if (scheduleFound) 2414 Schedule.finalizeSchedule(this); 2415 else 2416 Schedule.reset(); 2417 2418 return scheduleFound && Schedule.getMaxStageCount() > 0; 2419 } 2420 2421 /// Given a schedule for the loop, generate a new version of the loop, 2422 /// and replace the old version. This function generates a prolog 2423 /// that contains the initial iterations in the pipeline, and kernel 2424 /// loop, and the epilogue that contains the code for the final 2425 /// iterations. 2426 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2427 // Create a new basic block for the kernel and add it to the CFG. 2428 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2429 2430 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2431 2432 // Remember the registers that are used in different stages. The index is 2433 // the iteration, or stage, that the instruction is scheduled in. This is 2434 // a map between register names in the original block and the names created 2435 // in each stage of the pipelined loop. 2436 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2437 InstrMapTy InstrMap; 2438 2439 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2440 // Generate the prolog instructions that set up the pipeline. 2441 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2442 MF.insert(BB->getIterator(), KernelBB); 2443 2444 // Rearrange the instructions to generate the new, pipelined loop, 2445 // and update register names as needed. 2446 for (int Cycle = Schedule.getFirstCycle(), 2447 LastCycle = Schedule.getFinalCycle(); 2448 Cycle <= LastCycle; ++Cycle) { 2449 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2450 // This inner loop schedules each instruction in the cycle. 2451 for (SUnit *CI : CycleInstrs) { 2452 if (CI->getInstr()->isPHI()) 2453 continue; 2454 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2455 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2456 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2457 KernelBB->push_back(NewMI); 2458 InstrMap[NewMI] = CI->getInstr(); 2459 } 2460 } 2461 2462 // Copy any terminator instructions to the new kernel, and update 2463 // names as needed. 2464 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2465 E = BB->instr_end(); 2466 I != E; ++I) { 2467 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2468 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2469 KernelBB->push_back(NewMI); 2470 InstrMap[NewMI] = &*I; 2471 } 2472 2473 KernelBB->transferSuccessors(BB); 2474 KernelBB->replaceSuccessor(BB, KernelBB); 2475 2476 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2477 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2478 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2479 InstrMap, MaxStageCount, MaxStageCount, false); 2480 2481 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2482 2483 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2484 // Generate the epilog instructions to complete the pipeline. 2485 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2486 PrologBBs); 2487 2488 // We need this step because the register allocation doesn't handle some 2489 // situations well, so we insert copies to help out. 2490 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2491 2492 // Remove dead instructions due to loop induction variables. 2493 removeDeadInstructions(KernelBB, EpilogBBs); 2494 2495 // Add branches between prolog and epilog blocks. 2496 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2497 2498 // Remove the original loop since it's no longer referenced. 2499 for (auto &I : *BB) 2500 LIS.RemoveMachineInstrFromMaps(I); 2501 BB->clear(); 2502 BB->eraseFromParent(); 2503 2504 delete[] VRMap; 2505 } 2506 2507 /// Generate the pipeline prolog code. 2508 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2509 MachineBasicBlock *KernelBB, 2510 ValueMapTy *VRMap, 2511 MBBVectorTy &PrologBBs) { 2512 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2513 assert(PreheaderBB != nullptr && 2514 "Need to add code to handle loops w/o preheader"); 2515 MachineBasicBlock *PredBB = PreheaderBB; 2516 InstrMapTy InstrMap; 2517 2518 // Generate a basic block for each stage, not including the last stage, 2519 // which will be generated in the kernel. Each basic block may contain 2520 // instructions from multiple stages/iterations. 2521 for (unsigned i = 0; i < LastStage; ++i) { 2522 // Create and insert the prolog basic block prior to the original loop 2523 // basic block. The original loop is removed later. 2524 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2525 PrologBBs.push_back(NewBB); 2526 MF.insert(BB->getIterator(), NewBB); 2527 NewBB->transferSuccessors(PredBB); 2528 PredBB->addSuccessor(NewBB); 2529 PredBB = NewBB; 2530 2531 // Generate instructions for each appropriate stage. Process instructions 2532 // in original program order. 2533 for (int StageNum = i; StageNum >= 0; --StageNum) { 2534 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2535 BBE = BB->getFirstTerminator(); 2536 BBI != BBE; ++BBI) { 2537 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2538 if (BBI->isPHI()) 2539 continue; 2540 MachineInstr *NewMI = 2541 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2542 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2543 VRMap); 2544 NewBB->push_back(NewMI); 2545 InstrMap[NewMI] = &*BBI; 2546 } 2547 } 2548 } 2549 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2550 LLVM_DEBUG({ 2551 dbgs() << "prolog:\n"; 2552 NewBB->dump(); 2553 }); 2554 } 2555 2556 PredBB->replaceSuccessor(BB, KernelBB); 2557 2558 // Check if we need to remove the branch from the preheader to the original 2559 // loop, and replace it with a branch to the new loop. 2560 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2561 if (numBranches) { 2562 SmallVector<MachineOperand, 0> Cond; 2563 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2564 } 2565 } 2566 2567 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2568 /// that were started in either the prolog or the kernel. We create a basic 2569 /// block for each stage that needs to complete. 2570 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2571 MachineBasicBlock *KernelBB, 2572 ValueMapTy *VRMap, 2573 MBBVectorTy &EpilogBBs, 2574 MBBVectorTy &PrologBBs) { 2575 // We need to change the branch from the kernel to the first epilog block, so 2576 // this call to analyze branch uses the kernel rather than the original BB. 2577 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2578 SmallVector<MachineOperand, 4> Cond; 2579 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2580 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2581 if (checkBranch) 2582 return; 2583 2584 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2585 if (*LoopExitI == KernelBB) 2586 ++LoopExitI; 2587 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2588 MachineBasicBlock *LoopExitBB = *LoopExitI; 2589 2590 MachineBasicBlock *PredBB = KernelBB; 2591 MachineBasicBlock *EpilogStart = LoopExitBB; 2592 InstrMapTy InstrMap; 2593 2594 // Generate a basic block for each stage, not including the last stage, 2595 // which was generated for the kernel. Each basic block may contain 2596 // instructions from multiple stages/iterations. 2597 int EpilogStage = LastStage + 1; 2598 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2599 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2600 EpilogBBs.push_back(NewBB); 2601 MF.insert(BB->getIterator(), NewBB); 2602 2603 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2604 NewBB->addSuccessor(LoopExitBB); 2605 2606 if (EpilogStart == LoopExitBB) 2607 EpilogStart = NewBB; 2608 2609 // Add instructions to the epilog depending on the current block. 2610 // Process instructions in original program order. 2611 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2612 for (auto &BBI : *BB) { 2613 if (BBI.isPHI()) 2614 continue; 2615 MachineInstr *In = &BBI; 2616 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2617 // Instructions with memoperands in the epilog are updated with 2618 // conservative values. 2619 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2620 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2621 NewBB->push_back(NewMI); 2622 InstrMap[NewMI] = In; 2623 } 2624 } 2625 } 2626 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2627 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2628 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2629 InstrMap, LastStage, EpilogStage, i == 1); 2630 PredBB = NewBB; 2631 2632 LLVM_DEBUG({ 2633 dbgs() << "epilog:\n"; 2634 NewBB->dump(); 2635 }); 2636 } 2637 2638 // Fix any Phi nodes in the loop exit block. 2639 for (MachineInstr &MI : *LoopExitBB) { 2640 if (!MI.isPHI()) 2641 break; 2642 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2643 MachineOperand &MO = MI.getOperand(i); 2644 if (MO.getMBB() == BB) 2645 MO.setMBB(PredBB); 2646 } 2647 } 2648 2649 // Create a branch to the new epilog from the kernel. 2650 // Remove the original branch and add a new branch to the epilog. 2651 TII->removeBranch(*KernelBB); 2652 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2653 // Add a branch to the loop exit. 2654 if (EpilogBBs.size() > 0) { 2655 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2656 SmallVector<MachineOperand, 4> Cond1; 2657 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2658 } 2659 } 2660 2661 /// Replace all uses of FromReg that appear outside the specified 2662 /// basic block with ToReg. 2663 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2664 MachineBasicBlock *MBB, 2665 MachineRegisterInfo &MRI, 2666 LiveIntervals &LIS) { 2667 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2668 E = MRI.use_end(); 2669 I != E;) { 2670 MachineOperand &O = *I; 2671 ++I; 2672 if (O.getParent()->getParent() != MBB) 2673 O.setReg(ToReg); 2674 } 2675 if (!LIS.hasInterval(ToReg)) 2676 LIS.createEmptyInterval(ToReg); 2677 } 2678 2679 /// Return true if the register has a use that occurs outside the 2680 /// specified loop. 2681 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2682 MachineRegisterInfo &MRI) { 2683 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2684 E = MRI.use_end(); 2685 I != E; ++I) 2686 if (I->getParent()->getParent() != BB) 2687 return true; 2688 return false; 2689 } 2690 2691 /// Generate Phis for the specific block in the generated pipelined code. 2692 /// This function looks at the Phis from the original code to guide the 2693 /// creation of new Phis. 2694 void SwingSchedulerDAG::generateExistingPhis( 2695 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2696 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2697 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2698 bool IsLast) { 2699 // Compute the stage number for the initial value of the Phi, which 2700 // comes from the prolog. The prolog to use depends on to which kernel/ 2701 // epilog that we're adding the Phi. 2702 unsigned PrologStage = 0; 2703 unsigned PrevStage = 0; 2704 bool InKernel = (LastStageNum == CurStageNum); 2705 if (InKernel) { 2706 PrologStage = LastStageNum - 1; 2707 PrevStage = CurStageNum; 2708 } else { 2709 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2710 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2711 } 2712 2713 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2714 BBE = BB->getFirstNonPHI(); 2715 BBI != BBE; ++BBI) { 2716 unsigned Def = BBI->getOperand(0).getReg(); 2717 2718 unsigned InitVal = 0; 2719 unsigned LoopVal = 0; 2720 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2721 2722 unsigned PhiOp1 = 0; 2723 // The Phi value from the loop body typically is defined in the loop, but 2724 // not always. So, we need to check if the value is defined in the loop. 2725 unsigned PhiOp2 = LoopVal; 2726 if (VRMap[LastStageNum].count(LoopVal)) 2727 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2728 2729 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2730 int LoopValStage = 2731 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2732 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2733 if (NumStages == 0) { 2734 // We don't need to generate a Phi anymore, but we need to rename any uses 2735 // of the Phi value. 2736 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2737 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2738 Def, InitVal, NewReg); 2739 if (VRMap[CurStageNum].count(LoopVal)) 2740 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2741 } 2742 // Adjust the number of Phis needed depending on the number of prologs left, 2743 // and the distance from where the Phi is first scheduled. The number of 2744 // Phis cannot exceed the number of prolog stages. Each stage can 2745 // potentially define two values. 2746 unsigned MaxPhis = PrologStage + 2; 2747 if (!InKernel && (int)PrologStage <= LoopValStage) 2748 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2749 unsigned NumPhis = std::min(NumStages, MaxPhis); 2750 2751 unsigned NewReg = 0; 2752 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2753 // In the epilog, we may need to look back one stage to get the correct 2754 // Phi name because the epilog and prolog blocks execute the same stage. 2755 // The correct name is from the previous block only when the Phi has 2756 // been completely scheduled prior to the epilog, and Phi value is not 2757 // needed in multiple stages. 2758 int StageDiff = 0; 2759 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2760 NumPhis == 1) 2761 StageDiff = 1; 2762 // Adjust the computations below when the phi and the loop definition 2763 // are scheduled in different stages. 2764 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2765 StageDiff = StageScheduled - LoopValStage; 2766 for (unsigned np = 0; np < NumPhis; ++np) { 2767 // If the Phi hasn't been scheduled, then use the initial Phi operand 2768 // value. Otherwise, use the scheduled version of the instruction. This 2769 // is a little complicated when a Phi references another Phi. 2770 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2771 PhiOp1 = InitVal; 2772 // Check if the Phi has already been scheduled in a prolog stage. 2773 else if (PrologStage >= AccessStage + StageDiff + np && 2774 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2775 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2776 // Check if the Phi has already been scheduled, but the loop intruction 2777 // is either another Phi, or doesn't occur in the loop. 2778 else if (PrologStage >= AccessStage + StageDiff + np) { 2779 // If the Phi references another Phi, we need to examine the other 2780 // Phi to get the correct value. 2781 PhiOp1 = LoopVal; 2782 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2783 int Indirects = 1; 2784 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2785 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2786 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2787 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2788 else 2789 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2790 InstOp1 = MRI.getVRegDef(PhiOp1); 2791 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2792 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2793 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2794 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2795 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2796 break; 2797 } 2798 ++Indirects; 2799 } 2800 } else 2801 PhiOp1 = InitVal; 2802 // If this references a generated Phi in the kernel, get the Phi operand 2803 // from the incoming block. 2804 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2805 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2806 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2807 2808 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2809 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2810 // In the epilog, a map lookup is needed to get the value from the kernel, 2811 // or previous epilog block. How is does this depends on if the 2812 // instruction is scheduled in the previous block. 2813 if (!InKernel) { 2814 int StageDiffAdj = 0; 2815 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2816 StageDiffAdj = StageScheduled - LoopValStage; 2817 // Use the loop value defined in the kernel, unless the kernel 2818 // contains the last definition of the Phi. 2819 if (np == 0 && PrevStage == LastStageNum && 2820 (StageScheduled != 0 || LoopValStage != 0) && 2821 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2822 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2823 // Use the value defined by the Phi. We add one because we switch 2824 // from looking at the loop value to the Phi definition. 2825 else if (np > 0 && PrevStage == LastStageNum && 2826 VRMap[PrevStage - np + 1].count(Def)) 2827 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2828 // Use the loop value defined in the kernel. 2829 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2830 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2831 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2832 // Use the value defined by the Phi, unless we're generating the first 2833 // epilog and the Phi refers to a Phi in a different stage. 2834 else if (VRMap[PrevStage - np].count(Def) && 2835 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2836 PhiOp2 = VRMap[PrevStage - np][Def]; 2837 } 2838 2839 // Check if we can reuse an existing Phi. This occurs when a Phi 2840 // references another Phi, and the other Phi is scheduled in an 2841 // earlier stage. We can try to reuse an existing Phi up until the last 2842 // stage of the current Phi. 2843 if (LoopDefIsPhi) { 2844 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2845 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2846 int StageDiff = (StageScheduled - LoopValStage); 2847 LVNumStages -= StageDiff; 2848 // Make sure the loop value Phi has been processed already. 2849 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2850 NewReg = PhiOp2; 2851 unsigned ReuseStage = CurStageNum; 2852 if (Schedule.isLoopCarried(this, *PhiInst)) 2853 ReuseStage -= LVNumStages; 2854 // Check if the Phi to reuse has been generated yet. If not, then 2855 // there is nothing to reuse. 2856 if (VRMap[ReuseStage - np].count(LoopVal)) { 2857 NewReg = VRMap[ReuseStage - np][LoopVal]; 2858 2859 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2860 &*BBI, Def, NewReg); 2861 // Update the map with the new Phi name. 2862 VRMap[CurStageNum - np][Def] = NewReg; 2863 PhiOp2 = NewReg; 2864 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2865 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2866 2867 if (IsLast && np == NumPhis - 1) 2868 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2869 continue; 2870 } 2871 } 2872 } 2873 if (InKernel && StageDiff > 0 && 2874 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2875 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2876 } 2877 2878 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2879 NewReg = MRI.createVirtualRegister(RC); 2880 2881 MachineInstrBuilder NewPhi = 2882 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2883 TII->get(TargetOpcode::PHI), NewReg); 2884 NewPhi.addReg(PhiOp1).addMBB(BB1); 2885 NewPhi.addReg(PhiOp2).addMBB(BB2); 2886 if (np == 0) 2887 InstrMap[NewPhi] = &*BBI; 2888 2889 // We define the Phis after creating the new pipelined code, so 2890 // we need to rename the Phi values in scheduled instructions. 2891 2892 unsigned PrevReg = 0; 2893 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2894 PrevReg = VRMap[PrevStage - np][LoopVal]; 2895 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2896 Def, NewReg, PrevReg); 2897 // If the Phi has been scheduled, use the new name for rewriting. 2898 if (VRMap[CurStageNum - np].count(Def)) { 2899 unsigned R = VRMap[CurStageNum - np][Def]; 2900 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2901 R, NewReg); 2902 } 2903 2904 // Check if we need to rename any uses that occurs after the loop. The 2905 // register to replace depends on whether the Phi is scheduled in the 2906 // epilog. 2907 if (IsLast && np == NumPhis - 1) 2908 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2909 2910 // In the kernel, a dependent Phi uses the value from this Phi. 2911 if (InKernel) 2912 PhiOp2 = NewReg; 2913 2914 // Update the map with the new Phi name. 2915 VRMap[CurStageNum - np][Def] = NewReg; 2916 } 2917 2918 while (NumPhis++ < NumStages) { 2919 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2920 &*BBI, Def, NewReg, 0); 2921 } 2922 2923 // Check if we need to rename a Phi that has been eliminated due to 2924 // scheduling. 2925 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2926 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2927 } 2928 } 2929 2930 /// Generate Phis for the specified block in the generated pipelined code. 2931 /// These are new Phis needed because the definition is scheduled after the 2932 /// use in the pipelined sequence. 2933 void SwingSchedulerDAG::generatePhis( 2934 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2935 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2936 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2937 bool IsLast) { 2938 // Compute the stage number that contains the initial Phi value, and 2939 // the Phi from the previous stage. 2940 unsigned PrologStage = 0; 2941 unsigned PrevStage = 0; 2942 unsigned StageDiff = CurStageNum - LastStageNum; 2943 bool InKernel = (StageDiff == 0); 2944 if (InKernel) { 2945 PrologStage = LastStageNum - 1; 2946 PrevStage = CurStageNum; 2947 } else { 2948 PrologStage = LastStageNum - StageDiff; 2949 PrevStage = LastStageNum + StageDiff - 1; 2950 } 2951 2952 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2953 BBE = BB->instr_end(); 2954 BBI != BBE; ++BBI) { 2955 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2956 MachineOperand &MO = BBI->getOperand(i); 2957 if (!MO.isReg() || !MO.isDef() || 2958 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2959 continue; 2960 2961 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2962 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2963 unsigned Def = MO.getReg(); 2964 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2965 // An instruction scheduled in stage 0 and is used after the loop 2966 // requires a phi in the epilog for the last definition from either 2967 // the kernel or prolog. 2968 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2969 hasUseAfterLoop(Def, BB, MRI)) 2970 NumPhis = 1; 2971 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2972 continue; 2973 2974 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2975 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2976 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2977 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2978 // The number of Phis can't exceed the number of prolog stages. The 2979 // prolog stage number is zero based. 2980 if (NumPhis > PrologStage + 1 - StageScheduled) 2981 NumPhis = PrologStage + 1 - StageScheduled; 2982 for (unsigned np = 0; np < NumPhis; ++np) { 2983 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2984 if (np <= PrologStage) 2985 PhiOp1 = VRMap[PrologStage - np][Def]; 2986 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2987 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2988 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2989 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2990 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2991 } 2992 if (!InKernel) 2993 PhiOp2 = VRMap[PrevStage - np][Def]; 2994 2995 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2996 unsigned NewReg = MRI.createVirtualRegister(RC); 2997 2998 MachineInstrBuilder NewPhi = 2999 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 3000 TII->get(TargetOpcode::PHI), NewReg); 3001 NewPhi.addReg(PhiOp1).addMBB(BB1); 3002 NewPhi.addReg(PhiOp2).addMBB(BB2); 3003 if (np == 0) 3004 InstrMap[NewPhi] = &*BBI; 3005 3006 // Rewrite uses and update the map. The actions depend upon whether 3007 // we generating code for the kernel or epilog blocks. 3008 if (InKernel) { 3009 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3010 &*BBI, PhiOp1, NewReg); 3011 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3012 &*BBI, PhiOp2, NewReg); 3013 3014 PhiOp2 = NewReg; 3015 VRMap[PrevStage - np - 1][Def] = NewReg; 3016 } else { 3017 VRMap[CurStageNum - np][Def] = NewReg; 3018 if (np == NumPhis - 1) 3019 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3020 &*BBI, Def, NewReg); 3021 } 3022 if (IsLast && np == NumPhis - 1) 3023 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 3024 } 3025 } 3026 } 3027 } 3028 3029 /// Remove instructions that generate values with no uses. 3030 /// Typically, these are induction variable operations that generate values 3031 /// used in the loop itself. A dead instruction has a definition with 3032 /// no uses, or uses that occur in the original loop only. 3033 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 3034 MBBVectorTy &EpilogBBs) { 3035 // For each epilog block, check that the value defined by each instruction 3036 // is used. If not, delete it. 3037 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 3038 MBE = EpilogBBs.rend(); 3039 MBB != MBE; ++MBB) 3040 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 3041 ME = (*MBB)->instr_rend(); 3042 MI != ME;) { 3043 // From DeadMachineInstructionElem. Don't delete inline assembly. 3044 if (MI->isInlineAsm()) { 3045 ++MI; 3046 continue; 3047 } 3048 bool SawStore = false; 3049 // Check if it's safe to remove the instruction due to side effects. 3050 // We can, and want to, remove Phis here. 3051 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 3052 ++MI; 3053 continue; 3054 } 3055 bool used = true; 3056 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 3057 MOE = MI->operands_end(); 3058 MOI != MOE; ++MOI) { 3059 if (!MOI->isReg() || !MOI->isDef()) 3060 continue; 3061 unsigned reg = MOI->getReg(); 3062 // Assume physical registers are used, unless they are marked dead. 3063 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 3064 used = !MOI->isDead(); 3065 if (used) 3066 break; 3067 continue; 3068 } 3069 unsigned realUses = 0; 3070 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 3071 EI = MRI.use_end(); 3072 UI != EI; ++UI) { 3073 // Check if there are any uses that occur only in the original 3074 // loop. If so, that's not a real use. 3075 if (UI->getParent()->getParent() != BB) { 3076 realUses++; 3077 used = true; 3078 break; 3079 } 3080 } 3081 if (realUses > 0) 3082 break; 3083 used = false; 3084 } 3085 if (!used) { 3086 LIS.RemoveMachineInstrFromMaps(*MI); 3087 MI++->eraseFromParent(); 3088 continue; 3089 } 3090 ++MI; 3091 } 3092 // In the kernel block, check if we can remove a Phi that generates a value 3093 // used in an instruction removed in the epilog block. 3094 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 3095 BBE = KernelBB->getFirstNonPHI(); 3096 BBI != BBE;) { 3097 MachineInstr *MI = &*BBI; 3098 ++BBI; 3099 unsigned reg = MI->getOperand(0).getReg(); 3100 if (MRI.use_begin(reg) == MRI.use_end()) { 3101 LIS.RemoveMachineInstrFromMaps(*MI); 3102 MI->eraseFromParent(); 3103 } 3104 } 3105 } 3106 3107 /// For loop carried definitions, we split the lifetime of a virtual register 3108 /// that has uses past the definition in the next iteration. A copy with a new 3109 /// virtual register is inserted before the definition, which helps with 3110 /// generating a better register assignment. 3111 /// 3112 /// v1 = phi(a, v2) v1 = phi(a, v2) 3113 /// v2 = phi(b, v3) v2 = phi(b, v3) 3114 /// v3 = .. v4 = copy v1 3115 /// .. = V1 v3 = .. 3116 /// .. = v4 3117 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 3118 MBBVectorTy &EpilogBBs, 3119 SMSchedule &Schedule) { 3120 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3121 for (auto &PHI : KernelBB->phis()) { 3122 unsigned Def = PHI.getOperand(0).getReg(); 3123 // Check for any Phi definition that used as an operand of another Phi 3124 // in the same block. 3125 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 3126 E = MRI.use_instr_end(); 3127 I != E; ++I) { 3128 if (I->isPHI() && I->getParent() == KernelBB) { 3129 // Get the loop carried definition. 3130 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 3131 if (!LCDef) 3132 continue; 3133 MachineInstr *MI = MRI.getVRegDef(LCDef); 3134 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 3135 continue; 3136 // Search through the rest of the block looking for uses of the Phi 3137 // definition. If one occurs, then split the lifetime. 3138 unsigned SplitReg = 0; 3139 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 3140 KernelBB->instr_end())) 3141 if (BBJ.readsRegister(Def)) { 3142 // We split the lifetime when we find the first use. 3143 if (SplitReg == 0) { 3144 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 3145 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 3146 TII->get(TargetOpcode::COPY), SplitReg) 3147 .addReg(Def); 3148 } 3149 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 3150 } 3151 if (!SplitReg) 3152 continue; 3153 // Search through each of the epilog blocks for any uses to be renamed. 3154 for (auto &Epilog : EpilogBBs) 3155 for (auto &I : *Epilog) 3156 if (I.readsRegister(Def)) 3157 I.substituteRegister(Def, SplitReg, 0, *TRI); 3158 break; 3159 } 3160 } 3161 } 3162 } 3163 3164 /// Remove the incoming block from the Phis in a basic block. 3165 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 3166 for (MachineInstr &MI : *BB) { 3167 if (!MI.isPHI()) 3168 break; 3169 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3170 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3171 MI.RemoveOperand(i + 1); 3172 MI.RemoveOperand(i); 3173 break; 3174 } 3175 } 3176 } 3177 3178 /// Create branches from each prolog basic block to the appropriate epilog 3179 /// block. These edges are needed if the loop ends before reaching the 3180 /// kernel. 3181 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3182 MachineBasicBlock *KernelBB, 3183 MBBVectorTy &EpilogBBs, 3184 SMSchedule &Schedule, ValueMapTy *VRMap) { 3185 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3186 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3187 MachineInstr *Cmp = Pass.LI.LoopCompare; 3188 MachineBasicBlock *LastPro = KernelBB; 3189 MachineBasicBlock *LastEpi = KernelBB; 3190 3191 // Start from the blocks connected to the kernel and work "out" 3192 // to the first prolog and the last epilog blocks. 3193 SmallVector<MachineInstr *, 4> PrevInsts; 3194 unsigned MaxIter = PrologBBs.size() - 1; 3195 unsigned LC = UINT_MAX; 3196 unsigned LCMin = UINT_MAX; 3197 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3198 // Add branches to the prolog that go to the corresponding 3199 // epilog, and the fall-thru prolog/kernel block. 3200 MachineBasicBlock *Prolog = PrologBBs[j]; 3201 MachineBasicBlock *Epilog = EpilogBBs[i]; 3202 // We've executed one iteration, so decrement the loop count and check for 3203 // the loop end. 3204 SmallVector<MachineOperand, 4> Cond; 3205 // Check if the LOOP0 has already been removed. If so, then there is no need 3206 // to reduce the trip count. 3207 if (LC != 0) 3208 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3209 MaxIter); 3210 3211 // Record the value of the first trip count, which is used to determine if 3212 // branches and blocks can be removed for constant trip counts. 3213 if (LCMin == UINT_MAX) 3214 LCMin = LC; 3215 3216 unsigned numAdded = 0; 3217 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3218 Prolog->addSuccessor(Epilog); 3219 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3220 } else if (j >= LCMin) { 3221 Prolog->addSuccessor(Epilog); 3222 Prolog->removeSuccessor(LastPro); 3223 LastEpi->removeSuccessor(Epilog); 3224 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3225 removePhis(Epilog, LastEpi); 3226 // Remove the blocks that are no longer referenced. 3227 if (LastPro != LastEpi) { 3228 LastEpi->clear(); 3229 LastEpi->eraseFromParent(); 3230 } 3231 LastPro->clear(); 3232 LastPro->eraseFromParent(); 3233 } else { 3234 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3235 removePhis(Epilog, Prolog); 3236 } 3237 LastPro = Prolog; 3238 LastEpi = Epilog; 3239 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3240 E = Prolog->instr_rend(); 3241 I != E && numAdded > 0; ++I, --numAdded) 3242 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3243 } 3244 } 3245 3246 /// Return true if we can compute the amount the instruction changes 3247 /// during each iteration. Set Delta to the amount of the change. 3248 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3249 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3250 MachineOperand *BaseOp; 3251 int64_t Offset; 3252 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 3253 return false; 3254 3255 if (!BaseOp->isReg()) 3256 return false; 3257 3258 unsigned BaseReg = BaseOp->getReg(); 3259 3260 MachineRegisterInfo &MRI = MF.getRegInfo(); 3261 // Check if there is a Phi. If so, get the definition in the loop. 3262 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3263 if (BaseDef && BaseDef->isPHI()) { 3264 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3265 BaseDef = MRI.getVRegDef(BaseReg); 3266 } 3267 if (!BaseDef) 3268 return false; 3269 3270 int D = 0; 3271 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3272 return false; 3273 3274 Delta = D; 3275 return true; 3276 } 3277 3278 /// Update the memory operand with a new offset when the pipeliner 3279 /// generates a new copy of the instruction that refers to a 3280 /// different memory location. 3281 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3282 MachineInstr &OldMI, unsigned Num) { 3283 if (Num == 0) 3284 return; 3285 // If the instruction has memory operands, then adjust the offset 3286 // when the instruction appears in different stages. 3287 if (NewMI.memoperands_empty()) 3288 return; 3289 SmallVector<MachineMemOperand *, 2> NewMMOs; 3290 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3291 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3292 (!MMO->getValue())) { 3293 NewMMOs.push_back(MMO); 3294 continue; 3295 } 3296 unsigned Delta; 3297 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 3298 int64_t AdjOffset = Delta * Num; 3299 NewMMOs.push_back( 3300 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 3301 } else { 3302 NewMMOs.push_back( 3303 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 3304 } 3305 } 3306 NewMI.setMemRefs(MF, NewMMOs); 3307 } 3308 3309 /// Clone the instruction for the new pipelined loop and update the 3310 /// memory operands, if needed. 3311 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3312 unsigned CurStageNum, 3313 unsigned InstStageNum) { 3314 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3315 // Check for tied operands in inline asm instructions. This should be handled 3316 // elsewhere, but I'm not sure of the best solution. 3317 if (OldMI->isInlineAsm()) 3318 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3319 const auto &MO = OldMI->getOperand(i); 3320 if (MO.isReg() && MO.isUse()) 3321 break; 3322 unsigned UseIdx; 3323 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3324 NewMI->tieOperands(i, UseIdx); 3325 } 3326 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3327 return NewMI; 3328 } 3329 3330 /// Clone the instruction for the new pipelined loop. If needed, this 3331 /// function updates the instruction using the values saved in the 3332 /// InstrChanges structure. 3333 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3334 unsigned CurStageNum, 3335 unsigned InstStageNum, 3336 SMSchedule &Schedule) { 3337 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3338 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3339 InstrChanges.find(getSUnit(OldMI)); 3340 if (It != InstrChanges.end()) { 3341 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3342 unsigned BasePos, OffsetPos; 3343 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3344 return nullptr; 3345 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3346 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3347 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3348 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3349 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3350 } 3351 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3352 return NewMI; 3353 } 3354 3355 /// Update the machine instruction with new virtual registers. This 3356 /// function may change the defintions and/or uses. 3357 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3358 unsigned CurStageNum, 3359 unsigned InstrStageNum, 3360 SMSchedule &Schedule, 3361 ValueMapTy *VRMap) { 3362 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3363 MachineOperand &MO = NewMI->getOperand(i); 3364 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3365 continue; 3366 unsigned reg = MO.getReg(); 3367 if (MO.isDef()) { 3368 // Create a new virtual register for the definition. 3369 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3370 unsigned NewReg = MRI.createVirtualRegister(RC); 3371 MO.setReg(NewReg); 3372 VRMap[CurStageNum][reg] = NewReg; 3373 if (LastDef) 3374 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3375 } else if (MO.isUse()) { 3376 MachineInstr *Def = MRI.getVRegDef(reg); 3377 // Compute the stage that contains the last definition for instruction. 3378 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3379 unsigned StageNum = CurStageNum; 3380 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3381 // Compute the difference in stages between the defintion and the use. 3382 unsigned StageDiff = (InstrStageNum - DefStageNum); 3383 // Make an adjustment to get the last definition. 3384 StageNum -= StageDiff; 3385 } 3386 if (VRMap[StageNum].count(reg)) 3387 MO.setReg(VRMap[StageNum][reg]); 3388 } 3389 } 3390 } 3391 3392 /// Return the instruction in the loop that defines the register. 3393 /// If the definition is a Phi, then follow the Phi operand to 3394 /// the instruction in the loop. 3395 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3396 SmallPtrSet<MachineInstr *, 8> Visited; 3397 MachineInstr *Def = MRI.getVRegDef(Reg); 3398 while (Def->isPHI()) { 3399 if (!Visited.insert(Def).second) 3400 break; 3401 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3402 if (Def->getOperand(i + 1).getMBB() == BB) { 3403 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3404 break; 3405 } 3406 } 3407 return Def; 3408 } 3409 3410 /// Return the new name for the value from the previous stage. 3411 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3412 unsigned LoopVal, unsigned LoopStage, 3413 ValueMapTy *VRMap, 3414 MachineBasicBlock *BB) { 3415 unsigned PrevVal = 0; 3416 if (StageNum > PhiStage) { 3417 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3418 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3419 // The name is defined in the previous stage. 3420 PrevVal = VRMap[StageNum - 1][LoopVal]; 3421 else if (VRMap[StageNum].count(LoopVal)) 3422 // The previous name is defined in the current stage when the instruction 3423 // order is swapped. 3424 PrevVal = VRMap[StageNum][LoopVal]; 3425 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3426 // The loop value hasn't yet been scheduled. 3427 PrevVal = LoopVal; 3428 else if (StageNum == PhiStage + 1) 3429 // The loop value is another phi, which has not been scheduled. 3430 PrevVal = getInitPhiReg(*LoopInst, BB); 3431 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3432 // The loop value is another phi, which has been scheduled. 3433 PrevVal = 3434 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3435 LoopStage, VRMap, BB); 3436 } 3437 return PrevVal; 3438 } 3439 3440 /// Rewrite the Phi values in the specified block to use the mappings 3441 /// from the initial operand. Once the Phi is scheduled, we switch 3442 /// to using the loop value instead of the Phi value, so those names 3443 /// do not need to be rewritten. 3444 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3445 unsigned StageNum, 3446 SMSchedule &Schedule, 3447 ValueMapTy *VRMap, 3448 InstrMapTy &InstrMap) { 3449 for (auto &PHI : BB->phis()) { 3450 unsigned InitVal = 0; 3451 unsigned LoopVal = 0; 3452 getPhiRegs(PHI, BB, InitVal, LoopVal); 3453 unsigned PhiDef = PHI.getOperand(0).getReg(); 3454 3455 unsigned PhiStage = 3456 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3457 unsigned LoopStage = 3458 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3459 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3460 if (NumPhis > StageNum) 3461 NumPhis = StageNum; 3462 for (unsigned np = 0; np <= NumPhis; ++np) { 3463 unsigned NewVal = 3464 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3465 if (!NewVal) 3466 NewVal = InitVal; 3467 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3468 PhiDef, NewVal); 3469 } 3470 } 3471 } 3472 3473 /// Rewrite a previously scheduled instruction to use the register value 3474 /// from the new instruction. Make sure the instruction occurs in the 3475 /// basic block, and we don't change the uses in the new instruction. 3476 void SwingSchedulerDAG::rewriteScheduledInstr( 3477 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3478 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3479 unsigned NewReg, unsigned PrevReg) { 3480 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3481 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3482 // Rewrite uses that have been scheduled already to use the new 3483 // Phi register. 3484 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3485 EI = MRI.use_end(); 3486 UI != EI;) { 3487 MachineOperand &UseOp = *UI; 3488 MachineInstr *UseMI = UseOp.getParent(); 3489 ++UI; 3490 if (UseMI->getParent() != BB) 3491 continue; 3492 if (UseMI->isPHI()) { 3493 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3494 continue; 3495 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3496 continue; 3497 } 3498 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3499 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3500 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3501 int StageSched = Schedule.stageScheduled(OrigMISU); 3502 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3503 unsigned ReplaceReg = 0; 3504 // This is the stage for the scheduled instruction. 3505 if (StagePhi == StageSched && Phi->isPHI()) { 3506 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3507 if (PrevReg && InProlog) 3508 ReplaceReg = PrevReg; 3509 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3510 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3511 ReplaceReg = PrevReg; 3512 else 3513 ReplaceReg = NewReg; 3514 } 3515 // The scheduled instruction occurs before the scheduled Phi, and the 3516 // Phi is not loop carried. 3517 if (!InProlog && StagePhi + 1 == StageSched && 3518 !Schedule.isLoopCarried(this, *Phi)) 3519 ReplaceReg = NewReg; 3520 if (StagePhi > StageSched && Phi->isPHI()) 3521 ReplaceReg = NewReg; 3522 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3523 ReplaceReg = NewReg; 3524 if (ReplaceReg) { 3525 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3526 UseOp.setReg(ReplaceReg); 3527 } 3528 } 3529 } 3530 3531 /// Check if we can change the instruction to use an offset value from the 3532 /// previous iteration. If so, return true and set the base and offset values 3533 /// so that we can rewrite the load, if necessary. 3534 /// v1 = Phi(v0, v3) 3535 /// v2 = load v1, 0 3536 /// v3 = post_store v1, 4, x 3537 /// This function enables the load to be rewritten as v2 = load v3, 4. 3538 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3539 unsigned &BasePos, 3540 unsigned &OffsetPos, 3541 unsigned &NewBase, 3542 int64_t &Offset) { 3543 // Get the load instruction. 3544 if (TII->isPostIncrement(*MI)) 3545 return false; 3546 unsigned BasePosLd, OffsetPosLd; 3547 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3548 return false; 3549 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3550 3551 // Look for the Phi instruction. 3552 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3553 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3554 if (!Phi || !Phi->isPHI()) 3555 return false; 3556 // Get the register defined in the loop block. 3557 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3558 if (!PrevReg) 3559 return false; 3560 3561 // Check for the post-increment load/store instruction. 3562 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3563 if (!PrevDef || PrevDef == MI) 3564 return false; 3565 3566 if (!TII->isPostIncrement(*PrevDef)) 3567 return false; 3568 3569 unsigned BasePos1 = 0, OffsetPos1 = 0; 3570 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3571 return false; 3572 3573 // Make sure that the instructions do not access the same memory location in 3574 // the next iteration. 3575 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3576 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3577 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3578 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3579 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3580 MF.DeleteMachineInstr(NewMI); 3581 if (!Disjoint) 3582 return false; 3583 3584 // Set the return value once we determine that we return true. 3585 BasePos = BasePosLd; 3586 OffsetPos = OffsetPosLd; 3587 NewBase = PrevReg; 3588 Offset = StoreOffset; 3589 return true; 3590 } 3591 3592 /// Apply changes to the instruction if needed. The changes are need 3593 /// to improve the scheduling and depend up on the final schedule. 3594 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3595 SMSchedule &Schedule) { 3596 SUnit *SU = getSUnit(MI); 3597 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3598 InstrChanges.find(SU); 3599 if (It != InstrChanges.end()) { 3600 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3601 unsigned BasePos, OffsetPos; 3602 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3603 return; 3604 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3605 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3606 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3607 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3608 int BaseStageNum = Schedule.stageScheduled(SU); 3609 int BaseCycleNum = Schedule.cycleScheduled(SU); 3610 if (BaseStageNum < DefStageNum) { 3611 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3612 int OffsetDiff = DefStageNum - BaseStageNum; 3613 if (DefCycleNum < BaseCycleNum) { 3614 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3615 if (OffsetDiff > 0) 3616 --OffsetDiff; 3617 } 3618 int64_t NewOffset = 3619 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3620 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3621 SU->setInstr(NewMI); 3622 MISUnitMap[NewMI] = SU; 3623 NewMIs.insert(NewMI); 3624 } 3625 } 3626 } 3627 3628 /// Return true for an order or output dependence that is loop carried 3629 /// potentially. A dependence is loop carried if the destination defines a valu 3630 /// that may be used or defined by the source in a subsequent iteration. 3631 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3632 bool isSucc) { 3633 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3634 Dep.isArtificial()) 3635 return false; 3636 3637 if (!SwpPruneLoopCarried) 3638 return true; 3639 3640 if (Dep.getKind() == SDep::Output) 3641 return true; 3642 3643 MachineInstr *SI = Source->getInstr(); 3644 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3645 if (!isSucc) 3646 std::swap(SI, DI); 3647 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3648 3649 // Assume ordered loads and stores may have a loop carried dependence. 3650 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3651 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3652 return true; 3653 3654 // Only chain dependences between a load and store can be loop carried. 3655 if (!DI->mayStore() || !SI->mayLoad()) 3656 return false; 3657 3658 unsigned DeltaS, DeltaD; 3659 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3660 return true; 3661 3662 MachineOperand *BaseOpS, *BaseOpD; 3663 int64_t OffsetS, OffsetD; 3664 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3665 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3666 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3667 return true; 3668 3669 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3670 return true; 3671 3672 // Check that the base register is incremented by a constant value for each 3673 // iteration. 3674 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3675 if (!Def || !Def->isPHI()) 3676 return true; 3677 unsigned InitVal = 0; 3678 unsigned LoopVal = 0; 3679 getPhiRegs(*Def, BB, InitVal, LoopVal); 3680 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3681 int D = 0; 3682 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3683 return true; 3684 3685 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3686 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3687 3688 // This is the main test, which checks the offset values and the loop 3689 // increment value to determine if the accesses may be loop carried. 3690 if (OffsetS >= OffsetD) 3691 return OffsetS + AccessSizeS > DeltaS; 3692 else 3693 return OffsetD + AccessSizeD > DeltaD; 3694 3695 return true; 3696 } 3697 3698 void SwingSchedulerDAG::postprocessDAG() { 3699 for (auto &M : Mutations) 3700 M->apply(this); 3701 } 3702 3703 /// Try to schedule the node at the specified StartCycle and continue 3704 /// until the node is schedule or the EndCycle is reached. This function 3705 /// returns true if the node is scheduled. This routine may search either 3706 /// forward or backward for a place to insert the instruction based upon 3707 /// the relative values of StartCycle and EndCycle. 3708 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3709 bool forward = true; 3710 if (StartCycle > EndCycle) 3711 forward = false; 3712 3713 // The terminating condition depends on the direction. 3714 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3715 for (int curCycle = StartCycle; curCycle != termCycle; 3716 forward ? ++curCycle : --curCycle) { 3717 3718 // Add the already scheduled instructions at the specified cycle to the DFA. 3719 Resources->clearResources(); 3720 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3721 checkCycle <= LastCycle; checkCycle += II) { 3722 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3723 3724 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3725 E = cycleInstrs.end(); 3726 I != E; ++I) { 3727 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3728 continue; 3729 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3730 "These instructions have already been scheduled."); 3731 Resources->reserveResources(*(*I)->getInstr()); 3732 } 3733 } 3734 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3735 Resources->canReserveResources(*SU->getInstr())) { 3736 LLVM_DEBUG({ 3737 dbgs() << "\tinsert at cycle " << curCycle << " "; 3738 SU->getInstr()->dump(); 3739 }); 3740 3741 ScheduledInstrs[curCycle].push_back(SU); 3742 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3743 if (curCycle > LastCycle) 3744 LastCycle = curCycle; 3745 if (curCycle < FirstCycle) 3746 FirstCycle = curCycle; 3747 return true; 3748 } 3749 LLVM_DEBUG({ 3750 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3751 SU->getInstr()->dump(); 3752 }); 3753 } 3754 return false; 3755 } 3756 3757 // Return the cycle of the earliest scheduled instruction in the chain. 3758 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3759 SmallPtrSet<SUnit *, 8> Visited; 3760 SmallVector<SDep, 8> Worklist; 3761 Worklist.push_back(Dep); 3762 int EarlyCycle = INT_MAX; 3763 while (!Worklist.empty()) { 3764 const SDep &Cur = Worklist.pop_back_val(); 3765 SUnit *PrevSU = Cur.getSUnit(); 3766 if (Visited.count(PrevSU)) 3767 continue; 3768 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3769 if (it == InstrToCycle.end()) 3770 continue; 3771 EarlyCycle = std::min(EarlyCycle, it->second); 3772 for (const auto &PI : PrevSU->Preds) 3773 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3774 Worklist.push_back(PI); 3775 Visited.insert(PrevSU); 3776 } 3777 return EarlyCycle; 3778 } 3779 3780 // Return the cycle of the latest scheduled instruction in the chain. 3781 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3782 SmallPtrSet<SUnit *, 8> Visited; 3783 SmallVector<SDep, 8> Worklist; 3784 Worklist.push_back(Dep); 3785 int LateCycle = INT_MIN; 3786 while (!Worklist.empty()) { 3787 const SDep &Cur = Worklist.pop_back_val(); 3788 SUnit *SuccSU = Cur.getSUnit(); 3789 if (Visited.count(SuccSU)) 3790 continue; 3791 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3792 if (it == InstrToCycle.end()) 3793 continue; 3794 LateCycle = std::max(LateCycle, it->second); 3795 for (const auto &SI : SuccSU->Succs) 3796 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3797 Worklist.push_back(SI); 3798 Visited.insert(SuccSU); 3799 } 3800 return LateCycle; 3801 } 3802 3803 /// If an instruction has a use that spans multiple iterations, then 3804 /// return true. These instructions are characterized by having a back-ege 3805 /// to a Phi, which contains a reference to another Phi. 3806 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3807 for (auto &P : SU->Preds) 3808 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3809 for (auto &S : P.getSUnit()->Succs) 3810 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3811 return P.getSUnit(); 3812 return nullptr; 3813 } 3814 3815 /// Compute the scheduling start slot for the instruction. The start slot 3816 /// depends on any predecessor or successor nodes scheduled already. 3817 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3818 int *MinEnd, int *MaxStart, int II, 3819 SwingSchedulerDAG *DAG) { 3820 // Iterate over each instruction that has been scheduled already. The start 3821 // slot computation depends on whether the previously scheduled instruction 3822 // is a predecessor or successor of the specified instruction. 3823 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3824 3825 // Iterate over each instruction in the current cycle. 3826 for (SUnit *I : getInstructions(cycle)) { 3827 // Because we're processing a DAG for the dependences, we recognize 3828 // the back-edge in recurrences by anti dependences. 3829 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3830 const SDep &Dep = SU->Preds[i]; 3831 if (Dep.getSUnit() == I) { 3832 if (!DAG->isBackedge(SU, Dep)) { 3833 int EarlyStart = cycle + Dep.getLatency() - 3834 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3835 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3836 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3837 int End = earliestCycleInChain(Dep) + (II - 1); 3838 *MinEnd = std::min(*MinEnd, End); 3839 } 3840 } else { 3841 int LateStart = cycle - Dep.getLatency() + 3842 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3843 *MinLateStart = std::min(*MinLateStart, LateStart); 3844 } 3845 } 3846 // For instruction that requires multiple iterations, make sure that 3847 // the dependent instruction is not scheduled past the definition. 3848 SUnit *BE = multipleIterations(I, DAG); 3849 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3850 !SU->isPred(I)) 3851 *MinLateStart = std::min(*MinLateStart, cycle); 3852 } 3853 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3854 if (SU->Succs[i].getSUnit() == I) { 3855 const SDep &Dep = SU->Succs[i]; 3856 if (!DAG->isBackedge(SU, Dep)) { 3857 int LateStart = cycle - Dep.getLatency() + 3858 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3859 *MinLateStart = std::min(*MinLateStart, LateStart); 3860 if (DAG->isLoopCarriedDep(SU, Dep)) { 3861 int Start = latestCycleInChain(Dep) + 1 - II; 3862 *MaxStart = std::max(*MaxStart, Start); 3863 } 3864 } else { 3865 int EarlyStart = cycle + Dep.getLatency() - 3866 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3867 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3868 } 3869 } 3870 } 3871 } 3872 } 3873 } 3874 3875 /// Order the instructions within a cycle so that the definitions occur 3876 /// before the uses. Returns true if the instruction is added to the start 3877 /// of the list, or false if added to the end. 3878 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3879 std::deque<SUnit *> &Insts) { 3880 MachineInstr *MI = SU->getInstr(); 3881 bool OrderBeforeUse = false; 3882 bool OrderAfterDef = false; 3883 bool OrderBeforeDef = false; 3884 unsigned MoveDef = 0; 3885 unsigned MoveUse = 0; 3886 int StageInst1 = stageScheduled(SU); 3887 3888 unsigned Pos = 0; 3889 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3890 ++I, ++Pos) { 3891 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3892 MachineOperand &MO = MI->getOperand(i); 3893 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3894 continue; 3895 3896 unsigned Reg = MO.getReg(); 3897 unsigned BasePos, OffsetPos; 3898 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3899 if (MI->getOperand(BasePos).getReg() == Reg) 3900 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3901 Reg = NewReg; 3902 bool Reads, Writes; 3903 std::tie(Reads, Writes) = 3904 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3905 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3906 OrderBeforeUse = true; 3907 if (MoveUse == 0) 3908 MoveUse = Pos; 3909 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3910 // Add the instruction after the scheduled instruction. 3911 OrderAfterDef = true; 3912 MoveDef = Pos; 3913 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3914 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3915 OrderBeforeUse = true; 3916 if (MoveUse == 0) 3917 MoveUse = Pos; 3918 } else { 3919 OrderAfterDef = true; 3920 MoveDef = Pos; 3921 } 3922 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3923 OrderBeforeUse = true; 3924 if (MoveUse == 0) 3925 MoveUse = Pos; 3926 if (MoveUse != 0) { 3927 OrderAfterDef = true; 3928 MoveDef = Pos - 1; 3929 } 3930 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3931 // Add the instruction before the scheduled instruction. 3932 OrderBeforeUse = true; 3933 if (MoveUse == 0) 3934 MoveUse = Pos; 3935 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3936 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3937 if (MoveUse == 0) { 3938 OrderBeforeDef = true; 3939 MoveUse = Pos; 3940 } 3941 } 3942 } 3943 // Check for order dependences between instructions. Make sure the source 3944 // is ordered before the destination. 3945 for (auto &S : SU->Succs) { 3946 if (S.getSUnit() != *I) 3947 continue; 3948 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3949 OrderBeforeUse = true; 3950 if (Pos < MoveUse) 3951 MoveUse = Pos; 3952 } 3953 } 3954 for (auto &P : SU->Preds) { 3955 if (P.getSUnit() != *I) 3956 continue; 3957 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3958 OrderAfterDef = true; 3959 MoveDef = Pos; 3960 } 3961 } 3962 } 3963 3964 // A circular dependence. 3965 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3966 OrderBeforeUse = false; 3967 3968 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3969 // to a loop-carried dependence. 3970 if (OrderBeforeDef) 3971 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3972 3973 // The uncommon case when the instruction order needs to be updated because 3974 // there is both a use and def. 3975 if (OrderBeforeUse && OrderAfterDef) { 3976 SUnit *UseSU = Insts.at(MoveUse); 3977 SUnit *DefSU = Insts.at(MoveDef); 3978 if (MoveUse > MoveDef) { 3979 Insts.erase(Insts.begin() + MoveUse); 3980 Insts.erase(Insts.begin() + MoveDef); 3981 } else { 3982 Insts.erase(Insts.begin() + MoveDef); 3983 Insts.erase(Insts.begin() + MoveUse); 3984 } 3985 orderDependence(SSD, UseSU, Insts); 3986 orderDependence(SSD, SU, Insts); 3987 orderDependence(SSD, DefSU, Insts); 3988 return; 3989 } 3990 // Put the new instruction first if there is a use in the list. Otherwise, 3991 // put it at the end of the list. 3992 if (OrderBeforeUse) 3993 Insts.push_front(SU); 3994 else 3995 Insts.push_back(SU); 3996 } 3997 3998 /// Return true if the scheduled Phi has a loop carried operand. 3999 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 4000 if (!Phi.isPHI()) 4001 return false; 4002 assert(Phi.isPHI() && "Expecting a Phi."); 4003 SUnit *DefSU = SSD->getSUnit(&Phi); 4004 unsigned DefCycle = cycleScheduled(DefSU); 4005 int DefStage = stageScheduled(DefSU); 4006 4007 unsigned InitVal = 0; 4008 unsigned LoopVal = 0; 4009 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 4010 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 4011 if (!UseSU) 4012 return true; 4013 if (UseSU->getInstr()->isPHI()) 4014 return true; 4015 unsigned LoopCycle = cycleScheduled(UseSU); 4016 int LoopStage = stageScheduled(UseSU); 4017 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 4018 } 4019 4020 /// Return true if the instruction is a definition that is loop carried 4021 /// and defines the use on the next iteration. 4022 /// v1 = phi(v2, v3) 4023 /// (Def) v3 = op v1 4024 /// (MO) = v1 4025 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 4026 /// register. 4027 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 4028 MachineInstr *Def, MachineOperand &MO) { 4029 if (!MO.isReg()) 4030 return false; 4031 if (Def->isPHI()) 4032 return false; 4033 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 4034 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 4035 return false; 4036 if (!isLoopCarried(SSD, *Phi)) 4037 return false; 4038 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 4039 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 4040 MachineOperand &DMO = Def->getOperand(i); 4041 if (!DMO.isReg() || !DMO.isDef()) 4042 continue; 4043 if (DMO.getReg() == LoopReg) 4044 return true; 4045 } 4046 return false; 4047 } 4048 4049 // Check if the generated schedule is valid. This function checks if 4050 // an instruction that uses a physical register is scheduled in a 4051 // different stage than the definition. The pipeliner does not handle 4052 // physical register values that may cross a basic block boundary. 4053 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 4054 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 4055 SUnit &SU = SSD->SUnits[i]; 4056 if (!SU.hasPhysRegDefs) 4057 continue; 4058 int StageDef = stageScheduled(&SU); 4059 assert(StageDef != -1 && "Instruction should have been scheduled."); 4060 for (auto &SI : SU.Succs) 4061 if (SI.isAssignedRegDep()) 4062 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 4063 if (stageScheduled(SI.getSUnit()) != StageDef) 4064 return false; 4065 } 4066 return true; 4067 } 4068 4069 /// A property of the node order in swing-modulo-scheduling is 4070 /// that for nodes outside circuits the following holds: 4071 /// none of them is scheduled after both a successor and a 4072 /// predecessor. 4073 /// The method below checks whether the property is met. 4074 /// If not, debug information is printed and statistics information updated. 4075 /// Note that we do not use an assert statement. 4076 /// The reason is that although an invalid node oder may prevent 4077 /// the pipeliner from finding a pipelined schedule for arbitrary II, 4078 /// it does not lead to the generation of incorrect code. 4079 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 4080 4081 // a sorted vector that maps each SUnit to its index in the NodeOrder 4082 typedef std::pair<SUnit *, unsigned> UnitIndex; 4083 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 4084 4085 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 4086 Indices.push_back(std::make_pair(NodeOrder[i], i)); 4087 4088 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 4089 return std::get<0>(i1) < std::get<0>(i2); 4090 }; 4091 4092 // sort, so that we can perform a binary search 4093 llvm::sort(Indices, CompareKey); 4094 4095 bool Valid = true; 4096 (void)Valid; 4097 // for each SUnit in the NodeOrder, check whether 4098 // it appears after both a successor and a predecessor 4099 // of the SUnit. If this is the case, and the SUnit 4100 // is not part of circuit, then the NodeOrder is not 4101 // valid. 4102 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 4103 SUnit *SU = NodeOrder[i]; 4104 unsigned Index = i; 4105 4106 bool PredBefore = false; 4107 bool SuccBefore = false; 4108 4109 SUnit *Succ; 4110 SUnit *Pred; 4111 (void)Succ; 4112 (void)Pred; 4113 4114 for (SDep &PredEdge : SU->Preds) { 4115 SUnit *PredSU = PredEdge.getSUnit(); 4116 unsigned PredIndex = 4117 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4118 std::make_pair(PredSU, 0), CompareKey)); 4119 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 4120 PredBefore = true; 4121 Pred = PredSU; 4122 break; 4123 } 4124 } 4125 4126 for (SDep &SuccEdge : SU->Succs) { 4127 SUnit *SuccSU = SuccEdge.getSUnit(); 4128 unsigned SuccIndex = 4129 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4130 std::make_pair(SuccSU, 0), CompareKey)); 4131 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 4132 SuccBefore = true; 4133 Succ = SuccSU; 4134 break; 4135 } 4136 } 4137 4138 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 4139 // instructions in circuits are allowed to be scheduled 4140 // after both a successor and predecessor. 4141 bool InCircuit = std::any_of( 4142 Circuits.begin(), Circuits.end(), 4143 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 4144 if (InCircuit) 4145 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 4146 else { 4147 Valid = false; 4148 NumNodeOrderIssues++; 4149 LLVM_DEBUG(dbgs() << "Predecessor ";); 4150 } 4151 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 4152 << " are scheduled before node " << SU->NodeNum 4153 << "\n";); 4154 } 4155 } 4156 4157 LLVM_DEBUG({ 4158 if (!Valid) 4159 dbgs() << "Invalid node order found!\n"; 4160 }); 4161 } 4162 4163 /// Attempt to fix the degenerate cases when the instruction serialization 4164 /// causes the register lifetimes to overlap. For example, 4165 /// p' = store_pi(p, b) 4166 /// = load p, offset 4167 /// In this case p and p' overlap, which means that two registers are needed. 4168 /// Instead, this function changes the load to use p' and updates the offset. 4169 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 4170 unsigned OverlapReg = 0; 4171 unsigned NewBaseReg = 0; 4172 for (SUnit *SU : Instrs) { 4173 MachineInstr *MI = SU->getInstr(); 4174 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4175 const MachineOperand &MO = MI->getOperand(i); 4176 // Look for an instruction that uses p. The instruction occurs in the 4177 // same cycle but occurs later in the serialized order. 4178 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4179 // Check that the instruction appears in the InstrChanges structure, 4180 // which contains instructions that can have the offset updated. 4181 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4182 InstrChanges.find(SU); 4183 if (It != InstrChanges.end()) { 4184 unsigned BasePos, OffsetPos; 4185 // Update the base register and adjust the offset. 4186 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4187 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4188 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4189 int64_t NewOffset = 4190 MI->getOperand(OffsetPos).getImm() - It->second.second; 4191 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4192 SU->setInstr(NewMI); 4193 MISUnitMap[NewMI] = SU; 4194 NewMIs.insert(NewMI); 4195 } 4196 } 4197 OverlapReg = 0; 4198 NewBaseReg = 0; 4199 break; 4200 } 4201 // Look for an instruction of the form p' = op(p), which uses and defines 4202 // two virtual registers that get allocated to the same physical register. 4203 unsigned TiedUseIdx = 0; 4204 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4205 // OverlapReg is p in the example above. 4206 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4207 // NewBaseReg is p' in the example above. 4208 NewBaseReg = MI->getOperand(i).getReg(); 4209 break; 4210 } 4211 } 4212 } 4213 } 4214 4215 /// After the schedule has been formed, call this function to combine 4216 /// the instructions from the different stages/cycles. That is, this 4217 /// function creates a schedule that represents a single iteration. 4218 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4219 // Move all instructions to the first stage from later stages. 4220 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4221 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4222 ++stage) { 4223 std::deque<SUnit *> &cycleInstrs = 4224 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4225 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4226 E = cycleInstrs.rend(); 4227 I != E; ++I) 4228 ScheduledInstrs[cycle].push_front(*I); 4229 } 4230 } 4231 // Iterate over the definitions in each instruction, and compute the 4232 // stage difference for each use. Keep the maximum value. 4233 for (auto &I : InstrToCycle) { 4234 int DefStage = stageScheduled(I.first); 4235 MachineInstr *MI = I.first->getInstr(); 4236 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4237 MachineOperand &Op = MI->getOperand(i); 4238 if (!Op.isReg() || !Op.isDef()) 4239 continue; 4240 4241 unsigned Reg = Op.getReg(); 4242 unsigned MaxDiff = 0; 4243 bool PhiIsSwapped = false; 4244 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4245 EI = MRI.use_end(); 4246 UI != EI; ++UI) { 4247 MachineOperand &UseOp = *UI; 4248 MachineInstr *UseMI = UseOp.getParent(); 4249 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4250 int UseStage = stageScheduled(SUnitUse); 4251 unsigned Diff = 0; 4252 if (UseStage != -1 && UseStage >= DefStage) 4253 Diff = UseStage - DefStage; 4254 if (MI->isPHI()) { 4255 if (isLoopCarried(SSD, *MI)) 4256 ++Diff; 4257 else 4258 PhiIsSwapped = true; 4259 } 4260 MaxDiff = std::max(Diff, MaxDiff); 4261 } 4262 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4263 } 4264 } 4265 4266 // Erase all the elements in the later stages. Only one iteration should 4267 // remain in the scheduled list, and it contains all the instructions. 4268 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4269 ScheduledInstrs.erase(cycle); 4270 4271 // Change the registers in instruction as specified in the InstrChanges 4272 // map. We need to use the new registers to create the correct order. 4273 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4274 SUnit *SU = &SSD->SUnits[i]; 4275 SSD->applyInstrChange(SU->getInstr(), *this); 4276 } 4277 4278 // Reorder the instructions in each cycle to fix and improve the 4279 // generated code. 4280 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4281 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4282 std::deque<SUnit *> newOrderPhi; 4283 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4284 SUnit *SU = cycleInstrs[i]; 4285 if (SU->getInstr()->isPHI()) 4286 newOrderPhi.push_back(SU); 4287 } 4288 std::deque<SUnit *> newOrderI; 4289 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4290 SUnit *SU = cycleInstrs[i]; 4291 if (!SU->getInstr()->isPHI()) 4292 orderDependence(SSD, SU, newOrderI); 4293 } 4294 // Replace the old order with the new order. 4295 cycleInstrs.swap(newOrderPhi); 4296 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4297 SSD->fixupRegisterOverlaps(cycleInstrs); 4298 } 4299 4300 LLVM_DEBUG(dump();); 4301 } 4302 4303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4304 /// Print the schedule information to the given output. 4305 void SMSchedule::print(raw_ostream &os) const { 4306 // Iterate over each cycle. 4307 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4308 // Iterate over each instruction in the cycle. 4309 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4310 for (SUnit *CI : cycleInstrs->second) { 4311 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4312 os << "(" << CI->NodeNum << ") "; 4313 CI->getInstr()->print(os); 4314 os << "\n"; 4315 } 4316 } 4317 } 4318 4319 /// Utility function used for debugging to print the schedule. 4320 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4321 #endif 4322