1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/SetOperations.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/iterator_range.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/MemoryLocation.h" 47 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/CodeGen/DFAPacketizer.h" 50 #include "llvm/CodeGen/LiveIntervals.h" 51 #include "llvm/CodeGen/MachineBasicBlock.h" 52 #include "llvm/CodeGen/MachineDominators.h" 53 #include "llvm/CodeGen/MachineFunction.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstr.h" 56 #include "llvm/CodeGen/MachineInstrBuilder.h" 57 #include "llvm/CodeGen/MachineLoopInfo.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineOperand.h" 60 #include "llvm/CodeGen/MachineRegisterInfo.h" 61 #include "llvm/CodeGen/ModuloSchedule.h" 62 #include "llvm/CodeGen/RegisterPressure.h" 63 #include "llvm/CodeGen/ScheduleDAG.h" 64 #include "llvm/CodeGen/ScheduleDAGMutation.h" 65 #include "llvm/CodeGen/TargetOpcodes.h" 66 #include "llvm/CodeGen/TargetRegisterInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/Config/llvm-config.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 #include "llvm/MC/MCInstrItineraries.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <deque> 86 #include <functional> 87 #include <iterator> 88 #include <map> 89 #include <memory> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "pipeliner" 97 98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 99 STATISTIC(NumPipelined, "Number of loops software pipelined"); 100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 109 110 /// A command line option to turn software pipelining on or off. 111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, 150 cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 172 cl::init(true), 173 cl::desc("Enable CopyToPhi DAG Mutation")); 174 175 } // end namespace llvm 176 177 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 178 char MachinePipeliner::ID = 0; 179 #ifndef NDEBUG 180 int MachinePipeliner::NumTries = 0; 181 #endif 182 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 183 184 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 185 "Modulo Software Pipelining", false, false) 186 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 189 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 190 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 191 "Modulo Software Pipelining", false, false) 192 193 /// The "main" function for implementing Swing Modulo Scheduling. 194 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 195 if (skipFunction(mf.getFunction())) 196 return false; 197 198 if (!EnableSWP) 199 return false; 200 201 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 202 !EnableSWPOptSize.getPosition()) 203 return false; 204 205 if (!mf.getSubtarget().enableMachinePipeliner()) 206 return false; 207 208 // Cannot pipeline loops without instruction itineraries if we are using 209 // DFA for the pipeliner. 210 if (mf.getSubtarget().useDFAforSMS() && 211 (!mf.getSubtarget().getInstrItineraryData() || 212 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 213 return false; 214 215 MF = &mf; 216 MLI = &getAnalysis<MachineLoopInfo>(); 217 MDT = &getAnalysis<MachineDominatorTree>(); 218 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 219 TII = MF->getSubtarget().getInstrInfo(); 220 RegClassInfo.runOnMachineFunction(*MF); 221 222 for (auto &L : *MLI) 223 scheduleLoop(*L); 224 225 return false; 226 } 227 228 /// Attempt to perform the SMS algorithm on the specified loop. This function is 229 /// the main entry point for the algorithm. The function identifies candidate 230 /// loops, calculates the minimum initiation interval, and attempts to schedule 231 /// the loop. 232 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 233 bool Changed = false; 234 for (auto &InnerLoop : L) 235 Changed |= scheduleLoop(*InnerLoop); 236 237 #ifndef NDEBUG 238 // Stop trying after reaching the limit (if any). 239 int Limit = SwpLoopLimit; 240 if (Limit >= 0) { 241 if (NumTries >= SwpLoopLimit) 242 return Changed; 243 NumTries++; 244 } 245 #endif 246 247 setPragmaPipelineOptions(L); 248 if (!canPipelineLoop(L)) { 249 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 250 ORE->emit([&]() { 251 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 252 L.getStartLoc(), L.getHeader()) 253 << "Failed to pipeline loop"; 254 }); 255 256 LI.LoopPipelinerInfo.reset(); 257 return Changed; 258 } 259 260 ++NumTrytoPipeline; 261 262 Changed = swingModuloScheduler(L); 263 264 LI.LoopPipelinerInfo.reset(); 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 II_setByPragma = 0; 272 273 MachineBasicBlock *LBLK = L.getTopBlock(); 274 275 if (LBLK == nullptr) 276 return; 277 278 const BasicBlock *BBLK = LBLK->getBasicBlock(); 279 if (BBLK == nullptr) 280 return; 281 282 const Instruction *TI = BBLK->getTerminator(); 283 if (TI == nullptr) 284 return; 285 286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 287 if (LoopID == nullptr) 288 return; 289 290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 291 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 292 293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 295 296 if (MD == nullptr) 297 continue; 298 299 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 300 301 if (S == nullptr) 302 continue; 303 304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 305 assert(MD->getNumOperands() == 2 && 306 "Pipeline initiation interval hint metadata should have two operands."); 307 II_setByPragma = 308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 310 } else if (S->getString() == "llvm.loop.pipeline.disable") { 311 disabledByPragma = true; 312 } 313 } 314 } 315 316 /// Return true if the loop can be software pipelined. The algorithm is 317 /// restricted to loops with a single basic block. Make sure that the 318 /// branch in the loop can be analyzed. 319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 320 if (L.getNumBlocks() != 1) { 321 ORE->emit([&]() { 322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 323 L.getStartLoc(), L.getHeader()) 324 << "Not a single basic block: " 325 << ore::NV("NumBlocks", L.getNumBlocks()); 326 }); 327 return false; 328 } 329 330 if (disabledByPragma) { 331 ORE->emit([&]() { 332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 333 L.getStartLoc(), L.getHeader()) 334 << "Disabled by Pragma."; 335 }); 336 return false; 337 } 338 339 // Check if the branch can't be understood because we can't do pipelining 340 // if that's the case. 341 LI.TBB = nullptr; 342 LI.FBB = nullptr; 343 LI.BrCond.clear(); 344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 346 NumFailBranch++; 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "The branch can't be understood"; 351 }); 352 return false; 353 } 354 355 LI.LoopInductionVar = nullptr; 356 LI.LoopCompare = nullptr; 357 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 358 if (!LI.LoopPipelinerInfo) { 359 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 360 NumFailLoop++; 361 ORE->emit([&]() { 362 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 363 L.getStartLoc(), L.getHeader()) 364 << "The loop structure is not supported"; 365 }); 366 return false; 367 } 368 369 if (!L.getLoopPreheader()) { 370 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 371 NumFailPreheader++; 372 ORE->emit([&]() { 373 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 374 L.getStartLoc(), L.getHeader()) 375 << "No loop preheader found"; 376 }); 377 return false; 378 } 379 380 // Remove any subregisters from inputs to phi nodes. 381 preprocessPhiNodes(*L.getHeader()); 382 return true; 383 } 384 385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 386 MachineRegisterInfo &MRI = MF->getRegInfo(); 387 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 388 389 for (MachineInstr &PI : B.phis()) { 390 MachineOperand &DefOp = PI.getOperand(0); 391 assert(DefOp.getSubReg() == 0); 392 auto *RC = MRI.getRegClass(DefOp.getReg()); 393 394 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 395 MachineOperand &RegOp = PI.getOperand(i); 396 if (RegOp.getSubReg() == 0) 397 continue; 398 399 // If the operand uses a subregister, replace it with a new register 400 // without subregisters, and generate a copy to the new register. 401 Register NewReg = MRI.createVirtualRegister(RC); 402 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 403 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 404 const DebugLoc &DL = PredB.findDebugLoc(At); 405 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 406 .addReg(RegOp.getReg(), getRegState(RegOp), 407 RegOp.getSubReg()); 408 Slots.insertMachineInstrInMaps(*Copy); 409 RegOp.setReg(NewReg); 410 RegOp.setSubReg(0); 411 } 412 } 413 } 414 415 /// The SMS algorithm consists of the following main steps: 416 /// 1. Computation and analysis of the dependence graph. 417 /// 2. Ordering of the nodes (instructions). 418 /// 3. Attempt to Schedule the loop. 419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 420 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 421 422 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 423 II_setByPragma, LI.LoopPipelinerInfo.get()); 424 425 MachineBasicBlock *MBB = L.getHeader(); 426 // The kernel should not include any terminator instructions. These 427 // will be added back later. 428 SMS.startBlock(MBB); 429 430 // Compute the number of 'real' instructions in the basic block by 431 // ignoring terminators. 432 unsigned size = MBB->size(); 433 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 434 E = MBB->instr_end(); 435 I != E; ++I, --size) 436 ; 437 438 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 439 SMS.schedule(); 440 SMS.exitRegion(); 441 442 SMS.finishBlock(); 443 return SMS.hasNewSchedule(); 444 } 445 446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 447 AU.addRequired<AAResultsWrapperPass>(); 448 AU.addPreserved<AAResultsWrapperPass>(); 449 AU.addRequired<MachineLoopInfo>(); 450 AU.addRequired<MachineDominatorTree>(); 451 AU.addRequired<LiveIntervals>(); 452 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 453 MachineFunctionPass::getAnalysisUsage(AU); 454 } 455 456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 457 if (II_setByPragma > 0) 458 MII = II_setByPragma; 459 else 460 MII = std::max(ResMII, RecMII); 461 } 462 463 void SwingSchedulerDAG::setMAX_II() { 464 if (II_setByPragma > 0) 465 MAX_II = II_setByPragma; 466 else 467 MAX_II = MII + 10; 468 } 469 470 /// We override the schedule function in ScheduleDAGInstrs to implement the 471 /// scheduling part of the Swing Modulo Scheduling algorithm. 472 void SwingSchedulerDAG::schedule() { 473 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 474 buildSchedGraph(AA); 475 addLoopCarriedDependences(AA); 476 updatePhiDependences(); 477 Topo.InitDAGTopologicalSorting(); 478 changeDependences(); 479 postprocessDAG(); 480 LLVM_DEBUG(dump()); 481 482 NodeSetType NodeSets; 483 findCircuits(NodeSets); 484 NodeSetType Circuits = NodeSets; 485 486 // Calculate the MII. 487 unsigned ResMII = calculateResMII(); 488 unsigned RecMII = calculateRecMII(NodeSets); 489 490 fuseRecs(NodeSets); 491 492 // This flag is used for testing and can cause correctness problems. 493 if (SwpIgnoreRecMII) 494 RecMII = 0; 495 496 setMII(ResMII, RecMII); 497 setMAX_II(); 498 499 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 500 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 501 502 // Can't schedule a loop without a valid MII. 503 if (MII == 0) { 504 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 505 NumFailZeroMII++; 506 Pass.ORE->emit([&]() { 507 return MachineOptimizationRemarkAnalysis( 508 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 509 << "Invalid Minimal Initiation Interval: 0"; 510 }); 511 return; 512 } 513 514 // Don't pipeline large loops. 515 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 516 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 517 << ", we don't pipeline large loops\n"); 518 NumFailLargeMaxMII++; 519 Pass.ORE->emit([&]() { 520 return MachineOptimizationRemarkAnalysis( 521 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 522 << "Minimal Initiation Interval too large: " 523 << ore::NV("MII", (int)MII) << " > " 524 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 525 << "Refer to -pipeliner-max-mii."; 526 }); 527 return; 528 } 529 530 computeNodeFunctions(NodeSets); 531 532 registerPressureFilter(NodeSets); 533 534 colocateNodeSets(NodeSets); 535 536 checkNodeSets(NodeSets); 537 538 LLVM_DEBUG({ 539 for (auto &I : NodeSets) { 540 dbgs() << " Rec NodeSet "; 541 I.dump(); 542 } 543 }); 544 545 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 546 547 groupRemainingNodes(NodeSets); 548 549 removeDuplicateNodes(NodeSets); 550 551 LLVM_DEBUG({ 552 for (auto &I : NodeSets) { 553 dbgs() << " NodeSet "; 554 I.dump(); 555 } 556 }); 557 558 computeNodeOrder(NodeSets); 559 560 // check for node order issues 561 checkValidNodeOrder(Circuits); 562 563 SMSchedule Schedule(Pass.MF); 564 Scheduled = schedulePipeline(Schedule); 565 566 if (!Scheduled){ 567 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 568 NumFailNoSchedule++; 569 Pass.ORE->emit([&]() { 570 return MachineOptimizationRemarkAnalysis( 571 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 572 << "Unable to find schedule"; 573 }); 574 return; 575 } 576 577 unsigned numStages = Schedule.getMaxStageCount(); 578 // No need to generate pipeline if there are no overlapped iterations. 579 if (numStages == 0) { 580 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 581 NumFailZeroStage++; 582 Pass.ORE->emit([&]() { 583 return MachineOptimizationRemarkAnalysis( 584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 585 << "No need to pipeline - no overlapped iterations in schedule."; 586 }); 587 return; 588 } 589 // Check that the maximum stage count is less than user-defined limit. 590 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 591 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 592 << " : too many stages, abort\n"); 593 NumFailLargeMaxStage++; 594 Pass.ORE->emit([&]() { 595 return MachineOptimizationRemarkAnalysis( 596 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 597 << "Too many stages in schedule: " 598 << ore::NV("numStages", (int)numStages) << " > " 599 << ore::NV("SwpMaxStages", SwpMaxStages) 600 << ". Refer to -pipeliner-max-stages."; 601 }); 602 return; 603 } 604 605 Pass.ORE->emit([&]() { 606 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 607 Loop.getHeader()) 608 << "Pipelined succesfully!"; 609 }); 610 611 // Generate the schedule as a ModuloSchedule. 612 DenseMap<MachineInstr *, int> Cycles, Stages; 613 std::vector<MachineInstr *> OrderedInsts; 614 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 615 ++Cycle) { 616 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 617 OrderedInsts.push_back(SU->getInstr()); 618 Cycles[SU->getInstr()] = Cycle; 619 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 620 } 621 } 622 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 623 for (auto &KV : NewMIs) { 624 Cycles[KV.first] = Cycles[KV.second]; 625 Stages[KV.first] = Stages[KV.second]; 626 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 627 } 628 629 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 630 std::move(Stages)); 631 if (EmitTestAnnotations) { 632 assert(NewInstrChanges.empty() && 633 "Cannot serialize a schedule with InstrChanges!"); 634 ModuloScheduleTestAnnotater MSTI(MF, MS); 635 MSTI.annotate(); 636 return; 637 } 638 // The experimental code generator can't work if there are InstChanges. 639 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 640 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 641 MSE.expand(); 642 } else { 643 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 644 MSE.expand(); 645 MSE.cleanup(); 646 } 647 ++NumPipelined; 648 } 649 650 /// Clean up after the software pipeliner runs. 651 void SwingSchedulerDAG::finishBlock() { 652 for (auto &KV : NewMIs) 653 MF.deleteMachineInstr(KV.second); 654 NewMIs.clear(); 655 656 // Call the superclass. 657 ScheduleDAGInstrs::finishBlock(); 658 } 659 660 /// Return the register values for the operands of a Phi instruction. 661 /// This function assume the instruction is a Phi. 662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 663 unsigned &InitVal, unsigned &LoopVal) { 664 assert(Phi.isPHI() && "Expecting a Phi."); 665 666 InitVal = 0; 667 LoopVal = 0; 668 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 669 if (Phi.getOperand(i + 1).getMBB() != Loop) 670 InitVal = Phi.getOperand(i).getReg(); 671 else 672 LoopVal = Phi.getOperand(i).getReg(); 673 674 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 675 } 676 677 /// Return the Phi register value that comes the loop block. 678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 679 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 680 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 681 return Phi.getOperand(i).getReg(); 682 return 0; 683 } 684 685 /// Return true if SUb can be reached from SUa following the chain edges. 686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 687 SmallPtrSet<SUnit *, 8> Visited; 688 SmallVector<SUnit *, 8> Worklist; 689 Worklist.push_back(SUa); 690 while (!Worklist.empty()) { 691 const SUnit *SU = Worklist.pop_back_val(); 692 for (auto &SI : SU->Succs) { 693 SUnit *SuccSU = SI.getSUnit(); 694 if (SI.getKind() == SDep::Order) { 695 if (Visited.count(SuccSU)) 696 continue; 697 if (SuccSU == SUb) 698 return true; 699 Worklist.push_back(SuccSU); 700 Visited.insert(SuccSU); 701 } 702 } 703 } 704 return false; 705 } 706 707 /// Return true if the instruction causes a chain between memory 708 /// references before and after it. 709 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 710 return MI.isCall() || MI.mayRaiseFPException() || 711 MI.hasUnmodeledSideEffects() || 712 (MI.hasOrderedMemoryRef() && 713 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 714 } 715 716 /// Return the underlying objects for the memory references of an instruction. 717 /// This function calls the code in ValueTracking, but first checks that the 718 /// instruction has a memory operand. 719 static void getUnderlyingObjects(const MachineInstr *MI, 720 SmallVectorImpl<const Value *> &Objs) { 721 if (!MI->hasOneMemOperand()) 722 return; 723 MachineMemOperand *MM = *MI->memoperands_begin(); 724 if (!MM->getValue()) 725 return; 726 getUnderlyingObjects(MM->getValue(), Objs); 727 for (const Value *V : Objs) { 728 if (!isIdentifiedObject(V)) { 729 Objs.clear(); 730 return; 731 } 732 Objs.push_back(V); 733 } 734 } 735 736 /// Add a chain edge between a load and store if the store can be an 737 /// alias of the load on a subsequent iteration, i.e., a loop carried 738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 739 /// but that code doesn't create loop carried dependences. 740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 741 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 742 Value *UnknownValue = 743 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 744 for (auto &SU : SUnits) { 745 MachineInstr &MI = *SU.getInstr(); 746 if (isDependenceBarrier(MI, AA)) 747 PendingLoads.clear(); 748 else if (MI.mayLoad()) { 749 SmallVector<const Value *, 4> Objs; 750 ::getUnderlyingObjects(&MI, Objs); 751 if (Objs.empty()) 752 Objs.push_back(UnknownValue); 753 for (auto V : Objs) { 754 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 755 SUs.push_back(&SU); 756 } 757 } else if (MI.mayStore()) { 758 SmallVector<const Value *, 4> Objs; 759 ::getUnderlyingObjects(&MI, Objs); 760 if (Objs.empty()) 761 Objs.push_back(UnknownValue); 762 for (auto V : Objs) { 763 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 764 PendingLoads.find(V); 765 if (I == PendingLoads.end()) 766 continue; 767 for (auto Load : I->second) { 768 if (isSuccOrder(Load, &SU)) 769 continue; 770 MachineInstr &LdMI = *Load->getInstr(); 771 // First, perform the cheaper check that compares the base register. 772 // If they are the same and the load offset is less than the store 773 // offset, then mark the dependence as loop carried potentially. 774 const MachineOperand *BaseOp1, *BaseOp2; 775 int64_t Offset1, Offset2; 776 bool Offset1IsScalable, Offset2IsScalable; 777 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 778 Offset1IsScalable, TRI) && 779 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 780 Offset2IsScalable, TRI)) { 781 if (BaseOp1->isIdenticalTo(*BaseOp2) && 782 Offset1IsScalable == Offset2IsScalable && 783 (int)Offset1 < (int)Offset2) { 784 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 785 "What happened to the chain edge?"); 786 SDep Dep(Load, SDep::Barrier); 787 Dep.setLatency(1); 788 SU.addPred(Dep); 789 continue; 790 } 791 } 792 // Second, the more expensive check that uses alias analysis on the 793 // base registers. If they alias, and the load offset is less than 794 // the store offset, the mark the dependence as loop carried. 795 if (!AA) { 796 SDep Dep(Load, SDep::Barrier); 797 Dep.setLatency(1); 798 SU.addPred(Dep); 799 continue; 800 } 801 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 802 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 803 if (!MMO1->getValue() || !MMO2->getValue()) { 804 SDep Dep(Load, SDep::Barrier); 805 Dep.setLatency(1); 806 SU.addPred(Dep); 807 continue; 808 } 809 if (MMO1->getValue() == MMO2->getValue() && 810 MMO1->getOffset() <= MMO2->getOffset()) { 811 SDep Dep(Load, SDep::Barrier); 812 Dep.setLatency(1); 813 SU.addPred(Dep); 814 continue; 815 } 816 if (!AA->isNoAlias( 817 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 818 MemoryLocation::getAfter(MMO2->getValue(), 819 MMO2->getAAInfo()))) { 820 SDep Dep(Load, SDep::Barrier); 821 Dep.setLatency(1); 822 SU.addPred(Dep); 823 } 824 } 825 } 826 } 827 } 828 } 829 830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 831 /// processes dependences for PHIs. This function adds true dependences 832 /// from a PHI to a use, and a loop carried dependence from the use to the 833 /// PHI. The loop carried dependence is represented as an anti dependence 834 /// edge. This function also removes chain dependences between unrelated 835 /// PHIs. 836 void SwingSchedulerDAG::updatePhiDependences() { 837 SmallVector<SDep, 4> RemoveDeps; 838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 839 840 // Iterate over each DAG node. 841 for (SUnit &I : SUnits) { 842 RemoveDeps.clear(); 843 // Set to true if the instruction has an operand defined by a Phi. 844 unsigned HasPhiUse = 0; 845 unsigned HasPhiDef = 0; 846 MachineInstr *MI = I.getInstr(); 847 // Iterate over each operand, and we process the definitions. 848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 849 MOE = MI->operands_end(); 850 MOI != MOE; ++MOI) { 851 if (!MOI->isReg()) 852 continue; 853 Register Reg = MOI->getReg(); 854 if (MOI->isDef()) { 855 // If the register is used by a Phi, then create an anti dependence. 856 for (MachineRegisterInfo::use_instr_iterator 857 UI = MRI.use_instr_begin(Reg), 858 UE = MRI.use_instr_end(); 859 UI != UE; ++UI) { 860 MachineInstr *UseMI = &*UI; 861 SUnit *SU = getSUnit(UseMI); 862 if (SU != nullptr && UseMI->isPHI()) { 863 if (!MI->isPHI()) { 864 SDep Dep(SU, SDep::Anti, Reg); 865 Dep.setLatency(1); 866 I.addPred(Dep); 867 } else { 868 HasPhiDef = Reg; 869 // Add a chain edge to a dependent Phi that isn't an existing 870 // predecessor. 871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 872 I.addPred(SDep(SU, SDep::Barrier)); 873 } 874 } 875 } 876 } else if (MOI->isUse()) { 877 // If the register is defined by a Phi, then create a true dependence. 878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 879 if (DefMI == nullptr) 880 continue; 881 SUnit *SU = getSUnit(DefMI); 882 if (SU != nullptr && DefMI->isPHI()) { 883 if (!MI->isPHI()) { 884 SDep Dep(SU, SDep::Data, Reg); 885 Dep.setLatency(0); 886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 887 I.addPred(Dep); 888 } else { 889 HasPhiUse = Reg; 890 // Add a chain edge to a dependent Phi that isn't an existing 891 // predecessor. 892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 893 I.addPred(SDep(SU, SDep::Barrier)); 894 } 895 } 896 } 897 } 898 // Remove order dependences from an unrelated Phi. 899 if (!SwpPruneDeps) 900 continue; 901 for (auto &PI : I.Preds) { 902 MachineInstr *PMI = PI.getSUnit()->getInstr(); 903 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 904 if (I.getInstr()->isPHI()) { 905 if (PMI->getOperand(0).getReg() == HasPhiUse) 906 continue; 907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 908 continue; 909 } 910 RemoveDeps.push_back(PI); 911 } 912 } 913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 914 I.removePred(RemoveDeps[i]); 915 } 916 } 917 918 /// Iterate over each DAG node and see if we can change any dependences 919 /// in order to reduce the recurrence MII. 920 void SwingSchedulerDAG::changeDependences() { 921 // See if an instruction can use a value from the previous iteration. 922 // If so, we update the base and offset of the instruction and change 923 // the dependences. 924 for (SUnit &I : SUnits) { 925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 926 int64_t NewOffset = 0; 927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 928 NewOffset)) 929 continue; 930 931 // Get the MI and SUnit for the instruction that defines the original base. 932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 934 if (!DefMI) 935 continue; 936 SUnit *DefSU = getSUnit(DefMI); 937 if (!DefSU) 938 continue; 939 // Get the MI and SUnit for the instruction that defins the new base. 940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 941 if (!LastMI) 942 continue; 943 SUnit *LastSU = getSUnit(LastMI); 944 if (!LastSU) 945 continue; 946 947 if (Topo.IsReachable(&I, LastSU)) 948 continue; 949 950 // Remove the dependence. The value now depends on a prior iteration. 951 SmallVector<SDep, 4> Deps; 952 for (const SDep &P : I.Preds) 953 if (P.getSUnit() == DefSU) 954 Deps.push_back(P); 955 for (int i = 0, e = Deps.size(); i != e; i++) { 956 Topo.RemovePred(&I, Deps[i].getSUnit()); 957 I.removePred(Deps[i]); 958 } 959 // Remove the chain dependence between the instructions. 960 Deps.clear(); 961 for (auto &P : LastSU->Preds) 962 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 963 Deps.push_back(P); 964 for (int i = 0, e = Deps.size(); i != e; i++) { 965 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 966 LastSU->removePred(Deps[i]); 967 } 968 969 // Add a dependence between the new instruction and the instruction 970 // that defines the new base. 971 SDep Dep(&I, SDep::Anti, NewBase); 972 Topo.AddPred(LastSU, &I); 973 LastSU->addPred(Dep); 974 975 // Remember the base and offset information so that we can update the 976 // instruction during code generation. 977 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 978 } 979 } 980 981 namespace { 982 983 // FuncUnitSorter - Comparison operator used to sort instructions by 984 // the number of functional unit choices. 985 struct FuncUnitSorter { 986 const InstrItineraryData *InstrItins; 987 const MCSubtargetInfo *STI; 988 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 989 990 FuncUnitSorter(const TargetSubtargetInfo &TSI) 991 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 992 993 // Compute the number of functional unit alternatives needed 994 // at each stage, and take the minimum value. We prioritize the 995 // instructions by the least number of choices first. 996 unsigned minFuncUnits(const MachineInstr *Inst, 997 InstrStage::FuncUnits &F) const { 998 unsigned SchedClass = Inst->getDesc().getSchedClass(); 999 unsigned min = UINT_MAX; 1000 if (InstrItins && !InstrItins->isEmpty()) { 1001 for (const InstrStage &IS : 1002 make_range(InstrItins->beginStage(SchedClass), 1003 InstrItins->endStage(SchedClass))) { 1004 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1005 unsigned numAlternatives = countPopulation(funcUnits); 1006 if (numAlternatives < min) { 1007 min = numAlternatives; 1008 F = funcUnits; 1009 } 1010 } 1011 return min; 1012 } 1013 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1014 const MCSchedClassDesc *SCDesc = 1015 STI->getSchedModel().getSchedClassDesc(SchedClass); 1016 if (!SCDesc->isValid()) 1017 // No valid Schedule Class Desc for schedClass, should be 1018 // Pseudo/PostRAPseudo 1019 return min; 1020 1021 for (const MCWriteProcResEntry &PRE : 1022 make_range(STI->getWriteProcResBegin(SCDesc), 1023 STI->getWriteProcResEnd(SCDesc))) { 1024 if (!PRE.Cycles) 1025 continue; 1026 const MCProcResourceDesc *ProcResource = 1027 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1028 unsigned NumUnits = ProcResource->NumUnits; 1029 if (NumUnits < min) { 1030 min = NumUnits; 1031 F = PRE.ProcResourceIdx; 1032 } 1033 } 1034 return min; 1035 } 1036 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1037 } 1038 1039 // Compute the critical resources needed by the instruction. This 1040 // function records the functional units needed by instructions that 1041 // must use only one functional unit. We use this as a tie breaker 1042 // for computing the resource MII. The instrutions that require 1043 // the same, highly used, functional unit have high priority. 1044 void calcCriticalResources(MachineInstr &MI) { 1045 unsigned SchedClass = MI.getDesc().getSchedClass(); 1046 if (InstrItins && !InstrItins->isEmpty()) { 1047 for (const InstrStage &IS : 1048 make_range(InstrItins->beginStage(SchedClass), 1049 InstrItins->endStage(SchedClass))) { 1050 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1051 if (countPopulation(FuncUnits) == 1) 1052 Resources[FuncUnits]++; 1053 } 1054 return; 1055 } 1056 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1057 const MCSchedClassDesc *SCDesc = 1058 STI->getSchedModel().getSchedClassDesc(SchedClass); 1059 if (!SCDesc->isValid()) 1060 // No valid Schedule Class Desc for schedClass, should be 1061 // Pseudo/PostRAPseudo 1062 return; 1063 1064 for (const MCWriteProcResEntry &PRE : 1065 make_range(STI->getWriteProcResBegin(SCDesc), 1066 STI->getWriteProcResEnd(SCDesc))) { 1067 if (!PRE.Cycles) 1068 continue; 1069 Resources[PRE.ProcResourceIdx]++; 1070 } 1071 return; 1072 } 1073 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1074 } 1075 1076 /// Return true if IS1 has less priority than IS2. 1077 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1078 InstrStage::FuncUnits F1 = 0, F2 = 0; 1079 unsigned MFUs1 = minFuncUnits(IS1, F1); 1080 unsigned MFUs2 = minFuncUnits(IS2, F2); 1081 if (MFUs1 == MFUs2) 1082 return Resources.lookup(F1) < Resources.lookup(F2); 1083 return MFUs1 > MFUs2; 1084 } 1085 }; 1086 1087 } // end anonymous namespace 1088 1089 /// Calculate the resource constrained minimum initiation interval for the 1090 /// specified loop. We use the DFA to model the resources needed for 1091 /// each instruction, and we ignore dependences. A different DFA is created 1092 /// for each cycle that is required. When adding a new instruction, we attempt 1093 /// to add it to each existing DFA, until a legal space is found. If the 1094 /// instruction cannot be reserved in an existing DFA, we create a new one. 1095 unsigned SwingSchedulerDAG::calculateResMII() { 1096 1097 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1098 SmallVector<ResourceManager*, 8> Resources; 1099 MachineBasicBlock *MBB = Loop.getHeader(); 1100 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1101 1102 // Sort the instructions by the number of available choices for scheduling, 1103 // least to most. Use the number of critical resources as the tie breaker. 1104 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1105 for (MachineInstr &MI : 1106 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1107 FUS.calcCriticalResources(MI); 1108 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1109 FuncUnitOrder(FUS); 1110 1111 for (MachineInstr &MI : 1112 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1113 FuncUnitOrder.push(&MI); 1114 1115 while (!FuncUnitOrder.empty()) { 1116 MachineInstr *MI = FuncUnitOrder.top(); 1117 FuncUnitOrder.pop(); 1118 if (TII->isZeroCost(MI->getOpcode())) 1119 continue; 1120 // Attempt to reserve the instruction in an existing DFA. At least one 1121 // DFA is needed for each cycle. 1122 unsigned NumCycles = getSUnit(MI)->Latency; 1123 unsigned ReservedCycles = 0; 1124 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1125 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1126 LLVM_DEBUG({ 1127 dbgs() << "Trying to reserve resource for " << NumCycles 1128 << " cycles for \n"; 1129 MI->dump(); 1130 }); 1131 for (unsigned C = 0; C < NumCycles; ++C) 1132 while (RI != RE) { 1133 if ((*RI)->canReserveResources(*MI)) { 1134 (*RI)->reserveResources(*MI); 1135 ++ReservedCycles; 1136 break; 1137 } 1138 RI++; 1139 } 1140 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1141 << ", NumCycles:" << NumCycles << "\n"); 1142 // Add new DFAs, if needed, to reserve resources. 1143 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1144 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1145 << "NewResource created to reserve resources" 1146 << "\n"); 1147 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1148 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1149 NewResource->reserveResources(*MI); 1150 Resources.push_back(NewResource); 1151 } 1152 } 1153 int Resmii = Resources.size(); 1154 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1155 // Delete the memory for each of the DFAs that were created earlier. 1156 for (ResourceManager *RI : Resources) { 1157 ResourceManager *D = RI; 1158 delete D; 1159 } 1160 Resources.clear(); 1161 return Resmii; 1162 } 1163 1164 /// Calculate the recurrence-constrainted minimum initiation interval. 1165 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1166 /// for each circuit. The II needs to satisfy the inequality 1167 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1168 /// II that satisfies the inequality, and the RecMII is the maximum 1169 /// of those values. 1170 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1171 unsigned RecMII = 0; 1172 1173 for (NodeSet &Nodes : NodeSets) { 1174 if (Nodes.empty()) 1175 continue; 1176 1177 unsigned Delay = Nodes.getLatency(); 1178 unsigned Distance = 1; 1179 1180 // ii = ceil(delay / distance) 1181 unsigned CurMII = (Delay + Distance - 1) / Distance; 1182 Nodes.setRecMII(CurMII); 1183 if (CurMII > RecMII) 1184 RecMII = CurMII; 1185 } 1186 1187 return RecMII; 1188 } 1189 1190 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1191 /// but we do this to find the circuits, and then change them back. 1192 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1193 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1194 for (SUnit &SU : SUnits) { 1195 for (SDep &Pred : SU.Preds) 1196 if (Pred.getKind() == SDep::Anti) 1197 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1198 } 1199 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1200 // Remove this anti dependency and add one in the reverse direction. 1201 SUnit *SU = P.first; 1202 SDep &D = P.second; 1203 SUnit *TargetSU = D.getSUnit(); 1204 unsigned Reg = D.getReg(); 1205 unsigned Lat = D.getLatency(); 1206 SU->removePred(D); 1207 SDep Dep(SU, SDep::Anti, Reg); 1208 Dep.setLatency(Lat); 1209 TargetSU->addPred(Dep); 1210 } 1211 } 1212 1213 /// Create the adjacency structure of the nodes in the graph. 1214 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1215 SwingSchedulerDAG *DAG) { 1216 BitVector Added(SUnits.size()); 1217 DenseMap<int, int> OutputDeps; 1218 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1219 Added.reset(); 1220 // Add any successor to the adjacency matrix and exclude duplicates. 1221 for (auto &SI : SUnits[i].Succs) { 1222 // Only create a back-edge on the first and last nodes of a dependence 1223 // chain. This records any chains and adds them later. 1224 if (SI.getKind() == SDep::Output) { 1225 int N = SI.getSUnit()->NodeNum; 1226 int BackEdge = i; 1227 auto Dep = OutputDeps.find(BackEdge); 1228 if (Dep != OutputDeps.end()) { 1229 BackEdge = Dep->second; 1230 OutputDeps.erase(Dep); 1231 } 1232 OutputDeps[N] = BackEdge; 1233 } 1234 // Do not process a boundary node, an artificial node. 1235 // A back-edge is processed only if it goes to a Phi. 1236 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1237 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1238 continue; 1239 int N = SI.getSUnit()->NodeNum; 1240 if (!Added.test(N)) { 1241 AdjK[i].push_back(N); 1242 Added.set(N); 1243 } 1244 } 1245 // A chain edge between a store and a load is treated as a back-edge in the 1246 // adjacency matrix. 1247 for (auto &PI : SUnits[i].Preds) { 1248 if (!SUnits[i].getInstr()->mayStore() || 1249 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1250 continue; 1251 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1252 int N = PI.getSUnit()->NodeNum; 1253 if (!Added.test(N)) { 1254 AdjK[i].push_back(N); 1255 Added.set(N); 1256 } 1257 } 1258 } 1259 } 1260 // Add back-edges in the adjacency matrix for the output dependences. 1261 for (auto &OD : OutputDeps) 1262 if (!Added.test(OD.second)) { 1263 AdjK[OD.first].push_back(OD.second); 1264 Added.set(OD.second); 1265 } 1266 } 1267 1268 /// Identify an elementary circuit in the dependence graph starting at the 1269 /// specified node. 1270 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1271 bool HasBackedge) { 1272 SUnit *SV = &SUnits[V]; 1273 bool F = false; 1274 Stack.insert(SV); 1275 Blocked.set(V); 1276 1277 for (auto W : AdjK[V]) { 1278 if (NumPaths > MaxPaths) 1279 break; 1280 if (W < S) 1281 continue; 1282 if (W == S) { 1283 if (!HasBackedge) 1284 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1285 F = true; 1286 ++NumPaths; 1287 break; 1288 } else if (!Blocked.test(W)) { 1289 if (circuit(W, S, NodeSets, 1290 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1291 F = true; 1292 } 1293 } 1294 1295 if (F) 1296 unblock(V); 1297 else { 1298 for (auto W : AdjK[V]) { 1299 if (W < S) 1300 continue; 1301 if (B[W].count(SV) == 0) 1302 B[W].insert(SV); 1303 } 1304 } 1305 Stack.pop_back(); 1306 return F; 1307 } 1308 1309 /// Unblock a node in the circuit finding algorithm. 1310 void SwingSchedulerDAG::Circuits::unblock(int U) { 1311 Blocked.reset(U); 1312 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1313 while (!BU.empty()) { 1314 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1315 assert(SI != BU.end() && "Invalid B set."); 1316 SUnit *W = *SI; 1317 BU.erase(W); 1318 if (Blocked.test(W->NodeNum)) 1319 unblock(W->NodeNum); 1320 } 1321 } 1322 1323 /// Identify all the elementary circuits in the dependence graph using 1324 /// Johnson's circuit algorithm. 1325 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1326 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1327 // but we do this to find the circuits, and then change them back. 1328 swapAntiDependences(SUnits); 1329 1330 Circuits Cir(SUnits, Topo); 1331 // Create the adjacency structure. 1332 Cir.createAdjacencyStructure(this); 1333 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1334 Cir.reset(); 1335 Cir.circuit(i, i, NodeSets); 1336 } 1337 1338 // Change the dependences back so that we've created a DAG again. 1339 swapAntiDependences(SUnits); 1340 } 1341 1342 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1343 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1344 // additional copies that are needed across iterations. An artificial dependence 1345 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1346 1347 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1348 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1349 // PHI-------True-Dep------> USEOfPhi 1350 1351 // The mutation creates 1352 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1353 1354 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1355 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1356 // late to avoid additional copies across iterations. The possible scheduling 1357 // order would be 1358 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1359 1360 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1361 for (SUnit &SU : DAG->SUnits) { 1362 // Find the COPY/REG_SEQUENCE instruction. 1363 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1364 continue; 1365 1366 // Record the loop carried PHIs. 1367 SmallVector<SUnit *, 4> PHISUs; 1368 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1369 SmallVector<SUnit *, 4> SrcSUs; 1370 1371 for (auto &Dep : SU.Preds) { 1372 SUnit *TmpSU = Dep.getSUnit(); 1373 MachineInstr *TmpMI = TmpSU->getInstr(); 1374 SDep::Kind DepKind = Dep.getKind(); 1375 // Save the loop carried PHI. 1376 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1377 PHISUs.push_back(TmpSU); 1378 // Save the source of COPY/REG_SEQUENCE. 1379 // If the source has no pre-decessors, we will end up creating cycles. 1380 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1381 SrcSUs.push_back(TmpSU); 1382 } 1383 1384 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1385 continue; 1386 1387 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1388 // SUnit to the container. 1389 SmallVector<SUnit *, 8> UseSUs; 1390 // Do not use iterator based loop here as we are updating the container. 1391 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1392 for (auto &Dep : PHISUs[Index]->Succs) { 1393 if (Dep.getKind() != SDep::Data) 1394 continue; 1395 1396 SUnit *TmpSU = Dep.getSUnit(); 1397 MachineInstr *TmpMI = TmpSU->getInstr(); 1398 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1399 PHISUs.push_back(TmpSU); 1400 continue; 1401 } 1402 UseSUs.push_back(TmpSU); 1403 } 1404 } 1405 1406 if (UseSUs.size() == 0) 1407 continue; 1408 1409 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1410 // Add the artificial dependencies if it does not form a cycle. 1411 for (auto I : UseSUs) { 1412 for (auto Src : SrcSUs) { 1413 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1414 Src->addPred(SDep(I, SDep::Artificial)); 1415 SDAG->Topo.AddPred(Src, I); 1416 } 1417 } 1418 } 1419 } 1420 } 1421 1422 /// Return true for DAG nodes that we ignore when computing the cost functions. 1423 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1424 /// in the calculation of the ASAP, ALAP, etc functions. 1425 static bool ignoreDependence(const SDep &D, bool isPred) { 1426 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1427 return true; 1428 return D.getKind() == SDep::Anti && isPred; 1429 } 1430 1431 /// Compute several functions need to order the nodes for scheduling. 1432 /// ASAP - Earliest time to schedule a node. 1433 /// ALAP - Latest time to schedule a node. 1434 /// MOV - Mobility function, difference between ALAP and ASAP. 1435 /// D - Depth of each node. 1436 /// H - Height of each node. 1437 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1438 ScheduleInfo.resize(SUnits.size()); 1439 1440 LLVM_DEBUG({ 1441 for (int I : Topo) { 1442 const SUnit &SU = SUnits[I]; 1443 dumpNode(SU); 1444 } 1445 }); 1446 1447 int maxASAP = 0; 1448 // Compute ASAP and ZeroLatencyDepth. 1449 for (int I : Topo) { 1450 int asap = 0; 1451 int zeroLatencyDepth = 0; 1452 SUnit *SU = &SUnits[I]; 1453 for (const SDep &P : SU->Preds) { 1454 SUnit *pred = P.getSUnit(); 1455 if (P.getLatency() == 0) 1456 zeroLatencyDepth = 1457 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1458 if (ignoreDependence(P, true)) 1459 continue; 1460 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1461 getDistance(pred, SU, P) * MII)); 1462 } 1463 maxASAP = std::max(maxASAP, asap); 1464 ScheduleInfo[I].ASAP = asap; 1465 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1466 } 1467 1468 // Compute ALAP, ZeroLatencyHeight, and MOV. 1469 for (int I : llvm::reverse(Topo)) { 1470 int alap = maxASAP; 1471 int zeroLatencyHeight = 0; 1472 SUnit *SU = &SUnits[I]; 1473 for (const SDep &S : SU->Succs) { 1474 SUnit *succ = S.getSUnit(); 1475 if (succ->isBoundaryNode()) 1476 continue; 1477 if (S.getLatency() == 0) 1478 zeroLatencyHeight = 1479 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1480 if (ignoreDependence(S, true)) 1481 continue; 1482 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1483 getDistance(SU, succ, S) * MII)); 1484 } 1485 1486 ScheduleInfo[I].ALAP = alap; 1487 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1488 } 1489 1490 // After computing the node functions, compute the summary for each node set. 1491 for (NodeSet &I : NodeSets) 1492 I.computeNodeSetInfo(this); 1493 1494 LLVM_DEBUG({ 1495 for (unsigned i = 0; i < SUnits.size(); i++) { 1496 dbgs() << "\tNode " << i << ":\n"; 1497 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1498 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1499 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1500 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1501 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1502 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1503 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1504 } 1505 }); 1506 } 1507 1508 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1509 /// as the predecessors of the elements of NodeOrder that are not also in 1510 /// NodeOrder. 1511 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1512 SmallSetVector<SUnit *, 8> &Preds, 1513 const NodeSet *S = nullptr) { 1514 Preds.clear(); 1515 for (const SUnit *SU : NodeOrder) { 1516 for (const SDep &Pred : SU->Preds) { 1517 if (S && S->count(Pred.getSUnit()) == 0) 1518 continue; 1519 if (ignoreDependence(Pred, true)) 1520 continue; 1521 if (NodeOrder.count(Pred.getSUnit()) == 0) 1522 Preds.insert(Pred.getSUnit()); 1523 } 1524 // Back-edges are predecessors with an anti-dependence. 1525 for (const SDep &Succ : SU->Succs) { 1526 if (Succ.getKind() != SDep::Anti) 1527 continue; 1528 if (S && S->count(Succ.getSUnit()) == 0) 1529 continue; 1530 if (NodeOrder.count(Succ.getSUnit()) == 0) 1531 Preds.insert(Succ.getSUnit()); 1532 } 1533 } 1534 return !Preds.empty(); 1535 } 1536 1537 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1538 /// as the successors of the elements of NodeOrder that are not also in 1539 /// NodeOrder. 1540 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1541 SmallSetVector<SUnit *, 8> &Succs, 1542 const NodeSet *S = nullptr) { 1543 Succs.clear(); 1544 for (const SUnit *SU : NodeOrder) { 1545 for (const SDep &Succ : SU->Succs) { 1546 if (S && S->count(Succ.getSUnit()) == 0) 1547 continue; 1548 if (ignoreDependence(Succ, false)) 1549 continue; 1550 if (NodeOrder.count(Succ.getSUnit()) == 0) 1551 Succs.insert(Succ.getSUnit()); 1552 } 1553 for (const SDep &Pred : SU->Preds) { 1554 if (Pred.getKind() != SDep::Anti) 1555 continue; 1556 if (S && S->count(Pred.getSUnit()) == 0) 1557 continue; 1558 if (NodeOrder.count(Pred.getSUnit()) == 0) 1559 Succs.insert(Pred.getSUnit()); 1560 } 1561 } 1562 return !Succs.empty(); 1563 } 1564 1565 /// Return true if there is a path from the specified node to any of the nodes 1566 /// in DestNodes. Keep track and return the nodes in any path. 1567 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1568 SetVector<SUnit *> &DestNodes, 1569 SetVector<SUnit *> &Exclude, 1570 SmallPtrSet<SUnit *, 8> &Visited) { 1571 if (Cur->isBoundaryNode()) 1572 return false; 1573 if (Exclude.contains(Cur)) 1574 return false; 1575 if (DestNodes.contains(Cur)) 1576 return true; 1577 if (!Visited.insert(Cur).second) 1578 return Path.contains(Cur); 1579 bool FoundPath = false; 1580 for (auto &SI : Cur->Succs) 1581 if (!ignoreDependence(SI, false)) 1582 FoundPath |= 1583 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1584 for (auto &PI : Cur->Preds) 1585 if (PI.getKind() == SDep::Anti) 1586 FoundPath |= 1587 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1588 if (FoundPath) 1589 Path.insert(Cur); 1590 return FoundPath; 1591 } 1592 1593 /// Compute the live-out registers for the instructions in a node-set. 1594 /// The live-out registers are those that are defined in the node-set, 1595 /// but not used. Except for use operands of Phis. 1596 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1597 NodeSet &NS) { 1598 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1599 MachineRegisterInfo &MRI = MF.getRegInfo(); 1600 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1601 SmallSet<unsigned, 4> Uses; 1602 for (SUnit *SU : NS) { 1603 const MachineInstr *MI = SU->getInstr(); 1604 if (MI->isPHI()) 1605 continue; 1606 for (const MachineOperand &MO : MI->operands()) 1607 if (MO.isReg() && MO.isUse()) { 1608 Register Reg = MO.getReg(); 1609 if (Register::isVirtualRegister(Reg)) 1610 Uses.insert(Reg); 1611 else if (MRI.isAllocatable(Reg)) 1612 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1613 ++Units) 1614 Uses.insert(*Units); 1615 } 1616 } 1617 for (SUnit *SU : NS) 1618 for (const MachineOperand &MO : SU->getInstr()->operands()) 1619 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1620 Register Reg = MO.getReg(); 1621 if (Register::isVirtualRegister(Reg)) { 1622 if (!Uses.count(Reg)) 1623 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1624 LaneBitmask::getNone())); 1625 } else if (MRI.isAllocatable(Reg)) { 1626 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1627 ++Units) 1628 if (!Uses.count(*Units)) 1629 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1630 LaneBitmask::getNone())); 1631 } 1632 } 1633 RPTracker.addLiveRegs(LiveOutRegs); 1634 } 1635 1636 /// A heuristic to filter nodes in recurrent node-sets if the register 1637 /// pressure of a set is too high. 1638 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1639 for (auto &NS : NodeSets) { 1640 // Skip small node-sets since they won't cause register pressure problems. 1641 if (NS.size() <= 2) 1642 continue; 1643 IntervalPressure RecRegPressure; 1644 RegPressureTracker RecRPTracker(RecRegPressure); 1645 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1646 computeLiveOuts(MF, RecRPTracker, NS); 1647 RecRPTracker.closeBottom(); 1648 1649 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1650 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1651 return A->NodeNum > B->NodeNum; 1652 }); 1653 1654 for (auto &SU : SUnits) { 1655 // Since we're computing the register pressure for a subset of the 1656 // instructions in a block, we need to set the tracker for each 1657 // instruction in the node-set. The tracker is set to the instruction 1658 // just after the one we're interested in. 1659 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1660 RecRPTracker.setPos(std::next(CurInstI)); 1661 1662 RegPressureDelta RPDelta; 1663 ArrayRef<PressureChange> CriticalPSets; 1664 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1665 CriticalPSets, 1666 RecRegPressure.MaxSetPressure); 1667 if (RPDelta.Excess.isValid()) { 1668 LLVM_DEBUG( 1669 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1670 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1671 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 1672 NS.setExceedPressure(SU); 1673 break; 1674 } 1675 RecRPTracker.recede(); 1676 } 1677 } 1678 } 1679 1680 /// A heuristic to colocate node sets that have the same set of 1681 /// successors. 1682 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1683 unsigned Colocate = 0; 1684 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1685 NodeSet &N1 = NodeSets[i]; 1686 SmallSetVector<SUnit *, 8> S1; 1687 if (N1.empty() || !succ_L(N1, S1)) 1688 continue; 1689 for (int j = i + 1; j < e; ++j) { 1690 NodeSet &N2 = NodeSets[j]; 1691 if (N1.compareRecMII(N2) != 0) 1692 continue; 1693 SmallSetVector<SUnit *, 8> S2; 1694 if (N2.empty() || !succ_L(N2, S2)) 1695 continue; 1696 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1697 N1.setColocate(++Colocate); 1698 N2.setColocate(Colocate); 1699 break; 1700 } 1701 } 1702 } 1703 } 1704 1705 /// Check if the existing node-sets are profitable. If not, then ignore the 1706 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1707 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1708 /// then it's best to try to schedule all instructions together instead of 1709 /// starting with the recurrent node-sets. 1710 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1711 // Look for loops with a large MII. 1712 if (MII < 17) 1713 return; 1714 // Check if the node-set contains only a simple add recurrence. 1715 for (auto &NS : NodeSets) { 1716 if (NS.getRecMII() > 2) 1717 return; 1718 if (NS.getMaxDepth() > MII) 1719 return; 1720 } 1721 NodeSets.clear(); 1722 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1723 } 1724 1725 /// Add the nodes that do not belong to a recurrence set into groups 1726 /// based upon connected components. 1727 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1728 SetVector<SUnit *> NodesAdded; 1729 SmallPtrSet<SUnit *, 8> Visited; 1730 // Add the nodes that are on a path between the previous node sets and 1731 // the current node set. 1732 for (NodeSet &I : NodeSets) { 1733 SmallSetVector<SUnit *, 8> N; 1734 // Add the nodes from the current node set to the previous node set. 1735 if (succ_L(I, N)) { 1736 SetVector<SUnit *> Path; 1737 for (SUnit *NI : N) { 1738 Visited.clear(); 1739 computePath(NI, Path, NodesAdded, I, Visited); 1740 } 1741 if (!Path.empty()) 1742 I.insert(Path.begin(), Path.end()); 1743 } 1744 // Add the nodes from the previous node set to the current node set. 1745 N.clear(); 1746 if (succ_L(NodesAdded, N)) { 1747 SetVector<SUnit *> Path; 1748 for (SUnit *NI : N) { 1749 Visited.clear(); 1750 computePath(NI, Path, I, NodesAdded, Visited); 1751 } 1752 if (!Path.empty()) 1753 I.insert(Path.begin(), Path.end()); 1754 } 1755 NodesAdded.insert(I.begin(), I.end()); 1756 } 1757 1758 // Create a new node set with the connected nodes of any successor of a node 1759 // in a recurrent set. 1760 NodeSet NewSet; 1761 SmallSetVector<SUnit *, 8> N; 1762 if (succ_L(NodesAdded, N)) 1763 for (SUnit *I : N) 1764 addConnectedNodes(I, NewSet, NodesAdded); 1765 if (!NewSet.empty()) 1766 NodeSets.push_back(NewSet); 1767 1768 // Create a new node set with the connected nodes of any predecessor of a node 1769 // in a recurrent set. 1770 NewSet.clear(); 1771 if (pred_L(NodesAdded, N)) 1772 for (SUnit *I : N) 1773 addConnectedNodes(I, NewSet, NodesAdded); 1774 if (!NewSet.empty()) 1775 NodeSets.push_back(NewSet); 1776 1777 // Create new nodes sets with the connected nodes any remaining node that 1778 // has no predecessor. 1779 for (SUnit &SU : SUnits) { 1780 if (NodesAdded.count(&SU) == 0) { 1781 NewSet.clear(); 1782 addConnectedNodes(&SU, NewSet, NodesAdded); 1783 if (!NewSet.empty()) 1784 NodeSets.push_back(NewSet); 1785 } 1786 } 1787 } 1788 1789 /// Add the node to the set, and add all of its connected nodes to the set. 1790 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1791 SetVector<SUnit *> &NodesAdded) { 1792 NewSet.insert(SU); 1793 NodesAdded.insert(SU); 1794 for (auto &SI : SU->Succs) { 1795 SUnit *Successor = SI.getSUnit(); 1796 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 1797 NodesAdded.count(Successor) == 0) 1798 addConnectedNodes(Successor, NewSet, NodesAdded); 1799 } 1800 for (auto &PI : SU->Preds) { 1801 SUnit *Predecessor = PI.getSUnit(); 1802 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1803 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1804 } 1805 } 1806 1807 /// Return true if Set1 contains elements in Set2. The elements in common 1808 /// are returned in a different container. 1809 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1810 SmallSetVector<SUnit *, 8> &Result) { 1811 Result.clear(); 1812 for (SUnit *SU : Set1) { 1813 if (Set2.count(SU) != 0) 1814 Result.insert(SU); 1815 } 1816 return !Result.empty(); 1817 } 1818 1819 /// Merge the recurrence node sets that have the same initial node. 1820 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1821 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1822 ++I) { 1823 NodeSet &NI = *I; 1824 for (NodeSetType::iterator J = I + 1; J != E;) { 1825 NodeSet &NJ = *J; 1826 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1827 if (NJ.compareRecMII(NI) > 0) 1828 NI.setRecMII(NJ.getRecMII()); 1829 for (SUnit *SU : *J) 1830 I->insert(SU); 1831 NodeSets.erase(J); 1832 E = NodeSets.end(); 1833 } else { 1834 ++J; 1835 } 1836 } 1837 } 1838 } 1839 1840 /// Remove nodes that have been scheduled in previous NodeSets. 1841 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1842 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1843 ++I) 1844 for (NodeSetType::iterator J = I + 1; J != E;) { 1845 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1846 1847 if (J->empty()) { 1848 NodeSets.erase(J); 1849 E = NodeSets.end(); 1850 } else { 1851 ++J; 1852 } 1853 } 1854 } 1855 1856 /// Compute an ordered list of the dependence graph nodes, which 1857 /// indicates the order that the nodes will be scheduled. This is a 1858 /// two-level algorithm. First, a partial order is created, which 1859 /// consists of a list of sets ordered from highest to lowest priority. 1860 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1861 SmallSetVector<SUnit *, 8> R; 1862 NodeOrder.clear(); 1863 1864 for (auto &Nodes : NodeSets) { 1865 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1866 OrderKind Order; 1867 SmallSetVector<SUnit *, 8> N; 1868 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1869 R.insert(N.begin(), N.end()); 1870 Order = BottomUp; 1871 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1872 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1873 R.insert(N.begin(), N.end()); 1874 Order = TopDown; 1875 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1876 } else if (isIntersect(N, Nodes, R)) { 1877 // If some of the successors are in the existing node-set, then use the 1878 // top-down ordering. 1879 Order = TopDown; 1880 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1881 } else if (NodeSets.size() == 1) { 1882 for (auto &N : Nodes) 1883 if (N->Succs.size() == 0) 1884 R.insert(N); 1885 Order = BottomUp; 1886 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1887 } else { 1888 // Find the node with the highest ASAP. 1889 SUnit *maxASAP = nullptr; 1890 for (SUnit *SU : Nodes) { 1891 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1892 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1893 maxASAP = SU; 1894 } 1895 R.insert(maxASAP); 1896 Order = BottomUp; 1897 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1898 } 1899 1900 while (!R.empty()) { 1901 if (Order == TopDown) { 1902 // Choose the node with the maximum height. If more than one, choose 1903 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1904 // choose the node with the lowest MOV. 1905 while (!R.empty()) { 1906 SUnit *maxHeight = nullptr; 1907 for (SUnit *I : R) { 1908 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1909 maxHeight = I; 1910 else if (getHeight(I) == getHeight(maxHeight) && 1911 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1912 maxHeight = I; 1913 else if (getHeight(I) == getHeight(maxHeight) && 1914 getZeroLatencyHeight(I) == 1915 getZeroLatencyHeight(maxHeight) && 1916 getMOV(I) < getMOV(maxHeight)) 1917 maxHeight = I; 1918 } 1919 NodeOrder.insert(maxHeight); 1920 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1921 R.remove(maxHeight); 1922 for (const auto &I : maxHeight->Succs) { 1923 if (Nodes.count(I.getSUnit()) == 0) 1924 continue; 1925 if (NodeOrder.contains(I.getSUnit())) 1926 continue; 1927 if (ignoreDependence(I, false)) 1928 continue; 1929 R.insert(I.getSUnit()); 1930 } 1931 // Back-edges are predecessors with an anti-dependence. 1932 for (const auto &I : maxHeight->Preds) { 1933 if (I.getKind() != SDep::Anti) 1934 continue; 1935 if (Nodes.count(I.getSUnit()) == 0) 1936 continue; 1937 if (NodeOrder.contains(I.getSUnit())) 1938 continue; 1939 R.insert(I.getSUnit()); 1940 } 1941 } 1942 Order = BottomUp; 1943 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1944 SmallSetVector<SUnit *, 8> N; 1945 if (pred_L(NodeOrder, N, &Nodes)) 1946 R.insert(N.begin(), N.end()); 1947 } else { 1948 // Choose the node with the maximum depth. If more than one, choose 1949 // the node with the maximum ZeroLatencyDepth. If still more than one, 1950 // choose the node with the lowest MOV. 1951 while (!R.empty()) { 1952 SUnit *maxDepth = nullptr; 1953 for (SUnit *I : R) { 1954 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1955 maxDepth = I; 1956 else if (getDepth(I) == getDepth(maxDepth) && 1957 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1958 maxDepth = I; 1959 else if (getDepth(I) == getDepth(maxDepth) && 1960 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1961 getMOV(I) < getMOV(maxDepth)) 1962 maxDepth = I; 1963 } 1964 NodeOrder.insert(maxDepth); 1965 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1966 R.remove(maxDepth); 1967 if (Nodes.isExceedSU(maxDepth)) { 1968 Order = TopDown; 1969 R.clear(); 1970 R.insert(Nodes.getNode(0)); 1971 break; 1972 } 1973 for (const auto &I : maxDepth->Preds) { 1974 if (Nodes.count(I.getSUnit()) == 0) 1975 continue; 1976 if (NodeOrder.contains(I.getSUnit())) 1977 continue; 1978 R.insert(I.getSUnit()); 1979 } 1980 // Back-edges are predecessors with an anti-dependence. 1981 for (const auto &I : maxDepth->Succs) { 1982 if (I.getKind() != SDep::Anti) 1983 continue; 1984 if (Nodes.count(I.getSUnit()) == 0) 1985 continue; 1986 if (NodeOrder.contains(I.getSUnit())) 1987 continue; 1988 R.insert(I.getSUnit()); 1989 } 1990 } 1991 Order = TopDown; 1992 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1993 SmallSetVector<SUnit *, 8> N; 1994 if (succ_L(NodeOrder, N, &Nodes)) 1995 R.insert(N.begin(), N.end()); 1996 } 1997 } 1998 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1999 } 2000 2001 LLVM_DEBUG({ 2002 dbgs() << "Node order: "; 2003 for (SUnit *I : NodeOrder) 2004 dbgs() << " " << I->NodeNum << " "; 2005 dbgs() << "\n"; 2006 }); 2007 } 2008 2009 /// Process the nodes in the computed order and create the pipelined schedule 2010 /// of the instructions, if possible. Return true if a schedule is found. 2011 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2012 2013 if (NodeOrder.empty()){ 2014 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2015 return false; 2016 } 2017 2018 bool scheduleFound = false; 2019 // Keep increasing II until a valid schedule is found. 2020 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2021 Schedule.reset(); 2022 Schedule.setInitiationInterval(II); 2023 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2024 2025 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2026 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2027 do { 2028 SUnit *SU = *NI; 2029 2030 // Compute the schedule time for the instruction, which is based 2031 // upon the scheduled time for any predecessors/successors. 2032 int EarlyStart = INT_MIN; 2033 int LateStart = INT_MAX; 2034 // These values are set when the size of the schedule window is limited 2035 // due to chain dependences. 2036 int SchedEnd = INT_MAX; 2037 int SchedStart = INT_MIN; 2038 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2039 II, this); 2040 LLVM_DEBUG({ 2041 dbgs() << "\n"; 2042 dbgs() << "Inst (" << SU->NodeNum << ") "; 2043 SU->getInstr()->dump(); 2044 dbgs() << "\n"; 2045 }); 2046 LLVM_DEBUG({ 2047 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2048 LateStart, SchedEnd, SchedStart); 2049 }); 2050 2051 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2052 SchedStart > LateStart) 2053 scheduleFound = false; 2054 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2055 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2056 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2057 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2058 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2059 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2060 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2061 SchedEnd = 2062 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2063 // When scheduling a Phi it is better to start at the late cycle and go 2064 // backwards. The default order may insert the Phi too far away from 2065 // its first dependence. 2066 if (SU->getInstr()->isPHI()) 2067 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2068 else 2069 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2070 } else { 2071 int FirstCycle = Schedule.getFirstCycle(); 2072 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2073 FirstCycle + getASAP(SU) + II - 1, II); 2074 } 2075 // Even if we find a schedule, make sure the schedule doesn't exceed the 2076 // allowable number of stages. We keep trying if this happens. 2077 if (scheduleFound) 2078 if (SwpMaxStages > -1 && 2079 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2080 scheduleFound = false; 2081 2082 LLVM_DEBUG({ 2083 if (!scheduleFound) 2084 dbgs() << "\tCan't schedule\n"; 2085 }); 2086 } while (++NI != NE && scheduleFound); 2087 2088 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2089 if (scheduleFound) 2090 scheduleFound = 2091 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2092 2093 // If a schedule is found, check if it is a valid schedule too. 2094 if (scheduleFound) 2095 scheduleFound = Schedule.isValidSchedule(this); 2096 } 2097 2098 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2099 << " (II=" << Schedule.getInitiationInterval() 2100 << ")\n"); 2101 2102 if (scheduleFound) { 2103 Schedule.finalizeSchedule(this); 2104 Pass.ORE->emit([&]() { 2105 return MachineOptimizationRemarkAnalysis( 2106 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2107 << "Schedule found with Initiation Interval: " 2108 << ore::NV("II", Schedule.getInitiationInterval()) 2109 << ", MaxStageCount: " 2110 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2111 }); 2112 } else 2113 Schedule.reset(); 2114 2115 return scheduleFound && Schedule.getMaxStageCount() > 0; 2116 } 2117 2118 /// Return true if we can compute the amount the instruction changes 2119 /// during each iteration. Set Delta to the amount of the change. 2120 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2121 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2122 const MachineOperand *BaseOp; 2123 int64_t Offset; 2124 bool OffsetIsScalable; 2125 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2126 return false; 2127 2128 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2129 if (OffsetIsScalable) 2130 return false; 2131 2132 if (!BaseOp->isReg()) 2133 return false; 2134 2135 Register BaseReg = BaseOp->getReg(); 2136 2137 MachineRegisterInfo &MRI = MF.getRegInfo(); 2138 // Check if there is a Phi. If so, get the definition in the loop. 2139 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2140 if (BaseDef && BaseDef->isPHI()) { 2141 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2142 BaseDef = MRI.getVRegDef(BaseReg); 2143 } 2144 if (!BaseDef) 2145 return false; 2146 2147 int D = 0; 2148 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2149 return false; 2150 2151 Delta = D; 2152 return true; 2153 } 2154 2155 /// Check if we can change the instruction to use an offset value from the 2156 /// previous iteration. If so, return true and set the base and offset values 2157 /// so that we can rewrite the load, if necessary. 2158 /// v1 = Phi(v0, v3) 2159 /// v2 = load v1, 0 2160 /// v3 = post_store v1, 4, x 2161 /// This function enables the load to be rewritten as v2 = load v3, 4. 2162 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2163 unsigned &BasePos, 2164 unsigned &OffsetPos, 2165 unsigned &NewBase, 2166 int64_t &Offset) { 2167 // Get the load instruction. 2168 if (TII->isPostIncrement(*MI)) 2169 return false; 2170 unsigned BasePosLd, OffsetPosLd; 2171 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2172 return false; 2173 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2174 2175 // Look for the Phi instruction. 2176 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2177 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2178 if (!Phi || !Phi->isPHI()) 2179 return false; 2180 // Get the register defined in the loop block. 2181 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2182 if (!PrevReg) 2183 return false; 2184 2185 // Check for the post-increment load/store instruction. 2186 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2187 if (!PrevDef || PrevDef == MI) 2188 return false; 2189 2190 if (!TII->isPostIncrement(*PrevDef)) 2191 return false; 2192 2193 unsigned BasePos1 = 0, OffsetPos1 = 0; 2194 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2195 return false; 2196 2197 // Make sure that the instructions do not access the same memory location in 2198 // the next iteration. 2199 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2200 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2201 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2202 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2203 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2204 MF.deleteMachineInstr(NewMI); 2205 if (!Disjoint) 2206 return false; 2207 2208 // Set the return value once we determine that we return true. 2209 BasePos = BasePosLd; 2210 OffsetPos = OffsetPosLd; 2211 NewBase = PrevReg; 2212 Offset = StoreOffset; 2213 return true; 2214 } 2215 2216 /// Apply changes to the instruction if needed. The changes are need 2217 /// to improve the scheduling and depend up on the final schedule. 2218 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2219 SMSchedule &Schedule) { 2220 SUnit *SU = getSUnit(MI); 2221 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2222 InstrChanges.find(SU); 2223 if (It != InstrChanges.end()) { 2224 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2225 unsigned BasePos, OffsetPos; 2226 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2227 return; 2228 Register BaseReg = MI->getOperand(BasePos).getReg(); 2229 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2230 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2231 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2232 int BaseStageNum = Schedule.stageScheduled(SU); 2233 int BaseCycleNum = Schedule.cycleScheduled(SU); 2234 if (BaseStageNum < DefStageNum) { 2235 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2236 int OffsetDiff = DefStageNum - BaseStageNum; 2237 if (DefCycleNum < BaseCycleNum) { 2238 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2239 if (OffsetDiff > 0) 2240 --OffsetDiff; 2241 } 2242 int64_t NewOffset = 2243 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2244 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2245 SU->setInstr(NewMI); 2246 MISUnitMap[NewMI] = SU; 2247 NewMIs[MI] = NewMI; 2248 } 2249 } 2250 } 2251 2252 /// Return the instruction in the loop that defines the register. 2253 /// If the definition is a Phi, then follow the Phi operand to 2254 /// the instruction in the loop. 2255 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2256 SmallPtrSet<MachineInstr *, 8> Visited; 2257 MachineInstr *Def = MRI.getVRegDef(Reg); 2258 while (Def->isPHI()) { 2259 if (!Visited.insert(Def).second) 2260 break; 2261 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2262 if (Def->getOperand(i + 1).getMBB() == BB) { 2263 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2264 break; 2265 } 2266 } 2267 return Def; 2268 } 2269 2270 /// Return true for an order or output dependence that is loop carried 2271 /// potentially. A dependence is loop carried if the destination defines a valu 2272 /// that may be used or defined by the source in a subsequent iteration. 2273 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2274 bool isSucc) { 2275 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2276 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2277 return false; 2278 2279 if (!SwpPruneLoopCarried) 2280 return true; 2281 2282 if (Dep.getKind() == SDep::Output) 2283 return true; 2284 2285 MachineInstr *SI = Source->getInstr(); 2286 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2287 if (!isSucc) 2288 std::swap(SI, DI); 2289 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2290 2291 // Assume ordered loads and stores may have a loop carried dependence. 2292 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2293 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2294 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2295 return true; 2296 2297 // Only chain dependences between a load and store can be loop carried. 2298 if (!DI->mayStore() || !SI->mayLoad()) 2299 return false; 2300 2301 unsigned DeltaS, DeltaD; 2302 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2303 return true; 2304 2305 const MachineOperand *BaseOpS, *BaseOpD; 2306 int64_t OffsetS, OffsetD; 2307 bool OffsetSIsScalable, OffsetDIsScalable; 2308 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2309 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2310 TRI) || 2311 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2312 TRI)) 2313 return true; 2314 2315 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2316 "Expected offsets to be byte offsets"); 2317 2318 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2319 return true; 2320 2321 // Check that the base register is incremented by a constant value for each 2322 // iteration. 2323 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2324 if (!Def || !Def->isPHI()) 2325 return true; 2326 unsigned InitVal = 0; 2327 unsigned LoopVal = 0; 2328 getPhiRegs(*Def, BB, InitVal, LoopVal); 2329 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2330 int D = 0; 2331 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2332 return true; 2333 2334 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2335 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2336 2337 // This is the main test, which checks the offset values and the loop 2338 // increment value to determine if the accesses may be loop carried. 2339 if (AccessSizeS == MemoryLocation::UnknownSize || 2340 AccessSizeD == MemoryLocation::UnknownSize) 2341 return true; 2342 2343 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2344 return true; 2345 2346 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2347 } 2348 2349 void SwingSchedulerDAG::postprocessDAG() { 2350 for (auto &M : Mutations) 2351 M->apply(this); 2352 } 2353 2354 /// Try to schedule the node at the specified StartCycle and continue 2355 /// until the node is schedule or the EndCycle is reached. This function 2356 /// returns true if the node is scheduled. This routine may search either 2357 /// forward or backward for a place to insert the instruction based upon 2358 /// the relative values of StartCycle and EndCycle. 2359 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2360 bool forward = true; 2361 LLVM_DEBUG({ 2362 dbgs() << "Trying to insert node between " << StartCycle << " and " 2363 << EndCycle << " II: " << II << "\n"; 2364 }); 2365 if (StartCycle > EndCycle) 2366 forward = false; 2367 2368 // The terminating condition depends on the direction. 2369 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2370 for (int curCycle = StartCycle; curCycle != termCycle; 2371 forward ? ++curCycle : --curCycle) { 2372 2373 // Add the already scheduled instructions at the specified cycle to the 2374 // DFA. 2375 ProcItinResources.clearResources(); 2376 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2377 checkCycle <= LastCycle; checkCycle += II) { 2378 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2379 2380 for (SUnit *CI : cycleInstrs) { 2381 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2382 continue; 2383 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2384 "These instructions have already been scheduled."); 2385 ProcItinResources.reserveResources(*CI->getInstr()); 2386 } 2387 } 2388 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2389 ProcItinResources.canReserveResources(*SU->getInstr())) { 2390 LLVM_DEBUG({ 2391 dbgs() << "\tinsert at cycle " << curCycle << " "; 2392 SU->getInstr()->dump(); 2393 }); 2394 2395 ScheduledInstrs[curCycle].push_back(SU); 2396 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2397 if (curCycle > LastCycle) 2398 LastCycle = curCycle; 2399 if (curCycle < FirstCycle) 2400 FirstCycle = curCycle; 2401 return true; 2402 } 2403 LLVM_DEBUG({ 2404 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2405 SU->getInstr()->dump(); 2406 }); 2407 } 2408 return false; 2409 } 2410 2411 // Return the cycle of the earliest scheduled instruction in the chain. 2412 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2413 SmallPtrSet<SUnit *, 8> Visited; 2414 SmallVector<SDep, 8> Worklist; 2415 Worklist.push_back(Dep); 2416 int EarlyCycle = INT_MAX; 2417 while (!Worklist.empty()) { 2418 const SDep &Cur = Worklist.pop_back_val(); 2419 SUnit *PrevSU = Cur.getSUnit(); 2420 if (Visited.count(PrevSU)) 2421 continue; 2422 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2423 if (it == InstrToCycle.end()) 2424 continue; 2425 EarlyCycle = std::min(EarlyCycle, it->second); 2426 for (const auto &PI : PrevSU->Preds) 2427 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2428 Worklist.push_back(PI); 2429 Visited.insert(PrevSU); 2430 } 2431 return EarlyCycle; 2432 } 2433 2434 // Return the cycle of the latest scheduled instruction in the chain. 2435 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2436 SmallPtrSet<SUnit *, 8> Visited; 2437 SmallVector<SDep, 8> Worklist; 2438 Worklist.push_back(Dep); 2439 int LateCycle = INT_MIN; 2440 while (!Worklist.empty()) { 2441 const SDep &Cur = Worklist.pop_back_val(); 2442 SUnit *SuccSU = Cur.getSUnit(); 2443 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2444 continue; 2445 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2446 if (it == InstrToCycle.end()) 2447 continue; 2448 LateCycle = std::max(LateCycle, it->second); 2449 for (const auto &SI : SuccSU->Succs) 2450 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2451 Worklist.push_back(SI); 2452 Visited.insert(SuccSU); 2453 } 2454 return LateCycle; 2455 } 2456 2457 /// If an instruction has a use that spans multiple iterations, then 2458 /// return true. These instructions are characterized by having a back-ege 2459 /// to a Phi, which contains a reference to another Phi. 2460 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2461 for (auto &P : SU->Preds) 2462 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2463 for (auto &S : P.getSUnit()->Succs) 2464 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2465 return P.getSUnit(); 2466 return nullptr; 2467 } 2468 2469 /// Compute the scheduling start slot for the instruction. The start slot 2470 /// depends on any predecessor or successor nodes scheduled already. 2471 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2472 int *MinEnd, int *MaxStart, int II, 2473 SwingSchedulerDAG *DAG) { 2474 // Iterate over each instruction that has been scheduled already. The start 2475 // slot computation depends on whether the previously scheduled instruction 2476 // is a predecessor or successor of the specified instruction. 2477 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2478 2479 // Iterate over each instruction in the current cycle. 2480 for (SUnit *I : getInstructions(cycle)) { 2481 // Because we're processing a DAG for the dependences, we recognize 2482 // the back-edge in recurrences by anti dependences. 2483 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2484 const SDep &Dep = SU->Preds[i]; 2485 if (Dep.getSUnit() == I) { 2486 if (!DAG->isBackedge(SU, Dep)) { 2487 int EarlyStart = cycle + Dep.getLatency() - 2488 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2489 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2490 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2491 int End = earliestCycleInChain(Dep) + (II - 1); 2492 *MinEnd = std::min(*MinEnd, End); 2493 } 2494 } else { 2495 int LateStart = cycle - Dep.getLatency() + 2496 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2497 *MinLateStart = std::min(*MinLateStart, LateStart); 2498 } 2499 } 2500 // For instruction that requires multiple iterations, make sure that 2501 // the dependent instruction is not scheduled past the definition. 2502 SUnit *BE = multipleIterations(I, DAG); 2503 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2504 !SU->isPred(I)) 2505 *MinLateStart = std::min(*MinLateStart, cycle); 2506 } 2507 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2508 if (SU->Succs[i].getSUnit() == I) { 2509 const SDep &Dep = SU->Succs[i]; 2510 if (!DAG->isBackedge(SU, Dep)) { 2511 int LateStart = cycle - Dep.getLatency() + 2512 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2513 *MinLateStart = std::min(*MinLateStart, LateStart); 2514 if (DAG->isLoopCarriedDep(SU, Dep)) { 2515 int Start = latestCycleInChain(Dep) + 1 - II; 2516 *MaxStart = std::max(*MaxStart, Start); 2517 } 2518 } else { 2519 int EarlyStart = cycle + Dep.getLatency() - 2520 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2521 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2522 } 2523 } 2524 } 2525 } 2526 } 2527 } 2528 2529 /// Order the instructions within a cycle so that the definitions occur 2530 /// before the uses. Returns true if the instruction is added to the start 2531 /// of the list, or false if added to the end. 2532 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2533 std::deque<SUnit *> &Insts) { 2534 MachineInstr *MI = SU->getInstr(); 2535 bool OrderBeforeUse = false; 2536 bool OrderAfterDef = false; 2537 bool OrderBeforeDef = false; 2538 unsigned MoveDef = 0; 2539 unsigned MoveUse = 0; 2540 int StageInst1 = stageScheduled(SU); 2541 2542 unsigned Pos = 0; 2543 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2544 ++I, ++Pos) { 2545 for (MachineOperand &MO : MI->operands()) { 2546 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2547 continue; 2548 2549 Register Reg = MO.getReg(); 2550 unsigned BasePos, OffsetPos; 2551 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2552 if (MI->getOperand(BasePos).getReg() == Reg) 2553 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2554 Reg = NewReg; 2555 bool Reads, Writes; 2556 std::tie(Reads, Writes) = 2557 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2558 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2559 OrderBeforeUse = true; 2560 if (MoveUse == 0) 2561 MoveUse = Pos; 2562 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2563 // Add the instruction after the scheduled instruction. 2564 OrderAfterDef = true; 2565 MoveDef = Pos; 2566 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2567 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2568 OrderBeforeUse = true; 2569 if (MoveUse == 0) 2570 MoveUse = Pos; 2571 } else { 2572 OrderAfterDef = true; 2573 MoveDef = Pos; 2574 } 2575 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2576 OrderBeforeUse = true; 2577 if (MoveUse == 0) 2578 MoveUse = Pos; 2579 if (MoveUse != 0) { 2580 OrderAfterDef = true; 2581 MoveDef = Pos - 1; 2582 } 2583 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2584 // Add the instruction before the scheduled instruction. 2585 OrderBeforeUse = true; 2586 if (MoveUse == 0) 2587 MoveUse = Pos; 2588 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2589 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2590 if (MoveUse == 0) { 2591 OrderBeforeDef = true; 2592 MoveUse = Pos; 2593 } 2594 } 2595 } 2596 // Check for order dependences between instructions. Make sure the source 2597 // is ordered before the destination. 2598 for (auto &S : SU->Succs) { 2599 if (S.getSUnit() != *I) 2600 continue; 2601 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2602 OrderBeforeUse = true; 2603 if (Pos < MoveUse) 2604 MoveUse = Pos; 2605 } 2606 // We did not handle HW dependences in previous for loop, 2607 // and we normally set Latency = 0 for Anti deps, 2608 // so may have nodes in same cycle with Anti denpendent on HW regs. 2609 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2610 OrderBeforeUse = true; 2611 if ((MoveUse == 0) || (Pos < MoveUse)) 2612 MoveUse = Pos; 2613 } 2614 } 2615 for (auto &P : SU->Preds) { 2616 if (P.getSUnit() != *I) 2617 continue; 2618 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2619 OrderAfterDef = true; 2620 MoveDef = Pos; 2621 } 2622 } 2623 } 2624 2625 // A circular dependence. 2626 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2627 OrderBeforeUse = false; 2628 2629 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2630 // to a loop-carried dependence. 2631 if (OrderBeforeDef) 2632 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2633 2634 // The uncommon case when the instruction order needs to be updated because 2635 // there is both a use and def. 2636 if (OrderBeforeUse && OrderAfterDef) { 2637 SUnit *UseSU = Insts.at(MoveUse); 2638 SUnit *DefSU = Insts.at(MoveDef); 2639 if (MoveUse > MoveDef) { 2640 Insts.erase(Insts.begin() + MoveUse); 2641 Insts.erase(Insts.begin() + MoveDef); 2642 } else { 2643 Insts.erase(Insts.begin() + MoveDef); 2644 Insts.erase(Insts.begin() + MoveUse); 2645 } 2646 orderDependence(SSD, UseSU, Insts); 2647 orderDependence(SSD, SU, Insts); 2648 orderDependence(SSD, DefSU, Insts); 2649 return; 2650 } 2651 // Put the new instruction first if there is a use in the list. Otherwise, 2652 // put it at the end of the list. 2653 if (OrderBeforeUse) 2654 Insts.push_front(SU); 2655 else 2656 Insts.push_back(SU); 2657 } 2658 2659 /// Return true if the scheduled Phi has a loop carried operand. 2660 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2661 if (!Phi.isPHI()) 2662 return false; 2663 assert(Phi.isPHI() && "Expecting a Phi."); 2664 SUnit *DefSU = SSD->getSUnit(&Phi); 2665 unsigned DefCycle = cycleScheduled(DefSU); 2666 int DefStage = stageScheduled(DefSU); 2667 2668 unsigned InitVal = 0; 2669 unsigned LoopVal = 0; 2670 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2671 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2672 if (!UseSU) 2673 return true; 2674 if (UseSU->getInstr()->isPHI()) 2675 return true; 2676 unsigned LoopCycle = cycleScheduled(UseSU); 2677 int LoopStage = stageScheduled(UseSU); 2678 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2679 } 2680 2681 /// Return true if the instruction is a definition that is loop carried 2682 /// and defines the use on the next iteration. 2683 /// v1 = phi(v2, v3) 2684 /// (Def) v3 = op v1 2685 /// (MO) = v1 2686 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2687 /// register. 2688 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2689 MachineInstr *Def, MachineOperand &MO) { 2690 if (!MO.isReg()) 2691 return false; 2692 if (Def->isPHI()) 2693 return false; 2694 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2695 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2696 return false; 2697 if (!isLoopCarried(SSD, *Phi)) 2698 return false; 2699 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2700 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2701 MachineOperand &DMO = Def->getOperand(i); 2702 if (!DMO.isReg() || !DMO.isDef()) 2703 continue; 2704 if (DMO.getReg() == LoopReg) 2705 return true; 2706 } 2707 return false; 2708 } 2709 2710 /// Determine transitive dependences of unpipelineable instructions 2711 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 2712 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2713 SmallSet<SUnit *, 8> DoNotPipeline; 2714 SmallVector<SUnit *, 8> Worklist; 2715 2716 for (auto &SU : SSD->SUnits) 2717 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 2718 Worklist.push_back(&SU); 2719 2720 while (!Worklist.empty()) { 2721 auto SU = Worklist.pop_back_val(); 2722 if (DoNotPipeline.count(SU)) 2723 continue; 2724 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 2725 DoNotPipeline.insert(SU); 2726 for (auto &Dep : SU->Preds) 2727 Worklist.push_back(Dep.getSUnit()); 2728 if (SU->getInstr()->isPHI()) 2729 for (auto &Dep : SU->Succs) 2730 if (Dep.getKind() == SDep::Anti) 2731 Worklist.push_back(Dep.getSUnit()); 2732 } 2733 return DoNotPipeline; 2734 } 2735 2736 // Determine all instructions upon which any unpipelineable instruction depends 2737 // and ensure that they are in stage 0. If unable to do so, return false. 2738 bool SMSchedule::normalizeNonPipelinedInstructions( 2739 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2740 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 2741 2742 int NewLastCycle = INT_MIN; 2743 for (SUnit &SU : SSD->SUnits) { 2744 if (!SU.isInstr()) 2745 continue; 2746 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 2747 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 2748 continue; 2749 } 2750 2751 // Put the non-pipelined instruction as early as possible in the schedule 2752 int NewCycle = getFirstCycle(); 2753 for (auto &Dep : SU.Preds) 2754 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 2755 2756 int OldCycle = InstrToCycle[&SU]; 2757 if (OldCycle != NewCycle) { 2758 InstrToCycle[&SU] = NewCycle; 2759 auto &OldS = getInstructions(OldCycle); 2760 llvm::erase_value(OldS, &SU); 2761 getInstructions(NewCycle).emplace_back(&SU); 2762 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 2763 << ") is not pipelined; moving from cycle " << OldCycle 2764 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 2765 } 2766 NewLastCycle = std::max(NewLastCycle, NewCycle); 2767 } 2768 LastCycle = NewLastCycle; 2769 return true; 2770 } 2771 2772 // Check if the generated schedule is valid. This function checks if 2773 // an instruction that uses a physical register is scheduled in a 2774 // different stage than the definition. The pipeliner does not handle 2775 // physical register values that may cross a basic block boundary. 2776 // Furthermore, if a physical def/use pair is assigned to the same 2777 // cycle, orderDependence does not guarantee def/use ordering, so that 2778 // case should be considered invalid. (The test checks for both 2779 // earlier and same-cycle use to be more robust.) 2780 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2781 for (SUnit &SU : SSD->SUnits) { 2782 if (!SU.hasPhysRegDefs) 2783 continue; 2784 int StageDef = stageScheduled(&SU); 2785 int CycleDef = InstrToCycle[&SU]; 2786 assert(StageDef != -1 && "Instruction should have been scheduled."); 2787 for (auto &SI : SU.Succs) 2788 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 2789 if (Register::isPhysicalRegister(SI.getReg())) { 2790 if (stageScheduled(SI.getSUnit()) != StageDef) 2791 return false; 2792 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 2793 return false; 2794 } 2795 } 2796 return true; 2797 } 2798 2799 /// A property of the node order in swing-modulo-scheduling is 2800 /// that for nodes outside circuits the following holds: 2801 /// none of them is scheduled after both a successor and a 2802 /// predecessor. 2803 /// The method below checks whether the property is met. 2804 /// If not, debug information is printed and statistics information updated. 2805 /// Note that we do not use an assert statement. 2806 /// The reason is that although an invalid node oder may prevent 2807 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2808 /// it does not lead to the generation of incorrect code. 2809 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2810 2811 // a sorted vector that maps each SUnit to its index in the NodeOrder 2812 typedef std::pair<SUnit *, unsigned> UnitIndex; 2813 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2814 2815 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2816 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2817 2818 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2819 return std::get<0>(i1) < std::get<0>(i2); 2820 }; 2821 2822 // sort, so that we can perform a binary search 2823 llvm::sort(Indices, CompareKey); 2824 2825 bool Valid = true; 2826 (void)Valid; 2827 // for each SUnit in the NodeOrder, check whether 2828 // it appears after both a successor and a predecessor 2829 // of the SUnit. If this is the case, and the SUnit 2830 // is not part of circuit, then the NodeOrder is not 2831 // valid. 2832 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2833 SUnit *SU = NodeOrder[i]; 2834 unsigned Index = i; 2835 2836 bool PredBefore = false; 2837 bool SuccBefore = false; 2838 2839 SUnit *Succ; 2840 SUnit *Pred; 2841 (void)Succ; 2842 (void)Pred; 2843 2844 for (SDep &PredEdge : SU->Preds) { 2845 SUnit *PredSU = PredEdge.getSUnit(); 2846 unsigned PredIndex = std::get<1>( 2847 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2848 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2849 PredBefore = true; 2850 Pred = PredSU; 2851 break; 2852 } 2853 } 2854 2855 for (SDep &SuccEdge : SU->Succs) { 2856 SUnit *SuccSU = SuccEdge.getSUnit(); 2857 // Do not process a boundary node, it was not included in NodeOrder, 2858 // hence not in Indices either, call to std::lower_bound() below will 2859 // return Indices.end(). 2860 if (SuccSU->isBoundaryNode()) 2861 continue; 2862 unsigned SuccIndex = std::get<1>( 2863 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2864 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2865 SuccBefore = true; 2866 Succ = SuccSU; 2867 break; 2868 } 2869 } 2870 2871 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2872 // instructions in circuits are allowed to be scheduled 2873 // after both a successor and predecessor. 2874 bool InCircuit = llvm::any_of( 2875 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2876 if (InCircuit) 2877 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2878 else { 2879 Valid = false; 2880 NumNodeOrderIssues++; 2881 LLVM_DEBUG(dbgs() << "Predecessor ";); 2882 } 2883 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2884 << " are scheduled before node " << SU->NodeNum 2885 << "\n";); 2886 } 2887 } 2888 2889 LLVM_DEBUG({ 2890 if (!Valid) 2891 dbgs() << "Invalid node order found!\n"; 2892 }); 2893 } 2894 2895 /// Attempt to fix the degenerate cases when the instruction serialization 2896 /// causes the register lifetimes to overlap. For example, 2897 /// p' = store_pi(p, b) 2898 /// = load p, offset 2899 /// In this case p and p' overlap, which means that two registers are needed. 2900 /// Instead, this function changes the load to use p' and updates the offset. 2901 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2902 unsigned OverlapReg = 0; 2903 unsigned NewBaseReg = 0; 2904 for (SUnit *SU : Instrs) { 2905 MachineInstr *MI = SU->getInstr(); 2906 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2907 const MachineOperand &MO = MI->getOperand(i); 2908 // Look for an instruction that uses p. The instruction occurs in the 2909 // same cycle but occurs later in the serialized order. 2910 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2911 // Check that the instruction appears in the InstrChanges structure, 2912 // which contains instructions that can have the offset updated. 2913 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2914 InstrChanges.find(SU); 2915 if (It != InstrChanges.end()) { 2916 unsigned BasePos, OffsetPos; 2917 // Update the base register and adjust the offset. 2918 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2919 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2920 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2921 int64_t NewOffset = 2922 MI->getOperand(OffsetPos).getImm() - It->second.second; 2923 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2924 SU->setInstr(NewMI); 2925 MISUnitMap[NewMI] = SU; 2926 NewMIs[MI] = NewMI; 2927 } 2928 } 2929 OverlapReg = 0; 2930 NewBaseReg = 0; 2931 break; 2932 } 2933 // Look for an instruction of the form p' = op(p), which uses and defines 2934 // two virtual registers that get allocated to the same physical register. 2935 unsigned TiedUseIdx = 0; 2936 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2937 // OverlapReg is p in the example above. 2938 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2939 // NewBaseReg is p' in the example above. 2940 NewBaseReg = MI->getOperand(i).getReg(); 2941 break; 2942 } 2943 } 2944 } 2945 } 2946 2947 /// After the schedule has been formed, call this function to combine 2948 /// the instructions from the different stages/cycles. That is, this 2949 /// function creates a schedule that represents a single iteration. 2950 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2951 // Move all instructions to the first stage from later stages. 2952 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2953 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2954 ++stage) { 2955 std::deque<SUnit *> &cycleInstrs = 2956 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2957 for (SUnit *SU : llvm::reverse(cycleInstrs)) 2958 ScheduledInstrs[cycle].push_front(SU); 2959 } 2960 } 2961 2962 // Erase all the elements in the later stages. Only one iteration should 2963 // remain in the scheduled list, and it contains all the instructions. 2964 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2965 ScheduledInstrs.erase(cycle); 2966 2967 // Change the registers in instruction as specified in the InstrChanges 2968 // map. We need to use the new registers to create the correct order. 2969 for (const SUnit &SU : SSD->SUnits) 2970 SSD->applyInstrChange(SU.getInstr(), *this); 2971 2972 // Reorder the instructions in each cycle to fix and improve the 2973 // generated code. 2974 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2975 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2976 std::deque<SUnit *> newOrderPhi; 2977 for (SUnit *SU : cycleInstrs) { 2978 if (SU->getInstr()->isPHI()) 2979 newOrderPhi.push_back(SU); 2980 } 2981 std::deque<SUnit *> newOrderI; 2982 for (SUnit *SU : cycleInstrs) { 2983 if (!SU->getInstr()->isPHI()) 2984 orderDependence(SSD, SU, newOrderI); 2985 } 2986 // Replace the old order with the new order. 2987 cycleInstrs.swap(newOrderPhi); 2988 llvm::append_range(cycleInstrs, newOrderI); 2989 SSD->fixupRegisterOverlaps(cycleInstrs); 2990 } 2991 2992 LLVM_DEBUG(dump();); 2993 } 2994 2995 void NodeSet::print(raw_ostream &os) const { 2996 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2997 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2998 for (const auto &I : Nodes) 2999 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3000 os << "\n"; 3001 } 3002 3003 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3004 /// Print the schedule information to the given output. 3005 void SMSchedule::print(raw_ostream &os) const { 3006 // Iterate over each cycle. 3007 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3008 // Iterate over each instruction in the cycle. 3009 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3010 for (SUnit *CI : cycleInstrs->second) { 3011 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3012 os << "(" << CI->NodeNum << ") "; 3013 CI->getInstr()->print(os); 3014 os << "\n"; 3015 } 3016 } 3017 } 3018 3019 /// Utility function used for debugging to print the schedule. 3020 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3021 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3022 3023 #endif 3024 3025 void ResourceManager::initProcResourceVectors( 3026 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3027 unsigned ProcResourceID = 0; 3028 3029 // We currently limit the resource kinds to 64 and below so that we can use 3030 // uint64_t for Masks 3031 assert(SM.getNumProcResourceKinds() < 64 && 3032 "Too many kinds of resources, unsupported"); 3033 // Create a unique bitmask for every processor resource unit. 3034 // Skip resource at index 0, since it always references 'InvalidUnit'. 3035 Masks.resize(SM.getNumProcResourceKinds()); 3036 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3037 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3038 if (Desc.SubUnitsIdxBegin) 3039 continue; 3040 Masks[I] = 1ULL << ProcResourceID; 3041 ProcResourceID++; 3042 } 3043 // Create a unique bitmask for every processor resource group. 3044 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3045 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3046 if (!Desc.SubUnitsIdxBegin) 3047 continue; 3048 Masks[I] = 1ULL << ProcResourceID; 3049 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3050 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3051 ProcResourceID++; 3052 } 3053 LLVM_DEBUG({ 3054 if (SwpShowResMask) { 3055 dbgs() << "ProcResourceDesc:\n"; 3056 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3057 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3058 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3059 ProcResource->Name, I, Masks[I], 3060 ProcResource->NumUnits); 3061 } 3062 dbgs() << " -----------------\n"; 3063 } 3064 }); 3065 } 3066 3067 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3068 3069 LLVM_DEBUG({ 3070 if (SwpDebugResource) 3071 dbgs() << "canReserveResources:\n"; 3072 }); 3073 if (UseDFA) 3074 return DFAResources->canReserveResources(MID); 3075 3076 unsigned InsnClass = MID->getSchedClass(); 3077 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3078 if (!SCDesc->isValid()) { 3079 LLVM_DEBUG({ 3080 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3081 dbgs() << "isPseudo:" << MID->isPseudo() << "\n"; 3082 }); 3083 return true; 3084 } 3085 3086 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3087 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3088 for (; I != E; ++I) { 3089 if (!I->Cycles) 3090 continue; 3091 const MCProcResourceDesc *ProcResource = 3092 SM.getProcResource(I->ProcResourceIdx); 3093 unsigned NumUnits = ProcResource->NumUnits; 3094 LLVM_DEBUG({ 3095 if (SwpDebugResource) 3096 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3097 ProcResource->Name, I->ProcResourceIdx, 3098 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3099 I->Cycles); 3100 }); 3101 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3102 return false; 3103 } 3104 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3105 return true; 3106 } 3107 3108 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3109 LLVM_DEBUG({ 3110 if (SwpDebugResource) 3111 dbgs() << "reserveResources:\n"; 3112 }); 3113 if (UseDFA) 3114 return DFAResources->reserveResources(MID); 3115 3116 unsigned InsnClass = MID->getSchedClass(); 3117 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3118 if (!SCDesc->isValid()) { 3119 LLVM_DEBUG({ 3120 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3121 dbgs() << "isPseudo:" << MID->isPseudo() << "\n"; 3122 }); 3123 return; 3124 } 3125 for (const MCWriteProcResEntry &PRE : 3126 make_range(STI->getWriteProcResBegin(SCDesc), 3127 STI->getWriteProcResEnd(SCDesc))) { 3128 if (!PRE.Cycles) 3129 continue; 3130 ++ProcResourceCount[PRE.ProcResourceIdx]; 3131 LLVM_DEBUG({ 3132 if (SwpDebugResource) { 3133 const MCProcResourceDesc *ProcResource = 3134 SM.getProcResource(PRE.ProcResourceIdx); 3135 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3136 ProcResource->Name, PRE.ProcResourceIdx, 3137 ProcResourceCount[PRE.ProcResourceIdx], 3138 ProcResource->NumUnits, PRE.Cycles); 3139 } 3140 }); 3141 } 3142 LLVM_DEBUG({ 3143 if (SwpDebugResource) 3144 dbgs() << "reserveResources: done!\n\n"; 3145 }); 3146 } 3147 3148 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3149 return canReserveResources(&MI.getDesc()); 3150 } 3151 3152 void ResourceManager::reserveResources(const MachineInstr &MI) { 3153 return reserveResources(&MI.getDesc()); 3154 } 3155 3156 void ResourceManager::clearResources() { 3157 if (UseDFA) 3158 return DFAResources->clearResources(); 3159 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3160 } 3161