1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetOperations.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/ADT/iterator_range.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/CodeGen/DFAPacketizer.h" 48 #include "llvm/CodeGen/LiveIntervals.h" 49 #include "llvm/CodeGen/MachineBasicBlock.h" 50 #include "llvm/CodeGen/MachineDominators.h" 51 #include "llvm/CodeGen/MachineFunction.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstr.h" 54 #include "llvm/CodeGen/MachineInstrBuilder.h" 55 #include "llvm/CodeGen/MachineLoopInfo.h" 56 #include "llvm/CodeGen/MachineMemOperand.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachinePipeliner.h" 59 #include "llvm/CodeGen/MachineRegisterInfo.h" 60 #include "llvm/CodeGen/ModuloSchedule.h" 61 #include "llvm/CodeGen/RegisterPressure.h" 62 #include "llvm/CodeGen/ScheduleDAG.h" 63 #include "llvm/CodeGen/ScheduleDAGMutation.h" 64 #include "llvm/CodeGen/TargetOpcodes.h" 65 #include "llvm/CodeGen/TargetRegisterInfo.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/Config/llvm-config.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 #include "llvm/MC/MCInstrItineraries.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <deque> 86 #include <functional> 87 #include <iterator> 88 #include <map> 89 #include <memory> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "pipeliner" 97 98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 99 STATISTIC(NumPipelined, "Number of loops software pipelined"); 100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 109 110 /// A command line option to turn software pipelining on or off. 111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 112 cl::ZeroOrMore, 113 cl::desc("Enable Software Pipelining")); 114 115 /// A command line option to enable SWP at -Os. 116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 117 cl::desc("Enable SWP at Os."), cl::Hidden, 118 cl::init(false)); 119 120 /// A command line argument to limit minimum initial interval for pipelining. 121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 122 cl::desc("Size limit for the MII."), 123 cl::Hidden, cl::init(27)); 124 125 /// A command line argument to limit the number of stages in the pipeline. 126 static cl::opt<int> 127 SwpMaxStages("pipeliner-max-stages", 128 cl::desc("Maximum stages allowed in the generated scheduled."), 129 cl::Hidden, cl::init(3)); 130 131 /// A command line option to disable the pruning of chain dependences due to 132 /// an unrelated Phi. 133 static cl::opt<bool> 134 SwpPruneDeps("pipeliner-prune-deps", 135 cl::desc("Prune dependences between unrelated Phi nodes."), 136 cl::Hidden, cl::init(true)); 137 138 /// A command line option to disable the pruning of loop carried order 139 /// dependences. 140 static cl::opt<bool> 141 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 142 cl::desc("Prune loop carried order dependences."), 143 cl::Hidden, cl::init(true)); 144 145 #ifndef NDEBUG 146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 147 #endif 148 149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 150 cl::ReallyHidden, cl::init(false), 151 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 152 153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 154 cl::init(false)); 155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 156 cl::init(false)); 157 158 static cl::opt<bool> EmitTestAnnotations( 159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 160 cl::desc("Instead of emitting the pipelined code, annotate instructions " 161 "with the generated schedule for feeding into the " 162 "-modulo-schedule-test pass")); 163 164 static cl::opt<bool> ExperimentalCodeGen( 165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 166 cl::desc( 167 "Use the experimental peeling code generator for software pipelining")); 168 169 namespace llvm { 170 171 // A command line option to enable the CopyToPhi DAG mutation. 172 cl::opt<bool> 173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 174 cl::init(true), cl::ZeroOrMore, 175 cl::desc("Enable CopyToPhi DAG Mutation")); 176 177 } // end namespace llvm 178 179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 180 char MachinePipeliner::ID = 0; 181 #ifndef NDEBUG 182 int MachinePipeliner::NumTries = 0; 183 #endif 184 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 185 186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 187 "Modulo Software Pipelining", false, false) 188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 193 "Modulo Software Pipelining", false, false) 194 195 /// The "main" function for implementing Swing Modulo Scheduling. 196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 197 if (skipFunction(mf.getFunction())) 198 return false; 199 200 if (!EnableSWP) 201 return false; 202 203 if (mf.getFunction().getAttributes().hasAttribute( 204 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 205 !EnableSWPOptSize.getPosition()) 206 return false; 207 208 if (!mf.getSubtarget().enableMachinePipeliner()) 209 return false; 210 211 // Cannot pipeline loops without instruction itineraries if we are using 212 // DFA for the pipeliner. 213 if (mf.getSubtarget().useDFAforSMS() && 214 (!mf.getSubtarget().getInstrItineraryData() || 215 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 216 return false; 217 218 MF = &mf; 219 MLI = &getAnalysis<MachineLoopInfo>(); 220 MDT = &getAnalysis<MachineDominatorTree>(); 221 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 222 TII = MF->getSubtarget().getInstrInfo(); 223 RegClassInfo.runOnMachineFunction(*MF); 224 225 for (auto &L : *MLI) 226 scheduleLoop(*L); 227 228 return false; 229 } 230 231 /// Attempt to perform the SMS algorithm on the specified loop. This function is 232 /// the main entry point for the algorithm. The function identifies candidate 233 /// loops, calculates the minimum initiation interval, and attempts to schedule 234 /// the loop. 235 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 236 bool Changed = false; 237 for (auto &InnerLoop : L) 238 Changed |= scheduleLoop(*InnerLoop); 239 240 #ifndef NDEBUG 241 // Stop trying after reaching the limit (if any). 242 int Limit = SwpLoopLimit; 243 if (Limit >= 0) { 244 if (NumTries >= SwpLoopLimit) 245 return Changed; 246 NumTries++; 247 } 248 #endif 249 250 setPragmaPipelineOptions(L); 251 if (!canPipelineLoop(L)) { 252 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 253 ORE->emit([&]() { 254 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 255 L.getStartLoc(), L.getHeader()) 256 << "Failed to pipeline loop"; 257 }); 258 259 return Changed; 260 } 261 262 ++NumTrytoPipeline; 263 264 Changed = swingModuloScheduler(L); 265 266 return Changed; 267 } 268 269 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 270 // Reset the pragma for the next loop in iteration. 271 disabledByPragma = false; 272 II_setByPragma = 0; 273 274 MachineBasicBlock *LBLK = L.getTopBlock(); 275 276 if (LBLK == nullptr) 277 return; 278 279 const BasicBlock *BBLK = LBLK->getBasicBlock(); 280 if (BBLK == nullptr) 281 return; 282 283 const Instruction *TI = BBLK->getTerminator(); 284 if (TI == nullptr) 285 return; 286 287 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 288 if (LoopID == nullptr) 289 return; 290 291 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 292 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 293 294 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 295 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 296 297 if (MD == nullptr) 298 continue; 299 300 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 301 302 if (S == nullptr) 303 continue; 304 305 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 306 assert(MD->getNumOperands() == 2 && 307 "Pipeline initiation interval hint metadata should have two operands."); 308 II_setByPragma = 309 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 310 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 311 } else if (S->getString() == "llvm.loop.pipeline.disable") { 312 disabledByPragma = true; 313 } 314 } 315 } 316 317 /// Return true if the loop can be software pipelined. The algorithm is 318 /// restricted to loops with a single basic block. Make sure that the 319 /// branch in the loop can be analyzed. 320 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 321 if (L.getNumBlocks() != 1) { 322 ORE->emit([&]() { 323 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 324 L.getStartLoc(), L.getHeader()) 325 << "Not a single basic block: " 326 << ore::NV("NumBlocks", L.getNumBlocks()); 327 }); 328 return false; 329 } 330 331 if (disabledByPragma) { 332 ORE->emit([&]() { 333 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 334 L.getStartLoc(), L.getHeader()) 335 << "Disabled by Pragma."; 336 }); 337 return false; 338 } 339 340 // Check if the branch can't be understood because we can't do pipelining 341 // if that's the case. 342 LI.TBB = nullptr; 343 LI.FBB = nullptr; 344 LI.BrCond.clear(); 345 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 346 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 347 NumFailBranch++; 348 ORE->emit([&]() { 349 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 350 L.getStartLoc(), L.getHeader()) 351 << "The branch can't be understood"; 352 }); 353 return false; 354 } 355 356 LI.LoopInductionVar = nullptr; 357 LI.LoopCompare = nullptr; 358 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 359 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 360 NumFailLoop++; 361 ORE->emit([&]() { 362 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 363 L.getStartLoc(), L.getHeader()) 364 << "The loop structure is not supported"; 365 }); 366 return false; 367 } 368 369 if (!L.getLoopPreheader()) { 370 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 371 NumFailPreheader++; 372 ORE->emit([&]() { 373 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 374 L.getStartLoc(), L.getHeader()) 375 << "No loop preheader found"; 376 }); 377 return false; 378 } 379 380 // Remove any subregisters from inputs to phi nodes. 381 preprocessPhiNodes(*L.getHeader()); 382 return true; 383 } 384 385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 386 MachineRegisterInfo &MRI = MF->getRegInfo(); 387 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 388 389 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 390 MachineOperand &DefOp = PI.getOperand(0); 391 assert(DefOp.getSubReg() == 0); 392 auto *RC = MRI.getRegClass(DefOp.getReg()); 393 394 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 395 MachineOperand &RegOp = PI.getOperand(i); 396 if (RegOp.getSubReg() == 0) 397 continue; 398 399 // If the operand uses a subregister, replace it with a new register 400 // without subregisters, and generate a copy to the new register. 401 Register NewReg = MRI.createVirtualRegister(RC); 402 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 403 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 404 const DebugLoc &DL = PredB.findDebugLoc(At); 405 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 406 .addReg(RegOp.getReg(), getRegState(RegOp), 407 RegOp.getSubReg()); 408 Slots.insertMachineInstrInMaps(*Copy); 409 RegOp.setReg(NewReg); 410 RegOp.setSubReg(0); 411 } 412 } 413 } 414 415 /// The SMS algorithm consists of the following main steps: 416 /// 1. Computation and analysis of the dependence graph. 417 /// 2. Ordering of the nodes (instructions). 418 /// 3. Attempt to Schedule the loop. 419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 420 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 421 422 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 423 II_setByPragma); 424 425 MachineBasicBlock *MBB = L.getHeader(); 426 // The kernel should not include any terminator instructions. These 427 // will be added back later. 428 SMS.startBlock(MBB); 429 430 // Compute the number of 'real' instructions in the basic block by 431 // ignoring terminators. 432 unsigned size = MBB->size(); 433 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 434 E = MBB->instr_end(); 435 I != E; ++I, --size) 436 ; 437 438 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 439 SMS.schedule(); 440 SMS.exitRegion(); 441 442 SMS.finishBlock(); 443 return SMS.hasNewSchedule(); 444 } 445 446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 447 AU.addRequired<AAResultsWrapperPass>(); 448 AU.addPreserved<AAResultsWrapperPass>(); 449 AU.addRequired<MachineLoopInfo>(); 450 AU.addRequired<MachineDominatorTree>(); 451 AU.addRequired<LiveIntervals>(); 452 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 453 MachineFunctionPass::getAnalysisUsage(AU); 454 } 455 456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 457 if (II_setByPragma > 0) 458 MII = II_setByPragma; 459 else 460 MII = std::max(ResMII, RecMII); 461 } 462 463 void SwingSchedulerDAG::setMAX_II() { 464 if (II_setByPragma > 0) 465 MAX_II = II_setByPragma; 466 else 467 MAX_II = MII + 10; 468 } 469 470 /// We override the schedule function in ScheduleDAGInstrs to implement the 471 /// scheduling part of the Swing Modulo Scheduling algorithm. 472 void SwingSchedulerDAG::schedule() { 473 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 474 buildSchedGraph(AA); 475 addLoopCarriedDependences(AA); 476 updatePhiDependences(); 477 Topo.InitDAGTopologicalSorting(); 478 changeDependences(); 479 postprocessDAG(); 480 LLVM_DEBUG(dump()); 481 482 NodeSetType NodeSets; 483 findCircuits(NodeSets); 484 NodeSetType Circuits = NodeSets; 485 486 // Calculate the MII. 487 unsigned ResMII = calculateResMII(); 488 unsigned RecMII = calculateRecMII(NodeSets); 489 490 fuseRecs(NodeSets); 491 492 // This flag is used for testing and can cause correctness problems. 493 if (SwpIgnoreRecMII) 494 RecMII = 0; 495 496 setMII(ResMII, RecMII); 497 setMAX_II(); 498 499 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 500 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 501 502 // Can't schedule a loop without a valid MII. 503 if (MII == 0) { 504 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 505 NumFailZeroMII++; 506 Pass.ORE->emit([&]() { 507 return MachineOptimizationRemarkAnalysis( 508 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 509 << "Invalid Minimal Initiation Interval: 0"; 510 }); 511 return; 512 } 513 514 // Don't pipeline large loops. 515 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 516 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 517 << ", we don't pipleline large loops\n"); 518 NumFailLargeMaxMII++; 519 Pass.ORE->emit([&]() { 520 return MachineOptimizationRemarkAnalysis( 521 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 522 << "Minimal Initiation Interval too large: " 523 << ore::NV("MII", (int)MII) << " > " 524 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 525 << "Refer to -pipeliner-max-mii."; 526 }); 527 return; 528 } 529 530 computeNodeFunctions(NodeSets); 531 532 registerPressureFilter(NodeSets); 533 534 colocateNodeSets(NodeSets); 535 536 checkNodeSets(NodeSets); 537 538 LLVM_DEBUG({ 539 for (auto &I : NodeSets) { 540 dbgs() << " Rec NodeSet "; 541 I.dump(); 542 } 543 }); 544 545 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 546 547 groupRemainingNodes(NodeSets); 548 549 removeDuplicateNodes(NodeSets); 550 551 LLVM_DEBUG({ 552 for (auto &I : NodeSets) { 553 dbgs() << " NodeSet "; 554 I.dump(); 555 } 556 }); 557 558 computeNodeOrder(NodeSets); 559 560 // check for node order issues 561 checkValidNodeOrder(Circuits); 562 563 SMSchedule Schedule(Pass.MF); 564 Scheduled = schedulePipeline(Schedule); 565 566 if (!Scheduled){ 567 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 568 NumFailNoSchedule++; 569 Pass.ORE->emit([&]() { 570 return MachineOptimizationRemarkAnalysis( 571 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 572 << "Unable to find schedule"; 573 }); 574 return; 575 } 576 577 unsigned numStages = Schedule.getMaxStageCount(); 578 // No need to generate pipeline if there are no overlapped iterations. 579 if (numStages == 0) { 580 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 581 NumFailZeroStage++; 582 Pass.ORE->emit([&]() { 583 return MachineOptimizationRemarkAnalysis( 584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 585 << "No need to pipeline - no overlapped iterations in schedule."; 586 }); 587 return; 588 } 589 // Check that the maximum stage count is less than user-defined limit. 590 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 591 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 592 << " : too many stages, abort\n"); 593 NumFailLargeMaxStage++; 594 Pass.ORE->emit([&]() { 595 return MachineOptimizationRemarkAnalysis( 596 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 597 << "Too many stages in schedule: " 598 << ore::NV("numStages", (int)numStages) << " > " 599 << ore::NV("SwpMaxStages", SwpMaxStages) 600 << ". Refer to -pipeliner-max-stages."; 601 }); 602 return; 603 } 604 605 Pass.ORE->emit([&]() { 606 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 607 Loop.getHeader()) 608 << "Pipelined succesfully!"; 609 }); 610 611 // Generate the schedule as a ModuloSchedule. 612 DenseMap<MachineInstr *, int> Cycles, Stages; 613 std::vector<MachineInstr *> OrderedInsts; 614 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 615 ++Cycle) { 616 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 617 OrderedInsts.push_back(SU->getInstr()); 618 Cycles[SU->getInstr()] = Cycle; 619 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 620 } 621 } 622 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 623 for (auto &KV : NewMIs) { 624 Cycles[KV.first] = Cycles[KV.second]; 625 Stages[KV.first] = Stages[KV.second]; 626 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 627 } 628 629 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 630 std::move(Stages)); 631 if (EmitTestAnnotations) { 632 assert(NewInstrChanges.empty() && 633 "Cannot serialize a schedule with InstrChanges!"); 634 ModuloScheduleTestAnnotater MSTI(MF, MS); 635 MSTI.annotate(); 636 return; 637 } 638 // The experimental code generator can't work if there are InstChanges. 639 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 640 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 641 MSE.expand(); 642 } else { 643 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 644 MSE.expand(); 645 MSE.cleanup(); 646 } 647 ++NumPipelined; 648 } 649 650 /// Clean up after the software pipeliner runs. 651 void SwingSchedulerDAG::finishBlock() { 652 for (auto &KV : NewMIs) 653 MF.DeleteMachineInstr(KV.second); 654 NewMIs.clear(); 655 656 // Call the superclass. 657 ScheduleDAGInstrs::finishBlock(); 658 } 659 660 /// Return the register values for the operands of a Phi instruction. 661 /// This function assume the instruction is a Phi. 662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 663 unsigned &InitVal, unsigned &LoopVal) { 664 assert(Phi.isPHI() && "Expecting a Phi."); 665 666 InitVal = 0; 667 LoopVal = 0; 668 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 669 if (Phi.getOperand(i + 1).getMBB() != Loop) 670 InitVal = Phi.getOperand(i).getReg(); 671 else 672 LoopVal = Phi.getOperand(i).getReg(); 673 674 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 675 } 676 677 /// Return the Phi register value that comes the loop block. 678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 679 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 680 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 681 return Phi.getOperand(i).getReg(); 682 return 0; 683 } 684 685 /// Return true if SUb can be reached from SUa following the chain edges. 686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 687 SmallPtrSet<SUnit *, 8> Visited; 688 SmallVector<SUnit *, 8> Worklist; 689 Worklist.push_back(SUa); 690 while (!Worklist.empty()) { 691 const SUnit *SU = Worklist.pop_back_val(); 692 for (auto &SI : SU->Succs) { 693 SUnit *SuccSU = SI.getSUnit(); 694 if (SI.getKind() == SDep::Order) { 695 if (Visited.count(SuccSU)) 696 continue; 697 if (SuccSU == SUb) 698 return true; 699 Worklist.push_back(SuccSU); 700 Visited.insert(SuccSU); 701 } 702 } 703 } 704 return false; 705 } 706 707 /// Return true if the instruction causes a chain between memory 708 /// references before and after it. 709 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 710 return MI.isCall() || MI.mayRaiseFPException() || 711 MI.hasUnmodeledSideEffects() || 712 (MI.hasOrderedMemoryRef() && 713 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 714 } 715 716 /// Return the underlying objects for the memory references of an instruction. 717 /// This function calls the code in ValueTracking, but first checks that the 718 /// instruction has a memory operand. 719 static void getUnderlyingObjects(const MachineInstr *MI, 720 SmallVectorImpl<const Value *> &Objs) { 721 if (!MI->hasOneMemOperand()) 722 return; 723 MachineMemOperand *MM = *MI->memoperands_begin(); 724 if (!MM->getValue()) 725 return; 726 getUnderlyingObjects(MM->getValue(), Objs); 727 for (const Value *V : Objs) { 728 if (!isIdentifiedObject(V)) { 729 Objs.clear(); 730 return; 731 } 732 Objs.push_back(V); 733 } 734 } 735 736 /// Add a chain edge between a load and store if the store can be an 737 /// alias of the load on a subsequent iteration, i.e., a loop carried 738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 739 /// but that code doesn't create loop carried dependences. 740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 741 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 742 Value *UnknownValue = 743 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 744 for (auto &SU : SUnits) { 745 MachineInstr &MI = *SU.getInstr(); 746 if (isDependenceBarrier(MI, AA)) 747 PendingLoads.clear(); 748 else if (MI.mayLoad()) { 749 SmallVector<const Value *, 4> Objs; 750 ::getUnderlyingObjects(&MI, Objs); 751 if (Objs.empty()) 752 Objs.push_back(UnknownValue); 753 for (auto V : Objs) { 754 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 755 SUs.push_back(&SU); 756 } 757 } else if (MI.mayStore()) { 758 SmallVector<const Value *, 4> Objs; 759 ::getUnderlyingObjects(&MI, Objs); 760 if (Objs.empty()) 761 Objs.push_back(UnknownValue); 762 for (auto V : Objs) { 763 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 764 PendingLoads.find(V); 765 if (I == PendingLoads.end()) 766 continue; 767 for (auto Load : I->second) { 768 if (isSuccOrder(Load, &SU)) 769 continue; 770 MachineInstr &LdMI = *Load->getInstr(); 771 // First, perform the cheaper check that compares the base register. 772 // If they are the same and the load offset is less than the store 773 // offset, then mark the dependence as loop carried potentially. 774 const MachineOperand *BaseOp1, *BaseOp2; 775 int64_t Offset1, Offset2; 776 bool Offset1IsScalable, Offset2IsScalable; 777 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 778 Offset1IsScalable, TRI) && 779 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 780 Offset2IsScalable, TRI)) { 781 if (BaseOp1->isIdenticalTo(*BaseOp2) && 782 Offset1IsScalable == Offset2IsScalable && 783 (int)Offset1 < (int)Offset2) { 784 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 785 "What happened to the chain edge?"); 786 SDep Dep(Load, SDep::Barrier); 787 Dep.setLatency(1); 788 SU.addPred(Dep); 789 continue; 790 } 791 } 792 // Second, the more expensive check that uses alias analysis on the 793 // base registers. If they alias, and the load offset is less than 794 // the store offset, the mark the dependence as loop carried. 795 if (!AA) { 796 SDep Dep(Load, SDep::Barrier); 797 Dep.setLatency(1); 798 SU.addPred(Dep); 799 continue; 800 } 801 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 802 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 803 if (!MMO1->getValue() || !MMO2->getValue()) { 804 SDep Dep(Load, SDep::Barrier); 805 Dep.setLatency(1); 806 SU.addPred(Dep); 807 continue; 808 } 809 if (MMO1->getValue() == MMO2->getValue() && 810 MMO1->getOffset() <= MMO2->getOffset()) { 811 SDep Dep(Load, SDep::Barrier); 812 Dep.setLatency(1); 813 SU.addPred(Dep); 814 continue; 815 } 816 AliasResult AAResult = AA->alias( 817 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 818 MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); 819 820 if (AAResult != NoAlias) { 821 SDep Dep(Load, SDep::Barrier); 822 Dep.setLatency(1); 823 SU.addPred(Dep); 824 } 825 } 826 } 827 } 828 } 829 } 830 831 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 832 /// processes dependences for PHIs. This function adds true dependences 833 /// from a PHI to a use, and a loop carried dependence from the use to the 834 /// PHI. The loop carried dependence is represented as an anti dependence 835 /// edge. This function also removes chain dependences between unrelated 836 /// PHIs. 837 void SwingSchedulerDAG::updatePhiDependences() { 838 SmallVector<SDep, 4> RemoveDeps; 839 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 840 841 // Iterate over each DAG node. 842 for (SUnit &I : SUnits) { 843 RemoveDeps.clear(); 844 // Set to true if the instruction has an operand defined by a Phi. 845 unsigned HasPhiUse = 0; 846 unsigned HasPhiDef = 0; 847 MachineInstr *MI = I.getInstr(); 848 // Iterate over each operand, and we process the definitions. 849 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 850 MOE = MI->operands_end(); 851 MOI != MOE; ++MOI) { 852 if (!MOI->isReg()) 853 continue; 854 Register Reg = MOI->getReg(); 855 if (MOI->isDef()) { 856 // If the register is used by a Phi, then create an anti dependence. 857 for (MachineRegisterInfo::use_instr_iterator 858 UI = MRI.use_instr_begin(Reg), 859 UE = MRI.use_instr_end(); 860 UI != UE; ++UI) { 861 MachineInstr *UseMI = &*UI; 862 SUnit *SU = getSUnit(UseMI); 863 if (SU != nullptr && UseMI->isPHI()) { 864 if (!MI->isPHI()) { 865 SDep Dep(SU, SDep::Anti, Reg); 866 Dep.setLatency(1); 867 I.addPred(Dep); 868 } else { 869 HasPhiDef = Reg; 870 // Add a chain edge to a dependent Phi that isn't an existing 871 // predecessor. 872 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 873 I.addPred(SDep(SU, SDep::Barrier)); 874 } 875 } 876 } 877 } else if (MOI->isUse()) { 878 // If the register is defined by a Phi, then create a true dependence. 879 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 880 if (DefMI == nullptr) 881 continue; 882 SUnit *SU = getSUnit(DefMI); 883 if (SU != nullptr && DefMI->isPHI()) { 884 if (!MI->isPHI()) { 885 SDep Dep(SU, SDep::Data, Reg); 886 Dep.setLatency(0); 887 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 888 I.addPred(Dep); 889 } else { 890 HasPhiUse = Reg; 891 // Add a chain edge to a dependent Phi that isn't an existing 892 // predecessor. 893 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 894 I.addPred(SDep(SU, SDep::Barrier)); 895 } 896 } 897 } 898 } 899 // Remove order dependences from an unrelated Phi. 900 if (!SwpPruneDeps) 901 continue; 902 for (auto &PI : I.Preds) { 903 MachineInstr *PMI = PI.getSUnit()->getInstr(); 904 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 905 if (I.getInstr()->isPHI()) { 906 if (PMI->getOperand(0).getReg() == HasPhiUse) 907 continue; 908 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 909 continue; 910 } 911 RemoveDeps.push_back(PI); 912 } 913 } 914 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 915 I.removePred(RemoveDeps[i]); 916 } 917 } 918 919 /// Iterate over each DAG node and see if we can change any dependences 920 /// in order to reduce the recurrence MII. 921 void SwingSchedulerDAG::changeDependences() { 922 // See if an instruction can use a value from the previous iteration. 923 // If so, we update the base and offset of the instruction and change 924 // the dependences. 925 for (SUnit &I : SUnits) { 926 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 927 int64_t NewOffset = 0; 928 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 929 NewOffset)) 930 continue; 931 932 // Get the MI and SUnit for the instruction that defines the original base. 933 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 934 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 935 if (!DefMI) 936 continue; 937 SUnit *DefSU = getSUnit(DefMI); 938 if (!DefSU) 939 continue; 940 // Get the MI and SUnit for the instruction that defins the new base. 941 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 942 if (!LastMI) 943 continue; 944 SUnit *LastSU = getSUnit(LastMI); 945 if (!LastSU) 946 continue; 947 948 if (Topo.IsReachable(&I, LastSU)) 949 continue; 950 951 // Remove the dependence. The value now depends on a prior iteration. 952 SmallVector<SDep, 4> Deps; 953 for (const SDep &P : I.Preds) 954 if (P.getSUnit() == DefSU) 955 Deps.push_back(P); 956 for (int i = 0, e = Deps.size(); i != e; i++) { 957 Topo.RemovePred(&I, Deps[i].getSUnit()); 958 I.removePred(Deps[i]); 959 } 960 // Remove the chain dependence between the instructions. 961 Deps.clear(); 962 for (auto &P : LastSU->Preds) 963 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 964 Deps.push_back(P); 965 for (int i = 0, e = Deps.size(); i != e; i++) { 966 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 967 LastSU->removePred(Deps[i]); 968 } 969 970 // Add a dependence between the new instruction and the instruction 971 // that defines the new base. 972 SDep Dep(&I, SDep::Anti, NewBase); 973 Topo.AddPred(LastSU, &I); 974 LastSU->addPred(Dep); 975 976 // Remember the base and offset information so that we can update the 977 // instruction during code generation. 978 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 979 } 980 } 981 982 namespace { 983 984 // FuncUnitSorter - Comparison operator used to sort instructions by 985 // the number of functional unit choices. 986 struct FuncUnitSorter { 987 const InstrItineraryData *InstrItins; 988 const MCSubtargetInfo *STI; 989 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 990 991 FuncUnitSorter(const TargetSubtargetInfo &TSI) 992 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 993 994 // Compute the number of functional unit alternatives needed 995 // at each stage, and take the minimum value. We prioritize the 996 // instructions by the least number of choices first. 997 unsigned minFuncUnits(const MachineInstr *Inst, 998 InstrStage::FuncUnits &F) const { 999 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1000 unsigned min = UINT_MAX; 1001 if (InstrItins && !InstrItins->isEmpty()) { 1002 for (const InstrStage &IS : 1003 make_range(InstrItins->beginStage(SchedClass), 1004 InstrItins->endStage(SchedClass))) { 1005 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1006 unsigned numAlternatives = countPopulation(funcUnits); 1007 if (numAlternatives < min) { 1008 min = numAlternatives; 1009 F = funcUnits; 1010 } 1011 } 1012 return min; 1013 } 1014 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1015 const MCSchedClassDesc *SCDesc = 1016 STI->getSchedModel().getSchedClassDesc(SchedClass); 1017 if (!SCDesc->isValid()) 1018 // No valid Schedule Class Desc for schedClass, should be 1019 // Pseudo/PostRAPseudo 1020 return min; 1021 1022 for (const MCWriteProcResEntry &PRE : 1023 make_range(STI->getWriteProcResBegin(SCDesc), 1024 STI->getWriteProcResEnd(SCDesc))) { 1025 if (!PRE.Cycles) 1026 continue; 1027 const MCProcResourceDesc *ProcResource = 1028 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1029 unsigned NumUnits = ProcResource->NumUnits; 1030 if (NumUnits < min) { 1031 min = NumUnits; 1032 F = PRE.ProcResourceIdx; 1033 } 1034 } 1035 return min; 1036 } 1037 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1038 } 1039 1040 // Compute the critical resources needed by the instruction. This 1041 // function records the functional units needed by instructions that 1042 // must use only one functional unit. We use this as a tie breaker 1043 // for computing the resource MII. The instrutions that require 1044 // the same, highly used, functional unit have high priority. 1045 void calcCriticalResources(MachineInstr &MI) { 1046 unsigned SchedClass = MI.getDesc().getSchedClass(); 1047 if (InstrItins && !InstrItins->isEmpty()) { 1048 for (const InstrStage &IS : 1049 make_range(InstrItins->beginStage(SchedClass), 1050 InstrItins->endStage(SchedClass))) { 1051 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1052 if (countPopulation(FuncUnits) == 1) 1053 Resources[FuncUnits]++; 1054 } 1055 return; 1056 } 1057 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1058 const MCSchedClassDesc *SCDesc = 1059 STI->getSchedModel().getSchedClassDesc(SchedClass); 1060 if (!SCDesc->isValid()) 1061 // No valid Schedule Class Desc for schedClass, should be 1062 // Pseudo/PostRAPseudo 1063 return; 1064 1065 for (const MCWriteProcResEntry &PRE : 1066 make_range(STI->getWriteProcResBegin(SCDesc), 1067 STI->getWriteProcResEnd(SCDesc))) { 1068 if (!PRE.Cycles) 1069 continue; 1070 Resources[PRE.ProcResourceIdx]++; 1071 } 1072 return; 1073 } 1074 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1075 } 1076 1077 /// Return true if IS1 has less priority than IS2. 1078 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1079 InstrStage::FuncUnits F1 = 0, F2 = 0; 1080 unsigned MFUs1 = minFuncUnits(IS1, F1); 1081 unsigned MFUs2 = minFuncUnits(IS2, F2); 1082 if (MFUs1 == MFUs2) 1083 return Resources.lookup(F1) < Resources.lookup(F2); 1084 return MFUs1 > MFUs2; 1085 } 1086 }; 1087 1088 } // end anonymous namespace 1089 1090 /// Calculate the resource constrained minimum initiation interval for the 1091 /// specified loop. We use the DFA to model the resources needed for 1092 /// each instruction, and we ignore dependences. A different DFA is created 1093 /// for each cycle that is required. When adding a new instruction, we attempt 1094 /// to add it to each existing DFA, until a legal space is found. If the 1095 /// instruction cannot be reserved in an existing DFA, we create a new one. 1096 unsigned SwingSchedulerDAG::calculateResMII() { 1097 1098 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1099 SmallVector<ResourceManager*, 8> Resources; 1100 MachineBasicBlock *MBB = Loop.getHeader(); 1101 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1102 1103 // Sort the instructions by the number of available choices for scheduling, 1104 // least to most. Use the number of critical resources as the tie breaker. 1105 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1106 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1107 E = MBB->getFirstTerminator(); 1108 I != E; ++I) 1109 FUS.calcCriticalResources(*I); 1110 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1111 FuncUnitOrder(FUS); 1112 1113 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1114 E = MBB->getFirstTerminator(); 1115 I != E; ++I) 1116 FuncUnitOrder.push(&*I); 1117 1118 while (!FuncUnitOrder.empty()) { 1119 MachineInstr *MI = FuncUnitOrder.top(); 1120 FuncUnitOrder.pop(); 1121 if (TII->isZeroCost(MI->getOpcode())) 1122 continue; 1123 // Attempt to reserve the instruction in an existing DFA. At least one 1124 // DFA is needed for each cycle. 1125 unsigned NumCycles = getSUnit(MI)->Latency; 1126 unsigned ReservedCycles = 0; 1127 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1128 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1129 LLVM_DEBUG({ 1130 dbgs() << "Trying to reserve resource for " << NumCycles 1131 << " cycles for \n"; 1132 MI->dump(); 1133 }); 1134 for (unsigned C = 0; C < NumCycles; ++C) 1135 while (RI != RE) { 1136 if ((*RI)->canReserveResources(*MI)) { 1137 (*RI)->reserveResources(*MI); 1138 ++ReservedCycles; 1139 break; 1140 } 1141 RI++; 1142 } 1143 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1144 << ", NumCycles:" << NumCycles << "\n"); 1145 // Add new DFAs, if needed, to reserve resources. 1146 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1147 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1148 << "NewResource created to reserve resources" 1149 << "\n"); 1150 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1151 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1152 NewResource->reserveResources(*MI); 1153 Resources.push_back(NewResource); 1154 } 1155 } 1156 int Resmii = Resources.size(); 1157 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1158 // Delete the memory for each of the DFAs that were created earlier. 1159 for (ResourceManager *RI : Resources) { 1160 ResourceManager *D = RI; 1161 delete D; 1162 } 1163 Resources.clear(); 1164 return Resmii; 1165 } 1166 1167 /// Calculate the recurrence-constrainted minimum initiation interval. 1168 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1169 /// for each circuit. The II needs to satisfy the inequality 1170 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1171 /// II that satisfies the inequality, and the RecMII is the maximum 1172 /// of those values. 1173 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1174 unsigned RecMII = 0; 1175 1176 for (NodeSet &Nodes : NodeSets) { 1177 if (Nodes.empty()) 1178 continue; 1179 1180 unsigned Delay = Nodes.getLatency(); 1181 unsigned Distance = 1; 1182 1183 // ii = ceil(delay / distance) 1184 unsigned CurMII = (Delay + Distance - 1) / Distance; 1185 Nodes.setRecMII(CurMII); 1186 if (CurMII > RecMII) 1187 RecMII = CurMII; 1188 } 1189 1190 return RecMII; 1191 } 1192 1193 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1194 /// but we do this to find the circuits, and then change them back. 1195 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1196 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1197 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1198 SUnit *SU = &SUnits[i]; 1199 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1200 IP != EP; ++IP) { 1201 if (IP->getKind() != SDep::Anti) 1202 continue; 1203 DepsAdded.push_back(std::make_pair(SU, *IP)); 1204 } 1205 } 1206 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1207 // Remove this anti dependency and add one in the reverse direction. 1208 SUnit *SU = P.first; 1209 SDep &D = P.second; 1210 SUnit *TargetSU = D.getSUnit(); 1211 unsigned Reg = D.getReg(); 1212 unsigned Lat = D.getLatency(); 1213 SU->removePred(D); 1214 SDep Dep(SU, SDep::Anti, Reg); 1215 Dep.setLatency(Lat); 1216 TargetSU->addPred(Dep); 1217 } 1218 } 1219 1220 /// Create the adjacency structure of the nodes in the graph. 1221 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1222 SwingSchedulerDAG *DAG) { 1223 BitVector Added(SUnits.size()); 1224 DenseMap<int, int> OutputDeps; 1225 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1226 Added.reset(); 1227 // Add any successor to the adjacency matrix and exclude duplicates. 1228 for (auto &SI : SUnits[i].Succs) { 1229 // Only create a back-edge on the first and last nodes of a dependence 1230 // chain. This records any chains and adds them later. 1231 if (SI.getKind() == SDep::Output) { 1232 int N = SI.getSUnit()->NodeNum; 1233 int BackEdge = i; 1234 auto Dep = OutputDeps.find(BackEdge); 1235 if (Dep != OutputDeps.end()) { 1236 BackEdge = Dep->second; 1237 OutputDeps.erase(Dep); 1238 } 1239 OutputDeps[N] = BackEdge; 1240 } 1241 // Do not process a boundary node, an artificial node. 1242 // A back-edge is processed only if it goes to a Phi. 1243 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1244 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1245 continue; 1246 int N = SI.getSUnit()->NodeNum; 1247 if (!Added.test(N)) { 1248 AdjK[i].push_back(N); 1249 Added.set(N); 1250 } 1251 } 1252 // A chain edge between a store and a load is treated as a back-edge in the 1253 // adjacency matrix. 1254 for (auto &PI : SUnits[i].Preds) { 1255 if (!SUnits[i].getInstr()->mayStore() || 1256 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1257 continue; 1258 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1259 int N = PI.getSUnit()->NodeNum; 1260 if (!Added.test(N)) { 1261 AdjK[i].push_back(N); 1262 Added.set(N); 1263 } 1264 } 1265 } 1266 } 1267 // Add back-edges in the adjacency matrix for the output dependences. 1268 for (auto &OD : OutputDeps) 1269 if (!Added.test(OD.second)) { 1270 AdjK[OD.first].push_back(OD.second); 1271 Added.set(OD.second); 1272 } 1273 } 1274 1275 /// Identify an elementary circuit in the dependence graph starting at the 1276 /// specified node. 1277 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1278 bool HasBackedge) { 1279 SUnit *SV = &SUnits[V]; 1280 bool F = false; 1281 Stack.insert(SV); 1282 Blocked.set(V); 1283 1284 for (auto W : AdjK[V]) { 1285 if (NumPaths > MaxPaths) 1286 break; 1287 if (W < S) 1288 continue; 1289 if (W == S) { 1290 if (!HasBackedge) 1291 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1292 F = true; 1293 ++NumPaths; 1294 break; 1295 } else if (!Blocked.test(W)) { 1296 if (circuit(W, S, NodeSets, 1297 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1298 F = true; 1299 } 1300 } 1301 1302 if (F) 1303 unblock(V); 1304 else { 1305 for (auto W : AdjK[V]) { 1306 if (W < S) 1307 continue; 1308 if (B[W].count(SV) == 0) 1309 B[W].insert(SV); 1310 } 1311 } 1312 Stack.pop_back(); 1313 return F; 1314 } 1315 1316 /// Unblock a node in the circuit finding algorithm. 1317 void SwingSchedulerDAG::Circuits::unblock(int U) { 1318 Blocked.reset(U); 1319 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1320 while (!BU.empty()) { 1321 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1322 assert(SI != BU.end() && "Invalid B set."); 1323 SUnit *W = *SI; 1324 BU.erase(W); 1325 if (Blocked.test(W->NodeNum)) 1326 unblock(W->NodeNum); 1327 } 1328 } 1329 1330 /// Identify all the elementary circuits in the dependence graph using 1331 /// Johnson's circuit algorithm. 1332 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1333 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1334 // but we do this to find the circuits, and then change them back. 1335 swapAntiDependences(SUnits); 1336 1337 Circuits Cir(SUnits, Topo); 1338 // Create the adjacency structure. 1339 Cir.createAdjacencyStructure(this); 1340 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1341 Cir.reset(); 1342 Cir.circuit(i, i, NodeSets); 1343 } 1344 1345 // Change the dependences back so that we've created a DAG again. 1346 swapAntiDependences(SUnits); 1347 } 1348 1349 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1350 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1351 // additional copies that are needed across iterations. An artificial dependence 1352 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1353 1354 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1355 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1356 // PHI-------True-Dep------> USEOfPhi 1357 1358 // The mutation creates 1359 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1360 1361 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1362 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1363 // late to avoid additional copies across iterations. The possible scheduling 1364 // order would be 1365 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1366 1367 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1368 for (SUnit &SU : DAG->SUnits) { 1369 // Find the COPY/REG_SEQUENCE instruction. 1370 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1371 continue; 1372 1373 // Record the loop carried PHIs. 1374 SmallVector<SUnit *, 4> PHISUs; 1375 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1376 SmallVector<SUnit *, 4> SrcSUs; 1377 1378 for (auto &Dep : SU.Preds) { 1379 SUnit *TmpSU = Dep.getSUnit(); 1380 MachineInstr *TmpMI = TmpSU->getInstr(); 1381 SDep::Kind DepKind = Dep.getKind(); 1382 // Save the loop carried PHI. 1383 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1384 PHISUs.push_back(TmpSU); 1385 // Save the source of COPY/REG_SEQUENCE. 1386 // If the source has no pre-decessors, we will end up creating cycles. 1387 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1388 SrcSUs.push_back(TmpSU); 1389 } 1390 1391 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1392 continue; 1393 1394 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1395 // SUnit to the container. 1396 SmallVector<SUnit *, 8> UseSUs; 1397 // Do not use iterator based loop here as we are updating the container. 1398 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1399 for (auto &Dep : PHISUs[Index]->Succs) { 1400 if (Dep.getKind() != SDep::Data) 1401 continue; 1402 1403 SUnit *TmpSU = Dep.getSUnit(); 1404 MachineInstr *TmpMI = TmpSU->getInstr(); 1405 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1406 PHISUs.push_back(TmpSU); 1407 continue; 1408 } 1409 UseSUs.push_back(TmpSU); 1410 } 1411 } 1412 1413 if (UseSUs.size() == 0) 1414 continue; 1415 1416 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1417 // Add the artificial dependencies if it does not form a cycle. 1418 for (auto I : UseSUs) { 1419 for (auto Src : SrcSUs) { 1420 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1421 Src->addPred(SDep(I, SDep::Artificial)); 1422 SDAG->Topo.AddPred(Src, I); 1423 } 1424 } 1425 } 1426 } 1427 } 1428 1429 /// Return true for DAG nodes that we ignore when computing the cost functions. 1430 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1431 /// in the calculation of the ASAP, ALAP, etc functions. 1432 static bool ignoreDependence(const SDep &D, bool isPred) { 1433 if (D.isArtificial()) 1434 return true; 1435 return D.getKind() == SDep::Anti && isPred; 1436 } 1437 1438 /// Compute several functions need to order the nodes for scheduling. 1439 /// ASAP - Earliest time to schedule a node. 1440 /// ALAP - Latest time to schedule a node. 1441 /// MOV - Mobility function, difference between ALAP and ASAP. 1442 /// D - Depth of each node. 1443 /// H - Height of each node. 1444 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1445 ScheduleInfo.resize(SUnits.size()); 1446 1447 LLVM_DEBUG({ 1448 for (int I : Topo) { 1449 const SUnit &SU = SUnits[I]; 1450 dumpNode(SU); 1451 } 1452 }); 1453 1454 int maxASAP = 0; 1455 // Compute ASAP and ZeroLatencyDepth. 1456 for (int I : Topo) { 1457 int asap = 0; 1458 int zeroLatencyDepth = 0; 1459 SUnit *SU = &SUnits[I]; 1460 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1461 EP = SU->Preds.end(); 1462 IP != EP; ++IP) { 1463 SUnit *pred = IP->getSUnit(); 1464 if (IP->getLatency() == 0) 1465 zeroLatencyDepth = 1466 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1467 if (ignoreDependence(*IP, true)) 1468 continue; 1469 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1470 getDistance(pred, SU, *IP) * MII)); 1471 } 1472 maxASAP = std::max(maxASAP, asap); 1473 ScheduleInfo[I].ASAP = asap; 1474 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1475 } 1476 1477 // Compute ALAP, ZeroLatencyHeight, and MOV. 1478 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1479 E = Topo.rend(); 1480 I != E; ++I) { 1481 int alap = maxASAP; 1482 int zeroLatencyHeight = 0; 1483 SUnit *SU = &SUnits[*I]; 1484 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1485 ES = SU->Succs.end(); 1486 IS != ES; ++IS) { 1487 SUnit *succ = IS->getSUnit(); 1488 if (IS->getLatency() == 0) 1489 zeroLatencyHeight = 1490 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1491 if (ignoreDependence(*IS, true)) 1492 continue; 1493 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1494 getDistance(SU, succ, *IS) * MII)); 1495 } 1496 1497 ScheduleInfo[*I].ALAP = alap; 1498 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1499 } 1500 1501 // After computing the node functions, compute the summary for each node set. 1502 for (NodeSet &I : NodeSets) 1503 I.computeNodeSetInfo(this); 1504 1505 LLVM_DEBUG({ 1506 for (unsigned i = 0; i < SUnits.size(); i++) { 1507 dbgs() << "\tNode " << i << ":\n"; 1508 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1509 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1510 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1511 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1512 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1513 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1514 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1515 } 1516 }); 1517 } 1518 1519 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1520 /// as the predecessors of the elements of NodeOrder that are not also in 1521 /// NodeOrder. 1522 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1523 SmallSetVector<SUnit *, 8> &Preds, 1524 const NodeSet *S = nullptr) { 1525 Preds.clear(); 1526 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1527 I != E; ++I) { 1528 for (const SDep &Pred : (*I)->Preds) { 1529 if (S && S->count(Pred.getSUnit()) == 0) 1530 continue; 1531 if (ignoreDependence(Pred, true)) 1532 continue; 1533 if (NodeOrder.count(Pred.getSUnit()) == 0) 1534 Preds.insert(Pred.getSUnit()); 1535 } 1536 // Back-edges are predecessors with an anti-dependence. 1537 for (const SDep &Succ : (*I)->Succs) { 1538 if (Succ.getKind() != SDep::Anti) 1539 continue; 1540 if (S && S->count(Succ.getSUnit()) == 0) 1541 continue; 1542 if (NodeOrder.count(Succ.getSUnit()) == 0) 1543 Preds.insert(Succ.getSUnit()); 1544 } 1545 } 1546 return !Preds.empty(); 1547 } 1548 1549 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1550 /// as the successors of the elements of NodeOrder that are not also in 1551 /// NodeOrder. 1552 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1553 SmallSetVector<SUnit *, 8> &Succs, 1554 const NodeSet *S = nullptr) { 1555 Succs.clear(); 1556 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1557 I != E; ++I) { 1558 for (SDep &Succ : (*I)->Succs) { 1559 if (S && S->count(Succ.getSUnit()) == 0) 1560 continue; 1561 if (ignoreDependence(Succ, false)) 1562 continue; 1563 if (NodeOrder.count(Succ.getSUnit()) == 0) 1564 Succs.insert(Succ.getSUnit()); 1565 } 1566 for (SDep &Pred : (*I)->Preds) { 1567 if (Pred.getKind() != SDep::Anti) 1568 continue; 1569 if (S && S->count(Pred.getSUnit()) == 0) 1570 continue; 1571 if (NodeOrder.count(Pred.getSUnit()) == 0) 1572 Succs.insert(Pred.getSUnit()); 1573 } 1574 } 1575 return !Succs.empty(); 1576 } 1577 1578 /// Return true if there is a path from the specified node to any of the nodes 1579 /// in DestNodes. Keep track and return the nodes in any path. 1580 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1581 SetVector<SUnit *> &DestNodes, 1582 SetVector<SUnit *> &Exclude, 1583 SmallPtrSet<SUnit *, 8> &Visited) { 1584 if (Cur->isBoundaryNode()) 1585 return false; 1586 if (Exclude.contains(Cur)) 1587 return false; 1588 if (DestNodes.contains(Cur)) 1589 return true; 1590 if (!Visited.insert(Cur).second) 1591 return Path.contains(Cur); 1592 bool FoundPath = false; 1593 for (auto &SI : Cur->Succs) 1594 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1595 for (auto &PI : Cur->Preds) 1596 if (PI.getKind() == SDep::Anti) 1597 FoundPath |= 1598 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1599 if (FoundPath) 1600 Path.insert(Cur); 1601 return FoundPath; 1602 } 1603 1604 /// Compute the live-out registers for the instructions in a node-set. 1605 /// The live-out registers are those that are defined in the node-set, 1606 /// but not used. Except for use operands of Phis. 1607 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1608 NodeSet &NS) { 1609 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1610 MachineRegisterInfo &MRI = MF.getRegInfo(); 1611 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1612 SmallSet<unsigned, 4> Uses; 1613 for (SUnit *SU : NS) { 1614 const MachineInstr *MI = SU->getInstr(); 1615 if (MI->isPHI()) 1616 continue; 1617 for (const MachineOperand &MO : MI->operands()) 1618 if (MO.isReg() && MO.isUse()) { 1619 Register Reg = MO.getReg(); 1620 if (Register::isVirtualRegister(Reg)) 1621 Uses.insert(Reg); 1622 else if (MRI.isAllocatable(Reg)) 1623 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1624 ++Units) 1625 Uses.insert(*Units); 1626 } 1627 } 1628 for (SUnit *SU : NS) 1629 for (const MachineOperand &MO : SU->getInstr()->operands()) 1630 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1631 Register Reg = MO.getReg(); 1632 if (Register::isVirtualRegister(Reg)) { 1633 if (!Uses.count(Reg)) 1634 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1635 LaneBitmask::getNone())); 1636 } else if (MRI.isAllocatable(Reg)) { 1637 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1638 ++Units) 1639 if (!Uses.count(*Units)) 1640 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1641 LaneBitmask::getNone())); 1642 } 1643 } 1644 RPTracker.addLiveRegs(LiveOutRegs); 1645 } 1646 1647 /// A heuristic to filter nodes in recurrent node-sets if the register 1648 /// pressure of a set is too high. 1649 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1650 for (auto &NS : NodeSets) { 1651 // Skip small node-sets since they won't cause register pressure problems. 1652 if (NS.size() <= 2) 1653 continue; 1654 IntervalPressure RecRegPressure; 1655 RegPressureTracker RecRPTracker(RecRegPressure); 1656 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1657 computeLiveOuts(MF, RecRPTracker, NS); 1658 RecRPTracker.closeBottom(); 1659 1660 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1661 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1662 return A->NodeNum > B->NodeNum; 1663 }); 1664 1665 for (auto &SU : SUnits) { 1666 // Since we're computing the register pressure for a subset of the 1667 // instructions in a block, we need to set the tracker for each 1668 // instruction in the node-set. The tracker is set to the instruction 1669 // just after the one we're interested in. 1670 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1671 RecRPTracker.setPos(std::next(CurInstI)); 1672 1673 RegPressureDelta RPDelta; 1674 ArrayRef<PressureChange> CriticalPSets; 1675 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1676 CriticalPSets, 1677 RecRegPressure.MaxSetPressure); 1678 if (RPDelta.Excess.isValid()) { 1679 LLVM_DEBUG( 1680 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1681 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1682 << ":" << RPDelta.Excess.getUnitInc()); 1683 NS.setExceedPressure(SU); 1684 break; 1685 } 1686 RecRPTracker.recede(); 1687 } 1688 } 1689 } 1690 1691 /// A heuristic to colocate node sets that have the same set of 1692 /// successors. 1693 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1694 unsigned Colocate = 0; 1695 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1696 NodeSet &N1 = NodeSets[i]; 1697 SmallSetVector<SUnit *, 8> S1; 1698 if (N1.empty() || !succ_L(N1, S1)) 1699 continue; 1700 for (int j = i + 1; j < e; ++j) { 1701 NodeSet &N2 = NodeSets[j]; 1702 if (N1.compareRecMII(N2) != 0) 1703 continue; 1704 SmallSetVector<SUnit *, 8> S2; 1705 if (N2.empty() || !succ_L(N2, S2)) 1706 continue; 1707 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1708 N1.setColocate(++Colocate); 1709 N2.setColocate(Colocate); 1710 break; 1711 } 1712 } 1713 } 1714 } 1715 1716 /// Check if the existing node-sets are profitable. If not, then ignore the 1717 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1718 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1719 /// then it's best to try to schedule all instructions together instead of 1720 /// starting with the recurrent node-sets. 1721 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1722 // Look for loops with a large MII. 1723 if (MII < 17) 1724 return; 1725 // Check if the node-set contains only a simple add recurrence. 1726 for (auto &NS : NodeSets) { 1727 if (NS.getRecMII() > 2) 1728 return; 1729 if (NS.getMaxDepth() > MII) 1730 return; 1731 } 1732 NodeSets.clear(); 1733 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1734 } 1735 1736 /// Add the nodes that do not belong to a recurrence set into groups 1737 /// based upon connected componenets. 1738 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1739 SetVector<SUnit *> NodesAdded; 1740 SmallPtrSet<SUnit *, 8> Visited; 1741 // Add the nodes that are on a path between the previous node sets and 1742 // the current node set. 1743 for (NodeSet &I : NodeSets) { 1744 SmallSetVector<SUnit *, 8> N; 1745 // Add the nodes from the current node set to the previous node set. 1746 if (succ_L(I, N)) { 1747 SetVector<SUnit *> Path; 1748 for (SUnit *NI : N) { 1749 Visited.clear(); 1750 computePath(NI, Path, NodesAdded, I, Visited); 1751 } 1752 if (!Path.empty()) 1753 I.insert(Path.begin(), Path.end()); 1754 } 1755 // Add the nodes from the previous node set to the current node set. 1756 N.clear(); 1757 if (succ_L(NodesAdded, N)) { 1758 SetVector<SUnit *> Path; 1759 for (SUnit *NI : N) { 1760 Visited.clear(); 1761 computePath(NI, Path, I, NodesAdded, Visited); 1762 } 1763 if (!Path.empty()) 1764 I.insert(Path.begin(), Path.end()); 1765 } 1766 NodesAdded.insert(I.begin(), I.end()); 1767 } 1768 1769 // Create a new node set with the connected nodes of any successor of a node 1770 // in a recurrent set. 1771 NodeSet NewSet; 1772 SmallSetVector<SUnit *, 8> N; 1773 if (succ_L(NodesAdded, N)) 1774 for (SUnit *I : N) 1775 addConnectedNodes(I, NewSet, NodesAdded); 1776 if (!NewSet.empty()) 1777 NodeSets.push_back(NewSet); 1778 1779 // Create a new node set with the connected nodes of any predecessor of a node 1780 // in a recurrent set. 1781 NewSet.clear(); 1782 if (pred_L(NodesAdded, N)) 1783 for (SUnit *I : N) 1784 addConnectedNodes(I, NewSet, NodesAdded); 1785 if (!NewSet.empty()) 1786 NodeSets.push_back(NewSet); 1787 1788 // Create new nodes sets with the connected nodes any remaining node that 1789 // has no predecessor. 1790 for (SUnit &SU : SUnits) { 1791 if (NodesAdded.count(&SU) == 0) { 1792 NewSet.clear(); 1793 addConnectedNodes(&SU, NewSet, NodesAdded); 1794 if (!NewSet.empty()) 1795 NodeSets.push_back(NewSet); 1796 } 1797 } 1798 } 1799 1800 /// Add the node to the set, and add all of its connected nodes to the set. 1801 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1802 SetVector<SUnit *> &NodesAdded) { 1803 NewSet.insert(SU); 1804 NodesAdded.insert(SU); 1805 for (auto &SI : SU->Succs) { 1806 SUnit *Successor = SI.getSUnit(); 1807 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1808 addConnectedNodes(Successor, NewSet, NodesAdded); 1809 } 1810 for (auto &PI : SU->Preds) { 1811 SUnit *Predecessor = PI.getSUnit(); 1812 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1813 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1814 } 1815 } 1816 1817 /// Return true if Set1 contains elements in Set2. The elements in common 1818 /// are returned in a different container. 1819 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1820 SmallSetVector<SUnit *, 8> &Result) { 1821 Result.clear(); 1822 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1823 SUnit *SU = Set1[i]; 1824 if (Set2.count(SU) != 0) 1825 Result.insert(SU); 1826 } 1827 return !Result.empty(); 1828 } 1829 1830 /// Merge the recurrence node sets that have the same initial node. 1831 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1832 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1833 ++I) { 1834 NodeSet &NI = *I; 1835 for (NodeSetType::iterator J = I + 1; J != E;) { 1836 NodeSet &NJ = *J; 1837 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1838 if (NJ.compareRecMII(NI) > 0) 1839 NI.setRecMII(NJ.getRecMII()); 1840 for (SUnit *SU : *J) 1841 I->insert(SU); 1842 NodeSets.erase(J); 1843 E = NodeSets.end(); 1844 } else { 1845 ++J; 1846 } 1847 } 1848 } 1849 } 1850 1851 /// Remove nodes that have been scheduled in previous NodeSets. 1852 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1853 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1854 ++I) 1855 for (NodeSetType::iterator J = I + 1; J != E;) { 1856 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1857 1858 if (J->empty()) { 1859 NodeSets.erase(J); 1860 E = NodeSets.end(); 1861 } else { 1862 ++J; 1863 } 1864 } 1865 } 1866 1867 /// Compute an ordered list of the dependence graph nodes, which 1868 /// indicates the order that the nodes will be scheduled. This is a 1869 /// two-level algorithm. First, a partial order is created, which 1870 /// consists of a list of sets ordered from highest to lowest priority. 1871 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1872 SmallSetVector<SUnit *, 8> R; 1873 NodeOrder.clear(); 1874 1875 for (auto &Nodes : NodeSets) { 1876 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1877 OrderKind Order; 1878 SmallSetVector<SUnit *, 8> N; 1879 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1880 R.insert(N.begin(), N.end()); 1881 Order = BottomUp; 1882 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1883 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1884 R.insert(N.begin(), N.end()); 1885 Order = TopDown; 1886 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1887 } else if (isIntersect(N, Nodes, R)) { 1888 // If some of the successors are in the existing node-set, then use the 1889 // top-down ordering. 1890 Order = TopDown; 1891 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1892 } else if (NodeSets.size() == 1) { 1893 for (auto &N : Nodes) 1894 if (N->Succs.size() == 0) 1895 R.insert(N); 1896 Order = BottomUp; 1897 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1898 } else { 1899 // Find the node with the highest ASAP. 1900 SUnit *maxASAP = nullptr; 1901 for (SUnit *SU : Nodes) { 1902 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1903 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1904 maxASAP = SU; 1905 } 1906 R.insert(maxASAP); 1907 Order = BottomUp; 1908 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1909 } 1910 1911 while (!R.empty()) { 1912 if (Order == TopDown) { 1913 // Choose the node with the maximum height. If more than one, choose 1914 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1915 // choose the node with the lowest MOV. 1916 while (!R.empty()) { 1917 SUnit *maxHeight = nullptr; 1918 for (SUnit *I : R) { 1919 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1920 maxHeight = I; 1921 else if (getHeight(I) == getHeight(maxHeight) && 1922 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1923 maxHeight = I; 1924 else if (getHeight(I) == getHeight(maxHeight) && 1925 getZeroLatencyHeight(I) == 1926 getZeroLatencyHeight(maxHeight) && 1927 getMOV(I) < getMOV(maxHeight)) 1928 maxHeight = I; 1929 } 1930 NodeOrder.insert(maxHeight); 1931 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1932 R.remove(maxHeight); 1933 for (const auto &I : maxHeight->Succs) { 1934 if (Nodes.count(I.getSUnit()) == 0) 1935 continue; 1936 if (NodeOrder.contains(I.getSUnit())) 1937 continue; 1938 if (ignoreDependence(I, false)) 1939 continue; 1940 R.insert(I.getSUnit()); 1941 } 1942 // Back-edges are predecessors with an anti-dependence. 1943 for (const auto &I : maxHeight->Preds) { 1944 if (I.getKind() != SDep::Anti) 1945 continue; 1946 if (Nodes.count(I.getSUnit()) == 0) 1947 continue; 1948 if (NodeOrder.contains(I.getSUnit())) 1949 continue; 1950 R.insert(I.getSUnit()); 1951 } 1952 } 1953 Order = BottomUp; 1954 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1955 SmallSetVector<SUnit *, 8> N; 1956 if (pred_L(NodeOrder, N, &Nodes)) 1957 R.insert(N.begin(), N.end()); 1958 } else { 1959 // Choose the node with the maximum depth. If more than one, choose 1960 // the node with the maximum ZeroLatencyDepth. If still more than one, 1961 // choose the node with the lowest MOV. 1962 while (!R.empty()) { 1963 SUnit *maxDepth = nullptr; 1964 for (SUnit *I : R) { 1965 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1966 maxDepth = I; 1967 else if (getDepth(I) == getDepth(maxDepth) && 1968 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1969 maxDepth = I; 1970 else if (getDepth(I) == getDepth(maxDepth) && 1971 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1972 getMOV(I) < getMOV(maxDepth)) 1973 maxDepth = I; 1974 } 1975 NodeOrder.insert(maxDepth); 1976 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1977 R.remove(maxDepth); 1978 if (Nodes.isExceedSU(maxDepth)) { 1979 Order = TopDown; 1980 R.clear(); 1981 R.insert(Nodes.getNode(0)); 1982 break; 1983 } 1984 for (const auto &I : maxDepth->Preds) { 1985 if (Nodes.count(I.getSUnit()) == 0) 1986 continue; 1987 if (NodeOrder.contains(I.getSUnit())) 1988 continue; 1989 R.insert(I.getSUnit()); 1990 } 1991 // Back-edges are predecessors with an anti-dependence. 1992 for (const auto &I : maxDepth->Succs) { 1993 if (I.getKind() != SDep::Anti) 1994 continue; 1995 if (Nodes.count(I.getSUnit()) == 0) 1996 continue; 1997 if (NodeOrder.contains(I.getSUnit())) 1998 continue; 1999 R.insert(I.getSUnit()); 2000 } 2001 } 2002 Order = TopDown; 2003 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2004 SmallSetVector<SUnit *, 8> N; 2005 if (succ_L(NodeOrder, N, &Nodes)) 2006 R.insert(N.begin(), N.end()); 2007 } 2008 } 2009 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2010 } 2011 2012 LLVM_DEBUG({ 2013 dbgs() << "Node order: "; 2014 for (SUnit *I : NodeOrder) 2015 dbgs() << " " << I->NodeNum << " "; 2016 dbgs() << "\n"; 2017 }); 2018 } 2019 2020 /// Process the nodes in the computed order and create the pipelined schedule 2021 /// of the instructions, if possible. Return true if a schedule is found. 2022 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2023 2024 if (NodeOrder.empty()){ 2025 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2026 return false; 2027 } 2028 2029 bool scheduleFound = false; 2030 // Keep increasing II until a valid schedule is found. 2031 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2032 Schedule.reset(); 2033 Schedule.setInitiationInterval(II); 2034 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2035 2036 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2037 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2038 do { 2039 SUnit *SU = *NI; 2040 2041 // Compute the schedule time for the instruction, which is based 2042 // upon the scheduled time for any predecessors/successors. 2043 int EarlyStart = INT_MIN; 2044 int LateStart = INT_MAX; 2045 // These values are set when the size of the schedule window is limited 2046 // due to chain dependences. 2047 int SchedEnd = INT_MAX; 2048 int SchedStart = INT_MIN; 2049 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2050 II, this); 2051 LLVM_DEBUG({ 2052 dbgs() << "\n"; 2053 dbgs() << "Inst (" << SU->NodeNum << ") "; 2054 SU->getInstr()->dump(); 2055 dbgs() << "\n"; 2056 }); 2057 LLVM_DEBUG({ 2058 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2059 LateStart, SchedEnd, SchedStart); 2060 }); 2061 2062 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2063 SchedStart > LateStart) 2064 scheduleFound = false; 2065 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2066 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2067 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2068 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2069 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2070 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2071 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2072 SchedEnd = 2073 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2074 // When scheduling a Phi it is better to start at the late cycle and go 2075 // backwards. The default order may insert the Phi too far away from 2076 // its first dependence. 2077 if (SU->getInstr()->isPHI()) 2078 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2079 else 2080 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2081 } else { 2082 int FirstCycle = Schedule.getFirstCycle(); 2083 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2084 FirstCycle + getASAP(SU) + II - 1, II); 2085 } 2086 // Even if we find a schedule, make sure the schedule doesn't exceed the 2087 // allowable number of stages. We keep trying if this happens. 2088 if (scheduleFound) 2089 if (SwpMaxStages > -1 && 2090 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2091 scheduleFound = false; 2092 2093 LLVM_DEBUG({ 2094 if (!scheduleFound) 2095 dbgs() << "\tCan't schedule\n"; 2096 }); 2097 } while (++NI != NE && scheduleFound); 2098 2099 // If a schedule is found, check if it is a valid schedule too. 2100 if (scheduleFound) 2101 scheduleFound = Schedule.isValidSchedule(this); 2102 } 2103 2104 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2105 << " (II=" << Schedule.getInitiationInterval() 2106 << ")\n"); 2107 2108 if (scheduleFound) { 2109 Schedule.finalizeSchedule(this); 2110 Pass.ORE->emit([&]() { 2111 return MachineOptimizationRemarkAnalysis( 2112 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2113 << "Schedule found with Initiation Interval: " 2114 << ore::NV("II", Schedule.getInitiationInterval()) 2115 << ", MaxStageCount: " 2116 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2117 }); 2118 } else 2119 Schedule.reset(); 2120 2121 return scheduleFound && Schedule.getMaxStageCount() > 0; 2122 } 2123 2124 /// Return true if we can compute the amount the instruction changes 2125 /// during each iteration. Set Delta to the amount of the change. 2126 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2127 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2128 const MachineOperand *BaseOp; 2129 int64_t Offset; 2130 bool OffsetIsScalable; 2131 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2132 return false; 2133 2134 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2135 if (OffsetIsScalable) 2136 return false; 2137 2138 if (!BaseOp->isReg()) 2139 return false; 2140 2141 Register BaseReg = BaseOp->getReg(); 2142 2143 MachineRegisterInfo &MRI = MF.getRegInfo(); 2144 // Check if there is a Phi. If so, get the definition in the loop. 2145 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2146 if (BaseDef && BaseDef->isPHI()) { 2147 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2148 BaseDef = MRI.getVRegDef(BaseReg); 2149 } 2150 if (!BaseDef) 2151 return false; 2152 2153 int D = 0; 2154 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2155 return false; 2156 2157 Delta = D; 2158 return true; 2159 } 2160 2161 /// Check if we can change the instruction to use an offset value from the 2162 /// previous iteration. If so, return true and set the base and offset values 2163 /// so that we can rewrite the load, if necessary. 2164 /// v1 = Phi(v0, v3) 2165 /// v2 = load v1, 0 2166 /// v3 = post_store v1, 4, x 2167 /// This function enables the load to be rewritten as v2 = load v3, 4. 2168 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2169 unsigned &BasePos, 2170 unsigned &OffsetPos, 2171 unsigned &NewBase, 2172 int64_t &Offset) { 2173 // Get the load instruction. 2174 if (TII->isPostIncrement(*MI)) 2175 return false; 2176 unsigned BasePosLd, OffsetPosLd; 2177 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2178 return false; 2179 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2180 2181 // Look for the Phi instruction. 2182 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2183 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2184 if (!Phi || !Phi->isPHI()) 2185 return false; 2186 // Get the register defined in the loop block. 2187 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2188 if (!PrevReg) 2189 return false; 2190 2191 // Check for the post-increment load/store instruction. 2192 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2193 if (!PrevDef || PrevDef == MI) 2194 return false; 2195 2196 if (!TII->isPostIncrement(*PrevDef)) 2197 return false; 2198 2199 unsigned BasePos1 = 0, OffsetPos1 = 0; 2200 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2201 return false; 2202 2203 // Make sure that the instructions do not access the same memory location in 2204 // the next iteration. 2205 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2206 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2207 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2208 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2209 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2210 MF.DeleteMachineInstr(NewMI); 2211 if (!Disjoint) 2212 return false; 2213 2214 // Set the return value once we determine that we return true. 2215 BasePos = BasePosLd; 2216 OffsetPos = OffsetPosLd; 2217 NewBase = PrevReg; 2218 Offset = StoreOffset; 2219 return true; 2220 } 2221 2222 /// Apply changes to the instruction if needed. The changes are need 2223 /// to improve the scheduling and depend up on the final schedule. 2224 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2225 SMSchedule &Schedule) { 2226 SUnit *SU = getSUnit(MI); 2227 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2228 InstrChanges.find(SU); 2229 if (It != InstrChanges.end()) { 2230 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2231 unsigned BasePos, OffsetPos; 2232 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2233 return; 2234 Register BaseReg = MI->getOperand(BasePos).getReg(); 2235 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2236 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2237 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2238 int BaseStageNum = Schedule.stageScheduled(SU); 2239 int BaseCycleNum = Schedule.cycleScheduled(SU); 2240 if (BaseStageNum < DefStageNum) { 2241 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2242 int OffsetDiff = DefStageNum - BaseStageNum; 2243 if (DefCycleNum < BaseCycleNum) { 2244 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2245 if (OffsetDiff > 0) 2246 --OffsetDiff; 2247 } 2248 int64_t NewOffset = 2249 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2250 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2251 SU->setInstr(NewMI); 2252 MISUnitMap[NewMI] = SU; 2253 NewMIs[MI] = NewMI; 2254 } 2255 } 2256 } 2257 2258 /// Return the instruction in the loop that defines the register. 2259 /// If the definition is a Phi, then follow the Phi operand to 2260 /// the instruction in the loop. 2261 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2262 SmallPtrSet<MachineInstr *, 8> Visited; 2263 MachineInstr *Def = MRI.getVRegDef(Reg); 2264 while (Def->isPHI()) { 2265 if (!Visited.insert(Def).second) 2266 break; 2267 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2268 if (Def->getOperand(i + 1).getMBB() == BB) { 2269 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2270 break; 2271 } 2272 } 2273 return Def; 2274 } 2275 2276 /// Return true for an order or output dependence that is loop carried 2277 /// potentially. A dependence is loop carried if the destination defines a valu 2278 /// that may be used or defined by the source in a subsequent iteration. 2279 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2280 bool isSucc) { 2281 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2282 Dep.isArtificial()) 2283 return false; 2284 2285 if (!SwpPruneLoopCarried) 2286 return true; 2287 2288 if (Dep.getKind() == SDep::Output) 2289 return true; 2290 2291 MachineInstr *SI = Source->getInstr(); 2292 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2293 if (!isSucc) 2294 std::swap(SI, DI); 2295 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2296 2297 // Assume ordered loads and stores may have a loop carried dependence. 2298 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2299 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2300 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2301 return true; 2302 2303 // Only chain dependences between a load and store can be loop carried. 2304 if (!DI->mayStore() || !SI->mayLoad()) 2305 return false; 2306 2307 unsigned DeltaS, DeltaD; 2308 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2309 return true; 2310 2311 const MachineOperand *BaseOpS, *BaseOpD; 2312 int64_t OffsetS, OffsetD; 2313 bool OffsetSIsScalable, OffsetDIsScalable; 2314 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2315 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2316 TRI) || 2317 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2318 TRI)) 2319 return true; 2320 2321 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2322 "Expected offsets to be byte offsets"); 2323 2324 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2325 return true; 2326 2327 // Check that the base register is incremented by a constant value for each 2328 // iteration. 2329 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2330 if (!Def || !Def->isPHI()) 2331 return true; 2332 unsigned InitVal = 0; 2333 unsigned LoopVal = 0; 2334 getPhiRegs(*Def, BB, InitVal, LoopVal); 2335 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2336 int D = 0; 2337 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2338 return true; 2339 2340 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2341 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2342 2343 // This is the main test, which checks the offset values and the loop 2344 // increment value to determine if the accesses may be loop carried. 2345 if (AccessSizeS == MemoryLocation::UnknownSize || 2346 AccessSizeD == MemoryLocation::UnknownSize) 2347 return true; 2348 2349 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2350 return true; 2351 2352 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2353 } 2354 2355 void SwingSchedulerDAG::postprocessDAG() { 2356 for (auto &M : Mutations) 2357 M->apply(this); 2358 } 2359 2360 /// Try to schedule the node at the specified StartCycle and continue 2361 /// until the node is schedule or the EndCycle is reached. This function 2362 /// returns true if the node is scheduled. This routine may search either 2363 /// forward or backward for a place to insert the instruction based upon 2364 /// the relative values of StartCycle and EndCycle. 2365 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2366 bool forward = true; 2367 LLVM_DEBUG({ 2368 dbgs() << "Trying to insert node between " << StartCycle << " and " 2369 << EndCycle << " II: " << II << "\n"; 2370 }); 2371 if (StartCycle > EndCycle) 2372 forward = false; 2373 2374 // The terminating condition depends on the direction. 2375 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2376 for (int curCycle = StartCycle; curCycle != termCycle; 2377 forward ? ++curCycle : --curCycle) { 2378 2379 // Add the already scheduled instructions at the specified cycle to the 2380 // DFA. 2381 ProcItinResources.clearResources(); 2382 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2383 checkCycle <= LastCycle; checkCycle += II) { 2384 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2385 2386 for (SUnit *CI : cycleInstrs) { 2387 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2388 continue; 2389 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2390 "These instructions have already been scheduled."); 2391 ProcItinResources.reserveResources(*CI->getInstr()); 2392 } 2393 } 2394 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2395 ProcItinResources.canReserveResources(*SU->getInstr())) { 2396 LLVM_DEBUG({ 2397 dbgs() << "\tinsert at cycle " << curCycle << " "; 2398 SU->getInstr()->dump(); 2399 }); 2400 2401 ScheduledInstrs[curCycle].push_back(SU); 2402 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2403 if (curCycle > LastCycle) 2404 LastCycle = curCycle; 2405 if (curCycle < FirstCycle) 2406 FirstCycle = curCycle; 2407 return true; 2408 } 2409 LLVM_DEBUG({ 2410 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2411 SU->getInstr()->dump(); 2412 }); 2413 } 2414 return false; 2415 } 2416 2417 // Return the cycle of the earliest scheduled instruction in the chain. 2418 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2419 SmallPtrSet<SUnit *, 8> Visited; 2420 SmallVector<SDep, 8> Worklist; 2421 Worklist.push_back(Dep); 2422 int EarlyCycle = INT_MAX; 2423 while (!Worklist.empty()) { 2424 const SDep &Cur = Worklist.pop_back_val(); 2425 SUnit *PrevSU = Cur.getSUnit(); 2426 if (Visited.count(PrevSU)) 2427 continue; 2428 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2429 if (it == InstrToCycle.end()) 2430 continue; 2431 EarlyCycle = std::min(EarlyCycle, it->second); 2432 for (const auto &PI : PrevSU->Preds) 2433 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2434 Worklist.push_back(PI); 2435 Visited.insert(PrevSU); 2436 } 2437 return EarlyCycle; 2438 } 2439 2440 // Return the cycle of the latest scheduled instruction in the chain. 2441 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2442 SmallPtrSet<SUnit *, 8> Visited; 2443 SmallVector<SDep, 8> Worklist; 2444 Worklist.push_back(Dep); 2445 int LateCycle = INT_MIN; 2446 while (!Worklist.empty()) { 2447 const SDep &Cur = Worklist.pop_back_val(); 2448 SUnit *SuccSU = Cur.getSUnit(); 2449 if (Visited.count(SuccSU)) 2450 continue; 2451 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2452 if (it == InstrToCycle.end()) 2453 continue; 2454 LateCycle = std::max(LateCycle, it->second); 2455 for (const auto &SI : SuccSU->Succs) 2456 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2457 Worklist.push_back(SI); 2458 Visited.insert(SuccSU); 2459 } 2460 return LateCycle; 2461 } 2462 2463 /// If an instruction has a use that spans multiple iterations, then 2464 /// return true. These instructions are characterized by having a back-ege 2465 /// to a Phi, which contains a reference to another Phi. 2466 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2467 for (auto &P : SU->Preds) 2468 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2469 for (auto &S : P.getSUnit()->Succs) 2470 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2471 return P.getSUnit(); 2472 return nullptr; 2473 } 2474 2475 /// Compute the scheduling start slot for the instruction. The start slot 2476 /// depends on any predecessor or successor nodes scheduled already. 2477 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2478 int *MinEnd, int *MaxStart, int II, 2479 SwingSchedulerDAG *DAG) { 2480 // Iterate over each instruction that has been scheduled already. The start 2481 // slot computation depends on whether the previously scheduled instruction 2482 // is a predecessor or successor of the specified instruction. 2483 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2484 2485 // Iterate over each instruction in the current cycle. 2486 for (SUnit *I : getInstructions(cycle)) { 2487 // Because we're processing a DAG for the dependences, we recognize 2488 // the back-edge in recurrences by anti dependences. 2489 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2490 const SDep &Dep = SU->Preds[i]; 2491 if (Dep.getSUnit() == I) { 2492 if (!DAG->isBackedge(SU, Dep)) { 2493 int EarlyStart = cycle + Dep.getLatency() - 2494 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2495 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2496 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2497 int End = earliestCycleInChain(Dep) + (II - 1); 2498 *MinEnd = std::min(*MinEnd, End); 2499 } 2500 } else { 2501 int LateStart = cycle - Dep.getLatency() + 2502 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2503 *MinLateStart = std::min(*MinLateStart, LateStart); 2504 } 2505 } 2506 // For instruction that requires multiple iterations, make sure that 2507 // the dependent instruction is not scheduled past the definition. 2508 SUnit *BE = multipleIterations(I, DAG); 2509 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2510 !SU->isPred(I)) 2511 *MinLateStart = std::min(*MinLateStart, cycle); 2512 } 2513 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2514 if (SU->Succs[i].getSUnit() == I) { 2515 const SDep &Dep = SU->Succs[i]; 2516 if (!DAG->isBackedge(SU, Dep)) { 2517 int LateStart = cycle - Dep.getLatency() + 2518 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2519 *MinLateStart = std::min(*MinLateStart, LateStart); 2520 if (DAG->isLoopCarriedDep(SU, Dep)) { 2521 int Start = latestCycleInChain(Dep) + 1 - II; 2522 *MaxStart = std::max(*MaxStart, Start); 2523 } 2524 } else { 2525 int EarlyStart = cycle + Dep.getLatency() - 2526 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2527 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2528 } 2529 } 2530 } 2531 } 2532 } 2533 } 2534 2535 /// Order the instructions within a cycle so that the definitions occur 2536 /// before the uses. Returns true if the instruction is added to the start 2537 /// of the list, or false if added to the end. 2538 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2539 std::deque<SUnit *> &Insts) { 2540 MachineInstr *MI = SU->getInstr(); 2541 bool OrderBeforeUse = false; 2542 bool OrderAfterDef = false; 2543 bool OrderBeforeDef = false; 2544 unsigned MoveDef = 0; 2545 unsigned MoveUse = 0; 2546 int StageInst1 = stageScheduled(SU); 2547 2548 unsigned Pos = 0; 2549 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2550 ++I, ++Pos) { 2551 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2552 MachineOperand &MO = MI->getOperand(i); 2553 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2554 continue; 2555 2556 Register Reg = MO.getReg(); 2557 unsigned BasePos, OffsetPos; 2558 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2559 if (MI->getOperand(BasePos).getReg() == Reg) 2560 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2561 Reg = NewReg; 2562 bool Reads, Writes; 2563 std::tie(Reads, Writes) = 2564 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2565 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2566 OrderBeforeUse = true; 2567 if (MoveUse == 0) 2568 MoveUse = Pos; 2569 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2570 // Add the instruction after the scheduled instruction. 2571 OrderAfterDef = true; 2572 MoveDef = Pos; 2573 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2574 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2575 OrderBeforeUse = true; 2576 if (MoveUse == 0) 2577 MoveUse = Pos; 2578 } else { 2579 OrderAfterDef = true; 2580 MoveDef = Pos; 2581 } 2582 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2583 OrderBeforeUse = true; 2584 if (MoveUse == 0) 2585 MoveUse = Pos; 2586 if (MoveUse != 0) { 2587 OrderAfterDef = true; 2588 MoveDef = Pos - 1; 2589 } 2590 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2591 // Add the instruction before the scheduled instruction. 2592 OrderBeforeUse = true; 2593 if (MoveUse == 0) 2594 MoveUse = Pos; 2595 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2596 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2597 if (MoveUse == 0) { 2598 OrderBeforeDef = true; 2599 MoveUse = Pos; 2600 } 2601 } 2602 } 2603 // Check for order dependences between instructions. Make sure the source 2604 // is ordered before the destination. 2605 for (auto &S : SU->Succs) { 2606 if (S.getSUnit() != *I) 2607 continue; 2608 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2609 OrderBeforeUse = true; 2610 if (Pos < MoveUse) 2611 MoveUse = Pos; 2612 } 2613 // We did not handle HW dependences in previous for loop, 2614 // and we normally set Latency = 0 for Anti deps, 2615 // so may have nodes in same cycle with Anti denpendent on HW regs. 2616 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2617 OrderBeforeUse = true; 2618 if ((MoveUse == 0) || (Pos < MoveUse)) 2619 MoveUse = Pos; 2620 } 2621 } 2622 for (auto &P : SU->Preds) { 2623 if (P.getSUnit() != *I) 2624 continue; 2625 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2626 OrderAfterDef = true; 2627 MoveDef = Pos; 2628 } 2629 } 2630 } 2631 2632 // A circular dependence. 2633 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2634 OrderBeforeUse = false; 2635 2636 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2637 // to a loop-carried dependence. 2638 if (OrderBeforeDef) 2639 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2640 2641 // The uncommon case when the instruction order needs to be updated because 2642 // there is both a use and def. 2643 if (OrderBeforeUse && OrderAfterDef) { 2644 SUnit *UseSU = Insts.at(MoveUse); 2645 SUnit *DefSU = Insts.at(MoveDef); 2646 if (MoveUse > MoveDef) { 2647 Insts.erase(Insts.begin() + MoveUse); 2648 Insts.erase(Insts.begin() + MoveDef); 2649 } else { 2650 Insts.erase(Insts.begin() + MoveDef); 2651 Insts.erase(Insts.begin() + MoveUse); 2652 } 2653 orderDependence(SSD, UseSU, Insts); 2654 orderDependence(SSD, SU, Insts); 2655 orderDependence(SSD, DefSU, Insts); 2656 return; 2657 } 2658 // Put the new instruction first if there is a use in the list. Otherwise, 2659 // put it at the end of the list. 2660 if (OrderBeforeUse) 2661 Insts.push_front(SU); 2662 else 2663 Insts.push_back(SU); 2664 } 2665 2666 /// Return true if the scheduled Phi has a loop carried operand. 2667 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2668 if (!Phi.isPHI()) 2669 return false; 2670 assert(Phi.isPHI() && "Expecting a Phi."); 2671 SUnit *DefSU = SSD->getSUnit(&Phi); 2672 unsigned DefCycle = cycleScheduled(DefSU); 2673 int DefStage = stageScheduled(DefSU); 2674 2675 unsigned InitVal = 0; 2676 unsigned LoopVal = 0; 2677 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2678 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2679 if (!UseSU) 2680 return true; 2681 if (UseSU->getInstr()->isPHI()) 2682 return true; 2683 unsigned LoopCycle = cycleScheduled(UseSU); 2684 int LoopStage = stageScheduled(UseSU); 2685 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2686 } 2687 2688 /// Return true if the instruction is a definition that is loop carried 2689 /// and defines the use on the next iteration. 2690 /// v1 = phi(v2, v3) 2691 /// (Def) v3 = op v1 2692 /// (MO) = v1 2693 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2694 /// register. 2695 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2696 MachineInstr *Def, MachineOperand &MO) { 2697 if (!MO.isReg()) 2698 return false; 2699 if (Def->isPHI()) 2700 return false; 2701 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2702 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2703 return false; 2704 if (!isLoopCarried(SSD, *Phi)) 2705 return false; 2706 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2707 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2708 MachineOperand &DMO = Def->getOperand(i); 2709 if (!DMO.isReg() || !DMO.isDef()) 2710 continue; 2711 if (DMO.getReg() == LoopReg) 2712 return true; 2713 } 2714 return false; 2715 } 2716 2717 // Check if the generated schedule is valid. This function checks if 2718 // an instruction that uses a physical register is scheduled in a 2719 // different stage than the definition. The pipeliner does not handle 2720 // physical register values that may cross a basic block boundary. 2721 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2722 for (SUnit &SU : SSD->SUnits) { 2723 if (!SU.hasPhysRegDefs) 2724 continue; 2725 int StageDef = stageScheduled(&SU); 2726 assert(StageDef != -1 && "Instruction should have been scheduled."); 2727 for (auto &SI : SU.Succs) 2728 if (SI.isAssignedRegDep()) 2729 if (Register::isPhysicalRegister(SI.getReg())) 2730 if (stageScheduled(SI.getSUnit()) != StageDef) 2731 return false; 2732 } 2733 return true; 2734 } 2735 2736 /// A property of the node order in swing-modulo-scheduling is 2737 /// that for nodes outside circuits the following holds: 2738 /// none of them is scheduled after both a successor and a 2739 /// predecessor. 2740 /// The method below checks whether the property is met. 2741 /// If not, debug information is printed and statistics information updated. 2742 /// Note that we do not use an assert statement. 2743 /// The reason is that although an invalid node oder may prevent 2744 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2745 /// it does not lead to the generation of incorrect code. 2746 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2747 2748 // a sorted vector that maps each SUnit to its index in the NodeOrder 2749 typedef std::pair<SUnit *, unsigned> UnitIndex; 2750 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2751 2752 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2753 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2754 2755 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2756 return std::get<0>(i1) < std::get<0>(i2); 2757 }; 2758 2759 // sort, so that we can perform a binary search 2760 llvm::sort(Indices, CompareKey); 2761 2762 bool Valid = true; 2763 (void)Valid; 2764 // for each SUnit in the NodeOrder, check whether 2765 // it appears after both a successor and a predecessor 2766 // of the SUnit. If this is the case, and the SUnit 2767 // is not part of circuit, then the NodeOrder is not 2768 // valid. 2769 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2770 SUnit *SU = NodeOrder[i]; 2771 unsigned Index = i; 2772 2773 bool PredBefore = false; 2774 bool SuccBefore = false; 2775 2776 SUnit *Succ; 2777 SUnit *Pred; 2778 (void)Succ; 2779 (void)Pred; 2780 2781 for (SDep &PredEdge : SU->Preds) { 2782 SUnit *PredSU = PredEdge.getSUnit(); 2783 unsigned PredIndex = std::get<1>( 2784 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2785 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2786 PredBefore = true; 2787 Pred = PredSU; 2788 break; 2789 } 2790 } 2791 2792 for (SDep &SuccEdge : SU->Succs) { 2793 SUnit *SuccSU = SuccEdge.getSUnit(); 2794 // Do not process a boundary node, it was not included in NodeOrder, 2795 // hence not in Indices either, call to std::lower_bound() below will 2796 // return Indices.end(). 2797 if (SuccSU->isBoundaryNode()) 2798 continue; 2799 unsigned SuccIndex = std::get<1>( 2800 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2801 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2802 SuccBefore = true; 2803 Succ = SuccSU; 2804 break; 2805 } 2806 } 2807 2808 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2809 // instructions in circuits are allowed to be scheduled 2810 // after both a successor and predecessor. 2811 bool InCircuit = llvm::any_of( 2812 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2813 if (InCircuit) 2814 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2815 else { 2816 Valid = false; 2817 NumNodeOrderIssues++; 2818 LLVM_DEBUG(dbgs() << "Predecessor ";); 2819 } 2820 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2821 << " are scheduled before node " << SU->NodeNum 2822 << "\n";); 2823 } 2824 } 2825 2826 LLVM_DEBUG({ 2827 if (!Valid) 2828 dbgs() << "Invalid node order found!\n"; 2829 }); 2830 } 2831 2832 /// Attempt to fix the degenerate cases when the instruction serialization 2833 /// causes the register lifetimes to overlap. For example, 2834 /// p' = store_pi(p, b) 2835 /// = load p, offset 2836 /// In this case p and p' overlap, which means that two registers are needed. 2837 /// Instead, this function changes the load to use p' and updates the offset. 2838 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2839 unsigned OverlapReg = 0; 2840 unsigned NewBaseReg = 0; 2841 for (SUnit *SU : Instrs) { 2842 MachineInstr *MI = SU->getInstr(); 2843 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2844 const MachineOperand &MO = MI->getOperand(i); 2845 // Look for an instruction that uses p. The instruction occurs in the 2846 // same cycle but occurs later in the serialized order. 2847 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2848 // Check that the instruction appears in the InstrChanges structure, 2849 // which contains instructions that can have the offset updated. 2850 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2851 InstrChanges.find(SU); 2852 if (It != InstrChanges.end()) { 2853 unsigned BasePos, OffsetPos; 2854 // Update the base register and adjust the offset. 2855 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2856 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2857 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2858 int64_t NewOffset = 2859 MI->getOperand(OffsetPos).getImm() - It->second.second; 2860 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2861 SU->setInstr(NewMI); 2862 MISUnitMap[NewMI] = SU; 2863 NewMIs[MI] = NewMI; 2864 } 2865 } 2866 OverlapReg = 0; 2867 NewBaseReg = 0; 2868 break; 2869 } 2870 // Look for an instruction of the form p' = op(p), which uses and defines 2871 // two virtual registers that get allocated to the same physical register. 2872 unsigned TiedUseIdx = 0; 2873 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2874 // OverlapReg is p in the example above. 2875 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2876 // NewBaseReg is p' in the example above. 2877 NewBaseReg = MI->getOperand(i).getReg(); 2878 break; 2879 } 2880 } 2881 } 2882 } 2883 2884 /// After the schedule has been formed, call this function to combine 2885 /// the instructions from the different stages/cycles. That is, this 2886 /// function creates a schedule that represents a single iteration. 2887 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2888 // Move all instructions to the first stage from later stages. 2889 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2890 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2891 ++stage) { 2892 std::deque<SUnit *> &cycleInstrs = 2893 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2894 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2895 E = cycleInstrs.rend(); 2896 I != E; ++I) 2897 ScheduledInstrs[cycle].push_front(*I); 2898 } 2899 } 2900 2901 // Erase all the elements in the later stages. Only one iteration should 2902 // remain in the scheduled list, and it contains all the instructions. 2903 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2904 ScheduledInstrs.erase(cycle); 2905 2906 // Change the registers in instruction as specified in the InstrChanges 2907 // map. We need to use the new registers to create the correct order. 2908 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2909 SUnit *SU = &SSD->SUnits[i]; 2910 SSD->applyInstrChange(SU->getInstr(), *this); 2911 } 2912 2913 // Reorder the instructions in each cycle to fix and improve the 2914 // generated code. 2915 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2916 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2917 std::deque<SUnit *> newOrderPhi; 2918 for (SUnit *SU : cycleInstrs) { 2919 if (SU->getInstr()->isPHI()) 2920 newOrderPhi.push_back(SU); 2921 } 2922 std::deque<SUnit *> newOrderI; 2923 for (SUnit *SU : cycleInstrs) { 2924 if (!SU->getInstr()->isPHI()) 2925 orderDependence(SSD, SU, newOrderI); 2926 } 2927 // Replace the old order with the new order. 2928 cycleInstrs.swap(newOrderPhi); 2929 llvm::append_range(cycleInstrs, newOrderI); 2930 SSD->fixupRegisterOverlaps(cycleInstrs); 2931 } 2932 2933 LLVM_DEBUG(dump();); 2934 } 2935 2936 void NodeSet::print(raw_ostream &os) const { 2937 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2938 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2939 for (const auto &I : Nodes) 2940 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2941 os << "\n"; 2942 } 2943 2944 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2945 /// Print the schedule information to the given output. 2946 void SMSchedule::print(raw_ostream &os) const { 2947 // Iterate over each cycle. 2948 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2949 // Iterate over each instruction in the cycle. 2950 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2951 for (SUnit *CI : cycleInstrs->second) { 2952 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2953 os << "(" << CI->NodeNum << ") "; 2954 CI->getInstr()->print(os); 2955 os << "\n"; 2956 } 2957 } 2958 } 2959 2960 /// Utility function used for debugging to print the schedule. 2961 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2962 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2963 2964 #endif 2965 2966 void ResourceManager::initProcResourceVectors( 2967 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2968 unsigned ProcResourceID = 0; 2969 2970 // We currently limit the resource kinds to 64 and below so that we can use 2971 // uint64_t for Masks 2972 assert(SM.getNumProcResourceKinds() < 64 && 2973 "Too many kinds of resources, unsupported"); 2974 // Create a unique bitmask for every processor resource unit. 2975 // Skip resource at index 0, since it always references 'InvalidUnit'. 2976 Masks.resize(SM.getNumProcResourceKinds()); 2977 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2978 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2979 if (Desc.SubUnitsIdxBegin) 2980 continue; 2981 Masks[I] = 1ULL << ProcResourceID; 2982 ProcResourceID++; 2983 } 2984 // Create a unique bitmask for every processor resource group. 2985 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2986 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2987 if (!Desc.SubUnitsIdxBegin) 2988 continue; 2989 Masks[I] = 1ULL << ProcResourceID; 2990 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2991 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2992 ProcResourceID++; 2993 } 2994 LLVM_DEBUG({ 2995 if (SwpShowResMask) { 2996 dbgs() << "ProcResourceDesc:\n"; 2997 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2998 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2999 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3000 ProcResource->Name, I, Masks[I], 3001 ProcResource->NumUnits); 3002 } 3003 dbgs() << " -----------------\n"; 3004 } 3005 }); 3006 } 3007 3008 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3009 3010 LLVM_DEBUG({ 3011 if (SwpDebugResource) 3012 dbgs() << "canReserveResources:\n"; 3013 }); 3014 if (UseDFA) 3015 return DFAResources->canReserveResources(MID); 3016 3017 unsigned InsnClass = MID->getSchedClass(); 3018 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3019 if (!SCDesc->isValid()) { 3020 LLVM_DEBUG({ 3021 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3022 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3023 }); 3024 return true; 3025 } 3026 3027 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3028 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3029 for (; I != E; ++I) { 3030 if (!I->Cycles) 3031 continue; 3032 const MCProcResourceDesc *ProcResource = 3033 SM.getProcResource(I->ProcResourceIdx); 3034 unsigned NumUnits = ProcResource->NumUnits; 3035 LLVM_DEBUG({ 3036 if (SwpDebugResource) 3037 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3038 ProcResource->Name, I->ProcResourceIdx, 3039 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3040 I->Cycles); 3041 }); 3042 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3043 return false; 3044 } 3045 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3046 return true; 3047 } 3048 3049 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3050 LLVM_DEBUG({ 3051 if (SwpDebugResource) 3052 dbgs() << "reserveResources:\n"; 3053 }); 3054 if (UseDFA) 3055 return DFAResources->reserveResources(MID); 3056 3057 unsigned InsnClass = MID->getSchedClass(); 3058 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3059 if (!SCDesc->isValid()) { 3060 LLVM_DEBUG({ 3061 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3062 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3063 }); 3064 return; 3065 } 3066 for (const MCWriteProcResEntry &PRE : 3067 make_range(STI->getWriteProcResBegin(SCDesc), 3068 STI->getWriteProcResEnd(SCDesc))) { 3069 if (!PRE.Cycles) 3070 continue; 3071 ++ProcResourceCount[PRE.ProcResourceIdx]; 3072 LLVM_DEBUG({ 3073 if (SwpDebugResource) { 3074 const MCProcResourceDesc *ProcResource = 3075 SM.getProcResource(PRE.ProcResourceIdx); 3076 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3077 ProcResource->Name, PRE.ProcResourceIdx, 3078 ProcResourceCount[PRE.ProcResourceIdx], 3079 ProcResource->NumUnits, PRE.Cycles); 3080 } 3081 }); 3082 } 3083 LLVM_DEBUG({ 3084 if (SwpDebugResource) 3085 dbgs() << "reserveResources: done!\n\n"; 3086 }); 3087 } 3088 3089 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3090 return canReserveResources(&MI.getDesc()); 3091 } 3092 3093 void ResourceManager::reserveResources(const MachineInstr &MI) { 3094 return reserveResources(&MI.getDesc()); 3095 } 3096 3097 void ResourceManager::clearResources() { 3098 if (UseDFA) 3099 return DFAResources->clearResources(); 3100 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3101 } 3102