1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/SetOperations.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/iterator_range.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/MemoryLocation.h" 47 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/CodeGen/DFAPacketizer.h" 50 #include "llvm/CodeGen/LiveIntervals.h" 51 #include "llvm/CodeGen/MachineBasicBlock.h" 52 #include "llvm/CodeGen/MachineDominators.h" 53 #include "llvm/CodeGen/MachineFunction.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstr.h" 56 #include "llvm/CodeGen/MachineInstrBuilder.h" 57 #include "llvm/CodeGen/MachineLoopInfo.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineOperand.h" 60 #include "llvm/CodeGen/MachineRegisterInfo.h" 61 #include "llvm/CodeGen/ModuloSchedule.h" 62 #include "llvm/CodeGen/RegisterPressure.h" 63 #include "llvm/CodeGen/ScheduleDAG.h" 64 #include "llvm/CodeGen/ScheduleDAGMutation.h" 65 #include "llvm/CodeGen/TargetOpcodes.h" 66 #include "llvm/CodeGen/TargetRegisterInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/Config/llvm-config.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 #include "llvm/MC/MCInstrItineraries.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <deque> 86 #include <functional> 87 #include <iterator> 88 #include <map> 89 #include <memory> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "pipeliner" 97 98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 99 STATISTIC(NumPipelined, "Number of loops software pipelined"); 100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 109 110 /// A command line option to turn software pipelining on or off. 111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 112 cl::ZeroOrMore, 113 cl::desc("Enable Software Pipelining")); 114 115 /// A command line option to enable SWP at -Os. 116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 117 cl::desc("Enable SWP at Os."), cl::Hidden, 118 cl::init(false)); 119 120 /// A command line argument to limit minimum initial interval for pipelining. 121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 122 cl::desc("Size limit for the MII."), 123 cl::Hidden, cl::init(27)); 124 125 /// A command line argument to limit the number of stages in the pipeline. 126 static cl::opt<int> 127 SwpMaxStages("pipeliner-max-stages", 128 cl::desc("Maximum stages allowed in the generated scheduled."), 129 cl::Hidden, cl::init(3)); 130 131 /// A command line option to disable the pruning of chain dependences due to 132 /// an unrelated Phi. 133 static cl::opt<bool> 134 SwpPruneDeps("pipeliner-prune-deps", 135 cl::desc("Prune dependences between unrelated Phi nodes."), 136 cl::Hidden, cl::init(true)); 137 138 /// A command line option to disable the pruning of loop carried order 139 /// dependences. 140 static cl::opt<bool> 141 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 142 cl::desc("Prune loop carried order dependences."), 143 cl::Hidden, cl::init(true)); 144 145 #ifndef NDEBUG 146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 147 #endif 148 149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 150 cl::ReallyHidden, cl::init(false), 151 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 152 153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 154 cl::init(false)); 155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 156 cl::init(false)); 157 158 static cl::opt<bool> EmitTestAnnotations( 159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 160 cl::desc("Instead of emitting the pipelined code, annotate instructions " 161 "with the generated schedule for feeding into the " 162 "-modulo-schedule-test pass")); 163 164 static cl::opt<bool> ExperimentalCodeGen( 165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 166 cl::desc( 167 "Use the experimental peeling code generator for software pipelining")); 168 169 namespace llvm { 170 171 // A command line option to enable the CopyToPhi DAG mutation. 172 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 203 !EnableSWPOptSize.getPosition()) 204 return false; 205 206 if (!mf.getSubtarget().enableMachinePipeliner()) 207 return false; 208 209 // Cannot pipeline loops without instruction itineraries if we are using 210 // DFA for the pipeliner. 211 if (mf.getSubtarget().useDFAforSMS() && 212 (!mf.getSubtarget().getInstrItineraryData() || 213 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 214 return false; 215 216 MF = &mf; 217 MLI = &getAnalysis<MachineLoopInfo>(); 218 MDT = &getAnalysis<MachineDominatorTree>(); 219 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 220 TII = MF->getSubtarget().getInstrInfo(); 221 RegClassInfo.runOnMachineFunction(*MF); 222 223 for (auto &L : *MLI) 224 scheduleLoop(*L); 225 226 return false; 227 } 228 229 /// Attempt to perform the SMS algorithm on the specified loop. This function is 230 /// the main entry point for the algorithm. The function identifies candidate 231 /// loops, calculates the minimum initiation interval, and attempts to schedule 232 /// the loop. 233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 234 bool Changed = false; 235 for (auto &InnerLoop : L) 236 Changed |= scheduleLoop(*InnerLoop); 237 238 #ifndef NDEBUG 239 // Stop trying after reaching the limit (if any). 240 int Limit = SwpLoopLimit; 241 if (Limit >= 0) { 242 if (NumTries >= SwpLoopLimit) 243 return Changed; 244 NumTries++; 245 } 246 #endif 247 248 setPragmaPipelineOptions(L); 249 if (!canPipelineLoop(L)) { 250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 251 ORE->emit([&]() { 252 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 253 L.getStartLoc(), L.getHeader()) 254 << "Failed to pipeline loop"; 255 }); 256 257 LI.LoopPipelinerInfo.reset(); 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 LI.LoopPipelinerInfo.reset(); 266 return Changed; 267 } 268 269 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 270 // Reset the pragma for the next loop in iteration. 271 disabledByPragma = false; 272 II_setByPragma = 0; 273 274 MachineBasicBlock *LBLK = L.getTopBlock(); 275 276 if (LBLK == nullptr) 277 return; 278 279 const BasicBlock *BBLK = LBLK->getBasicBlock(); 280 if (BBLK == nullptr) 281 return; 282 283 const Instruction *TI = BBLK->getTerminator(); 284 if (TI == nullptr) 285 return; 286 287 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 288 if (LoopID == nullptr) 289 return; 290 291 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 292 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 293 294 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 295 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 296 297 if (MD == nullptr) 298 continue; 299 300 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 301 302 if (S == nullptr) 303 continue; 304 305 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 306 assert(MD->getNumOperands() == 2 && 307 "Pipeline initiation interval hint metadata should have two operands."); 308 II_setByPragma = 309 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 310 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 311 } else if (S->getString() == "llvm.loop.pipeline.disable") { 312 disabledByPragma = true; 313 } 314 } 315 } 316 317 /// Return true if the loop can be software pipelined. The algorithm is 318 /// restricted to loops with a single basic block. Make sure that the 319 /// branch in the loop can be analyzed. 320 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 321 if (L.getNumBlocks() != 1) { 322 ORE->emit([&]() { 323 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 324 L.getStartLoc(), L.getHeader()) 325 << "Not a single basic block: " 326 << ore::NV("NumBlocks", L.getNumBlocks()); 327 }); 328 return false; 329 } 330 331 if (disabledByPragma) { 332 ORE->emit([&]() { 333 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 334 L.getStartLoc(), L.getHeader()) 335 << "Disabled by Pragma."; 336 }); 337 return false; 338 } 339 340 // Check if the branch can't be understood because we can't do pipelining 341 // if that's the case. 342 LI.TBB = nullptr; 343 LI.FBB = nullptr; 344 LI.BrCond.clear(); 345 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 346 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 347 NumFailBranch++; 348 ORE->emit([&]() { 349 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 350 L.getStartLoc(), L.getHeader()) 351 << "The branch can't be understood"; 352 }); 353 return false; 354 } 355 356 LI.LoopInductionVar = nullptr; 357 LI.LoopCompare = nullptr; 358 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 359 if (!LI.LoopPipelinerInfo) { 360 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 361 NumFailLoop++; 362 ORE->emit([&]() { 363 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 364 L.getStartLoc(), L.getHeader()) 365 << "The loop structure is not supported"; 366 }); 367 return false; 368 } 369 370 if (!L.getLoopPreheader()) { 371 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 372 NumFailPreheader++; 373 ORE->emit([&]() { 374 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 375 L.getStartLoc(), L.getHeader()) 376 << "No loop preheader found"; 377 }); 378 return false; 379 } 380 381 // Remove any subregisters from inputs to phi nodes. 382 preprocessPhiNodes(*L.getHeader()); 383 return true; 384 } 385 386 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 387 MachineRegisterInfo &MRI = MF->getRegInfo(); 388 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 389 390 for (MachineInstr &PI : B.phis()) { 391 MachineOperand &DefOp = PI.getOperand(0); 392 assert(DefOp.getSubReg() == 0); 393 auto *RC = MRI.getRegClass(DefOp.getReg()); 394 395 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 396 MachineOperand &RegOp = PI.getOperand(i); 397 if (RegOp.getSubReg() == 0) 398 continue; 399 400 // If the operand uses a subregister, replace it with a new register 401 // without subregisters, and generate a copy to the new register. 402 Register NewReg = MRI.createVirtualRegister(RC); 403 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 404 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 405 const DebugLoc &DL = PredB.findDebugLoc(At); 406 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 407 .addReg(RegOp.getReg(), getRegState(RegOp), 408 RegOp.getSubReg()); 409 Slots.insertMachineInstrInMaps(*Copy); 410 RegOp.setReg(NewReg); 411 RegOp.setSubReg(0); 412 } 413 } 414 } 415 416 /// The SMS algorithm consists of the following main steps: 417 /// 1. Computation and analysis of the dependence graph. 418 /// 2. Ordering of the nodes (instructions). 419 /// 3. Attempt to Schedule the loop. 420 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 421 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 422 423 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 424 II_setByPragma, LI.LoopPipelinerInfo.get()); 425 426 MachineBasicBlock *MBB = L.getHeader(); 427 // The kernel should not include any terminator instructions. These 428 // will be added back later. 429 SMS.startBlock(MBB); 430 431 // Compute the number of 'real' instructions in the basic block by 432 // ignoring terminators. 433 unsigned size = MBB->size(); 434 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 435 E = MBB->instr_end(); 436 I != E; ++I, --size) 437 ; 438 439 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 440 SMS.schedule(); 441 SMS.exitRegion(); 442 443 SMS.finishBlock(); 444 return SMS.hasNewSchedule(); 445 } 446 447 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 448 AU.addRequired<AAResultsWrapperPass>(); 449 AU.addPreserved<AAResultsWrapperPass>(); 450 AU.addRequired<MachineLoopInfo>(); 451 AU.addRequired<MachineDominatorTree>(); 452 AU.addRequired<LiveIntervals>(); 453 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 454 MachineFunctionPass::getAnalysisUsage(AU); 455 } 456 457 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 458 if (II_setByPragma > 0) 459 MII = II_setByPragma; 460 else 461 MII = std::max(ResMII, RecMII); 462 } 463 464 void SwingSchedulerDAG::setMAX_II() { 465 if (II_setByPragma > 0) 466 MAX_II = II_setByPragma; 467 else 468 MAX_II = MII + 10; 469 } 470 471 /// We override the schedule function in ScheduleDAGInstrs to implement the 472 /// scheduling part of the Swing Modulo Scheduling algorithm. 473 void SwingSchedulerDAG::schedule() { 474 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 475 buildSchedGraph(AA); 476 addLoopCarriedDependences(AA); 477 updatePhiDependences(); 478 Topo.InitDAGTopologicalSorting(); 479 changeDependences(); 480 postprocessDAG(); 481 LLVM_DEBUG(dump()); 482 483 NodeSetType NodeSets; 484 findCircuits(NodeSets); 485 NodeSetType Circuits = NodeSets; 486 487 // Calculate the MII. 488 unsigned ResMII = calculateResMII(); 489 unsigned RecMII = calculateRecMII(NodeSets); 490 491 fuseRecs(NodeSets); 492 493 // This flag is used for testing and can cause correctness problems. 494 if (SwpIgnoreRecMII) 495 RecMII = 0; 496 497 setMII(ResMII, RecMII); 498 setMAX_II(); 499 500 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 501 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 502 503 // Can't schedule a loop without a valid MII. 504 if (MII == 0) { 505 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 506 NumFailZeroMII++; 507 Pass.ORE->emit([&]() { 508 return MachineOptimizationRemarkAnalysis( 509 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 510 << "Invalid Minimal Initiation Interval: 0"; 511 }); 512 return; 513 } 514 515 // Don't pipeline large loops. 516 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 517 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 518 << ", we don't pipleline large loops\n"); 519 NumFailLargeMaxMII++; 520 Pass.ORE->emit([&]() { 521 return MachineOptimizationRemarkAnalysis( 522 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 523 << "Minimal Initiation Interval too large: " 524 << ore::NV("MII", (int)MII) << " > " 525 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 526 << "Refer to -pipeliner-max-mii."; 527 }); 528 return; 529 } 530 531 computeNodeFunctions(NodeSets); 532 533 registerPressureFilter(NodeSets); 534 535 colocateNodeSets(NodeSets); 536 537 checkNodeSets(NodeSets); 538 539 LLVM_DEBUG({ 540 for (auto &I : NodeSets) { 541 dbgs() << " Rec NodeSet "; 542 I.dump(); 543 } 544 }); 545 546 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 547 548 groupRemainingNodes(NodeSets); 549 550 removeDuplicateNodes(NodeSets); 551 552 LLVM_DEBUG({ 553 for (auto &I : NodeSets) { 554 dbgs() << " NodeSet "; 555 I.dump(); 556 } 557 }); 558 559 computeNodeOrder(NodeSets); 560 561 // check for node order issues 562 checkValidNodeOrder(Circuits); 563 564 SMSchedule Schedule(Pass.MF); 565 Scheduled = schedulePipeline(Schedule); 566 567 if (!Scheduled){ 568 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 569 NumFailNoSchedule++; 570 Pass.ORE->emit([&]() { 571 return MachineOptimizationRemarkAnalysis( 572 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 573 << "Unable to find schedule"; 574 }); 575 return; 576 } 577 578 unsigned numStages = Schedule.getMaxStageCount(); 579 // No need to generate pipeline if there are no overlapped iterations. 580 if (numStages == 0) { 581 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 582 NumFailZeroStage++; 583 Pass.ORE->emit([&]() { 584 return MachineOptimizationRemarkAnalysis( 585 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 586 << "No need to pipeline - no overlapped iterations in schedule."; 587 }); 588 return; 589 } 590 // Check that the maximum stage count is less than user-defined limit. 591 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 592 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 593 << " : too many stages, abort\n"); 594 NumFailLargeMaxStage++; 595 Pass.ORE->emit([&]() { 596 return MachineOptimizationRemarkAnalysis( 597 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 598 << "Too many stages in schedule: " 599 << ore::NV("numStages", (int)numStages) << " > " 600 << ore::NV("SwpMaxStages", SwpMaxStages) 601 << ". Refer to -pipeliner-max-stages."; 602 }); 603 return; 604 } 605 606 Pass.ORE->emit([&]() { 607 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 608 Loop.getHeader()) 609 << "Pipelined succesfully!"; 610 }); 611 612 // Generate the schedule as a ModuloSchedule. 613 DenseMap<MachineInstr *, int> Cycles, Stages; 614 std::vector<MachineInstr *> OrderedInsts; 615 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 616 ++Cycle) { 617 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 618 OrderedInsts.push_back(SU->getInstr()); 619 Cycles[SU->getInstr()] = Cycle; 620 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 621 } 622 } 623 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 624 for (auto &KV : NewMIs) { 625 Cycles[KV.first] = Cycles[KV.second]; 626 Stages[KV.first] = Stages[KV.second]; 627 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 628 } 629 630 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 631 std::move(Stages)); 632 if (EmitTestAnnotations) { 633 assert(NewInstrChanges.empty() && 634 "Cannot serialize a schedule with InstrChanges!"); 635 ModuloScheduleTestAnnotater MSTI(MF, MS); 636 MSTI.annotate(); 637 return; 638 } 639 // The experimental code generator can't work if there are InstChanges. 640 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 641 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 642 MSE.expand(); 643 } else { 644 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 645 MSE.expand(); 646 MSE.cleanup(); 647 } 648 ++NumPipelined; 649 } 650 651 /// Clean up after the software pipeliner runs. 652 void SwingSchedulerDAG::finishBlock() { 653 for (auto &KV : NewMIs) 654 MF.deleteMachineInstr(KV.second); 655 NewMIs.clear(); 656 657 // Call the superclass. 658 ScheduleDAGInstrs::finishBlock(); 659 } 660 661 /// Return the register values for the operands of a Phi instruction. 662 /// This function assume the instruction is a Phi. 663 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 664 unsigned &InitVal, unsigned &LoopVal) { 665 assert(Phi.isPHI() && "Expecting a Phi."); 666 667 InitVal = 0; 668 LoopVal = 0; 669 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 670 if (Phi.getOperand(i + 1).getMBB() != Loop) 671 InitVal = Phi.getOperand(i).getReg(); 672 else 673 LoopVal = Phi.getOperand(i).getReg(); 674 675 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 676 } 677 678 /// Return the Phi register value that comes the loop block. 679 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 680 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 681 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 682 return Phi.getOperand(i).getReg(); 683 return 0; 684 } 685 686 /// Return true if SUb can be reached from SUa following the chain edges. 687 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 688 SmallPtrSet<SUnit *, 8> Visited; 689 SmallVector<SUnit *, 8> Worklist; 690 Worklist.push_back(SUa); 691 while (!Worklist.empty()) { 692 const SUnit *SU = Worklist.pop_back_val(); 693 for (auto &SI : SU->Succs) { 694 SUnit *SuccSU = SI.getSUnit(); 695 if (SI.getKind() == SDep::Order) { 696 if (Visited.count(SuccSU)) 697 continue; 698 if (SuccSU == SUb) 699 return true; 700 Worklist.push_back(SuccSU); 701 Visited.insert(SuccSU); 702 } 703 } 704 } 705 return false; 706 } 707 708 /// Return true if the instruction causes a chain between memory 709 /// references before and after it. 710 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 711 return MI.isCall() || MI.mayRaiseFPException() || 712 MI.hasUnmodeledSideEffects() || 713 (MI.hasOrderedMemoryRef() && 714 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 715 } 716 717 /// Return the underlying objects for the memory references of an instruction. 718 /// This function calls the code in ValueTracking, but first checks that the 719 /// instruction has a memory operand. 720 static void getUnderlyingObjects(const MachineInstr *MI, 721 SmallVectorImpl<const Value *> &Objs) { 722 if (!MI->hasOneMemOperand()) 723 return; 724 MachineMemOperand *MM = *MI->memoperands_begin(); 725 if (!MM->getValue()) 726 return; 727 getUnderlyingObjects(MM->getValue(), Objs); 728 for (const Value *V : Objs) { 729 if (!isIdentifiedObject(V)) { 730 Objs.clear(); 731 return; 732 } 733 Objs.push_back(V); 734 } 735 } 736 737 /// Add a chain edge between a load and store if the store can be an 738 /// alias of the load on a subsequent iteration, i.e., a loop carried 739 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 740 /// but that code doesn't create loop carried dependences. 741 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 742 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 743 Value *UnknownValue = 744 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 745 for (auto &SU : SUnits) { 746 MachineInstr &MI = *SU.getInstr(); 747 if (isDependenceBarrier(MI, AA)) 748 PendingLoads.clear(); 749 else if (MI.mayLoad()) { 750 SmallVector<const Value *, 4> Objs; 751 ::getUnderlyingObjects(&MI, Objs); 752 if (Objs.empty()) 753 Objs.push_back(UnknownValue); 754 for (auto V : Objs) { 755 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 756 SUs.push_back(&SU); 757 } 758 } else if (MI.mayStore()) { 759 SmallVector<const Value *, 4> Objs; 760 ::getUnderlyingObjects(&MI, Objs); 761 if (Objs.empty()) 762 Objs.push_back(UnknownValue); 763 for (auto V : Objs) { 764 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 765 PendingLoads.find(V); 766 if (I == PendingLoads.end()) 767 continue; 768 for (auto Load : I->second) { 769 if (isSuccOrder(Load, &SU)) 770 continue; 771 MachineInstr &LdMI = *Load->getInstr(); 772 // First, perform the cheaper check that compares the base register. 773 // If they are the same and the load offset is less than the store 774 // offset, then mark the dependence as loop carried potentially. 775 const MachineOperand *BaseOp1, *BaseOp2; 776 int64_t Offset1, Offset2; 777 bool Offset1IsScalable, Offset2IsScalable; 778 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 779 Offset1IsScalable, TRI) && 780 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 781 Offset2IsScalable, TRI)) { 782 if (BaseOp1->isIdenticalTo(*BaseOp2) && 783 Offset1IsScalable == Offset2IsScalable && 784 (int)Offset1 < (int)Offset2) { 785 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 786 "What happened to the chain edge?"); 787 SDep Dep(Load, SDep::Barrier); 788 Dep.setLatency(1); 789 SU.addPred(Dep); 790 continue; 791 } 792 } 793 // Second, the more expensive check that uses alias analysis on the 794 // base registers. If they alias, and the load offset is less than 795 // the store offset, the mark the dependence as loop carried. 796 if (!AA) { 797 SDep Dep(Load, SDep::Barrier); 798 Dep.setLatency(1); 799 SU.addPred(Dep); 800 continue; 801 } 802 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 803 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 804 if (!MMO1->getValue() || !MMO2->getValue()) { 805 SDep Dep(Load, SDep::Barrier); 806 Dep.setLatency(1); 807 SU.addPred(Dep); 808 continue; 809 } 810 if (MMO1->getValue() == MMO2->getValue() && 811 MMO1->getOffset() <= MMO2->getOffset()) { 812 SDep Dep(Load, SDep::Barrier); 813 Dep.setLatency(1); 814 SU.addPred(Dep); 815 continue; 816 } 817 if (!AA->isNoAlias( 818 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 819 MemoryLocation::getAfter(MMO2->getValue(), 820 MMO2->getAAInfo()))) { 821 SDep Dep(Load, SDep::Barrier); 822 Dep.setLatency(1); 823 SU.addPred(Dep); 824 } 825 } 826 } 827 } 828 } 829 } 830 831 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 832 /// processes dependences for PHIs. This function adds true dependences 833 /// from a PHI to a use, and a loop carried dependence from the use to the 834 /// PHI. The loop carried dependence is represented as an anti dependence 835 /// edge. This function also removes chain dependences between unrelated 836 /// PHIs. 837 void SwingSchedulerDAG::updatePhiDependences() { 838 SmallVector<SDep, 4> RemoveDeps; 839 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 840 841 // Iterate over each DAG node. 842 for (SUnit &I : SUnits) { 843 RemoveDeps.clear(); 844 // Set to true if the instruction has an operand defined by a Phi. 845 unsigned HasPhiUse = 0; 846 unsigned HasPhiDef = 0; 847 MachineInstr *MI = I.getInstr(); 848 // Iterate over each operand, and we process the definitions. 849 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 850 MOE = MI->operands_end(); 851 MOI != MOE; ++MOI) { 852 if (!MOI->isReg()) 853 continue; 854 Register Reg = MOI->getReg(); 855 if (MOI->isDef()) { 856 // If the register is used by a Phi, then create an anti dependence. 857 for (MachineRegisterInfo::use_instr_iterator 858 UI = MRI.use_instr_begin(Reg), 859 UE = MRI.use_instr_end(); 860 UI != UE; ++UI) { 861 MachineInstr *UseMI = &*UI; 862 SUnit *SU = getSUnit(UseMI); 863 if (SU != nullptr && UseMI->isPHI()) { 864 if (!MI->isPHI()) { 865 SDep Dep(SU, SDep::Anti, Reg); 866 Dep.setLatency(1); 867 I.addPred(Dep); 868 } else { 869 HasPhiDef = Reg; 870 // Add a chain edge to a dependent Phi that isn't an existing 871 // predecessor. 872 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 873 I.addPred(SDep(SU, SDep::Barrier)); 874 } 875 } 876 } 877 } else if (MOI->isUse()) { 878 // If the register is defined by a Phi, then create a true dependence. 879 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 880 if (DefMI == nullptr) 881 continue; 882 SUnit *SU = getSUnit(DefMI); 883 if (SU != nullptr && DefMI->isPHI()) { 884 if (!MI->isPHI()) { 885 SDep Dep(SU, SDep::Data, Reg); 886 Dep.setLatency(0); 887 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 888 I.addPred(Dep); 889 } else { 890 HasPhiUse = Reg; 891 // Add a chain edge to a dependent Phi that isn't an existing 892 // predecessor. 893 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 894 I.addPred(SDep(SU, SDep::Barrier)); 895 } 896 } 897 } 898 } 899 // Remove order dependences from an unrelated Phi. 900 if (!SwpPruneDeps) 901 continue; 902 for (auto &PI : I.Preds) { 903 MachineInstr *PMI = PI.getSUnit()->getInstr(); 904 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 905 if (I.getInstr()->isPHI()) { 906 if (PMI->getOperand(0).getReg() == HasPhiUse) 907 continue; 908 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 909 continue; 910 } 911 RemoveDeps.push_back(PI); 912 } 913 } 914 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 915 I.removePred(RemoveDeps[i]); 916 } 917 } 918 919 /// Iterate over each DAG node and see if we can change any dependences 920 /// in order to reduce the recurrence MII. 921 void SwingSchedulerDAG::changeDependences() { 922 // See if an instruction can use a value from the previous iteration. 923 // If so, we update the base and offset of the instruction and change 924 // the dependences. 925 for (SUnit &I : SUnits) { 926 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 927 int64_t NewOffset = 0; 928 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 929 NewOffset)) 930 continue; 931 932 // Get the MI and SUnit for the instruction that defines the original base. 933 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 934 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 935 if (!DefMI) 936 continue; 937 SUnit *DefSU = getSUnit(DefMI); 938 if (!DefSU) 939 continue; 940 // Get the MI and SUnit for the instruction that defins the new base. 941 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 942 if (!LastMI) 943 continue; 944 SUnit *LastSU = getSUnit(LastMI); 945 if (!LastSU) 946 continue; 947 948 if (Topo.IsReachable(&I, LastSU)) 949 continue; 950 951 // Remove the dependence. The value now depends on a prior iteration. 952 SmallVector<SDep, 4> Deps; 953 for (const SDep &P : I.Preds) 954 if (P.getSUnit() == DefSU) 955 Deps.push_back(P); 956 for (int i = 0, e = Deps.size(); i != e; i++) { 957 Topo.RemovePred(&I, Deps[i].getSUnit()); 958 I.removePred(Deps[i]); 959 } 960 // Remove the chain dependence between the instructions. 961 Deps.clear(); 962 for (auto &P : LastSU->Preds) 963 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 964 Deps.push_back(P); 965 for (int i = 0, e = Deps.size(); i != e; i++) { 966 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 967 LastSU->removePred(Deps[i]); 968 } 969 970 // Add a dependence between the new instruction and the instruction 971 // that defines the new base. 972 SDep Dep(&I, SDep::Anti, NewBase); 973 Topo.AddPred(LastSU, &I); 974 LastSU->addPred(Dep); 975 976 // Remember the base and offset information so that we can update the 977 // instruction during code generation. 978 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 979 } 980 } 981 982 namespace { 983 984 // FuncUnitSorter - Comparison operator used to sort instructions by 985 // the number of functional unit choices. 986 struct FuncUnitSorter { 987 const InstrItineraryData *InstrItins; 988 const MCSubtargetInfo *STI; 989 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 990 991 FuncUnitSorter(const TargetSubtargetInfo &TSI) 992 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 993 994 // Compute the number of functional unit alternatives needed 995 // at each stage, and take the minimum value. We prioritize the 996 // instructions by the least number of choices first. 997 unsigned minFuncUnits(const MachineInstr *Inst, 998 InstrStage::FuncUnits &F) const { 999 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1000 unsigned min = UINT_MAX; 1001 if (InstrItins && !InstrItins->isEmpty()) { 1002 for (const InstrStage &IS : 1003 make_range(InstrItins->beginStage(SchedClass), 1004 InstrItins->endStage(SchedClass))) { 1005 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1006 unsigned numAlternatives = countPopulation(funcUnits); 1007 if (numAlternatives < min) { 1008 min = numAlternatives; 1009 F = funcUnits; 1010 } 1011 } 1012 return min; 1013 } 1014 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1015 const MCSchedClassDesc *SCDesc = 1016 STI->getSchedModel().getSchedClassDesc(SchedClass); 1017 if (!SCDesc->isValid()) 1018 // No valid Schedule Class Desc for schedClass, should be 1019 // Pseudo/PostRAPseudo 1020 return min; 1021 1022 for (const MCWriteProcResEntry &PRE : 1023 make_range(STI->getWriteProcResBegin(SCDesc), 1024 STI->getWriteProcResEnd(SCDesc))) { 1025 if (!PRE.Cycles) 1026 continue; 1027 const MCProcResourceDesc *ProcResource = 1028 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1029 unsigned NumUnits = ProcResource->NumUnits; 1030 if (NumUnits < min) { 1031 min = NumUnits; 1032 F = PRE.ProcResourceIdx; 1033 } 1034 } 1035 return min; 1036 } 1037 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1038 } 1039 1040 // Compute the critical resources needed by the instruction. This 1041 // function records the functional units needed by instructions that 1042 // must use only one functional unit. We use this as a tie breaker 1043 // for computing the resource MII. The instrutions that require 1044 // the same, highly used, functional unit have high priority. 1045 void calcCriticalResources(MachineInstr &MI) { 1046 unsigned SchedClass = MI.getDesc().getSchedClass(); 1047 if (InstrItins && !InstrItins->isEmpty()) { 1048 for (const InstrStage &IS : 1049 make_range(InstrItins->beginStage(SchedClass), 1050 InstrItins->endStage(SchedClass))) { 1051 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1052 if (countPopulation(FuncUnits) == 1) 1053 Resources[FuncUnits]++; 1054 } 1055 return; 1056 } 1057 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1058 const MCSchedClassDesc *SCDesc = 1059 STI->getSchedModel().getSchedClassDesc(SchedClass); 1060 if (!SCDesc->isValid()) 1061 // No valid Schedule Class Desc for schedClass, should be 1062 // Pseudo/PostRAPseudo 1063 return; 1064 1065 for (const MCWriteProcResEntry &PRE : 1066 make_range(STI->getWriteProcResBegin(SCDesc), 1067 STI->getWriteProcResEnd(SCDesc))) { 1068 if (!PRE.Cycles) 1069 continue; 1070 Resources[PRE.ProcResourceIdx]++; 1071 } 1072 return; 1073 } 1074 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1075 } 1076 1077 /// Return true if IS1 has less priority than IS2. 1078 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1079 InstrStage::FuncUnits F1 = 0, F2 = 0; 1080 unsigned MFUs1 = minFuncUnits(IS1, F1); 1081 unsigned MFUs2 = minFuncUnits(IS2, F2); 1082 if (MFUs1 == MFUs2) 1083 return Resources.lookup(F1) < Resources.lookup(F2); 1084 return MFUs1 > MFUs2; 1085 } 1086 }; 1087 1088 } // end anonymous namespace 1089 1090 /// Calculate the resource constrained minimum initiation interval for the 1091 /// specified loop. We use the DFA to model the resources needed for 1092 /// each instruction, and we ignore dependences. A different DFA is created 1093 /// for each cycle that is required. When adding a new instruction, we attempt 1094 /// to add it to each existing DFA, until a legal space is found. If the 1095 /// instruction cannot be reserved in an existing DFA, we create a new one. 1096 unsigned SwingSchedulerDAG::calculateResMII() { 1097 1098 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1099 SmallVector<ResourceManager*, 8> Resources; 1100 MachineBasicBlock *MBB = Loop.getHeader(); 1101 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1102 1103 // Sort the instructions by the number of available choices for scheduling, 1104 // least to most. Use the number of critical resources as the tie breaker. 1105 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1106 for (MachineInstr &MI : 1107 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1108 FUS.calcCriticalResources(MI); 1109 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1110 FuncUnitOrder(FUS); 1111 1112 for (MachineInstr &MI : 1113 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1114 FuncUnitOrder.push(&MI); 1115 1116 while (!FuncUnitOrder.empty()) { 1117 MachineInstr *MI = FuncUnitOrder.top(); 1118 FuncUnitOrder.pop(); 1119 if (TII->isZeroCost(MI->getOpcode())) 1120 continue; 1121 // Attempt to reserve the instruction in an existing DFA. At least one 1122 // DFA is needed for each cycle. 1123 unsigned NumCycles = getSUnit(MI)->Latency; 1124 unsigned ReservedCycles = 0; 1125 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1126 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1127 LLVM_DEBUG({ 1128 dbgs() << "Trying to reserve resource for " << NumCycles 1129 << " cycles for \n"; 1130 MI->dump(); 1131 }); 1132 for (unsigned C = 0; C < NumCycles; ++C) 1133 while (RI != RE) { 1134 if ((*RI)->canReserveResources(*MI)) { 1135 (*RI)->reserveResources(*MI); 1136 ++ReservedCycles; 1137 break; 1138 } 1139 RI++; 1140 } 1141 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1142 << ", NumCycles:" << NumCycles << "\n"); 1143 // Add new DFAs, if needed, to reserve resources. 1144 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1145 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1146 << "NewResource created to reserve resources" 1147 << "\n"); 1148 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1149 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1150 NewResource->reserveResources(*MI); 1151 Resources.push_back(NewResource); 1152 } 1153 } 1154 int Resmii = Resources.size(); 1155 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1156 // Delete the memory for each of the DFAs that were created earlier. 1157 for (ResourceManager *RI : Resources) { 1158 ResourceManager *D = RI; 1159 delete D; 1160 } 1161 Resources.clear(); 1162 return Resmii; 1163 } 1164 1165 /// Calculate the recurrence-constrainted minimum initiation interval. 1166 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1167 /// for each circuit. The II needs to satisfy the inequality 1168 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1169 /// II that satisfies the inequality, and the RecMII is the maximum 1170 /// of those values. 1171 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1172 unsigned RecMII = 0; 1173 1174 for (NodeSet &Nodes : NodeSets) { 1175 if (Nodes.empty()) 1176 continue; 1177 1178 unsigned Delay = Nodes.getLatency(); 1179 unsigned Distance = 1; 1180 1181 // ii = ceil(delay / distance) 1182 unsigned CurMII = (Delay + Distance - 1) / Distance; 1183 Nodes.setRecMII(CurMII); 1184 if (CurMII > RecMII) 1185 RecMII = CurMII; 1186 } 1187 1188 return RecMII; 1189 } 1190 1191 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1192 /// but we do this to find the circuits, and then change them back. 1193 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1194 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1195 for (SUnit &SU : SUnits) { 1196 for (SDep &Pred : SU.Preds) 1197 if (Pred.getKind() == SDep::Anti) 1198 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1199 } 1200 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1201 // Remove this anti dependency and add one in the reverse direction. 1202 SUnit *SU = P.first; 1203 SDep &D = P.second; 1204 SUnit *TargetSU = D.getSUnit(); 1205 unsigned Reg = D.getReg(); 1206 unsigned Lat = D.getLatency(); 1207 SU->removePred(D); 1208 SDep Dep(SU, SDep::Anti, Reg); 1209 Dep.setLatency(Lat); 1210 TargetSU->addPred(Dep); 1211 } 1212 } 1213 1214 /// Create the adjacency structure of the nodes in the graph. 1215 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1216 SwingSchedulerDAG *DAG) { 1217 BitVector Added(SUnits.size()); 1218 DenseMap<int, int> OutputDeps; 1219 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1220 Added.reset(); 1221 // Add any successor to the adjacency matrix and exclude duplicates. 1222 for (auto &SI : SUnits[i].Succs) { 1223 // Only create a back-edge on the first and last nodes of a dependence 1224 // chain. This records any chains and adds them later. 1225 if (SI.getKind() == SDep::Output) { 1226 int N = SI.getSUnit()->NodeNum; 1227 int BackEdge = i; 1228 auto Dep = OutputDeps.find(BackEdge); 1229 if (Dep != OutputDeps.end()) { 1230 BackEdge = Dep->second; 1231 OutputDeps.erase(Dep); 1232 } 1233 OutputDeps[N] = BackEdge; 1234 } 1235 // Do not process a boundary node, an artificial node. 1236 // A back-edge is processed only if it goes to a Phi. 1237 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1238 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1239 continue; 1240 int N = SI.getSUnit()->NodeNum; 1241 if (!Added.test(N)) { 1242 AdjK[i].push_back(N); 1243 Added.set(N); 1244 } 1245 } 1246 // A chain edge between a store and a load is treated as a back-edge in the 1247 // adjacency matrix. 1248 for (auto &PI : SUnits[i].Preds) { 1249 if (!SUnits[i].getInstr()->mayStore() || 1250 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1251 continue; 1252 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1253 int N = PI.getSUnit()->NodeNum; 1254 if (!Added.test(N)) { 1255 AdjK[i].push_back(N); 1256 Added.set(N); 1257 } 1258 } 1259 } 1260 } 1261 // Add back-edges in the adjacency matrix for the output dependences. 1262 for (auto &OD : OutputDeps) 1263 if (!Added.test(OD.second)) { 1264 AdjK[OD.first].push_back(OD.second); 1265 Added.set(OD.second); 1266 } 1267 } 1268 1269 /// Identify an elementary circuit in the dependence graph starting at the 1270 /// specified node. 1271 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1272 bool HasBackedge) { 1273 SUnit *SV = &SUnits[V]; 1274 bool F = false; 1275 Stack.insert(SV); 1276 Blocked.set(V); 1277 1278 for (auto W : AdjK[V]) { 1279 if (NumPaths > MaxPaths) 1280 break; 1281 if (W < S) 1282 continue; 1283 if (W == S) { 1284 if (!HasBackedge) 1285 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1286 F = true; 1287 ++NumPaths; 1288 break; 1289 } else if (!Blocked.test(W)) { 1290 if (circuit(W, S, NodeSets, 1291 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1292 F = true; 1293 } 1294 } 1295 1296 if (F) 1297 unblock(V); 1298 else { 1299 for (auto W : AdjK[V]) { 1300 if (W < S) 1301 continue; 1302 if (B[W].count(SV) == 0) 1303 B[W].insert(SV); 1304 } 1305 } 1306 Stack.pop_back(); 1307 return F; 1308 } 1309 1310 /// Unblock a node in the circuit finding algorithm. 1311 void SwingSchedulerDAG::Circuits::unblock(int U) { 1312 Blocked.reset(U); 1313 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1314 while (!BU.empty()) { 1315 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1316 assert(SI != BU.end() && "Invalid B set."); 1317 SUnit *W = *SI; 1318 BU.erase(W); 1319 if (Blocked.test(W->NodeNum)) 1320 unblock(W->NodeNum); 1321 } 1322 } 1323 1324 /// Identify all the elementary circuits in the dependence graph using 1325 /// Johnson's circuit algorithm. 1326 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1327 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1328 // but we do this to find the circuits, and then change them back. 1329 swapAntiDependences(SUnits); 1330 1331 Circuits Cir(SUnits, Topo); 1332 // Create the adjacency structure. 1333 Cir.createAdjacencyStructure(this); 1334 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1335 Cir.reset(); 1336 Cir.circuit(i, i, NodeSets); 1337 } 1338 1339 // Change the dependences back so that we've created a DAG again. 1340 swapAntiDependences(SUnits); 1341 } 1342 1343 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1344 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1345 // additional copies that are needed across iterations. An artificial dependence 1346 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1347 1348 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1349 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1350 // PHI-------True-Dep------> USEOfPhi 1351 1352 // The mutation creates 1353 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1354 1355 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1356 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1357 // late to avoid additional copies across iterations. The possible scheduling 1358 // order would be 1359 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1360 1361 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1362 for (SUnit &SU : DAG->SUnits) { 1363 // Find the COPY/REG_SEQUENCE instruction. 1364 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1365 continue; 1366 1367 // Record the loop carried PHIs. 1368 SmallVector<SUnit *, 4> PHISUs; 1369 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1370 SmallVector<SUnit *, 4> SrcSUs; 1371 1372 for (auto &Dep : SU.Preds) { 1373 SUnit *TmpSU = Dep.getSUnit(); 1374 MachineInstr *TmpMI = TmpSU->getInstr(); 1375 SDep::Kind DepKind = Dep.getKind(); 1376 // Save the loop carried PHI. 1377 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1378 PHISUs.push_back(TmpSU); 1379 // Save the source of COPY/REG_SEQUENCE. 1380 // If the source has no pre-decessors, we will end up creating cycles. 1381 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1382 SrcSUs.push_back(TmpSU); 1383 } 1384 1385 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1386 continue; 1387 1388 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1389 // SUnit to the container. 1390 SmallVector<SUnit *, 8> UseSUs; 1391 // Do not use iterator based loop here as we are updating the container. 1392 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1393 for (auto &Dep : PHISUs[Index]->Succs) { 1394 if (Dep.getKind() != SDep::Data) 1395 continue; 1396 1397 SUnit *TmpSU = Dep.getSUnit(); 1398 MachineInstr *TmpMI = TmpSU->getInstr(); 1399 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1400 PHISUs.push_back(TmpSU); 1401 continue; 1402 } 1403 UseSUs.push_back(TmpSU); 1404 } 1405 } 1406 1407 if (UseSUs.size() == 0) 1408 continue; 1409 1410 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1411 // Add the artificial dependencies if it does not form a cycle. 1412 for (auto I : UseSUs) { 1413 for (auto Src : SrcSUs) { 1414 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1415 Src->addPred(SDep(I, SDep::Artificial)); 1416 SDAG->Topo.AddPred(Src, I); 1417 } 1418 } 1419 } 1420 } 1421 } 1422 1423 /// Return true for DAG nodes that we ignore when computing the cost functions. 1424 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1425 /// in the calculation of the ASAP, ALAP, etc functions. 1426 static bool ignoreDependence(const SDep &D, bool isPred) { 1427 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1428 return true; 1429 return D.getKind() == SDep::Anti && isPred; 1430 } 1431 1432 /// Compute several functions need to order the nodes for scheduling. 1433 /// ASAP - Earliest time to schedule a node. 1434 /// ALAP - Latest time to schedule a node. 1435 /// MOV - Mobility function, difference between ALAP and ASAP. 1436 /// D - Depth of each node. 1437 /// H - Height of each node. 1438 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1439 ScheduleInfo.resize(SUnits.size()); 1440 1441 LLVM_DEBUG({ 1442 for (int I : Topo) { 1443 const SUnit &SU = SUnits[I]; 1444 dumpNode(SU); 1445 } 1446 }); 1447 1448 int maxASAP = 0; 1449 // Compute ASAP and ZeroLatencyDepth. 1450 for (int I : Topo) { 1451 int asap = 0; 1452 int zeroLatencyDepth = 0; 1453 SUnit *SU = &SUnits[I]; 1454 for (const SDep &P : SU->Preds) { 1455 SUnit *pred = P.getSUnit(); 1456 if (P.getLatency() == 0) 1457 zeroLatencyDepth = 1458 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1459 if (ignoreDependence(P, true)) 1460 continue; 1461 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1462 getDistance(pred, SU, P) * MII)); 1463 } 1464 maxASAP = std::max(maxASAP, asap); 1465 ScheduleInfo[I].ASAP = asap; 1466 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1467 } 1468 1469 // Compute ALAP, ZeroLatencyHeight, and MOV. 1470 for (int I : llvm::reverse(Topo)) { 1471 int alap = maxASAP; 1472 int zeroLatencyHeight = 0; 1473 SUnit *SU = &SUnits[I]; 1474 for (const SDep &S : SU->Succs) { 1475 SUnit *succ = S.getSUnit(); 1476 if (succ->isBoundaryNode()) 1477 continue; 1478 if (S.getLatency() == 0) 1479 zeroLatencyHeight = 1480 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1481 if (ignoreDependence(S, true)) 1482 continue; 1483 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1484 getDistance(SU, succ, S) * MII)); 1485 } 1486 1487 ScheduleInfo[I].ALAP = alap; 1488 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1489 } 1490 1491 // After computing the node functions, compute the summary for each node set. 1492 for (NodeSet &I : NodeSets) 1493 I.computeNodeSetInfo(this); 1494 1495 LLVM_DEBUG({ 1496 for (unsigned i = 0; i < SUnits.size(); i++) { 1497 dbgs() << "\tNode " << i << ":\n"; 1498 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1499 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1500 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1501 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1502 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1503 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1504 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1505 } 1506 }); 1507 } 1508 1509 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1510 /// as the predecessors of the elements of NodeOrder that are not also in 1511 /// NodeOrder. 1512 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1513 SmallSetVector<SUnit *, 8> &Preds, 1514 const NodeSet *S = nullptr) { 1515 Preds.clear(); 1516 for (const SUnit *SU : NodeOrder) { 1517 for (const SDep &Pred : SU->Preds) { 1518 if (S && S->count(Pred.getSUnit()) == 0) 1519 continue; 1520 if (ignoreDependence(Pred, true)) 1521 continue; 1522 if (NodeOrder.count(Pred.getSUnit()) == 0) 1523 Preds.insert(Pred.getSUnit()); 1524 } 1525 // Back-edges are predecessors with an anti-dependence. 1526 for (const SDep &Succ : SU->Succs) { 1527 if (Succ.getKind() != SDep::Anti) 1528 continue; 1529 if (S && S->count(Succ.getSUnit()) == 0) 1530 continue; 1531 if (NodeOrder.count(Succ.getSUnit()) == 0) 1532 Preds.insert(Succ.getSUnit()); 1533 } 1534 } 1535 return !Preds.empty(); 1536 } 1537 1538 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1539 /// as the successors of the elements of NodeOrder that are not also in 1540 /// NodeOrder. 1541 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1542 SmallSetVector<SUnit *, 8> &Succs, 1543 const NodeSet *S = nullptr) { 1544 Succs.clear(); 1545 for (const SUnit *SU : NodeOrder) { 1546 for (const SDep &Succ : SU->Succs) { 1547 if (S && S->count(Succ.getSUnit()) == 0) 1548 continue; 1549 if (ignoreDependence(Succ, false)) 1550 continue; 1551 if (NodeOrder.count(Succ.getSUnit()) == 0) 1552 Succs.insert(Succ.getSUnit()); 1553 } 1554 for (const SDep &Pred : SU->Preds) { 1555 if (Pred.getKind() != SDep::Anti) 1556 continue; 1557 if (S && S->count(Pred.getSUnit()) == 0) 1558 continue; 1559 if (NodeOrder.count(Pred.getSUnit()) == 0) 1560 Succs.insert(Pred.getSUnit()); 1561 } 1562 } 1563 return !Succs.empty(); 1564 } 1565 1566 /// Return true if there is a path from the specified node to any of the nodes 1567 /// in DestNodes. Keep track and return the nodes in any path. 1568 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1569 SetVector<SUnit *> &DestNodes, 1570 SetVector<SUnit *> &Exclude, 1571 SmallPtrSet<SUnit *, 8> &Visited) { 1572 if (Cur->isBoundaryNode()) 1573 return false; 1574 if (Exclude.contains(Cur)) 1575 return false; 1576 if (DestNodes.contains(Cur)) 1577 return true; 1578 if (!Visited.insert(Cur).second) 1579 return Path.contains(Cur); 1580 bool FoundPath = false; 1581 for (auto &SI : Cur->Succs) 1582 if (!ignoreDependence(SI, false)) 1583 FoundPath |= 1584 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1585 for (auto &PI : Cur->Preds) 1586 if (PI.getKind() == SDep::Anti) 1587 FoundPath |= 1588 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1589 if (FoundPath) 1590 Path.insert(Cur); 1591 return FoundPath; 1592 } 1593 1594 /// Compute the live-out registers for the instructions in a node-set. 1595 /// The live-out registers are those that are defined in the node-set, 1596 /// but not used. Except for use operands of Phis. 1597 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1598 NodeSet &NS) { 1599 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1600 MachineRegisterInfo &MRI = MF.getRegInfo(); 1601 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1602 SmallSet<unsigned, 4> Uses; 1603 for (SUnit *SU : NS) { 1604 const MachineInstr *MI = SU->getInstr(); 1605 if (MI->isPHI()) 1606 continue; 1607 for (const MachineOperand &MO : MI->operands()) 1608 if (MO.isReg() && MO.isUse()) { 1609 Register Reg = MO.getReg(); 1610 if (Register::isVirtualRegister(Reg)) 1611 Uses.insert(Reg); 1612 else if (MRI.isAllocatable(Reg)) 1613 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1614 ++Units) 1615 Uses.insert(*Units); 1616 } 1617 } 1618 for (SUnit *SU : NS) 1619 for (const MachineOperand &MO : SU->getInstr()->operands()) 1620 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1621 Register Reg = MO.getReg(); 1622 if (Register::isVirtualRegister(Reg)) { 1623 if (!Uses.count(Reg)) 1624 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1625 LaneBitmask::getNone())); 1626 } else if (MRI.isAllocatable(Reg)) { 1627 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1628 ++Units) 1629 if (!Uses.count(*Units)) 1630 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1631 LaneBitmask::getNone())); 1632 } 1633 } 1634 RPTracker.addLiveRegs(LiveOutRegs); 1635 } 1636 1637 /// A heuristic to filter nodes in recurrent node-sets if the register 1638 /// pressure of a set is too high. 1639 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1640 for (auto &NS : NodeSets) { 1641 // Skip small node-sets since they won't cause register pressure problems. 1642 if (NS.size() <= 2) 1643 continue; 1644 IntervalPressure RecRegPressure; 1645 RegPressureTracker RecRPTracker(RecRegPressure); 1646 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1647 computeLiveOuts(MF, RecRPTracker, NS); 1648 RecRPTracker.closeBottom(); 1649 1650 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1651 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1652 return A->NodeNum > B->NodeNum; 1653 }); 1654 1655 for (auto &SU : SUnits) { 1656 // Since we're computing the register pressure for a subset of the 1657 // instructions in a block, we need to set the tracker for each 1658 // instruction in the node-set. The tracker is set to the instruction 1659 // just after the one we're interested in. 1660 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1661 RecRPTracker.setPos(std::next(CurInstI)); 1662 1663 RegPressureDelta RPDelta; 1664 ArrayRef<PressureChange> CriticalPSets; 1665 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1666 CriticalPSets, 1667 RecRegPressure.MaxSetPressure); 1668 if (RPDelta.Excess.isValid()) { 1669 LLVM_DEBUG( 1670 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1671 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1672 << ":" << RPDelta.Excess.getUnitInc()); 1673 NS.setExceedPressure(SU); 1674 break; 1675 } 1676 RecRPTracker.recede(); 1677 } 1678 } 1679 } 1680 1681 /// A heuristic to colocate node sets that have the same set of 1682 /// successors. 1683 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1684 unsigned Colocate = 0; 1685 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1686 NodeSet &N1 = NodeSets[i]; 1687 SmallSetVector<SUnit *, 8> S1; 1688 if (N1.empty() || !succ_L(N1, S1)) 1689 continue; 1690 for (int j = i + 1; j < e; ++j) { 1691 NodeSet &N2 = NodeSets[j]; 1692 if (N1.compareRecMII(N2) != 0) 1693 continue; 1694 SmallSetVector<SUnit *, 8> S2; 1695 if (N2.empty() || !succ_L(N2, S2)) 1696 continue; 1697 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1698 N1.setColocate(++Colocate); 1699 N2.setColocate(Colocate); 1700 break; 1701 } 1702 } 1703 } 1704 } 1705 1706 /// Check if the existing node-sets are profitable. If not, then ignore the 1707 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1708 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1709 /// then it's best to try to schedule all instructions together instead of 1710 /// starting with the recurrent node-sets. 1711 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1712 // Look for loops with a large MII. 1713 if (MII < 17) 1714 return; 1715 // Check if the node-set contains only a simple add recurrence. 1716 for (auto &NS : NodeSets) { 1717 if (NS.getRecMII() > 2) 1718 return; 1719 if (NS.getMaxDepth() > MII) 1720 return; 1721 } 1722 NodeSets.clear(); 1723 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1724 } 1725 1726 /// Add the nodes that do not belong to a recurrence set into groups 1727 /// based upon connected components. 1728 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1729 SetVector<SUnit *> NodesAdded; 1730 SmallPtrSet<SUnit *, 8> Visited; 1731 // Add the nodes that are on a path between the previous node sets and 1732 // the current node set. 1733 for (NodeSet &I : NodeSets) { 1734 SmallSetVector<SUnit *, 8> N; 1735 // Add the nodes from the current node set to the previous node set. 1736 if (succ_L(I, N)) { 1737 SetVector<SUnit *> Path; 1738 for (SUnit *NI : N) { 1739 Visited.clear(); 1740 computePath(NI, Path, NodesAdded, I, Visited); 1741 } 1742 if (!Path.empty()) 1743 I.insert(Path.begin(), Path.end()); 1744 } 1745 // Add the nodes from the previous node set to the current node set. 1746 N.clear(); 1747 if (succ_L(NodesAdded, N)) { 1748 SetVector<SUnit *> Path; 1749 for (SUnit *NI : N) { 1750 Visited.clear(); 1751 computePath(NI, Path, I, NodesAdded, Visited); 1752 } 1753 if (!Path.empty()) 1754 I.insert(Path.begin(), Path.end()); 1755 } 1756 NodesAdded.insert(I.begin(), I.end()); 1757 } 1758 1759 // Create a new node set with the connected nodes of any successor of a node 1760 // in a recurrent set. 1761 NodeSet NewSet; 1762 SmallSetVector<SUnit *, 8> N; 1763 if (succ_L(NodesAdded, N)) 1764 for (SUnit *I : N) 1765 addConnectedNodes(I, NewSet, NodesAdded); 1766 if (!NewSet.empty()) 1767 NodeSets.push_back(NewSet); 1768 1769 // Create a new node set with the connected nodes of any predecessor of a node 1770 // in a recurrent set. 1771 NewSet.clear(); 1772 if (pred_L(NodesAdded, N)) 1773 for (SUnit *I : N) 1774 addConnectedNodes(I, NewSet, NodesAdded); 1775 if (!NewSet.empty()) 1776 NodeSets.push_back(NewSet); 1777 1778 // Create new nodes sets with the connected nodes any remaining node that 1779 // has no predecessor. 1780 for (SUnit &SU : SUnits) { 1781 if (NodesAdded.count(&SU) == 0) { 1782 NewSet.clear(); 1783 addConnectedNodes(&SU, NewSet, NodesAdded); 1784 if (!NewSet.empty()) 1785 NodeSets.push_back(NewSet); 1786 } 1787 } 1788 } 1789 1790 /// Add the node to the set, and add all of its connected nodes to the set. 1791 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1792 SetVector<SUnit *> &NodesAdded) { 1793 NewSet.insert(SU); 1794 NodesAdded.insert(SU); 1795 for (auto &SI : SU->Succs) { 1796 SUnit *Successor = SI.getSUnit(); 1797 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 1798 NodesAdded.count(Successor) == 0) 1799 addConnectedNodes(Successor, NewSet, NodesAdded); 1800 } 1801 for (auto &PI : SU->Preds) { 1802 SUnit *Predecessor = PI.getSUnit(); 1803 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1804 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1805 } 1806 } 1807 1808 /// Return true if Set1 contains elements in Set2. The elements in common 1809 /// are returned in a different container. 1810 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1811 SmallSetVector<SUnit *, 8> &Result) { 1812 Result.clear(); 1813 for (SUnit *SU : Set1) { 1814 if (Set2.count(SU) != 0) 1815 Result.insert(SU); 1816 } 1817 return !Result.empty(); 1818 } 1819 1820 /// Merge the recurrence node sets that have the same initial node. 1821 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1822 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1823 ++I) { 1824 NodeSet &NI = *I; 1825 for (NodeSetType::iterator J = I + 1; J != E;) { 1826 NodeSet &NJ = *J; 1827 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1828 if (NJ.compareRecMII(NI) > 0) 1829 NI.setRecMII(NJ.getRecMII()); 1830 for (SUnit *SU : *J) 1831 I->insert(SU); 1832 NodeSets.erase(J); 1833 E = NodeSets.end(); 1834 } else { 1835 ++J; 1836 } 1837 } 1838 } 1839 } 1840 1841 /// Remove nodes that have been scheduled in previous NodeSets. 1842 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1843 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1844 ++I) 1845 for (NodeSetType::iterator J = I + 1; J != E;) { 1846 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1847 1848 if (J->empty()) { 1849 NodeSets.erase(J); 1850 E = NodeSets.end(); 1851 } else { 1852 ++J; 1853 } 1854 } 1855 } 1856 1857 /// Compute an ordered list of the dependence graph nodes, which 1858 /// indicates the order that the nodes will be scheduled. This is a 1859 /// two-level algorithm. First, a partial order is created, which 1860 /// consists of a list of sets ordered from highest to lowest priority. 1861 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1862 SmallSetVector<SUnit *, 8> R; 1863 NodeOrder.clear(); 1864 1865 for (auto &Nodes : NodeSets) { 1866 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1867 OrderKind Order; 1868 SmallSetVector<SUnit *, 8> N; 1869 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1870 R.insert(N.begin(), N.end()); 1871 Order = BottomUp; 1872 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1873 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1874 R.insert(N.begin(), N.end()); 1875 Order = TopDown; 1876 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1877 } else if (isIntersect(N, Nodes, R)) { 1878 // If some of the successors are in the existing node-set, then use the 1879 // top-down ordering. 1880 Order = TopDown; 1881 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1882 } else if (NodeSets.size() == 1) { 1883 for (auto &N : Nodes) 1884 if (N->Succs.size() == 0) 1885 R.insert(N); 1886 Order = BottomUp; 1887 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1888 } else { 1889 // Find the node with the highest ASAP. 1890 SUnit *maxASAP = nullptr; 1891 for (SUnit *SU : Nodes) { 1892 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1893 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1894 maxASAP = SU; 1895 } 1896 R.insert(maxASAP); 1897 Order = BottomUp; 1898 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1899 } 1900 1901 while (!R.empty()) { 1902 if (Order == TopDown) { 1903 // Choose the node with the maximum height. If more than one, choose 1904 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1905 // choose the node with the lowest MOV. 1906 while (!R.empty()) { 1907 SUnit *maxHeight = nullptr; 1908 for (SUnit *I : R) { 1909 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1910 maxHeight = I; 1911 else if (getHeight(I) == getHeight(maxHeight) && 1912 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1913 maxHeight = I; 1914 else if (getHeight(I) == getHeight(maxHeight) && 1915 getZeroLatencyHeight(I) == 1916 getZeroLatencyHeight(maxHeight) && 1917 getMOV(I) < getMOV(maxHeight)) 1918 maxHeight = I; 1919 } 1920 NodeOrder.insert(maxHeight); 1921 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1922 R.remove(maxHeight); 1923 for (const auto &I : maxHeight->Succs) { 1924 if (Nodes.count(I.getSUnit()) == 0) 1925 continue; 1926 if (NodeOrder.contains(I.getSUnit())) 1927 continue; 1928 if (ignoreDependence(I, false)) 1929 continue; 1930 R.insert(I.getSUnit()); 1931 } 1932 // Back-edges are predecessors with an anti-dependence. 1933 for (const auto &I : maxHeight->Preds) { 1934 if (I.getKind() != SDep::Anti) 1935 continue; 1936 if (Nodes.count(I.getSUnit()) == 0) 1937 continue; 1938 if (NodeOrder.contains(I.getSUnit())) 1939 continue; 1940 R.insert(I.getSUnit()); 1941 } 1942 } 1943 Order = BottomUp; 1944 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1945 SmallSetVector<SUnit *, 8> N; 1946 if (pred_L(NodeOrder, N, &Nodes)) 1947 R.insert(N.begin(), N.end()); 1948 } else { 1949 // Choose the node with the maximum depth. If more than one, choose 1950 // the node with the maximum ZeroLatencyDepth. If still more than one, 1951 // choose the node with the lowest MOV. 1952 while (!R.empty()) { 1953 SUnit *maxDepth = nullptr; 1954 for (SUnit *I : R) { 1955 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1956 maxDepth = I; 1957 else if (getDepth(I) == getDepth(maxDepth) && 1958 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1959 maxDepth = I; 1960 else if (getDepth(I) == getDepth(maxDepth) && 1961 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1962 getMOV(I) < getMOV(maxDepth)) 1963 maxDepth = I; 1964 } 1965 NodeOrder.insert(maxDepth); 1966 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1967 R.remove(maxDepth); 1968 if (Nodes.isExceedSU(maxDepth)) { 1969 Order = TopDown; 1970 R.clear(); 1971 R.insert(Nodes.getNode(0)); 1972 break; 1973 } 1974 for (const auto &I : maxDepth->Preds) { 1975 if (Nodes.count(I.getSUnit()) == 0) 1976 continue; 1977 if (NodeOrder.contains(I.getSUnit())) 1978 continue; 1979 R.insert(I.getSUnit()); 1980 } 1981 // Back-edges are predecessors with an anti-dependence. 1982 for (const auto &I : maxDepth->Succs) { 1983 if (I.getKind() != SDep::Anti) 1984 continue; 1985 if (Nodes.count(I.getSUnit()) == 0) 1986 continue; 1987 if (NodeOrder.contains(I.getSUnit())) 1988 continue; 1989 R.insert(I.getSUnit()); 1990 } 1991 } 1992 Order = TopDown; 1993 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1994 SmallSetVector<SUnit *, 8> N; 1995 if (succ_L(NodeOrder, N, &Nodes)) 1996 R.insert(N.begin(), N.end()); 1997 } 1998 } 1999 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2000 } 2001 2002 LLVM_DEBUG({ 2003 dbgs() << "Node order: "; 2004 for (SUnit *I : NodeOrder) 2005 dbgs() << " " << I->NodeNum << " "; 2006 dbgs() << "\n"; 2007 }); 2008 } 2009 2010 /// Process the nodes in the computed order and create the pipelined schedule 2011 /// of the instructions, if possible. Return true if a schedule is found. 2012 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2013 2014 if (NodeOrder.empty()){ 2015 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2016 return false; 2017 } 2018 2019 bool scheduleFound = false; 2020 // Keep increasing II until a valid schedule is found. 2021 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2022 Schedule.reset(); 2023 Schedule.setInitiationInterval(II); 2024 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2025 2026 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2027 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2028 do { 2029 SUnit *SU = *NI; 2030 2031 // Compute the schedule time for the instruction, which is based 2032 // upon the scheduled time for any predecessors/successors. 2033 int EarlyStart = INT_MIN; 2034 int LateStart = INT_MAX; 2035 // These values are set when the size of the schedule window is limited 2036 // due to chain dependences. 2037 int SchedEnd = INT_MAX; 2038 int SchedStart = INT_MIN; 2039 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2040 II, this); 2041 LLVM_DEBUG({ 2042 dbgs() << "\n"; 2043 dbgs() << "Inst (" << SU->NodeNum << ") "; 2044 SU->getInstr()->dump(); 2045 dbgs() << "\n"; 2046 }); 2047 LLVM_DEBUG({ 2048 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2049 LateStart, SchedEnd, SchedStart); 2050 }); 2051 2052 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2053 SchedStart > LateStart) 2054 scheduleFound = false; 2055 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2056 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2057 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2058 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2059 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2060 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2061 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2062 SchedEnd = 2063 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2064 // When scheduling a Phi it is better to start at the late cycle and go 2065 // backwards. The default order may insert the Phi too far away from 2066 // its first dependence. 2067 if (SU->getInstr()->isPHI()) 2068 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2069 else 2070 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2071 } else { 2072 int FirstCycle = Schedule.getFirstCycle(); 2073 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2074 FirstCycle + getASAP(SU) + II - 1, II); 2075 } 2076 // Even if we find a schedule, make sure the schedule doesn't exceed the 2077 // allowable number of stages. We keep trying if this happens. 2078 if (scheduleFound) 2079 if (SwpMaxStages > -1 && 2080 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2081 scheduleFound = false; 2082 2083 LLVM_DEBUG({ 2084 if (!scheduleFound) 2085 dbgs() << "\tCan't schedule\n"; 2086 }); 2087 } while (++NI != NE && scheduleFound); 2088 2089 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2090 if (scheduleFound) 2091 scheduleFound = 2092 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2093 2094 // If a schedule is found, check if it is a valid schedule too. 2095 if (scheduleFound) 2096 scheduleFound = Schedule.isValidSchedule(this); 2097 } 2098 2099 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2100 << " (II=" << Schedule.getInitiationInterval() 2101 << ")\n"); 2102 2103 if (scheduleFound) { 2104 Schedule.finalizeSchedule(this); 2105 Pass.ORE->emit([&]() { 2106 return MachineOptimizationRemarkAnalysis( 2107 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2108 << "Schedule found with Initiation Interval: " 2109 << ore::NV("II", Schedule.getInitiationInterval()) 2110 << ", MaxStageCount: " 2111 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2112 }); 2113 } else 2114 Schedule.reset(); 2115 2116 return scheduleFound && Schedule.getMaxStageCount() > 0; 2117 } 2118 2119 /// Return true if we can compute the amount the instruction changes 2120 /// during each iteration. Set Delta to the amount of the change. 2121 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2122 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2123 const MachineOperand *BaseOp; 2124 int64_t Offset; 2125 bool OffsetIsScalable; 2126 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2127 return false; 2128 2129 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2130 if (OffsetIsScalable) 2131 return false; 2132 2133 if (!BaseOp->isReg()) 2134 return false; 2135 2136 Register BaseReg = BaseOp->getReg(); 2137 2138 MachineRegisterInfo &MRI = MF.getRegInfo(); 2139 // Check if there is a Phi. If so, get the definition in the loop. 2140 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2141 if (BaseDef && BaseDef->isPHI()) { 2142 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2143 BaseDef = MRI.getVRegDef(BaseReg); 2144 } 2145 if (!BaseDef) 2146 return false; 2147 2148 int D = 0; 2149 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2150 return false; 2151 2152 Delta = D; 2153 return true; 2154 } 2155 2156 /// Check if we can change the instruction to use an offset value from the 2157 /// previous iteration. If so, return true and set the base and offset values 2158 /// so that we can rewrite the load, if necessary. 2159 /// v1 = Phi(v0, v3) 2160 /// v2 = load v1, 0 2161 /// v3 = post_store v1, 4, x 2162 /// This function enables the load to be rewritten as v2 = load v3, 4. 2163 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2164 unsigned &BasePos, 2165 unsigned &OffsetPos, 2166 unsigned &NewBase, 2167 int64_t &Offset) { 2168 // Get the load instruction. 2169 if (TII->isPostIncrement(*MI)) 2170 return false; 2171 unsigned BasePosLd, OffsetPosLd; 2172 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2173 return false; 2174 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2175 2176 // Look for the Phi instruction. 2177 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2178 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2179 if (!Phi || !Phi->isPHI()) 2180 return false; 2181 // Get the register defined in the loop block. 2182 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2183 if (!PrevReg) 2184 return false; 2185 2186 // Check for the post-increment load/store instruction. 2187 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2188 if (!PrevDef || PrevDef == MI) 2189 return false; 2190 2191 if (!TII->isPostIncrement(*PrevDef)) 2192 return false; 2193 2194 unsigned BasePos1 = 0, OffsetPos1 = 0; 2195 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2196 return false; 2197 2198 // Make sure that the instructions do not access the same memory location in 2199 // the next iteration. 2200 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2201 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2202 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2203 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2204 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2205 MF.deleteMachineInstr(NewMI); 2206 if (!Disjoint) 2207 return false; 2208 2209 // Set the return value once we determine that we return true. 2210 BasePos = BasePosLd; 2211 OffsetPos = OffsetPosLd; 2212 NewBase = PrevReg; 2213 Offset = StoreOffset; 2214 return true; 2215 } 2216 2217 /// Apply changes to the instruction if needed. The changes are need 2218 /// to improve the scheduling and depend up on the final schedule. 2219 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2220 SMSchedule &Schedule) { 2221 SUnit *SU = getSUnit(MI); 2222 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2223 InstrChanges.find(SU); 2224 if (It != InstrChanges.end()) { 2225 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2226 unsigned BasePos, OffsetPos; 2227 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2228 return; 2229 Register BaseReg = MI->getOperand(BasePos).getReg(); 2230 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2231 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2232 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2233 int BaseStageNum = Schedule.stageScheduled(SU); 2234 int BaseCycleNum = Schedule.cycleScheduled(SU); 2235 if (BaseStageNum < DefStageNum) { 2236 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2237 int OffsetDiff = DefStageNum - BaseStageNum; 2238 if (DefCycleNum < BaseCycleNum) { 2239 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2240 if (OffsetDiff > 0) 2241 --OffsetDiff; 2242 } 2243 int64_t NewOffset = 2244 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2245 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2246 SU->setInstr(NewMI); 2247 MISUnitMap[NewMI] = SU; 2248 NewMIs[MI] = NewMI; 2249 } 2250 } 2251 } 2252 2253 /// Return the instruction in the loop that defines the register. 2254 /// If the definition is a Phi, then follow the Phi operand to 2255 /// the instruction in the loop. 2256 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2257 SmallPtrSet<MachineInstr *, 8> Visited; 2258 MachineInstr *Def = MRI.getVRegDef(Reg); 2259 while (Def->isPHI()) { 2260 if (!Visited.insert(Def).second) 2261 break; 2262 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2263 if (Def->getOperand(i + 1).getMBB() == BB) { 2264 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2265 break; 2266 } 2267 } 2268 return Def; 2269 } 2270 2271 /// Return true for an order or output dependence that is loop carried 2272 /// potentially. A dependence is loop carried if the destination defines a valu 2273 /// that may be used or defined by the source in a subsequent iteration. 2274 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2275 bool isSucc) { 2276 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2277 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2278 return false; 2279 2280 if (!SwpPruneLoopCarried) 2281 return true; 2282 2283 if (Dep.getKind() == SDep::Output) 2284 return true; 2285 2286 MachineInstr *SI = Source->getInstr(); 2287 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2288 if (!isSucc) 2289 std::swap(SI, DI); 2290 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2291 2292 // Assume ordered loads and stores may have a loop carried dependence. 2293 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2294 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2295 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2296 return true; 2297 2298 // Only chain dependences between a load and store can be loop carried. 2299 if (!DI->mayStore() || !SI->mayLoad()) 2300 return false; 2301 2302 unsigned DeltaS, DeltaD; 2303 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2304 return true; 2305 2306 const MachineOperand *BaseOpS, *BaseOpD; 2307 int64_t OffsetS, OffsetD; 2308 bool OffsetSIsScalable, OffsetDIsScalable; 2309 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2310 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2311 TRI) || 2312 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2313 TRI)) 2314 return true; 2315 2316 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2317 "Expected offsets to be byte offsets"); 2318 2319 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2320 return true; 2321 2322 // Check that the base register is incremented by a constant value for each 2323 // iteration. 2324 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2325 if (!Def || !Def->isPHI()) 2326 return true; 2327 unsigned InitVal = 0; 2328 unsigned LoopVal = 0; 2329 getPhiRegs(*Def, BB, InitVal, LoopVal); 2330 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2331 int D = 0; 2332 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2333 return true; 2334 2335 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2336 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2337 2338 // This is the main test, which checks the offset values and the loop 2339 // increment value to determine if the accesses may be loop carried. 2340 if (AccessSizeS == MemoryLocation::UnknownSize || 2341 AccessSizeD == MemoryLocation::UnknownSize) 2342 return true; 2343 2344 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2345 return true; 2346 2347 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2348 } 2349 2350 void SwingSchedulerDAG::postprocessDAG() { 2351 for (auto &M : Mutations) 2352 M->apply(this); 2353 } 2354 2355 /// Try to schedule the node at the specified StartCycle and continue 2356 /// until the node is schedule or the EndCycle is reached. This function 2357 /// returns true if the node is scheduled. This routine may search either 2358 /// forward or backward for a place to insert the instruction based upon 2359 /// the relative values of StartCycle and EndCycle. 2360 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2361 bool forward = true; 2362 LLVM_DEBUG({ 2363 dbgs() << "Trying to insert node between " << StartCycle << " and " 2364 << EndCycle << " II: " << II << "\n"; 2365 }); 2366 if (StartCycle > EndCycle) 2367 forward = false; 2368 2369 // The terminating condition depends on the direction. 2370 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2371 for (int curCycle = StartCycle; curCycle != termCycle; 2372 forward ? ++curCycle : --curCycle) { 2373 2374 // Add the already scheduled instructions at the specified cycle to the 2375 // DFA. 2376 ProcItinResources.clearResources(); 2377 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2378 checkCycle <= LastCycle; checkCycle += II) { 2379 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2380 2381 for (SUnit *CI : cycleInstrs) { 2382 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2383 continue; 2384 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2385 "These instructions have already been scheduled."); 2386 ProcItinResources.reserveResources(*CI->getInstr()); 2387 } 2388 } 2389 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2390 ProcItinResources.canReserveResources(*SU->getInstr())) { 2391 LLVM_DEBUG({ 2392 dbgs() << "\tinsert at cycle " << curCycle << " "; 2393 SU->getInstr()->dump(); 2394 }); 2395 2396 ScheduledInstrs[curCycle].push_back(SU); 2397 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2398 if (curCycle > LastCycle) 2399 LastCycle = curCycle; 2400 if (curCycle < FirstCycle) 2401 FirstCycle = curCycle; 2402 return true; 2403 } 2404 LLVM_DEBUG({ 2405 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2406 SU->getInstr()->dump(); 2407 }); 2408 } 2409 return false; 2410 } 2411 2412 // Return the cycle of the earliest scheduled instruction in the chain. 2413 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2414 SmallPtrSet<SUnit *, 8> Visited; 2415 SmallVector<SDep, 8> Worklist; 2416 Worklist.push_back(Dep); 2417 int EarlyCycle = INT_MAX; 2418 while (!Worklist.empty()) { 2419 const SDep &Cur = Worklist.pop_back_val(); 2420 SUnit *PrevSU = Cur.getSUnit(); 2421 if (Visited.count(PrevSU)) 2422 continue; 2423 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2424 if (it == InstrToCycle.end()) 2425 continue; 2426 EarlyCycle = std::min(EarlyCycle, it->second); 2427 for (const auto &PI : PrevSU->Preds) 2428 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2429 Worklist.push_back(PI); 2430 Visited.insert(PrevSU); 2431 } 2432 return EarlyCycle; 2433 } 2434 2435 // Return the cycle of the latest scheduled instruction in the chain. 2436 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2437 SmallPtrSet<SUnit *, 8> Visited; 2438 SmallVector<SDep, 8> Worklist; 2439 Worklist.push_back(Dep); 2440 int LateCycle = INT_MIN; 2441 while (!Worklist.empty()) { 2442 const SDep &Cur = Worklist.pop_back_val(); 2443 SUnit *SuccSU = Cur.getSUnit(); 2444 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2445 continue; 2446 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2447 if (it == InstrToCycle.end()) 2448 continue; 2449 LateCycle = std::max(LateCycle, it->second); 2450 for (const auto &SI : SuccSU->Succs) 2451 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2452 Worklist.push_back(SI); 2453 Visited.insert(SuccSU); 2454 } 2455 return LateCycle; 2456 } 2457 2458 /// If an instruction has a use that spans multiple iterations, then 2459 /// return true. These instructions are characterized by having a back-ege 2460 /// to a Phi, which contains a reference to another Phi. 2461 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2462 for (auto &P : SU->Preds) 2463 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2464 for (auto &S : P.getSUnit()->Succs) 2465 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2466 return P.getSUnit(); 2467 return nullptr; 2468 } 2469 2470 /// Compute the scheduling start slot for the instruction. The start slot 2471 /// depends on any predecessor or successor nodes scheduled already. 2472 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2473 int *MinEnd, int *MaxStart, int II, 2474 SwingSchedulerDAG *DAG) { 2475 // Iterate over each instruction that has been scheduled already. The start 2476 // slot computation depends on whether the previously scheduled instruction 2477 // is a predecessor or successor of the specified instruction. 2478 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2479 2480 // Iterate over each instruction in the current cycle. 2481 for (SUnit *I : getInstructions(cycle)) { 2482 // Because we're processing a DAG for the dependences, we recognize 2483 // the back-edge in recurrences by anti dependences. 2484 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2485 const SDep &Dep = SU->Preds[i]; 2486 if (Dep.getSUnit() == I) { 2487 if (!DAG->isBackedge(SU, Dep)) { 2488 int EarlyStart = cycle + Dep.getLatency() - 2489 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2490 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2491 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2492 int End = earliestCycleInChain(Dep) + (II - 1); 2493 *MinEnd = std::min(*MinEnd, End); 2494 } 2495 } else { 2496 int LateStart = cycle - Dep.getLatency() + 2497 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2498 *MinLateStart = std::min(*MinLateStart, LateStart); 2499 } 2500 } 2501 // For instruction that requires multiple iterations, make sure that 2502 // the dependent instruction is not scheduled past the definition. 2503 SUnit *BE = multipleIterations(I, DAG); 2504 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2505 !SU->isPred(I)) 2506 *MinLateStart = std::min(*MinLateStart, cycle); 2507 } 2508 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2509 if (SU->Succs[i].getSUnit() == I) { 2510 const SDep &Dep = SU->Succs[i]; 2511 if (!DAG->isBackedge(SU, Dep)) { 2512 int LateStart = cycle - Dep.getLatency() + 2513 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2514 *MinLateStart = std::min(*MinLateStart, LateStart); 2515 if (DAG->isLoopCarriedDep(SU, Dep)) { 2516 int Start = latestCycleInChain(Dep) + 1 - II; 2517 *MaxStart = std::max(*MaxStart, Start); 2518 } 2519 } else { 2520 int EarlyStart = cycle + Dep.getLatency() - 2521 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2522 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2523 } 2524 } 2525 } 2526 } 2527 } 2528 } 2529 2530 /// Order the instructions within a cycle so that the definitions occur 2531 /// before the uses. Returns true if the instruction is added to the start 2532 /// of the list, or false if added to the end. 2533 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2534 std::deque<SUnit *> &Insts) { 2535 MachineInstr *MI = SU->getInstr(); 2536 bool OrderBeforeUse = false; 2537 bool OrderAfterDef = false; 2538 bool OrderBeforeDef = false; 2539 unsigned MoveDef = 0; 2540 unsigned MoveUse = 0; 2541 int StageInst1 = stageScheduled(SU); 2542 2543 unsigned Pos = 0; 2544 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2545 ++I, ++Pos) { 2546 for (MachineOperand &MO : MI->operands()) { 2547 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2548 continue; 2549 2550 Register Reg = MO.getReg(); 2551 unsigned BasePos, OffsetPos; 2552 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2553 if (MI->getOperand(BasePos).getReg() == Reg) 2554 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2555 Reg = NewReg; 2556 bool Reads, Writes; 2557 std::tie(Reads, Writes) = 2558 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2559 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2560 OrderBeforeUse = true; 2561 if (MoveUse == 0) 2562 MoveUse = Pos; 2563 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2564 // Add the instruction after the scheduled instruction. 2565 OrderAfterDef = true; 2566 MoveDef = Pos; 2567 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2568 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2569 OrderBeforeUse = true; 2570 if (MoveUse == 0) 2571 MoveUse = Pos; 2572 } else { 2573 OrderAfterDef = true; 2574 MoveDef = Pos; 2575 } 2576 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2577 OrderBeforeUse = true; 2578 if (MoveUse == 0) 2579 MoveUse = Pos; 2580 if (MoveUse != 0) { 2581 OrderAfterDef = true; 2582 MoveDef = Pos - 1; 2583 } 2584 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2585 // Add the instruction before the scheduled instruction. 2586 OrderBeforeUse = true; 2587 if (MoveUse == 0) 2588 MoveUse = Pos; 2589 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2590 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2591 if (MoveUse == 0) { 2592 OrderBeforeDef = true; 2593 MoveUse = Pos; 2594 } 2595 } 2596 } 2597 // Check for order dependences between instructions. Make sure the source 2598 // is ordered before the destination. 2599 for (auto &S : SU->Succs) { 2600 if (S.getSUnit() != *I) 2601 continue; 2602 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2603 OrderBeforeUse = true; 2604 if (Pos < MoveUse) 2605 MoveUse = Pos; 2606 } 2607 // We did not handle HW dependences in previous for loop, 2608 // and we normally set Latency = 0 for Anti deps, 2609 // so may have nodes in same cycle with Anti denpendent on HW regs. 2610 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2611 OrderBeforeUse = true; 2612 if ((MoveUse == 0) || (Pos < MoveUse)) 2613 MoveUse = Pos; 2614 } 2615 } 2616 for (auto &P : SU->Preds) { 2617 if (P.getSUnit() != *I) 2618 continue; 2619 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2620 OrderAfterDef = true; 2621 MoveDef = Pos; 2622 } 2623 } 2624 } 2625 2626 // A circular dependence. 2627 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2628 OrderBeforeUse = false; 2629 2630 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2631 // to a loop-carried dependence. 2632 if (OrderBeforeDef) 2633 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2634 2635 // The uncommon case when the instruction order needs to be updated because 2636 // there is both a use and def. 2637 if (OrderBeforeUse && OrderAfterDef) { 2638 SUnit *UseSU = Insts.at(MoveUse); 2639 SUnit *DefSU = Insts.at(MoveDef); 2640 if (MoveUse > MoveDef) { 2641 Insts.erase(Insts.begin() + MoveUse); 2642 Insts.erase(Insts.begin() + MoveDef); 2643 } else { 2644 Insts.erase(Insts.begin() + MoveDef); 2645 Insts.erase(Insts.begin() + MoveUse); 2646 } 2647 orderDependence(SSD, UseSU, Insts); 2648 orderDependence(SSD, SU, Insts); 2649 orderDependence(SSD, DefSU, Insts); 2650 return; 2651 } 2652 // Put the new instruction first if there is a use in the list. Otherwise, 2653 // put it at the end of the list. 2654 if (OrderBeforeUse) 2655 Insts.push_front(SU); 2656 else 2657 Insts.push_back(SU); 2658 } 2659 2660 /// Return true if the scheduled Phi has a loop carried operand. 2661 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2662 if (!Phi.isPHI()) 2663 return false; 2664 assert(Phi.isPHI() && "Expecting a Phi."); 2665 SUnit *DefSU = SSD->getSUnit(&Phi); 2666 unsigned DefCycle = cycleScheduled(DefSU); 2667 int DefStage = stageScheduled(DefSU); 2668 2669 unsigned InitVal = 0; 2670 unsigned LoopVal = 0; 2671 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2672 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2673 if (!UseSU) 2674 return true; 2675 if (UseSU->getInstr()->isPHI()) 2676 return true; 2677 unsigned LoopCycle = cycleScheduled(UseSU); 2678 int LoopStage = stageScheduled(UseSU); 2679 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2680 } 2681 2682 /// Return true if the instruction is a definition that is loop carried 2683 /// and defines the use on the next iteration. 2684 /// v1 = phi(v2, v3) 2685 /// (Def) v3 = op v1 2686 /// (MO) = v1 2687 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2688 /// register. 2689 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2690 MachineInstr *Def, MachineOperand &MO) { 2691 if (!MO.isReg()) 2692 return false; 2693 if (Def->isPHI()) 2694 return false; 2695 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2696 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2697 return false; 2698 if (!isLoopCarried(SSD, *Phi)) 2699 return false; 2700 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2701 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2702 MachineOperand &DMO = Def->getOperand(i); 2703 if (!DMO.isReg() || !DMO.isDef()) 2704 continue; 2705 if (DMO.getReg() == LoopReg) 2706 return true; 2707 } 2708 return false; 2709 } 2710 2711 /// Determine transitive dependences of unpipelineable instructions 2712 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 2713 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2714 SmallSet<SUnit *, 8> DoNotPipeline; 2715 SmallVector<SUnit *, 8> Worklist; 2716 2717 for (auto &SU : SSD->SUnits) 2718 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 2719 Worklist.push_back(&SU); 2720 2721 while (!Worklist.empty()) { 2722 auto SU = Worklist.pop_back_val(); 2723 if (DoNotPipeline.count(SU)) 2724 continue; 2725 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 2726 DoNotPipeline.insert(SU); 2727 for (auto &Dep : SU->Preds) 2728 Worklist.push_back(Dep.getSUnit()); 2729 if (SU->getInstr()->isPHI()) 2730 for (auto &Dep : SU->Succs) 2731 if (Dep.getKind() == SDep::Anti) 2732 Worklist.push_back(Dep.getSUnit()); 2733 } 2734 return DoNotPipeline; 2735 } 2736 2737 // Determine all instructions upon which any unpipelineable instruction depends 2738 // and ensure that they are in stage 0. If unable to do so, return false. 2739 bool SMSchedule::normalizeNonPipelinedInstructions( 2740 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2741 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 2742 2743 int NewLastCycle = INT_MIN; 2744 for (SUnit &SU : SSD->SUnits) { 2745 if (!SU.isInstr()) 2746 continue; 2747 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 2748 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 2749 continue; 2750 } 2751 2752 // Put the non-pipelined instruction as early as possible in the schedule 2753 int NewCycle = getFirstCycle(); 2754 for (auto &Dep : SU.Preds) 2755 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 2756 2757 int OldCycle = InstrToCycle[&SU]; 2758 if (OldCycle != NewCycle) { 2759 InstrToCycle[&SU] = NewCycle; 2760 auto &OldS = getInstructions(OldCycle); 2761 OldS.erase(std::remove(OldS.begin(), OldS.end(), &SU), OldS.end()); 2762 getInstructions(NewCycle).emplace_back(&SU); 2763 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 2764 << ") is not pipelined; moving from cycle " << OldCycle 2765 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 2766 } 2767 NewLastCycle = std::max(NewLastCycle, NewCycle); 2768 } 2769 LastCycle = NewLastCycle; 2770 return true; 2771 } 2772 2773 // Check if the generated schedule is valid. This function checks if 2774 // an instruction that uses a physical register is scheduled in a 2775 // different stage than the definition. The pipeliner does not handle 2776 // physical register values that may cross a basic block boundary. 2777 // Furthermore, if a physical def/use pair is assigned to the same 2778 // cycle, orderDependence does not guarantee def/use ordering, so that 2779 // case should be considered invalid. (The test checks for both 2780 // earlier and same-cycle use to be more robust.) 2781 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2782 for (SUnit &SU : SSD->SUnits) { 2783 if (!SU.hasPhysRegDefs) 2784 continue; 2785 int StageDef = stageScheduled(&SU); 2786 int CycleDef = InstrToCycle[&SU]; 2787 assert(StageDef != -1 && "Instruction should have been scheduled."); 2788 for (auto &SI : SU.Succs) 2789 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 2790 if (Register::isPhysicalRegister(SI.getReg())) { 2791 if (stageScheduled(SI.getSUnit()) != StageDef) 2792 return false; 2793 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 2794 return false; 2795 } 2796 } 2797 return true; 2798 } 2799 2800 /// A property of the node order in swing-modulo-scheduling is 2801 /// that for nodes outside circuits the following holds: 2802 /// none of them is scheduled after both a successor and a 2803 /// predecessor. 2804 /// The method below checks whether the property is met. 2805 /// If not, debug information is printed and statistics information updated. 2806 /// Note that we do not use an assert statement. 2807 /// The reason is that although an invalid node oder may prevent 2808 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2809 /// it does not lead to the generation of incorrect code. 2810 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2811 2812 // a sorted vector that maps each SUnit to its index in the NodeOrder 2813 typedef std::pair<SUnit *, unsigned> UnitIndex; 2814 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2815 2816 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2817 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2818 2819 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2820 return std::get<0>(i1) < std::get<0>(i2); 2821 }; 2822 2823 // sort, so that we can perform a binary search 2824 llvm::sort(Indices, CompareKey); 2825 2826 bool Valid = true; 2827 (void)Valid; 2828 // for each SUnit in the NodeOrder, check whether 2829 // it appears after both a successor and a predecessor 2830 // of the SUnit. If this is the case, and the SUnit 2831 // is not part of circuit, then the NodeOrder is not 2832 // valid. 2833 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2834 SUnit *SU = NodeOrder[i]; 2835 unsigned Index = i; 2836 2837 bool PredBefore = false; 2838 bool SuccBefore = false; 2839 2840 SUnit *Succ; 2841 SUnit *Pred; 2842 (void)Succ; 2843 (void)Pred; 2844 2845 for (SDep &PredEdge : SU->Preds) { 2846 SUnit *PredSU = PredEdge.getSUnit(); 2847 unsigned PredIndex = std::get<1>( 2848 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2849 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2850 PredBefore = true; 2851 Pred = PredSU; 2852 break; 2853 } 2854 } 2855 2856 for (SDep &SuccEdge : SU->Succs) { 2857 SUnit *SuccSU = SuccEdge.getSUnit(); 2858 // Do not process a boundary node, it was not included in NodeOrder, 2859 // hence not in Indices either, call to std::lower_bound() below will 2860 // return Indices.end(). 2861 if (SuccSU->isBoundaryNode()) 2862 continue; 2863 unsigned SuccIndex = std::get<1>( 2864 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2865 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2866 SuccBefore = true; 2867 Succ = SuccSU; 2868 break; 2869 } 2870 } 2871 2872 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2873 // instructions in circuits are allowed to be scheduled 2874 // after both a successor and predecessor. 2875 bool InCircuit = llvm::any_of( 2876 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2877 if (InCircuit) 2878 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2879 else { 2880 Valid = false; 2881 NumNodeOrderIssues++; 2882 LLVM_DEBUG(dbgs() << "Predecessor ";); 2883 } 2884 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2885 << " are scheduled before node " << SU->NodeNum 2886 << "\n";); 2887 } 2888 } 2889 2890 LLVM_DEBUG({ 2891 if (!Valid) 2892 dbgs() << "Invalid node order found!\n"; 2893 }); 2894 } 2895 2896 /// Attempt to fix the degenerate cases when the instruction serialization 2897 /// causes the register lifetimes to overlap. For example, 2898 /// p' = store_pi(p, b) 2899 /// = load p, offset 2900 /// In this case p and p' overlap, which means that two registers are needed. 2901 /// Instead, this function changes the load to use p' and updates the offset. 2902 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2903 unsigned OverlapReg = 0; 2904 unsigned NewBaseReg = 0; 2905 for (SUnit *SU : Instrs) { 2906 MachineInstr *MI = SU->getInstr(); 2907 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2908 const MachineOperand &MO = MI->getOperand(i); 2909 // Look for an instruction that uses p. The instruction occurs in the 2910 // same cycle but occurs later in the serialized order. 2911 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2912 // Check that the instruction appears in the InstrChanges structure, 2913 // which contains instructions that can have the offset updated. 2914 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2915 InstrChanges.find(SU); 2916 if (It != InstrChanges.end()) { 2917 unsigned BasePos, OffsetPos; 2918 // Update the base register and adjust the offset. 2919 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2920 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2921 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2922 int64_t NewOffset = 2923 MI->getOperand(OffsetPos).getImm() - It->second.second; 2924 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2925 SU->setInstr(NewMI); 2926 MISUnitMap[NewMI] = SU; 2927 NewMIs[MI] = NewMI; 2928 } 2929 } 2930 OverlapReg = 0; 2931 NewBaseReg = 0; 2932 break; 2933 } 2934 // Look for an instruction of the form p' = op(p), which uses and defines 2935 // two virtual registers that get allocated to the same physical register. 2936 unsigned TiedUseIdx = 0; 2937 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2938 // OverlapReg is p in the example above. 2939 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2940 // NewBaseReg is p' in the example above. 2941 NewBaseReg = MI->getOperand(i).getReg(); 2942 break; 2943 } 2944 } 2945 } 2946 } 2947 2948 /// After the schedule has been formed, call this function to combine 2949 /// the instructions from the different stages/cycles. That is, this 2950 /// function creates a schedule that represents a single iteration. 2951 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2952 // Move all instructions to the first stage from later stages. 2953 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2954 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2955 ++stage) { 2956 std::deque<SUnit *> &cycleInstrs = 2957 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2958 for (SUnit *SU : llvm::reverse(cycleInstrs)) 2959 ScheduledInstrs[cycle].push_front(SU); 2960 } 2961 } 2962 2963 // Erase all the elements in the later stages. Only one iteration should 2964 // remain in the scheduled list, and it contains all the instructions. 2965 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2966 ScheduledInstrs.erase(cycle); 2967 2968 // Change the registers in instruction as specified in the InstrChanges 2969 // map. We need to use the new registers to create the correct order. 2970 for (const SUnit &SU : SSD->SUnits) 2971 SSD->applyInstrChange(SU.getInstr(), *this); 2972 2973 // Reorder the instructions in each cycle to fix and improve the 2974 // generated code. 2975 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2976 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2977 std::deque<SUnit *> newOrderPhi; 2978 for (SUnit *SU : cycleInstrs) { 2979 if (SU->getInstr()->isPHI()) 2980 newOrderPhi.push_back(SU); 2981 } 2982 std::deque<SUnit *> newOrderI; 2983 for (SUnit *SU : cycleInstrs) { 2984 if (!SU->getInstr()->isPHI()) 2985 orderDependence(SSD, SU, newOrderI); 2986 } 2987 // Replace the old order with the new order. 2988 cycleInstrs.swap(newOrderPhi); 2989 llvm::append_range(cycleInstrs, newOrderI); 2990 SSD->fixupRegisterOverlaps(cycleInstrs); 2991 } 2992 2993 LLVM_DEBUG(dump();); 2994 } 2995 2996 void NodeSet::print(raw_ostream &os) const { 2997 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2998 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2999 for (const auto &I : Nodes) 3000 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3001 os << "\n"; 3002 } 3003 3004 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3005 /// Print the schedule information to the given output. 3006 void SMSchedule::print(raw_ostream &os) const { 3007 // Iterate over each cycle. 3008 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3009 // Iterate over each instruction in the cycle. 3010 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3011 for (SUnit *CI : cycleInstrs->second) { 3012 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3013 os << "(" << CI->NodeNum << ") "; 3014 CI->getInstr()->print(os); 3015 os << "\n"; 3016 } 3017 } 3018 } 3019 3020 /// Utility function used for debugging to print the schedule. 3021 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3022 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3023 3024 #endif 3025 3026 void ResourceManager::initProcResourceVectors( 3027 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3028 unsigned ProcResourceID = 0; 3029 3030 // We currently limit the resource kinds to 64 and below so that we can use 3031 // uint64_t for Masks 3032 assert(SM.getNumProcResourceKinds() < 64 && 3033 "Too many kinds of resources, unsupported"); 3034 // Create a unique bitmask for every processor resource unit. 3035 // Skip resource at index 0, since it always references 'InvalidUnit'. 3036 Masks.resize(SM.getNumProcResourceKinds()); 3037 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3038 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3039 if (Desc.SubUnitsIdxBegin) 3040 continue; 3041 Masks[I] = 1ULL << ProcResourceID; 3042 ProcResourceID++; 3043 } 3044 // Create a unique bitmask for every processor resource group. 3045 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3046 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3047 if (!Desc.SubUnitsIdxBegin) 3048 continue; 3049 Masks[I] = 1ULL << ProcResourceID; 3050 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3051 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3052 ProcResourceID++; 3053 } 3054 LLVM_DEBUG({ 3055 if (SwpShowResMask) { 3056 dbgs() << "ProcResourceDesc:\n"; 3057 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3058 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3059 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3060 ProcResource->Name, I, Masks[I], 3061 ProcResource->NumUnits); 3062 } 3063 dbgs() << " -----------------\n"; 3064 } 3065 }); 3066 } 3067 3068 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3069 3070 LLVM_DEBUG({ 3071 if (SwpDebugResource) 3072 dbgs() << "canReserveResources:\n"; 3073 }); 3074 if (UseDFA) 3075 return DFAResources->canReserveResources(MID); 3076 3077 unsigned InsnClass = MID->getSchedClass(); 3078 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3079 if (!SCDesc->isValid()) { 3080 LLVM_DEBUG({ 3081 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3082 dbgs() << "isPseudo:" << MID->isPseudo() << "\n"; 3083 }); 3084 return true; 3085 } 3086 3087 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3088 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3089 for (; I != E; ++I) { 3090 if (!I->Cycles) 3091 continue; 3092 const MCProcResourceDesc *ProcResource = 3093 SM.getProcResource(I->ProcResourceIdx); 3094 unsigned NumUnits = ProcResource->NumUnits; 3095 LLVM_DEBUG({ 3096 if (SwpDebugResource) 3097 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3098 ProcResource->Name, I->ProcResourceIdx, 3099 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3100 I->Cycles); 3101 }); 3102 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3103 return false; 3104 } 3105 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3106 return true; 3107 } 3108 3109 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3110 LLVM_DEBUG({ 3111 if (SwpDebugResource) 3112 dbgs() << "reserveResources:\n"; 3113 }); 3114 if (UseDFA) 3115 return DFAResources->reserveResources(MID); 3116 3117 unsigned InsnClass = MID->getSchedClass(); 3118 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3119 if (!SCDesc->isValid()) { 3120 LLVM_DEBUG({ 3121 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3122 dbgs() << "isPseudo:" << MID->isPseudo() << "\n"; 3123 }); 3124 return; 3125 } 3126 for (const MCWriteProcResEntry &PRE : 3127 make_range(STI->getWriteProcResBegin(SCDesc), 3128 STI->getWriteProcResEnd(SCDesc))) { 3129 if (!PRE.Cycles) 3130 continue; 3131 ++ProcResourceCount[PRE.ProcResourceIdx]; 3132 LLVM_DEBUG({ 3133 if (SwpDebugResource) { 3134 const MCProcResourceDesc *ProcResource = 3135 SM.getProcResource(PRE.ProcResourceIdx); 3136 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3137 ProcResource->Name, PRE.ProcResourceIdx, 3138 ProcResourceCount[PRE.ProcResourceIdx], 3139 ProcResource->NumUnits, PRE.Cycles); 3140 } 3141 }); 3142 } 3143 LLVM_DEBUG({ 3144 if (SwpDebugResource) 3145 dbgs() << "reserveResources: done!\n\n"; 3146 }); 3147 } 3148 3149 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3150 return canReserveResources(&MI.getDesc()); 3151 } 3152 3153 void ResourceManager::reserveResources(const MachineInstr &MI) { 3154 return reserveResources(&MI.getDesc()); 3155 } 3156 3157 void ResourceManager::clearResources() { 3158 if (UseDFA) 3159 return DFAResources->clearResources(); 3160 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3161 } 3162