1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 TII = MF->getSubtarget().getInstrInfo(); 221 RegClassInfo.runOnMachineFunction(*MF); 222 223 for (auto &L : *MLI) 224 scheduleLoop(*L); 225 226 return false; 227 } 228 229 /// Attempt to perform the SMS algorithm on the specified loop. This function is 230 /// the main entry point for the algorithm. The function identifies candidate 231 /// loops, calculates the minimum initiation interval, and attempts to schedule 232 /// the loop. 233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 234 bool Changed = false; 235 for (auto &InnerLoop : L) 236 Changed |= scheduleLoop(*InnerLoop); 237 238 #ifndef NDEBUG 239 // Stop trying after reaching the limit (if any). 240 int Limit = SwpLoopLimit; 241 if (Limit >= 0) { 242 if (NumTries >= SwpLoopLimit) 243 return Changed; 244 NumTries++; 245 } 246 #endif 247 248 setPragmaPipelineOptions(L); 249 if (!canPipelineLoop(L)) { 250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 251 return Changed; 252 } 253 254 ++NumTrytoPipeline; 255 256 Changed = swingModuloScheduler(L); 257 258 return Changed; 259 } 260 261 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 262 MachineBasicBlock *LBLK = L.getTopBlock(); 263 264 if (LBLK == nullptr) 265 return; 266 267 const BasicBlock *BBLK = LBLK->getBasicBlock(); 268 if (BBLK == nullptr) 269 return; 270 271 const Instruction *TI = BBLK->getTerminator(); 272 if (TI == nullptr) 273 return; 274 275 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 276 if (LoopID == nullptr) 277 return; 278 279 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 280 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 281 282 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 283 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 284 285 if (MD == nullptr) 286 continue; 287 288 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 289 290 if (S == nullptr) 291 continue; 292 293 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 294 assert(MD->getNumOperands() == 2 && 295 "Pipeline initiation interval hint metadata should have two operands."); 296 II_setByPragma = 297 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 298 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 299 } else if (S->getString() == "llvm.loop.pipeline.disable") { 300 disabledByPragma = true; 301 } 302 } 303 } 304 305 /// Return true if the loop can be software pipelined. The algorithm is 306 /// restricted to loops with a single basic block. Make sure that the 307 /// branch in the loop can be analyzed. 308 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 309 if (L.getNumBlocks() != 1) 310 return false; 311 312 if (disabledByPragma) 313 return false; 314 315 // Check if the branch can't be understood because we can't do pipelining 316 // if that's the case. 317 LI.TBB = nullptr; 318 LI.FBB = nullptr; 319 LI.BrCond.clear(); 320 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 321 LLVM_DEBUG( 322 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 323 NumFailBranch++; 324 return false; 325 } 326 327 LI.LoopInductionVar = nullptr; 328 LI.LoopCompare = nullptr; 329 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 330 LLVM_DEBUG( 331 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 332 NumFailLoop++; 333 return false; 334 } 335 336 if (!L.getLoopPreheader()) { 337 LLVM_DEBUG( 338 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 339 NumFailPreheader++; 340 return false; 341 } 342 343 // Remove any subregisters from inputs to phi nodes. 344 preprocessPhiNodes(*L.getHeader()); 345 return true; 346 } 347 348 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 349 MachineRegisterInfo &MRI = MF->getRegInfo(); 350 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 351 352 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 353 MachineOperand &DefOp = PI.getOperand(0); 354 assert(DefOp.getSubReg() == 0); 355 auto *RC = MRI.getRegClass(DefOp.getReg()); 356 357 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 358 MachineOperand &RegOp = PI.getOperand(i); 359 if (RegOp.getSubReg() == 0) 360 continue; 361 362 // If the operand uses a subregister, replace it with a new register 363 // without subregisters, and generate a copy to the new register. 364 Register NewReg = MRI.createVirtualRegister(RC); 365 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 366 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 367 const DebugLoc &DL = PredB.findDebugLoc(At); 368 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 369 .addReg(RegOp.getReg(), getRegState(RegOp), 370 RegOp.getSubReg()); 371 Slots.insertMachineInstrInMaps(*Copy); 372 RegOp.setReg(NewReg); 373 RegOp.setSubReg(0); 374 } 375 } 376 } 377 378 /// The SMS algorithm consists of the following main steps: 379 /// 1. Computation and analysis of the dependence graph. 380 /// 2. Ordering of the nodes (instructions). 381 /// 3. Attempt to Schedule the loop. 382 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 383 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 384 385 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 386 II_setByPragma); 387 388 MachineBasicBlock *MBB = L.getHeader(); 389 // The kernel should not include any terminator instructions. These 390 // will be added back later. 391 SMS.startBlock(MBB); 392 393 // Compute the number of 'real' instructions in the basic block by 394 // ignoring terminators. 395 unsigned size = MBB->size(); 396 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 397 E = MBB->instr_end(); 398 I != E; ++I, --size) 399 ; 400 401 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 402 SMS.schedule(); 403 SMS.exitRegion(); 404 405 SMS.finishBlock(); 406 return SMS.hasNewSchedule(); 407 } 408 409 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 410 if (II_setByPragma > 0) 411 MII = II_setByPragma; 412 else 413 MII = std::max(ResMII, RecMII); 414 } 415 416 void SwingSchedulerDAG::setMAX_II() { 417 if (II_setByPragma > 0) 418 MAX_II = II_setByPragma; 419 else 420 MAX_II = MII + 10; 421 } 422 423 /// We override the schedule function in ScheduleDAGInstrs to implement the 424 /// scheduling part of the Swing Modulo Scheduling algorithm. 425 void SwingSchedulerDAG::schedule() { 426 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 427 buildSchedGraph(AA); 428 addLoopCarriedDependences(AA); 429 updatePhiDependences(); 430 Topo.InitDAGTopologicalSorting(); 431 changeDependences(); 432 postprocessDAG(); 433 LLVM_DEBUG(dump()); 434 435 NodeSetType NodeSets; 436 findCircuits(NodeSets); 437 NodeSetType Circuits = NodeSets; 438 439 // Calculate the MII. 440 unsigned ResMII = calculateResMII(); 441 unsigned RecMII = calculateRecMII(NodeSets); 442 443 fuseRecs(NodeSets); 444 445 // This flag is used for testing and can cause correctness problems. 446 if (SwpIgnoreRecMII) 447 RecMII = 0; 448 449 setMII(ResMII, RecMII); 450 setMAX_II(); 451 452 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 453 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 454 455 // Can't schedule a loop without a valid MII. 456 if (MII == 0) { 457 LLVM_DEBUG( 458 dbgs() 459 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 460 NumFailZeroMII++; 461 return; 462 } 463 464 // Don't pipeline large loops. 465 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 466 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 467 << ", we don't pipleline large loops\n"); 468 NumFailLargeMaxMII++; 469 return; 470 } 471 472 computeNodeFunctions(NodeSets); 473 474 registerPressureFilter(NodeSets); 475 476 colocateNodeSets(NodeSets); 477 478 checkNodeSets(NodeSets); 479 480 LLVM_DEBUG({ 481 for (auto &I : NodeSets) { 482 dbgs() << " Rec NodeSet "; 483 I.dump(); 484 } 485 }); 486 487 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 488 489 groupRemainingNodes(NodeSets); 490 491 removeDuplicateNodes(NodeSets); 492 493 LLVM_DEBUG({ 494 for (auto &I : NodeSets) { 495 dbgs() << " NodeSet "; 496 I.dump(); 497 } 498 }); 499 500 computeNodeOrder(NodeSets); 501 502 // check for node order issues 503 checkValidNodeOrder(Circuits); 504 505 SMSchedule Schedule(Pass.MF); 506 Scheduled = schedulePipeline(Schedule); 507 508 if (!Scheduled){ 509 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 510 NumFailNoSchedule++; 511 return; 512 } 513 514 unsigned numStages = Schedule.getMaxStageCount(); 515 // No need to generate pipeline if there are no overlapped iterations. 516 if (numStages == 0) { 517 LLVM_DEBUG( 518 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 519 NumFailZeroStage++; 520 return; 521 } 522 // Check that the maximum stage count is less than user-defined limit. 523 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 524 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 525 << " : too many stages, abort\n"); 526 NumFailLargeMaxStage++; 527 return; 528 } 529 530 // Generate the schedule as a ModuloSchedule. 531 DenseMap<MachineInstr *, int> Cycles, Stages; 532 std::vector<MachineInstr *> OrderedInsts; 533 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 534 ++Cycle) { 535 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 536 OrderedInsts.push_back(SU->getInstr()); 537 Cycles[SU->getInstr()] = Cycle; 538 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 539 } 540 } 541 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 542 for (auto &KV : NewMIs) { 543 Cycles[KV.first] = Cycles[KV.second]; 544 Stages[KV.first] = Stages[KV.second]; 545 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 546 } 547 548 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 549 std::move(Stages)); 550 if (EmitTestAnnotations) { 551 assert(NewInstrChanges.empty() && 552 "Cannot serialize a schedule with InstrChanges!"); 553 ModuloScheduleTestAnnotater MSTI(MF, MS); 554 MSTI.annotate(); 555 return; 556 } 557 // The experimental code generator can't work if there are InstChanges. 558 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 559 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 560 // Experimental code generation isn't complete yet, but it can partially 561 // validate the code it generates against the original 562 // ModuloScheduleExpander. 563 MSE.validateAgainstModuloScheduleExpander(); 564 } else { 565 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 566 MSE.expand(); 567 MSE.cleanup(); 568 } 569 ++NumPipelined; 570 } 571 572 /// Clean up after the software pipeliner runs. 573 void SwingSchedulerDAG::finishBlock() { 574 for (auto &KV : NewMIs) 575 MF.DeleteMachineInstr(KV.second); 576 NewMIs.clear(); 577 578 // Call the superclass. 579 ScheduleDAGInstrs::finishBlock(); 580 } 581 582 /// Return the register values for the operands of a Phi instruction. 583 /// This function assume the instruction is a Phi. 584 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 585 unsigned &InitVal, unsigned &LoopVal) { 586 assert(Phi.isPHI() && "Expecting a Phi."); 587 588 InitVal = 0; 589 LoopVal = 0; 590 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 591 if (Phi.getOperand(i + 1).getMBB() != Loop) 592 InitVal = Phi.getOperand(i).getReg(); 593 else 594 LoopVal = Phi.getOperand(i).getReg(); 595 596 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 597 } 598 599 /// Return the Phi register value that comes the loop block. 600 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 601 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 602 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 603 return Phi.getOperand(i).getReg(); 604 return 0; 605 } 606 607 /// Return true if SUb can be reached from SUa following the chain edges. 608 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 609 SmallPtrSet<SUnit *, 8> Visited; 610 SmallVector<SUnit *, 8> Worklist; 611 Worklist.push_back(SUa); 612 while (!Worklist.empty()) { 613 const SUnit *SU = Worklist.pop_back_val(); 614 for (auto &SI : SU->Succs) { 615 SUnit *SuccSU = SI.getSUnit(); 616 if (SI.getKind() == SDep::Order) { 617 if (Visited.count(SuccSU)) 618 continue; 619 if (SuccSU == SUb) 620 return true; 621 Worklist.push_back(SuccSU); 622 Visited.insert(SuccSU); 623 } 624 } 625 } 626 return false; 627 } 628 629 /// Return true if the instruction causes a chain between memory 630 /// references before and after it. 631 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 632 return MI.isCall() || MI.mayRaiseFPException() || 633 MI.hasUnmodeledSideEffects() || 634 (MI.hasOrderedMemoryRef() && 635 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 636 } 637 638 /// Return the underlying objects for the memory references of an instruction. 639 /// This function calls the code in ValueTracking, but first checks that the 640 /// instruction has a memory operand. 641 static void getUnderlyingObjects(const MachineInstr *MI, 642 SmallVectorImpl<const Value *> &Objs, 643 const DataLayout &DL) { 644 if (!MI->hasOneMemOperand()) 645 return; 646 MachineMemOperand *MM = *MI->memoperands_begin(); 647 if (!MM->getValue()) 648 return; 649 GetUnderlyingObjects(MM->getValue(), Objs, DL); 650 for (const Value *V : Objs) { 651 if (!isIdentifiedObject(V)) { 652 Objs.clear(); 653 return; 654 } 655 Objs.push_back(V); 656 } 657 } 658 659 /// Add a chain edge between a load and store if the store can be an 660 /// alias of the load on a subsequent iteration, i.e., a loop carried 661 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 662 /// but that code doesn't create loop carried dependences. 663 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 664 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 665 Value *UnknownValue = 666 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 667 for (auto &SU : SUnits) { 668 MachineInstr &MI = *SU.getInstr(); 669 if (isDependenceBarrier(MI, AA)) 670 PendingLoads.clear(); 671 else if (MI.mayLoad()) { 672 SmallVector<const Value *, 4> Objs; 673 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 674 if (Objs.empty()) 675 Objs.push_back(UnknownValue); 676 for (auto V : Objs) { 677 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 678 SUs.push_back(&SU); 679 } 680 } else if (MI.mayStore()) { 681 SmallVector<const Value *, 4> Objs; 682 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 683 if (Objs.empty()) 684 Objs.push_back(UnknownValue); 685 for (auto V : Objs) { 686 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 687 PendingLoads.find(V); 688 if (I == PendingLoads.end()) 689 continue; 690 for (auto Load : I->second) { 691 if (isSuccOrder(Load, &SU)) 692 continue; 693 MachineInstr &LdMI = *Load->getInstr(); 694 // First, perform the cheaper check that compares the base register. 695 // If they are the same and the load offset is less than the store 696 // offset, then mark the dependence as loop carried potentially. 697 const MachineOperand *BaseOp1, *BaseOp2; 698 int64_t Offset1, Offset2; 699 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 700 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 701 if (BaseOp1->isIdenticalTo(*BaseOp2) && 702 (int)Offset1 < (int)Offset2) { 703 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 704 "What happened to the chain edge?"); 705 SDep Dep(Load, SDep::Barrier); 706 Dep.setLatency(1); 707 SU.addPred(Dep); 708 continue; 709 } 710 } 711 // Second, the more expensive check that uses alias analysis on the 712 // base registers. If they alias, and the load offset is less than 713 // the store offset, the mark the dependence as loop carried. 714 if (!AA) { 715 SDep Dep(Load, SDep::Barrier); 716 Dep.setLatency(1); 717 SU.addPred(Dep); 718 continue; 719 } 720 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 721 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 722 if (!MMO1->getValue() || !MMO2->getValue()) { 723 SDep Dep(Load, SDep::Barrier); 724 Dep.setLatency(1); 725 SU.addPred(Dep); 726 continue; 727 } 728 if (MMO1->getValue() == MMO2->getValue() && 729 MMO1->getOffset() <= MMO2->getOffset()) { 730 SDep Dep(Load, SDep::Barrier); 731 Dep.setLatency(1); 732 SU.addPred(Dep); 733 continue; 734 } 735 AliasResult AAResult = AA->alias( 736 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 737 MMO1->getAAInfo()), 738 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 739 MMO2->getAAInfo())); 740 741 if (AAResult != NoAlias) { 742 SDep Dep(Load, SDep::Barrier); 743 Dep.setLatency(1); 744 SU.addPred(Dep); 745 } 746 } 747 } 748 } 749 } 750 } 751 752 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 753 /// processes dependences for PHIs. This function adds true dependences 754 /// from a PHI to a use, and a loop carried dependence from the use to the 755 /// PHI. The loop carried dependence is represented as an anti dependence 756 /// edge. This function also removes chain dependences between unrelated 757 /// PHIs. 758 void SwingSchedulerDAG::updatePhiDependences() { 759 SmallVector<SDep, 4> RemoveDeps; 760 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 761 762 // Iterate over each DAG node. 763 for (SUnit &I : SUnits) { 764 RemoveDeps.clear(); 765 // Set to true if the instruction has an operand defined by a Phi. 766 unsigned HasPhiUse = 0; 767 unsigned HasPhiDef = 0; 768 MachineInstr *MI = I.getInstr(); 769 // Iterate over each operand, and we process the definitions. 770 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 771 MOE = MI->operands_end(); 772 MOI != MOE; ++MOI) { 773 if (!MOI->isReg()) 774 continue; 775 Register Reg = MOI->getReg(); 776 if (MOI->isDef()) { 777 // If the register is used by a Phi, then create an anti dependence. 778 for (MachineRegisterInfo::use_instr_iterator 779 UI = MRI.use_instr_begin(Reg), 780 UE = MRI.use_instr_end(); 781 UI != UE; ++UI) { 782 MachineInstr *UseMI = &*UI; 783 SUnit *SU = getSUnit(UseMI); 784 if (SU != nullptr && UseMI->isPHI()) { 785 if (!MI->isPHI()) { 786 SDep Dep(SU, SDep::Anti, Reg); 787 Dep.setLatency(1); 788 I.addPred(Dep); 789 } else { 790 HasPhiDef = Reg; 791 // Add a chain edge to a dependent Phi that isn't an existing 792 // predecessor. 793 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 794 I.addPred(SDep(SU, SDep::Barrier)); 795 } 796 } 797 } 798 } else if (MOI->isUse()) { 799 // If the register is defined by a Phi, then create a true dependence. 800 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 801 if (DefMI == nullptr) 802 continue; 803 SUnit *SU = getSUnit(DefMI); 804 if (SU != nullptr && DefMI->isPHI()) { 805 if (!MI->isPHI()) { 806 SDep Dep(SU, SDep::Data, Reg); 807 Dep.setLatency(0); 808 ST.adjustSchedDependency(SU, &I, Dep); 809 I.addPred(Dep); 810 } else { 811 HasPhiUse = Reg; 812 // Add a chain edge to a dependent Phi that isn't an existing 813 // predecessor. 814 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 815 I.addPred(SDep(SU, SDep::Barrier)); 816 } 817 } 818 } 819 } 820 // Remove order dependences from an unrelated Phi. 821 if (!SwpPruneDeps) 822 continue; 823 for (auto &PI : I.Preds) { 824 MachineInstr *PMI = PI.getSUnit()->getInstr(); 825 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 826 if (I.getInstr()->isPHI()) { 827 if (PMI->getOperand(0).getReg() == HasPhiUse) 828 continue; 829 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 830 continue; 831 } 832 RemoveDeps.push_back(PI); 833 } 834 } 835 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 836 I.removePred(RemoveDeps[i]); 837 } 838 } 839 840 /// Iterate over each DAG node and see if we can change any dependences 841 /// in order to reduce the recurrence MII. 842 void SwingSchedulerDAG::changeDependences() { 843 // See if an instruction can use a value from the previous iteration. 844 // If so, we update the base and offset of the instruction and change 845 // the dependences. 846 for (SUnit &I : SUnits) { 847 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 848 int64_t NewOffset = 0; 849 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 850 NewOffset)) 851 continue; 852 853 // Get the MI and SUnit for the instruction that defines the original base. 854 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 855 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 856 if (!DefMI) 857 continue; 858 SUnit *DefSU = getSUnit(DefMI); 859 if (!DefSU) 860 continue; 861 // Get the MI and SUnit for the instruction that defins the new base. 862 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 863 if (!LastMI) 864 continue; 865 SUnit *LastSU = getSUnit(LastMI); 866 if (!LastSU) 867 continue; 868 869 if (Topo.IsReachable(&I, LastSU)) 870 continue; 871 872 // Remove the dependence. The value now depends on a prior iteration. 873 SmallVector<SDep, 4> Deps; 874 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 875 ++P) 876 if (P->getSUnit() == DefSU) 877 Deps.push_back(*P); 878 for (int i = 0, e = Deps.size(); i != e; i++) { 879 Topo.RemovePred(&I, Deps[i].getSUnit()); 880 I.removePred(Deps[i]); 881 } 882 // Remove the chain dependence between the instructions. 883 Deps.clear(); 884 for (auto &P : LastSU->Preds) 885 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 886 Deps.push_back(P); 887 for (int i = 0, e = Deps.size(); i != e; i++) { 888 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 889 LastSU->removePred(Deps[i]); 890 } 891 892 // Add a dependence between the new instruction and the instruction 893 // that defines the new base. 894 SDep Dep(&I, SDep::Anti, NewBase); 895 Topo.AddPred(LastSU, &I); 896 LastSU->addPred(Dep); 897 898 // Remember the base and offset information so that we can update the 899 // instruction during code generation. 900 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 901 } 902 } 903 904 namespace { 905 906 // FuncUnitSorter - Comparison operator used to sort instructions by 907 // the number of functional unit choices. 908 struct FuncUnitSorter { 909 const InstrItineraryData *InstrItins; 910 const MCSubtargetInfo *STI; 911 DenseMap<unsigned, unsigned> Resources; 912 913 FuncUnitSorter(const TargetSubtargetInfo &TSI) 914 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 915 916 // Compute the number of functional unit alternatives needed 917 // at each stage, and take the minimum value. We prioritize the 918 // instructions by the least number of choices first. 919 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 920 unsigned SchedClass = Inst->getDesc().getSchedClass(); 921 unsigned min = UINT_MAX; 922 if (InstrItins && !InstrItins->isEmpty()) { 923 for (const InstrStage &IS : 924 make_range(InstrItins->beginStage(SchedClass), 925 InstrItins->endStage(SchedClass))) { 926 unsigned funcUnits = IS.getUnits(); 927 unsigned numAlternatives = countPopulation(funcUnits); 928 if (numAlternatives < min) { 929 min = numAlternatives; 930 F = funcUnits; 931 } 932 } 933 return min; 934 } 935 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 936 const MCSchedClassDesc *SCDesc = 937 STI->getSchedModel().getSchedClassDesc(SchedClass); 938 if (!SCDesc->isValid()) 939 // No valid Schedule Class Desc for schedClass, should be 940 // Pseudo/PostRAPseudo 941 return min; 942 943 for (const MCWriteProcResEntry &PRE : 944 make_range(STI->getWriteProcResBegin(SCDesc), 945 STI->getWriteProcResEnd(SCDesc))) { 946 if (!PRE.Cycles) 947 continue; 948 const MCProcResourceDesc *ProcResource = 949 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 950 unsigned NumUnits = ProcResource->NumUnits; 951 if (NumUnits < min) { 952 min = NumUnits; 953 F = PRE.ProcResourceIdx; 954 } 955 } 956 return min; 957 } 958 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 959 } 960 961 // Compute the critical resources needed by the instruction. This 962 // function records the functional units needed by instructions that 963 // must use only one functional unit. We use this as a tie breaker 964 // for computing the resource MII. The instrutions that require 965 // the same, highly used, functional unit have high priority. 966 void calcCriticalResources(MachineInstr &MI) { 967 unsigned SchedClass = MI.getDesc().getSchedClass(); 968 if (InstrItins && !InstrItins->isEmpty()) { 969 for (const InstrStage &IS : 970 make_range(InstrItins->beginStage(SchedClass), 971 InstrItins->endStage(SchedClass))) { 972 unsigned FuncUnits = IS.getUnits(); 973 if (countPopulation(FuncUnits) == 1) 974 Resources[FuncUnits]++; 975 } 976 return; 977 } 978 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 979 const MCSchedClassDesc *SCDesc = 980 STI->getSchedModel().getSchedClassDesc(SchedClass); 981 if (!SCDesc->isValid()) 982 // No valid Schedule Class Desc for schedClass, should be 983 // Pseudo/PostRAPseudo 984 return; 985 986 for (const MCWriteProcResEntry &PRE : 987 make_range(STI->getWriteProcResBegin(SCDesc), 988 STI->getWriteProcResEnd(SCDesc))) { 989 if (!PRE.Cycles) 990 continue; 991 Resources[PRE.ProcResourceIdx]++; 992 } 993 return; 994 } 995 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 996 } 997 998 /// Return true if IS1 has less priority than IS2. 999 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1000 unsigned F1 = 0, F2 = 0; 1001 unsigned MFUs1 = minFuncUnits(IS1, F1); 1002 unsigned MFUs2 = minFuncUnits(IS2, F2); 1003 if (MFUs1 == MFUs2) 1004 return Resources.lookup(F1) < Resources.lookup(F2); 1005 return MFUs1 > MFUs2; 1006 } 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 /// Calculate the resource constrained minimum initiation interval for the 1012 /// specified loop. We use the DFA to model the resources needed for 1013 /// each instruction, and we ignore dependences. A different DFA is created 1014 /// for each cycle that is required. When adding a new instruction, we attempt 1015 /// to add it to each existing DFA, until a legal space is found. If the 1016 /// instruction cannot be reserved in an existing DFA, we create a new one. 1017 unsigned SwingSchedulerDAG::calculateResMII() { 1018 1019 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1020 SmallVector<ResourceManager*, 8> Resources; 1021 MachineBasicBlock *MBB = Loop.getHeader(); 1022 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1023 1024 // Sort the instructions by the number of available choices for scheduling, 1025 // least to most. Use the number of critical resources as the tie breaker. 1026 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1027 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1028 E = MBB->getFirstTerminator(); 1029 I != E; ++I) 1030 FUS.calcCriticalResources(*I); 1031 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1032 FuncUnitOrder(FUS); 1033 1034 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1035 E = MBB->getFirstTerminator(); 1036 I != E; ++I) 1037 FuncUnitOrder.push(&*I); 1038 1039 while (!FuncUnitOrder.empty()) { 1040 MachineInstr *MI = FuncUnitOrder.top(); 1041 FuncUnitOrder.pop(); 1042 if (TII->isZeroCost(MI->getOpcode())) 1043 continue; 1044 // Attempt to reserve the instruction in an existing DFA. At least one 1045 // DFA is needed for each cycle. 1046 unsigned NumCycles = getSUnit(MI)->Latency; 1047 unsigned ReservedCycles = 0; 1048 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1049 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1050 LLVM_DEBUG({ 1051 dbgs() << "Trying to reserve resource for " << NumCycles 1052 << " cycles for \n"; 1053 MI->dump(); 1054 }); 1055 for (unsigned C = 0; C < NumCycles; ++C) 1056 while (RI != RE) { 1057 if ((*RI)->canReserveResources(*MI)) { 1058 (*RI)->reserveResources(*MI); 1059 ++ReservedCycles; 1060 break; 1061 } 1062 RI++; 1063 } 1064 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1065 << ", NumCycles:" << NumCycles << "\n"); 1066 // Add new DFAs, if needed, to reserve resources. 1067 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1068 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1069 << "NewResource created to reserve resources" 1070 << "\n"); 1071 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1072 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1073 NewResource->reserveResources(*MI); 1074 Resources.push_back(NewResource); 1075 } 1076 } 1077 int Resmii = Resources.size(); 1078 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1079 // Delete the memory for each of the DFAs that were created earlier. 1080 for (ResourceManager *RI : Resources) { 1081 ResourceManager *D = RI; 1082 delete D; 1083 } 1084 Resources.clear(); 1085 return Resmii; 1086 } 1087 1088 /// Calculate the recurrence-constrainted minimum initiation interval. 1089 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1090 /// for each circuit. The II needs to satisfy the inequality 1091 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1092 /// II that satisfies the inequality, and the RecMII is the maximum 1093 /// of those values. 1094 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1095 unsigned RecMII = 0; 1096 1097 for (NodeSet &Nodes : NodeSets) { 1098 if (Nodes.empty()) 1099 continue; 1100 1101 unsigned Delay = Nodes.getLatency(); 1102 unsigned Distance = 1; 1103 1104 // ii = ceil(delay / distance) 1105 unsigned CurMII = (Delay + Distance - 1) / Distance; 1106 Nodes.setRecMII(CurMII); 1107 if (CurMII > RecMII) 1108 RecMII = CurMII; 1109 } 1110 1111 return RecMII; 1112 } 1113 1114 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1115 /// but we do this to find the circuits, and then change them back. 1116 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1117 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1118 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1119 SUnit *SU = &SUnits[i]; 1120 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1121 IP != EP; ++IP) { 1122 if (IP->getKind() != SDep::Anti) 1123 continue; 1124 DepsAdded.push_back(std::make_pair(SU, *IP)); 1125 } 1126 } 1127 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1128 E = DepsAdded.end(); 1129 I != E; ++I) { 1130 // Remove this anti dependency and add one in the reverse direction. 1131 SUnit *SU = I->first; 1132 SDep &D = I->second; 1133 SUnit *TargetSU = D.getSUnit(); 1134 unsigned Reg = D.getReg(); 1135 unsigned Lat = D.getLatency(); 1136 SU->removePred(D); 1137 SDep Dep(SU, SDep::Anti, Reg); 1138 Dep.setLatency(Lat); 1139 TargetSU->addPred(Dep); 1140 } 1141 } 1142 1143 /// Create the adjacency structure of the nodes in the graph. 1144 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1145 SwingSchedulerDAG *DAG) { 1146 BitVector Added(SUnits.size()); 1147 DenseMap<int, int> OutputDeps; 1148 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1149 Added.reset(); 1150 // Add any successor to the adjacency matrix and exclude duplicates. 1151 for (auto &SI : SUnits[i].Succs) { 1152 // Only create a back-edge on the first and last nodes of a dependence 1153 // chain. This records any chains and adds them later. 1154 if (SI.getKind() == SDep::Output) { 1155 int N = SI.getSUnit()->NodeNum; 1156 int BackEdge = i; 1157 auto Dep = OutputDeps.find(BackEdge); 1158 if (Dep != OutputDeps.end()) { 1159 BackEdge = Dep->second; 1160 OutputDeps.erase(Dep); 1161 } 1162 OutputDeps[N] = BackEdge; 1163 } 1164 // Do not process a boundary node, an artificial node. 1165 // A back-edge is processed only if it goes to a Phi. 1166 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1167 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1168 continue; 1169 int N = SI.getSUnit()->NodeNum; 1170 if (!Added.test(N)) { 1171 AdjK[i].push_back(N); 1172 Added.set(N); 1173 } 1174 } 1175 // A chain edge between a store and a load is treated as a back-edge in the 1176 // adjacency matrix. 1177 for (auto &PI : SUnits[i].Preds) { 1178 if (!SUnits[i].getInstr()->mayStore() || 1179 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1180 continue; 1181 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1182 int N = PI.getSUnit()->NodeNum; 1183 if (!Added.test(N)) { 1184 AdjK[i].push_back(N); 1185 Added.set(N); 1186 } 1187 } 1188 } 1189 } 1190 // Add back-edges in the adjacency matrix for the output dependences. 1191 for (auto &OD : OutputDeps) 1192 if (!Added.test(OD.second)) { 1193 AdjK[OD.first].push_back(OD.second); 1194 Added.set(OD.second); 1195 } 1196 } 1197 1198 /// Identify an elementary circuit in the dependence graph starting at the 1199 /// specified node. 1200 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1201 bool HasBackedge) { 1202 SUnit *SV = &SUnits[V]; 1203 bool F = false; 1204 Stack.insert(SV); 1205 Blocked.set(V); 1206 1207 for (auto W : AdjK[V]) { 1208 if (NumPaths > MaxPaths) 1209 break; 1210 if (W < S) 1211 continue; 1212 if (W == S) { 1213 if (!HasBackedge) 1214 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1215 F = true; 1216 ++NumPaths; 1217 break; 1218 } else if (!Blocked.test(W)) { 1219 if (circuit(W, S, NodeSets, 1220 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1221 F = true; 1222 } 1223 } 1224 1225 if (F) 1226 unblock(V); 1227 else { 1228 for (auto W : AdjK[V]) { 1229 if (W < S) 1230 continue; 1231 if (B[W].count(SV) == 0) 1232 B[W].insert(SV); 1233 } 1234 } 1235 Stack.pop_back(); 1236 return F; 1237 } 1238 1239 /// Unblock a node in the circuit finding algorithm. 1240 void SwingSchedulerDAG::Circuits::unblock(int U) { 1241 Blocked.reset(U); 1242 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1243 while (!BU.empty()) { 1244 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1245 assert(SI != BU.end() && "Invalid B set."); 1246 SUnit *W = *SI; 1247 BU.erase(W); 1248 if (Blocked.test(W->NodeNum)) 1249 unblock(W->NodeNum); 1250 } 1251 } 1252 1253 /// Identify all the elementary circuits in the dependence graph using 1254 /// Johnson's circuit algorithm. 1255 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1256 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1257 // but we do this to find the circuits, and then change them back. 1258 swapAntiDependences(SUnits); 1259 1260 Circuits Cir(SUnits, Topo); 1261 // Create the adjacency structure. 1262 Cir.createAdjacencyStructure(this); 1263 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1264 Cir.reset(); 1265 Cir.circuit(i, i, NodeSets); 1266 } 1267 1268 // Change the dependences back so that we've created a DAG again. 1269 swapAntiDependences(SUnits); 1270 } 1271 1272 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1273 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1274 // additional copies that are needed across iterations. An artificial dependence 1275 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1276 1277 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1278 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1279 // PHI-------True-Dep------> USEOfPhi 1280 1281 // The mutation creates 1282 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1283 1284 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1285 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1286 // late to avoid additional copies across iterations. The possible scheduling 1287 // order would be 1288 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1289 1290 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1291 for (SUnit &SU : DAG->SUnits) { 1292 // Find the COPY/REG_SEQUENCE instruction. 1293 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1294 continue; 1295 1296 // Record the loop carried PHIs. 1297 SmallVector<SUnit *, 4> PHISUs; 1298 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1299 SmallVector<SUnit *, 4> SrcSUs; 1300 1301 for (auto &Dep : SU.Preds) { 1302 SUnit *TmpSU = Dep.getSUnit(); 1303 MachineInstr *TmpMI = TmpSU->getInstr(); 1304 SDep::Kind DepKind = Dep.getKind(); 1305 // Save the loop carried PHI. 1306 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1307 PHISUs.push_back(TmpSU); 1308 // Save the source of COPY/REG_SEQUENCE. 1309 // If the source has no pre-decessors, we will end up creating cycles. 1310 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1311 SrcSUs.push_back(TmpSU); 1312 } 1313 1314 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1315 continue; 1316 1317 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1318 // SUnit to the container. 1319 SmallVector<SUnit *, 8> UseSUs; 1320 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1321 for (auto &Dep : (*I)->Succs) { 1322 if (Dep.getKind() != SDep::Data) 1323 continue; 1324 1325 SUnit *TmpSU = Dep.getSUnit(); 1326 MachineInstr *TmpMI = TmpSU->getInstr(); 1327 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1328 PHISUs.push_back(TmpSU); 1329 continue; 1330 } 1331 UseSUs.push_back(TmpSU); 1332 } 1333 } 1334 1335 if (UseSUs.size() == 0) 1336 continue; 1337 1338 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1339 // Add the artificial dependencies if it does not form a cycle. 1340 for (auto I : UseSUs) { 1341 for (auto Src : SrcSUs) { 1342 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1343 Src->addPred(SDep(I, SDep::Artificial)); 1344 SDAG->Topo.AddPred(Src, I); 1345 } 1346 } 1347 } 1348 } 1349 } 1350 1351 /// Return true for DAG nodes that we ignore when computing the cost functions. 1352 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1353 /// in the calculation of the ASAP, ALAP, etc functions. 1354 static bool ignoreDependence(const SDep &D, bool isPred) { 1355 if (D.isArtificial()) 1356 return true; 1357 return D.getKind() == SDep::Anti && isPred; 1358 } 1359 1360 /// Compute several functions need to order the nodes for scheduling. 1361 /// ASAP - Earliest time to schedule a node. 1362 /// ALAP - Latest time to schedule a node. 1363 /// MOV - Mobility function, difference between ALAP and ASAP. 1364 /// D - Depth of each node. 1365 /// H - Height of each node. 1366 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1367 ScheduleInfo.resize(SUnits.size()); 1368 1369 LLVM_DEBUG({ 1370 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1371 E = Topo.end(); 1372 I != E; ++I) { 1373 const SUnit &SU = SUnits[*I]; 1374 dumpNode(SU); 1375 } 1376 }); 1377 1378 int maxASAP = 0; 1379 // Compute ASAP and ZeroLatencyDepth. 1380 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1381 E = Topo.end(); 1382 I != E; ++I) { 1383 int asap = 0; 1384 int zeroLatencyDepth = 0; 1385 SUnit *SU = &SUnits[*I]; 1386 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1387 EP = SU->Preds.end(); 1388 IP != EP; ++IP) { 1389 SUnit *pred = IP->getSUnit(); 1390 if (IP->getLatency() == 0) 1391 zeroLatencyDepth = 1392 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1393 if (ignoreDependence(*IP, true)) 1394 continue; 1395 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1396 getDistance(pred, SU, *IP) * MII)); 1397 } 1398 maxASAP = std::max(maxASAP, asap); 1399 ScheduleInfo[*I].ASAP = asap; 1400 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1401 } 1402 1403 // Compute ALAP, ZeroLatencyHeight, and MOV. 1404 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1405 E = Topo.rend(); 1406 I != E; ++I) { 1407 int alap = maxASAP; 1408 int zeroLatencyHeight = 0; 1409 SUnit *SU = &SUnits[*I]; 1410 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1411 ES = SU->Succs.end(); 1412 IS != ES; ++IS) { 1413 SUnit *succ = IS->getSUnit(); 1414 if (IS->getLatency() == 0) 1415 zeroLatencyHeight = 1416 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1417 if (ignoreDependence(*IS, true)) 1418 continue; 1419 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1420 getDistance(SU, succ, *IS) * MII)); 1421 } 1422 1423 ScheduleInfo[*I].ALAP = alap; 1424 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1425 } 1426 1427 // After computing the node functions, compute the summary for each node set. 1428 for (NodeSet &I : NodeSets) 1429 I.computeNodeSetInfo(this); 1430 1431 LLVM_DEBUG({ 1432 for (unsigned i = 0; i < SUnits.size(); i++) { 1433 dbgs() << "\tNode " << i << ":\n"; 1434 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1435 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1436 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1437 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1438 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1439 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1440 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1441 } 1442 }); 1443 } 1444 1445 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1446 /// as the predecessors of the elements of NodeOrder that are not also in 1447 /// NodeOrder. 1448 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1449 SmallSetVector<SUnit *, 8> &Preds, 1450 const NodeSet *S = nullptr) { 1451 Preds.clear(); 1452 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1453 I != E; ++I) { 1454 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1455 PI != PE; ++PI) { 1456 if (S && S->count(PI->getSUnit()) == 0) 1457 continue; 1458 if (ignoreDependence(*PI, true)) 1459 continue; 1460 if (NodeOrder.count(PI->getSUnit()) == 0) 1461 Preds.insert(PI->getSUnit()); 1462 } 1463 // Back-edges are predecessors with an anti-dependence. 1464 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1465 ES = (*I)->Succs.end(); 1466 IS != ES; ++IS) { 1467 if (IS->getKind() != SDep::Anti) 1468 continue; 1469 if (S && S->count(IS->getSUnit()) == 0) 1470 continue; 1471 if (NodeOrder.count(IS->getSUnit()) == 0) 1472 Preds.insert(IS->getSUnit()); 1473 } 1474 } 1475 return !Preds.empty(); 1476 } 1477 1478 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1479 /// as the successors of the elements of NodeOrder that are not also in 1480 /// NodeOrder. 1481 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1482 SmallSetVector<SUnit *, 8> &Succs, 1483 const NodeSet *S = nullptr) { 1484 Succs.clear(); 1485 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1486 I != E; ++I) { 1487 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1488 SI != SE; ++SI) { 1489 if (S && S->count(SI->getSUnit()) == 0) 1490 continue; 1491 if (ignoreDependence(*SI, false)) 1492 continue; 1493 if (NodeOrder.count(SI->getSUnit()) == 0) 1494 Succs.insert(SI->getSUnit()); 1495 } 1496 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1497 PE = (*I)->Preds.end(); 1498 PI != PE; ++PI) { 1499 if (PI->getKind() != SDep::Anti) 1500 continue; 1501 if (S && S->count(PI->getSUnit()) == 0) 1502 continue; 1503 if (NodeOrder.count(PI->getSUnit()) == 0) 1504 Succs.insert(PI->getSUnit()); 1505 } 1506 } 1507 return !Succs.empty(); 1508 } 1509 1510 /// Return true if there is a path from the specified node to any of the nodes 1511 /// in DestNodes. Keep track and return the nodes in any path. 1512 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1513 SetVector<SUnit *> &DestNodes, 1514 SetVector<SUnit *> &Exclude, 1515 SmallPtrSet<SUnit *, 8> &Visited) { 1516 if (Cur->isBoundaryNode()) 1517 return false; 1518 if (Exclude.count(Cur) != 0) 1519 return false; 1520 if (DestNodes.count(Cur) != 0) 1521 return true; 1522 if (!Visited.insert(Cur).second) 1523 return Path.count(Cur) != 0; 1524 bool FoundPath = false; 1525 for (auto &SI : Cur->Succs) 1526 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1527 for (auto &PI : Cur->Preds) 1528 if (PI.getKind() == SDep::Anti) 1529 FoundPath |= 1530 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1531 if (FoundPath) 1532 Path.insert(Cur); 1533 return FoundPath; 1534 } 1535 1536 /// Return true if Set1 is a subset of Set2. 1537 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1538 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1539 if (Set2.count(*I) == 0) 1540 return false; 1541 return true; 1542 } 1543 1544 /// Compute the live-out registers for the instructions in a node-set. 1545 /// The live-out registers are those that are defined in the node-set, 1546 /// but not used. Except for use operands of Phis. 1547 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1548 NodeSet &NS) { 1549 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1550 MachineRegisterInfo &MRI = MF.getRegInfo(); 1551 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1552 SmallSet<unsigned, 4> Uses; 1553 for (SUnit *SU : NS) { 1554 const MachineInstr *MI = SU->getInstr(); 1555 if (MI->isPHI()) 1556 continue; 1557 for (const MachineOperand &MO : MI->operands()) 1558 if (MO.isReg() && MO.isUse()) { 1559 Register Reg = MO.getReg(); 1560 if (Register::isVirtualRegister(Reg)) 1561 Uses.insert(Reg); 1562 else if (MRI.isAllocatable(Reg)) 1563 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1564 Uses.insert(*Units); 1565 } 1566 } 1567 for (SUnit *SU : NS) 1568 for (const MachineOperand &MO : SU->getInstr()->operands()) 1569 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1570 Register Reg = MO.getReg(); 1571 if (Register::isVirtualRegister(Reg)) { 1572 if (!Uses.count(Reg)) 1573 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1574 LaneBitmask::getNone())); 1575 } else if (MRI.isAllocatable(Reg)) { 1576 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1577 if (!Uses.count(*Units)) 1578 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1579 LaneBitmask::getNone())); 1580 } 1581 } 1582 RPTracker.addLiveRegs(LiveOutRegs); 1583 } 1584 1585 /// A heuristic to filter nodes in recurrent node-sets if the register 1586 /// pressure of a set is too high. 1587 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1588 for (auto &NS : NodeSets) { 1589 // Skip small node-sets since they won't cause register pressure problems. 1590 if (NS.size() <= 2) 1591 continue; 1592 IntervalPressure RecRegPressure; 1593 RegPressureTracker RecRPTracker(RecRegPressure); 1594 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1595 computeLiveOuts(MF, RecRPTracker, NS); 1596 RecRPTracker.closeBottom(); 1597 1598 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1599 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1600 return A->NodeNum > B->NodeNum; 1601 }); 1602 1603 for (auto &SU : SUnits) { 1604 // Since we're computing the register pressure for a subset of the 1605 // instructions in a block, we need to set the tracker for each 1606 // instruction in the node-set. The tracker is set to the instruction 1607 // just after the one we're interested in. 1608 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1609 RecRPTracker.setPos(std::next(CurInstI)); 1610 1611 RegPressureDelta RPDelta; 1612 ArrayRef<PressureChange> CriticalPSets; 1613 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1614 CriticalPSets, 1615 RecRegPressure.MaxSetPressure); 1616 if (RPDelta.Excess.isValid()) { 1617 LLVM_DEBUG( 1618 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1619 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1620 << ":" << RPDelta.Excess.getUnitInc()); 1621 NS.setExceedPressure(SU); 1622 break; 1623 } 1624 RecRPTracker.recede(); 1625 } 1626 } 1627 } 1628 1629 /// A heuristic to colocate node sets that have the same set of 1630 /// successors. 1631 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1632 unsigned Colocate = 0; 1633 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1634 NodeSet &N1 = NodeSets[i]; 1635 SmallSetVector<SUnit *, 8> S1; 1636 if (N1.empty() || !succ_L(N1, S1)) 1637 continue; 1638 for (int j = i + 1; j < e; ++j) { 1639 NodeSet &N2 = NodeSets[j]; 1640 if (N1.compareRecMII(N2) != 0) 1641 continue; 1642 SmallSetVector<SUnit *, 8> S2; 1643 if (N2.empty() || !succ_L(N2, S2)) 1644 continue; 1645 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1646 N1.setColocate(++Colocate); 1647 N2.setColocate(Colocate); 1648 break; 1649 } 1650 } 1651 } 1652 } 1653 1654 /// Check if the existing node-sets are profitable. If not, then ignore the 1655 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1656 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1657 /// then it's best to try to schedule all instructions together instead of 1658 /// starting with the recurrent node-sets. 1659 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1660 // Look for loops with a large MII. 1661 if (MII < 17) 1662 return; 1663 // Check if the node-set contains only a simple add recurrence. 1664 for (auto &NS : NodeSets) { 1665 if (NS.getRecMII() > 2) 1666 return; 1667 if (NS.getMaxDepth() > MII) 1668 return; 1669 } 1670 NodeSets.clear(); 1671 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1672 return; 1673 } 1674 1675 /// Add the nodes that do not belong to a recurrence set into groups 1676 /// based upon connected componenets. 1677 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1678 SetVector<SUnit *> NodesAdded; 1679 SmallPtrSet<SUnit *, 8> Visited; 1680 // Add the nodes that are on a path between the previous node sets and 1681 // the current node set. 1682 for (NodeSet &I : NodeSets) { 1683 SmallSetVector<SUnit *, 8> N; 1684 // Add the nodes from the current node set to the previous node set. 1685 if (succ_L(I, N)) { 1686 SetVector<SUnit *> Path; 1687 for (SUnit *NI : N) { 1688 Visited.clear(); 1689 computePath(NI, Path, NodesAdded, I, Visited); 1690 } 1691 if (!Path.empty()) 1692 I.insert(Path.begin(), Path.end()); 1693 } 1694 // Add the nodes from the previous node set to the current node set. 1695 N.clear(); 1696 if (succ_L(NodesAdded, N)) { 1697 SetVector<SUnit *> Path; 1698 for (SUnit *NI : N) { 1699 Visited.clear(); 1700 computePath(NI, Path, I, NodesAdded, Visited); 1701 } 1702 if (!Path.empty()) 1703 I.insert(Path.begin(), Path.end()); 1704 } 1705 NodesAdded.insert(I.begin(), I.end()); 1706 } 1707 1708 // Create a new node set with the connected nodes of any successor of a node 1709 // in a recurrent set. 1710 NodeSet NewSet; 1711 SmallSetVector<SUnit *, 8> N; 1712 if (succ_L(NodesAdded, N)) 1713 for (SUnit *I : N) 1714 addConnectedNodes(I, NewSet, NodesAdded); 1715 if (!NewSet.empty()) 1716 NodeSets.push_back(NewSet); 1717 1718 // Create a new node set with the connected nodes of any predecessor of a node 1719 // in a recurrent set. 1720 NewSet.clear(); 1721 if (pred_L(NodesAdded, N)) 1722 for (SUnit *I : N) 1723 addConnectedNodes(I, NewSet, NodesAdded); 1724 if (!NewSet.empty()) 1725 NodeSets.push_back(NewSet); 1726 1727 // Create new nodes sets with the connected nodes any remaining node that 1728 // has no predecessor. 1729 for (unsigned i = 0; i < SUnits.size(); ++i) { 1730 SUnit *SU = &SUnits[i]; 1731 if (NodesAdded.count(SU) == 0) { 1732 NewSet.clear(); 1733 addConnectedNodes(SU, NewSet, NodesAdded); 1734 if (!NewSet.empty()) 1735 NodeSets.push_back(NewSet); 1736 } 1737 } 1738 } 1739 1740 /// Add the node to the set, and add all of its connected nodes to the set. 1741 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1742 SetVector<SUnit *> &NodesAdded) { 1743 NewSet.insert(SU); 1744 NodesAdded.insert(SU); 1745 for (auto &SI : SU->Succs) { 1746 SUnit *Successor = SI.getSUnit(); 1747 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1748 addConnectedNodes(Successor, NewSet, NodesAdded); 1749 } 1750 for (auto &PI : SU->Preds) { 1751 SUnit *Predecessor = PI.getSUnit(); 1752 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1753 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1754 } 1755 } 1756 1757 /// Return true if Set1 contains elements in Set2. The elements in common 1758 /// are returned in a different container. 1759 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1760 SmallSetVector<SUnit *, 8> &Result) { 1761 Result.clear(); 1762 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1763 SUnit *SU = Set1[i]; 1764 if (Set2.count(SU) != 0) 1765 Result.insert(SU); 1766 } 1767 return !Result.empty(); 1768 } 1769 1770 /// Merge the recurrence node sets that have the same initial node. 1771 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1772 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1773 ++I) { 1774 NodeSet &NI = *I; 1775 for (NodeSetType::iterator J = I + 1; J != E;) { 1776 NodeSet &NJ = *J; 1777 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1778 if (NJ.compareRecMII(NI) > 0) 1779 NI.setRecMII(NJ.getRecMII()); 1780 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1781 ++NII) 1782 I->insert(*NII); 1783 NodeSets.erase(J); 1784 E = NodeSets.end(); 1785 } else { 1786 ++J; 1787 } 1788 } 1789 } 1790 } 1791 1792 /// Remove nodes that have been scheduled in previous NodeSets. 1793 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1794 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1795 ++I) 1796 for (NodeSetType::iterator J = I + 1; J != E;) { 1797 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1798 1799 if (J->empty()) { 1800 NodeSets.erase(J); 1801 E = NodeSets.end(); 1802 } else { 1803 ++J; 1804 } 1805 } 1806 } 1807 1808 /// Compute an ordered list of the dependence graph nodes, which 1809 /// indicates the order that the nodes will be scheduled. This is a 1810 /// two-level algorithm. First, a partial order is created, which 1811 /// consists of a list of sets ordered from highest to lowest priority. 1812 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1813 SmallSetVector<SUnit *, 8> R; 1814 NodeOrder.clear(); 1815 1816 for (auto &Nodes : NodeSets) { 1817 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1818 OrderKind Order; 1819 SmallSetVector<SUnit *, 8> N; 1820 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1821 R.insert(N.begin(), N.end()); 1822 Order = BottomUp; 1823 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1824 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1825 R.insert(N.begin(), N.end()); 1826 Order = TopDown; 1827 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1828 } else if (isIntersect(N, Nodes, R)) { 1829 // If some of the successors are in the existing node-set, then use the 1830 // top-down ordering. 1831 Order = TopDown; 1832 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1833 } else if (NodeSets.size() == 1) { 1834 for (auto &N : Nodes) 1835 if (N->Succs.size() == 0) 1836 R.insert(N); 1837 Order = BottomUp; 1838 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1839 } else { 1840 // Find the node with the highest ASAP. 1841 SUnit *maxASAP = nullptr; 1842 for (SUnit *SU : Nodes) { 1843 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1844 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1845 maxASAP = SU; 1846 } 1847 R.insert(maxASAP); 1848 Order = BottomUp; 1849 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1850 } 1851 1852 while (!R.empty()) { 1853 if (Order == TopDown) { 1854 // Choose the node with the maximum height. If more than one, choose 1855 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1856 // choose the node with the lowest MOV. 1857 while (!R.empty()) { 1858 SUnit *maxHeight = nullptr; 1859 for (SUnit *I : R) { 1860 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1861 maxHeight = I; 1862 else if (getHeight(I) == getHeight(maxHeight) && 1863 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1864 maxHeight = I; 1865 else if (getHeight(I) == getHeight(maxHeight) && 1866 getZeroLatencyHeight(I) == 1867 getZeroLatencyHeight(maxHeight) && 1868 getMOV(I) < getMOV(maxHeight)) 1869 maxHeight = I; 1870 } 1871 NodeOrder.insert(maxHeight); 1872 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1873 R.remove(maxHeight); 1874 for (const auto &I : maxHeight->Succs) { 1875 if (Nodes.count(I.getSUnit()) == 0) 1876 continue; 1877 if (NodeOrder.count(I.getSUnit()) != 0) 1878 continue; 1879 if (ignoreDependence(I, false)) 1880 continue; 1881 R.insert(I.getSUnit()); 1882 } 1883 // Back-edges are predecessors with an anti-dependence. 1884 for (const auto &I : maxHeight->Preds) { 1885 if (I.getKind() != SDep::Anti) 1886 continue; 1887 if (Nodes.count(I.getSUnit()) == 0) 1888 continue; 1889 if (NodeOrder.count(I.getSUnit()) != 0) 1890 continue; 1891 R.insert(I.getSUnit()); 1892 } 1893 } 1894 Order = BottomUp; 1895 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1896 SmallSetVector<SUnit *, 8> N; 1897 if (pred_L(NodeOrder, N, &Nodes)) 1898 R.insert(N.begin(), N.end()); 1899 } else { 1900 // Choose the node with the maximum depth. If more than one, choose 1901 // the node with the maximum ZeroLatencyDepth. If still more than one, 1902 // choose the node with the lowest MOV. 1903 while (!R.empty()) { 1904 SUnit *maxDepth = nullptr; 1905 for (SUnit *I : R) { 1906 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1907 maxDepth = I; 1908 else if (getDepth(I) == getDepth(maxDepth) && 1909 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1910 maxDepth = I; 1911 else if (getDepth(I) == getDepth(maxDepth) && 1912 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1913 getMOV(I) < getMOV(maxDepth)) 1914 maxDepth = I; 1915 } 1916 NodeOrder.insert(maxDepth); 1917 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1918 R.remove(maxDepth); 1919 if (Nodes.isExceedSU(maxDepth)) { 1920 Order = TopDown; 1921 R.clear(); 1922 R.insert(Nodes.getNode(0)); 1923 break; 1924 } 1925 for (const auto &I : maxDepth->Preds) { 1926 if (Nodes.count(I.getSUnit()) == 0) 1927 continue; 1928 if (NodeOrder.count(I.getSUnit()) != 0) 1929 continue; 1930 R.insert(I.getSUnit()); 1931 } 1932 // Back-edges are predecessors with an anti-dependence. 1933 for (const auto &I : maxDepth->Succs) { 1934 if (I.getKind() != SDep::Anti) 1935 continue; 1936 if (Nodes.count(I.getSUnit()) == 0) 1937 continue; 1938 if (NodeOrder.count(I.getSUnit()) != 0) 1939 continue; 1940 R.insert(I.getSUnit()); 1941 } 1942 } 1943 Order = TopDown; 1944 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1945 SmallSetVector<SUnit *, 8> N; 1946 if (succ_L(NodeOrder, N, &Nodes)) 1947 R.insert(N.begin(), N.end()); 1948 } 1949 } 1950 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1951 } 1952 1953 LLVM_DEBUG({ 1954 dbgs() << "Node order: "; 1955 for (SUnit *I : NodeOrder) 1956 dbgs() << " " << I->NodeNum << " "; 1957 dbgs() << "\n"; 1958 }); 1959 } 1960 1961 /// Process the nodes in the computed order and create the pipelined schedule 1962 /// of the instructions, if possible. Return true if a schedule is found. 1963 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1964 1965 if (NodeOrder.empty()){ 1966 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1967 return false; 1968 } 1969 1970 bool scheduleFound = false; 1971 unsigned II = 0; 1972 // Keep increasing II until a valid schedule is found. 1973 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1974 Schedule.reset(); 1975 Schedule.setInitiationInterval(II); 1976 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1977 1978 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1979 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1980 do { 1981 SUnit *SU = *NI; 1982 1983 // Compute the schedule time for the instruction, which is based 1984 // upon the scheduled time for any predecessors/successors. 1985 int EarlyStart = INT_MIN; 1986 int LateStart = INT_MAX; 1987 // These values are set when the size of the schedule window is limited 1988 // due to chain dependences. 1989 int SchedEnd = INT_MAX; 1990 int SchedStart = INT_MIN; 1991 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1992 II, this); 1993 LLVM_DEBUG({ 1994 dbgs() << "\n"; 1995 dbgs() << "Inst (" << SU->NodeNum << ") "; 1996 SU->getInstr()->dump(); 1997 dbgs() << "\n"; 1998 }); 1999 LLVM_DEBUG({ 2000 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2001 LateStart, SchedEnd, SchedStart); 2002 }); 2003 2004 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2005 SchedStart > LateStart) 2006 scheduleFound = false; 2007 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2008 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2009 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2010 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2011 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2012 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2013 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2014 SchedEnd = 2015 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2016 // When scheduling a Phi it is better to start at the late cycle and go 2017 // backwards. The default order may insert the Phi too far away from 2018 // its first dependence. 2019 if (SU->getInstr()->isPHI()) 2020 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2021 else 2022 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2023 } else { 2024 int FirstCycle = Schedule.getFirstCycle(); 2025 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2026 FirstCycle + getASAP(SU) + II - 1, II); 2027 } 2028 // Even if we find a schedule, make sure the schedule doesn't exceed the 2029 // allowable number of stages. We keep trying if this happens. 2030 if (scheduleFound) 2031 if (SwpMaxStages > -1 && 2032 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2033 scheduleFound = false; 2034 2035 LLVM_DEBUG({ 2036 if (!scheduleFound) 2037 dbgs() << "\tCan't schedule\n"; 2038 }); 2039 } while (++NI != NE && scheduleFound); 2040 2041 // If a schedule is found, check if it is a valid schedule too. 2042 if (scheduleFound) 2043 scheduleFound = Schedule.isValidSchedule(this); 2044 } 2045 2046 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2047 << ")\n"); 2048 2049 if (scheduleFound) 2050 Schedule.finalizeSchedule(this); 2051 else 2052 Schedule.reset(); 2053 2054 return scheduleFound && Schedule.getMaxStageCount() > 0; 2055 } 2056 2057 /// Return true if we can compute the amount the instruction changes 2058 /// during each iteration. Set Delta to the amount of the change. 2059 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2060 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2061 const MachineOperand *BaseOp; 2062 int64_t Offset; 2063 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2064 return false; 2065 2066 if (!BaseOp->isReg()) 2067 return false; 2068 2069 Register BaseReg = BaseOp->getReg(); 2070 2071 MachineRegisterInfo &MRI = MF.getRegInfo(); 2072 // Check if there is a Phi. If so, get the definition in the loop. 2073 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2074 if (BaseDef && BaseDef->isPHI()) { 2075 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2076 BaseDef = MRI.getVRegDef(BaseReg); 2077 } 2078 if (!BaseDef) 2079 return false; 2080 2081 int D = 0; 2082 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2083 return false; 2084 2085 Delta = D; 2086 return true; 2087 } 2088 2089 /// Check if we can change the instruction to use an offset value from the 2090 /// previous iteration. If so, return true and set the base and offset values 2091 /// so that we can rewrite the load, if necessary. 2092 /// v1 = Phi(v0, v3) 2093 /// v2 = load v1, 0 2094 /// v3 = post_store v1, 4, x 2095 /// This function enables the load to be rewritten as v2 = load v3, 4. 2096 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2097 unsigned &BasePos, 2098 unsigned &OffsetPos, 2099 unsigned &NewBase, 2100 int64_t &Offset) { 2101 // Get the load instruction. 2102 if (TII->isPostIncrement(*MI)) 2103 return false; 2104 unsigned BasePosLd, OffsetPosLd; 2105 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2106 return false; 2107 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2108 2109 // Look for the Phi instruction. 2110 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2111 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2112 if (!Phi || !Phi->isPHI()) 2113 return false; 2114 // Get the register defined in the loop block. 2115 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2116 if (!PrevReg) 2117 return false; 2118 2119 // Check for the post-increment load/store instruction. 2120 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2121 if (!PrevDef || PrevDef == MI) 2122 return false; 2123 2124 if (!TII->isPostIncrement(*PrevDef)) 2125 return false; 2126 2127 unsigned BasePos1 = 0, OffsetPos1 = 0; 2128 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2129 return false; 2130 2131 // Make sure that the instructions do not access the same memory location in 2132 // the next iteration. 2133 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2134 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2135 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2136 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2137 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2138 MF.DeleteMachineInstr(NewMI); 2139 if (!Disjoint) 2140 return false; 2141 2142 // Set the return value once we determine that we return true. 2143 BasePos = BasePosLd; 2144 OffsetPos = OffsetPosLd; 2145 NewBase = PrevReg; 2146 Offset = StoreOffset; 2147 return true; 2148 } 2149 2150 /// Apply changes to the instruction if needed. The changes are need 2151 /// to improve the scheduling and depend up on the final schedule. 2152 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2153 SMSchedule &Schedule) { 2154 SUnit *SU = getSUnit(MI); 2155 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2156 InstrChanges.find(SU); 2157 if (It != InstrChanges.end()) { 2158 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2159 unsigned BasePos, OffsetPos; 2160 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2161 return; 2162 Register BaseReg = MI->getOperand(BasePos).getReg(); 2163 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2164 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2165 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2166 int BaseStageNum = Schedule.stageScheduled(SU); 2167 int BaseCycleNum = Schedule.cycleScheduled(SU); 2168 if (BaseStageNum < DefStageNum) { 2169 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2170 int OffsetDiff = DefStageNum - BaseStageNum; 2171 if (DefCycleNum < BaseCycleNum) { 2172 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2173 if (OffsetDiff > 0) 2174 --OffsetDiff; 2175 } 2176 int64_t NewOffset = 2177 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2178 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2179 SU->setInstr(NewMI); 2180 MISUnitMap[NewMI] = SU; 2181 NewMIs[MI] = NewMI; 2182 } 2183 } 2184 } 2185 2186 /// Return the instruction in the loop that defines the register. 2187 /// If the definition is a Phi, then follow the Phi operand to 2188 /// the instruction in the loop. 2189 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2190 SmallPtrSet<MachineInstr *, 8> Visited; 2191 MachineInstr *Def = MRI.getVRegDef(Reg); 2192 while (Def->isPHI()) { 2193 if (!Visited.insert(Def).second) 2194 break; 2195 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2196 if (Def->getOperand(i + 1).getMBB() == BB) { 2197 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2198 break; 2199 } 2200 } 2201 return Def; 2202 } 2203 2204 /// Return true for an order or output dependence that is loop carried 2205 /// potentially. A dependence is loop carried if the destination defines a valu 2206 /// that may be used or defined by the source in a subsequent iteration. 2207 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2208 bool isSucc) { 2209 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2210 Dep.isArtificial()) 2211 return false; 2212 2213 if (!SwpPruneLoopCarried) 2214 return true; 2215 2216 if (Dep.getKind() == SDep::Output) 2217 return true; 2218 2219 MachineInstr *SI = Source->getInstr(); 2220 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2221 if (!isSucc) 2222 std::swap(SI, DI); 2223 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2224 2225 // Assume ordered loads and stores may have a loop carried dependence. 2226 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2227 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2228 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2229 return true; 2230 2231 // Only chain dependences between a load and store can be loop carried. 2232 if (!DI->mayStore() || !SI->mayLoad()) 2233 return false; 2234 2235 unsigned DeltaS, DeltaD; 2236 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2237 return true; 2238 2239 const MachineOperand *BaseOpS, *BaseOpD; 2240 int64_t OffsetS, OffsetD; 2241 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2242 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 2243 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 2244 return true; 2245 2246 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2247 return true; 2248 2249 // Check that the base register is incremented by a constant value for each 2250 // iteration. 2251 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2252 if (!Def || !Def->isPHI()) 2253 return true; 2254 unsigned InitVal = 0; 2255 unsigned LoopVal = 0; 2256 getPhiRegs(*Def, BB, InitVal, LoopVal); 2257 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2258 int D = 0; 2259 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2260 return true; 2261 2262 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2263 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2264 2265 // This is the main test, which checks the offset values and the loop 2266 // increment value to determine if the accesses may be loop carried. 2267 if (AccessSizeS == MemoryLocation::UnknownSize || 2268 AccessSizeD == MemoryLocation::UnknownSize) 2269 return true; 2270 2271 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2272 return true; 2273 2274 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2275 } 2276 2277 void SwingSchedulerDAG::postprocessDAG() { 2278 for (auto &M : Mutations) 2279 M->apply(this); 2280 } 2281 2282 /// Try to schedule the node at the specified StartCycle and continue 2283 /// until the node is schedule or the EndCycle is reached. This function 2284 /// returns true if the node is scheduled. This routine may search either 2285 /// forward or backward for a place to insert the instruction based upon 2286 /// the relative values of StartCycle and EndCycle. 2287 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2288 bool forward = true; 2289 LLVM_DEBUG({ 2290 dbgs() << "Trying to insert node between " << StartCycle << " and " 2291 << EndCycle << " II: " << II << "\n"; 2292 }); 2293 if (StartCycle > EndCycle) 2294 forward = false; 2295 2296 // The terminating condition depends on the direction. 2297 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2298 for (int curCycle = StartCycle; curCycle != termCycle; 2299 forward ? ++curCycle : --curCycle) { 2300 2301 // Add the already scheduled instructions at the specified cycle to the 2302 // DFA. 2303 ProcItinResources.clearResources(); 2304 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2305 checkCycle <= LastCycle; checkCycle += II) { 2306 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2307 2308 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 2309 E = cycleInstrs.end(); 2310 I != E; ++I) { 2311 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 2312 continue; 2313 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 2314 "These instructions have already been scheduled."); 2315 ProcItinResources.reserveResources(*(*I)->getInstr()); 2316 } 2317 } 2318 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2319 ProcItinResources.canReserveResources(*SU->getInstr())) { 2320 LLVM_DEBUG({ 2321 dbgs() << "\tinsert at cycle " << curCycle << " "; 2322 SU->getInstr()->dump(); 2323 }); 2324 2325 ScheduledInstrs[curCycle].push_back(SU); 2326 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2327 if (curCycle > LastCycle) 2328 LastCycle = curCycle; 2329 if (curCycle < FirstCycle) 2330 FirstCycle = curCycle; 2331 return true; 2332 } 2333 LLVM_DEBUG({ 2334 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2335 SU->getInstr()->dump(); 2336 }); 2337 } 2338 return false; 2339 } 2340 2341 // Return the cycle of the earliest scheduled instruction in the chain. 2342 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2343 SmallPtrSet<SUnit *, 8> Visited; 2344 SmallVector<SDep, 8> Worklist; 2345 Worklist.push_back(Dep); 2346 int EarlyCycle = INT_MAX; 2347 while (!Worklist.empty()) { 2348 const SDep &Cur = Worklist.pop_back_val(); 2349 SUnit *PrevSU = Cur.getSUnit(); 2350 if (Visited.count(PrevSU)) 2351 continue; 2352 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2353 if (it == InstrToCycle.end()) 2354 continue; 2355 EarlyCycle = std::min(EarlyCycle, it->second); 2356 for (const auto &PI : PrevSU->Preds) 2357 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 2358 Worklist.push_back(PI); 2359 Visited.insert(PrevSU); 2360 } 2361 return EarlyCycle; 2362 } 2363 2364 // Return the cycle of the latest scheduled instruction in the chain. 2365 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2366 SmallPtrSet<SUnit *, 8> Visited; 2367 SmallVector<SDep, 8> Worklist; 2368 Worklist.push_back(Dep); 2369 int LateCycle = INT_MIN; 2370 while (!Worklist.empty()) { 2371 const SDep &Cur = Worklist.pop_back_val(); 2372 SUnit *SuccSU = Cur.getSUnit(); 2373 if (Visited.count(SuccSU)) 2374 continue; 2375 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2376 if (it == InstrToCycle.end()) 2377 continue; 2378 LateCycle = std::max(LateCycle, it->second); 2379 for (const auto &SI : SuccSU->Succs) 2380 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 2381 Worklist.push_back(SI); 2382 Visited.insert(SuccSU); 2383 } 2384 return LateCycle; 2385 } 2386 2387 /// If an instruction has a use that spans multiple iterations, then 2388 /// return true. These instructions are characterized by having a back-ege 2389 /// to a Phi, which contains a reference to another Phi. 2390 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2391 for (auto &P : SU->Preds) 2392 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2393 for (auto &S : P.getSUnit()->Succs) 2394 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2395 return P.getSUnit(); 2396 return nullptr; 2397 } 2398 2399 /// Compute the scheduling start slot for the instruction. The start slot 2400 /// depends on any predecessor or successor nodes scheduled already. 2401 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2402 int *MinEnd, int *MaxStart, int II, 2403 SwingSchedulerDAG *DAG) { 2404 // Iterate over each instruction that has been scheduled already. The start 2405 // slot computation depends on whether the previously scheduled instruction 2406 // is a predecessor or successor of the specified instruction. 2407 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2408 2409 // Iterate over each instruction in the current cycle. 2410 for (SUnit *I : getInstructions(cycle)) { 2411 // Because we're processing a DAG for the dependences, we recognize 2412 // the back-edge in recurrences by anti dependences. 2413 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2414 const SDep &Dep = SU->Preds[i]; 2415 if (Dep.getSUnit() == I) { 2416 if (!DAG->isBackedge(SU, Dep)) { 2417 int EarlyStart = cycle + Dep.getLatency() - 2418 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2419 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2420 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2421 int End = earliestCycleInChain(Dep) + (II - 1); 2422 *MinEnd = std::min(*MinEnd, End); 2423 } 2424 } else { 2425 int LateStart = cycle - Dep.getLatency() + 2426 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2427 *MinLateStart = std::min(*MinLateStart, LateStart); 2428 } 2429 } 2430 // For instruction that requires multiple iterations, make sure that 2431 // the dependent instruction is not scheduled past the definition. 2432 SUnit *BE = multipleIterations(I, DAG); 2433 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2434 !SU->isPred(I)) 2435 *MinLateStart = std::min(*MinLateStart, cycle); 2436 } 2437 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2438 if (SU->Succs[i].getSUnit() == I) { 2439 const SDep &Dep = SU->Succs[i]; 2440 if (!DAG->isBackedge(SU, Dep)) { 2441 int LateStart = cycle - Dep.getLatency() + 2442 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2443 *MinLateStart = std::min(*MinLateStart, LateStart); 2444 if (DAG->isLoopCarriedDep(SU, Dep)) { 2445 int Start = latestCycleInChain(Dep) + 1 - II; 2446 *MaxStart = std::max(*MaxStart, Start); 2447 } 2448 } else { 2449 int EarlyStart = cycle + Dep.getLatency() - 2450 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2451 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2452 } 2453 } 2454 } 2455 } 2456 } 2457 } 2458 2459 /// Order the instructions within a cycle so that the definitions occur 2460 /// before the uses. Returns true if the instruction is added to the start 2461 /// of the list, or false if added to the end. 2462 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2463 std::deque<SUnit *> &Insts) { 2464 MachineInstr *MI = SU->getInstr(); 2465 bool OrderBeforeUse = false; 2466 bool OrderAfterDef = false; 2467 bool OrderBeforeDef = false; 2468 unsigned MoveDef = 0; 2469 unsigned MoveUse = 0; 2470 int StageInst1 = stageScheduled(SU); 2471 2472 unsigned Pos = 0; 2473 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2474 ++I, ++Pos) { 2475 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2476 MachineOperand &MO = MI->getOperand(i); 2477 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2478 continue; 2479 2480 Register Reg = MO.getReg(); 2481 unsigned BasePos, OffsetPos; 2482 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2483 if (MI->getOperand(BasePos).getReg() == Reg) 2484 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2485 Reg = NewReg; 2486 bool Reads, Writes; 2487 std::tie(Reads, Writes) = 2488 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2489 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2490 OrderBeforeUse = true; 2491 if (MoveUse == 0) 2492 MoveUse = Pos; 2493 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2494 // Add the instruction after the scheduled instruction. 2495 OrderAfterDef = true; 2496 MoveDef = Pos; 2497 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2498 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2499 OrderBeforeUse = true; 2500 if (MoveUse == 0) 2501 MoveUse = Pos; 2502 } else { 2503 OrderAfterDef = true; 2504 MoveDef = Pos; 2505 } 2506 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2507 OrderBeforeUse = true; 2508 if (MoveUse == 0) 2509 MoveUse = Pos; 2510 if (MoveUse != 0) { 2511 OrderAfterDef = true; 2512 MoveDef = Pos - 1; 2513 } 2514 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2515 // Add the instruction before the scheduled instruction. 2516 OrderBeforeUse = true; 2517 if (MoveUse == 0) 2518 MoveUse = Pos; 2519 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2520 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2521 if (MoveUse == 0) { 2522 OrderBeforeDef = true; 2523 MoveUse = Pos; 2524 } 2525 } 2526 } 2527 // Check for order dependences between instructions. Make sure the source 2528 // is ordered before the destination. 2529 for (auto &S : SU->Succs) { 2530 if (S.getSUnit() != *I) 2531 continue; 2532 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2533 OrderBeforeUse = true; 2534 if (Pos < MoveUse) 2535 MoveUse = Pos; 2536 } 2537 // We did not handle HW dependences in previous for loop, 2538 // and we normally set Latency = 0 for Anti deps, 2539 // so may have nodes in same cycle with Anti denpendent on HW regs. 2540 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2541 OrderBeforeUse = true; 2542 if ((MoveUse == 0) || (Pos < MoveUse)) 2543 MoveUse = Pos; 2544 } 2545 } 2546 for (auto &P : SU->Preds) { 2547 if (P.getSUnit() != *I) 2548 continue; 2549 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2550 OrderAfterDef = true; 2551 MoveDef = Pos; 2552 } 2553 } 2554 } 2555 2556 // A circular dependence. 2557 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2558 OrderBeforeUse = false; 2559 2560 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2561 // to a loop-carried dependence. 2562 if (OrderBeforeDef) 2563 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2564 2565 // The uncommon case when the instruction order needs to be updated because 2566 // there is both a use and def. 2567 if (OrderBeforeUse && OrderAfterDef) { 2568 SUnit *UseSU = Insts.at(MoveUse); 2569 SUnit *DefSU = Insts.at(MoveDef); 2570 if (MoveUse > MoveDef) { 2571 Insts.erase(Insts.begin() + MoveUse); 2572 Insts.erase(Insts.begin() + MoveDef); 2573 } else { 2574 Insts.erase(Insts.begin() + MoveDef); 2575 Insts.erase(Insts.begin() + MoveUse); 2576 } 2577 orderDependence(SSD, UseSU, Insts); 2578 orderDependence(SSD, SU, Insts); 2579 orderDependence(SSD, DefSU, Insts); 2580 return; 2581 } 2582 // Put the new instruction first if there is a use in the list. Otherwise, 2583 // put it at the end of the list. 2584 if (OrderBeforeUse) 2585 Insts.push_front(SU); 2586 else 2587 Insts.push_back(SU); 2588 } 2589 2590 /// Return true if the scheduled Phi has a loop carried operand. 2591 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2592 if (!Phi.isPHI()) 2593 return false; 2594 assert(Phi.isPHI() && "Expecting a Phi."); 2595 SUnit *DefSU = SSD->getSUnit(&Phi); 2596 unsigned DefCycle = cycleScheduled(DefSU); 2597 int DefStage = stageScheduled(DefSU); 2598 2599 unsigned InitVal = 0; 2600 unsigned LoopVal = 0; 2601 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2602 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2603 if (!UseSU) 2604 return true; 2605 if (UseSU->getInstr()->isPHI()) 2606 return true; 2607 unsigned LoopCycle = cycleScheduled(UseSU); 2608 int LoopStage = stageScheduled(UseSU); 2609 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2610 } 2611 2612 /// Return true if the instruction is a definition that is loop carried 2613 /// and defines the use on the next iteration. 2614 /// v1 = phi(v2, v3) 2615 /// (Def) v3 = op v1 2616 /// (MO) = v1 2617 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2618 /// register. 2619 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2620 MachineInstr *Def, MachineOperand &MO) { 2621 if (!MO.isReg()) 2622 return false; 2623 if (Def->isPHI()) 2624 return false; 2625 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2626 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2627 return false; 2628 if (!isLoopCarried(SSD, *Phi)) 2629 return false; 2630 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2631 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2632 MachineOperand &DMO = Def->getOperand(i); 2633 if (!DMO.isReg() || !DMO.isDef()) 2634 continue; 2635 if (DMO.getReg() == LoopReg) 2636 return true; 2637 } 2638 return false; 2639 } 2640 2641 // Check if the generated schedule is valid. This function checks if 2642 // an instruction that uses a physical register is scheduled in a 2643 // different stage than the definition. The pipeliner does not handle 2644 // physical register values that may cross a basic block boundary. 2645 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2646 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 2647 SUnit &SU = SSD->SUnits[i]; 2648 if (!SU.hasPhysRegDefs) 2649 continue; 2650 int StageDef = stageScheduled(&SU); 2651 assert(StageDef != -1 && "Instruction should have been scheduled."); 2652 for (auto &SI : SU.Succs) 2653 if (SI.isAssignedRegDep()) 2654 if (Register::isPhysicalRegister(SI.getReg())) 2655 if (stageScheduled(SI.getSUnit()) != StageDef) 2656 return false; 2657 } 2658 return true; 2659 } 2660 2661 /// A property of the node order in swing-modulo-scheduling is 2662 /// that for nodes outside circuits the following holds: 2663 /// none of them is scheduled after both a successor and a 2664 /// predecessor. 2665 /// The method below checks whether the property is met. 2666 /// If not, debug information is printed and statistics information updated. 2667 /// Note that we do not use an assert statement. 2668 /// The reason is that although an invalid node oder may prevent 2669 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2670 /// it does not lead to the generation of incorrect code. 2671 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2672 2673 // a sorted vector that maps each SUnit to its index in the NodeOrder 2674 typedef std::pair<SUnit *, unsigned> UnitIndex; 2675 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2676 2677 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2678 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2679 2680 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2681 return std::get<0>(i1) < std::get<0>(i2); 2682 }; 2683 2684 // sort, so that we can perform a binary search 2685 llvm::sort(Indices, CompareKey); 2686 2687 bool Valid = true; 2688 (void)Valid; 2689 // for each SUnit in the NodeOrder, check whether 2690 // it appears after both a successor and a predecessor 2691 // of the SUnit. If this is the case, and the SUnit 2692 // is not part of circuit, then the NodeOrder is not 2693 // valid. 2694 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2695 SUnit *SU = NodeOrder[i]; 2696 unsigned Index = i; 2697 2698 bool PredBefore = false; 2699 bool SuccBefore = false; 2700 2701 SUnit *Succ; 2702 SUnit *Pred; 2703 (void)Succ; 2704 (void)Pred; 2705 2706 for (SDep &PredEdge : SU->Preds) { 2707 SUnit *PredSU = PredEdge.getSUnit(); 2708 unsigned PredIndex = std::get<1>( 2709 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2710 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2711 PredBefore = true; 2712 Pred = PredSU; 2713 break; 2714 } 2715 } 2716 2717 for (SDep &SuccEdge : SU->Succs) { 2718 SUnit *SuccSU = SuccEdge.getSUnit(); 2719 // Do not process a boundary node, it was not included in NodeOrder, 2720 // hence not in Indices either, call to std::lower_bound() below will 2721 // return Indices.end(). 2722 if (SuccSU->isBoundaryNode()) 2723 continue; 2724 unsigned SuccIndex = std::get<1>( 2725 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2726 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2727 SuccBefore = true; 2728 Succ = SuccSU; 2729 break; 2730 } 2731 } 2732 2733 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2734 // instructions in circuits are allowed to be scheduled 2735 // after both a successor and predecessor. 2736 bool InCircuit = llvm::any_of( 2737 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2738 if (InCircuit) 2739 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2740 else { 2741 Valid = false; 2742 NumNodeOrderIssues++; 2743 LLVM_DEBUG(dbgs() << "Predecessor ";); 2744 } 2745 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2746 << " are scheduled before node " << SU->NodeNum 2747 << "\n";); 2748 } 2749 } 2750 2751 LLVM_DEBUG({ 2752 if (!Valid) 2753 dbgs() << "Invalid node order found!\n"; 2754 }); 2755 } 2756 2757 /// Attempt to fix the degenerate cases when the instruction serialization 2758 /// causes the register lifetimes to overlap. For example, 2759 /// p' = store_pi(p, b) 2760 /// = load p, offset 2761 /// In this case p and p' overlap, which means that two registers are needed. 2762 /// Instead, this function changes the load to use p' and updates the offset. 2763 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2764 unsigned OverlapReg = 0; 2765 unsigned NewBaseReg = 0; 2766 for (SUnit *SU : Instrs) { 2767 MachineInstr *MI = SU->getInstr(); 2768 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2769 const MachineOperand &MO = MI->getOperand(i); 2770 // Look for an instruction that uses p. The instruction occurs in the 2771 // same cycle but occurs later in the serialized order. 2772 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2773 // Check that the instruction appears in the InstrChanges structure, 2774 // which contains instructions that can have the offset updated. 2775 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2776 InstrChanges.find(SU); 2777 if (It != InstrChanges.end()) { 2778 unsigned BasePos, OffsetPos; 2779 // Update the base register and adjust the offset. 2780 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2781 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2782 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2783 int64_t NewOffset = 2784 MI->getOperand(OffsetPos).getImm() - It->second.second; 2785 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2786 SU->setInstr(NewMI); 2787 MISUnitMap[NewMI] = SU; 2788 NewMIs[MI] = NewMI; 2789 } 2790 } 2791 OverlapReg = 0; 2792 NewBaseReg = 0; 2793 break; 2794 } 2795 // Look for an instruction of the form p' = op(p), which uses and defines 2796 // two virtual registers that get allocated to the same physical register. 2797 unsigned TiedUseIdx = 0; 2798 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2799 // OverlapReg is p in the example above. 2800 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2801 // NewBaseReg is p' in the example above. 2802 NewBaseReg = MI->getOperand(i).getReg(); 2803 break; 2804 } 2805 } 2806 } 2807 } 2808 2809 /// After the schedule has been formed, call this function to combine 2810 /// the instructions from the different stages/cycles. That is, this 2811 /// function creates a schedule that represents a single iteration. 2812 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2813 // Move all instructions to the first stage from later stages. 2814 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2815 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2816 ++stage) { 2817 std::deque<SUnit *> &cycleInstrs = 2818 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2819 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2820 E = cycleInstrs.rend(); 2821 I != E; ++I) 2822 ScheduledInstrs[cycle].push_front(*I); 2823 } 2824 } 2825 2826 // Erase all the elements in the later stages. Only one iteration should 2827 // remain in the scheduled list, and it contains all the instructions. 2828 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2829 ScheduledInstrs.erase(cycle); 2830 2831 // Change the registers in instruction as specified in the InstrChanges 2832 // map. We need to use the new registers to create the correct order. 2833 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2834 SUnit *SU = &SSD->SUnits[i]; 2835 SSD->applyInstrChange(SU->getInstr(), *this); 2836 } 2837 2838 // Reorder the instructions in each cycle to fix and improve the 2839 // generated code. 2840 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2841 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2842 std::deque<SUnit *> newOrderPhi; 2843 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2844 SUnit *SU = cycleInstrs[i]; 2845 if (SU->getInstr()->isPHI()) 2846 newOrderPhi.push_back(SU); 2847 } 2848 std::deque<SUnit *> newOrderI; 2849 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2850 SUnit *SU = cycleInstrs[i]; 2851 if (!SU->getInstr()->isPHI()) 2852 orderDependence(SSD, SU, newOrderI); 2853 } 2854 // Replace the old order with the new order. 2855 cycleInstrs.swap(newOrderPhi); 2856 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 2857 SSD->fixupRegisterOverlaps(cycleInstrs); 2858 } 2859 2860 LLVM_DEBUG(dump();); 2861 } 2862 2863 void NodeSet::print(raw_ostream &os) const { 2864 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2865 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2866 for (const auto &I : Nodes) 2867 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2868 os << "\n"; 2869 } 2870 2871 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2872 /// Print the schedule information to the given output. 2873 void SMSchedule::print(raw_ostream &os) const { 2874 // Iterate over each cycle. 2875 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2876 // Iterate over each instruction in the cycle. 2877 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2878 for (SUnit *CI : cycleInstrs->second) { 2879 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2880 os << "(" << CI->NodeNum << ") "; 2881 CI->getInstr()->print(os); 2882 os << "\n"; 2883 } 2884 } 2885 } 2886 2887 /// Utility function used for debugging to print the schedule. 2888 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2889 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2890 2891 #endif 2892 2893 void ResourceManager::initProcResourceVectors( 2894 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2895 unsigned ProcResourceID = 0; 2896 2897 // We currently limit the resource kinds to 64 and below so that we can use 2898 // uint64_t for Masks 2899 assert(SM.getNumProcResourceKinds() < 64 && 2900 "Too many kinds of resources, unsupported"); 2901 // Create a unique bitmask for every processor resource unit. 2902 // Skip resource at index 0, since it always references 'InvalidUnit'. 2903 Masks.resize(SM.getNumProcResourceKinds()); 2904 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2905 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2906 if (Desc.SubUnitsIdxBegin) 2907 continue; 2908 Masks[I] = 1ULL << ProcResourceID; 2909 ProcResourceID++; 2910 } 2911 // Create a unique bitmask for every processor resource group. 2912 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2913 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2914 if (!Desc.SubUnitsIdxBegin) 2915 continue; 2916 Masks[I] = 1ULL << ProcResourceID; 2917 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2918 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2919 ProcResourceID++; 2920 } 2921 LLVM_DEBUG({ 2922 if (SwpShowResMask) { 2923 dbgs() << "ProcResourceDesc:\n"; 2924 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2925 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2926 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 2927 ProcResource->Name, I, Masks[I], 2928 ProcResource->NumUnits); 2929 } 2930 dbgs() << " -----------------\n"; 2931 } 2932 }); 2933 } 2934 2935 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 2936 2937 LLVM_DEBUG({ 2938 if (SwpDebugResource) 2939 dbgs() << "canReserveResources:\n"; 2940 }); 2941 if (UseDFA) 2942 return DFAResources->canReserveResources(MID); 2943 2944 unsigned InsnClass = MID->getSchedClass(); 2945 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 2946 if (!SCDesc->isValid()) { 2947 LLVM_DEBUG({ 2948 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 2949 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 2950 }); 2951 return true; 2952 } 2953 2954 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 2955 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 2956 for (; I != E; ++I) { 2957 if (!I->Cycles) 2958 continue; 2959 const MCProcResourceDesc *ProcResource = 2960 SM.getProcResource(I->ProcResourceIdx); 2961 unsigned NumUnits = ProcResource->NumUnits; 2962 LLVM_DEBUG({ 2963 if (SwpDebugResource) 2964 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 2965 ProcResource->Name, I->ProcResourceIdx, 2966 ProcResourceCount[I->ProcResourceIdx], NumUnits, 2967 I->Cycles); 2968 }); 2969 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 2970 return false; 2971 } 2972 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 2973 return true; 2974 } 2975 2976 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 2977 LLVM_DEBUG({ 2978 if (SwpDebugResource) 2979 dbgs() << "reserveResources:\n"; 2980 }); 2981 if (UseDFA) 2982 return DFAResources->reserveResources(MID); 2983 2984 unsigned InsnClass = MID->getSchedClass(); 2985 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 2986 if (!SCDesc->isValid()) { 2987 LLVM_DEBUG({ 2988 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 2989 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 2990 }); 2991 return; 2992 } 2993 for (const MCWriteProcResEntry &PRE : 2994 make_range(STI->getWriteProcResBegin(SCDesc), 2995 STI->getWriteProcResEnd(SCDesc))) { 2996 if (!PRE.Cycles) 2997 continue; 2998 ++ProcResourceCount[PRE.ProcResourceIdx]; 2999 LLVM_DEBUG({ 3000 if (SwpDebugResource) { 3001 const MCProcResourceDesc *ProcResource = 3002 SM.getProcResource(PRE.ProcResourceIdx); 3003 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3004 ProcResource->Name, PRE.ProcResourceIdx, 3005 ProcResourceCount[PRE.ProcResourceIdx], 3006 ProcResource->NumUnits, PRE.Cycles); 3007 } 3008 }); 3009 } 3010 LLVM_DEBUG({ 3011 if (SwpDebugResource) 3012 dbgs() << "reserveResources: done!\n\n"; 3013 }); 3014 } 3015 3016 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3017 return canReserveResources(&MI.getDesc()); 3018 } 3019 3020 void ResourceManager::reserveResources(const MachineInstr &MI) { 3021 return reserveResources(&MI.getDesc()); 3022 } 3023 3024 void ResourceManager::clearResources() { 3025 if (UseDFA) 3026 return DFAResources->clearResources(); 3027 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3028 } 3029