1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/DebugLoc.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/MC/LaneBitmask.h" 100 #include "llvm/MC/MCInstrDesc.h" 101 #include "llvm/MC/MCInstrItineraries.h" 102 #include "llvm/MC/MCRegisterInfo.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 129 /// A command line option to turn software pipelining on or off. 130 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 131 cl::ZeroOrMore, 132 cl::desc("Enable Software Pipelining")); 133 134 /// A command line option to enable SWP at -Os. 135 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 136 cl::desc("Enable SWP at Os."), cl::Hidden, 137 cl::init(false)); 138 139 /// A command line argument to limit minimum initial interval for pipelining. 140 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 141 cl::desc("Size limit for the MII."), 142 cl::Hidden, cl::init(27)); 143 144 /// A command line argument to limit the number of stages in the pipeline. 145 static cl::opt<int> 146 SwpMaxStages("pipeliner-max-stages", 147 cl::desc("Maximum stages allowed in the generated scheduled."), 148 cl::Hidden, cl::init(3)); 149 150 /// A command line option to disable the pruning of chain dependences due to 151 /// an unrelated Phi. 152 static cl::opt<bool> 153 SwpPruneDeps("pipeliner-prune-deps", 154 cl::desc("Prune dependences between unrelated Phi nodes."), 155 cl::Hidden, cl::init(true)); 156 157 /// A command line option to disable the pruning of loop carried order 158 /// dependences. 159 static cl::opt<bool> 160 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 161 cl::desc("Prune loop carried order dependences."), 162 cl::Hidden, cl::init(true)); 163 164 #ifndef NDEBUG 165 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 166 #endif 167 168 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 169 cl::ReallyHidden, cl::init(false), 170 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 171 172 namespace { 173 174 class NodeSet; 175 class SMSchedule; 176 177 /// The main class in the implementation of the target independent 178 /// software pipeliner pass. 179 class MachinePipeliner : public MachineFunctionPass { 180 public: 181 MachineFunction *MF = nullptr; 182 const MachineLoopInfo *MLI = nullptr; 183 const MachineDominatorTree *MDT = nullptr; 184 const InstrItineraryData *InstrItins; 185 const TargetInstrInfo *TII = nullptr; 186 RegisterClassInfo RegClassInfo; 187 188 #ifndef NDEBUG 189 static int NumTries; 190 #endif 191 192 /// Cache the target analysis information about the loop. 193 struct LoopInfo { 194 MachineBasicBlock *TBB = nullptr; 195 MachineBasicBlock *FBB = nullptr; 196 SmallVector<MachineOperand, 4> BrCond; 197 MachineInstr *LoopInductionVar = nullptr; 198 MachineInstr *LoopCompare = nullptr; 199 }; 200 LoopInfo LI; 201 202 static char ID; 203 204 MachinePipeliner() : MachineFunctionPass(ID) { 205 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 bool runOnMachineFunction(MachineFunction &MF) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addPreserved<AAResultsWrapperPass>(); 213 AU.addRequired<MachineLoopInfo>(); 214 AU.addRequired<MachineDominatorTree>(); 215 AU.addRequired<LiveIntervals>(); 216 MachineFunctionPass::getAnalysisUsage(AU); 217 } 218 219 private: 220 bool canPipelineLoop(MachineLoop &L); 221 bool scheduleLoop(MachineLoop &L); 222 bool swingModuloScheduler(MachineLoop &L); 223 }; 224 225 /// This class builds the dependence graph for the instructions in a loop, 226 /// and attempts to schedule the instructions using the SMS algorithm. 227 class SwingSchedulerDAG : public ScheduleDAGInstrs { 228 MachinePipeliner &Pass; 229 /// The minimum initiation interval between iterations for this schedule. 230 unsigned MII = 0; 231 /// Set to true if a valid pipelined schedule is found for the loop. 232 bool Scheduled = false; 233 MachineLoop &Loop; 234 LiveIntervals &LIS; 235 const RegisterClassInfo &RegClassInfo; 236 237 /// A toplogical ordering of the SUnits, which is needed for changing 238 /// dependences and iterating over the SUnits. 239 ScheduleDAGTopologicalSort Topo; 240 241 struct NodeInfo { 242 int ASAP = 0; 243 int ALAP = 0; 244 245 NodeInfo() = default; 246 }; 247 /// Computed properties for each node in the graph. 248 std::vector<NodeInfo> ScheduleInfo; 249 250 enum OrderKind { BottomUp = 0, TopDown = 1 }; 251 /// Computed node ordering for scheduling. 252 SetVector<SUnit *> NodeOrder; 253 254 using NodeSetType = SmallVector<NodeSet, 8>; 255 using ValueMapTy = DenseMap<unsigned, unsigned>; 256 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 257 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 258 259 /// Instructions to change when emitting the final schedule. 260 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 261 262 /// We may create a new instruction, so remember it because it 263 /// must be deleted when the pass is finished. 264 SmallPtrSet<MachineInstr *, 4> NewMIs; 265 266 /// Ordered list of DAG postprocessing steps. 267 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 268 269 /// Helper class to implement Johnson's circuit finding algorithm. 270 class Circuits { 271 std::vector<SUnit> &SUnits; 272 SetVector<SUnit *> Stack; 273 BitVector Blocked; 274 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 275 SmallVector<SmallVector<int, 4>, 16> AdjK; 276 unsigned NumPaths; 277 static unsigned MaxPaths; 278 279 public: 280 Circuits(std::vector<SUnit> &SUs) 281 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 282 283 /// Reset the data structures used in the circuit algorithm. 284 void reset() { 285 Stack.clear(); 286 Blocked.reset(); 287 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 288 NumPaths = 0; 289 } 290 291 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 292 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 293 void unblock(int U); 294 }; 295 296 public: 297 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 298 const RegisterClassInfo &rci) 299 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 300 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 301 P.MF->getSubtarget().getSMSMutations(Mutations); 302 } 303 304 void schedule() override; 305 void finishBlock() override; 306 307 /// Return true if the loop kernel has been scheduled. 308 bool hasNewSchedule() { return Scheduled; } 309 310 /// Return the earliest time an instruction may be scheduled. 311 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 312 313 /// Return the latest time an instruction my be scheduled. 314 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 315 316 /// The mobility function, which the number of slots in which 317 /// an instruction may be scheduled. 318 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 319 320 /// The depth, in the dependence graph, for a node. 321 int getDepth(SUnit *Node) { return Node->getDepth(); } 322 323 /// The height, in the dependence graph, for a node. 324 int getHeight(SUnit *Node) { return Node->getHeight(); } 325 326 /// Return true if the dependence is a back-edge in the data dependence graph. 327 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 328 /// using an anti dependence from a Phi to an instruction. 329 bool isBackedge(SUnit *Source, const SDep &Dep) { 330 if (Dep.getKind() != SDep::Anti) 331 return false; 332 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 333 } 334 335 /// Return true if the dependence is an order dependence between non-Phis. 336 static bool isOrder(SUnit *Source, const SDep &Dep) { 337 if (Dep.getKind() != SDep::Order) 338 return false; 339 return (!Source->getInstr()->isPHI() && 340 !Dep.getSUnit()->getInstr()->isPHI()); 341 } 342 343 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 344 345 /// The latency of the dependence. 346 unsigned getLatency(SUnit *Source, const SDep &Dep) { 347 // Anti dependences represent recurrences, so use the latency of the 348 // instruction on the back-edge. 349 if (Dep.getKind() == SDep::Anti) { 350 if (Source->getInstr()->isPHI()) 351 return Dep.getSUnit()->Latency; 352 if (Dep.getSUnit()->getInstr()->isPHI()) 353 return Source->Latency; 354 return Dep.getLatency(); 355 } 356 return Dep.getLatency(); 357 } 358 359 /// The distance function, which indicates that operation V of iteration I 360 /// depends on operations U of iteration I-distance. 361 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 362 // Instructions that feed a Phi have a distance of 1. Computing larger 363 // values for arrays requires data dependence information. 364 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 365 return 1; 366 return 0; 367 } 368 369 /// Set the Minimum Initiation Interval for this schedule attempt. 370 void setMII(unsigned mii) { MII = mii; } 371 372 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 373 374 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 375 376 /// Return the new base register that was stored away for the changed 377 /// instruction. 378 unsigned getInstrBaseReg(SUnit *SU) { 379 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 380 InstrChanges.find(SU); 381 if (It != InstrChanges.end()) 382 return It->second.first; 383 return 0; 384 } 385 386 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 387 Mutations.push_back(std::move(Mutation)); 388 } 389 390 private: 391 void addLoopCarriedDependences(AliasAnalysis *AA); 392 void updatePhiDependences(); 393 void changeDependences(); 394 unsigned calculateResMII(); 395 unsigned calculateRecMII(NodeSetType &RecNodeSets); 396 void findCircuits(NodeSetType &NodeSets); 397 void fuseRecs(NodeSetType &NodeSets); 398 void removeDuplicateNodes(NodeSetType &NodeSets); 399 void computeNodeFunctions(NodeSetType &NodeSets); 400 void registerPressureFilter(NodeSetType &NodeSets); 401 void colocateNodeSets(NodeSetType &NodeSets); 402 void checkNodeSets(NodeSetType &NodeSets); 403 void groupRemainingNodes(NodeSetType &NodeSets); 404 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 405 SetVector<SUnit *> &NodesAdded); 406 void computeNodeOrder(NodeSetType &NodeSets); 407 bool schedulePipeline(SMSchedule &Schedule); 408 void generatePipelinedLoop(SMSchedule &Schedule); 409 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 410 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 411 MBBVectorTy &PrologBBs); 412 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 413 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 414 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 415 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 417 SMSchedule &Schedule, ValueMapTy *VRMap, 418 InstrMapTy &InstrMap, unsigned LastStageNum, 419 unsigned CurStageNum, bool IsLast); 420 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 421 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 422 SMSchedule &Schedule, ValueMapTy *VRMap, 423 InstrMapTy &InstrMap, unsigned LastStageNum, 424 unsigned CurStageNum, bool IsLast); 425 void removeDeadInstructions(MachineBasicBlock *KernelBB, 426 MBBVectorTy &EpilogBBs); 427 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 428 SMSchedule &Schedule); 429 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 430 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 431 ValueMapTy *VRMap); 432 bool computeDelta(MachineInstr &MI, unsigned &Delta); 433 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 434 unsigned Num); 435 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 436 unsigned InstStageNum); 437 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 438 unsigned InstStageNum, 439 SMSchedule &Schedule); 440 void updateInstruction(MachineInstr *NewMI, bool LastDef, 441 unsigned CurStageNum, unsigned InstStageNum, 442 SMSchedule &Schedule, ValueMapTy *VRMap); 443 MachineInstr *findDefInLoop(unsigned Reg); 444 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 445 unsigned LoopStage, ValueMapTy *VRMap, 446 MachineBasicBlock *BB); 447 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 448 SMSchedule &Schedule, ValueMapTy *VRMap, 449 InstrMapTy &InstrMap); 450 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 451 InstrMapTy &InstrMap, unsigned CurStageNum, 452 unsigned PhiNum, MachineInstr *Phi, 453 unsigned OldReg, unsigned NewReg, 454 unsigned PrevReg = 0); 455 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 456 unsigned &OffsetPos, unsigned &NewBase, 457 int64_t &NewOffset); 458 void postprocessDAG(); 459 }; 460 461 /// A NodeSet contains a set of SUnit DAG nodes with additional information 462 /// that assigns a priority to the set. 463 class NodeSet { 464 SetVector<SUnit *> Nodes; 465 bool HasRecurrence = false; 466 unsigned RecMII = 0; 467 int MaxMOV = 0; 468 int MaxDepth = 0; 469 unsigned Colocate = 0; 470 SUnit *ExceedPressure = nullptr; 471 472 public: 473 using iterator = SetVector<SUnit *>::const_iterator; 474 475 NodeSet() = default; 476 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 477 478 bool insert(SUnit *SU) { return Nodes.insert(SU); } 479 480 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 481 482 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 483 return Nodes.remove_if(P); 484 } 485 486 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 487 488 bool hasRecurrence() { return HasRecurrence; }; 489 490 unsigned size() const { return Nodes.size(); } 491 492 bool empty() const { return Nodes.empty(); } 493 494 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 495 496 void setRecMII(unsigned mii) { RecMII = mii; }; 497 498 void setColocate(unsigned c) { Colocate = c; }; 499 500 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 501 502 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 503 504 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 505 506 int getRecMII() { return RecMII; } 507 508 /// Summarize node functions for the entire node set. 509 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 510 for (SUnit *SU : *this) { 511 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 512 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 513 } 514 } 515 516 void clear() { 517 Nodes.clear(); 518 RecMII = 0; 519 HasRecurrence = false; 520 MaxMOV = 0; 521 MaxDepth = 0; 522 Colocate = 0; 523 ExceedPressure = nullptr; 524 } 525 526 operator SetVector<SUnit *> &() { return Nodes; } 527 528 /// Sort the node sets by importance. First, rank them by recurrence MII, 529 /// then by mobility (least mobile done first), and finally by depth. 530 /// Each node set may contain a colocate value which is used as the first 531 /// tie breaker, if it's set. 532 bool operator>(const NodeSet &RHS) const { 533 if (RecMII == RHS.RecMII) { 534 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 535 return Colocate < RHS.Colocate; 536 if (MaxMOV == RHS.MaxMOV) 537 return MaxDepth > RHS.MaxDepth; 538 return MaxMOV < RHS.MaxMOV; 539 } 540 return RecMII > RHS.RecMII; 541 } 542 543 bool operator==(const NodeSet &RHS) const { 544 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 545 MaxDepth == RHS.MaxDepth; 546 } 547 548 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 549 550 iterator begin() { return Nodes.begin(); } 551 iterator end() { return Nodes.end(); } 552 553 void print(raw_ostream &os) const { 554 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 555 << " depth " << MaxDepth << " col " << Colocate << "\n"; 556 for (const auto &I : Nodes) 557 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 558 os << "\n"; 559 } 560 561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 562 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 563 #endif 564 }; 565 566 /// This class repesents the scheduled code. The main data structure is a 567 /// map from scheduled cycle to instructions. During scheduling, the 568 /// data structure explicitly represents all stages/iterations. When 569 /// the algorithm finshes, the schedule is collapsed into a single stage, 570 /// which represents instructions from different loop iterations. 571 /// 572 /// The SMS algorithm allows negative values for cycles, so the first cycle 573 /// in the schedule is the smallest cycle value. 574 class SMSchedule { 575 private: 576 /// Map from execution cycle to instructions. 577 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 578 579 /// Map from instruction to execution cycle. 580 std::map<SUnit *, int> InstrToCycle; 581 582 /// Map for each register and the max difference between its uses and def. 583 /// The first element in the pair is the max difference in stages. The 584 /// second is true if the register defines a Phi value and loop value is 585 /// scheduled before the Phi. 586 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 587 588 /// Keep track of the first cycle value in the schedule. It starts 589 /// as zero, but the algorithm allows negative values. 590 int FirstCycle = 0; 591 592 /// Keep track of the last cycle value in the schedule. 593 int LastCycle = 0; 594 595 /// The initiation interval (II) for the schedule. 596 int InitiationInterval = 0; 597 598 /// Target machine information. 599 const TargetSubtargetInfo &ST; 600 601 /// Virtual register information. 602 MachineRegisterInfo &MRI; 603 604 std::unique_ptr<DFAPacketizer> Resources; 605 606 public: 607 SMSchedule(MachineFunction *mf) 608 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 609 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 610 611 void reset() { 612 ScheduledInstrs.clear(); 613 InstrToCycle.clear(); 614 RegToStageDiff.clear(); 615 FirstCycle = 0; 616 LastCycle = 0; 617 InitiationInterval = 0; 618 } 619 620 /// Set the initiation interval for this schedule. 621 void setInitiationInterval(int ii) { InitiationInterval = ii; } 622 623 /// Return the first cycle in the completed schedule. This 624 /// can be a negative value. 625 int getFirstCycle() const { return FirstCycle; } 626 627 /// Return the last cycle in the finalized schedule. 628 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 629 630 /// Return the cycle of the earliest scheduled instruction in the dependence 631 /// chain. 632 int earliestCycleInChain(const SDep &Dep); 633 634 /// Return the cycle of the latest scheduled instruction in the dependence 635 /// chain. 636 int latestCycleInChain(const SDep &Dep); 637 638 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 639 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 640 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 641 642 /// Iterators for the cycle to instruction map. 643 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 644 using const_sched_iterator = 645 DenseMap<int, std::deque<SUnit *>>::const_iterator; 646 647 /// Return true if the instruction is scheduled at the specified stage. 648 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 649 return (stageScheduled(SU) == (int)StageNum); 650 } 651 652 /// Return the stage for a scheduled instruction. Return -1 if 653 /// the instruction has not been scheduled. 654 int stageScheduled(SUnit *SU) const { 655 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 656 if (it == InstrToCycle.end()) 657 return -1; 658 return (it->second - FirstCycle) / InitiationInterval; 659 } 660 661 /// Return the cycle for a scheduled instruction. This function normalizes 662 /// the first cycle to be 0. 663 unsigned cycleScheduled(SUnit *SU) const { 664 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 665 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 666 return (it->second - FirstCycle) % InitiationInterval; 667 } 668 669 /// Return the maximum stage count needed for this schedule. 670 unsigned getMaxStageCount() { 671 return (LastCycle - FirstCycle) / InitiationInterval; 672 } 673 674 /// Return the max. number of stages/iterations that can occur between a 675 /// register definition and its uses. 676 unsigned getStagesForReg(int Reg, unsigned CurStage) { 677 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 678 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 679 return 1; 680 return Stages.first; 681 } 682 683 /// The number of stages for a Phi is a little different than other 684 /// instructions. The minimum value computed in RegToStageDiff is 1 685 /// because we assume the Phi is needed for at least 1 iteration. 686 /// This is not the case if the loop value is scheduled prior to the 687 /// Phi in the same stage. This function returns the number of stages 688 /// or iterations needed between the Phi definition and any uses. 689 unsigned getStagesForPhi(int Reg) { 690 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 691 if (Stages.second) 692 return Stages.first; 693 return Stages.first - 1; 694 } 695 696 /// Return the instructions that are scheduled at the specified cycle. 697 std::deque<SUnit *> &getInstructions(int cycle) { 698 return ScheduledInstrs[cycle]; 699 } 700 701 bool isValidSchedule(SwingSchedulerDAG *SSD); 702 void finalizeSchedule(SwingSchedulerDAG *SSD); 703 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 704 std::deque<SUnit *> &Insts); 705 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 706 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 707 MachineOperand &MO); 708 void print(raw_ostream &os) const; 709 void dump() const; 710 }; 711 712 } // end anonymous namespace 713 714 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 715 char MachinePipeliner::ID = 0; 716 #ifndef NDEBUG 717 int MachinePipeliner::NumTries = 0; 718 #endif 719 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 720 721 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 722 "Modulo Software Pipelining", false, false) 723 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 724 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 725 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 726 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 727 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 728 "Modulo Software Pipelining", false, false) 729 730 /// The "main" function for implementing Swing Modulo Scheduling. 731 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 732 if (skipFunction(mf.getFunction())) 733 return false; 734 735 if (!EnableSWP) 736 return false; 737 738 if (mf.getFunction().getAttributes().hasAttribute( 739 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 740 !EnableSWPOptSize.getPosition()) 741 return false; 742 743 MF = &mf; 744 MLI = &getAnalysis<MachineLoopInfo>(); 745 MDT = &getAnalysis<MachineDominatorTree>(); 746 TII = MF->getSubtarget().getInstrInfo(); 747 RegClassInfo.runOnMachineFunction(*MF); 748 749 for (auto &L : *MLI) 750 scheduleLoop(*L); 751 752 return false; 753 } 754 755 /// Attempt to perform the SMS algorithm on the specified loop. This function is 756 /// the main entry point for the algorithm. The function identifies candidate 757 /// loops, calculates the minimum initiation interval, and attempts to schedule 758 /// the loop. 759 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 760 bool Changed = false; 761 for (auto &InnerLoop : L) 762 Changed |= scheduleLoop(*InnerLoop); 763 764 #ifndef NDEBUG 765 // Stop trying after reaching the limit (if any). 766 int Limit = SwpLoopLimit; 767 if (Limit >= 0) { 768 if (NumTries >= SwpLoopLimit) 769 return Changed; 770 NumTries++; 771 } 772 #endif 773 774 if (!canPipelineLoop(L)) 775 return Changed; 776 777 ++NumTrytoPipeline; 778 779 Changed = swingModuloScheduler(L); 780 781 return Changed; 782 } 783 784 /// Return true if the loop can be software pipelined. The algorithm is 785 /// restricted to loops with a single basic block. Make sure that the 786 /// branch in the loop can be analyzed. 787 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 788 if (L.getNumBlocks() != 1) 789 return false; 790 791 // Check if the branch can't be understood because we can't do pipelining 792 // if that's the case. 793 LI.TBB = nullptr; 794 LI.FBB = nullptr; 795 LI.BrCond.clear(); 796 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 797 return false; 798 799 LI.LoopInductionVar = nullptr; 800 LI.LoopCompare = nullptr; 801 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 802 return false; 803 804 if (!L.getLoopPreheader()) 805 return false; 806 807 // If any of the Phis contain subregs, then we can't pipeline 808 // because we don't know how to maintain subreg information in the 809 // VMap structure. 810 MachineBasicBlock *MBB = L.getHeader(); 811 for (auto &PHI : MBB->phis()) 812 for (unsigned i = 1; i != PHI.getNumOperands(); i += 2) 813 if (PHI.getOperand(i).getSubReg() != 0) 814 return false; 815 816 return true; 817 } 818 819 /// The SMS algorithm consists of the following main steps: 820 /// 1. Computation and analysis of the dependence graph. 821 /// 2. Ordering of the nodes (instructions). 822 /// 3. Attempt to Schedule the loop. 823 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 824 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 825 826 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 827 828 MachineBasicBlock *MBB = L.getHeader(); 829 // The kernel should not include any terminator instructions. These 830 // will be added back later. 831 SMS.startBlock(MBB); 832 833 // Compute the number of 'real' instructions in the basic block by 834 // ignoring terminators. 835 unsigned size = MBB->size(); 836 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 837 E = MBB->instr_end(); 838 I != E; ++I, --size) 839 ; 840 841 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 842 SMS.schedule(); 843 SMS.exitRegion(); 844 845 SMS.finishBlock(); 846 return SMS.hasNewSchedule(); 847 } 848 849 /// We override the schedule function in ScheduleDAGInstrs to implement the 850 /// scheduling part of the Swing Modulo Scheduling algorithm. 851 void SwingSchedulerDAG::schedule() { 852 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 853 buildSchedGraph(AA); 854 addLoopCarriedDependences(AA); 855 updatePhiDependences(); 856 Topo.InitDAGTopologicalSorting(); 857 postprocessDAG(); 858 changeDependences(); 859 DEBUG({ 860 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 861 SUnits[su].dumpAll(this); 862 }); 863 864 NodeSetType NodeSets; 865 findCircuits(NodeSets); 866 867 // Calculate the MII. 868 unsigned ResMII = calculateResMII(); 869 unsigned RecMII = calculateRecMII(NodeSets); 870 871 fuseRecs(NodeSets); 872 873 // This flag is used for testing and can cause correctness problems. 874 if (SwpIgnoreRecMII) 875 RecMII = 0; 876 877 MII = std::max(ResMII, RecMII); 878 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 879 << ")\n"); 880 881 // Can't schedule a loop without a valid MII. 882 if (MII == 0) 883 return; 884 885 // Don't pipeline large loops. 886 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 887 return; 888 889 computeNodeFunctions(NodeSets); 890 891 registerPressureFilter(NodeSets); 892 893 colocateNodeSets(NodeSets); 894 895 checkNodeSets(NodeSets); 896 897 DEBUG({ 898 for (auto &I : NodeSets) { 899 dbgs() << " Rec NodeSet "; 900 I.dump(); 901 } 902 }); 903 904 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 905 906 groupRemainingNodes(NodeSets); 907 908 removeDuplicateNodes(NodeSets); 909 910 DEBUG({ 911 for (auto &I : NodeSets) { 912 dbgs() << " NodeSet "; 913 I.dump(); 914 } 915 }); 916 917 computeNodeOrder(NodeSets); 918 919 SMSchedule Schedule(Pass.MF); 920 Scheduled = schedulePipeline(Schedule); 921 922 if (!Scheduled) 923 return; 924 925 unsigned numStages = Schedule.getMaxStageCount(); 926 // No need to generate pipeline if there are no overlapped iterations. 927 if (numStages == 0) 928 return; 929 930 // Check that the maximum stage count is less than user-defined limit. 931 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 932 return; 933 934 generatePipelinedLoop(Schedule); 935 ++NumPipelined; 936 } 937 938 /// Clean up after the software pipeliner runs. 939 void SwingSchedulerDAG::finishBlock() { 940 for (MachineInstr *I : NewMIs) 941 MF.DeleteMachineInstr(I); 942 NewMIs.clear(); 943 944 // Call the superclass. 945 ScheduleDAGInstrs::finishBlock(); 946 } 947 948 /// Return the register values for the operands of a Phi instruction. 949 /// This function assume the instruction is a Phi. 950 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 951 unsigned &InitVal, unsigned &LoopVal) { 952 assert(Phi.isPHI() && "Expecting a Phi."); 953 954 InitVal = 0; 955 LoopVal = 0; 956 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 957 if (Phi.getOperand(i + 1).getMBB() != Loop) 958 InitVal = Phi.getOperand(i).getReg(); 959 else 960 LoopVal = Phi.getOperand(i).getReg(); 961 962 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 963 } 964 965 /// Return the Phi register value that comes from the incoming block. 966 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 967 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 968 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 969 return Phi.getOperand(i).getReg(); 970 return 0; 971 } 972 973 /// Return the Phi register value that comes the loop block. 974 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 975 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 976 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 977 return Phi.getOperand(i).getReg(); 978 return 0; 979 } 980 981 /// Return true if SUb can be reached from SUa following the chain edges. 982 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 983 SmallPtrSet<SUnit *, 8> Visited; 984 SmallVector<SUnit *, 8> Worklist; 985 Worklist.push_back(SUa); 986 while (!Worklist.empty()) { 987 const SUnit *SU = Worklist.pop_back_val(); 988 for (auto &SI : SU->Succs) { 989 SUnit *SuccSU = SI.getSUnit(); 990 if (SI.getKind() == SDep::Order) { 991 if (Visited.count(SuccSU)) 992 continue; 993 if (SuccSU == SUb) 994 return true; 995 Worklist.push_back(SuccSU); 996 Visited.insert(SuccSU); 997 } 998 } 999 } 1000 return false; 1001 } 1002 1003 /// Return true if the instruction causes a chain between memory 1004 /// references before and after it. 1005 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1006 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1007 (MI.hasOrderedMemoryRef() && 1008 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1009 } 1010 1011 /// Return the underlying objects for the memory references of an instruction. 1012 /// This function calls the code in ValueTracking, but first checks that the 1013 /// instruction has a memory operand. 1014 static void getUnderlyingObjects(MachineInstr *MI, 1015 SmallVectorImpl<Value *> &Objs, 1016 const DataLayout &DL) { 1017 if (!MI->hasOneMemOperand()) 1018 return; 1019 MachineMemOperand *MM = *MI->memoperands_begin(); 1020 if (!MM->getValue()) 1021 return; 1022 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1023 } 1024 1025 /// Add a chain edge between a load and store if the store can be an 1026 /// alias of the load on a subsequent iteration, i.e., a loop carried 1027 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1028 /// but that code doesn't create loop carried dependences. 1029 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1030 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1031 for (auto &SU : SUnits) { 1032 MachineInstr &MI = *SU.getInstr(); 1033 if (isDependenceBarrier(MI, AA)) 1034 PendingLoads.clear(); 1035 else if (MI.mayLoad()) { 1036 SmallVector<Value *, 4> Objs; 1037 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1038 for (auto V : Objs) { 1039 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1040 SUs.push_back(&SU); 1041 } 1042 } else if (MI.mayStore()) { 1043 SmallVector<Value *, 4> Objs; 1044 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1045 for (auto V : Objs) { 1046 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1047 PendingLoads.find(V); 1048 if (I == PendingLoads.end()) 1049 continue; 1050 for (auto Load : I->second) { 1051 if (isSuccOrder(Load, &SU)) 1052 continue; 1053 MachineInstr &LdMI = *Load->getInstr(); 1054 // First, perform the cheaper check that compares the base register. 1055 // If they are the same and the load offset is less than the store 1056 // offset, then mark the dependence as loop carried potentially. 1057 unsigned BaseReg1, BaseReg2; 1058 int64_t Offset1, Offset2; 1059 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1060 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1061 SU.addPred(SDep(Load, SDep::Barrier)); 1062 continue; 1063 } 1064 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1065 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1066 "What happened to the chain edge?"); 1067 SU.addPred(SDep(Load, SDep::Barrier)); 1068 continue; 1069 } 1070 // Second, the more expensive check that uses alias analysis on the 1071 // base registers. If they alias, and the load offset is less than 1072 // the store offset, the mark the dependence as loop carried. 1073 if (!AA) { 1074 SU.addPred(SDep(Load, SDep::Barrier)); 1075 continue; 1076 } 1077 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1078 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1079 if (!MMO1->getValue() || !MMO2->getValue()) { 1080 SU.addPred(SDep(Load, SDep::Barrier)); 1081 continue; 1082 } 1083 if (MMO1->getValue() == MMO2->getValue() && 1084 MMO1->getOffset() <= MMO2->getOffset()) { 1085 SU.addPred(SDep(Load, SDep::Barrier)); 1086 continue; 1087 } 1088 AliasResult AAResult = AA->alias( 1089 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1090 MMO1->getAAInfo()), 1091 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1092 MMO2->getAAInfo())); 1093 1094 if (AAResult != NoAlias) 1095 SU.addPred(SDep(Load, SDep::Barrier)); 1096 } 1097 } 1098 } 1099 } 1100 } 1101 1102 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1103 /// processes dependences for PHIs. This function adds true dependences 1104 /// from a PHI to a use, and a loop carried dependence from the use to the 1105 /// PHI. The loop carried dependence is represented as an anti dependence 1106 /// edge. This function also removes chain dependences between unrelated 1107 /// PHIs. 1108 void SwingSchedulerDAG::updatePhiDependences() { 1109 SmallVector<SDep, 4> RemoveDeps; 1110 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1111 1112 // Iterate over each DAG node. 1113 for (SUnit &I : SUnits) { 1114 RemoveDeps.clear(); 1115 // Set to true if the instruction has an operand defined by a Phi. 1116 unsigned HasPhiUse = 0; 1117 unsigned HasPhiDef = 0; 1118 MachineInstr *MI = I.getInstr(); 1119 // Iterate over each operand, and we process the definitions. 1120 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1121 MOE = MI->operands_end(); 1122 MOI != MOE; ++MOI) { 1123 if (!MOI->isReg()) 1124 continue; 1125 unsigned Reg = MOI->getReg(); 1126 if (MOI->isDef()) { 1127 // If the register is used by a Phi, then create an anti dependence. 1128 for (MachineRegisterInfo::use_instr_iterator 1129 UI = MRI.use_instr_begin(Reg), 1130 UE = MRI.use_instr_end(); 1131 UI != UE; ++UI) { 1132 MachineInstr *UseMI = &*UI; 1133 SUnit *SU = getSUnit(UseMI); 1134 if (SU != nullptr && UseMI->isPHI()) { 1135 if (!MI->isPHI()) { 1136 SDep Dep(SU, SDep::Anti, Reg); 1137 I.addPred(Dep); 1138 } else { 1139 HasPhiDef = Reg; 1140 // Add a chain edge to a dependent Phi that isn't an existing 1141 // predecessor. 1142 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1143 I.addPred(SDep(SU, SDep::Barrier)); 1144 } 1145 } 1146 } 1147 } else if (MOI->isUse()) { 1148 // If the register is defined by a Phi, then create a true dependence. 1149 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1150 if (DefMI == nullptr) 1151 continue; 1152 SUnit *SU = getSUnit(DefMI); 1153 if (SU != nullptr && DefMI->isPHI()) { 1154 if (!MI->isPHI()) { 1155 SDep Dep(SU, SDep::Data, Reg); 1156 Dep.setLatency(0); 1157 ST.adjustSchedDependency(SU, &I, Dep); 1158 I.addPred(Dep); 1159 } else { 1160 HasPhiUse = Reg; 1161 // Add a chain edge to a dependent Phi that isn't an existing 1162 // predecessor. 1163 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1164 I.addPred(SDep(SU, SDep::Barrier)); 1165 } 1166 } 1167 } 1168 } 1169 // Remove order dependences from an unrelated Phi. 1170 if (!SwpPruneDeps) 1171 continue; 1172 for (auto &PI : I.Preds) { 1173 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1174 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1175 if (I.getInstr()->isPHI()) { 1176 if (PMI->getOperand(0).getReg() == HasPhiUse) 1177 continue; 1178 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1179 continue; 1180 } 1181 RemoveDeps.push_back(PI); 1182 } 1183 } 1184 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1185 I.removePred(RemoveDeps[i]); 1186 } 1187 } 1188 1189 /// Iterate over each DAG node and see if we can change any dependences 1190 /// in order to reduce the recurrence MII. 1191 void SwingSchedulerDAG::changeDependences() { 1192 // See if an instruction can use a value from the previous iteration. 1193 // If so, we update the base and offset of the instruction and change 1194 // the dependences. 1195 for (SUnit &I : SUnits) { 1196 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1197 int64_t NewOffset = 0; 1198 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1199 NewOffset)) 1200 continue; 1201 1202 // Get the MI and SUnit for the instruction that defines the original base. 1203 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1204 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1205 if (!DefMI) 1206 continue; 1207 SUnit *DefSU = getSUnit(DefMI); 1208 if (!DefSU) 1209 continue; 1210 // Get the MI and SUnit for the instruction that defins the new base. 1211 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1212 if (!LastMI) 1213 continue; 1214 SUnit *LastSU = getSUnit(LastMI); 1215 if (!LastSU) 1216 continue; 1217 1218 if (Topo.IsReachable(&I, LastSU)) 1219 continue; 1220 1221 // Remove the dependence. The value now depends on a prior iteration. 1222 SmallVector<SDep, 4> Deps; 1223 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1224 ++P) 1225 if (P->getSUnit() == DefSU) 1226 Deps.push_back(*P); 1227 for (int i = 0, e = Deps.size(); i != e; i++) { 1228 Topo.RemovePred(&I, Deps[i].getSUnit()); 1229 I.removePred(Deps[i]); 1230 } 1231 // Remove the chain dependence between the instructions. 1232 Deps.clear(); 1233 for (auto &P : LastSU->Preds) 1234 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1235 Deps.push_back(P); 1236 for (int i = 0, e = Deps.size(); i != e; i++) { 1237 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1238 LastSU->removePred(Deps[i]); 1239 } 1240 1241 // Add a dependence between the new instruction and the instruction 1242 // that defines the new base. 1243 SDep Dep(&I, SDep::Anti, NewBase); 1244 LastSU->addPred(Dep); 1245 1246 // Remember the base and offset information so that we can update the 1247 // instruction during code generation. 1248 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1249 } 1250 } 1251 1252 namespace { 1253 1254 // FuncUnitSorter - Comparison operator used to sort instructions by 1255 // the number of functional unit choices. 1256 struct FuncUnitSorter { 1257 const InstrItineraryData *InstrItins; 1258 DenseMap<unsigned, unsigned> Resources; 1259 1260 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1261 1262 // Compute the number of functional unit alternatives needed 1263 // at each stage, and take the minimum value. We prioritize the 1264 // instructions by the least number of choices first. 1265 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1266 unsigned schedClass = Inst->getDesc().getSchedClass(); 1267 unsigned min = UINT_MAX; 1268 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1269 *IE = InstrItins->endStage(schedClass); 1270 IS != IE; ++IS) { 1271 unsigned funcUnits = IS->getUnits(); 1272 unsigned numAlternatives = countPopulation(funcUnits); 1273 if (numAlternatives < min) { 1274 min = numAlternatives; 1275 F = funcUnits; 1276 } 1277 } 1278 return min; 1279 } 1280 1281 // Compute the critical resources needed by the instruction. This 1282 // function records the functional units needed by instructions that 1283 // must use only one functional unit. We use this as a tie breaker 1284 // for computing the resource MII. The instrutions that require 1285 // the same, highly used, functional unit have high priority. 1286 void calcCriticalResources(MachineInstr &MI) { 1287 unsigned SchedClass = MI.getDesc().getSchedClass(); 1288 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1289 *IE = InstrItins->endStage(SchedClass); 1290 IS != IE; ++IS) { 1291 unsigned FuncUnits = IS->getUnits(); 1292 if (countPopulation(FuncUnits) == 1) 1293 Resources[FuncUnits]++; 1294 } 1295 } 1296 1297 /// Return true if IS1 has less priority than IS2. 1298 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1299 unsigned F1 = 0, F2 = 0; 1300 unsigned MFUs1 = minFuncUnits(IS1, F1); 1301 unsigned MFUs2 = minFuncUnits(IS2, F2); 1302 if (MFUs1 == 1 && MFUs2 == 1) 1303 return Resources.lookup(F1) < Resources.lookup(F2); 1304 return MFUs1 > MFUs2; 1305 } 1306 }; 1307 1308 } // end anonymous namespace 1309 1310 /// Calculate the resource constrained minimum initiation interval for the 1311 /// specified loop. We use the DFA to model the resources needed for 1312 /// each instruction, and we ignore dependences. A different DFA is created 1313 /// for each cycle that is required. When adding a new instruction, we attempt 1314 /// to add it to each existing DFA, until a legal space is found. If the 1315 /// instruction cannot be reserved in an existing DFA, we create a new one. 1316 unsigned SwingSchedulerDAG::calculateResMII() { 1317 SmallVector<DFAPacketizer *, 8> Resources; 1318 MachineBasicBlock *MBB = Loop.getHeader(); 1319 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1320 1321 // Sort the instructions by the number of available choices for scheduling, 1322 // least to most. Use the number of critical resources as the tie breaker. 1323 FuncUnitSorter FUS = 1324 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1325 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1326 E = MBB->getFirstTerminator(); 1327 I != E; ++I) 1328 FUS.calcCriticalResources(*I); 1329 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1330 FuncUnitOrder(FUS); 1331 1332 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1333 E = MBB->getFirstTerminator(); 1334 I != E; ++I) 1335 FuncUnitOrder.push(&*I); 1336 1337 while (!FuncUnitOrder.empty()) { 1338 MachineInstr *MI = FuncUnitOrder.top(); 1339 FuncUnitOrder.pop(); 1340 if (TII->isZeroCost(MI->getOpcode())) 1341 continue; 1342 // Attempt to reserve the instruction in an existing DFA. At least one 1343 // DFA is needed for each cycle. 1344 unsigned NumCycles = getSUnit(MI)->Latency; 1345 unsigned ReservedCycles = 0; 1346 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1347 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1348 for (unsigned C = 0; C < NumCycles; ++C) 1349 while (RI != RE) { 1350 if ((*RI++)->canReserveResources(*MI)) { 1351 ++ReservedCycles; 1352 break; 1353 } 1354 } 1355 // Start reserving resources using existing DFAs. 1356 for (unsigned C = 0; C < ReservedCycles; ++C) { 1357 --RI; 1358 (*RI)->reserveResources(*MI); 1359 } 1360 // Add new DFAs, if needed, to reserve resources. 1361 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1362 DFAPacketizer *NewResource = 1363 TII->CreateTargetScheduleState(MF.getSubtarget()); 1364 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1365 NewResource->reserveResources(*MI); 1366 Resources.push_back(NewResource); 1367 } 1368 } 1369 int Resmii = Resources.size(); 1370 // Delete the memory for each of the DFAs that were created earlier. 1371 for (DFAPacketizer *RI : Resources) { 1372 DFAPacketizer *D = RI; 1373 delete D; 1374 } 1375 Resources.clear(); 1376 return Resmii; 1377 } 1378 1379 /// Calculate the recurrence-constrainted minimum initiation interval. 1380 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1381 /// for each circuit. The II needs to satisfy the inequality 1382 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1383 /// II that satistifies the inequality, and the RecMII is the maximum 1384 /// of those values. 1385 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1386 unsigned RecMII = 0; 1387 1388 for (NodeSet &Nodes : NodeSets) { 1389 if (Nodes.empty()) 1390 continue; 1391 1392 unsigned Delay = Nodes.size() - 1; 1393 unsigned Distance = 1; 1394 1395 // ii = ceil(delay / distance) 1396 unsigned CurMII = (Delay + Distance - 1) / Distance; 1397 Nodes.setRecMII(CurMII); 1398 if (CurMII > RecMII) 1399 RecMII = CurMII; 1400 } 1401 1402 return RecMII; 1403 } 1404 1405 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1406 /// but we do this to find the circuits, and then change them back. 1407 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1408 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1409 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1410 SUnit *SU = &SUnits[i]; 1411 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1412 IP != EP; ++IP) { 1413 if (IP->getKind() != SDep::Anti) 1414 continue; 1415 DepsAdded.push_back(std::make_pair(SU, *IP)); 1416 } 1417 } 1418 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1419 E = DepsAdded.end(); 1420 I != E; ++I) { 1421 // Remove this anti dependency and add one in the reverse direction. 1422 SUnit *SU = I->first; 1423 SDep &D = I->second; 1424 SUnit *TargetSU = D.getSUnit(); 1425 unsigned Reg = D.getReg(); 1426 unsigned Lat = D.getLatency(); 1427 SU->removePred(D); 1428 SDep Dep(SU, SDep::Anti, Reg); 1429 Dep.setLatency(Lat); 1430 TargetSU->addPred(Dep); 1431 } 1432 } 1433 1434 /// Create the adjacency structure of the nodes in the graph. 1435 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1436 SwingSchedulerDAG *DAG) { 1437 BitVector Added(SUnits.size()); 1438 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1439 Added.reset(); 1440 // Add any successor to the adjacency matrix and exclude duplicates. 1441 for (auto &SI : SUnits[i].Succs) { 1442 // Do not process a boundary node and a back-edge is processed only 1443 // if it goes to a Phi. 1444 if (SI.getSUnit()->isBoundaryNode() || 1445 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1446 continue; 1447 int N = SI.getSUnit()->NodeNum; 1448 if (!Added.test(N)) { 1449 AdjK[i].push_back(N); 1450 Added.set(N); 1451 } 1452 } 1453 // A chain edge between a store and a load is treated as a back-edge in the 1454 // adjacency matrix. 1455 for (auto &PI : SUnits[i].Preds) { 1456 if (!SUnits[i].getInstr()->mayStore() || 1457 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1458 continue; 1459 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1460 int N = PI.getSUnit()->NodeNum; 1461 if (!Added.test(N)) { 1462 AdjK[i].push_back(N); 1463 Added.set(N); 1464 } 1465 } 1466 } 1467 } 1468 } 1469 1470 /// Identify an elementary circuit in the dependence graph starting at the 1471 /// specified node. 1472 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1473 bool HasBackedge) { 1474 SUnit *SV = &SUnits[V]; 1475 bool F = false; 1476 Stack.insert(SV); 1477 Blocked.set(V); 1478 1479 for (auto W : AdjK[V]) { 1480 if (NumPaths > MaxPaths) 1481 break; 1482 if (W < S) 1483 continue; 1484 if (W == S) { 1485 if (!HasBackedge) 1486 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1487 F = true; 1488 ++NumPaths; 1489 break; 1490 } else if (!Blocked.test(W)) { 1491 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1492 F = true; 1493 } 1494 } 1495 1496 if (F) 1497 unblock(V); 1498 else { 1499 for (auto W : AdjK[V]) { 1500 if (W < S) 1501 continue; 1502 if (B[W].count(SV) == 0) 1503 B[W].insert(SV); 1504 } 1505 } 1506 Stack.pop_back(); 1507 return F; 1508 } 1509 1510 /// Unblock a node in the circuit finding algorithm. 1511 void SwingSchedulerDAG::Circuits::unblock(int U) { 1512 Blocked.reset(U); 1513 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1514 while (!BU.empty()) { 1515 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1516 assert(SI != BU.end() && "Invalid B set."); 1517 SUnit *W = *SI; 1518 BU.erase(W); 1519 if (Blocked.test(W->NodeNum)) 1520 unblock(W->NodeNum); 1521 } 1522 } 1523 1524 /// Identify all the elementary circuits in the dependence graph using 1525 /// Johnson's circuit algorithm. 1526 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1527 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1528 // but we do this to find the circuits, and then change them back. 1529 swapAntiDependences(SUnits); 1530 1531 Circuits Cir(SUnits); 1532 // Create the adjacency structure. 1533 Cir.createAdjacencyStructure(this); 1534 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1535 Cir.reset(); 1536 Cir.circuit(i, i, NodeSets); 1537 } 1538 1539 // Change the dependences back so that we've created a DAG again. 1540 swapAntiDependences(SUnits); 1541 } 1542 1543 /// Return true for DAG nodes that we ignore when computing the cost functions. 1544 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1545 /// in the calculation of the ASAP, ALAP, etc functions. 1546 static bool ignoreDependence(const SDep &D, bool isPred) { 1547 if (D.isArtificial()) 1548 return true; 1549 return D.getKind() == SDep::Anti && isPred; 1550 } 1551 1552 /// Compute several functions need to order the nodes for scheduling. 1553 /// ASAP - Earliest time to schedule a node. 1554 /// ALAP - Latest time to schedule a node. 1555 /// MOV - Mobility function, difference between ALAP and ASAP. 1556 /// D - Depth of each node. 1557 /// H - Height of each node. 1558 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1559 ScheduleInfo.resize(SUnits.size()); 1560 1561 DEBUG({ 1562 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1563 E = Topo.end(); 1564 I != E; ++I) { 1565 SUnit *SU = &SUnits[*I]; 1566 SU->dump(this); 1567 } 1568 }); 1569 1570 int maxASAP = 0; 1571 // Compute ASAP. 1572 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1573 E = Topo.end(); 1574 I != E; ++I) { 1575 int asap = 0; 1576 SUnit *SU = &SUnits[*I]; 1577 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1578 EP = SU->Preds.end(); 1579 IP != EP; ++IP) { 1580 if (ignoreDependence(*IP, true)) 1581 continue; 1582 SUnit *pred = IP->getSUnit(); 1583 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1584 getDistance(pred, SU, *IP) * MII)); 1585 } 1586 maxASAP = std::max(maxASAP, asap); 1587 ScheduleInfo[*I].ASAP = asap; 1588 } 1589 1590 // Compute ALAP and MOV. 1591 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1592 E = Topo.rend(); 1593 I != E; ++I) { 1594 int alap = maxASAP; 1595 SUnit *SU = &SUnits[*I]; 1596 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1597 ES = SU->Succs.end(); 1598 IS != ES; ++IS) { 1599 if (ignoreDependence(*IS, true)) 1600 continue; 1601 SUnit *succ = IS->getSUnit(); 1602 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1603 getDistance(SU, succ, *IS) * MII)); 1604 } 1605 1606 ScheduleInfo[*I].ALAP = alap; 1607 } 1608 1609 // After computing the node functions, compute the summary for each node set. 1610 for (NodeSet &I : NodeSets) 1611 I.computeNodeSetInfo(this); 1612 1613 DEBUG({ 1614 for (unsigned i = 0; i < SUnits.size(); i++) { 1615 dbgs() << "\tNode " << i << ":\n"; 1616 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1617 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1618 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1619 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1620 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1621 } 1622 }); 1623 } 1624 1625 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1626 /// as the predecessors of the elements of NodeOrder that are not also in 1627 /// NodeOrder. 1628 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1629 SmallSetVector<SUnit *, 8> &Preds, 1630 const NodeSet *S = nullptr) { 1631 Preds.clear(); 1632 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1633 I != E; ++I) { 1634 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1635 PI != PE; ++PI) { 1636 if (S && S->count(PI->getSUnit()) == 0) 1637 continue; 1638 if (ignoreDependence(*PI, true)) 1639 continue; 1640 if (NodeOrder.count(PI->getSUnit()) == 0) 1641 Preds.insert(PI->getSUnit()); 1642 } 1643 // Back-edges are predecessors with an anti-dependence. 1644 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1645 ES = (*I)->Succs.end(); 1646 IS != ES; ++IS) { 1647 if (IS->getKind() != SDep::Anti) 1648 continue; 1649 if (S && S->count(IS->getSUnit()) == 0) 1650 continue; 1651 if (NodeOrder.count(IS->getSUnit()) == 0) 1652 Preds.insert(IS->getSUnit()); 1653 } 1654 } 1655 return !Preds.empty(); 1656 } 1657 1658 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1659 /// as the successors of the elements of NodeOrder that are not also in 1660 /// NodeOrder. 1661 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1662 SmallSetVector<SUnit *, 8> &Succs, 1663 const NodeSet *S = nullptr) { 1664 Succs.clear(); 1665 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1666 I != E; ++I) { 1667 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1668 SI != SE; ++SI) { 1669 if (S && S->count(SI->getSUnit()) == 0) 1670 continue; 1671 if (ignoreDependence(*SI, false)) 1672 continue; 1673 if (NodeOrder.count(SI->getSUnit()) == 0) 1674 Succs.insert(SI->getSUnit()); 1675 } 1676 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1677 PE = (*I)->Preds.end(); 1678 PI != PE; ++PI) { 1679 if (PI->getKind() != SDep::Anti) 1680 continue; 1681 if (S && S->count(PI->getSUnit()) == 0) 1682 continue; 1683 if (NodeOrder.count(PI->getSUnit()) == 0) 1684 Succs.insert(PI->getSUnit()); 1685 } 1686 } 1687 return !Succs.empty(); 1688 } 1689 1690 /// Return true if there is a path from the specified node to any of the nodes 1691 /// in DestNodes. Keep track and return the nodes in any path. 1692 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1693 SetVector<SUnit *> &DestNodes, 1694 SetVector<SUnit *> &Exclude, 1695 SmallPtrSet<SUnit *, 8> &Visited) { 1696 if (Cur->isBoundaryNode()) 1697 return false; 1698 if (Exclude.count(Cur) != 0) 1699 return false; 1700 if (DestNodes.count(Cur) != 0) 1701 return true; 1702 if (!Visited.insert(Cur).second) 1703 return Path.count(Cur) != 0; 1704 bool FoundPath = false; 1705 for (auto &SI : Cur->Succs) 1706 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1707 for (auto &PI : Cur->Preds) 1708 if (PI.getKind() == SDep::Anti) 1709 FoundPath |= 1710 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1711 if (FoundPath) 1712 Path.insert(Cur); 1713 return FoundPath; 1714 } 1715 1716 /// Return true if Set1 is a subset of Set2. 1717 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1718 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1719 if (Set2.count(*I) == 0) 1720 return false; 1721 return true; 1722 } 1723 1724 /// Compute the live-out registers for the instructions in a node-set. 1725 /// The live-out registers are those that are defined in the node-set, 1726 /// but not used. Except for use operands of Phis. 1727 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1728 NodeSet &NS) { 1729 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1730 MachineRegisterInfo &MRI = MF.getRegInfo(); 1731 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1732 SmallSet<unsigned, 4> Uses; 1733 for (SUnit *SU : NS) { 1734 const MachineInstr *MI = SU->getInstr(); 1735 if (MI->isPHI()) 1736 continue; 1737 for (const MachineOperand &MO : MI->operands()) 1738 if (MO.isReg() && MO.isUse()) { 1739 unsigned Reg = MO.getReg(); 1740 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1741 Uses.insert(Reg); 1742 else if (MRI.isAllocatable(Reg)) 1743 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1744 Uses.insert(*Units); 1745 } 1746 } 1747 for (SUnit *SU : NS) 1748 for (const MachineOperand &MO : SU->getInstr()->operands()) 1749 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1750 unsigned Reg = MO.getReg(); 1751 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1752 if (!Uses.count(Reg)) 1753 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1754 LaneBitmask::getNone())); 1755 } else if (MRI.isAllocatable(Reg)) { 1756 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1757 if (!Uses.count(*Units)) 1758 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1759 LaneBitmask::getNone())); 1760 } 1761 } 1762 RPTracker.addLiveRegs(LiveOutRegs); 1763 } 1764 1765 /// A heuristic to filter nodes in recurrent node-sets if the register 1766 /// pressure of a set is too high. 1767 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1768 for (auto &NS : NodeSets) { 1769 // Skip small node-sets since they won't cause register pressure problems. 1770 if (NS.size() <= 2) 1771 continue; 1772 IntervalPressure RecRegPressure; 1773 RegPressureTracker RecRPTracker(RecRegPressure); 1774 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1775 computeLiveOuts(MF, RecRPTracker, NS); 1776 RecRPTracker.closeBottom(); 1777 1778 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1779 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1780 return A->NodeNum > B->NodeNum; 1781 }); 1782 1783 for (auto &SU : SUnits) { 1784 // Since we're computing the register pressure for a subset of the 1785 // instructions in a block, we need to set the tracker for each 1786 // instruction in the node-set. The tracker is set to the instruction 1787 // just after the one we're interested in. 1788 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1789 RecRPTracker.setPos(std::next(CurInstI)); 1790 1791 RegPressureDelta RPDelta; 1792 ArrayRef<PressureChange> CriticalPSets; 1793 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1794 CriticalPSets, 1795 RecRegPressure.MaxSetPressure); 1796 if (RPDelta.Excess.isValid()) { 1797 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1798 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1799 << ":" << RPDelta.Excess.getUnitInc()); 1800 NS.setExceedPressure(SU); 1801 break; 1802 } 1803 RecRPTracker.recede(); 1804 } 1805 } 1806 } 1807 1808 /// A heuristic to colocate node sets that have the same set of 1809 /// successors. 1810 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1811 unsigned Colocate = 0; 1812 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1813 NodeSet &N1 = NodeSets[i]; 1814 SmallSetVector<SUnit *, 8> S1; 1815 if (N1.empty() || !succ_L(N1, S1)) 1816 continue; 1817 for (int j = i + 1; j < e; ++j) { 1818 NodeSet &N2 = NodeSets[j]; 1819 if (N1.compareRecMII(N2) != 0) 1820 continue; 1821 SmallSetVector<SUnit *, 8> S2; 1822 if (N2.empty() || !succ_L(N2, S2)) 1823 continue; 1824 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1825 N1.setColocate(++Colocate); 1826 N2.setColocate(Colocate); 1827 break; 1828 } 1829 } 1830 } 1831 } 1832 1833 /// Check if the existing node-sets are profitable. If not, then ignore the 1834 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1835 /// a heuristic. If the MII is large and there is a non-recurrent node with 1836 /// a large depth compared to the MII, then it's best to try and schedule 1837 /// all instruction together instead of starting with the recurrent node-sets. 1838 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1839 // Look for loops with a large MII. 1840 if (MII <= 20) 1841 return; 1842 // Check if the node-set contains only a simple add recurrence. 1843 for (auto &NS : NodeSets) 1844 if (NS.size() > 2) 1845 return; 1846 // If the depth of any instruction is significantly larger than the MII, then 1847 // ignore the recurrent node-sets and treat all instructions equally. 1848 for (auto &SU : SUnits) 1849 if (SU.getDepth() > MII * 1.5) { 1850 NodeSets.clear(); 1851 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1852 return; 1853 } 1854 } 1855 1856 /// Add the nodes that do not belong to a recurrence set into groups 1857 /// based upon connected componenets. 1858 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1859 SetVector<SUnit *> NodesAdded; 1860 SmallPtrSet<SUnit *, 8> Visited; 1861 // Add the nodes that are on a path between the previous node sets and 1862 // the current node set. 1863 for (NodeSet &I : NodeSets) { 1864 SmallSetVector<SUnit *, 8> N; 1865 // Add the nodes from the current node set to the previous node set. 1866 if (succ_L(I, N)) { 1867 SetVector<SUnit *> Path; 1868 for (SUnit *NI : N) { 1869 Visited.clear(); 1870 computePath(NI, Path, NodesAdded, I, Visited); 1871 } 1872 if (!Path.empty()) 1873 I.insert(Path.begin(), Path.end()); 1874 } 1875 // Add the nodes from the previous node set to the current node set. 1876 N.clear(); 1877 if (succ_L(NodesAdded, N)) { 1878 SetVector<SUnit *> Path; 1879 for (SUnit *NI : N) { 1880 Visited.clear(); 1881 computePath(NI, Path, I, NodesAdded, Visited); 1882 } 1883 if (!Path.empty()) 1884 I.insert(Path.begin(), Path.end()); 1885 } 1886 NodesAdded.insert(I.begin(), I.end()); 1887 } 1888 1889 // Create a new node set with the connected nodes of any successor of a node 1890 // in a recurrent set. 1891 NodeSet NewSet; 1892 SmallSetVector<SUnit *, 8> N; 1893 if (succ_L(NodesAdded, N)) 1894 for (SUnit *I : N) 1895 addConnectedNodes(I, NewSet, NodesAdded); 1896 if (!NewSet.empty()) 1897 NodeSets.push_back(NewSet); 1898 1899 // Create a new node set with the connected nodes of any predecessor of a node 1900 // in a recurrent set. 1901 NewSet.clear(); 1902 if (pred_L(NodesAdded, N)) 1903 for (SUnit *I : N) 1904 addConnectedNodes(I, NewSet, NodesAdded); 1905 if (!NewSet.empty()) 1906 NodeSets.push_back(NewSet); 1907 1908 // Create new nodes sets with the connected nodes any any remaining node that 1909 // has no predecessor. 1910 for (unsigned i = 0; i < SUnits.size(); ++i) { 1911 SUnit *SU = &SUnits[i]; 1912 if (NodesAdded.count(SU) == 0) { 1913 NewSet.clear(); 1914 addConnectedNodes(SU, NewSet, NodesAdded); 1915 if (!NewSet.empty()) 1916 NodeSets.push_back(NewSet); 1917 } 1918 } 1919 } 1920 1921 /// Add the node to the set, and add all is its connected nodes to the set. 1922 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1923 SetVector<SUnit *> &NodesAdded) { 1924 NewSet.insert(SU); 1925 NodesAdded.insert(SU); 1926 for (auto &SI : SU->Succs) { 1927 SUnit *Successor = SI.getSUnit(); 1928 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1929 addConnectedNodes(Successor, NewSet, NodesAdded); 1930 } 1931 for (auto &PI : SU->Preds) { 1932 SUnit *Predecessor = PI.getSUnit(); 1933 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1934 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1935 } 1936 } 1937 1938 /// Return true if Set1 contains elements in Set2. The elements in common 1939 /// are returned in a different container. 1940 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1941 SmallSetVector<SUnit *, 8> &Result) { 1942 Result.clear(); 1943 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1944 SUnit *SU = Set1[i]; 1945 if (Set2.count(SU) != 0) 1946 Result.insert(SU); 1947 } 1948 return !Result.empty(); 1949 } 1950 1951 /// Merge the recurrence node sets that have the same initial node. 1952 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1953 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1954 ++I) { 1955 NodeSet &NI = *I; 1956 for (NodeSetType::iterator J = I + 1; J != E;) { 1957 NodeSet &NJ = *J; 1958 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1959 if (NJ.compareRecMII(NI) > 0) 1960 NI.setRecMII(NJ.getRecMII()); 1961 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1962 ++NII) 1963 I->insert(*NII); 1964 NodeSets.erase(J); 1965 E = NodeSets.end(); 1966 } else { 1967 ++J; 1968 } 1969 } 1970 } 1971 } 1972 1973 /// Remove nodes that have been scheduled in previous NodeSets. 1974 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1975 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1976 ++I) 1977 for (NodeSetType::iterator J = I + 1; J != E;) { 1978 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1979 1980 if (J->empty()) { 1981 NodeSets.erase(J); 1982 E = NodeSets.end(); 1983 } else { 1984 ++J; 1985 } 1986 } 1987 } 1988 1989 /// Return true if Inst1 defines a value that is used in Inst2. 1990 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1991 for (auto &SI : Inst1->Succs) 1992 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1993 return true; 1994 return false; 1995 } 1996 1997 /// Compute an ordered list of the dependence graph nodes, which 1998 /// indicates the order that the nodes will be scheduled. This is a 1999 /// two-level algorithm. First, a partial order is created, which 2000 /// consists of a list of sets ordered from highest to lowest priority. 2001 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2002 SmallSetVector<SUnit *, 8> R; 2003 NodeOrder.clear(); 2004 2005 for (auto &Nodes : NodeSets) { 2006 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2007 OrderKind Order; 2008 SmallSetVector<SUnit *, 8> N; 2009 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2010 R.insert(N.begin(), N.end()); 2011 Order = BottomUp; 2012 DEBUG(dbgs() << " Bottom up (preds) "); 2013 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2014 R.insert(N.begin(), N.end()); 2015 Order = TopDown; 2016 DEBUG(dbgs() << " Top down (succs) "); 2017 } else if (isIntersect(N, Nodes, R)) { 2018 // If some of the successors are in the existing node-set, then use the 2019 // top-down ordering. 2020 Order = TopDown; 2021 DEBUG(dbgs() << " Top down (intersect) "); 2022 } else if (NodeSets.size() == 1) { 2023 for (auto &N : Nodes) 2024 if (N->Succs.size() == 0) 2025 R.insert(N); 2026 Order = BottomUp; 2027 DEBUG(dbgs() << " Bottom up (all) "); 2028 } else { 2029 // Find the node with the highest ASAP. 2030 SUnit *maxASAP = nullptr; 2031 for (SUnit *SU : Nodes) { 2032 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2033 maxASAP = SU; 2034 } 2035 R.insert(maxASAP); 2036 Order = BottomUp; 2037 DEBUG(dbgs() << " Bottom up (default) "); 2038 } 2039 2040 while (!R.empty()) { 2041 if (Order == TopDown) { 2042 // Choose the node with the maximum height. If more than one, choose 2043 // the node with the lowest MOV. If still more than one, check if there 2044 // is a dependence between the instructions. 2045 while (!R.empty()) { 2046 SUnit *maxHeight = nullptr; 2047 for (SUnit *I : R) { 2048 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2049 maxHeight = I; 2050 else if (getHeight(I) == getHeight(maxHeight) && 2051 getMOV(I) < getMOV(maxHeight) && 2052 !hasDataDependence(maxHeight, I)) 2053 maxHeight = I; 2054 else if (hasDataDependence(I, maxHeight)) 2055 maxHeight = I; 2056 } 2057 NodeOrder.insert(maxHeight); 2058 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2059 R.remove(maxHeight); 2060 for (const auto &I : maxHeight->Succs) { 2061 if (Nodes.count(I.getSUnit()) == 0) 2062 continue; 2063 if (NodeOrder.count(I.getSUnit()) != 0) 2064 continue; 2065 if (ignoreDependence(I, false)) 2066 continue; 2067 R.insert(I.getSUnit()); 2068 } 2069 // Back-edges are predecessors with an anti-dependence. 2070 for (const auto &I : maxHeight->Preds) { 2071 if (I.getKind() != SDep::Anti) 2072 continue; 2073 if (Nodes.count(I.getSUnit()) == 0) 2074 continue; 2075 if (NodeOrder.count(I.getSUnit()) != 0) 2076 continue; 2077 R.insert(I.getSUnit()); 2078 } 2079 } 2080 Order = BottomUp; 2081 DEBUG(dbgs() << "\n Switching order to bottom up "); 2082 SmallSetVector<SUnit *, 8> N; 2083 if (pred_L(NodeOrder, N, &Nodes)) 2084 R.insert(N.begin(), N.end()); 2085 } else { 2086 // Choose the node with the maximum depth. If more than one, choose 2087 // the node with the lowest MOV. If there is still more than one, check 2088 // for a dependence between the instructions. 2089 while (!R.empty()) { 2090 SUnit *maxDepth = nullptr; 2091 for (SUnit *I : R) { 2092 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2093 maxDepth = I; 2094 else if (getDepth(I) == getDepth(maxDepth) && 2095 getMOV(I) < getMOV(maxDepth) && 2096 !hasDataDependence(I, maxDepth)) 2097 maxDepth = I; 2098 else if (hasDataDependence(maxDepth, I)) 2099 maxDepth = I; 2100 } 2101 NodeOrder.insert(maxDepth); 2102 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2103 R.remove(maxDepth); 2104 if (Nodes.isExceedSU(maxDepth)) { 2105 Order = TopDown; 2106 R.clear(); 2107 R.insert(Nodes.getNode(0)); 2108 break; 2109 } 2110 for (const auto &I : maxDepth->Preds) { 2111 if (Nodes.count(I.getSUnit()) == 0) 2112 continue; 2113 if (NodeOrder.count(I.getSUnit()) != 0) 2114 continue; 2115 if (I.getKind() == SDep::Anti) 2116 continue; 2117 R.insert(I.getSUnit()); 2118 } 2119 // Back-edges are predecessors with an anti-dependence. 2120 for (const auto &I : maxDepth->Succs) { 2121 if (I.getKind() != SDep::Anti) 2122 continue; 2123 if (Nodes.count(I.getSUnit()) == 0) 2124 continue; 2125 if (NodeOrder.count(I.getSUnit()) != 0) 2126 continue; 2127 R.insert(I.getSUnit()); 2128 } 2129 } 2130 Order = TopDown; 2131 DEBUG(dbgs() << "\n Switching order to top down "); 2132 SmallSetVector<SUnit *, 8> N; 2133 if (succ_L(NodeOrder, N, &Nodes)) 2134 R.insert(N.begin(), N.end()); 2135 } 2136 } 2137 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2138 } 2139 2140 DEBUG({ 2141 dbgs() << "Node order: "; 2142 for (SUnit *I : NodeOrder) 2143 dbgs() << " " << I->NodeNum << " "; 2144 dbgs() << "\n"; 2145 }); 2146 } 2147 2148 /// Process the nodes in the computed order and create the pipelined schedule 2149 /// of the instructions, if possible. Return true if a schedule is found. 2150 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2151 if (NodeOrder.empty()) 2152 return false; 2153 2154 bool scheduleFound = false; 2155 // Keep increasing II until a valid schedule is found. 2156 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2157 Schedule.reset(); 2158 Schedule.setInitiationInterval(II); 2159 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2160 2161 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2162 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2163 do { 2164 SUnit *SU = *NI; 2165 2166 // Compute the schedule time for the instruction, which is based 2167 // upon the scheduled time for any predecessors/successors. 2168 int EarlyStart = INT_MIN; 2169 int LateStart = INT_MAX; 2170 // These values are set when the size of the schedule window is limited 2171 // due to chain dependences. 2172 int SchedEnd = INT_MAX; 2173 int SchedStart = INT_MIN; 2174 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2175 II, this); 2176 DEBUG({ 2177 dbgs() << "Inst (" << SU->NodeNum << ") "; 2178 SU->getInstr()->dump(); 2179 dbgs() << "\n"; 2180 }); 2181 DEBUG({ 2182 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2183 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2184 }); 2185 2186 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2187 SchedStart > LateStart) 2188 scheduleFound = false; 2189 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2190 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2191 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2192 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2193 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2194 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2195 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2196 SchedEnd = 2197 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2198 // When scheduling a Phi it is better to start at the late cycle and go 2199 // backwards. The default order may insert the Phi too far away from 2200 // its first dependence. 2201 if (SU->getInstr()->isPHI()) 2202 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2203 else 2204 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2205 } else { 2206 int FirstCycle = Schedule.getFirstCycle(); 2207 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2208 FirstCycle + getASAP(SU) + II - 1, II); 2209 } 2210 // Even if we find a schedule, make sure the schedule doesn't exceed the 2211 // allowable number of stages. We keep trying if this happens. 2212 if (scheduleFound) 2213 if (SwpMaxStages > -1 && 2214 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2215 scheduleFound = false; 2216 2217 DEBUG({ 2218 if (!scheduleFound) 2219 dbgs() << "\tCan't schedule\n"; 2220 }); 2221 } while (++NI != NE && scheduleFound); 2222 2223 // If a schedule is found, check if it is a valid schedule too. 2224 if (scheduleFound) 2225 scheduleFound = Schedule.isValidSchedule(this); 2226 } 2227 2228 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2229 2230 if (scheduleFound) 2231 Schedule.finalizeSchedule(this); 2232 else 2233 Schedule.reset(); 2234 2235 return scheduleFound && Schedule.getMaxStageCount() > 0; 2236 } 2237 2238 /// Given a schedule for the loop, generate a new version of the loop, 2239 /// and replace the old version. This function generates a prolog 2240 /// that contains the initial iterations in the pipeline, and kernel 2241 /// loop, and the epilogue that contains the code for the final 2242 /// iterations. 2243 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2244 // Create a new basic block for the kernel and add it to the CFG. 2245 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2246 2247 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2248 2249 // Remember the registers that are used in different stages. The index is 2250 // the iteration, or stage, that the instruction is scheduled in. This is 2251 // a map between register names in the orignal block and the names created 2252 // in each stage of the pipelined loop. 2253 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2254 InstrMapTy InstrMap; 2255 2256 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2257 // Generate the prolog instructions that set up the pipeline. 2258 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2259 MF.insert(BB->getIterator(), KernelBB); 2260 2261 // Rearrange the instructions to generate the new, pipelined loop, 2262 // and update register names as needed. 2263 for (int Cycle = Schedule.getFirstCycle(), 2264 LastCycle = Schedule.getFinalCycle(); 2265 Cycle <= LastCycle; ++Cycle) { 2266 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2267 // This inner loop schedules each instruction in the cycle. 2268 for (SUnit *CI : CycleInstrs) { 2269 if (CI->getInstr()->isPHI()) 2270 continue; 2271 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2272 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2273 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2274 KernelBB->push_back(NewMI); 2275 InstrMap[NewMI] = CI->getInstr(); 2276 } 2277 } 2278 2279 // Copy any terminator instructions to the new kernel, and update 2280 // names as needed. 2281 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2282 E = BB->instr_end(); 2283 I != E; ++I) { 2284 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2285 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2286 KernelBB->push_back(NewMI); 2287 InstrMap[NewMI] = &*I; 2288 } 2289 2290 KernelBB->transferSuccessors(BB); 2291 KernelBB->replaceSuccessor(BB, KernelBB); 2292 2293 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2294 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2295 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2296 InstrMap, MaxStageCount, MaxStageCount, false); 2297 2298 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2299 2300 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2301 // Generate the epilog instructions to complete the pipeline. 2302 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2303 PrologBBs); 2304 2305 // We need this step because the register allocation doesn't handle some 2306 // situations well, so we insert copies to help out. 2307 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2308 2309 // Remove dead instructions due to loop induction variables. 2310 removeDeadInstructions(KernelBB, EpilogBBs); 2311 2312 // Add branches between prolog and epilog blocks. 2313 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2314 2315 // Remove the original loop since it's no longer referenced. 2316 BB->clear(); 2317 BB->eraseFromParent(); 2318 2319 delete[] VRMap; 2320 } 2321 2322 /// Generate the pipeline prolog code. 2323 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2324 MachineBasicBlock *KernelBB, 2325 ValueMapTy *VRMap, 2326 MBBVectorTy &PrologBBs) { 2327 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2328 assert(PreheaderBB != nullptr && 2329 "Need to add code to handle loops w/o preheader"); 2330 MachineBasicBlock *PredBB = PreheaderBB; 2331 InstrMapTy InstrMap; 2332 2333 // Generate a basic block for each stage, not including the last stage, 2334 // which will be generated in the kernel. Each basic block may contain 2335 // instructions from multiple stages/iterations. 2336 for (unsigned i = 0; i < LastStage; ++i) { 2337 // Create and insert the prolog basic block prior to the original loop 2338 // basic block. The original loop is removed later. 2339 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2340 PrologBBs.push_back(NewBB); 2341 MF.insert(BB->getIterator(), NewBB); 2342 NewBB->transferSuccessors(PredBB); 2343 PredBB->addSuccessor(NewBB); 2344 PredBB = NewBB; 2345 2346 // Generate instructions for each appropriate stage. Process instructions 2347 // in original program order. 2348 for (int StageNum = i; StageNum >= 0; --StageNum) { 2349 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2350 BBE = BB->getFirstTerminator(); 2351 BBI != BBE; ++BBI) { 2352 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2353 if (BBI->isPHI()) 2354 continue; 2355 MachineInstr *NewMI = 2356 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2357 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2358 VRMap); 2359 NewBB->push_back(NewMI); 2360 InstrMap[NewMI] = &*BBI; 2361 } 2362 } 2363 } 2364 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2365 DEBUG({ 2366 dbgs() << "prolog:\n"; 2367 NewBB->dump(); 2368 }); 2369 } 2370 2371 PredBB->replaceSuccessor(BB, KernelBB); 2372 2373 // Check if we need to remove the branch from the preheader to the original 2374 // loop, and replace it with a branch to the new loop. 2375 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2376 if (numBranches) { 2377 SmallVector<MachineOperand, 0> Cond; 2378 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2379 } 2380 } 2381 2382 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2383 /// that were started in either the prolog or the kernel. We create a basic 2384 /// block for each stage that needs to complete. 2385 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2386 MachineBasicBlock *KernelBB, 2387 ValueMapTy *VRMap, 2388 MBBVectorTy &EpilogBBs, 2389 MBBVectorTy &PrologBBs) { 2390 // We need to change the branch from the kernel to the first epilog block, so 2391 // this call to analyze branch uses the kernel rather than the original BB. 2392 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2393 SmallVector<MachineOperand, 4> Cond; 2394 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2395 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2396 if (checkBranch) 2397 return; 2398 2399 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2400 if (*LoopExitI == KernelBB) 2401 ++LoopExitI; 2402 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2403 MachineBasicBlock *LoopExitBB = *LoopExitI; 2404 2405 MachineBasicBlock *PredBB = KernelBB; 2406 MachineBasicBlock *EpilogStart = LoopExitBB; 2407 InstrMapTy InstrMap; 2408 2409 // Generate a basic block for each stage, not including the last stage, 2410 // which was generated for the kernel. Each basic block may contain 2411 // instructions from multiple stages/iterations. 2412 int EpilogStage = LastStage + 1; 2413 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2414 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2415 EpilogBBs.push_back(NewBB); 2416 MF.insert(BB->getIterator(), NewBB); 2417 2418 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2419 NewBB->addSuccessor(LoopExitBB); 2420 2421 if (EpilogStart == LoopExitBB) 2422 EpilogStart = NewBB; 2423 2424 // Add instructions to the epilog depending on the current block. 2425 // Process instructions in original program order. 2426 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2427 for (auto &BBI : *BB) { 2428 if (BBI.isPHI()) 2429 continue; 2430 MachineInstr *In = &BBI; 2431 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2432 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2433 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2434 NewBB->push_back(NewMI); 2435 InstrMap[NewMI] = In; 2436 } 2437 } 2438 } 2439 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2440 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2441 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2442 InstrMap, LastStage, EpilogStage, i == 1); 2443 PredBB = NewBB; 2444 2445 DEBUG({ 2446 dbgs() << "epilog:\n"; 2447 NewBB->dump(); 2448 }); 2449 } 2450 2451 // Fix any Phi nodes in the loop exit block. 2452 for (MachineInstr &MI : *LoopExitBB) { 2453 if (!MI.isPHI()) 2454 break; 2455 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2456 MachineOperand &MO = MI.getOperand(i); 2457 if (MO.getMBB() == BB) 2458 MO.setMBB(PredBB); 2459 } 2460 } 2461 2462 // Create a branch to the new epilog from the kernel. 2463 // Remove the original branch and add a new branch to the epilog. 2464 TII->removeBranch(*KernelBB); 2465 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2466 // Add a branch to the loop exit. 2467 if (EpilogBBs.size() > 0) { 2468 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2469 SmallVector<MachineOperand, 4> Cond1; 2470 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2471 } 2472 } 2473 2474 /// Replace all uses of FromReg that appear outside the specified 2475 /// basic block with ToReg. 2476 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2477 MachineBasicBlock *MBB, 2478 MachineRegisterInfo &MRI, 2479 LiveIntervals &LIS) { 2480 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2481 E = MRI.use_end(); 2482 I != E;) { 2483 MachineOperand &O = *I; 2484 ++I; 2485 if (O.getParent()->getParent() != MBB) 2486 O.setReg(ToReg); 2487 } 2488 if (!LIS.hasInterval(ToReg)) 2489 LIS.createEmptyInterval(ToReg); 2490 } 2491 2492 /// Return true if the register has a use that occurs outside the 2493 /// specified loop. 2494 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2495 MachineRegisterInfo &MRI) { 2496 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2497 E = MRI.use_end(); 2498 I != E; ++I) 2499 if (I->getParent()->getParent() != BB) 2500 return true; 2501 return false; 2502 } 2503 2504 /// Generate Phis for the specific block in the generated pipelined code. 2505 /// This function looks at the Phis from the original code to guide the 2506 /// creation of new Phis. 2507 void SwingSchedulerDAG::generateExistingPhis( 2508 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2509 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2510 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2511 bool IsLast) { 2512 // Compute the stage number for the initial value of the Phi, which 2513 // comes from the prolog. The prolog to use depends on to which kernel/ 2514 // epilog that we're adding the Phi. 2515 unsigned PrologStage = 0; 2516 unsigned PrevStage = 0; 2517 bool InKernel = (LastStageNum == CurStageNum); 2518 if (InKernel) { 2519 PrologStage = LastStageNum - 1; 2520 PrevStage = CurStageNum; 2521 } else { 2522 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2523 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2524 } 2525 2526 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2527 BBE = BB->getFirstNonPHI(); 2528 BBI != BBE; ++BBI) { 2529 unsigned Def = BBI->getOperand(0).getReg(); 2530 2531 unsigned InitVal = 0; 2532 unsigned LoopVal = 0; 2533 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2534 2535 unsigned PhiOp1 = 0; 2536 // The Phi value from the loop body typically is defined in the loop, but 2537 // not always. So, we need to check if the value is defined in the loop. 2538 unsigned PhiOp2 = LoopVal; 2539 if (VRMap[LastStageNum].count(LoopVal)) 2540 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2541 2542 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2543 int LoopValStage = 2544 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2545 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2546 if (NumStages == 0) { 2547 // We don't need to generate a Phi anymore, but we need to rename any uses 2548 // of the Phi value. 2549 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2550 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2551 Def, NewReg); 2552 if (VRMap[CurStageNum].count(LoopVal)) 2553 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2554 } 2555 // Adjust the number of Phis needed depending on the number of prologs left, 2556 // and the distance from where the Phi is first scheduled. 2557 unsigned NumPhis = NumStages; 2558 if (!InKernel && (int)PrologStage < LoopValStage) 2559 // The NumPhis is the maximum number of new Phis needed during the steady 2560 // state. If the Phi has not been scheduled in current prolog, then we 2561 // need to generate less Phis. 2562 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2563 // The number of Phis cannot exceed the number of prolog stages. Each 2564 // stage can potentially define two values. 2565 NumPhis = std::min(NumPhis, PrologStage + 2); 2566 2567 unsigned NewReg = 0; 2568 2569 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2570 // In the epilog, we may need to look back one stage to get the correct 2571 // Phi name because the epilog and prolog blocks execute the same stage. 2572 // The correct name is from the previous block only when the Phi has 2573 // been completely scheduled prior to the epilog, and Phi value is not 2574 // needed in multiple stages. 2575 int StageDiff = 0; 2576 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2577 NumPhis == 1) 2578 StageDiff = 1; 2579 // Adjust the computations below when the phi and the loop definition 2580 // are scheduled in different stages. 2581 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2582 StageDiff = StageScheduled - LoopValStage; 2583 for (unsigned np = 0; np < NumPhis; ++np) { 2584 // If the Phi hasn't been scheduled, then use the initial Phi operand 2585 // value. Otherwise, use the scheduled version of the instruction. This 2586 // is a little complicated when a Phi references another Phi. 2587 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2588 PhiOp1 = InitVal; 2589 // Check if the Phi has already been scheduled in a prolog stage. 2590 else if (PrologStage >= AccessStage + StageDiff + np && 2591 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2592 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2593 // Check if the Phi has already been scheduled, but the loop intruction 2594 // is either another Phi, or doesn't occur in the loop. 2595 else if (PrologStage >= AccessStage + StageDiff + np) { 2596 // If the Phi references another Phi, we need to examine the other 2597 // Phi to get the correct value. 2598 PhiOp1 = LoopVal; 2599 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2600 int Indirects = 1; 2601 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2602 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2603 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2604 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2605 else 2606 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2607 InstOp1 = MRI.getVRegDef(PhiOp1); 2608 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2609 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2610 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2611 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2612 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2613 break; 2614 } 2615 ++Indirects; 2616 } 2617 } else 2618 PhiOp1 = InitVal; 2619 // If this references a generated Phi in the kernel, get the Phi operand 2620 // from the incoming block. 2621 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2622 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2623 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2624 2625 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2626 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2627 // In the epilog, a map lookup is needed to get the value from the kernel, 2628 // or previous epilog block. How is does this depends on if the 2629 // instruction is scheduled in the previous block. 2630 if (!InKernel) { 2631 int StageDiffAdj = 0; 2632 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2633 StageDiffAdj = StageScheduled - LoopValStage; 2634 // Use the loop value defined in the kernel, unless the kernel 2635 // contains the last definition of the Phi. 2636 if (np == 0 && PrevStage == LastStageNum && 2637 (StageScheduled != 0 || LoopValStage != 0) && 2638 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2639 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2640 // Use the value defined by the Phi. We add one because we switch 2641 // from looking at the loop value to the Phi definition. 2642 else if (np > 0 && PrevStage == LastStageNum && 2643 VRMap[PrevStage - np + 1].count(Def)) 2644 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2645 // Use the loop value defined in the kernel. 2646 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2647 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2648 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2649 // Use the value defined by the Phi, unless we're generating the first 2650 // epilog and the Phi refers to a Phi in a different stage. 2651 else if (VRMap[PrevStage - np].count(Def) && 2652 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2653 PhiOp2 = VRMap[PrevStage - np][Def]; 2654 } 2655 2656 // Check if we can reuse an existing Phi. This occurs when a Phi 2657 // references another Phi, and the other Phi is scheduled in an 2658 // earlier stage. We can try to reuse an existing Phi up until the last 2659 // stage of the current Phi. 2660 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2661 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2662 int StageDiff = (StageScheduled - LoopValStage); 2663 LVNumStages -= StageDiff; 2664 if (LVNumStages > (int)np) { 2665 NewReg = PhiOp2; 2666 unsigned ReuseStage = CurStageNum; 2667 if (Schedule.isLoopCarried(this, *PhiInst)) 2668 ReuseStage -= LVNumStages; 2669 // Check if the Phi to reuse has been generated yet. If not, then 2670 // there is nothing to reuse. 2671 if (VRMap[ReuseStage].count(LoopVal)) { 2672 NewReg = VRMap[ReuseStage][LoopVal]; 2673 2674 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2675 &*BBI, Def, NewReg); 2676 // Update the map with the new Phi name. 2677 VRMap[CurStageNum - np][Def] = NewReg; 2678 PhiOp2 = NewReg; 2679 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2680 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2681 2682 if (IsLast && np == NumPhis - 1) 2683 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2684 continue; 2685 } 2686 } else if (InKernel && StageDiff > 0 && 2687 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2688 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2689 } 2690 2691 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2692 NewReg = MRI.createVirtualRegister(RC); 2693 2694 MachineInstrBuilder NewPhi = 2695 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2696 TII->get(TargetOpcode::PHI), NewReg); 2697 NewPhi.addReg(PhiOp1).addMBB(BB1); 2698 NewPhi.addReg(PhiOp2).addMBB(BB2); 2699 if (np == 0) 2700 InstrMap[NewPhi] = &*BBI; 2701 2702 // We define the Phis after creating the new pipelined code, so 2703 // we need to rename the Phi values in scheduled instructions. 2704 2705 unsigned PrevReg = 0; 2706 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2707 PrevReg = VRMap[PrevStage - np][LoopVal]; 2708 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2709 Def, NewReg, PrevReg); 2710 // If the Phi has been scheduled, use the new name for rewriting. 2711 if (VRMap[CurStageNum - np].count(Def)) { 2712 unsigned R = VRMap[CurStageNum - np][Def]; 2713 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2714 R, NewReg); 2715 } 2716 2717 // Check if we need to rename any uses that occurs after the loop. The 2718 // register to replace depends on whether the Phi is scheduled in the 2719 // epilog. 2720 if (IsLast && np == NumPhis - 1) 2721 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2722 2723 // In the kernel, a dependent Phi uses the value from this Phi. 2724 if (InKernel) 2725 PhiOp2 = NewReg; 2726 2727 // Update the map with the new Phi name. 2728 VRMap[CurStageNum - np][Def] = NewReg; 2729 } 2730 2731 while (NumPhis++ < NumStages) { 2732 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2733 &*BBI, Def, NewReg, 0); 2734 } 2735 2736 // Check if we need to rename a Phi that has been eliminated due to 2737 // scheduling. 2738 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2739 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2740 } 2741 } 2742 2743 /// Generate Phis for the specified block in the generated pipelined code. 2744 /// These are new Phis needed because the definition is scheduled after the 2745 /// use in the pipelened sequence. 2746 void SwingSchedulerDAG::generatePhis( 2747 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2748 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2749 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2750 bool IsLast) { 2751 // Compute the stage number that contains the initial Phi value, and 2752 // the Phi from the previous stage. 2753 unsigned PrologStage = 0; 2754 unsigned PrevStage = 0; 2755 unsigned StageDiff = CurStageNum - LastStageNum; 2756 bool InKernel = (StageDiff == 0); 2757 if (InKernel) { 2758 PrologStage = LastStageNum - 1; 2759 PrevStage = CurStageNum; 2760 } else { 2761 PrologStage = LastStageNum - StageDiff; 2762 PrevStage = LastStageNum + StageDiff - 1; 2763 } 2764 2765 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2766 BBE = BB->instr_end(); 2767 BBI != BBE; ++BBI) { 2768 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2769 MachineOperand &MO = BBI->getOperand(i); 2770 if (!MO.isReg() || !MO.isDef() || 2771 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2772 continue; 2773 2774 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2775 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2776 unsigned Def = MO.getReg(); 2777 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2778 // An instruction scheduled in stage 0 and is used after the loop 2779 // requires a phi in the epilog for the last definition from either 2780 // the kernel or prolog. 2781 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2782 hasUseAfterLoop(Def, BB, MRI)) 2783 NumPhis = 1; 2784 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2785 continue; 2786 2787 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2788 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2789 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2790 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2791 // The number of Phis can't exceed the number of prolog stages. The 2792 // prolog stage number is zero based. 2793 if (NumPhis > PrologStage + 1 - StageScheduled) 2794 NumPhis = PrologStage + 1 - StageScheduled; 2795 for (unsigned np = 0; np < NumPhis; ++np) { 2796 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2797 if (np <= PrologStage) 2798 PhiOp1 = VRMap[PrologStage - np][Def]; 2799 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2800 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2801 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2802 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2803 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2804 } 2805 if (!InKernel) 2806 PhiOp2 = VRMap[PrevStage - np][Def]; 2807 2808 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2809 unsigned NewReg = MRI.createVirtualRegister(RC); 2810 2811 MachineInstrBuilder NewPhi = 2812 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2813 TII->get(TargetOpcode::PHI), NewReg); 2814 NewPhi.addReg(PhiOp1).addMBB(BB1); 2815 NewPhi.addReg(PhiOp2).addMBB(BB2); 2816 if (np == 0) 2817 InstrMap[NewPhi] = &*BBI; 2818 2819 // Rewrite uses and update the map. The actions depend upon whether 2820 // we generating code for the kernel or epilog blocks. 2821 if (InKernel) { 2822 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2823 &*BBI, PhiOp1, NewReg); 2824 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2825 &*BBI, PhiOp2, NewReg); 2826 2827 PhiOp2 = NewReg; 2828 VRMap[PrevStage - np - 1][Def] = NewReg; 2829 } else { 2830 VRMap[CurStageNum - np][Def] = NewReg; 2831 if (np == NumPhis - 1) 2832 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2833 &*BBI, Def, NewReg); 2834 } 2835 if (IsLast && np == NumPhis - 1) 2836 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2837 } 2838 } 2839 } 2840 } 2841 2842 /// Remove instructions that generate values with no uses. 2843 /// Typically, these are induction variable operations that generate values 2844 /// used in the loop itself. A dead instruction has a definition with 2845 /// no uses, or uses that occur in the original loop only. 2846 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2847 MBBVectorTy &EpilogBBs) { 2848 // For each epilog block, check that the value defined by each instruction 2849 // is used. If not, delete it. 2850 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2851 MBE = EpilogBBs.rend(); 2852 MBB != MBE; ++MBB) 2853 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2854 ME = (*MBB)->instr_rend(); 2855 MI != ME;) { 2856 // From DeadMachineInstructionElem. Don't delete inline assembly. 2857 if (MI->isInlineAsm()) { 2858 ++MI; 2859 continue; 2860 } 2861 bool SawStore = false; 2862 // Check if it's safe to remove the instruction due to side effects. 2863 // We can, and want to, remove Phis here. 2864 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2865 ++MI; 2866 continue; 2867 } 2868 bool used = true; 2869 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2870 MOE = MI->operands_end(); 2871 MOI != MOE; ++MOI) { 2872 if (!MOI->isReg() || !MOI->isDef()) 2873 continue; 2874 unsigned reg = MOI->getReg(); 2875 unsigned realUses = 0; 2876 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2877 EI = MRI.use_end(); 2878 UI != EI; ++UI) { 2879 // Check if there are any uses that occur only in the original 2880 // loop. If so, that's not a real use. 2881 if (UI->getParent()->getParent() != BB) { 2882 realUses++; 2883 used = true; 2884 break; 2885 } 2886 } 2887 if (realUses > 0) 2888 break; 2889 used = false; 2890 } 2891 if (!used) { 2892 MI++->eraseFromParent(); 2893 continue; 2894 } 2895 ++MI; 2896 } 2897 // In the kernel block, check if we can remove a Phi that generates a value 2898 // used in an instruction removed in the epilog block. 2899 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2900 BBE = KernelBB->getFirstNonPHI(); 2901 BBI != BBE;) { 2902 MachineInstr *MI = &*BBI; 2903 ++BBI; 2904 unsigned reg = MI->getOperand(0).getReg(); 2905 if (MRI.use_begin(reg) == MRI.use_end()) { 2906 MI->eraseFromParent(); 2907 } 2908 } 2909 } 2910 2911 /// For loop carried definitions, we split the lifetime of a virtual register 2912 /// that has uses past the definition in the next iteration. A copy with a new 2913 /// virtual register is inserted before the definition, which helps with 2914 /// generating a better register assignment. 2915 /// 2916 /// v1 = phi(a, v2) v1 = phi(a, v2) 2917 /// v2 = phi(b, v3) v2 = phi(b, v3) 2918 /// v3 = .. v4 = copy v1 2919 /// .. = V1 v3 = .. 2920 /// .. = v4 2921 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2922 MBBVectorTy &EpilogBBs, 2923 SMSchedule &Schedule) { 2924 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2925 for (auto &PHI : KernelBB->phis()) { 2926 unsigned Def = PHI.getOperand(0).getReg(); 2927 // Check for any Phi definition that used as an operand of another Phi 2928 // in the same block. 2929 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2930 E = MRI.use_instr_end(); 2931 I != E; ++I) { 2932 if (I->isPHI() && I->getParent() == KernelBB) { 2933 // Get the loop carried definition. 2934 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2935 if (!LCDef) 2936 continue; 2937 MachineInstr *MI = MRI.getVRegDef(LCDef); 2938 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2939 continue; 2940 // Search through the rest of the block looking for uses of the Phi 2941 // definition. If one occurs, then split the lifetime. 2942 unsigned SplitReg = 0; 2943 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2944 KernelBB->instr_end())) 2945 if (BBJ.readsRegister(Def)) { 2946 // We split the lifetime when we find the first use. 2947 if (SplitReg == 0) { 2948 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2949 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2950 TII->get(TargetOpcode::COPY), SplitReg) 2951 .addReg(Def); 2952 } 2953 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2954 } 2955 if (!SplitReg) 2956 continue; 2957 // Search through each of the epilog blocks for any uses to be renamed. 2958 for (auto &Epilog : EpilogBBs) 2959 for (auto &I : *Epilog) 2960 if (I.readsRegister(Def)) 2961 I.substituteRegister(Def, SplitReg, 0, *TRI); 2962 break; 2963 } 2964 } 2965 } 2966 } 2967 2968 /// Remove the incoming block from the Phis in a basic block. 2969 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2970 for (MachineInstr &MI : *BB) { 2971 if (!MI.isPHI()) 2972 break; 2973 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2974 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2975 MI.RemoveOperand(i + 1); 2976 MI.RemoveOperand(i); 2977 break; 2978 } 2979 } 2980 } 2981 2982 /// Create branches from each prolog basic block to the appropriate epilog 2983 /// block. These edges are needed if the loop ends before reaching the 2984 /// kernel. 2985 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2986 MachineBasicBlock *KernelBB, 2987 MBBVectorTy &EpilogBBs, 2988 SMSchedule &Schedule, ValueMapTy *VRMap) { 2989 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2990 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2991 MachineInstr *Cmp = Pass.LI.LoopCompare; 2992 MachineBasicBlock *LastPro = KernelBB; 2993 MachineBasicBlock *LastEpi = KernelBB; 2994 2995 // Start from the blocks connected to the kernel and work "out" 2996 // to the first prolog and the last epilog blocks. 2997 SmallVector<MachineInstr *, 4> PrevInsts; 2998 unsigned MaxIter = PrologBBs.size() - 1; 2999 unsigned LC = UINT_MAX; 3000 unsigned LCMin = UINT_MAX; 3001 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3002 // Add branches to the prolog that go to the corresponding 3003 // epilog, and the fall-thru prolog/kernel block. 3004 MachineBasicBlock *Prolog = PrologBBs[j]; 3005 MachineBasicBlock *Epilog = EpilogBBs[i]; 3006 // We've executed one iteration, so decrement the loop count and check for 3007 // the loop end. 3008 SmallVector<MachineOperand, 4> Cond; 3009 // Check if the LOOP0 has already been removed. If so, then there is no need 3010 // to reduce the trip count. 3011 if (LC != 0) 3012 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3013 MaxIter); 3014 3015 // Record the value of the first trip count, which is used to determine if 3016 // branches and blocks can be removed for constant trip counts. 3017 if (LCMin == UINT_MAX) 3018 LCMin = LC; 3019 3020 unsigned numAdded = 0; 3021 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3022 Prolog->addSuccessor(Epilog); 3023 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3024 } else if (j >= LCMin) { 3025 Prolog->addSuccessor(Epilog); 3026 Prolog->removeSuccessor(LastPro); 3027 LastEpi->removeSuccessor(Epilog); 3028 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3029 removePhis(Epilog, LastEpi); 3030 // Remove the blocks that are no longer referenced. 3031 if (LastPro != LastEpi) { 3032 LastEpi->clear(); 3033 LastEpi->eraseFromParent(); 3034 } 3035 LastPro->clear(); 3036 LastPro->eraseFromParent(); 3037 } else { 3038 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3039 removePhis(Epilog, Prolog); 3040 } 3041 LastPro = Prolog; 3042 LastEpi = Epilog; 3043 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3044 E = Prolog->instr_rend(); 3045 I != E && numAdded > 0; ++I, --numAdded) 3046 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3047 } 3048 } 3049 3050 /// Return true if we can compute the amount the instruction changes 3051 /// during each iteration. Set Delta to the amount of the change. 3052 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3053 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3054 unsigned BaseReg; 3055 int64_t Offset; 3056 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3057 return false; 3058 3059 MachineRegisterInfo &MRI = MF.getRegInfo(); 3060 // Check if there is a Phi. If so, get the definition in the loop. 3061 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3062 if (BaseDef && BaseDef->isPHI()) { 3063 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3064 BaseDef = MRI.getVRegDef(BaseReg); 3065 } 3066 if (!BaseDef) 3067 return false; 3068 3069 int D = 0; 3070 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3071 return false; 3072 3073 Delta = D; 3074 return true; 3075 } 3076 3077 /// Update the memory operand with a new offset when the pipeliner 3078 /// generates a new copy of the instruction that refers to a 3079 /// different memory location. 3080 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3081 MachineInstr &OldMI, unsigned Num) { 3082 if (Num == 0) 3083 return; 3084 // If the instruction has memory operands, then adjust the offset 3085 // when the instruction appears in different stages. 3086 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3087 if (NumRefs == 0) 3088 return; 3089 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3090 unsigned Refs = 0; 3091 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3092 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3093 (!MMO->getValue())) { 3094 NewMemRefs[Refs++] = MMO; 3095 continue; 3096 } 3097 unsigned Delta; 3098 if (computeDelta(OldMI, Delta)) { 3099 int64_t AdjOffset = Delta * Num; 3100 NewMemRefs[Refs++] = 3101 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3102 } else 3103 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3104 } 3105 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3106 } 3107 3108 /// Clone the instruction for the new pipelined loop and update the 3109 /// memory operands, if needed. 3110 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3111 unsigned CurStageNum, 3112 unsigned InstStageNum) { 3113 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3114 // Check for tied operands in inline asm instructions. This should be handled 3115 // elsewhere, but I'm not sure of the best solution. 3116 if (OldMI->isInlineAsm()) 3117 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3118 const auto &MO = OldMI->getOperand(i); 3119 if (MO.isReg() && MO.isUse()) 3120 break; 3121 unsigned UseIdx; 3122 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3123 NewMI->tieOperands(i, UseIdx); 3124 } 3125 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3126 return NewMI; 3127 } 3128 3129 /// Clone the instruction for the new pipelined loop. If needed, this 3130 /// function updates the instruction using the values saved in the 3131 /// InstrChanges structure. 3132 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3133 unsigned CurStageNum, 3134 unsigned InstStageNum, 3135 SMSchedule &Schedule) { 3136 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3137 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3138 InstrChanges.find(getSUnit(OldMI)); 3139 if (It != InstrChanges.end()) { 3140 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3141 unsigned BasePos, OffsetPos; 3142 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3143 return nullptr; 3144 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3145 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3146 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3147 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3148 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3149 } 3150 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3151 return NewMI; 3152 } 3153 3154 /// Update the machine instruction with new virtual registers. This 3155 /// function may change the defintions and/or uses. 3156 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3157 unsigned CurStageNum, 3158 unsigned InstrStageNum, 3159 SMSchedule &Schedule, 3160 ValueMapTy *VRMap) { 3161 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3162 MachineOperand &MO = NewMI->getOperand(i); 3163 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3164 continue; 3165 unsigned reg = MO.getReg(); 3166 if (MO.isDef()) { 3167 // Create a new virtual register for the definition. 3168 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3169 unsigned NewReg = MRI.createVirtualRegister(RC); 3170 MO.setReg(NewReg); 3171 VRMap[CurStageNum][reg] = NewReg; 3172 if (LastDef) 3173 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3174 } else if (MO.isUse()) { 3175 MachineInstr *Def = MRI.getVRegDef(reg); 3176 // Compute the stage that contains the last definition for instruction. 3177 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3178 unsigned StageNum = CurStageNum; 3179 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3180 // Compute the difference in stages between the defintion and the use. 3181 unsigned StageDiff = (InstrStageNum - DefStageNum); 3182 // Make an adjustment to get the last definition. 3183 StageNum -= StageDiff; 3184 } 3185 if (VRMap[StageNum].count(reg)) 3186 MO.setReg(VRMap[StageNum][reg]); 3187 } 3188 } 3189 } 3190 3191 /// Return the instruction in the loop that defines the register. 3192 /// If the definition is a Phi, then follow the Phi operand to 3193 /// the instruction in the loop. 3194 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3195 SmallPtrSet<MachineInstr *, 8> Visited; 3196 MachineInstr *Def = MRI.getVRegDef(Reg); 3197 while (Def->isPHI()) { 3198 if (!Visited.insert(Def).second) 3199 break; 3200 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3201 if (Def->getOperand(i + 1).getMBB() == BB) { 3202 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3203 break; 3204 } 3205 } 3206 return Def; 3207 } 3208 3209 /// Return the new name for the value from the previous stage. 3210 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3211 unsigned LoopVal, unsigned LoopStage, 3212 ValueMapTy *VRMap, 3213 MachineBasicBlock *BB) { 3214 unsigned PrevVal = 0; 3215 if (StageNum > PhiStage) { 3216 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3217 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3218 // The name is defined in the previous stage. 3219 PrevVal = VRMap[StageNum - 1][LoopVal]; 3220 else if (VRMap[StageNum].count(LoopVal)) 3221 // The previous name is defined in the current stage when the instruction 3222 // order is swapped. 3223 PrevVal = VRMap[StageNum][LoopVal]; 3224 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3225 // The loop value hasn't yet been scheduled. 3226 PrevVal = LoopVal; 3227 else if (StageNum == PhiStage + 1) 3228 // The loop value is another phi, which has not been scheduled. 3229 PrevVal = getInitPhiReg(*LoopInst, BB); 3230 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3231 // The loop value is another phi, which has been scheduled. 3232 PrevVal = 3233 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3234 LoopStage, VRMap, BB); 3235 } 3236 return PrevVal; 3237 } 3238 3239 /// Rewrite the Phi values in the specified block to use the mappings 3240 /// from the initial operand. Once the Phi is scheduled, we switch 3241 /// to using the loop value instead of the Phi value, so those names 3242 /// do not need to be rewritten. 3243 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3244 unsigned StageNum, 3245 SMSchedule &Schedule, 3246 ValueMapTy *VRMap, 3247 InstrMapTy &InstrMap) { 3248 for (auto &PHI : BB->phis()) { 3249 unsigned InitVal = 0; 3250 unsigned LoopVal = 0; 3251 getPhiRegs(PHI, BB, InitVal, LoopVal); 3252 unsigned PhiDef = PHI.getOperand(0).getReg(); 3253 3254 unsigned PhiStage = 3255 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3256 unsigned LoopStage = 3257 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3258 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3259 if (NumPhis > StageNum) 3260 NumPhis = StageNum; 3261 for (unsigned np = 0; np <= NumPhis; ++np) { 3262 unsigned NewVal = 3263 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3264 if (!NewVal) 3265 NewVal = InitVal; 3266 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3267 PhiDef, NewVal); 3268 } 3269 } 3270 } 3271 3272 /// Rewrite a previously scheduled instruction to use the register value 3273 /// from the new instruction. Make sure the instruction occurs in the 3274 /// basic block, and we don't change the uses in the new instruction. 3275 void SwingSchedulerDAG::rewriteScheduledInstr( 3276 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3277 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3278 unsigned NewReg, unsigned PrevReg) { 3279 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3280 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3281 // Rewrite uses that have been scheduled already to use the new 3282 // Phi register. 3283 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3284 EI = MRI.use_end(); 3285 UI != EI;) { 3286 MachineOperand &UseOp = *UI; 3287 MachineInstr *UseMI = UseOp.getParent(); 3288 ++UI; 3289 if (UseMI->getParent() != BB) 3290 continue; 3291 if (UseMI->isPHI()) { 3292 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3293 continue; 3294 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3295 continue; 3296 } 3297 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3298 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3299 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3300 int StageSched = Schedule.stageScheduled(OrigMISU); 3301 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3302 unsigned ReplaceReg = 0; 3303 // This is the stage for the scheduled instruction. 3304 if (StagePhi == StageSched && Phi->isPHI()) { 3305 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3306 if (PrevReg && InProlog) 3307 ReplaceReg = PrevReg; 3308 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3309 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3310 ReplaceReg = PrevReg; 3311 else 3312 ReplaceReg = NewReg; 3313 } 3314 // The scheduled instruction occurs before the scheduled Phi, and the 3315 // Phi is not loop carried. 3316 if (!InProlog && StagePhi + 1 == StageSched && 3317 !Schedule.isLoopCarried(this, *Phi)) 3318 ReplaceReg = NewReg; 3319 if (StagePhi > StageSched && Phi->isPHI()) 3320 ReplaceReg = NewReg; 3321 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3322 ReplaceReg = NewReg; 3323 if (ReplaceReg) { 3324 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3325 UseOp.setReg(ReplaceReg); 3326 } 3327 } 3328 } 3329 3330 /// Check if we can change the instruction to use an offset value from the 3331 /// previous iteration. If so, return true and set the base and offset values 3332 /// so that we can rewrite the load, if necessary. 3333 /// v1 = Phi(v0, v3) 3334 /// v2 = load v1, 0 3335 /// v3 = post_store v1, 4, x 3336 /// This function enables the load to be rewritten as v2 = load v3, 4. 3337 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3338 unsigned &BasePos, 3339 unsigned &OffsetPos, 3340 unsigned &NewBase, 3341 int64_t &Offset) { 3342 // Get the load instruction. 3343 if (TII->isPostIncrement(*MI)) 3344 return false; 3345 unsigned BasePosLd, OffsetPosLd; 3346 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3347 return false; 3348 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3349 3350 // Look for the Phi instruction. 3351 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3352 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3353 if (!Phi || !Phi->isPHI()) 3354 return false; 3355 // Get the register defined in the loop block. 3356 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3357 if (!PrevReg) 3358 return false; 3359 3360 // Check for the post-increment load/store instruction. 3361 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3362 if (!PrevDef || PrevDef == MI) 3363 return false; 3364 3365 if (!TII->isPostIncrement(*PrevDef)) 3366 return false; 3367 3368 unsigned BasePos1 = 0, OffsetPos1 = 0; 3369 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3370 return false; 3371 3372 // Make sure offset values are both positive or both negative. 3373 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3374 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3375 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3376 return false; 3377 3378 // Set the return value once we determine that we return true. 3379 BasePos = BasePosLd; 3380 OffsetPos = OffsetPosLd; 3381 NewBase = PrevReg; 3382 Offset = StoreOffset; 3383 return true; 3384 } 3385 3386 /// Apply changes to the instruction if needed. The changes are need 3387 /// to improve the scheduling and depend up on the final schedule. 3388 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3389 SMSchedule &Schedule) { 3390 SUnit *SU = getSUnit(MI); 3391 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3392 InstrChanges.find(SU); 3393 if (It != InstrChanges.end()) { 3394 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3395 unsigned BasePos, OffsetPos; 3396 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3397 return; 3398 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3399 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3400 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3401 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3402 int BaseStageNum = Schedule.stageScheduled(SU); 3403 int BaseCycleNum = Schedule.cycleScheduled(SU); 3404 if (BaseStageNum < DefStageNum) { 3405 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3406 int OffsetDiff = DefStageNum - BaseStageNum; 3407 if (DefCycleNum < BaseCycleNum) { 3408 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3409 if (OffsetDiff > 0) 3410 --OffsetDiff; 3411 } 3412 int64_t NewOffset = 3413 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3414 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3415 SU->setInstr(NewMI); 3416 MISUnitMap[NewMI] = SU; 3417 NewMIs.insert(NewMI); 3418 } 3419 } 3420 } 3421 3422 /// Return true for an order dependence that is loop carried potentially. 3423 /// An order dependence is loop carried if the destination defines a value 3424 /// that may be used by the source in a subsequent iteration. 3425 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3426 bool isSucc) { 3427 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3428 return false; 3429 3430 if (!SwpPruneLoopCarried) 3431 return true; 3432 3433 MachineInstr *SI = Source->getInstr(); 3434 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3435 if (!isSucc) 3436 std::swap(SI, DI); 3437 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3438 3439 // Assume ordered loads and stores may have a loop carried dependence. 3440 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3441 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3442 return true; 3443 3444 // Only chain dependences between a load and store can be loop carried. 3445 if (!DI->mayStore() || !SI->mayLoad()) 3446 return false; 3447 3448 unsigned DeltaS, DeltaD; 3449 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3450 return true; 3451 3452 unsigned BaseRegS, BaseRegD; 3453 int64_t OffsetS, OffsetD; 3454 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3455 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3456 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3457 return true; 3458 3459 if (BaseRegS != BaseRegD) 3460 return true; 3461 3462 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3463 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3464 3465 // This is the main test, which checks the offset values and the loop 3466 // increment value to determine if the accesses may be loop carried. 3467 if (OffsetS >= OffsetD) 3468 return OffsetS + AccessSizeS > DeltaS; 3469 else 3470 return OffsetD + AccessSizeD > DeltaD; 3471 3472 return true; 3473 } 3474 3475 void SwingSchedulerDAG::postprocessDAG() { 3476 for (auto &M : Mutations) 3477 M->apply(this); 3478 } 3479 3480 /// Try to schedule the node at the specified StartCycle and continue 3481 /// until the node is schedule or the EndCycle is reached. This function 3482 /// returns true if the node is scheduled. This routine may search either 3483 /// forward or backward for a place to insert the instruction based upon 3484 /// the relative values of StartCycle and EndCycle. 3485 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3486 bool forward = true; 3487 if (StartCycle > EndCycle) 3488 forward = false; 3489 3490 // The terminating condition depends on the direction. 3491 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3492 for (int curCycle = StartCycle; curCycle != termCycle; 3493 forward ? ++curCycle : --curCycle) { 3494 3495 // Add the already scheduled instructions at the specified cycle to the DFA. 3496 Resources->clearResources(); 3497 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3498 checkCycle <= LastCycle; checkCycle += II) { 3499 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3500 3501 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3502 E = cycleInstrs.end(); 3503 I != E; ++I) { 3504 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3505 continue; 3506 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3507 "These instructions have already been scheduled."); 3508 Resources->reserveResources(*(*I)->getInstr()); 3509 } 3510 } 3511 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3512 Resources->canReserveResources(*SU->getInstr())) { 3513 DEBUG({ 3514 dbgs() << "\tinsert at cycle " << curCycle << " "; 3515 SU->getInstr()->dump(); 3516 }); 3517 3518 ScheduledInstrs[curCycle].push_back(SU); 3519 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3520 if (curCycle > LastCycle) 3521 LastCycle = curCycle; 3522 if (curCycle < FirstCycle) 3523 FirstCycle = curCycle; 3524 return true; 3525 } 3526 DEBUG({ 3527 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3528 SU->getInstr()->dump(); 3529 }); 3530 } 3531 return false; 3532 } 3533 3534 // Return the cycle of the earliest scheduled instruction in the chain. 3535 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3536 SmallPtrSet<SUnit *, 8> Visited; 3537 SmallVector<SDep, 8> Worklist; 3538 Worklist.push_back(Dep); 3539 int EarlyCycle = INT_MAX; 3540 while (!Worklist.empty()) { 3541 const SDep &Cur = Worklist.pop_back_val(); 3542 SUnit *PrevSU = Cur.getSUnit(); 3543 if (Visited.count(PrevSU)) 3544 continue; 3545 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3546 if (it == InstrToCycle.end()) 3547 continue; 3548 EarlyCycle = std::min(EarlyCycle, it->second); 3549 for (const auto &PI : PrevSU->Preds) 3550 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3551 Worklist.push_back(PI); 3552 Visited.insert(PrevSU); 3553 } 3554 return EarlyCycle; 3555 } 3556 3557 // Return the cycle of the latest scheduled instruction in the chain. 3558 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3559 SmallPtrSet<SUnit *, 8> Visited; 3560 SmallVector<SDep, 8> Worklist; 3561 Worklist.push_back(Dep); 3562 int LateCycle = INT_MIN; 3563 while (!Worklist.empty()) { 3564 const SDep &Cur = Worklist.pop_back_val(); 3565 SUnit *SuccSU = Cur.getSUnit(); 3566 if (Visited.count(SuccSU)) 3567 continue; 3568 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3569 if (it == InstrToCycle.end()) 3570 continue; 3571 LateCycle = std::max(LateCycle, it->second); 3572 for (const auto &SI : SuccSU->Succs) 3573 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3574 Worklist.push_back(SI); 3575 Visited.insert(SuccSU); 3576 } 3577 return LateCycle; 3578 } 3579 3580 /// If an instruction has a use that spans multiple iterations, then 3581 /// return true. These instructions are characterized by having a back-ege 3582 /// to a Phi, which contains a reference to another Phi. 3583 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3584 for (auto &P : SU->Preds) 3585 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3586 for (auto &S : P.getSUnit()->Succs) 3587 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3588 return P.getSUnit(); 3589 return nullptr; 3590 } 3591 3592 /// Compute the scheduling start slot for the instruction. The start slot 3593 /// depends on any predecessor or successor nodes scheduled already. 3594 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3595 int *MinEnd, int *MaxStart, int II, 3596 SwingSchedulerDAG *DAG) { 3597 // Iterate over each instruction that has been scheduled already. The start 3598 // slot computuation depends on whether the previously scheduled instruction 3599 // is a predecessor or successor of the specified instruction. 3600 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3601 3602 // Iterate over each instruction in the current cycle. 3603 for (SUnit *I : getInstructions(cycle)) { 3604 // Because we're processing a DAG for the dependences, we recognize 3605 // the back-edge in recurrences by anti dependences. 3606 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3607 const SDep &Dep = SU->Preds[i]; 3608 if (Dep.getSUnit() == I) { 3609 if (!DAG->isBackedge(SU, Dep)) { 3610 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3611 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3612 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3613 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3614 int End = earliestCycleInChain(Dep) + (II - 1); 3615 *MinEnd = std::min(*MinEnd, End); 3616 } 3617 } else { 3618 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3619 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3620 *MinLateStart = std::min(*MinLateStart, LateStart); 3621 } 3622 } 3623 // For instruction that requires multiple iterations, make sure that 3624 // the dependent instruction is not scheduled past the definition. 3625 SUnit *BE = multipleIterations(I, DAG); 3626 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3627 !SU->isPred(I)) 3628 *MinLateStart = std::min(*MinLateStart, cycle); 3629 } 3630 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3631 if (SU->Succs[i].getSUnit() == I) { 3632 const SDep &Dep = SU->Succs[i]; 3633 if (!DAG->isBackedge(SU, Dep)) { 3634 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3635 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3636 *MinLateStart = std::min(*MinLateStart, LateStart); 3637 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3638 int Start = latestCycleInChain(Dep) + 1 - II; 3639 *MaxStart = std::max(*MaxStart, Start); 3640 } 3641 } else { 3642 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3643 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3644 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3645 } 3646 } 3647 } 3648 } 3649 } 3650 3651 /// Order the instructions within a cycle so that the definitions occur 3652 /// before the uses. Returns true if the instruction is added to the start 3653 /// of the list, or false if added to the end. 3654 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3655 std::deque<SUnit *> &Insts) { 3656 MachineInstr *MI = SU->getInstr(); 3657 bool OrderBeforeUse = false; 3658 bool OrderAfterDef = false; 3659 bool OrderBeforeDef = false; 3660 unsigned MoveDef = 0; 3661 unsigned MoveUse = 0; 3662 int StageInst1 = stageScheduled(SU); 3663 3664 unsigned Pos = 0; 3665 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3666 ++I, ++Pos) { 3667 // Relative order of Phis does not matter. 3668 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3669 continue; 3670 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3671 MachineOperand &MO = MI->getOperand(i); 3672 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3673 continue; 3674 unsigned Reg = MO.getReg(); 3675 unsigned BasePos, OffsetPos; 3676 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3677 if (MI->getOperand(BasePos).getReg() == Reg) 3678 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3679 Reg = NewReg; 3680 bool Reads, Writes; 3681 std::tie(Reads, Writes) = 3682 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3683 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3684 OrderBeforeUse = true; 3685 MoveUse = Pos; 3686 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3687 // Add the instruction after the scheduled instruction. 3688 OrderAfterDef = true; 3689 MoveDef = Pos; 3690 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3691 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3692 OrderBeforeUse = true; 3693 MoveUse = Pos; 3694 } else { 3695 OrderAfterDef = true; 3696 MoveDef = Pos; 3697 } 3698 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3699 OrderBeforeUse = true; 3700 MoveUse = Pos; 3701 if (MoveUse != 0) { 3702 OrderAfterDef = true; 3703 MoveDef = Pos - 1; 3704 } 3705 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3706 // Add the instruction before the scheduled instruction. 3707 OrderBeforeUse = true; 3708 MoveUse = Pos; 3709 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3710 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3711 OrderBeforeDef = true; 3712 MoveUse = Pos; 3713 } 3714 } 3715 // Check for order dependences between instructions. Make sure the source 3716 // is ordered before the destination. 3717 for (auto &S : SU->Succs) 3718 if (S.getKind() == SDep::Order) { 3719 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3720 OrderBeforeUse = true; 3721 MoveUse = Pos; 3722 } 3723 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3724 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3725 if (S.isAssignedRegDep()) { 3726 OrderAfterDef = true; 3727 MoveDef = Pos; 3728 } 3729 } else { 3730 OrderBeforeUse = true; 3731 MoveUse = Pos; 3732 } 3733 } 3734 for (auto &P : SU->Preds) 3735 if (P.getKind() == SDep::Order) { 3736 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3737 OrderAfterDef = true; 3738 MoveDef = Pos; 3739 } 3740 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3741 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3742 if (P.isAssignedRegDep()) { 3743 OrderBeforeUse = true; 3744 MoveUse = Pos; 3745 } 3746 } else { 3747 OrderAfterDef = true; 3748 MoveDef = Pos; 3749 } 3750 } 3751 } 3752 3753 // A circular dependence. 3754 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3755 OrderBeforeUse = false; 3756 3757 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3758 // to a loop-carried dependence. 3759 if (OrderBeforeDef) 3760 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3761 3762 // The uncommon case when the instruction order needs to be updated because 3763 // there is both a use and def. 3764 if (OrderBeforeUse && OrderAfterDef) { 3765 SUnit *UseSU = Insts.at(MoveUse); 3766 SUnit *DefSU = Insts.at(MoveDef); 3767 if (MoveUse > MoveDef) { 3768 Insts.erase(Insts.begin() + MoveUse); 3769 Insts.erase(Insts.begin() + MoveDef); 3770 } else { 3771 Insts.erase(Insts.begin() + MoveDef); 3772 Insts.erase(Insts.begin() + MoveUse); 3773 } 3774 if (orderDependence(SSD, UseSU, Insts)) { 3775 Insts.push_front(SU); 3776 orderDependence(SSD, DefSU, Insts); 3777 return true; 3778 } 3779 Insts.pop_back(); 3780 Insts.push_back(SU); 3781 Insts.push_back(UseSU); 3782 orderDependence(SSD, DefSU, Insts); 3783 return false; 3784 } 3785 // Put the new instruction first if there is a use in the list. Otherwise, 3786 // put it at the end of the list. 3787 if (OrderBeforeUse) 3788 Insts.push_front(SU); 3789 else 3790 Insts.push_back(SU); 3791 return OrderBeforeUse; 3792 } 3793 3794 /// Return true if the scheduled Phi has a loop carried operand. 3795 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3796 if (!Phi.isPHI()) 3797 return false; 3798 assert(Phi.isPHI() && "Expecing a Phi."); 3799 SUnit *DefSU = SSD->getSUnit(&Phi); 3800 unsigned DefCycle = cycleScheduled(DefSU); 3801 int DefStage = stageScheduled(DefSU); 3802 3803 unsigned InitVal = 0; 3804 unsigned LoopVal = 0; 3805 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3806 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3807 if (!UseSU) 3808 return true; 3809 if (UseSU->getInstr()->isPHI()) 3810 return true; 3811 unsigned LoopCycle = cycleScheduled(UseSU); 3812 int LoopStage = stageScheduled(UseSU); 3813 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3814 } 3815 3816 /// Return true if the instruction is a definition that is loop carried 3817 /// and defines the use on the next iteration. 3818 /// v1 = phi(v2, v3) 3819 /// (Def) v3 = op v1 3820 /// (MO) = v1 3821 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3822 /// register. 3823 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3824 MachineInstr *Def, MachineOperand &MO) { 3825 if (!MO.isReg()) 3826 return false; 3827 if (Def->isPHI()) 3828 return false; 3829 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3830 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3831 return false; 3832 if (!isLoopCarried(SSD, *Phi)) 3833 return false; 3834 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3835 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3836 MachineOperand &DMO = Def->getOperand(i); 3837 if (!DMO.isReg() || !DMO.isDef()) 3838 continue; 3839 if (DMO.getReg() == LoopReg) 3840 return true; 3841 } 3842 return false; 3843 } 3844 3845 // Check if the generated schedule is valid. This function checks if 3846 // an instruction that uses a physical register is scheduled in a 3847 // different stage than the definition. The pipeliner does not handle 3848 // physical register values that may cross a basic block boundary. 3849 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3850 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3851 SUnit &SU = SSD->SUnits[i]; 3852 if (!SU.hasPhysRegDefs) 3853 continue; 3854 int StageDef = stageScheduled(&SU); 3855 assert(StageDef != -1 && "Instruction should have been scheduled."); 3856 for (auto &SI : SU.Succs) 3857 if (SI.isAssignedRegDep()) 3858 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3859 if (stageScheduled(SI.getSUnit()) != StageDef) 3860 return false; 3861 } 3862 return true; 3863 } 3864 3865 /// Attempt to fix the degenerate cases when the instruction serialization 3866 /// causes the register lifetimes to overlap. For example, 3867 /// p' = store_pi(p, b) 3868 /// = load p, offset 3869 /// In this case p and p' overlap, which means that two registers are needed. 3870 /// Instead, this function changes the load to use p' and updates the offset. 3871 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3872 unsigned OverlapReg = 0; 3873 unsigned NewBaseReg = 0; 3874 for (SUnit *SU : Instrs) { 3875 MachineInstr *MI = SU->getInstr(); 3876 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3877 const MachineOperand &MO = MI->getOperand(i); 3878 // Look for an instruction that uses p. The instruction occurs in the 3879 // same cycle but occurs later in the serialized order. 3880 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3881 // Check that the instruction appears in the InstrChanges structure, 3882 // which contains instructions that can have the offset updated. 3883 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3884 InstrChanges.find(SU); 3885 if (It != InstrChanges.end()) { 3886 unsigned BasePos, OffsetPos; 3887 // Update the base register and adjust the offset. 3888 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3889 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3890 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3891 int64_t NewOffset = 3892 MI->getOperand(OffsetPos).getImm() - It->second.second; 3893 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3894 SU->setInstr(NewMI); 3895 MISUnitMap[NewMI] = SU; 3896 NewMIs.insert(NewMI); 3897 } 3898 } 3899 OverlapReg = 0; 3900 NewBaseReg = 0; 3901 break; 3902 } 3903 // Look for an instruction of the form p' = op(p), which uses and defines 3904 // two virtual registers that get allocated to the same physical register. 3905 unsigned TiedUseIdx = 0; 3906 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3907 // OverlapReg is p in the example above. 3908 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3909 // NewBaseReg is p' in the example above. 3910 NewBaseReg = MI->getOperand(i).getReg(); 3911 break; 3912 } 3913 } 3914 } 3915 } 3916 3917 /// After the schedule has been formed, call this function to combine 3918 /// the instructions from the different stages/cycles. That is, this 3919 /// function creates a schedule that represents a single iteration. 3920 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3921 // Move all instructions to the first stage from later stages. 3922 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3923 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3924 ++stage) { 3925 std::deque<SUnit *> &cycleInstrs = 3926 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3927 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3928 E = cycleInstrs.rend(); 3929 I != E; ++I) 3930 ScheduledInstrs[cycle].push_front(*I); 3931 } 3932 } 3933 // Iterate over the definitions in each instruction, and compute the 3934 // stage difference for each use. Keep the maximum value. 3935 for (auto &I : InstrToCycle) { 3936 int DefStage = stageScheduled(I.first); 3937 MachineInstr *MI = I.first->getInstr(); 3938 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3939 MachineOperand &Op = MI->getOperand(i); 3940 if (!Op.isReg() || !Op.isDef()) 3941 continue; 3942 3943 unsigned Reg = Op.getReg(); 3944 unsigned MaxDiff = 0; 3945 bool PhiIsSwapped = false; 3946 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3947 EI = MRI.use_end(); 3948 UI != EI; ++UI) { 3949 MachineOperand &UseOp = *UI; 3950 MachineInstr *UseMI = UseOp.getParent(); 3951 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3952 int UseStage = stageScheduled(SUnitUse); 3953 unsigned Diff = 0; 3954 if (UseStage != -1 && UseStage >= DefStage) 3955 Diff = UseStage - DefStage; 3956 if (MI->isPHI()) { 3957 if (isLoopCarried(SSD, *MI)) 3958 ++Diff; 3959 else 3960 PhiIsSwapped = true; 3961 } 3962 MaxDiff = std::max(Diff, MaxDiff); 3963 } 3964 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3965 } 3966 } 3967 3968 // Erase all the elements in the later stages. Only one iteration should 3969 // remain in the scheduled list, and it contains all the instructions. 3970 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3971 ScheduledInstrs.erase(cycle); 3972 3973 // Change the registers in instruction as specified in the InstrChanges 3974 // map. We need to use the new registers to create the correct order. 3975 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3976 SUnit *SU = &SSD->SUnits[i]; 3977 SSD->applyInstrChange(SU->getInstr(), *this); 3978 } 3979 3980 // Reorder the instructions in each cycle to fix and improve the 3981 // generated code. 3982 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3983 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3984 std::deque<SUnit *> newOrderZC; 3985 // Put the zero-cost, pseudo instructions at the start of the cycle. 3986 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3987 SUnit *SU = cycleInstrs[i]; 3988 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3989 orderDependence(SSD, SU, newOrderZC); 3990 } 3991 std::deque<SUnit *> newOrderI; 3992 // Then, add the regular instructions back. 3993 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3994 SUnit *SU = cycleInstrs[i]; 3995 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3996 orderDependence(SSD, SU, newOrderI); 3997 } 3998 // Replace the old order with the new order. 3999 cycleInstrs.swap(newOrderZC); 4000 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4001 SSD->fixupRegisterOverlaps(cycleInstrs); 4002 } 4003 4004 DEBUG(dump();); 4005 } 4006 4007 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4008 /// Print the schedule information to the given output. 4009 void SMSchedule::print(raw_ostream &os) const { 4010 // Iterate over each cycle. 4011 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4012 // Iterate over each instruction in the cycle. 4013 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4014 for (SUnit *CI : cycleInstrs->second) { 4015 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4016 os << "(" << CI->NodeNum << ") "; 4017 CI->getInstr()->print(os); 4018 os << "\n"; 4019 } 4020 } 4021 } 4022 4023 /// Utility function used for debugging to print the schedule. 4024 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4025 #endif 4026