1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/iterator_range.h" 65 #include "llvm/ADT/MapVector.h" 66 #include "llvm/ADT/PriorityQueue.h" 67 #include "llvm/ADT/SetVector.h" 68 #include "llvm/ADT/SmallPtrSet.h" 69 #include "llvm/ADT/SmallSet.h" 70 #include "llvm/ADT/SmallVector.h" 71 #include "llvm/ADT/Statistic.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineInstrBundle.h" 84 #include "llvm/CodeGen/MachineLoopInfo.h" 85 #include "llvm/CodeGen/MachineMemOperand.h" 86 #include "llvm/CodeGen/MachineOperand.h" 87 #include "llvm/CodeGen/MachineRegisterInfo.h" 88 #include "llvm/CodeGen/RegisterClassInfo.h" 89 #include "llvm/CodeGen/RegisterPressure.h" 90 #include "llvm/CodeGen/ScheduleDAG.h" 91 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 92 #include "llvm/CodeGen/ScheduleDAGMutation.h" 93 #include "llvm/IR/Attributes.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/MC/MCInstrItineraries.h" 96 #include "llvm/PassAnalysisSupport.h" 97 #include "llvm/PassRegistry.h" 98 #include "llvm/PassSupport.h" 99 #include "llvm/Support/CommandLine.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetInstrInfo.h" 104 #include "llvm/Target/TargetRegisterInfo.h" 105 #include "llvm/Target/TargetSubtargetInfo.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <climits> 109 #include <cstdint> 110 #include <deque> 111 #include <functional> 112 #include <iterator> 113 #include <map> 114 #include <tuple> 115 #include <utility> 116 #include <vector> 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "pipeliner" 121 122 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 123 STATISTIC(NumPipelined, "Number of loops software pipelined"); 124 125 /// A command line option to turn software pipelining on or off. 126 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Enable Software Pipelining")); 129 130 /// A command line option to enable SWP at -Os. 131 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 132 cl::desc("Enable SWP at Os."), cl::Hidden, 133 cl::init(false)); 134 135 /// A command line argument to limit minimum initial interval for pipelining. 136 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 137 cl::desc("Size limit for the the MII."), 138 cl::Hidden, cl::init(27)); 139 140 /// A command line argument to limit the number of stages in the pipeline. 141 static cl::opt<int> 142 SwpMaxStages("pipeliner-max-stages", 143 cl::desc("Maximum stages allowed in the generated scheduled."), 144 cl::Hidden, cl::init(3)); 145 146 /// A command line option to disable the pruning of chain dependences due to 147 /// an unrelated Phi. 148 static cl::opt<bool> 149 SwpPruneDeps("pipeliner-prune-deps", 150 cl::desc("Prune dependences between unrelated Phi nodes."), 151 cl::Hidden, cl::init(true)); 152 153 /// A command line option to disable the pruning of loop carried order 154 /// dependences. 155 static cl::opt<bool> 156 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 157 cl::desc("Prune loop carried order dependences."), 158 cl::Hidden, cl::init(true)); 159 160 #ifndef NDEBUG 161 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 162 #endif 163 164 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 165 cl::ReallyHidden, cl::init(false), 166 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 167 168 namespace { 169 170 class NodeSet; 171 class SMSchedule; 172 class SwingSchedulerDAG; 173 174 /// The main class in the implementation of the target independent 175 /// software pipeliner pass. 176 class MachinePipeliner : public MachineFunctionPass { 177 public: 178 MachineFunction *MF = nullptr; 179 const MachineLoopInfo *MLI = nullptr; 180 const MachineDominatorTree *MDT = nullptr; 181 const InstrItineraryData *InstrItins; 182 const TargetInstrInfo *TII = nullptr; 183 RegisterClassInfo RegClassInfo; 184 185 #ifndef NDEBUG 186 static int NumTries; 187 #endif 188 /// Cache the target analysis information about the loop. 189 struct LoopInfo { 190 MachineBasicBlock *TBB = nullptr; 191 MachineBasicBlock *FBB = nullptr; 192 SmallVector<MachineOperand, 4> BrCond; 193 MachineInstr *LoopInductionVar = nullptr; 194 MachineInstr *LoopCompare = nullptr; 195 }; 196 LoopInfo LI; 197 198 static char ID; 199 MachinePipeliner() : MachineFunctionPass(ID) { 200 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 201 } 202 203 bool runOnMachineFunction(MachineFunction &MF) override; 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 AU.addRequired<AAResultsWrapperPass>(); 207 AU.addPreserved<AAResultsWrapperPass>(); 208 AU.addRequired<MachineLoopInfo>(); 209 AU.addRequired<MachineDominatorTree>(); 210 AU.addRequired<LiveIntervals>(); 211 MachineFunctionPass::getAnalysisUsage(AU); 212 } 213 214 private: 215 bool canPipelineLoop(MachineLoop &L); 216 bool scheduleLoop(MachineLoop &L); 217 bool swingModuloScheduler(MachineLoop &L); 218 }; 219 220 /// This class builds the dependence graph for the instructions in a loop, 221 /// and attempts to schedule the instructions using the SMS algorithm. 222 class SwingSchedulerDAG : public ScheduleDAGInstrs { 223 MachinePipeliner &Pass; 224 /// The minimum initiation interval between iterations for this schedule. 225 unsigned MII; 226 /// Set to true if a valid pipelined schedule is found for the loop. 227 bool Scheduled; 228 MachineLoop &Loop; 229 LiveIntervals &LIS; 230 const RegisterClassInfo &RegClassInfo; 231 232 /// A toplogical ordering of the SUnits, which is needed for changing 233 /// dependences and iterating over the SUnits. 234 ScheduleDAGTopologicalSort Topo; 235 236 struct NodeInfo { 237 int ASAP; 238 int ALAP; 239 NodeInfo() : ASAP(0), ALAP(0) {} 240 }; 241 /// Computed properties for each node in the graph. 242 std::vector<NodeInfo> ScheduleInfo; 243 244 enum OrderKind { BottomUp = 0, TopDown = 1 }; 245 /// Computed node ordering for scheduling. 246 SetVector<SUnit *> NodeOrder; 247 248 typedef SmallVector<NodeSet, 8> NodeSetType; 249 typedef DenseMap<unsigned, unsigned> ValueMapTy; 250 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy; 251 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy; 252 253 /// Instructions to change when emitting the final schedule. 254 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 255 256 /// We may create a new instruction, so remember it because it 257 /// must be deleted when the pass is finished. 258 SmallPtrSet<MachineInstr *, 4> NewMIs; 259 260 /// Ordered list of DAG postprocessing steps. 261 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 262 263 /// Helper class to implement Johnson's circuit finding algorithm. 264 class Circuits { 265 std::vector<SUnit> &SUnits; 266 SetVector<SUnit *> Stack; 267 BitVector Blocked; 268 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 269 SmallVector<SmallVector<int, 4>, 16> AdjK; 270 unsigned NumPaths; 271 static unsigned MaxPaths; 272 273 public: 274 Circuits(std::vector<SUnit> &SUs) 275 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()), 276 AdjK(SUs.size()) {} 277 /// Reset the data structures used in the circuit algorithm. 278 void reset() { 279 Stack.clear(); 280 Blocked.reset(); 281 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 282 NumPaths = 0; 283 } 284 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 285 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 286 void unblock(int U); 287 }; 288 289 public: 290 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 291 const RegisterClassInfo &rci) 292 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0), 293 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci), 294 Topo(SUnits, &ExitSU) { 295 P.MF->getSubtarget().getSMSMutations(Mutations); 296 } 297 298 void schedule() override; 299 void finishBlock() override; 300 301 /// Return true if the loop kernel has been scheduled. 302 bool hasNewSchedule() { return Scheduled; } 303 304 /// Return the earliest time an instruction may be scheduled. 305 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 306 307 /// Return the latest time an instruction my be scheduled. 308 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 309 310 /// The mobility function, which the the number of slots in which 311 /// an instruction may be scheduled. 312 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 313 314 /// The depth, in the dependence graph, for a node. 315 int getDepth(SUnit *Node) { return Node->getDepth(); } 316 317 /// The height, in the dependence graph, for a node. 318 int getHeight(SUnit *Node) { return Node->getHeight(); } 319 320 /// Return true if the dependence is a back-edge in the data dependence graph. 321 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 322 /// using an anti dependence from a Phi to an instruction. 323 bool isBackedge(SUnit *Source, const SDep &Dep) { 324 if (Dep.getKind() != SDep::Anti) 325 return false; 326 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 327 } 328 329 /// Return true if the dependence is an order dependence between non-Phis. 330 static bool isOrder(SUnit *Source, const SDep &Dep) { 331 if (Dep.getKind() != SDep::Order) 332 return false; 333 return (!Source->getInstr()->isPHI() && 334 !Dep.getSUnit()->getInstr()->isPHI()); 335 } 336 337 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 338 339 /// The latency of the dependence. 340 unsigned getLatency(SUnit *Source, const SDep &Dep) { 341 // Anti dependences represent recurrences, so use the latency of the 342 // instruction on the back-edge. 343 if (Dep.getKind() == SDep::Anti) { 344 if (Source->getInstr()->isPHI()) 345 return Dep.getSUnit()->Latency; 346 if (Dep.getSUnit()->getInstr()->isPHI()) 347 return Source->Latency; 348 return Dep.getLatency(); 349 } 350 return Dep.getLatency(); 351 } 352 353 /// The distance function, which indicates that operation V of iteration I 354 /// depends on operations U of iteration I-distance. 355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 356 // Instructions that feed a Phi have a distance of 1. Computing larger 357 // values for arrays requires data dependence information. 358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 359 return 1; 360 return 0; 361 } 362 363 /// Set the Minimum Initiation Interval for this schedule attempt. 364 void setMII(unsigned mii) { MII = mii; } 365 366 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, 367 bool UpdateDAG = false); 368 369 /// Return the new base register that was stored away for the changed 370 /// instruction. 371 unsigned getInstrBaseReg(SUnit *SU) { 372 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 373 InstrChanges.find(SU); 374 if (It != InstrChanges.end()) 375 return It->second.first; 376 return 0; 377 } 378 379 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 380 Mutations.push_back(std::move(Mutation)); 381 } 382 383 private: 384 void addLoopCarriedDependences(AliasAnalysis *AA); 385 void updatePhiDependences(); 386 void changeDependences(); 387 unsigned calculateResMII(); 388 unsigned calculateRecMII(NodeSetType &RecNodeSets); 389 void findCircuits(NodeSetType &NodeSets); 390 void fuseRecs(NodeSetType &NodeSets); 391 void removeDuplicateNodes(NodeSetType &NodeSets); 392 void computeNodeFunctions(NodeSetType &NodeSets); 393 void registerPressureFilter(NodeSetType &NodeSets); 394 void colocateNodeSets(NodeSetType &NodeSets); 395 void checkNodeSets(NodeSetType &NodeSets); 396 void groupRemainingNodes(NodeSetType &NodeSets); 397 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 398 SetVector<SUnit *> &NodesAdded); 399 void computeNodeOrder(NodeSetType &NodeSets); 400 bool schedulePipeline(SMSchedule &Schedule); 401 void generatePipelinedLoop(SMSchedule &Schedule); 402 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 403 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 404 MBBVectorTy &PrologBBs); 405 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 406 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 407 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 408 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 409 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 410 SMSchedule &Schedule, ValueMapTy *VRMap, 411 InstrMapTy &InstrMap, unsigned LastStageNum, 412 unsigned CurStageNum, bool IsLast); 413 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 414 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 415 SMSchedule &Schedule, ValueMapTy *VRMap, 416 InstrMapTy &InstrMap, unsigned LastStageNum, 417 unsigned CurStageNum, bool IsLast); 418 void removeDeadInstructions(MachineBasicBlock *KernelBB, 419 MBBVectorTy &EpilogBBs); 420 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 421 SMSchedule &Schedule); 422 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 423 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 424 ValueMapTy *VRMap); 425 bool computeDelta(MachineInstr &MI, unsigned &Delta); 426 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 427 unsigned Num); 428 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 429 unsigned InstStageNum); 430 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 431 unsigned InstStageNum, 432 SMSchedule &Schedule); 433 void updateInstruction(MachineInstr *NewMI, bool LastDef, 434 unsigned CurStageNum, unsigned InstStageNum, 435 SMSchedule &Schedule, ValueMapTy *VRMap); 436 MachineInstr *findDefInLoop(unsigned Reg); 437 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 438 unsigned LoopStage, ValueMapTy *VRMap, 439 MachineBasicBlock *BB); 440 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 441 SMSchedule &Schedule, ValueMapTy *VRMap, 442 InstrMapTy &InstrMap); 443 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 444 InstrMapTy &InstrMap, unsigned CurStageNum, 445 unsigned PhiNum, MachineInstr *Phi, 446 unsigned OldReg, unsigned NewReg, 447 unsigned PrevReg = 0); 448 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 449 unsigned &OffsetPos, unsigned &NewBase, 450 int64_t &NewOffset); 451 void postprocessDAG(); 452 }; 453 454 /// A NodeSet contains a set of SUnit DAG nodes with additional information 455 /// that assigns a priority to the set. 456 class NodeSet { 457 SetVector<SUnit *> Nodes; 458 bool HasRecurrence; 459 unsigned RecMII = 0; 460 int MaxMOV = 0; 461 int MaxDepth = 0; 462 unsigned Colocate = 0; 463 SUnit *ExceedPressure = nullptr; 464 465 public: 466 typedef SetVector<SUnit *>::const_iterator iterator; 467 468 NodeSet() : Nodes(), HasRecurrence(false) {} 469 470 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 471 472 bool insert(SUnit *SU) { return Nodes.insert(SU); } 473 474 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 475 476 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 477 return Nodes.remove_if(P); 478 } 479 480 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 481 482 bool hasRecurrence() { return HasRecurrence; }; 483 484 unsigned size() const { return Nodes.size(); } 485 486 bool empty() const { return Nodes.empty(); } 487 488 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 489 490 void setRecMII(unsigned mii) { RecMII = mii; }; 491 492 void setColocate(unsigned c) { Colocate = c; }; 493 494 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 495 496 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 497 498 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 499 500 int getRecMII() { return RecMII; } 501 502 /// Summarize node functions for the entire node set. 503 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 504 for (SUnit *SU : *this) { 505 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 506 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 507 } 508 } 509 510 void clear() { 511 Nodes.clear(); 512 RecMII = 0; 513 HasRecurrence = false; 514 MaxMOV = 0; 515 MaxDepth = 0; 516 Colocate = 0; 517 ExceedPressure = nullptr; 518 } 519 520 operator SetVector<SUnit *> &() { return Nodes; } 521 522 /// Sort the node sets by importance. First, rank them by recurrence MII, 523 /// then by mobility (least mobile done first), and finally by depth. 524 /// Each node set may contain a colocate value which is used as the first 525 /// tie breaker, if it's set. 526 bool operator>(const NodeSet &RHS) const { 527 if (RecMII == RHS.RecMII) { 528 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 529 return Colocate < RHS.Colocate; 530 if (MaxMOV == RHS.MaxMOV) 531 return MaxDepth > RHS.MaxDepth; 532 return MaxMOV < RHS.MaxMOV; 533 } 534 return RecMII > RHS.RecMII; 535 } 536 537 bool operator==(const NodeSet &RHS) const { 538 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 539 MaxDepth == RHS.MaxDepth; 540 } 541 542 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 543 544 iterator begin() { return Nodes.begin(); } 545 iterator end() { return Nodes.end(); } 546 547 void print(raw_ostream &os) const { 548 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 549 << " depth " << MaxDepth << " col " << Colocate << "\n"; 550 for (const auto &I : Nodes) 551 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 552 os << "\n"; 553 } 554 555 void dump() const { print(dbgs()); } 556 }; 557 558 /// This class repesents the scheduled code. The main data structure is a 559 /// map from scheduled cycle to instructions. During scheduling, the 560 /// data structure explicitly represents all stages/iterations. When 561 /// the algorithm finshes, the schedule is collapsed into a single stage, 562 /// which represents instructions from different loop iterations. 563 /// 564 /// The SMS algorithm allows negative values for cycles, so the first cycle 565 /// in the schedule is the smallest cycle value. 566 class SMSchedule { 567 private: 568 /// Map from execution cycle to instructions. 569 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 570 571 /// Map from instruction to execution cycle. 572 std::map<SUnit *, int> InstrToCycle; 573 574 /// Map for each register and the max difference between its uses and def. 575 /// The first element in the pair is the max difference in stages. The 576 /// second is true if the register defines a Phi value and loop value is 577 /// scheduled before the Phi. 578 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 579 580 /// Keep track of the first cycle value in the schedule. It starts 581 /// as zero, but the algorithm allows negative values. 582 int FirstCycle; 583 584 /// Keep track of the last cycle value in the schedule. 585 int LastCycle; 586 587 /// The initiation interval (II) for the schedule. 588 int InitiationInterval; 589 590 /// Target machine information. 591 const TargetSubtargetInfo &ST; 592 593 /// Virtual register information. 594 MachineRegisterInfo &MRI; 595 596 DFAPacketizer *Resources; 597 598 public: 599 SMSchedule(MachineFunction *mf) 600 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 601 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) { 602 FirstCycle = 0; 603 LastCycle = 0; 604 InitiationInterval = 0; 605 } 606 607 ~SMSchedule() { 608 ScheduledInstrs.clear(); 609 InstrToCycle.clear(); 610 RegToStageDiff.clear(); 611 delete Resources; 612 } 613 614 void reset() { 615 ScheduledInstrs.clear(); 616 InstrToCycle.clear(); 617 RegToStageDiff.clear(); 618 FirstCycle = 0; 619 LastCycle = 0; 620 InitiationInterval = 0; 621 } 622 623 /// Set the initiation interval for this schedule. 624 void setInitiationInterval(int ii) { InitiationInterval = ii; } 625 626 /// Return the first cycle in the completed schedule. This 627 /// can be a negative value. 628 int getFirstCycle() const { return FirstCycle; } 629 630 /// Return the last cycle in the finalized schedule. 631 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 632 633 /// Return the cycle of the earliest scheduled instruction in the dependence 634 /// chain. 635 int earliestCycleInChain(const SDep &Dep); 636 637 /// Return the cycle of the latest scheduled instruction in the dependence 638 /// chain. 639 int latestCycleInChain(const SDep &Dep); 640 641 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 642 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 643 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 644 645 /// Iterators for the cycle to instruction map. 646 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator; 647 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator 648 const_sched_iterator; 649 650 /// Return true if the instruction is scheduled at the specified stage. 651 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 652 return (stageScheduled(SU) == (int)StageNum); 653 } 654 655 /// Return the stage for a scheduled instruction. Return -1 if 656 /// the instruction has not been scheduled. 657 int stageScheduled(SUnit *SU) const { 658 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 659 if (it == InstrToCycle.end()) 660 return -1; 661 return (it->second - FirstCycle) / InitiationInterval; 662 } 663 664 /// Return the cycle for a scheduled instruction. This function normalizes 665 /// the first cycle to be 0. 666 unsigned cycleScheduled(SUnit *SU) const { 667 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 668 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 669 return (it->second - FirstCycle) % InitiationInterval; 670 } 671 672 /// Return the maximum stage count needed for this schedule. 673 unsigned getMaxStageCount() { 674 return (LastCycle - FirstCycle) / InitiationInterval; 675 } 676 677 /// Return the max. number of stages/iterations that can occur between a 678 /// register definition and its uses. 679 unsigned getStagesForReg(int Reg, unsigned CurStage) { 680 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 681 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 682 return 1; 683 return Stages.first; 684 } 685 686 /// The number of stages for a Phi is a little different than other 687 /// instructions. The minimum value computed in RegToStageDiff is 1 688 /// because we assume the Phi is needed for at least 1 iteration. 689 /// This is not the case if the loop value is scheduled prior to the 690 /// Phi in the same stage. This function returns the number of stages 691 /// or iterations needed between the Phi definition and any uses. 692 unsigned getStagesForPhi(int Reg) { 693 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 694 if (Stages.second) 695 return Stages.first; 696 return Stages.first - 1; 697 } 698 699 /// Return the instructions that are scheduled at the specified cycle. 700 std::deque<SUnit *> &getInstructions(int cycle) { 701 return ScheduledInstrs[cycle]; 702 } 703 704 bool isValidSchedule(SwingSchedulerDAG *SSD); 705 void finalizeSchedule(SwingSchedulerDAG *SSD); 706 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 707 std::deque<SUnit *> &Insts); 708 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 709 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 710 MachineOperand &MO); 711 void print(raw_ostream &os) const; 712 void dump() const; 713 }; 714 715 } // end anonymous namespace 716 717 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 718 char MachinePipeliner::ID = 0; 719 #ifndef NDEBUG 720 int MachinePipeliner::NumTries = 0; 721 #endif 722 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 723 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner", 724 "Modulo Software Pipelining", false, false) 725 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 726 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 727 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 728 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 729 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner", 730 "Modulo Software Pipelining", false, false) 731 732 /// The "main" function for implementing Swing Modulo Scheduling. 733 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 734 if (skipFunction(*mf.getFunction())) 735 return false; 736 737 if (!EnableSWP) 738 return false; 739 740 if (mf.getFunction()->getAttributes().hasAttribute( 741 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && 742 !EnableSWPOptSize.getPosition()) 743 return false; 744 745 MF = &mf; 746 MLI = &getAnalysis<MachineLoopInfo>(); 747 MDT = &getAnalysis<MachineDominatorTree>(); 748 TII = MF->getSubtarget().getInstrInfo(); 749 RegClassInfo.runOnMachineFunction(*MF); 750 751 for (auto &L : *MLI) 752 scheduleLoop(*L); 753 754 return false; 755 } 756 757 /// Attempt to perform the SMS algorithm on the specified loop. This function is 758 /// the main entry point for the algorithm. The function identifies candidate 759 /// loops, calculates the minimum initiation interval, and attempts to schedule 760 /// the loop. 761 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 762 bool Changed = false; 763 for (auto &InnerLoop : L) 764 Changed |= scheduleLoop(*InnerLoop); 765 766 #ifndef NDEBUG 767 // Stop trying after reaching the limit (if any). 768 int Limit = SwpLoopLimit; 769 if (Limit >= 0) { 770 if (NumTries >= SwpLoopLimit) 771 return Changed; 772 NumTries++; 773 } 774 #endif 775 776 if (!canPipelineLoop(L)) 777 return Changed; 778 779 ++NumTrytoPipeline; 780 781 Changed = swingModuloScheduler(L); 782 783 return Changed; 784 } 785 786 /// Return true if the loop can be software pipelined. The algorithm is 787 /// restricted to loops with a single basic block. Make sure that the 788 /// branch in the loop can be analyzed. 789 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 790 if (L.getNumBlocks() != 1) 791 return false; 792 793 // Check if the branch can't be understood because we can't do pipelining 794 // if that's the case. 795 LI.TBB = nullptr; 796 LI.FBB = nullptr; 797 LI.BrCond.clear(); 798 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 799 return false; 800 801 LI.LoopInductionVar = nullptr; 802 LI.LoopCompare = nullptr; 803 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 804 return false; 805 806 if (!L.getLoopPreheader()) 807 return false; 808 809 // If any of the Phis contain subregs, then we can't pipeline 810 // because we don't know how to maintain subreg information in the 811 // VMap structure. 812 MachineBasicBlock *MBB = L.getHeader(); 813 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 814 BBE = MBB->getFirstNonPHI(); 815 BBI != BBE; ++BBI) 816 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 817 if (BBI->getOperand(i).getSubReg() != 0) 818 return false; 819 820 return true; 821 } 822 823 /// The SMS algorithm consists of the following main steps: 824 /// 1. Computation and analysis of the dependence graph. 825 /// 2. Ordering of the nodes (instructions). 826 /// 3. Attempt to Schedule the loop. 827 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 828 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 829 830 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 831 832 MachineBasicBlock *MBB = L.getHeader(); 833 // The kernel should not include any terminator instructions. These 834 // will be added back later. 835 SMS.startBlock(MBB); 836 837 // Compute the number of 'real' instructions in the basic block by 838 // ignoring terminators. 839 unsigned size = MBB->size(); 840 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 841 E = MBB->instr_end(); 842 I != E; ++I, --size) 843 ; 844 845 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 846 SMS.schedule(); 847 SMS.exitRegion(); 848 849 SMS.finishBlock(); 850 return SMS.hasNewSchedule(); 851 } 852 853 /// We override the schedule function in ScheduleDAGInstrs to implement the 854 /// scheduling part of the Swing Modulo Scheduling algorithm. 855 void SwingSchedulerDAG::schedule() { 856 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 857 buildSchedGraph(AA); 858 addLoopCarriedDependences(AA); 859 updatePhiDependences(); 860 Topo.InitDAGTopologicalSorting(); 861 postprocessDAG(); 862 changeDependences(); 863 DEBUG({ 864 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 865 SUnits[su].dumpAll(this); 866 }); 867 868 NodeSetType NodeSets; 869 findCircuits(NodeSets); 870 871 // Calculate the MII. 872 unsigned ResMII = calculateResMII(); 873 unsigned RecMII = calculateRecMII(NodeSets); 874 875 fuseRecs(NodeSets); 876 877 // This flag is used for testing and can cause correctness problems. 878 if (SwpIgnoreRecMII) 879 RecMII = 0; 880 881 MII = std::max(ResMII, RecMII); 882 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 883 << ")\n"); 884 885 // Can't schedule a loop without a valid MII. 886 if (MII == 0) 887 return; 888 889 // Don't pipeline large loops. 890 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 891 return; 892 893 computeNodeFunctions(NodeSets); 894 895 registerPressureFilter(NodeSets); 896 897 colocateNodeSets(NodeSets); 898 899 checkNodeSets(NodeSets); 900 901 DEBUG({ 902 for (auto &I : NodeSets) { 903 dbgs() << " Rec NodeSet "; 904 I.dump(); 905 } 906 }); 907 908 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 909 910 groupRemainingNodes(NodeSets); 911 912 removeDuplicateNodes(NodeSets); 913 914 DEBUG({ 915 for (auto &I : NodeSets) { 916 dbgs() << " NodeSet "; 917 I.dump(); 918 } 919 }); 920 921 computeNodeOrder(NodeSets); 922 923 SMSchedule Schedule(Pass.MF); 924 Scheduled = schedulePipeline(Schedule); 925 926 if (!Scheduled) 927 return; 928 929 unsigned numStages = Schedule.getMaxStageCount(); 930 // No need to generate pipeline if there are no overlapped iterations. 931 if (numStages == 0) 932 return; 933 934 // Check that the maximum stage count is less than user-defined limit. 935 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 936 return; 937 938 generatePipelinedLoop(Schedule); 939 ++NumPipelined; 940 } 941 942 /// Clean up after the software pipeliner runs. 943 void SwingSchedulerDAG::finishBlock() { 944 for (MachineInstr *I : NewMIs) 945 MF.DeleteMachineInstr(I); 946 NewMIs.clear(); 947 948 // Call the superclass. 949 ScheduleDAGInstrs::finishBlock(); 950 } 951 952 /// Return the register values for the operands of a Phi instruction. 953 /// This function assume the instruction is a Phi. 954 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 955 unsigned &InitVal, unsigned &LoopVal) { 956 assert(Phi.isPHI() && "Expecting a Phi."); 957 958 InitVal = 0; 959 LoopVal = 0; 960 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 961 if (Phi.getOperand(i + 1).getMBB() != Loop) 962 InitVal = Phi.getOperand(i).getReg(); 963 else if (Phi.getOperand(i + 1).getMBB() == Loop) 964 LoopVal = Phi.getOperand(i).getReg(); 965 966 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 967 } 968 969 /// Return the Phi register value that comes from the incoming block. 970 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 971 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 972 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 973 return Phi.getOperand(i).getReg(); 974 return 0; 975 } 976 977 /// Return the Phi register value that comes the the loop block. 978 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 979 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 980 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 981 return Phi.getOperand(i).getReg(); 982 return 0; 983 } 984 985 /// Return true if SUb can be reached from SUa following the chain edges. 986 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 987 SmallPtrSet<SUnit *, 8> Visited; 988 SmallVector<SUnit *, 8> Worklist; 989 Worklist.push_back(SUa); 990 while (!Worklist.empty()) { 991 const SUnit *SU = Worklist.pop_back_val(); 992 for (auto &SI : SU->Succs) { 993 SUnit *SuccSU = SI.getSUnit(); 994 if (SI.getKind() == SDep::Order) { 995 if (Visited.count(SuccSU)) 996 continue; 997 if (SuccSU == SUb) 998 return true; 999 Worklist.push_back(SuccSU); 1000 Visited.insert(SuccSU); 1001 } 1002 } 1003 } 1004 return false; 1005 } 1006 1007 /// Return true if the instruction causes a chain between memory 1008 /// references before and after it. 1009 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1010 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1011 (MI.hasOrderedMemoryRef() && 1012 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1013 } 1014 1015 /// Return the underlying objects for the memory references of an instruction. 1016 /// This function calls the code in ValueTracking, but first checks that the 1017 /// instruction has a memory operand. 1018 static void getUnderlyingObjects(MachineInstr *MI, 1019 SmallVectorImpl<Value *> &Objs, 1020 const DataLayout &DL) { 1021 if (!MI->hasOneMemOperand()) 1022 return; 1023 MachineMemOperand *MM = *MI->memoperands_begin(); 1024 if (!MM->getValue()) 1025 return; 1026 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1027 } 1028 1029 /// Add a chain edge between a load and store if the store can be an 1030 /// alias of the load on a subsequent iteration, i.e., a loop carried 1031 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1032 /// but that code doesn't create loop carried dependences. 1033 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1034 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1035 for (auto &SU : SUnits) { 1036 MachineInstr &MI = *SU.getInstr(); 1037 if (isDependenceBarrier(MI, AA)) 1038 PendingLoads.clear(); 1039 else if (MI.mayLoad()) { 1040 SmallVector<Value *, 4> Objs; 1041 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1042 for (auto V : Objs) { 1043 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1044 SUs.push_back(&SU); 1045 } 1046 } else if (MI.mayStore()) { 1047 SmallVector<Value *, 4> Objs; 1048 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1049 for (auto V : Objs) { 1050 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1051 PendingLoads.find(V); 1052 if (I == PendingLoads.end()) 1053 continue; 1054 for (auto Load : I->second) { 1055 if (isSuccOrder(Load, &SU)) 1056 continue; 1057 MachineInstr &LdMI = *Load->getInstr(); 1058 // First, perform the cheaper check that compares the base register. 1059 // If they are the same and the load offset is less than the store 1060 // offset, then mark the dependence as loop carried potentially. 1061 unsigned BaseReg1, BaseReg2; 1062 int64_t Offset1, Offset2; 1063 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1064 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1065 SU.addPred(SDep(Load, SDep::Barrier)); 1066 continue; 1067 } 1068 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1069 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1070 "What happened to the chain edge?"); 1071 SU.addPred(SDep(Load, SDep::Barrier)); 1072 continue; 1073 } 1074 // Second, the more expensive check that uses alias analysis on the 1075 // base registers. If they alias, and the load offset is less than 1076 // the store offset, the mark the dependence as loop carried. 1077 if (!AA) { 1078 SU.addPred(SDep(Load, SDep::Barrier)); 1079 continue; 1080 } 1081 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1082 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1083 if (!MMO1->getValue() || !MMO2->getValue()) { 1084 SU.addPred(SDep(Load, SDep::Barrier)); 1085 continue; 1086 } 1087 if (MMO1->getValue() == MMO2->getValue() && 1088 MMO1->getOffset() <= MMO2->getOffset()) { 1089 SU.addPred(SDep(Load, SDep::Barrier)); 1090 continue; 1091 } 1092 AliasResult AAResult = AA->alias( 1093 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1094 MMO1->getAAInfo()), 1095 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1096 MMO2->getAAInfo())); 1097 1098 if (AAResult != NoAlias) 1099 SU.addPred(SDep(Load, SDep::Barrier)); 1100 } 1101 } 1102 } 1103 } 1104 } 1105 1106 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1107 /// processes dependences for PHIs. This function adds true dependences 1108 /// from a PHI to a use, and a loop carried dependence from the use to the 1109 /// PHI. The loop carried dependence is represented as an anti dependence 1110 /// edge. This function also removes chain dependences between unrelated 1111 /// PHIs. 1112 void SwingSchedulerDAG::updatePhiDependences() { 1113 SmallVector<SDep, 4> RemoveDeps; 1114 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1115 1116 // Iterate over each DAG node. 1117 for (SUnit &I : SUnits) { 1118 RemoveDeps.clear(); 1119 // Set to true if the instruction has an operand defined by a Phi. 1120 unsigned HasPhiUse = 0; 1121 unsigned HasPhiDef = 0; 1122 MachineInstr *MI = I.getInstr(); 1123 // Iterate over each operand, and we process the definitions. 1124 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1125 MOE = MI->operands_end(); 1126 MOI != MOE; ++MOI) { 1127 if (!MOI->isReg()) 1128 continue; 1129 unsigned Reg = MOI->getReg(); 1130 if (MOI->isDef()) { 1131 // If the register is used by a Phi, then create an anti dependence. 1132 for (MachineRegisterInfo::use_instr_iterator 1133 UI = MRI.use_instr_begin(Reg), 1134 UE = MRI.use_instr_end(); 1135 UI != UE; ++UI) { 1136 MachineInstr *UseMI = &*UI; 1137 SUnit *SU = getSUnit(UseMI); 1138 if (SU != nullptr && UseMI->isPHI()) { 1139 if (!MI->isPHI()) { 1140 SDep Dep(SU, SDep::Anti, Reg); 1141 I.addPred(Dep); 1142 } else { 1143 HasPhiDef = Reg; 1144 // Add a chain edge to a dependent Phi that isn't an existing 1145 // predecessor. 1146 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1147 I.addPred(SDep(SU, SDep::Barrier)); 1148 } 1149 } 1150 } 1151 } else if (MOI->isUse()) { 1152 // If the register is defined by a Phi, then create a true dependence. 1153 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1154 if (DefMI == nullptr) 1155 continue; 1156 SUnit *SU = getSUnit(DefMI); 1157 if (SU != nullptr && DefMI->isPHI()) { 1158 if (!MI->isPHI()) { 1159 SDep Dep(SU, SDep::Data, Reg); 1160 Dep.setLatency(0); 1161 ST.adjustSchedDependency(SU, &I, Dep); 1162 I.addPred(Dep); 1163 } else { 1164 HasPhiUse = Reg; 1165 // Add a chain edge to a dependent Phi that isn't an existing 1166 // predecessor. 1167 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1168 I.addPred(SDep(SU, SDep::Barrier)); 1169 } 1170 } 1171 } 1172 } 1173 // Remove order dependences from an unrelated Phi. 1174 if (!SwpPruneDeps) 1175 continue; 1176 for (auto &PI : I.Preds) { 1177 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1178 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1179 if (I.getInstr()->isPHI()) { 1180 if (PMI->getOperand(0).getReg() == HasPhiUse) 1181 continue; 1182 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1183 continue; 1184 } 1185 RemoveDeps.push_back(PI); 1186 } 1187 } 1188 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1189 I.removePred(RemoveDeps[i]); 1190 } 1191 } 1192 1193 /// Iterate over each DAG node and see if we can change any dependences 1194 /// in order to reduce the recurrence MII. 1195 void SwingSchedulerDAG::changeDependences() { 1196 // See if an instruction can use a value from the previous iteration. 1197 // If so, we update the base and offset of the instruction and change 1198 // the dependences. 1199 for (SUnit &I : SUnits) { 1200 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1201 int64_t NewOffset = 0; 1202 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1203 NewOffset)) 1204 continue; 1205 1206 // Get the MI and SUnit for the instruction that defines the original base. 1207 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1208 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1209 if (!DefMI) 1210 continue; 1211 SUnit *DefSU = getSUnit(DefMI); 1212 if (!DefSU) 1213 continue; 1214 // Get the MI and SUnit for the instruction that defins the new base. 1215 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1216 if (!LastMI) 1217 continue; 1218 SUnit *LastSU = getSUnit(LastMI); 1219 if (!LastSU) 1220 continue; 1221 1222 if (Topo.IsReachable(&I, LastSU)) 1223 continue; 1224 1225 // Remove the dependence. The value now depends on a prior iteration. 1226 SmallVector<SDep, 4> Deps; 1227 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1228 ++P) 1229 if (P->getSUnit() == DefSU) 1230 Deps.push_back(*P); 1231 for (int i = 0, e = Deps.size(); i != e; i++) { 1232 Topo.RemovePred(&I, Deps[i].getSUnit()); 1233 I.removePred(Deps[i]); 1234 } 1235 // Remove the chain dependence between the instructions. 1236 Deps.clear(); 1237 for (auto &P : LastSU->Preds) 1238 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1239 Deps.push_back(P); 1240 for (int i = 0, e = Deps.size(); i != e; i++) { 1241 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1242 LastSU->removePred(Deps[i]); 1243 } 1244 1245 // Add a dependence between the new instruction and the instruction 1246 // that defines the new base. 1247 SDep Dep(&I, SDep::Anti, NewBase); 1248 LastSU->addPred(Dep); 1249 1250 // Remember the base and offset information so that we can update the 1251 // instruction during code generation. 1252 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1253 } 1254 } 1255 1256 namespace { 1257 1258 // FuncUnitSorter - Comparison operator used to sort instructions by 1259 // the number of functional unit choices. 1260 struct FuncUnitSorter { 1261 const InstrItineraryData *InstrItins; 1262 DenseMap<unsigned, unsigned> Resources; 1263 1264 // Compute the number of functional unit alternatives needed 1265 // at each stage, and take the minimum value. We prioritize the 1266 // instructions by the least number of choices first. 1267 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1268 unsigned schedClass = Inst->getDesc().getSchedClass(); 1269 unsigned min = UINT_MAX; 1270 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1271 *IE = InstrItins->endStage(schedClass); 1272 IS != IE; ++IS) { 1273 unsigned funcUnits = IS->getUnits(); 1274 unsigned numAlternatives = countPopulation(funcUnits); 1275 if (numAlternatives < min) { 1276 min = numAlternatives; 1277 F = funcUnits; 1278 } 1279 } 1280 return min; 1281 } 1282 1283 // Compute the critical resources needed by the instruction. This 1284 // function records the functional units needed by instructions that 1285 // must use only one functional unit. We use this as a tie breaker 1286 // for computing the resource MII. The instrutions that require 1287 // the same, highly used, functional unit have high priority. 1288 void calcCriticalResources(MachineInstr &MI) { 1289 unsigned SchedClass = MI.getDesc().getSchedClass(); 1290 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1291 *IE = InstrItins->endStage(SchedClass); 1292 IS != IE; ++IS) { 1293 unsigned FuncUnits = IS->getUnits(); 1294 if (countPopulation(FuncUnits) == 1) 1295 Resources[FuncUnits]++; 1296 } 1297 } 1298 1299 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1300 /// Return true if IS1 has less priority than IS2. 1301 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1302 unsigned F1 = 0, F2 = 0; 1303 unsigned MFUs1 = minFuncUnits(IS1, F1); 1304 unsigned MFUs2 = minFuncUnits(IS2, F2); 1305 if (MFUs1 == 1 && MFUs2 == 1) 1306 return Resources.lookup(F1) < Resources.lookup(F2); 1307 return MFUs1 > MFUs2; 1308 } 1309 }; 1310 1311 } // end anonymous namespace 1312 1313 /// Calculate the resource constrained minimum initiation interval for the 1314 /// specified loop. We use the DFA to model the resources needed for 1315 /// each instruction, and we ignore dependences. A different DFA is created 1316 /// for each cycle that is required. When adding a new instruction, we attempt 1317 /// to add it to each existing DFA, until a legal space is found. If the 1318 /// instruction cannot be reserved in an existing DFA, we create a new one. 1319 unsigned SwingSchedulerDAG::calculateResMII() { 1320 SmallVector<DFAPacketizer *, 8> Resources; 1321 MachineBasicBlock *MBB = Loop.getHeader(); 1322 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1323 1324 // Sort the instructions by the number of available choices for scheduling, 1325 // least to most. Use the number of critical resources as the tie breaker. 1326 FuncUnitSorter FUS = 1327 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1328 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1329 E = MBB->getFirstTerminator(); 1330 I != E; ++I) 1331 FUS.calcCriticalResources(*I); 1332 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1333 FuncUnitOrder(FUS); 1334 1335 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1336 E = MBB->getFirstTerminator(); 1337 I != E; ++I) 1338 FuncUnitOrder.push(&*I); 1339 1340 while (!FuncUnitOrder.empty()) { 1341 MachineInstr *MI = FuncUnitOrder.top(); 1342 FuncUnitOrder.pop(); 1343 if (TII->isZeroCost(MI->getOpcode())) 1344 continue; 1345 // Attempt to reserve the instruction in an existing DFA. At least one 1346 // DFA is needed for each cycle. 1347 unsigned NumCycles = getSUnit(MI)->Latency; 1348 unsigned ReservedCycles = 0; 1349 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1350 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1351 for (unsigned C = 0; C < NumCycles; ++C) 1352 while (RI != RE) { 1353 if ((*RI++)->canReserveResources(*MI)) { 1354 ++ReservedCycles; 1355 break; 1356 } 1357 } 1358 // Start reserving resources using existing DFAs. 1359 for (unsigned C = 0; C < ReservedCycles; ++C) { 1360 --RI; 1361 (*RI)->reserveResources(*MI); 1362 } 1363 // Add new DFAs, if needed, to reserve resources. 1364 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1365 DFAPacketizer *NewResource = 1366 TII->CreateTargetScheduleState(MF.getSubtarget()); 1367 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1368 NewResource->reserveResources(*MI); 1369 Resources.push_back(NewResource); 1370 } 1371 } 1372 int Resmii = Resources.size(); 1373 // Delete the memory for each of the DFAs that were created earlier. 1374 for (DFAPacketizer *RI : Resources) { 1375 DFAPacketizer *D = RI; 1376 delete D; 1377 } 1378 Resources.clear(); 1379 return Resmii; 1380 } 1381 1382 /// Calculate the recurrence-constrainted minimum initiation interval. 1383 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1384 /// for each circuit. The II needs to satisfy the inequality 1385 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1386 /// II that satistifies the inequality, and the RecMII is the maximum 1387 /// of those values. 1388 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1389 unsigned RecMII = 0; 1390 1391 for (NodeSet &Nodes : NodeSets) { 1392 if (Nodes.size() == 0) 1393 continue; 1394 1395 unsigned Delay = Nodes.size() - 1; 1396 unsigned Distance = 1; 1397 1398 // ii = ceil(delay / distance) 1399 unsigned CurMII = (Delay + Distance - 1) / Distance; 1400 Nodes.setRecMII(CurMII); 1401 if (CurMII > RecMII) 1402 RecMII = CurMII; 1403 } 1404 1405 return RecMII; 1406 } 1407 1408 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1409 /// but we do this to find the circuits, and then change them back. 1410 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1411 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1412 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1413 SUnit *SU = &SUnits[i]; 1414 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1415 IP != EP; ++IP) { 1416 if (IP->getKind() != SDep::Anti) 1417 continue; 1418 DepsAdded.push_back(std::make_pair(SU, *IP)); 1419 } 1420 } 1421 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1422 E = DepsAdded.end(); 1423 I != E; ++I) { 1424 // Remove this anti dependency and add one in the reverse direction. 1425 SUnit *SU = I->first; 1426 SDep &D = I->second; 1427 SUnit *TargetSU = D.getSUnit(); 1428 unsigned Reg = D.getReg(); 1429 unsigned Lat = D.getLatency(); 1430 SU->removePred(D); 1431 SDep Dep(SU, SDep::Anti, Reg); 1432 Dep.setLatency(Lat); 1433 TargetSU->addPred(Dep); 1434 } 1435 } 1436 1437 /// Create the adjacency structure of the nodes in the graph. 1438 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1439 SwingSchedulerDAG *DAG) { 1440 BitVector Added(SUnits.size()); 1441 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1442 Added.reset(); 1443 // Add any successor to the adjacency matrix and exclude duplicates. 1444 for (auto &SI : SUnits[i].Succs) { 1445 // Do not process a boundary node and a back-edge is processed only 1446 // if it goes to a Phi. 1447 if (SI.getSUnit()->isBoundaryNode() || 1448 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1449 continue; 1450 int N = SI.getSUnit()->NodeNum; 1451 if (!Added.test(N)) { 1452 AdjK[i].push_back(N); 1453 Added.set(N); 1454 } 1455 } 1456 // A chain edge between a store and a load is treated as a back-edge in the 1457 // adjacency matrix. 1458 for (auto &PI : SUnits[i].Preds) { 1459 if (!SUnits[i].getInstr()->mayStore() || 1460 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1461 continue; 1462 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1463 int N = PI.getSUnit()->NodeNum; 1464 if (!Added.test(N)) { 1465 AdjK[i].push_back(N); 1466 Added.set(N); 1467 } 1468 } 1469 } 1470 } 1471 } 1472 1473 /// Identify an elementary circuit in the dependence graph starting at the 1474 /// specified node. 1475 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1476 bool HasBackedge) { 1477 SUnit *SV = &SUnits[V]; 1478 bool F = false; 1479 Stack.insert(SV); 1480 Blocked.set(V); 1481 1482 for (auto W : AdjK[V]) { 1483 if (NumPaths > MaxPaths) 1484 break; 1485 if (W < S) 1486 continue; 1487 if (W == S) { 1488 if (!HasBackedge) 1489 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1490 F = true; 1491 ++NumPaths; 1492 break; 1493 } else if (!Blocked.test(W)) { 1494 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1495 F = true; 1496 } 1497 } 1498 1499 if (F) 1500 unblock(V); 1501 else { 1502 for (auto W : AdjK[V]) { 1503 if (W < S) 1504 continue; 1505 if (B[W].count(SV) == 0) 1506 B[W].insert(SV); 1507 } 1508 } 1509 Stack.pop_back(); 1510 return F; 1511 } 1512 1513 /// Unblock a node in the circuit finding algorithm. 1514 void SwingSchedulerDAG::Circuits::unblock(int U) { 1515 Blocked.reset(U); 1516 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1517 while (!BU.empty()) { 1518 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1519 assert(SI != BU.end() && "Invalid B set."); 1520 SUnit *W = *SI; 1521 BU.erase(W); 1522 if (Blocked.test(W->NodeNum)) 1523 unblock(W->NodeNum); 1524 } 1525 } 1526 1527 /// Identify all the elementary circuits in the dependence graph using 1528 /// Johnson's circuit algorithm. 1529 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1530 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1531 // but we do this to find the circuits, and then change them back. 1532 swapAntiDependences(SUnits); 1533 1534 Circuits Cir(SUnits); 1535 // Create the adjacency structure. 1536 Cir.createAdjacencyStructure(this); 1537 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1538 Cir.reset(); 1539 Cir.circuit(i, i, NodeSets); 1540 } 1541 1542 // Change the dependences back so that we've created a DAG again. 1543 swapAntiDependences(SUnits); 1544 } 1545 1546 /// Return true for DAG nodes that we ignore when computing the cost functions. 1547 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1548 /// in the calculation of the ASAP, ALAP, etc functions. 1549 static bool ignoreDependence(const SDep &D, bool isPred) { 1550 if (D.isArtificial()) 1551 return true; 1552 return D.getKind() == SDep::Anti && isPred; 1553 } 1554 1555 /// Compute several functions need to order the nodes for scheduling. 1556 /// ASAP - Earliest time to schedule a node. 1557 /// ALAP - Latest time to schedule a node. 1558 /// MOV - Mobility function, difference between ALAP and ASAP. 1559 /// D - Depth of each node. 1560 /// H - Height of each node. 1561 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1562 1563 ScheduleInfo.resize(SUnits.size()); 1564 1565 DEBUG({ 1566 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1567 E = Topo.end(); 1568 I != E; ++I) { 1569 SUnit *SU = &SUnits[*I]; 1570 SU->dump(this); 1571 } 1572 }); 1573 1574 int maxASAP = 0; 1575 // Compute ASAP. 1576 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1577 E = Topo.end(); 1578 I != E; ++I) { 1579 int asap = 0; 1580 SUnit *SU = &SUnits[*I]; 1581 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1582 EP = SU->Preds.end(); 1583 IP != EP; ++IP) { 1584 if (ignoreDependence(*IP, true)) 1585 continue; 1586 SUnit *pred = IP->getSUnit(); 1587 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1588 getDistance(pred, SU, *IP) * MII)); 1589 } 1590 maxASAP = std::max(maxASAP, asap); 1591 ScheduleInfo[*I].ASAP = asap; 1592 } 1593 1594 // Compute ALAP and MOV. 1595 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1596 E = Topo.rend(); 1597 I != E; ++I) { 1598 int alap = maxASAP; 1599 SUnit *SU = &SUnits[*I]; 1600 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1601 ES = SU->Succs.end(); 1602 IS != ES; ++IS) { 1603 if (ignoreDependence(*IS, true)) 1604 continue; 1605 SUnit *succ = IS->getSUnit(); 1606 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1607 getDistance(SU, succ, *IS) * MII)); 1608 } 1609 1610 ScheduleInfo[*I].ALAP = alap; 1611 } 1612 1613 // After computing the node functions, compute the summary for each node set. 1614 for (NodeSet &I : NodeSets) 1615 I.computeNodeSetInfo(this); 1616 1617 DEBUG({ 1618 for (unsigned i = 0; i < SUnits.size(); i++) { 1619 dbgs() << "\tNode " << i << ":\n"; 1620 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1621 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1622 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1623 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1624 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1625 } 1626 }); 1627 } 1628 1629 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1630 /// as the predecessors of the elements of NodeOrder that are not also in 1631 /// NodeOrder. 1632 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1633 SmallSetVector<SUnit *, 8> &Preds, 1634 const NodeSet *S = nullptr) { 1635 Preds.clear(); 1636 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1637 I != E; ++I) { 1638 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1639 PI != PE; ++PI) { 1640 if (S && S->count(PI->getSUnit()) == 0) 1641 continue; 1642 if (ignoreDependence(*PI, true)) 1643 continue; 1644 if (NodeOrder.count(PI->getSUnit()) == 0) 1645 Preds.insert(PI->getSUnit()); 1646 } 1647 // Back-edges are predecessors with an anti-dependence. 1648 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1649 ES = (*I)->Succs.end(); 1650 IS != ES; ++IS) { 1651 if (IS->getKind() != SDep::Anti) 1652 continue; 1653 if (S && S->count(IS->getSUnit()) == 0) 1654 continue; 1655 if (NodeOrder.count(IS->getSUnit()) == 0) 1656 Preds.insert(IS->getSUnit()); 1657 } 1658 } 1659 return Preds.size() > 0; 1660 } 1661 1662 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1663 /// as the successors of the elements of NodeOrder that are not also in 1664 /// NodeOrder. 1665 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1666 SmallSetVector<SUnit *, 8> &Succs, 1667 const NodeSet *S = nullptr) { 1668 Succs.clear(); 1669 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1670 I != E; ++I) { 1671 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1672 SI != SE; ++SI) { 1673 if (S && S->count(SI->getSUnit()) == 0) 1674 continue; 1675 if (ignoreDependence(*SI, false)) 1676 continue; 1677 if (NodeOrder.count(SI->getSUnit()) == 0) 1678 Succs.insert(SI->getSUnit()); 1679 } 1680 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1681 PE = (*I)->Preds.end(); 1682 PI != PE; ++PI) { 1683 if (PI->getKind() != SDep::Anti) 1684 continue; 1685 if (S && S->count(PI->getSUnit()) == 0) 1686 continue; 1687 if (NodeOrder.count(PI->getSUnit()) == 0) 1688 Succs.insert(PI->getSUnit()); 1689 } 1690 } 1691 return Succs.size() > 0; 1692 } 1693 1694 /// Return true if there is a path from the specified node to any of the nodes 1695 /// in DestNodes. Keep track and return the nodes in any path. 1696 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1697 SetVector<SUnit *> &DestNodes, 1698 SetVector<SUnit *> &Exclude, 1699 SmallPtrSet<SUnit *, 8> &Visited) { 1700 if (Cur->isBoundaryNode()) 1701 return false; 1702 if (Exclude.count(Cur) != 0) 1703 return false; 1704 if (DestNodes.count(Cur) != 0) 1705 return true; 1706 if (!Visited.insert(Cur).second) 1707 return Path.count(Cur) != 0; 1708 bool FoundPath = false; 1709 for (auto &SI : Cur->Succs) 1710 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1711 for (auto &PI : Cur->Preds) 1712 if (PI.getKind() == SDep::Anti) 1713 FoundPath |= 1714 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1715 if (FoundPath) 1716 Path.insert(Cur); 1717 return FoundPath; 1718 } 1719 1720 /// Return true if Set1 is a subset of Set2. 1721 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1722 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1723 if (Set2.count(*I) == 0) 1724 return false; 1725 return true; 1726 } 1727 1728 /// Compute the live-out registers for the instructions in a node-set. 1729 /// The live-out registers are those that are defined in the node-set, 1730 /// but not used. Except for use operands of Phis. 1731 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1732 NodeSet &NS) { 1733 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1734 MachineRegisterInfo &MRI = MF.getRegInfo(); 1735 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1736 SmallSet<unsigned, 4> Uses; 1737 for (SUnit *SU : NS) { 1738 const MachineInstr *MI = SU->getInstr(); 1739 if (MI->isPHI()) 1740 continue; 1741 for (const MachineOperand &MO : MI->operands()) 1742 if (MO.isReg() && MO.isUse()) { 1743 unsigned Reg = MO.getReg(); 1744 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1745 Uses.insert(Reg); 1746 else if (MRI.isAllocatable(Reg)) 1747 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1748 Uses.insert(*Units); 1749 } 1750 } 1751 for (SUnit *SU : NS) 1752 for (const MachineOperand &MO : SU->getInstr()->operands()) 1753 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1754 unsigned Reg = MO.getReg(); 1755 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1756 if (!Uses.count(Reg)) 1757 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1758 LaneBitmask::getNone())); 1759 } else if (MRI.isAllocatable(Reg)) { 1760 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1761 if (!Uses.count(*Units)) 1762 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1763 LaneBitmask::getNone())); 1764 } 1765 } 1766 RPTracker.addLiveRegs(LiveOutRegs); 1767 } 1768 1769 /// A heuristic to filter nodes in recurrent node-sets if the register 1770 /// pressure of a set is too high. 1771 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1772 for (auto &NS : NodeSets) { 1773 // Skip small node-sets since they won't cause register pressure problems. 1774 if (NS.size() <= 2) 1775 continue; 1776 IntervalPressure RecRegPressure; 1777 RegPressureTracker RecRPTracker(RecRegPressure); 1778 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1779 computeLiveOuts(MF, RecRPTracker, NS); 1780 RecRPTracker.closeBottom(); 1781 1782 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1783 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1784 return A->NodeNum > B->NodeNum; 1785 }); 1786 1787 for (auto &SU : SUnits) { 1788 // Since we're computing the register pressure for a subset of the 1789 // instructions in a block, we need to set the tracker for each 1790 // instruction in the node-set. The tracker is set to the instruction 1791 // just after the one we're interested in. 1792 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1793 RecRPTracker.setPos(std::next(CurInstI)); 1794 1795 RegPressureDelta RPDelta; 1796 ArrayRef<PressureChange> CriticalPSets; 1797 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1798 CriticalPSets, 1799 RecRegPressure.MaxSetPressure); 1800 if (RPDelta.Excess.isValid()) { 1801 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1802 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1803 << ":" << RPDelta.Excess.getUnitInc()); 1804 NS.setExceedPressure(SU); 1805 break; 1806 } 1807 RecRPTracker.recede(); 1808 } 1809 } 1810 } 1811 1812 /// A heuristic to colocate node sets that have the same set of 1813 /// successors. 1814 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1815 unsigned Colocate = 0; 1816 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1817 NodeSet &N1 = NodeSets[i]; 1818 SmallSetVector<SUnit *, 8> S1; 1819 if (N1.empty() || !succ_L(N1, S1)) 1820 continue; 1821 for (int j = i + 1; j < e; ++j) { 1822 NodeSet &N2 = NodeSets[j]; 1823 if (N1.compareRecMII(N2) != 0) 1824 continue; 1825 SmallSetVector<SUnit *, 8> S2; 1826 if (N2.empty() || !succ_L(N2, S2)) 1827 continue; 1828 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1829 N1.setColocate(++Colocate); 1830 N2.setColocate(Colocate); 1831 break; 1832 } 1833 } 1834 } 1835 } 1836 1837 /// Check if the existing node-sets are profitable. If not, then ignore the 1838 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1839 /// a heuristic. If the MII is large and there is a non-recurrent node with 1840 /// a large depth compared to the MII, then it's best to try and schedule 1841 /// all instruction together instead of starting with the recurrent node-sets. 1842 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1843 // Look for loops with a large MII. 1844 if (MII <= 20) 1845 return; 1846 // Check if the node-set contains only a simple add recurrence. 1847 for (auto &NS : NodeSets) 1848 if (NS.size() > 2) 1849 return; 1850 // If the depth of any instruction is significantly larger than the MII, then 1851 // ignore the recurrent node-sets and treat all instructions equally. 1852 for (auto &SU : SUnits) 1853 if (SU.getDepth() > MII * 1.5) { 1854 NodeSets.clear(); 1855 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1856 return; 1857 } 1858 } 1859 1860 /// Add the nodes that do not belong to a recurrence set into groups 1861 /// based upon connected componenets. 1862 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1863 SetVector<SUnit *> NodesAdded; 1864 SmallPtrSet<SUnit *, 8> Visited; 1865 // Add the nodes that are on a path between the previous node sets and 1866 // the current node set. 1867 for (NodeSet &I : NodeSets) { 1868 SmallSetVector<SUnit *, 8> N; 1869 // Add the nodes from the current node set to the previous node set. 1870 if (succ_L(I, N)) { 1871 SetVector<SUnit *> Path; 1872 for (SUnit *NI : N) { 1873 Visited.clear(); 1874 computePath(NI, Path, NodesAdded, I, Visited); 1875 } 1876 if (Path.size() > 0) 1877 I.insert(Path.begin(), Path.end()); 1878 } 1879 // Add the nodes from the previous node set to the current node set. 1880 N.clear(); 1881 if (succ_L(NodesAdded, N)) { 1882 SetVector<SUnit *> Path; 1883 for (SUnit *NI : N) { 1884 Visited.clear(); 1885 computePath(NI, Path, I, NodesAdded, Visited); 1886 } 1887 if (Path.size() > 0) 1888 I.insert(Path.begin(), Path.end()); 1889 } 1890 NodesAdded.insert(I.begin(), I.end()); 1891 } 1892 1893 // Create a new node set with the connected nodes of any successor of a node 1894 // in a recurrent set. 1895 NodeSet NewSet; 1896 SmallSetVector<SUnit *, 8> N; 1897 if (succ_L(NodesAdded, N)) 1898 for (SUnit *I : N) 1899 addConnectedNodes(I, NewSet, NodesAdded); 1900 if (NewSet.size() > 0) 1901 NodeSets.push_back(NewSet); 1902 1903 // Create a new node set with the connected nodes of any predecessor of a node 1904 // in a recurrent set. 1905 NewSet.clear(); 1906 if (pred_L(NodesAdded, N)) 1907 for (SUnit *I : N) 1908 addConnectedNodes(I, NewSet, NodesAdded); 1909 if (NewSet.size() > 0) 1910 NodeSets.push_back(NewSet); 1911 1912 // Create new nodes sets with the connected nodes any any remaining node that 1913 // has no predecessor. 1914 for (unsigned i = 0; i < SUnits.size(); ++i) { 1915 SUnit *SU = &SUnits[i]; 1916 if (NodesAdded.count(SU) == 0) { 1917 NewSet.clear(); 1918 addConnectedNodes(SU, NewSet, NodesAdded); 1919 if (NewSet.size() > 0) 1920 NodeSets.push_back(NewSet); 1921 } 1922 } 1923 } 1924 1925 /// Add the node to the set, and add all is its connected nodes to the set. 1926 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1927 SetVector<SUnit *> &NodesAdded) { 1928 NewSet.insert(SU); 1929 NodesAdded.insert(SU); 1930 for (auto &SI : SU->Succs) { 1931 SUnit *Successor = SI.getSUnit(); 1932 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1933 addConnectedNodes(Successor, NewSet, NodesAdded); 1934 } 1935 for (auto &PI : SU->Preds) { 1936 SUnit *Predecessor = PI.getSUnit(); 1937 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1938 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1939 } 1940 } 1941 1942 /// Return true if Set1 contains elements in Set2. The elements in common 1943 /// are returned in a different container. 1944 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1945 SmallSetVector<SUnit *, 8> &Result) { 1946 Result.clear(); 1947 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1948 SUnit *SU = Set1[i]; 1949 if (Set2.count(SU) != 0) 1950 Result.insert(SU); 1951 } 1952 return !Result.empty(); 1953 } 1954 1955 /// Merge the recurrence node sets that have the same initial node. 1956 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1957 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1958 ++I) { 1959 NodeSet &NI = *I; 1960 for (NodeSetType::iterator J = I + 1; J != E;) { 1961 NodeSet &NJ = *J; 1962 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1963 if (NJ.compareRecMII(NI) > 0) 1964 NI.setRecMII(NJ.getRecMII()); 1965 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1966 ++NII) 1967 I->insert(*NII); 1968 NodeSets.erase(J); 1969 E = NodeSets.end(); 1970 } else { 1971 ++J; 1972 } 1973 } 1974 } 1975 } 1976 1977 /// Remove nodes that have been scheduled in previous NodeSets. 1978 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1979 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1980 ++I) 1981 for (NodeSetType::iterator J = I + 1; J != E;) { 1982 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1983 1984 if (J->size() == 0) { 1985 NodeSets.erase(J); 1986 E = NodeSets.end(); 1987 } else { 1988 ++J; 1989 } 1990 } 1991 } 1992 1993 /// Return true if Inst1 defines a value that is used in Inst2. 1994 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1995 for (auto &SI : Inst1->Succs) 1996 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1997 return true; 1998 return false; 1999 } 2000 2001 /// Compute an ordered list of the dependence graph nodes, which 2002 /// indicates the order that the nodes will be scheduled. This is a 2003 /// two-level algorithm. First, a partial order is created, which 2004 /// consists of a list of sets ordered from highest to lowest priority. 2005 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2006 SmallSetVector<SUnit *, 8> R; 2007 NodeOrder.clear(); 2008 2009 for (auto &Nodes : NodeSets) { 2010 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2011 OrderKind Order; 2012 SmallSetVector<SUnit *, 8> N; 2013 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2014 R.insert(N.begin(), N.end()); 2015 Order = BottomUp; 2016 DEBUG(dbgs() << " Bottom up (preds) "); 2017 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2018 R.insert(N.begin(), N.end()); 2019 Order = TopDown; 2020 DEBUG(dbgs() << " Top down (succs) "); 2021 } else if (isIntersect(N, Nodes, R)) { 2022 // If some of the successors are in the existing node-set, then use the 2023 // top-down ordering. 2024 Order = TopDown; 2025 DEBUG(dbgs() << " Top down (intersect) "); 2026 } else if (NodeSets.size() == 1) { 2027 for (auto &N : Nodes) 2028 if (N->Succs.size() == 0) 2029 R.insert(N); 2030 Order = BottomUp; 2031 DEBUG(dbgs() << " Bottom up (all) "); 2032 } else { 2033 // Find the node with the highest ASAP. 2034 SUnit *maxASAP = nullptr; 2035 for (SUnit *SU : Nodes) { 2036 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2037 maxASAP = SU; 2038 } 2039 R.insert(maxASAP); 2040 Order = BottomUp; 2041 DEBUG(dbgs() << " Bottom up (default) "); 2042 } 2043 2044 while (!R.empty()) { 2045 if (Order == TopDown) { 2046 // Choose the node with the maximum height. If more than one, choose 2047 // the node with the lowest MOV. If still more than one, check if there 2048 // is a dependence between the instructions. 2049 while (!R.empty()) { 2050 SUnit *maxHeight = nullptr; 2051 for (SUnit *I : R) { 2052 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2053 maxHeight = I; 2054 else if (getHeight(I) == getHeight(maxHeight) && 2055 getMOV(I) < getMOV(maxHeight) && 2056 !hasDataDependence(maxHeight, I)) 2057 maxHeight = I; 2058 else if (hasDataDependence(I, maxHeight)) 2059 maxHeight = I; 2060 } 2061 NodeOrder.insert(maxHeight); 2062 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2063 R.remove(maxHeight); 2064 for (const auto &I : maxHeight->Succs) { 2065 if (Nodes.count(I.getSUnit()) == 0) 2066 continue; 2067 if (NodeOrder.count(I.getSUnit()) != 0) 2068 continue; 2069 if (ignoreDependence(I, false)) 2070 continue; 2071 R.insert(I.getSUnit()); 2072 } 2073 // Back-edges are predecessors with an anti-dependence. 2074 for (const auto &I : maxHeight->Preds) { 2075 if (I.getKind() != SDep::Anti) 2076 continue; 2077 if (Nodes.count(I.getSUnit()) == 0) 2078 continue; 2079 if (NodeOrder.count(I.getSUnit()) != 0) 2080 continue; 2081 R.insert(I.getSUnit()); 2082 } 2083 } 2084 Order = BottomUp; 2085 DEBUG(dbgs() << "\n Switching order to bottom up "); 2086 SmallSetVector<SUnit *, 8> N; 2087 if (pred_L(NodeOrder, N, &Nodes)) 2088 R.insert(N.begin(), N.end()); 2089 } else { 2090 // Choose the node with the maximum depth. If more than one, choose 2091 // the node with the lowest MOV. If there is still more than one, check 2092 // for a dependence between the instructions. 2093 while (!R.empty()) { 2094 SUnit *maxDepth = nullptr; 2095 for (SUnit *I : R) { 2096 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2097 maxDepth = I; 2098 else if (getDepth(I) == getDepth(maxDepth) && 2099 getMOV(I) < getMOV(maxDepth) && 2100 !hasDataDependence(I, maxDepth)) 2101 maxDepth = I; 2102 else if (hasDataDependence(maxDepth, I)) 2103 maxDepth = I; 2104 } 2105 NodeOrder.insert(maxDepth); 2106 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2107 R.remove(maxDepth); 2108 if (Nodes.isExceedSU(maxDepth)) { 2109 Order = TopDown; 2110 R.clear(); 2111 R.insert(Nodes.getNode(0)); 2112 break; 2113 } 2114 for (const auto &I : maxDepth->Preds) { 2115 if (Nodes.count(I.getSUnit()) == 0) 2116 continue; 2117 if (NodeOrder.count(I.getSUnit()) != 0) 2118 continue; 2119 if (I.getKind() == SDep::Anti) 2120 continue; 2121 R.insert(I.getSUnit()); 2122 } 2123 // Back-edges are predecessors with an anti-dependence. 2124 for (const auto &I : maxDepth->Succs) { 2125 if (I.getKind() != SDep::Anti) 2126 continue; 2127 if (Nodes.count(I.getSUnit()) == 0) 2128 continue; 2129 if (NodeOrder.count(I.getSUnit()) != 0) 2130 continue; 2131 R.insert(I.getSUnit()); 2132 } 2133 } 2134 Order = TopDown; 2135 DEBUG(dbgs() << "\n Switching order to top down "); 2136 SmallSetVector<SUnit *, 8> N; 2137 if (succ_L(NodeOrder, N, &Nodes)) 2138 R.insert(N.begin(), N.end()); 2139 } 2140 } 2141 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2142 } 2143 2144 DEBUG({ 2145 dbgs() << "Node order: "; 2146 for (SUnit *I : NodeOrder) 2147 dbgs() << " " << I->NodeNum << " "; 2148 dbgs() << "\n"; 2149 }); 2150 } 2151 2152 /// Process the nodes in the computed order and create the pipelined schedule 2153 /// of the instructions, if possible. Return true if a schedule is found. 2154 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2155 2156 if (NodeOrder.size() == 0) 2157 return false; 2158 2159 bool scheduleFound = false; 2160 // Keep increasing II until a valid schedule is found. 2161 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2162 Schedule.reset(); 2163 Schedule.setInitiationInterval(II); 2164 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2165 2166 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2167 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2168 do { 2169 SUnit *SU = *NI; 2170 2171 // Compute the schedule time for the instruction, which is based 2172 // upon the scheduled time for any predecessors/successors. 2173 int EarlyStart = INT_MIN; 2174 int LateStart = INT_MAX; 2175 // These values are set when the size of the schedule window is limited 2176 // due to chain dependences. 2177 int SchedEnd = INT_MAX; 2178 int SchedStart = INT_MIN; 2179 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2180 II, this); 2181 DEBUG({ 2182 dbgs() << "Inst (" << SU->NodeNum << ") "; 2183 SU->getInstr()->dump(); 2184 dbgs() << "\n"; 2185 }); 2186 DEBUG({ 2187 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2188 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2189 }); 2190 2191 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2192 SchedStart > LateStart) 2193 scheduleFound = false; 2194 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2195 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2196 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2197 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2198 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2199 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2200 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2201 SchedEnd = 2202 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2203 // When scheduling a Phi it is better to start at the late cycle and go 2204 // backwards. The default order may insert the Phi too far away from 2205 // its first dependence. 2206 if (SU->getInstr()->isPHI()) 2207 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2208 else 2209 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2210 } else { 2211 int FirstCycle = Schedule.getFirstCycle(); 2212 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2213 FirstCycle + getASAP(SU) + II - 1, II); 2214 } 2215 // Even if we find a schedule, make sure the schedule doesn't exceed the 2216 // allowable number of stages. We keep trying if this happens. 2217 if (scheduleFound) 2218 if (SwpMaxStages > -1 && 2219 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2220 scheduleFound = false; 2221 2222 DEBUG({ 2223 if (!scheduleFound) 2224 dbgs() << "\tCan't schedule\n"; 2225 }); 2226 } while (++NI != NE && scheduleFound); 2227 2228 // If a schedule is found, check if it is a valid schedule too. 2229 if (scheduleFound) 2230 scheduleFound = Schedule.isValidSchedule(this); 2231 } 2232 2233 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2234 2235 if (scheduleFound) 2236 Schedule.finalizeSchedule(this); 2237 else 2238 Schedule.reset(); 2239 2240 return scheduleFound && Schedule.getMaxStageCount() > 0; 2241 } 2242 2243 /// Given a schedule for the loop, generate a new version of the loop, 2244 /// and replace the old version. This function generates a prolog 2245 /// that contains the initial iterations in the pipeline, and kernel 2246 /// loop, and the epilogue that contains the code for the final 2247 /// iterations. 2248 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2249 // Create a new basic block for the kernel and add it to the CFG. 2250 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2251 2252 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2253 2254 // Remember the registers that are used in different stages. The index is 2255 // the iteration, or stage, that the instruction is scheduled in. This is 2256 // a map between register names in the orignal block and the names created 2257 // in each stage of the pipelined loop. 2258 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2259 InstrMapTy InstrMap; 2260 2261 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2262 // Generate the prolog instructions that set up the pipeline. 2263 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2264 MF.insert(BB->getIterator(), KernelBB); 2265 2266 // Rearrange the instructions to generate the new, pipelined loop, 2267 // and update register names as needed. 2268 for (int Cycle = Schedule.getFirstCycle(), 2269 LastCycle = Schedule.getFinalCycle(); 2270 Cycle <= LastCycle; ++Cycle) { 2271 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2272 // This inner loop schedules each instruction in the cycle. 2273 for (SUnit *CI : CycleInstrs) { 2274 if (CI->getInstr()->isPHI()) 2275 continue; 2276 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2277 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2278 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2279 KernelBB->push_back(NewMI); 2280 InstrMap[NewMI] = CI->getInstr(); 2281 } 2282 } 2283 2284 // Copy any terminator instructions to the new kernel, and update 2285 // names as needed. 2286 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2287 E = BB->instr_end(); 2288 I != E; ++I) { 2289 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2290 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2291 KernelBB->push_back(NewMI); 2292 InstrMap[NewMI] = &*I; 2293 } 2294 2295 KernelBB->transferSuccessors(BB); 2296 KernelBB->replaceSuccessor(BB, KernelBB); 2297 2298 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2299 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2300 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2301 InstrMap, MaxStageCount, MaxStageCount, false); 2302 2303 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2304 2305 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2306 // Generate the epilog instructions to complete the pipeline. 2307 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2308 PrologBBs); 2309 2310 // We need this step because the register allocation doesn't handle some 2311 // situations well, so we insert copies to help out. 2312 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2313 2314 // Remove dead instructions due to loop induction variables. 2315 removeDeadInstructions(KernelBB, EpilogBBs); 2316 2317 // Add branches between prolog and epilog blocks. 2318 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2319 2320 // Remove the original loop since it's no longer referenced. 2321 BB->clear(); 2322 BB->eraseFromParent(); 2323 2324 delete[] VRMap; 2325 } 2326 2327 /// Generate the pipeline prolog code. 2328 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2329 MachineBasicBlock *KernelBB, 2330 ValueMapTy *VRMap, 2331 MBBVectorTy &PrologBBs) { 2332 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2333 assert(PreheaderBB != NULL && 2334 "Need to add code to handle loops w/o preheader"); 2335 MachineBasicBlock *PredBB = PreheaderBB; 2336 InstrMapTy InstrMap; 2337 2338 // Generate a basic block for each stage, not including the last stage, 2339 // which will be generated in the kernel. Each basic block may contain 2340 // instructions from multiple stages/iterations. 2341 for (unsigned i = 0; i < LastStage; ++i) { 2342 // Create and insert the prolog basic block prior to the original loop 2343 // basic block. The original loop is removed later. 2344 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2345 PrologBBs.push_back(NewBB); 2346 MF.insert(BB->getIterator(), NewBB); 2347 NewBB->transferSuccessors(PredBB); 2348 PredBB->addSuccessor(NewBB); 2349 PredBB = NewBB; 2350 2351 // Generate instructions for each appropriate stage. Process instructions 2352 // in original program order. 2353 for (int StageNum = i; StageNum >= 0; --StageNum) { 2354 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2355 BBE = BB->getFirstTerminator(); 2356 BBI != BBE; ++BBI) { 2357 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2358 if (BBI->isPHI()) 2359 continue; 2360 MachineInstr *NewMI = 2361 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2362 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2363 VRMap); 2364 NewBB->push_back(NewMI); 2365 InstrMap[NewMI] = &*BBI; 2366 } 2367 } 2368 } 2369 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2370 DEBUG({ 2371 dbgs() << "prolog:\n"; 2372 NewBB->dump(); 2373 }); 2374 } 2375 2376 PredBB->replaceSuccessor(BB, KernelBB); 2377 2378 // Check if we need to remove the branch from the preheader to the original 2379 // loop, and replace it with a branch to the new loop. 2380 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2381 if (numBranches) { 2382 SmallVector<MachineOperand, 0> Cond; 2383 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2384 } 2385 } 2386 2387 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2388 /// that were started in either the prolog or the kernel. We create a basic 2389 /// block for each stage that needs to complete. 2390 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2391 MachineBasicBlock *KernelBB, 2392 ValueMapTy *VRMap, 2393 MBBVectorTy &EpilogBBs, 2394 MBBVectorTy &PrologBBs) { 2395 // We need to change the branch from the kernel to the first epilog block, so 2396 // this call to analyze branch uses the kernel rather than the original BB. 2397 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2398 SmallVector<MachineOperand, 4> Cond; 2399 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2400 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2401 if (checkBranch) 2402 return; 2403 2404 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2405 if (*LoopExitI == KernelBB) 2406 ++LoopExitI; 2407 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2408 MachineBasicBlock *LoopExitBB = *LoopExitI; 2409 2410 MachineBasicBlock *PredBB = KernelBB; 2411 MachineBasicBlock *EpilogStart = LoopExitBB; 2412 InstrMapTy InstrMap; 2413 2414 // Generate a basic block for each stage, not including the last stage, 2415 // which was generated for the kernel. Each basic block may contain 2416 // instructions from multiple stages/iterations. 2417 int EpilogStage = LastStage + 1; 2418 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2419 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2420 EpilogBBs.push_back(NewBB); 2421 MF.insert(BB->getIterator(), NewBB); 2422 2423 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2424 NewBB->addSuccessor(LoopExitBB); 2425 2426 if (EpilogStart == LoopExitBB) 2427 EpilogStart = NewBB; 2428 2429 // Add instructions to the epilog depending on the current block. 2430 // Process instructions in original program order. 2431 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2432 for (auto &BBI : *BB) { 2433 if (BBI.isPHI()) 2434 continue; 2435 MachineInstr *In = &BBI; 2436 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2437 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2438 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2439 NewBB->push_back(NewMI); 2440 InstrMap[NewMI] = In; 2441 } 2442 } 2443 } 2444 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2445 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2446 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2447 InstrMap, LastStage, EpilogStage, i == 1); 2448 PredBB = NewBB; 2449 2450 DEBUG({ 2451 dbgs() << "epilog:\n"; 2452 NewBB->dump(); 2453 }); 2454 } 2455 2456 // Fix any Phi nodes in the loop exit block. 2457 for (MachineInstr &MI : *LoopExitBB) { 2458 if (!MI.isPHI()) 2459 break; 2460 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2461 MachineOperand &MO = MI.getOperand(i); 2462 if (MO.getMBB() == BB) 2463 MO.setMBB(PredBB); 2464 } 2465 } 2466 2467 // Create a branch to the new epilog from the kernel. 2468 // Remove the original branch and add a new branch to the epilog. 2469 TII->removeBranch(*KernelBB); 2470 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2471 // Add a branch to the loop exit. 2472 if (EpilogBBs.size() > 0) { 2473 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2474 SmallVector<MachineOperand, 4> Cond1; 2475 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2476 } 2477 } 2478 2479 /// Replace all uses of FromReg that appear outside the specified 2480 /// basic block with ToReg. 2481 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2482 MachineBasicBlock *MBB, 2483 MachineRegisterInfo &MRI, 2484 LiveIntervals &LIS) { 2485 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2486 E = MRI.use_end(); 2487 I != E;) { 2488 MachineOperand &O = *I; 2489 ++I; 2490 if (O.getParent()->getParent() != MBB) 2491 O.setReg(ToReg); 2492 } 2493 if (!LIS.hasInterval(ToReg)) 2494 LIS.createEmptyInterval(ToReg); 2495 } 2496 2497 /// Return true if the register has a use that occurs outside the 2498 /// specified loop. 2499 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2500 MachineRegisterInfo &MRI) { 2501 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2502 E = MRI.use_end(); 2503 I != E; ++I) 2504 if (I->getParent()->getParent() != BB) 2505 return true; 2506 return false; 2507 } 2508 2509 /// Generate Phis for the specific block in the generated pipelined code. 2510 /// This function looks at the Phis from the original code to guide the 2511 /// creation of new Phis. 2512 void SwingSchedulerDAG::generateExistingPhis( 2513 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2514 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2515 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2516 bool IsLast) { 2517 // Compute the stage number for the inital value of the Phi, which 2518 // comes from the prolog. The prolog to use depends on to which kernel/ 2519 // epilog that we're adding the Phi. 2520 unsigned PrologStage = 0; 2521 unsigned PrevStage = 0; 2522 bool InKernel = (LastStageNum == CurStageNum); 2523 if (InKernel) { 2524 PrologStage = LastStageNum - 1; 2525 PrevStage = CurStageNum; 2526 } else { 2527 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2528 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2529 } 2530 2531 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2532 BBE = BB->getFirstNonPHI(); 2533 BBI != BBE; ++BBI) { 2534 unsigned Def = BBI->getOperand(0).getReg(); 2535 2536 unsigned InitVal = 0; 2537 unsigned LoopVal = 0; 2538 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2539 2540 unsigned PhiOp1 = 0; 2541 // The Phi value from the loop body typically is defined in the loop, but 2542 // not always. So, we need to check if the value is defined in the loop. 2543 unsigned PhiOp2 = LoopVal; 2544 if (VRMap[LastStageNum].count(LoopVal)) 2545 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2546 2547 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2548 int LoopValStage = 2549 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2550 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2551 if (NumStages == 0) { 2552 // We don't need to generate a Phi anymore, but we need to rename any uses 2553 // of the Phi value. 2554 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2555 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2556 Def, NewReg); 2557 if (VRMap[CurStageNum].count(LoopVal)) 2558 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2559 } 2560 // Adjust the number of Phis needed depending on the number of prologs left, 2561 // and the distance from where the Phi is first scheduled. 2562 unsigned NumPhis = NumStages; 2563 if (!InKernel && (int)PrologStage < LoopValStage) 2564 // The NumPhis is the maximum number of new Phis needed during the steady 2565 // state. If the Phi has not been scheduled in current prolog, then we 2566 // need to generate less Phis. 2567 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2568 // The number of Phis cannot exceed the number of prolog stages. Each 2569 // stage can potentially define two values. 2570 NumPhis = std::min(NumPhis, PrologStage + 2); 2571 2572 unsigned NewReg = 0; 2573 2574 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2575 // In the epilog, we may need to look back one stage to get the correct 2576 // Phi name because the epilog and prolog blocks execute the same stage. 2577 // The correct name is from the previous block only when the Phi has 2578 // been completely scheduled prior to the epilog, and Phi value is not 2579 // needed in multiple stages. 2580 int StageDiff = 0; 2581 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2582 NumPhis == 1) 2583 StageDiff = 1; 2584 // Adjust the computations below when the phi and the loop definition 2585 // are scheduled in different stages. 2586 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2587 StageDiff = StageScheduled - LoopValStage; 2588 for (unsigned np = 0; np < NumPhis; ++np) { 2589 // If the Phi hasn't been scheduled, then use the initial Phi operand 2590 // value. Otherwise, use the scheduled version of the instruction. This 2591 // is a little complicated when a Phi references another Phi. 2592 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2593 PhiOp1 = InitVal; 2594 // Check if the Phi has already been scheduled in a prolog stage. 2595 else if (PrologStage >= AccessStage + StageDiff + np && 2596 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2597 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2598 // Check if the Phi has already been scheduled, but the loop intruction 2599 // is either another Phi, or doesn't occur in the loop. 2600 else if (PrologStage >= AccessStage + StageDiff + np) { 2601 // If the Phi references another Phi, we need to examine the other 2602 // Phi to get the correct value. 2603 PhiOp1 = LoopVal; 2604 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2605 int Indirects = 1; 2606 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2607 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2608 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2609 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2610 else 2611 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2612 InstOp1 = MRI.getVRegDef(PhiOp1); 2613 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2614 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2615 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2616 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2617 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2618 break; 2619 } 2620 ++Indirects; 2621 } 2622 } else 2623 PhiOp1 = InitVal; 2624 // If this references a generated Phi in the kernel, get the Phi operand 2625 // from the incoming block. 2626 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2627 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2628 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2629 2630 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2631 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2632 // In the epilog, a map lookup is needed to get the value from the kernel, 2633 // or previous epilog block. How is does this depends on if the 2634 // instruction is scheduled in the previous block. 2635 if (!InKernel) { 2636 int StageDiffAdj = 0; 2637 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2638 StageDiffAdj = StageScheduled - LoopValStage; 2639 // Use the loop value defined in the kernel, unless the kernel 2640 // contains the last definition of the Phi. 2641 if (np == 0 && PrevStage == LastStageNum && 2642 (StageScheduled != 0 || LoopValStage != 0) && 2643 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2644 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2645 // Use the value defined by the Phi. We add one because we switch 2646 // from looking at the loop value to the Phi definition. 2647 else if (np > 0 && PrevStage == LastStageNum && 2648 VRMap[PrevStage - np + 1].count(Def)) 2649 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2650 // Use the loop value defined in the kernel. 2651 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2652 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2653 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2654 // Use the value defined by the Phi, unless we're generating the first 2655 // epilog and the Phi refers to a Phi in a different stage. 2656 else if (VRMap[PrevStage - np].count(Def) && 2657 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2658 PhiOp2 = VRMap[PrevStage - np][Def]; 2659 } 2660 2661 // Check if we can reuse an existing Phi. This occurs when a Phi 2662 // references another Phi, and the other Phi is scheduled in an 2663 // earlier stage. We can try to reuse an existing Phi up until the last 2664 // stage of the current Phi. 2665 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2666 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2667 int StageDiff = (StageScheduled - LoopValStage); 2668 LVNumStages -= StageDiff; 2669 if (LVNumStages > (int)np) { 2670 NewReg = PhiOp2; 2671 unsigned ReuseStage = CurStageNum; 2672 if (Schedule.isLoopCarried(this, *PhiInst)) 2673 ReuseStage -= LVNumStages; 2674 // Check if the Phi to reuse has been generated yet. If not, then 2675 // there is nothing to reuse. 2676 if (VRMap[ReuseStage].count(LoopVal)) { 2677 NewReg = VRMap[ReuseStage][LoopVal]; 2678 2679 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2680 &*BBI, Def, NewReg); 2681 // Update the map with the new Phi name. 2682 VRMap[CurStageNum - np][Def] = NewReg; 2683 PhiOp2 = NewReg; 2684 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2685 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2686 2687 if (IsLast && np == NumPhis - 1) 2688 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2689 continue; 2690 } 2691 } else if (InKernel && StageDiff > 0 && 2692 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2693 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2694 } 2695 2696 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2697 NewReg = MRI.createVirtualRegister(RC); 2698 2699 MachineInstrBuilder NewPhi = 2700 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2701 TII->get(TargetOpcode::PHI), NewReg); 2702 NewPhi.addReg(PhiOp1).addMBB(BB1); 2703 NewPhi.addReg(PhiOp2).addMBB(BB2); 2704 if (np == 0) 2705 InstrMap[NewPhi] = &*BBI; 2706 2707 // We define the Phis after creating the new pipelined code, so 2708 // we need to rename the Phi values in scheduled instructions. 2709 2710 unsigned PrevReg = 0; 2711 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2712 PrevReg = VRMap[PrevStage - np][LoopVal]; 2713 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2714 Def, NewReg, PrevReg); 2715 // If the Phi has been scheduled, use the new name for rewriting. 2716 if (VRMap[CurStageNum - np].count(Def)) { 2717 unsigned R = VRMap[CurStageNum - np][Def]; 2718 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2719 R, NewReg); 2720 } 2721 2722 // Check if we need to rename any uses that occurs after the loop. The 2723 // register to replace depends on whether the Phi is scheduled in the 2724 // epilog. 2725 if (IsLast && np == NumPhis - 1) 2726 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2727 2728 // In the kernel, a dependent Phi uses the value from this Phi. 2729 if (InKernel) 2730 PhiOp2 = NewReg; 2731 2732 // Update the map with the new Phi name. 2733 VRMap[CurStageNum - np][Def] = NewReg; 2734 } 2735 2736 while (NumPhis++ < NumStages) { 2737 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2738 &*BBI, Def, NewReg, 0); 2739 } 2740 2741 // Check if we need to rename a Phi that has been eliminated due to 2742 // scheduling. 2743 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2744 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2745 } 2746 } 2747 2748 /// Generate Phis for the specified block in the generated pipelined code. 2749 /// These are new Phis needed because the definition is scheduled after the 2750 /// use in the pipelened sequence. 2751 void SwingSchedulerDAG::generatePhis( 2752 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2753 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2754 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2755 bool IsLast) { 2756 // Compute the stage number that contains the initial Phi value, and 2757 // the Phi from the previous stage. 2758 unsigned PrologStage = 0; 2759 unsigned PrevStage = 0; 2760 unsigned StageDiff = CurStageNum - LastStageNum; 2761 bool InKernel = (StageDiff == 0); 2762 if (InKernel) { 2763 PrologStage = LastStageNum - 1; 2764 PrevStage = CurStageNum; 2765 } else { 2766 PrologStage = LastStageNum - StageDiff; 2767 PrevStage = LastStageNum + StageDiff - 1; 2768 } 2769 2770 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2771 BBE = BB->instr_end(); 2772 BBI != BBE; ++BBI) { 2773 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2774 MachineOperand &MO = BBI->getOperand(i); 2775 if (!MO.isReg() || !MO.isDef() || 2776 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2777 continue; 2778 2779 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2780 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2781 unsigned Def = MO.getReg(); 2782 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2783 // An instruction scheduled in stage 0 and is used after the loop 2784 // requires a phi in the epilog for the last definition from either 2785 // the kernel or prolog. 2786 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2787 hasUseAfterLoop(Def, BB, MRI)) 2788 NumPhis = 1; 2789 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2790 continue; 2791 2792 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2793 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2794 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2795 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2796 // The number of Phis can't exceed the number of prolog stages. The 2797 // prolog stage number is zero based. 2798 if (NumPhis > PrologStage + 1 - StageScheduled) 2799 NumPhis = PrologStage + 1 - StageScheduled; 2800 for (unsigned np = 0; np < NumPhis; ++np) { 2801 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2802 if (np <= PrologStage) 2803 PhiOp1 = VRMap[PrologStage - np][Def]; 2804 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2805 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2806 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2807 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2808 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2809 } 2810 if (!InKernel) 2811 PhiOp2 = VRMap[PrevStage - np][Def]; 2812 2813 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2814 unsigned NewReg = MRI.createVirtualRegister(RC); 2815 2816 MachineInstrBuilder NewPhi = 2817 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2818 TII->get(TargetOpcode::PHI), NewReg); 2819 NewPhi.addReg(PhiOp1).addMBB(BB1); 2820 NewPhi.addReg(PhiOp2).addMBB(BB2); 2821 if (np == 0) 2822 InstrMap[NewPhi] = &*BBI; 2823 2824 // Rewrite uses and update the map. The actions depend upon whether 2825 // we generating code for the kernel or epilog blocks. 2826 if (InKernel) { 2827 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2828 &*BBI, PhiOp1, NewReg); 2829 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2830 &*BBI, PhiOp2, NewReg); 2831 2832 PhiOp2 = NewReg; 2833 VRMap[PrevStage - np - 1][Def] = NewReg; 2834 } else { 2835 VRMap[CurStageNum - np][Def] = NewReg; 2836 if (np == NumPhis - 1) 2837 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2838 &*BBI, Def, NewReg); 2839 } 2840 if (IsLast && np == NumPhis - 1) 2841 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2842 } 2843 } 2844 } 2845 } 2846 2847 /// Remove instructions that generate values with no uses. 2848 /// Typically, these are induction variable operations that generate values 2849 /// used in the loop itself. A dead instruction has a definition with 2850 /// no uses, or uses that occur in the original loop only. 2851 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2852 MBBVectorTy &EpilogBBs) { 2853 // For each epilog block, check that the value defined by each instruction 2854 // is used. If not, delete it. 2855 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2856 MBE = EpilogBBs.rend(); 2857 MBB != MBE; ++MBB) 2858 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2859 ME = (*MBB)->instr_rend(); 2860 MI != ME;) { 2861 // From DeadMachineInstructionElem. Don't delete inline assembly. 2862 if (MI->isInlineAsm()) { 2863 ++MI; 2864 continue; 2865 } 2866 bool SawStore = false; 2867 // Check if it's safe to remove the instruction due to side effects. 2868 // We can, and want to, remove Phis here. 2869 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2870 ++MI; 2871 continue; 2872 } 2873 bool used = true; 2874 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2875 MOE = MI->operands_end(); 2876 MOI != MOE; ++MOI) { 2877 if (!MOI->isReg() || !MOI->isDef()) 2878 continue; 2879 unsigned reg = MOI->getReg(); 2880 unsigned realUses = 0; 2881 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2882 EI = MRI.use_end(); 2883 UI != EI; ++UI) { 2884 // Check if there are any uses that occur only in the original 2885 // loop. If so, that's not a real use. 2886 if (UI->getParent()->getParent() != BB) { 2887 realUses++; 2888 used = true; 2889 break; 2890 } 2891 } 2892 if (realUses > 0) 2893 break; 2894 used = false; 2895 } 2896 if (!used) { 2897 MI++->eraseFromParent(); 2898 continue; 2899 } 2900 ++MI; 2901 } 2902 // In the kernel block, check if we can remove a Phi that generates a value 2903 // used in an instruction removed in the epilog block. 2904 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2905 BBE = KernelBB->getFirstNonPHI(); 2906 BBI != BBE;) { 2907 MachineInstr *MI = &*BBI; 2908 ++BBI; 2909 unsigned reg = MI->getOperand(0).getReg(); 2910 if (MRI.use_begin(reg) == MRI.use_end()) { 2911 MI->eraseFromParent(); 2912 } 2913 } 2914 } 2915 2916 /// For loop carried definitions, we split the lifetime of a virtual register 2917 /// that has uses past the definition in the next iteration. A copy with a new 2918 /// virtual register is inserted before the definition, which helps with 2919 /// generating a better register assignment. 2920 /// 2921 /// v1 = phi(a, v2) v1 = phi(a, v2) 2922 /// v2 = phi(b, v3) v2 = phi(b, v3) 2923 /// v3 = .. v4 = copy v1 2924 /// .. = V1 v3 = .. 2925 /// .. = v4 2926 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2927 MBBVectorTy &EpilogBBs, 2928 SMSchedule &Schedule) { 2929 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2930 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2931 BBF = KernelBB->getFirstNonPHI(); 2932 BBI != BBF; ++BBI) { 2933 unsigned Def = BBI->getOperand(0).getReg(); 2934 // Check for any Phi definition that used as an operand of another Phi 2935 // in the same block. 2936 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2937 E = MRI.use_instr_end(); 2938 I != E; ++I) { 2939 if (I->isPHI() && I->getParent() == KernelBB) { 2940 // Get the loop carried definition. 2941 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2942 if (!LCDef) 2943 continue; 2944 MachineInstr *MI = MRI.getVRegDef(LCDef); 2945 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2946 continue; 2947 // Search through the rest of the block looking for uses of the Phi 2948 // definition. If one occurs, then split the lifetime. 2949 unsigned SplitReg = 0; 2950 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2951 KernelBB->instr_end())) 2952 if (BBJ.readsRegister(Def)) { 2953 // We split the lifetime when we find the first use. 2954 if (SplitReg == 0) { 2955 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2956 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2957 TII->get(TargetOpcode::COPY), SplitReg) 2958 .addReg(Def); 2959 } 2960 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2961 } 2962 if (!SplitReg) 2963 continue; 2964 // Search through each of the epilog blocks for any uses to be renamed. 2965 for (auto &Epilog : EpilogBBs) 2966 for (auto &I : *Epilog) 2967 if (I.readsRegister(Def)) 2968 I.substituteRegister(Def, SplitReg, 0, *TRI); 2969 break; 2970 } 2971 } 2972 } 2973 } 2974 2975 /// Remove the incoming block from the Phis in a basic block. 2976 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2977 for (MachineInstr &MI : *BB) { 2978 if (!MI.isPHI()) 2979 break; 2980 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2981 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2982 MI.RemoveOperand(i + 1); 2983 MI.RemoveOperand(i); 2984 break; 2985 } 2986 } 2987 } 2988 2989 /// Create branches from each prolog basic block to the appropriate epilog 2990 /// block. These edges are needed if the loop ends before reaching the 2991 /// kernel. 2992 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2993 MachineBasicBlock *KernelBB, 2994 MBBVectorTy &EpilogBBs, 2995 SMSchedule &Schedule, ValueMapTy *VRMap) { 2996 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2997 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2998 MachineInstr *Cmp = Pass.LI.LoopCompare; 2999 MachineBasicBlock *LastPro = KernelBB; 3000 MachineBasicBlock *LastEpi = KernelBB; 3001 3002 // Start from the blocks connected to the kernel and work "out" 3003 // to the first prolog and the last epilog blocks. 3004 SmallVector<MachineInstr *, 4> PrevInsts; 3005 unsigned MaxIter = PrologBBs.size() - 1; 3006 unsigned LC = UINT_MAX; 3007 unsigned LCMin = UINT_MAX; 3008 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3009 // Add branches to the prolog that go to the corresponding 3010 // epilog, and the fall-thru prolog/kernel block. 3011 MachineBasicBlock *Prolog = PrologBBs[j]; 3012 MachineBasicBlock *Epilog = EpilogBBs[i]; 3013 // We've executed one iteration, so decrement the loop count and check for 3014 // the loop end. 3015 SmallVector<MachineOperand, 4> Cond; 3016 // Check if the LOOP0 has already been removed. If so, then there is no need 3017 // to reduce the trip count. 3018 if (LC != 0) 3019 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3020 MaxIter); 3021 3022 // Record the value of the first trip count, which is used to determine if 3023 // branches and blocks can be removed for constant trip counts. 3024 if (LCMin == UINT_MAX) 3025 LCMin = LC; 3026 3027 unsigned numAdded = 0; 3028 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3029 Prolog->addSuccessor(Epilog); 3030 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3031 } else if (j >= LCMin) { 3032 Prolog->addSuccessor(Epilog); 3033 Prolog->removeSuccessor(LastPro); 3034 LastEpi->removeSuccessor(Epilog); 3035 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3036 removePhis(Epilog, LastEpi); 3037 // Remove the blocks that are no longer referenced. 3038 if (LastPro != LastEpi) { 3039 LastEpi->clear(); 3040 LastEpi->eraseFromParent(); 3041 } 3042 LastPro->clear(); 3043 LastPro->eraseFromParent(); 3044 } else { 3045 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3046 removePhis(Epilog, Prolog); 3047 } 3048 LastPro = Prolog; 3049 LastEpi = Epilog; 3050 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3051 E = Prolog->instr_rend(); 3052 I != E && numAdded > 0; ++I, --numAdded) 3053 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3054 } 3055 } 3056 3057 /// Return true if we can compute the amount the instruction changes 3058 /// during each iteration. Set Delta to the amount of the change. 3059 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3060 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3061 unsigned BaseReg; 3062 int64_t Offset; 3063 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3064 return false; 3065 3066 MachineRegisterInfo &MRI = MF.getRegInfo(); 3067 // Check if there is a Phi. If so, get the definition in the loop. 3068 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3069 if (BaseDef && BaseDef->isPHI()) { 3070 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3071 BaseDef = MRI.getVRegDef(BaseReg); 3072 } 3073 if (!BaseDef) 3074 return false; 3075 3076 int D = 0; 3077 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3078 return false; 3079 3080 Delta = D; 3081 return true; 3082 } 3083 3084 /// Update the memory operand with a new offset when the pipeliner 3085 /// generates a new copy of the instruction that refers to a 3086 /// different memory location. 3087 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3088 MachineInstr &OldMI, unsigned Num) { 3089 if (Num == 0) 3090 return; 3091 // If the instruction has memory operands, then adjust the offset 3092 // when the instruction appears in different stages. 3093 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3094 if (NumRefs == 0) 3095 return; 3096 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3097 unsigned Refs = 0; 3098 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3099 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3100 (!MMO->getValue())) { 3101 NewMemRefs[Refs++] = MMO; 3102 continue; 3103 } 3104 unsigned Delta; 3105 if (computeDelta(OldMI, Delta)) { 3106 int64_t AdjOffset = Delta * Num; 3107 NewMemRefs[Refs++] = 3108 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3109 } else 3110 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3111 } 3112 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3113 } 3114 3115 /// Clone the instruction for the new pipelined loop and update the 3116 /// memory operands, if needed. 3117 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3118 unsigned CurStageNum, 3119 unsigned InstStageNum) { 3120 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3121 // Check for tied operands in inline asm instructions. This should be handled 3122 // elsewhere, but I'm not sure of the best solution. 3123 if (OldMI->isInlineAsm()) 3124 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3125 const auto &MO = OldMI->getOperand(i); 3126 if (MO.isReg() && MO.isUse()) 3127 break; 3128 unsigned UseIdx; 3129 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3130 NewMI->tieOperands(i, UseIdx); 3131 } 3132 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3133 return NewMI; 3134 } 3135 3136 /// Clone the instruction for the new pipelined loop. If needed, this 3137 /// function updates the instruction using the values saved in the 3138 /// InstrChanges structure. 3139 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3140 unsigned CurStageNum, 3141 unsigned InstStageNum, 3142 SMSchedule &Schedule) { 3143 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3144 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3145 InstrChanges.find(getSUnit(OldMI)); 3146 if (It != InstrChanges.end()) { 3147 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3148 unsigned BasePos, OffsetPos; 3149 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3150 return nullptr; 3151 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3152 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3153 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3154 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3155 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3156 } 3157 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3158 return NewMI; 3159 } 3160 3161 /// Update the machine instruction with new virtual registers. This 3162 /// function may change the defintions and/or uses. 3163 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3164 unsigned CurStageNum, 3165 unsigned InstrStageNum, 3166 SMSchedule &Schedule, 3167 ValueMapTy *VRMap) { 3168 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3169 MachineOperand &MO = NewMI->getOperand(i); 3170 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3171 continue; 3172 unsigned reg = MO.getReg(); 3173 if (MO.isDef()) { 3174 // Create a new virtual register for the definition. 3175 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3176 unsigned NewReg = MRI.createVirtualRegister(RC); 3177 MO.setReg(NewReg); 3178 VRMap[CurStageNum][reg] = NewReg; 3179 if (LastDef) 3180 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3181 } else if (MO.isUse()) { 3182 MachineInstr *Def = MRI.getVRegDef(reg); 3183 // Compute the stage that contains the last definition for instruction. 3184 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3185 unsigned StageNum = CurStageNum; 3186 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3187 // Compute the difference in stages between the defintion and the use. 3188 unsigned StageDiff = (InstrStageNum - DefStageNum); 3189 // Make an adjustment to get the last definition. 3190 StageNum -= StageDiff; 3191 } 3192 if (VRMap[StageNum].count(reg)) 3193 MO.setReg(VRMap[StageNum][reg]); 3194 } 3195 } 3196 } 3197 3198 /// Return the instruction in the loop that defines the register. 3199 /// If the definition is a Phi, then follow the Phi operand to 3200 /// the instruction in the loop. 3201 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3202 SmallPtrSet<MachineInstr *, 8> Visited; 3203 MachineInstr *Def = MRI.getVRegDef(Reg); 3204 while (Def->isPHI()) { 3205 if (!Visited.insert(Def).second) 3206 break; 3207 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3208 if (Def->getOperand(i + 1).getMBB() == BB) { 3209 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3210 break; 3211 } 3212 } 3213 return Def; 3214 } 3215 3216 /// Return the new name for the value from the previous stage. 3217 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3218 unsigned LoopVal, unsigned LoopStage, 3219 ValueMapTy *VRMap, 3220 MachineBasicBlock *BB) { 3221 unsigned PrevVal = 0; 3222 if (StageNum > PhiStage) { 3223 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3224 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3225 // The name is defined in the previous stage. 3226 PrevVal = VRMap[StageNum - 1][LoopVal]; 3227 else if (VRMap[StageNum].count(LoopVal)) 3228 // The previous name is defined in the current stage when the instruction 3229 // order is swapped. 3230 PrevVal = VRMap[StageNum][LoopVal]; 3231 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3232 // The loop value hasn't yet been scheduled. 3233 PrevVal = LoopVal; 3234 else if (StageNum == PhiStage + 1) 3235 // The loop value is another phi, which has not been scheduled. 3236 PrevVal = getInitPhiReg(*LoopInst, BB); 3237 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3238 // The loop value is another phi, which has been scheduled. 3239 PrevVal = 3240 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3241 LoopStage, VRMap, BB); 3242 } 3243 return PrevVal; 3244 } 3245 3246 /// Rewrite the Phi values in the specified block to use the mappings 3247 /// from the initial operand. Once the Phi is scheduled, we switch 3248 /// to using the loop value instead of the Phi value, so those names 3249 /// do not need to be rewritten. 3250 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3251 unsigned StageNum, 3252 SMSchedule &Schedule, 3253 ValueMapTy *VRMap, 3254 InstrMapTy &InstrMap) { 3255 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3256 BBE = BB->getFirstNonPHI(); 3257 BBI != BBE; ++BBI) { 3258 unsigned InitVal = 0; 3259 unsigned LoopVal = 0; 3260 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3261 unsigned PhiDef = BBI->getOperand(0).getReg(); 3262 3263 unsigned PhiStage = 3264 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3265 unsigned LoopStage = 3266 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3267 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3268 if (NumPhis > StageNum) 3269 NumPhis = StageNum; 3270 for (unsigned np = 0; np <= NumPhis; ++np) { 3271 unsigned NewVal = 3272 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3273 if (!NewVal) 3274 NewVal = InitVal; 3275 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3276 PhiDef, NewVal); 3277 } 3278 } 3279 } 3280 3281 /// Rewrite a previously scheduled instruction to use the register value 3282 /// from the new instruction. Make sure the instruction occurs in the 3283 /// basic block, and we don't change the uses in the new instruction. 3284 void SwingSchedulerDAG::rewriteScheduledInstr( 3285 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3286 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3287 unsigned NewReg, unsigned PrevReg) { 3288 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3289 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3290 // Rewrite uses that have been scheduled already to use the new 3291 // Phi register. 3292 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3293 EI = MRI.use_end(); 3294 UI != EI;) { 3295 MachineOperand &UseOp = *UI; 3296 MachineInstr *UseMI = UseOp.getParent(); 3297 ++UI; 3298 if (UseMI->getParent() != BB) 3299 continue; 3300 if (UseMI->isPHI()) { 3301 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3302 continue; 3303 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3304 continue; 3305 } 3306 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3307 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3308 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3309 int StageSched = Schedule.stageScheduled(OrigMISU); 3310 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3311 unsigned ReplaceReg = 0; 3312 // This is the stage for the scheduled instruction. 3313 if (StagePhi == StageSched && Phi->isPHI()) { 3314 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3315 if (PrevReg && InProlog) 3316 ReplaceReg = PrevReg; 3317 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3318 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3319 ReplaceReg = PrevReg; 3320 else 3321 ReplaceReg = NewReg; 3322 } 3323 // The scheduled instruction occurs before the scheduled Phi, and the 3324 // Phi is not loop carried. 3325 if (!InProlog && StagePhi + 1 == StageSched && 3326 !Schedule.isLoopCarried(this, *Phi)) 3327 ReplaceReg = NewReg; 3328 if (StagePhi > StageSched && Phi->isPHI()) 3329 ReplaceReg = NewReg; 3330 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3331 ReplaceReg = NewReg; 3332 if (ReplaceReg) { 3333 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3334 UseOp.setReg(ReplaceReg); 3335 } 3336 } 3337 } 3338 3339 /// Check if we can change the instruction to use an offset value from the 3340 /// previous iteration. If so, return true and set the base and offset values 3341 /// so that we can rewrite the load, if necessary. 3342 /// v1 = Phi(v0, v3) 3343 /// v2 = load v1, 0 3344 /// v3 = post_store v1, 4, x 3345 /// This function enables the load to be rewritten as v2 = load v3, 4. 3346 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3347 unsigned &BasePos, 3348 unsigned &OffsetPos, 3349 unsigned &NewBase, 3350 int64_t &Offset) { 3351 // Get the load instruction. 3352 if (TII->isPostIncrement(*MI)) 3353 return false; 3354 unsigned BasePosLd, OffsetPosLd; 3355 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3356 return false; 3357 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3358 3359 // Look for the Phi instruction. 3360 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 3361 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3362 if (!Phi || !Phi->isPHI()) 3363 return false; 3364 // Get the register defined in the loop block. 3365 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3366 if (!PrevReg) 3367 return false; 3368 3369 // Check for the post-increment load/store instruction. 3370 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3371 if (!PrevDef || PrevDef == MI) 3372 return false; 3373 3374 if (!TII->isPostIncrement(*PrevDef)) 3375 return false; 3376 3377 unsigned BasePos1 = 0, OffsetPos1 = 0; 3378 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3379 return false; 3380 3381 // Make sure offset values are both positive or both negative. 3382 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3383 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3384 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3385 return false; 3386 3387 // Set the return value once we determine that we return true. 3388 BasePos = BasePosLd; 3389 OffsetPos = OffsetPosLd; 3390 NewBase = PrevReg; 3391 Offset = StoreOffset; 3392 return true; 3393 } 3394 3395 /// Apply changes to the instruction if needed. The changes are need 3396 /// to improve the scheduling and depend up on the final schedule. 3397 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3398 SMSchedule &Schedule, 3399 bool UpdateDAG) { 3400 SUnit *SU = getSUnit(MI); 3401 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3402 InstrChanges.find(SU); 3403 if (It != InstrChanges.end()) { 3404 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3405 unsigned BasePos, OffsetPos; 3406 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3407 return nullptr; 3408 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3409 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3410 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3411 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3412 int BaseStageNum = Schedule.stageScheduled(SU); 3413 int BaseCycleNum = Schedule.cycleScheduled(SU); 3414 if (BaseStageNum < DefStageNum) { 3415 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3416 int OffsetDiff = DefStageNum - BaseStageNum; 3417 if (DefCycleNum < BaseCycleNum) { 3418 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3419 if (OffsetDiff > 0) 3420 --OffsetDiff; 3421 } 3422 int64_t NewOffset = 3423 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3424 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3425 if (UpdateDAG) { 3426 SU->setInstr(NewMI); 3427 MISUnitMap[NewMI] = SU; 3428 } 3429 NewMIs.insert(NewMI); 3430 return NewMI; 3431 } 3432 } 3433 return nullptr; 3434 } 3435 3436 /// Return true for an order dependence that is loop carried potentially. 3437 /// An order dependence is loop carried if the destination defines a value 3438 /// that may be used by the source in a subsequent iteration. 3439 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3440 bool isSucc) { 3441 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3442 return false; 3443 3444 if (!SwpPruneLoopCarried) 3445 return true; 3446 3447 MachineInstr *SI = Source->getInstr(); 3448 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3449 if (!isSucc) 3450 std::swap(SI, DI); 3451 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3452 3453 // Assume ordered loads and stores may have a loop carried dependence. 3454 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3455 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3456 return true; 3457 3458 // Only chain dependences between a load and store can be loop carried. 3459 if (!DI->mayStore() || !SI->mayLoad()) 3460 return false; 3461 3462 unsigned DeltaS, DeltaD; 3463 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3464 return true; 3465 3466 unsigned BaseRegS, BaseRegD; 3467 int64_t OffsetS, OffsetD; 3468 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3469 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3470 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3471 return true; 3472 3473 if (BaseRegS != BaseRegD) 3474 return true; 3475 3476 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3477 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3478 3479 // This is the main test, which checks the offset values and the loop 3480 // increment value to determine if the accesses may be loop carried. 3481 if (OffsetS >= OffsetD) 3482 return OffsetS + AccessSizeS > DeltaS; 3483 else if (OffsetS < OffsetD) 3484 return OffsetD + AccessSizeD > DeltaD; 3485 3486 return true; 3487 } 3488 3489 void SwingSchedulerDAG::postprocessDAG() { 3490 for (auto &M : Mutations) 3491 M->apply(this); 3492 } 3493 3494 /// Try to schedule the node at the specified StartCycle and continue 3495 /// until the node is schedule or the EndCycle is reached. This function 3496 /// returns true if the node is scheduled. This routine may search either 3497 /// forward or backward for a place to insert the instruction based upon 3498 /// the relative values of StartCycle and EndCycle. 3499 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3500 bool forward = true; 3501 if (StartCycle > EndCycle) 3502 forward = false; 3503 3504 // The terminating condition depends on the direction. 3505 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3506 for (int curCycle = StartCycle; curCycle != termCycle; 3507 forward ? ++curCycle : --curCycle) { 3508 3509 // Add the already scheduled instructions at the specified cycle to the DFA. 3510 Resources->clearResources(); 3511 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3512 checkCycle <= LastCycle; checkCycle += II) { 3513 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3514 3515 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3516 E = cycleInstrs.end(); 3517 I != E; ++I) { 3518 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3519 continue; 3520 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3521 "These instructions have already been scheduled."); 3522 Resources->reserveResources(*(*I)->getInstr()); 3523 } 3524 } 3525 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3526 Resources->canReserveResources(*SU->getInstr())) { 3527 DEBUG({ 3528 dbgs() << "\tinsert at cycle " << curCycle << " "; 3529 SU->getInstr()->dump(); 3530 }); 3531 3532 ScheduledInstrs[curCycle].push_back(SU); 3533 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3534 if (curCycle > LastCycle) 3535 LastCycle = curCycle; 3536 if (curCycle < FirstCycle) 3537 FirstCycle = curCycle; 3538 return true; 3539 } 3540 DEBUG({ 3541 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3542 SU->getInstr()->dump(); 3543 }); 3544 } 3545 return false; 3546 } 3547 3548 // Return the cycle of the earliest scheduled instruction in the chain. 3549 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3550 SmallPtrSet<SUnit *, 8> Visited; 3551 SmallVector<SDep, 8> Worklist; 3552 Worklist.push_back(Dep); 3553 int EarlyCycle = INT_MAX; 3554 while (!Worklist.empty()) { 3555 const SDep &Cur = Worklist.pop_back_val(); 3556 SUnit *PrevSU = Cur.getSUnit(); 3557 if (Visited.count(PrevSU)) 3558 continue; 3559 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3560 if (it == InstrToCycle.end()) 3561 continue; 3562 EarlyCycle = std::min(EarlyCycle, it->second); 3563 for (const auto &PI : PrevSU->Preds) 3564 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3565 Worklist.push_back(PI); 3566 Visited.insert(PrevSU); 3567 } 3568 return EarlyCycle; 3569 } 3570 3571 // Return the cycle of the latest scheduled instruction in the chain. 3572 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3573 SmallPtrSet<SUnit *, 8> Visited; 3574 SmallVector<SDep, 8> Worklist; 3575 Worklist.push_back(Dep); 3576 int LateCycle = INT_MIN; 3577 while (!Worklist.empty()) { 3578 const SDep &Cur = Worklist.pop_back_val(); 3579 SUnit *SuccSU = Cur.getSUnit(); 3580 if (Visited.count(SuccSU)) 3581 continue; 3582 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3583 if (it == InstrToCycle.end()) 3584 continue; 3585 LateCycle = std::max(LateCycle, it->second); 3586 for (const auto &SI : SuccSU->Succs) 3587 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3588 Worklist.push_back(SI); 3589 Visited.insert(SuccSU); 3590 } 3591 return LateCycle; 3592 } 3593 3594 /// If an instruction has a use that spans multiple iterations, then 3595 /// return true. These instructions are characterized by having a back-ege 3596 /// to a Phi, which contains a reference to another Phi. 3597 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3598 for (auto &P : SU->Preds) 3599 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3600 for (auto &S : P.getSUnit()->Succs) 3601 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3602 return P.getSUnit(); 3603 return nullptr; 3604 } 3605 3606 /// Compute the scheduling start slot for the instruction. The start slot 3607 /// depends on any predecessor or successor nodes scheduled already. 3608 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3609 int *MinEnd, int *MaxStart, int II, 3610 SwingSchedulerDAG *DAG) { 3611 // Iterate over each instruction that has been scheduled already. The start 3612 // slot computuation depends on whether the previously scheduled instruction 3613 // is a predecessor or successor of the specified instruction. 3614 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3615 3616 // Iterate over each instruction in the current cycle. 3617 for (SUnit *I : getInstructions(cycle)) { 3618 // Because we're processing a DAG for the dependences, we recognize 3619 // the back-edge in recurrences by anti dependences. 3620 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3621 const SDep &Dep = SU->Preds[i]; 3622 if (Dep.getSUnit() == I) { 3623 if (!DAG->isBackedge(SU, Dep)) { 3624 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3625 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3626 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3627 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3628 int End = earliestCycleInChain(Dep) + (II - 1); 3629 *MinEnd = std::min(*MinEnd, End); 3630 } 3631 } else { 3632 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3633 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3634 *MinLateStart = std::min(*MinLateStart, LateStart); 3635 } 3636 } 3637 // For instruction that requires multiple iterations, make sure that 3638 // the dependent instruction is not scheduled past the definition. 3639 SUnit *BE = multipleIterations(I, DAG); 3640 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3641 !SU->isPred(I)) 3642 *MinLateStart = std::min(*MinLateStart, cycle); 3643 } 3644 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3645 if (SU->Succs[i].getSUnit() == I) { 3646 const SDep &Dep = SU->Succs[i]; 3647 if (!DAG->isBackedge(SU, Dep)) { 3648 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3649 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3650 *MinLateStart = std::min(*MinLateStart, LateStart); 3651 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3652 int Start = latestCycleInChain(Dep) + 1 - II; 3653 *MaxStart = std::max(*MaxStart, Start); 3654 } 3655 } else { 3656 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3657 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3658 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3659 } 3660 } 3661 } 3662 } 3663 } 3664 3665 /// Order the instructions within a cycle so that the definitions occur 3666 /// before the uses. Returns true if the instruction is added to the start 3667 /// of the list, or false if added to the end. 3668 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3669 std::deque<SUnit *> &Insts) { 3670 MachineInstr *MI = SU->getInstr(); 3671 bool OrderBeforeUse = false; 3672 bool OrderAfterDef = false; 3673 bool OrderBeforeDef = false; 3674 unsigned MoveDef = 0; 3675 unsigned MoveUse = 0; 3676 int StageInst1 = stageScheduled(SU); 3677 3678 unsigned Pos = 0; 3679 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3680 ++I, ++Pos) { 3681 // Relative order of Phis does not matter. 3682 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3683 continue; 3684 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3685 MachineOperand &MO = MI->getOperand(i); 3686 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3687 continue; 3688 unsigned Reg = MO.getReg(); 3689 unsigned BasePos, OffsetPos; 3690 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3691 if (MI->getOperand(BasePos).getReg() == Reg) 3692 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3693 Reg = NewReg; 3694 bool Reads, Writes; 3695 std::tie(Reads, Writes) = 3696 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3697 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3698 OrderBeforeUse = true; 3699 MoveUse = Pos; 3700 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3701 // Add the instruction after the scheduled instruction. 3702 OrderAfterDef = true; 3703 MoveDef = Pos; 3704 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3705 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3706 OrderBeforeUse = true; 3707 MoveUse = Pos; 3708 } else { 3709 OrderAfterDef = true; 3710 MoveDef = Pos; 3711 } 3712 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3713 OrderBeforeUse = true; 3714 MoveUse = Pos; 3715 if (MoveUse != 0) { 3716 OrderAfterDef = true; 3717 MoveDef = Pos - 1; 3718 } 3719 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3720 // Add the instruction before the scheduled instruction. 3721 OrderBeforeUse = true; 3722 MoveUse = Pos; 3723 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3724 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3725 OrderBeforeDef = true; 3726 MoveUse = Pos; 3727 } 3728 } 3729 // Check for order dependences between instructions. Make sure the source 3730 // is ordered before the destination. 3731 for (auto &S : SU->Succs) 3732 if (S.getKind() == SDep::Order) { 3733 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3734 OrderBeforeUse = true; 3735 MoveUse = Pos; 3736 } 3737 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3738 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3739 if (S.isAssignedRegDep()) { 3740 OrderAfterDef = true; 3741 MoveDef = Pos; 3742 } 3743 } else { 3744 OrderBeforeUse = true; 3745 MoveUse = Pos; 3746 } 3747 } 3748 for (auto &P : SU->Preds) 3749 if (P.getKind() == SDep::Order) { 3750 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3751 OrderAfterDef = true; 3752 MoveDef = Pos; 3753 } 3754 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3755 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3756 if (P.isAssignedRegDep()) { 3757 OrderBeforeUse = true; 3758 MoveUse = Pos; 3759 } 3760 } else { 3761 OrderAfterDef = true; 3762 MoveDef = Pos; 3763 } 3764 } 3765 } 3766 3767 // A circular dependence. 3768 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3769 OrderBeforeUse = false; 3770 3771 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3772 // to a loop-carried dependence. 3773 if (OrderBeforeDef) 3774 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3775 3776 // The uncommon case when the instruction order needs to be updated because 3777 // there is both a use and def. 3778 if (OrderBeforeUse && OrderAfterDef) { 3779 SUnit *UseSU = Insts.at(MoveUse); 3780 SUnit *DefSU = Insts.at(MoveDef); 3781 if (MoveUse > MoveDef) { 3782 Insts.erase(Insts.begin() + MoveUse); 3783 Insts.erase(Insts.begin() + MoveDef); 3784 } else { 3785 Insts.erase(Insts.begin() + MoveDef); 3786 Insts.erase(Insts.begin() + MoveUse); 3787 } 3788 if (orderDependence(SSD, UseSU, Insts)) { 3789 Insts.push_front(SU); 3790 orderDependence(SSD, DefSU, Insts); 3791 return true; 3792 } 3793 Insts.pop_back(); 3794 Insts.push_back(SU); 3795 Insts.push_back(UseSU); 3796 orderDependence(SSD, DefSU, Insts); 3797 return false; 3798 } 3799 // Put the new instruction first if there is a use in the list. Otherwise, 3800 // put it at the end of the list. 3801 if (OrderBeforeUse) 3802 Insts.push_front(SU); 3803 else 3804 Insts.push_back(SU); 3805 return OrderBeforeUse; 3806 } 3807 3808 /// Return true if the scheduled Phi has a loop carried operand. 3809 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3810 if (!Phi.isPHI()) 3811 return false; 3812 assert(Phi.isPHI() && "Expecing a Phi."); 3813 SUnit *DefSU = SSD->getSUnit(&Phi); 3814 unsigned DefCycle = cycleScheduled(DefSU); 3815 int DefStage = stageScheduled(DefSU); 3816 3817 unsigned InitVal = 0; 3818 unsigned LoopVal = 0; 3819 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3820 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3821 if (!UseSU) 3822 return true; 3823 if (UseSU->getInstr()->isPHI()) 3824 return true; 3825 unsigned LoopCycle = cycleScheduled(UseSU); 3826 int LoopStage = stageScheduled(UseSU); 3827 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3828 } 3829 3830 /// Return true if the instruction is a definition that is loop carried 3831 /// and defines the use on the next iteration. 3832 /// v1 = phi(v2, v3) 3833 /// (Def) v3 = op v1 3834 /// (MO) = v1 3835 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3836 /// register. 3837 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3838 MachineInstr *Def, MachineOperand &MO) { 3839 if (!MO.isReg()) 3840 return false; 3841 if (Def->isPHI()) 3842 return false; 3843 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3844 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3845 return false; 3846 if (!isLoopCarried(SSD, *Phi)) 3847 return false; 3848 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3849 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3850 MachineOperand &DMO = Def->getOperand(i); 3851 if (!DMO.isReg() || !DMO.isDef()) 3852 continue; 3853 if (DMO.getReg() == LoopReg) 3854 return true; 3855 } 3856 return false; 3857 } 3858 3859 // Check if the generated schedule is valid. This function checks if 3860 // an instruction that uses a physical register is scheduled in a 3861 // different stage than the definition. The pipeliner does not handle 3862 // physical register values that may cross a basic block boundary. 3863 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3864 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3865 SUnit &SU = SSD->SUnits[i]; 3866 if (!SU.hasPhysRegDefs) 3867 continue; 3868 int StageDef = stageScheduled(&SU); 3869 assert(StageDef != -1 && "Instruction should have been scheduled."); 3870 for (auto &SI : SU.Succs) 3871 if (SI.isAssignedRegDep()) 3872 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3873 if (stageScheduled(SI.getSUnit()) != StageDef) 3874 return false; 3875 } 3876 return true; 3877 } 3878 3879 /// After the schedule has been formed, call this function to combine 3880 /// the instructions from the different stages/cycles. That is, this 3881 /// function creates a schedule that represents a single iteration. 3882 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3883 // Move all instructions to the first stage from later stages. 3884 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3885 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3886 ++stage) { 3887 std::deque<SUnit *> &cycleInstrs = 3888 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3889 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3890 E = cycleInstrs.rend(); 3891 I != E; ++I) 3892 ScheduledInstrs[cycle].push_front(*I); 3893 } 3894 } 3895 // Iterate over the definitions in each instruction, and compute the 3896 // stage difference for each use. Keep the maximum value. 3897 for (auto &I : InstrToCycle) { 3898 int DefStage = stageScheduled(I.first); 3899 MachineInstr *MI = I.first->getInstr(); 3900 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3901 MachineOperand &Op = MI->getOperand(i); 3902 if (!Op.isReg() || !Op.isDef()) 3903 continue; 3904 3905 unsigned Reg = Op.getReg(); 3906 unsigned MaxDiff = 0; 3907 bool PhiIsSwapped = false; 3908 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3909 EI = MRI.use_end(); 3910 UI != EI; ++UI) { 3911 MachineOperand &UseOp = *UI; 3912 MachineInstr *UseMI = UseOp.getParent(); 3913 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3914 int UseStage = stageScheduled(SUnitUse); 3915 unsigned Diff = 0; 3916 if (UseStage != -1 && UseStage >= DefStage) 3917 Diff = UseStage - DefStage; 3918 if (MI->isPHI()) { 3919 if (isLoopCarried(SSD, *MI)) 3920 ++Diff; 3921 else 3922 PhiIsSwapped = true; 3923 } 3924 MaxDiff = std::max(Diff, MaxDiff); 3925 } 3926 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3927 } 3928 } 3929 3930 // Erase all the elements in the later stages. Only one iteration should 3931 // remain in the scheduled list, and it contains all the instructions. 3932 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3933 ScheduledInstrs.erase(cycle); 3934 3935 // Change the registers in instruction as specified in the InstrChanges 3936 // map. We need to use the new registers to create the correct order. 3937 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3938 SUnit *SU = &SSD->SUnits[i]; 3939 SSD->applyInstrChange(SU->getInstr(), *this, true); 3940 } 3941 3942 // Reorder the instructions in each cycle to fix and improve the 3943 // generated code. 3944 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3945 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3946 std::deque<SUnit *> newOrderZC; 3947 // Put the zero-cost, pseudo instructions at the start of the cycle. 3948 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3949 SUnit *SU = cycleInstrs[i]; 3950 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3951 orderDependence(SSD, SU, newOrderZC); 3952 } 3953 std::deque<SUnit *> newOrderI; 3954 // Then, add the regular instructions back. 3955 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3956 SUnit *SU = cycleInstrs[i]; 3957 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3958 orderDependence(SSD, SU, newOrderI); 3959 } 3960 // Replace the old order with the new order. 3961 cycleInstrs.swap(newOrderZC); 3962 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3963 } 3964 3965 DEBUG(dump();); 3966 } 3967 3968 /// Print the schedule information to the given output. 3969 void SMSchedule::print(raw_ostream &os) const { 3970 // Iterate over each cycle. 3971 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3972 // Iterate over each instruction in the cycle. 3973 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3974 for (SUnit *CI : cycleInstrs->second) { 3975 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3976 os << "(" << CI->NodeNum << ") "; 3977 CI->getInstr()->print(os); 3978 os << "\n"; 3979 } 3980 } 3981 } 3982 3983 /// Utility function used for debugging to print the schedule. 3984 void SMSchedule::dump() const { print(dbgs()); } 3985