1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/IR/Attributes.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/Function.h" 95 #include "llvm/MC/LaneBitmask.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCInstrItineraries.h" 98 #include "llvm/MC/MCRegisterInfo.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/CommandLine.h" 101 #include "llvm/Support/Compiler.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/MathExtras.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Target/TargetInstrInfo.h" 106 #include "llvm/Target/TargetOpcodes.h" 107 #include "llvm/Target/TargetRegisterInfo.h" 108 #include "llvm/Target/TargetSubtargetInfo.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 129 /// A command line option to turn software pipelining on or off. 130 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 131 cl::ZeroOrMore, 132 cl::desc("Enable Software Pipelining")); 133 134 /// A command line option to enable SWP at -Os. 135 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 136 cl::desc("Enable SWP at Os."), cl::Hidden, 137 cl::init(false)); 138 139 /// A command line argument to limit minimum initial interval for pipelining. 140 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 141 cl::desc("Size limit for the the MII."), 142 cl::Hidden, cl::init(27)); 143 144 /// A command line argument to limit the number of stages in the pipeline. 145 static cl::opt<int> 146 SwpMaxStages("pipeliner-max-stages", 147 cl::desc("Maximum stages allowed in the generated scheduled."), 148 cl::Hidden, cl::init(3)); 149 150 /// A command line option to disable the pruning of chain dependences due to 151 /// an unrelated Phi. 152 static cl::opt<bool> 153 SwpPruneDeps("pipeliner-prune-deps", 154 cl::desc("Prune dependences between unrelated Phi nodes."), 155 cl::Hidden, cl::init(true)); 156 157 /// A command line option to disable the pruning of loop carried order 158 /// dependences. 159 static cl::opt<bool> 160 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 161 cl::desc("Prune loop carried order dependences."), 162 cl::Hidden, cl::init(true)); 163 164 #ifndef NDEBUG 165 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 166 #endif 167 168 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 169 cl::ReallyHidden, cl::init(false), 170 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 171 172 namespace { 173 174 class NodeSet; 175 class SMSchedule; 176 177 /// The main class in the implementation of the target independent 178 /// software pipeliner pass. 179 class MachinePipeliner : public MachineFunctionPass { 180 public: 181 MachineFunction *MF = nullptr; 182 const MachineLoopInfo *MLI = nullptr; 183 const MachineDominatorTree *MDT = nullptr; 184 const InstrItineraryData *InstrItins; 185 const TargetInstrInfo *TII = nullptr; 186 RegisterClassInfo RegClassInfo; 187 188 #ifndef NDEBUG 189 static int NumTries; 190 #endif 191 192 /// Cache the target analysis information about the loop. 193 struct LoopInfo { 194 MachineBasicBlock *TBB = nullptr; 195 MachineBasicBlock *FBB = nullptr; 196 SmallVector<MachineOperand, 4> BrCond; 197 MachineInstr *LoopInductionVar = nullptr; 198 MachineInstr *LoopCompare = nullptr; 199 }; 200 LoopInfo LI; 201 202 static char ID; 203 204 MachinePipeliner() : MachineFunctionPass(ID) { 205 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 bool runOnMachineFunction(MachineFunction &MF) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addPreserved<AAResultsWrapperPass>(); 213 AU.addRequired<MachineLoopInfo>(); 214 AU.addRequired<MachineDominatorTree>(); 215 AU.addRequired<LiveIntervals>(); 216 MachineFunctionPass::getAnalysisUsage(AU); 217 } 218 219 private: 220 bool canPipelineLoop(MachineLoop &L); 221 bool scheduleLoop(MachineLoop &L); 222 bool swingModuloScheduler(MachineLoop &L); 223 }; 224 225 /// This class builds the dependence graph for the instructions in a loop, 226 /// and attempts to schedule the instructions using the SMS algorithm. 227 class SwingSchedulerDAG : public ScheduleDAGInstrs { 228 MachinePipeliner &Pass; 229 /// The minimum initiation interval between iterations for this schedule. 230 unsigned MII = 0; 231 /// Set to true if a valid pipelined schedule is found for the loop. 232 bool Scheduled = false; 233 MachineLoop &Loop; 234 LiveIntervals &LIS; 235 const RegisterClassInfo &RegClassInfo; 236 237 /// A toplogical ordering of the SUnits, which is needed for changing 238 /// dependences and iterating over the SUnits. 239 ScheduleDAGTopologicalSort Topo; 240 241 struct NodeInfo { 242 int ASAP = 0; 243 int ALAP = 0; 244 245 NodeInfo() = default; 246 }; 247 /// Computed properties for each node in the graph. 248 std::vector<NodeInfo> ScheduleInfo; 249 250 enum OrderKind { BottomUp = 0, TopDown = 1 }; 251 /// Computed node ordering for scheduling. 252 SetVector<SUnit *> NodeOrder; 253 254 using NodeSetType = SmallVector<NodeSet, 8>; 255 using ValueMapTy = DenseMap<unsigned, unsigned>; 256 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 257 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 258 259 /// Instructions to change when emitting the final schedule. 260 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 261 262 /// We may create a new instruction, so remember it because it 263 /// must be deleted when the pass is finished. 264 SmallPtrSet<MachineInstr *, 4> NewMIs; 265 266 /// Ordered list of DAG postprocessing steps. 267 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 268 269 /// Helper class to implement Johnson's circuit finding algorithm. 270 class Circuits { 271 std::vector<SUnit> &SUnits; 272 SetVector<SUnit *> Stack; 273 BitVector Blocked; 274 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 275 SmallVector<SmallVector<int, 4>, 16> AdjK; 276 unsigned NumPaths; 277 static unsigned MaxPaths; 278 279 public: 280 Circuits(std::vector<SUnit> &SUs) 281 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 282 283 /// Reset the data structures used in the circuit algorithm. 284 void reset() { 285 Stack.clear(); 286 Blocked.reset(); 287 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 288 NumPaths = 0; 289 } 290 291 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 292 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 293 void unblock(int U); 294 }; 295 296 public: 297 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 298 const RegisterClassInfo &rci) 299 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 300 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 301 P.MF->getSubtarget().getSMSMutations(Mutations); 302 } 303 304 void schedule() override; 305 void finishBlock() override; 306 307 /// Return true if the loop kernel has been scheduled. 308 bool hasNewSchedule() { return Scheduled; } 309 310 /// Return the earliest time an instruction may be scheduled. 311 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 312 313 /// Return the latest time an instruction my be scheduled. 314 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 315 316 /// The mobility function, which the the number of slots in which 317 /// an instruction may be scheduled. 318 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 319 320 /// The depth, in the dependence graph, for a node. 321 int getDepth(SUnit *Node) { return Node->getDepth(); } 322 323 /// The height, in the dependence graph, for a node. 324 int getHeight(SUnit *Node) { return Node->getHeight(); } 325 326 /// Return true if the dependence is a back-edge in the data dependence graph. 327 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 328 /// using an anti dependence from a Phi to an instruction. 329 bool isBackedge(SUnit *Source, const SDep &Dep) { 330 if (Dep.getKind() != SDep::Anti) 331 return false; 332 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 333 } 334 335 /// Return true if the dependence is an order dependence between non-Phis. 336 static bool isOrder(SUnit *Source, const SDep &Dep) { 337 if (Dep.getKind() != SDep::Order) 338 return false; 339 return (!Source->getInstr()->isPHI() && 340 !Dep.getSUnit()->getInstr()->isPHI()); 341 } 342 343 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 344 345 /// The latency of the dependence. 346 unsigned getLatency(SUnit *Source, const SDep &Dep) { 347 // Anti dependences represent recurrences, so use the latency of the 348 // instruction on the back-edge. 349 if (Dep.getKind() == SDep::Anti) { 350 if (Source->getInstr()->isPHI()) 351 return Dep.getSUnit()->Latency; 352 if (Dep.getSUnit()->getInstr()->isPHI()) 353 return Source->Latency; 354 return Dep.getLatency(); 355 } 356 return Dep.getLatency(); 357 } 358 359 /// The distance function, which indicates that operation V of iteration I 360 /// depends on operations U of iteration I-distance. 361 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 362 // Instructions that feed a Phi have a distance of 1. Computing larger 363 // values for arrays requires data dependence information. 364 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 365 return 1; 366 return 0; 367 } 368 369 /// Set the Minimum Initiation Interval for this schedule attempt. 370 void setMII(unsigned mii) { MII = mii; } 371 372 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 373 374 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 375 376 /// Return the new base register that was stored away for the changed 377 /// instruction. 378 unsigned getInstrBaseReg(SUnit *SU) { 379 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 380 InstrChanges.find(SU); 381 if (It != InstrChanges.end()) 382 return It->second.first; 383 return 0; 384 } 385 386 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 387 Mutations.push_back(std::move(Mutation)); 388 } 389 390 private: 391 void addLoopCarriedDependences(AliasAnalysis *AA); 392 void updatePhiDependences(); 393 void changeDependences(); 394 unsigned calculateResMII(); 395 unsigned calculateRecMII(NodeSetType &RecNodeSets); 396 void findCircuits(NodeSetType &NodeSets); 397 void fuseRecs(NodeSetType &NodeSets); 398 void removeDuplicateNodes(NodeSetType &NodeSets); 399 void computeNodeFunctions(NodeSetType &NodeSets); 400 void registerPressureFilter(NodeSetType &NodeSets); 401 void colocateNodeSets(NodeSetType &NodeSets); 402 void checkNodeSets(NodeSetType &NodeSets); 403 void groupRemainingNodes(NodeSetType &NodeSets); 404 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 405 SetVector<SUnit *> &NodesAdded); 406 void computeNodeOrder(NodeSetType &NodeSets); 407 bool schedulePipeline(SMSchedule &Schedule); 408 void generatePipelinedLoop(SMSchedule &Schedule); 409 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 410 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 411 MBBVectorTy &PrologBBs); 412 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 413 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 414 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 415 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 417 SMSchedule &Schedule, ValueMapTy *VRMap, 418 InstrMapTy &InstrMap, unsigned LastStageNum, 419 unsigned CurStageNum, bool IsLast); 420 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 421 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 422 SMSchedule &Schedule, ValueMapTy *VRMap, 423 InstrMapTy &InstrMap, unsigned LastStageNum, 424 unsigned CurStageNum, bool IsLast); 425 void removeDeadInstructions(MachineBasicBlock *KernelBB, 426 MBBVectorTy &EpilogBBs); 427 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 428 SMSchedule &Schedule); 429 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 430 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 431 ValueMapTy *VRMap); 432 bool computeDelta(MachineInstr &MI, unsigned &Delta); 433 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 434 unsigned Num); 435 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 436 unsigned InstStageNum); 437 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 438 unsigned InstStageNum, 439 SMSchedule &Schedule); 440 void updateInstruction(MachineInstr *NewMI, bool LastDef, 441 unsigned CurStageNum, unsigned InstStageNum, 442 SMSchedule &Schedule, ValueMapTy *VRMap); 443 MachineInstr *findDefInLoop(unsigned Reg); 444 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 445 unsigned LoopStage, ValueMapTy *VRMap, 446 MachineBasicBlock *BB); 447 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 448 SMSchedule &Schedule, ValueMapTy *VRMap, 449 InstrMapTy &InstrMap); 450 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 451 InstrMapTy &InstrMap, unsigned CurStageNum, 452 unsigned PhiNum, MachineInstr *Phi, 453 unsigned OldReg, unsigned NewReg, 454 unsigned PrevReg = 0); 455 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 456 unsigned &OffsetPos, unsigned &NewBase, 457 int64_t &NewOffset); 458 void postprocessDAG(); 459 }; 460 461 /// A NodeSet contains a set of SUnit DAG nodes with additional information 462 /// that assigns a priority to the set. 463 class NodeSet { 464 SetVector<SUnit *> Nodes; 465 bool HasRecurrence = false; 466 unsigned RecMII = 0; 467 int MaxMOV = 0; 468 int MaxDepth = 0; 469 unsigned Colocate = 0; 470 SUnit *ExceedPressure = nullptr; 471 472 public: 473 using iterator = SetVector<SUnit *>::const_iterator; 474 475 NodeSet() = default; 476 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 477 478 bool insert(SUnit *SU) { return Nodes.insert(SU); } 479 480 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 481 482 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 483 return Nodes.remove_if(P); 484 } 485 486 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 487 488 bool hasRecurrence() { return HasRecurrence; }; 489 490 unsigned size() const { return Nodes.size(); } 491 492 bool empty() const { return Nodes.empty(); } 493 494 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 495 496 void setRecMII(unsigned mii) { RecMII = mii; }; 497 498 void setColocate(unsigned c) { Colocate = c; }; 499 500 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 501 502 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 503 504 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 505 506 int getRecMII() { return RecMII; } 507 508 /// Summarize node functions for the entire node set. 509 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 510 for (SUnit *SU : *this) { 511 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 512 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 513 } 514 } 515 516 void clear() { 517 Nodes.clear(); 518 RecMII = 0; 519 HasRecurrence = false; 520 MaxMOV = 0; 521 MaxDepth = 0; 522 Colocate = 0; 523 ExceedPressure = nullptr; 524 } 525 526 operator SetVector<SUnit *> &() { return Nodes; } 527 528 /// Sort the node sets by importance. First, rank them by recurrence MII, 529 /// then by mobility (least mobile done first), and finally by depth. 530 /// Each node set may contain a colocate value which is used as the first 531 /// tie breaker, if it's set. 532 bool operator>(const NodeSet &RHS) const { 533 if (RecMII == RHS.RecMII) { 534 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 535 return Colocate < RHS.Colocate; 536 if (MaxMOV == RHS.MaxMOV) 537 return MaxDepth > RHS.MaxDepth; 538 return MaxMOV < RHS.MaxMOV; 539 } 540 return RecMII > RHS.RecMII; 541 } 542 543 bool operator==(const NodeSet &RHS) const { 544 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 545 MaxDepth == RHS.MaxDepth; 546 } 547 548 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 549 550 iterator begin() { return Nodes.begin(); } 551 iterator end() { return Nodes.end(); } 552 553 void print(raw_ostream &os) const { 554 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 555 << " depth " << MaxDepth << " col " << Colocate << "\n"; 556 for (const auto &I : Nodes) 557 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 558 os << "\n"; 559 } 560 561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 562 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 563 #endif 564 }; 565 566 /// This class repesents the scheduled code. The main data structure is a 567 /// map from scheduled cycle to instructions. During scheduling, the 568 /// data structure explicitly represents all stages/iterations. When 569 /// the algorithm finshes, the schedule is collapsed into a single stage, 570 /// which represents instructions from different loop iterations. 571 /// 572 /// The SMS algorithm allows negative values for cycles, so the first cycle 573 /// in the schedule is the smallest cycle value. 574 class SMSchedule { 575 private: 576 /// Map from execution cycle to instructions. 577 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 578 579 /// Map from instruction to execution cycle. 580 std::map<SUnit *, int> InstrToCycle; 581 582 /// Map for each register and the max difference between its uses and def. 583 /// The first element in the pair is the max difference in stages. The 584 /// second is true if the register defines a Phi value and loop value is 585 /// scheduled before the Phi. 586 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 587 588 /// Keep track of the first cycle value in the schedule. It starts 589 /// as zero, but the algorithm allows negative values. 590 int FirstCycle = 0; 591 592 /// Keep track of the last cycle value in the schedule. 593 int LastCycle = 0; 594 595 /// The initiation interval (II) for the schedule. 596 int InitiationInterval = 0; 597 598 /// Target machine information. 599 const TargetSubtargetInfo &ST; 600 601 /// Virtual register information. 602 MachineRegisterInfo &MRI; 603 604 std::unique_ptr<DFAPacketizer> Resources; 605 606 public: 607 SMSchedule(MachineFunction *mf) 608 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 609 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 610 611 void reset() { 612 ScheduledInstrs.clear(); 613 InstrToCycle.clear(); 614 RegToStageDiff.clear(); 615 FirstCycle = 0; 616 LastCycle = 0; 617 InitiationInterval = 0; 618 } 619 620 /// Set the initiation interval for this schedule. 621 void setInitiationInterval(int ii) { InitiationInterval = ii; } 622 623 /// Return the first cycle in the completed schedule. This 624 /// can be a negative value. 625 int getFirstCycle() const { return FirstCycle; } 626 627 /// Return the last cycle in the finalized schedule. 628 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 629 630 /// Return the cycle of the earliest scheduled instruction in the dependence 631 /// chain. 632 int earliestCycleInChain(const SDep &Dep); 633 634 /// Return the cycle of the latest scheduled instruction in the dependence 635 /// chain. 636 int latestCycleInChain(const SDep &Dep); 637 638 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 639 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 640 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 641 642 /// Iterators for the cycle to instruction map. 643 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 644 using const_sched_iterator = 645 DenseMap<int, std::deque<SUnit *>>::const_iterator; 646 647 /// Return true if the instruction is scheduled at the specified stage. 648 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 649 return (stageScheduled(SU) == (int)StageNum); 650 } 651 652 /// Return the stage for a scheduled instruction. Return -1 if 653 /// the instruction has not been scheduled. 654 int stageScheduled(SUnit *SU) const { 655 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 656 if (it == InstrToCycle.end()) 657 return -1; 658 return (it->second - FirstCycle) / InitiationInterval; 659 } 660 661 /// Return the cycle for a scheduled instruction. This function normalizes 662 /// the first cycle to be 0. 663 unsigned cycleScheduled(SUnit *SU) const { 664 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 665 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 666 return (it->second - FirstCycle) % InitiationInterval; 667 } 668 669 /// Return the maximum stage count needed for this schedule. 670 unsigned getMaxStageCount() { 671 return (LastCycle - FirstCycle) / InitiationInterval; 672 } 673 674 /// Return the max. number of stages/iterations that can occur between a 675 /// register definition and its uses. 676 unsigned getStagesForReg(int Reg, unsigned CurStage) { 677 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 678 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 679 return 1; 680 return Stages.first; 681 } 682 683 /// The number of stages for a Phi is a little different than other 684 /// instructions. The minimum value computed in RegToStageDiff is 1 685 /// because we assume the Phi is needed for at least 1 iteration. 686 /// This is not the case if the loop value is scheduled prior to the 687 /// Phi in the same stage. This function returns the number of stages 688 /// or iterations needed between the Phi definition and any uses. 689 unsigned getStagesForPhi(int Reg) { 690 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 691 if (Stages.second) 692 return Stages.first; 693 return Stages.first - 1; 694 } 695 696 /// Return the instructions that are scheduled at the specified cycle. 697 std::deque<SUnit *> &getInstructions(int cycle) { 698 return ScheduledInstrs[cycle]; 699 } 700 701 bool isValidSchedule(SwingSchedulerDAG *SSD); 702 void finalizeSchedule(SwingSchedulerDAG *SSD); 703 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 704 std::deque<SUnit *> &Insts); 705 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 706 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 707 MachineOperand &MO); 708 void print(raw_ostream &os) const; 709 void dump() const; 710 }; 711 712 } // end anonymous namespace 713 714 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 715 char MachinePipeliner::ID = 0; 716 #ifndef NDEBUG 717 int MachinePipeliner::NumTries = 0; 718 #endif 719 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 720 721 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 722 "Modulo Software Pipelining", false, false) 723 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 724 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 725 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 726 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 727 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 728 "Modulo Software Pipelining", false, false) 729 730 /// The "main" function for implementing Swing Modulo Scheduling. 731 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 732 if (skipFunction(*mf.getFunction())) 733 return false; 734 735 if (!EnableSWP) 736 return false; 737 738 if (mf.getFunction()->getAttributes().hasAttribute( 739 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 740 !EnableSWPOptSize.getPosition()) 741 return false; 742 743 MF = &mf; 744 MLI = &getAnalysis<MachineLoopInfo>(); 745 MDT = &getAnalysis<MachineDominatorTree>(); 746 TII = MF->getSubtarget().getInstrInfo(); 747 RegClassInfo.runOnMachineFunction(*MF); 748 749 for (auto &L : *MLI) 750 scheduleLoop(*L); 751 752 return false; 753 } 754 755 /// Attempt to perform the SMS algorithm on the specified loop. This function is 756 /// the main entry point for the algorithm. The function identifies candidate 757 /// loops, calculates the minimum initiation interval, and attempts to schedule 758 /// the loop. 759 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 760 bool Changed = false; 761 for (auto &InnerLoop : L) 762 Changed |= scheduleLoop(*InnerLoop); 763 764 #ifndef NDEBUG 765 // Stop trying after reaching the limit (if any). 766 int Limit = SwpLoopLimit; 767 if (Limit >= 0) { 768 if (NumTries >= SwpLoopLimit) 769 return Changed; 770 NumTries++; 771 } 772 #endif 773 774 if (!canPipelineLoop(L)) 775 return Changed; 776 777 ++NumTrytoPipeline; 778 779 Changed = swingModuloScheduler(L); 780 781 return Changed; 782 } 783 784 /// Return true if the loop can be software pipelined. The algorithm is 785 /// restricted to loops with a single basic block. Make sure that the 786 /// branch in the loop can be analyzed. 787 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 788 if (L.getNumBlocks() != 1) 789 return false; 790 791 // Check if the branch can't be understood because we can't do pipelining 792 // if that's the case. 793 LI.TBB = nullptr; 794 LI.FBB = nullptr; 795 LI.BrCond.clear(); 796 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 797 return false; 798 799 LI.LoopInductionVar = nullptr; 800 LI.LoopCompare = nullptr; 801 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 802 return false; 803 804 if (!L.getLoopPreheader()) 805 return false; 806 807 // If any of the Phis contain subregs, then we can't pipeline 808 // because we don't know how to maintain subreg information in the 809 // VMap structure. 810 MachineBasicBlock *MBB = L.getHeader(); 811 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 812 BBE = MBB->getFirstNonPHI(); 813 BBI != BBE; ++BBI) 814 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 815 if (BBI->getOperand(i).getSubReg() != 0) 816 return false; 817 818 return true; 819 } 820 821 /// The SMS algorithm consists of the following main steps: 822 /// 1. Computation and analysis of the dependence graph. 823 /// 2. Ordering of the nodes (instructions). 824 /// 3. Attempt to Schedule the loop. 825 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 826 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 827 828 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 829 830 MachineBasicBlock *MBB = L.getHeader(); 831 // The kernel should not include any terminator instructions. These 832 // will be added back later. 833 SMS.startBlock(MBB); 834 835 // Compute the number of 'real' instructions in the basic block by 836 // ignoring terminators. 837 unsigned size = MBB->size(); 838 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 839 E = MBB->instr_end(); 840 I != E; ++I, --size) 841 ; 842 843 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 844 SMS.schedule(); 845 SMS.exitRegion(); 846 847 SMS.finishBlock(); 848 return SMS.hasNewSchedule(); 849 } 850 851 /// We override the schedule function in ScheduleDAGInstrs to implement the 852 /// scheduling part of the Swing Modulo Scheduling algorithm. 853 void SwingSchedulerDAG::schedule() { 854 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 855 buildSchedGraph(AA); 856 addLoopCarriedDependences(AA); 857 updatePhiDependences(); 858 Topo.InitDAGTopologicalSorting(); 859 postprocessDAG(); 860 changeDependences(); 861 DEBUG({ 862 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 863 SUnits[su].dumpAll(this); 864 }); 865 866 NodeSetType NodeSets; 867 findCircuits(NodeSets); 868 869 // Calculate the MII. 870 unsigned ResMII = calculateResMII(); 871 unsigned RecMII = calculateRecMII(NodeSets); 872 873 fuseRecs(NodeSets); 874 875 // This flag is used for testing and can cause correctness problems. 876 if (SwpIgnoreRecMII) 877 RecMII = 0; 878 879 MII = std::max(ResMII, RecMII); 880 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 881 << ")\n"); 882 883 // Can't schedule a loop without a valid MII. 884 if (MII == 0) 885 return; 886 887 // Don't pipeline large loops. 888 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 889 return; 890 891 computeNodeFunctions(NodeSets); 892 893 registerPressureFilter(NodeSets); 894 895 colocateNodeSets(NodeSets); 896 897 checkNodeSets(NodeSets); 898 899 DEBUG({ 900 for (auto &I : NodeSets) { 901 dbgs() << " Rec NodeSet "; 902 I.dump(); 903 } 904 }); 905 906 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 907 908 groupRemainingNodes(NodeSets); 909 910 removeDuplicateNodes(NodeSets); 911 912 DEBUG({ 913 for (auto &I : NodeSets) { 914 dbgs() << " NodeSet "; 915 I.dump(); 916 } 917 }); 918 919 computeNodeOrder(NodeSets); 920 921 SMSchedule Schedule(Pass.MF); 922 Scheduled = schedulePipeline(Schedule); 923 924 if (!Scheduled) 925 return; 926 927 unsigned numStages = Schedule.getMaxStageCount(); 928 // No need to generate pipeline if there are no overlapped iterations. 929 if (numStages == 0) 930 return; 931 932 // Check that the maximum stage count is less than user-defined limit. 933 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 934 return; 935 936 generatePipelinedLoop(Schedule); 937 ++NumPipelined; 938 } 939 940 /// Clean up after the software pipeliner runs. 941 void SwingSchedulerDAG::finishBlock() { 942 for (MachineInstr *I : NewMIs) 943 MF.DeleteMachineInstr(I); 944 NewMIs.clear(); 945 946 // Call the superclass. 947 ScheduleDAGInstrs::finishBlock(); 948 } 949 950 /// Return the register values for the operands of a Phi instruction. 951 /// This function assume the instruction is a Phi. 952 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 953 unsigned &InitVal, unsigned &LoopVal) { 954 assert(Phi.isPHI() && "Expecting a Phi."); 955 956 InitVal = 0; 957 LoopVal = 0; 958 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 959 if (Phi.getOperand(i + 1).getMBB() != Loop) 960 InitVal = Phi.getOperand(i).getReg(); 961 else 962 LoopVal = Phi.getOperand(i).getReg(); 963 964 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 965 } 966 967 /// Return the Phi register value that comes from the incoming block. 968 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 969 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 970 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 971 return Phi.getOperand(i).getReg(); 972 return 0; 973 } 974 975 /// Return the Phi register value that comes the the loop block. 976 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 977 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 978 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 979 return Phi.getOperand(i).getReg(); 980 return 0; 981 } 982 983 /// Return true if SUb can be reached from SUa following the chain edges. 984 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 985 SmallPtrSet<SUnit *, 8> Visited; 986 SmallVector<SUnit *, 8> Worklist; 987 Worklist.push_back(SUa); 988 while (!Worklist.empty()) { 989 const SUnit *SU = Worklist.pop_back_val(); 990 for (auto &SI : SU->Succs) { 991 SUnit *SuccSU = SI.getSUnit(); 992 if (SI.getKind() == SDep::Order) { 993 if (Visited.count(SuccSU)) 994 continue; 995 if (SuccSU == SUb) 996 return true; 997 Worklist.push_back(SuccSU); 998 Visited.insert(SuccSU); 999 } 1000 } 1001 } 1002 return false; 1003 } 1004 1005 /// Return true if the instruction causes a chain between memory 1006 /// references before and after it. 1007 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1008 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1009 (MI.hasOrderedMemoryRef() && 1010 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1011 } 1012 1013 /// Return the underlying objects for the memory references of an instruction. 1014 /// This function calls the code in ValueTracking, but first checks that the 1015 /// instruction has a memory operand. 1016 static void getUnderlyingObjects(MachineInstr *MI, 1017 SmallVectorImpl<Value *> &Objs, 1018 const DataLayout &DL) { 1019 if (!MI->hasOneMemOperand()) 1020 return; 1021 MachineMemOperand *MM = *MI->memoperands_begin(); 1022 if (!MM->getValue()) 1023 return; 1024 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1025 } 1026 1027 /// Add a chain edge between a load and store if the store can be an 1028 /// alias of the load on a subsequent iteration, i.e., a loop carried 1029 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1030 /// but that code doesn't create loop carried dependences. 1031 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1032 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1033 for (auto &SU : SUnits) { 1034 MachineInstr &MI = *SU.getInstr(); 1035 if (isDependenceBarrier(MI, AA)) 1036 PendingLoads.clear(); 1037 else if (MI.mayLoad()) { 1038 SmallVector<Value *, 4> Objs; 1039 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1040 for (auto V : Objs) { 1041 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1042 SUs.push_back(&SU); 1043 } 1044 } else if (MI.mayStore()) { 1045 SmallVector<Value *, 4> Objs; 1046 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1047 for (auto V : Objs) { 1048 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1049 PendingLoads.find(V); 1050 if (I == PendingLoads.end()) 1051 continue; 1052 for (auto Load : I->second) { 1053 if (isSuccOrder(Load, &SU)) 1054 continue; 1055 MachineInstr &LdMI = *Load->getInstr(); 1056 // First, perform the cheaper check that compares the base register. 1057 // If they are the same and the load offset is less than the store 1058 // offset, then mark the dependence as loop carried potentially. 1059 unsigned BaseReg1, BaseReg2; 1060 int64_t Offset1, Offset2; 1061 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1062 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1063 SU.addPred(SDep(Load, SDep::Barrier)); 1064 continue; 1065 } 1066 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1067 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1068 "What happened to the chain edge?"); 1069 SU.addPred(SDep(Load, SDep::Barrier)); 1070 continue; 1071 } 1072 // Second, the more expensive check that uses alias analysis on the 1073 // base registers. If they alias, and the load offset is less than 1074 // the store offset, the mark the dependence as loop carried. 1075 if (!AA) { 1076 SU.addPred(SDep(Load, SDep::Barrier)); 1077 continue; 1078 } 1079 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1080 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1081 if (!MMO1->getValue() || !MMO2->getValue()) { 1082 SU.addPred(SDep(Load, SDep::Barrier)); 1083 continue; 1084 } 1085 if (MMO1->getValue() == MMO2->getValue() && 1086 MMO1->getOffset() <= MMO2->getOffset()) { 1087 SU.addPred(SDep(Load, SDep::Barrier)); 1088 continue; 1089 } 1090 AliasResult AAResult = AA->alias( 1091 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1092 MMO1->getAAInfo()), 1093 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1094 MMO2->getAAInfo())); 1095 1096 if (AAResult != NoAlias) 1097 SU.addPred(SDep(Load, SDep::Barrier)); 1098 } 1099 } 1100 } 1101 } 1102 } 1103 1104 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1105 /// processes dependences for PHIs. This function adds true dependences 1106 /// from a PHI to a use, and a loop carried dependence from the use to the 1107 /// PHI. The loop carried dependence is represented as an anti dependence 1108 /// edge. This function also removes chain dependences between unrelated 1109 /// PHIs. 1110 void SwingSchedulerDAG::updatePhiDependences() { 1111 SmallVector<SDep, 4> RemoveDeps; 1112 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1113 1114 // Iterate over each DAG node. 1115 for (SUnit &I : SUnits) { 1116 RemoveDeps.clear(); 1117 // Set to true if the instruction has an operand defined by a Phi. 1118 unsigned HasPhiUse = 0; 1119 unsigned HasPhiDef = 0; 1120 MachineInstr *MI = I.getInstr(); 1121 // Iterate over each operand, and we process the definitions. 1122 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1123 MOE = MI->operands_end(); 1124 MOI != MOE; ++MOI) { 1125 if (!MOI->isReg()) 1126 continue; 1127 unsigned Reg = MOI->getReg(); 1128 if (MOI->isDef()) { 1129 // If the register is used by a Phi, then create an anti dependence. 1130 for (MachineRegisterInfo::use_instr_iterator 1131 UI = MRI.use_instr_begin(Reg), 1132 UE = MRI.use_instr_end(); 1133 UI != UE; ++UI) { 1134 MachineInstr *UseMI = &*UI; 1135 SUnit *SU = getSUnit(UseMI); 1136 if (SU != nullptr && UseMI->isPHI()) { 1137 if (!MI->isPHI()) { 1138 SDep Dep(SU, SDep::Anti, Reg); 1139 I.addPred(Dep); 1140 } else { 1141 HasPhiDef = Reg; 1142 // Add a chain edge to a dependent Phi that isn't an existing 1143 // predecessor. 1144 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1145 I.addPred(SDep(SU, SDep::Barrier)); 1146 } 1147 } 1148 } 1149 } else if (MOI->isUse()) { 1150 // If the register is defined by a Phi, then create a true dependence. 1151 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1152 if (DefMI == nullptr) 1153 continue; 1154 SUnit *SU = getSUnit(DefMI); 1155 if (SU != nullptr && DefMI->isPHI()) { 1156 if (!MI->isPHI()) { 1157 SDep Dep(SU, SDep::Data, Reg); 1158 Dep.setLatency(0); 1159 ST.adjustSchedDependency(SU, &I, Dep); 1160 I.addPred(Dep); 1161 } else { 1162 HasPhiUse = Reg; 1163 // Add a chain edge to a dependent Phi that isn't an existing 1164 // predecessor. 1165 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1166 I.addPred(SDep(SU, SDep::Barrier)); 1167 } 1168 } 1169 } 1170 } 1171 // Remove order dependences from an unrelated Phi. 1172 if (!SwpPruneDeps) 1173 continue; 1174 for (auto &PI : I.Preds) { 1175 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1176 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1177 if (I.getInstr()->isPHI()) { 1178 if (PMI->getOperand(0).getReg() == HasPhiUse) 1179 continue; 1180 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1181 continue; 1182 } 1183 RemoveDeps.push_back(PI); 1184 } 1185 } 1186 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1187 I.removePred(RemoveDeps[i]); 1188 } 1189 } 1190 1191 /// Iterate over each DAG node and see if we can change any dependences 1192 /// in order to reduce the recurrence MII. 1193 void SwingSchedulerDAG::changeDependences() { 1194 // See if an instruction can use a value from the previous iteration. 1195 // If so, we update the base and offset of the instruction and change 1196 // the dependences. 1197 for (SUnit &I : SUnits) { 1198 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1199 int64_t NewOffset = 0; 1200 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1201 NewOffset)) 1202 continue; 1203 1204 // Get the MI and SUnit for the instruction that defines the original base. 1205 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1206 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1207 if (!DefMI) 1208 continue; 1209 SUnit *DefSU = getSUnit(DefMI); 1210 if (!DefSU) 1211 continue; 1212 // Get the MI and SUnit for the instruction that defins the new base. 1213 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1214 if (!LastMI) 1215 continue; 1216 SUnit *LastSU = getSUnit(LastMI); 1217 if (!LastSU) 1218 continue; 1219 1220 if (Topo.IsReachable(&I, LastSU)) 1221 continue; 1222 1223 // Remove the dependence. The value now depends on a prior iteration. 1224 SmallVector<SDep, 4> Deps; 1225 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1226 ++P) 1227 if (P->getSUnit() == DefSU) 1228 Deps.push_back(*P); 1229 for (int i = 0, e = Deps.size(); i != e; i++) { 1230 Topo.RemovePred(&I, Deps[i].getSUnit()); 1231 I.removePred(Deps[i]); 1232 } 1233 // Remove the chain dependence between the instructions. 1234 Deps.clear(); 1235 for (auto &P : LastSU->Preds) 1236 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1237 Deps.push_back(P); 1238 for (int i = 0, e = Deps.size(); i != e; i++) { 1239 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1240 LastSU->removePred(Deps[i]); 1241 } 1242 1243 // Add a dependence between the new instruction and the instruction 1244 // that defines the new base. 1245 SDep Dep(&I, SDep::Anti, NewBase); 1246 LastSU->addPred(Dep); 1247 1248 // Remember the base and offset information so that we can update the 1249 // instruction during code generation. 1250 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1251 } 1252 } 1253 1254 namespace { 1255 1256 // FuncUnitSorter - Comparison operator used to sort instructions by 1257 // the number of functional unit choices. 1258 struct FuncUnitSorter { 1259 const InstrItineraryData *InstrItins; 1260 DenseMap<unsigned, unsigned> Resources; 1261 1262 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1263 1264 // Compute the number of functional unit alternatives needed 1265 // at each stage, and take the minimum value. We prioritize the 1266 // instructions by the least number of choices first. 1267 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1268 unsigned schedClass = Inst->getDesc().getSchedClass(); 1269 unsigned min = UINT_MAX; 1270 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1271 *IE = InstrItins->endStage(schedClass); 1272 IS != IE; ++IS) { 1273 unsigned funcUnits = IS->getUnits(); 1274 unsigned numAlternatives = countPopulation(funcUnits); 1275 if (numAlternatives < min) { 1276 min = numAlternatives; 1277 F = funcUnits; 1278 } 1279 } 1280 return min; 1281 } 1282 1283 // Compute the critical resources needed by the instruction. This 1284 // function records the functional units needed by instructions that 1285 // must use only one functional unit. We use this as a tie breaker 1286 // for computing the resource MII. The instrutions that require 1287 // the same, highly used, functional unit have high priority. 1288 void calcCriticalResources(MachineInstr &MI) { 1289 unsigned SchedClass = MI.getDesc().getSchedClass(); 1290 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1291 *IE = InstrItins->endStage(SchedClass); 1292 IS != IE; ++IS) { 1293 unsigned FuncUnits = IS->getUnits(); 1294 if (countPopulation(FuncUnits) == 1) 1295 Resources[FuncUnits]++; 1296 } 1297 } 1298 1299 /// Return true if IS1 has less priority than IS2. 1300 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1301 unsigned F1 = 0, F2 = 0; 1302 unsigned MFUs1 = minFuncUnits(IS1, F1); 1303 unsigned MFUs2 = minFuncUnits(IS2, F2); 1304 if (MFUs1 == 1 && MFUs2 == 1) 1305 return Resources.lookup(F1) < Resources.lookup(F2); 1306 return MFUs1 > MFUs2; 1307 } 1308 }; 1309 1310 } // end anonymous namespace 1311 1312 /// Calculate the resource constrained minimum initiation interval for the 1313 /// specified loop. We use the DFA to model the resources needed for 1314 /// each instruction, and we ignore dependences. A different DFA is created 1315 /// for each cycle that is required. When adding a new instruction, we attempt 1316 /// to add it to each existing DFA, until a legal space is found. If the 1317 /// instruction cannot be reserved in an existing DFA, we create a new one. 1318 unsigned SwingSchedulerDAG::calculateResMII() { 1319 SmallVector<DFAPacketizer *, 8> Resources; 1320 MachineBasicBlock *MBB = Loop.getHeader(); 1321 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1322 1323 // Sort the instructions by the number of available choices for scheduling, 1324 // least to most. Use the number of critical resources as the tie breaker. 1325 FuncUnitSorter FUS = 1326 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1327 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1328 E = MBB->getFirstTerminator(); 1329 I != E; ++I) 1330 FUS.calcCriticalResources(*I); 1331 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1332 FuncUnitOrder(FUS); 1333 1334 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1335 E = MBB->getFirstTerminator(); 1336 I != E; ++I) 1337 FuncUnitOrder.push(&*I); 1338 1339 while (!FuncUnitOrder.empty()) { 1340 MachineInstr *MI = FuncUnitOrder.top(); 1341 FuncUnitOrder.pop(); 1342 if (TII->isZeroCost(MI->getOpcode())) 1343 continue; 1344 // Attempt to reserve the instruction in an existing DFA. At least one 1345 // DFA is needed for each cycle. 1346 unsigned NumCycles = getSUnit(MI)->Latency; 1347 unsigned ReservedCycles = 0; 1348 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1349 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1350 for (unsigned C = 0; C < NumCycles; ++C) 1351 while (RI != RE) { 1352 if ((*RI++)->canReserveResources(*MI)) { 1353 ++ReservedCycles; 1354 break; 1355 } 1356 } 1357 // Start reserving resources using existing DFAs. 1358 for (unsigned C = 0; C < ReservedCycles; ++C) { 1359 --RI; 1360 (*RI)->reserveResources(*MI); 1361 } 1362 // Add new DFAs, if needed, to reserve resources. 1363 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1364 DFAPacketizer *NewResource = 1365 TII->CreateTargetScheduleState(MF.getSubtarget()); 1366 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1367 NewResource->reserveResources(*MI); 1368 Resources.push_back(NewResource); 1369 } 1370 } 1371 int Resmii = Resources.size(); 1372 // Delete the memory for each of the DFAs that were created earlier. 1373 for (DFAPacketizer *RI : Resources) { 1374 DFAPacketizer *D = RI; 1375 delete D; 1376 } 1377 Resources.clear(); 1378 return Resmii; 1379 } 1380 1381 /// Calculate the recurrence-constrainted minimum initiation interval. 1382 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1383 /// for each circuit. The II needs to satisfy the inequality 1384 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1385 /// II that satistifies the inequality, and the RecMII is the maximum 1386 /// of those values. 1387 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1388 unsigned RecMII = 0; 1389 1390 for (NodeSet &Nodes : NodeSets) { 1391 if (Nodes.empty()) 1392 continue; 1393 1394 unsigned Delay = Nodes.size() - 1; 1395 unsigned Distance = 1; 1396 1397 // ii = ceil(delay / distance) 1398 unsigned CurMII = (Delay + Distance - 1) / Distance; 1399 Nodes.setRecMII(CurMII); 1400 if (CurMII > RecMII) 1401 RecMII = CurMII; 1402 } 1403 1404 return RecMII; 1405 } 1406 1407 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1408 /// but we do this to find the circuits, and then change them back. 1409 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1410 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1411 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1412 SUnit *SU = &SUnits[i]; 1413 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1414 IP != EP; ++IP) { 1415 if (IP->getKind() != SDep::Anti) 1416 continue; 1417 DepsAdded.push_back(std::make_pair(SU, *IP)); 1418 } 1419 } 1420 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1421 E = DepsAdded.end(); 1422 I != E; ++I) { 1423 // Remove this anti dependency and add one in the reverse direction. 1424 SUnit *SU = I->first; 1425 SDep &D = I->second; 1426 SUnit *TargetSU = D.getSUnit(); 1427 unsigned Reg = D.getReg(); 1428 unsigned Lat = D.getLatency(); 1429 SU->removePred(D); 1430 SDep Dep(SU, SDep::Anti, Reg); 1431 Dep.setLatency(Lat); 1432 TargetSU->addPred(Dep); 1433 } 1434 } 1435 1436 /// Create the adjacency structure of the nodes in the graph. 1437 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1438 SwingSchedulerDAG *DAG) { 1439 BitVector Added(SUnits.size()); 1440 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1441 Added.reset(); 1442 // Add any successor to the adjacency matrix and exclude duplicates. 1443 for (auto &SI : SUnits[i].Succs) { 1444 // Do not process a boundary node and a back-edge is processed only 1445 // if it goes to a Phi. 1446 if (SI.getSUnit()->isBoundaryNode() || 1447 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1448 continue; 1449 int N = SI.getSUnit()->NodeNum; 1450 if (!Added.test(N)) { 1451 AdjK[i].push_back(N); 1452 Added.set(N); 1453 } 1454 } 1455 // A chain edge between a store and a load is treated as a back-edge in the 1456 // adjacency matrix. 1457 for (auto &PI : SUnits[i].Preds) { 1458 if (!SUnits[i].getInstr()->mayStore() || 1459 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1460 continue; 1461 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1462 int N = PI.getSUnit()->NodeNum; 1463 if (!Added.test(N)) { 1464 AdjK[i].push_back(N); 1465 Added.set(N); 1466 } 1467 } 1468 } 1469 } 1470 } 1471 1472 /// Identify an elementary circuit in the dependence graph starting at the 1473 /// specified node. 1474 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1475 bool HasBackedge) { 1476 SUnit *SV = &SUnits[V]; 1477 bool F = false; 1478 Stack.insert(SV); 1479 Blocked.set(V); 1480 1481 for (auto W : AdjK[V]) { 1482 if (NumPaths > MaxPaths) 1483 break; 1484 if (W < S) 1485 continue; 1486 if (W == S) { 1487 if (!HasBackedge) 1488 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1489 F = true; 1490 ++NumPaths; 1491 break; 1492 } else if (!Blocked.test(W)) { 1493 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1494 F = true; 1495 } 1496 } 1497 1498 if (F) 1499 unblock(V); 1500 else { 1501 for (auto W : AdjK[V]) { 1502 if (W < S) 1503 continue; 1504 if (B[W].count(SV) == 0) 1505 B[W].insert(SV); 1506 } 1507 } 1508 Stack.pop_back(); 1509 return F; 1510 } 1511 1512 /// Unblock a node in the circuit finding algorithm. 1513 void SwingSchedulerDAG::Circuits::unblock(int U) { 1514 Blocked.reset(U); 1515 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1516 while (!BU.empty()) { 1517 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1518 assert(SI != BU.end() && "Invalid B set."); 1519 SUnit *W = *SI; 1520 BU.erase(W); 1521 if (Blocked.test(W->NodeNum)) 1522 unblock(W->NodeNum); 1523 } 1524 } 1525 1526 /// Identify all the elementary circuits in the dependence graph using 1527 /// Johnson's circuit algorithm. 1528 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1529 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1530 // but we do this to find the circuits, and then change them back. 1531 swapAntiDependences(SUnits); 1532 1533 Circuits Cir(SUnits); 1534 // Create the adjacency structure. 1535 Cir.createAdjacencyStructure(this); 1536 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1537 Cir.reset(); 1538 Cir.circuit(i, i, NodeSets); 1539 } 1540 1541 // Change the dependences back so that we've created a DAG again. 1542 swapAntiDependences(SUnits); 1543 } 1544 1545 /// Return true for DAG nodes that we ignore when computing the cost functions. 1546 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1547 /// in the calculation of the ASAP, ALAP, etc functions. 1548 static bool ignoreDependence(const SDep &D, bool isPred) { 1549 if (D.isArtificial()) 1550 return true; 1551 return D.getKind() == SDep::Anti && isPred; 1552 } 1553 1554 /// Compute several functions need to order the nodes for scheduling. 1555 /// ASAP - Earliest time to schedule a node. 1556 /// ALAP - Latest time to schedule a node. 1557 /// MOV - Mobility function, difference between ALAP and ASAP. 1558 /// D - Depth of each node. 1559 /// H - Height of each node. 1560 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1561 ScheduleInfo.resize(SUnits.size()); 1562 1563 DEBUG({ 1564 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1565 E = Topo.end(); 1566 I != E; ++I) { 1567 SUnit *SU = &SUnits[*I]; 1568 SU->dump(this); 1569 } 1570 }); 1571 1572 int maxASAP = 0; 1573 // Compute ASAP. 1574 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1575 E = Topo.end(); 1576 I != E; ++I) { 1577 int asap = 0; 1578 SUnit *SU = &SUnits[*I]; 1579 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1580 EP = SU->Preds.end(); 1581 IP != EP; ++IP) { 1582 if (ignoreDependence(*IP, true)) 1583 continue; 1584 SUnit *pred = IP->getSUnit(); 1585 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1586 getDistance(pred, SU, *IP) * MII)); 1587 } 1588 maxASAP = std::max(maxASAP, asap); 1589 ScheduleInfo[*I].ASAP = asap; 1590 } 1591 1592 // Compute ALAP and MOV. 1593 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1594 E = Topo.rend(); 1595 I != E; ++I) { 1596 int alap = maxASAP; 1597 SUnit *SU = &SUnits[*I]; 1598 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1599 ES = SU->Succs.end(); 1600 IS != ES; ++IS) { 1601 if (ignoreDependence(*IS, true)) 1602 continue; 1603 SUnit *succ = IS->getSUnit(); 1604 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1605 getDistance(SU, succ, *IS) * MII)); 1606 } 1607 1608 ScheduleInfo[*I].ALAP = alap; 1609 } 1610 1611 // After computing the node functions, compute the summary for each node set. 1612 for (NodeSet &I : NodeSets) 1613 I.computeNodeSetInfo(this); 1614 1615 DEBUG({ 1616 for (unsigned i = 0; i < SUnits.size(); i++) { 1617 dbgs() << "\tNode " << i << ":\n"; 1618 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1619 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1620 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1621 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1622 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1623 } 1624 }); 1625 } 1626 1627 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1628 /// as the predecessors of the elements of NodeOrder that are not also in 1629 /// NodeOrder. 1630 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1631 SmallSetVector<SUnit *, 8> &Preds, 1632 const NodeSet *S = nullptr) { 1633 Preds.clear(); 1634 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1635 I != E; ++I) { 1636 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1637 PI != PE; ++PI) { 1638 if (S && S->count(PI->getSUnit()) == 0) 1639 continue; 1640 if (ignoreDependence(*PI, true)) 1641 continue; 1642 if (NodeOrder.count(PI->getSUnit()) == 0) 1643 Preds.insert(PI->getSUnit()); 1644 } 1645 // Back-edges are predecessors with an anti-dependence. 1646 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1647 ES = (*I)->Succs.end(); 1648 IS != ES; ++IS) { 1649 if (IS->getKind() != SDep::Anti) 1650 continue; 1651 if (S && S->count(IS->getSUnit()) == 0) 1652 continue; 1653 if (NodeOrder.count(IS->getSUnit()) == 0) 1654 Preds.insert(IS->getSUnit()); 1655 } 1656 } 1657 return !Preds.empty(); 1658 } 1659 1660 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1661 /// as the successors of the elements of NodeOrder that are not also in 1662 /// NodeOrder. 1663 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1664 SmallSetVector<SUnit *, 8> &Succs, 1665 const NodeSet *S = nullptr) { 1666 Succs.clear(); 1667 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1668 I != E; ++I) { 1669 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1670 SI != SE; ++SI) { 1671 if (S && S->count(SI->getSUnit()) == 0) 1672 continue; 1673 if (ignoreDependence(*SI, false)) 1674 continue; 1675 if (NodeOrder.count(SI->getSUnit()) == 0) 1676 Succs.insert(SI->getSUnit()); 1677 } 1678 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1679 PE = (*I)->Preds.end(); 1680 PI != PE; ++PI) { 1681 if (PI->getKind() != SDep::Anti) 1682 continue; 1683 if (S && S->count(PI->getSUnit()) == 0) 1684 continue; 1685 if (NodeOrder.count(PI->getSUnit()) == 0) 1686 Succs.insert(PI->getSUnit()); 1687 } 1688 } 1689 return !Succs.empty(); 1690 } 1691 1692 /// Return true if there is a path from the specified node to any of the nodes 1693 /// in DestNodes. Keep track and return the nodes in any path. 1694 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1695 SetVector<SUnit *> &DestNodes, 1696 SetVector<SUnit *> &Exclude, 1697 SmallPtrSet<SUnit *, 8> &Visited) { 1698 if (Cur->isBoundaryNode()) 1699 return false; 1700 if (Exclude.count(Cur) != 0) 1701 return false; 1702 if (DestNodes.count(Cur) != 0) 1703 return true; 1704 if (!Visited.insert(Cur).second) 1705 return Path.count(Cur) != 0; 1706 bool FoundPath = false; 1707 for (auto &SI : Cur->Succs) 1708 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1709 for (auto &PI : Cur->Preds) 1710 if (PI.getKind() == SDep::Anti) 1711 FoundPath |= 1712 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1713 if (FoundPath) 1714 Path.insert(Cur); 1715 return FoundPath; 1716 } 1717 1718 /// Return true if Set1 is a subset of Set2. 1719 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1720 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1721 if (Set2.count(*I) == 0) 1722 return false; 1723 return true; 1724 } 1725 1726 /// Compute the live-out registers for the instructions in a node-set. 1727 /// The live-out registers are those that are defined in the node-set, 1728 /// but not used. Except for use operands of Phis. 1729 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1730 NodeSet &NS) { 1731 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1732 MachineRegisterInfo &MRI = MF.getRegInfo(); 1733 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1734 SmallSet<unsigned, 4> Uses; 1735 for (SUnit *SU : NS) { 1736 const MachineInstr *MI = SU->getInstr(); 1737 if (MI->isPHI()) 1738 continue; 1739 for (const MachineOperand &MO : MI->operands()) 1740 if (MO.isReg() && MO.isUse()) { 1741 unsigned Reg = MO.getReg(); 1742 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1743 Uses.insert(Reg); 1744 else if (MRI.isAllocatable(Reg)) 1745 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1746 Uses.insert(*Units); 1747 } 1748 } 1749 for (SUnit *SU : NS) 1750 for (const MachineOperand &MO : SU->getInstr()->operands()) 1751 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1752 unsigned Reg = MO.getReg(); 1753 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1754 if (!Uses.count(Reg)) 1755 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1756 LaneBitmask::getNone())); 1757 } else if (MRI.isAllocatable(Reg)) { 1758 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1759 if (!Uses.count(*Units)) 1760 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1761 LaneBitmask::getNone())); 1762 } 1763 } 1764 RPTracker.addLiveRegs(LiveOutRegs); 1765 } 1766 1767 /// A heuristic to filter nodes in recurrent node-sets if the register 1768 /// pressure of a set is too high. 1769 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1770 for (auto &NS : NodeSets) { 1771 // Skip small node-sets since they won't cause register pressure problems. 1772 if (NS.size() <= 2) 1773 continue; 1774 IntervalPressure RecRegPressure; 1775 RegPressureTracker RecRPTracker(RecRegPressure); 1776 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1777 computeLiveOuts(MF, RecRPTracker, NS); 1778 RecRPTracker.closeBottom(); 1779 1780 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1781 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1782 return A->NodeNum > B->NodeNum; 1783 }); 1784 1785 for (auto &SU : SUnits) { 1786 // Since we're computing the register pressure for a subset of the 1787 // instructions in a block, we need to set the tracker for each 1788 // instruction in the node-set. The tracker is set to the instruction 1789 // just after the one we're interested in. 1790 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1791 RecRPTracker.setPos(std::next(CurInstI)); 1792 1793 RegPressureDelta RPDelta; 1794 ArrayRef<PressureChange> CriticalPSets; 1795 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1796 CriticalPSets, 1797 RecRegPressure.MaxSetPressure); 1798 if (RPDelta.Excess.isValid()) { 1799 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1800 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1801 << ":" << RPDelta.Excess.getUnitInc()); 1802 NS.setExceedPressure(SU); 1803 break; 1804 } 1805 RecRPTracker.recede(); 1806 } 1807 } 1808 } 1809 1810 /// A heuristic to colocate node sets that have the same set of 1811 /// successors. 1812 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1813 unsigned Colocate = 0; 1814 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1815 NodeSet &N1 = NodeSets[i]; 1816 SmallSetVector<SUnit *, 8> S1; 1817 if (N1.empty() || !succ_L(N1, S1)) 1818 continue; 1819 for (int j = i + 1; j < e; ++j) { 1820 NodeSet &N2 = NodeSets[j]; 1821 if (N1.compareRecMII(N2) != 0) 1822 continue; 1823 SmallSetVector<SUnit *, 8> S2; 1824 if (N2.empty() || !succ_L(N2, S2)) 1825 continue; 1826 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1827 N1.setColocate(++Colocate); 1828 N2.setColocate(Colocate); 1829 break; 1830 } 1831 } 1832 } 1833 } 1834 1835 /// Check if the existing node-sets are profitable. If not, then ignore the 1836 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1837 /// a heuristic. If the MII is large and there is a non-recurrent node with 1838 /// a large depth compared to the MII, then it's best to try and schedule 1839 /// all instruction together instead of starting with the recurrent node-sets. 1840 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1841 // Look for loops with a large MII. 1842 if (MII <= 20) 1843 return; 1844 // Check if the node-set contains only a simple add recurrence. 1845 for (auto &NS : NodeSets) 1846 if (NS.size() > 2) 1847 return; 1848 // If the depth of any instruction is significantly larger than the MII, then 1849 // ignore the recurrent node-sets and treat all instructions equally. 1850 for (auto &SU : SUnits) 1851 if (SU.getDepth() > MII * 1.5) { 1852 NodeSets.clear(); 1853 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1854 return; 1855 } 1856 } 1857 1858 /// Add the nodes that do not belong to a recurrence set into groups 1859 /// based upon connected componenets. 1860 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1861 SetVector<SUnit *> NodesAdded; 1862 SmallPtrSet<SUnit *, 8> Visited; 1863 // Add the nodes that are on a path between the previous node sets and 1864 // the current node set. 1865 for (NodeSet &I : NodeSets) { 1866 SmallSetVector<SUnit *, 8> N; 1867 // Add the nodes from the current node set to the previous node set. 1868 if (succ_L(I, N)) { 1869 SetVector<SUnit *> Path; 1870 for (SUnit *NI : N) { 1871 Visited.clear(); 1872 computePath(NI, Path, NodesAdded, I, Visited); 1873 } 1874 if (!Path.empty()) 1875 I.insert(Path.begin(), Path.end()); 1876 } 1877 // Add the nodes from the previous node set to the current node set. 1878 N.clear(); 1879 if (succ_L(NodesAdded, N)) { 1880 SetVector<SUnit *> Path; 1881 for (SUnit *NI : N) { 1882 Visited.clear(); 1883 computePath(NI, Path, I, NodesAdded, Visited); 1884 } 1885 if (!Path.empty()) 1886 I.insert(Path.begin(), Path.end()); 1887 } 1888 NodesAdded.insert(I.begin(), I.end()); 1889 } 1890 1891 // Create a new node set with the connected nodes of any successor of a node 1892 // in a recurrent set. 1893 NodeSet NewSet; 1894 SmallSetVector<SUnit *, 8> N; 1895 if (succ_L(NodesAdded, N)) 1896 for (SUnit *I : N) 1897 addConnectedNodes(I, NewSet, NodesAdded); 1898 if (!NewSet.empty()) 1899 NodeSets.push_back(NewSet); 1900 1901 // Create a new node set with the connected nodes of any predecessor of a node 1902 // in a recurrent set. 1903 NewSet.clear(); 1904 if (pred_L(NodesAdded, N)) 1905 for (SUnit *I : N) 1906 addConnectedNodes(I, NewSet, NodesAdded); 1907 if (!NewSet.empty()) 1908 NodeSets.push_back(NewSet); 1909 1910 // Create new nodes sets with the connected nodes any any remaining node that 1911 // has no predecessor. 1912 for (unsigned i = 0; i < SUnits.size(); ++i) { 1913 SUnit *SU = &SUnits[i]; 1914 if (NodesAdded.count(SU) == 0) { 1915 NewSet.clear(); 1916 addConnectedNodes(SU, NewSet, NodesAdded); 1917 if (!NewSet.empty()) 1918 NodeSets.push_back(NewSet); 1919 } 1920 } 1921 } 1922 1923 /// Add the node to the set, and add all is its connected nodes to the set. 1924 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1925 SetVector<SUnit *> &NodesAdded) { 1926 NewSet.insert(SU); 1927 NodesAdded.insert(SU); 1928 for (auto &SI : SU->Succs) { 1929 SUnit *Successor = SI.getSUnit(); 1930 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1931 addConnectedNodes(Successor, NewSet, NodesAdded); 1932 } 1933 for (auto &PI : SU->Preds) { 1934 SUnit *Predecessor = PI.getSUnit(); 1935 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1936 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1937 } 1938 } 1939 1940 /// Return true if Set1 contains elements in Set2. The elements in common 1941 /// are returned in a different container. 1942 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1943 SmallSetVector<SUnit *, 8> &Result) { 1944 Result.clear(); 1945 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1946 SUnit *SU = Set1[i]; 1947 if (Set2.count(SU) != 0) 1948 Result.insert(SU); 1949 } 1950 return !Result.empty(); 1951 } 1952 1953 /// Merge the recurrence node sets that have the same initial node. 1954 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1955 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1956 ++I) { 1957 NodeSet &NI = *I; 1958 for (NodeSetType::iterator J = I + 1; J != E;) { 1959 NodeSet &NJ = *J; 1960 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1961 if (NJ.compareRecMII(NI) > 0) 1962 NI.setRecMII(NJ.getRecMII()); 1963 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1964 ++NII) 1965 I->insert(*NII); 1966 NodeSets.erase(J); 1967 E = NodeSets.end(); 1968 } else { 1969 ++J; 1970 } 1971 } 1972 } 1973 } 1974 1975 /// Remove nodes that have been scheduled in previous NodeSets. 1976 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1977 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1978 ++I) 1979 for (NodeSetType::iterator J = I + 1; J != E;) { 1980 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1981 1982 if (J->empty()) { 1983 NodeSets.erase(J); 1984 E = NodeSets.end(); 1985 } else { 1986 ++J; 1987 } 1988 } 1989 } 1990 1991 /// Return true if Inst1 defines a value that is used in Inst2. 1992 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1993 for (auto &SI : Inst1->Succs) 1994 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1995 return true; 1996 return false; 1997 } 1998 1999 /// Compute an ordered list of the dependence graph nodes, which 2000 /// indicates the order that the nodes will be scheduled. This is a 2001 /// two-level algorithm. First, a partial order is created, which 2002 /// consists of a list of sets ordered from highest to lowest priority. 2003 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2004 SmallSetVector<SUnit *, 8> R; 2005 NodeOrder.clear(); 2006 2007 for (auto &Nodes : NodeSets) { 2008 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2009 OrderKind Order; 2010 SmallSetVector<SUnit *, 8> N; 2011 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2012 R.insert(N.begin(), N.end()); 2013 Order = BottomUp; 2014 DEBUG(dbgs() << " Bottom up (preds) "); 2015 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2016 R.insert(N.begin(), N.end()); 2017 Order = TopDown; 2018 DEBUG(dbgs() << " Top down (succs) "); 2019 } else if (isIntersect(N, Nodes, R)) { 2020 // If some of the successors are in the existing node-set, then use the 2021 // top-down ordering. 2022 Order = TopDown; 2023 DEBUG(dbgs() << " Top down (intersect) "); 2024 } else if (NodeSets.size() == 1) { 2025 for (auto &N : Nodes) 2026 if (N->Succs.size() == 0) 2027 R.insert(N); 2028 Order = BottomUp; 2029 DEBUG(dbgs() << " Bottom up (all) "); 2030 } else { 2031 // Find the node with the highest ASAP. 2032 SUnit *maxASAP = nullptr; 2033 for (SUnit *SU : Nodes) { 2034 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2035 maxASAP = SU; 2036 } 2037 R.insert(maxASAP); 2038 Order = BottomUp; 2039 DEBUG(dbgs() << " Bottom up (default) "); 2040 } 2041 2042 while (!R.empty()) { 2043 if (Order == TopDown) { 2044 // Choose the node with the maximum height. If more than one, choose 2045 // the node with the lowest MOV. If still more than one, check if there 2046 // is a dependence between the instructions. 2047 while (!R.empty()) { 2048 SUnit *maxHeight = nullptr; 2049 for (SUnit *I : R) { 2050 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2051 maxHeight = I; 2052 else if (getHeight(I) == getHeight(maxHeight) && 2053 getMOV(I) < getMOV(maxHeight) && 2054 !hasDataDependence(maxHeight, I)) 2055 maxHeight = I; 2056 else if (hasDataDependence(I, maxHeight)) 2057 maxHeight = I; 2058 } 2059 NodeOrder.insert(maxHeight); 2060 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2061 R.remove(maxHeight); 2062 for (const auto &I : maxHeight->Succs) { 2063 if (Nodes.count(I.getSUnit()) == 0) 2064 continue; 2065 if (NodeOrder.count(I.getSUnit()) != 0) 2066 continue; 2067 if (ignoreDependence(I, false)) 2068 continue; 2069 R.insert(I.getSUnit()); 2070 } 2071 // Back-edges are predecessors with an anti-dependence. 2072 for (const auto &I : maxHeight->Preds) { 2073 if (I.getKind() != SDep::Anti) 2074 continue; 2075 if (Nodes.count(I.getSUnit()) == 0) 2076 continue; 2077 if (NodeOrder.count(I.getSUnit()) != 0) 2078 continue; 2079 R.insert(I.getSUnit()); 2080 } 2081 } 2082 Order = BottomUp; 2083 DEBUG(dbgs() << "\n Switching order to bottom up "); 2084 SmallSetVector<SUnit *, 8> N; 2085 if (pred_L(NodeOrder, N, &Nodes)) 2086 R.insert(N.begin(), N.end()); 2087 } else { 2088 // Choose the node with the maximum depth. If more than one, choose 2089 // the node with the lowest MOV. If there is still more than one, check 2090 // for a dependence between the instructions. 2091 while (!R.empty()) { 2092 SUnit *maxDepth = nullptr; 2093 for (SUnit *I : R) { 2094 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2095 maxDepth = I; 2096 else if (getDepth(I) == getDepth(maxDepth) && 2097 getMOV(I) < getMOV(maxDepth) && 2098 !hasDataDependence(I, maxDepth)) 2099 maxDepth = I; 2100 else if (hasDataDependence(maxDepth, I)) 2101 maxDepth = I; 2102 } 2103 NodeOrder.insert(maxDepth); 2104 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2105 R.remove(maxDepth); 2106 if (Nodes.isExceedSU(maxDepth)) { 2107 Order = TopDown; 2108 R.clear(); 2109 R.insert(Nodes.getNode(0)); 2110 break; 2111 } 2112 for (const auto &I : maxDepth->Preds) { 2113 if (Nodes.count(I.getSUnit()) == 0) 2114 continue; 2115 if (NodeOrder.count(I.getSUnit()) != 0) 2116 continue; 2117 if (I.getKind() == SDep::Anti) 2118 continue; 2119 R.insert(I.getSUnit()); 2120 } 2121 // Back-edges are predecessors with an anti-dependence. 2122 for (const auto &I : maxDepth->Succs) { 2123 if (I.getKind() != SDep::Anti) 2124 continue; 2125 if (Nodes.count(I.getSUnit()) == 0) 2126 continue; 2127 if (NodeOrder.count(I.getSUnit()) != 0) 2128 continue; 2129 R.insert(I.getSUnit()); 2130 } 2131 } 2132 Order = TopDown; 2133 DEBUG(dbgs() << "\n Switching order to top down "); 2134 SmallSetVector<SUnit *, 8> N; 2135 if (succ_L(NodeOrder, N, &Nodes)) 2136 R.insert(N.begin(), N.end()); 2137 } 2138 } 2139 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2140 } 2141 2142 DEBUG({ 2143 dbgs() << "Node order: "; 2144 for (SUnit *I : NodeOrder) 2145 dbgs() << " " << I->NodeNum << " "; 2146 dbgs() << "\n"; 2147 }); 2148 } 2149 2150 /// Process the nodes in the computed order and create the pipelined schedule 2151 /// of the instructions, if possible. Return true if a schedule is found. 2152 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2153 if (NodeOrder.empty()) 2154 return false; 2155 2156 bool scheduleFound = false; 2157 // Keep increasing II until a valid schedule is found. 2158 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2159 Schedule.reset(); 2160 Schedule.setInitiationInterval(II); 2161 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2162 2163 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2164 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2165 do { 2166 SUnit *SU = *NI; 2167 2168 // Compute the schedule time for the instruction, which is based 2169 // upon the scheduled time for any predecessors/successors. 2170 int EarlyStart = INT_MIN; 2171 int LateStart = INT_MAX; 2172 // These values are set when the size of the schedule window is limited 2173 // due to chain dependences. 2174 int SchedEnd = INT_MAX; 2175 int SchedStart = INT_MIN; 2176 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2177 II, this); 2178 DEBUG({ 2179 dbgs() << "Inst (" << SU->NodeNum << ") "; 2180 SU->getInstr()->dump(); 2181 dbgs() << "\n"; 2182 }); 2183 DEBUG({ 2184 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2185 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2186 }); 2187 2188 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2189 SchedStart > LateStart) 2190 scheduleFound = false; 2191 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2192 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2193 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2194 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2195 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2196 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2197 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2198 SchedEnd = 2199 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2200 // When scheduling a Phi it is better to start at the late cycle and go 2201 // backwards. The default order may insert the Phi too far away from 2202 // its first dependence. 2203 if (SU->getInstr()->isPHI()) 2204 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2205 else 2206 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2207 } else { 2208 int FirstCycle = Schedule.getFirstCycle(); 2209 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2210 FirstCycle + getASAP(SU) + II - 1, II); 2211 } 2212 // Even if we find a schedule, make sure the schedule doesn't exceed the 2213 // allowable number of stages. We keep trying if this happens. 2214 if (scheduleFound) 2215 if (SwpMaxStages > -1 && 2216 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2217 scheduleFound = false; 2218 2219 DEBUG({ 2220 if (!scheduleFound) 2221 dbgs() << "\tCan't schedule\n"; 2222 }); 2223 } while (++NI != NE && scheduleFound); 2224 2225 // If a schedule is found, check if it is a valid schedule too. 2226 if (scheduleFound) 2227 scheduleFound = Schedule.isValidSchedule(this); 2228 } 2229 2230 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2231 2232 if (scheduleFound) 2233 Schedule.finalizeSchedule(this); 2234 else 2235 Schedule.reset(); 2236 2237 return scheduleFound && Schedule.getMaxStageCount() > 0; 2238 } 2239 2240 /// Given a schedule for the loop, generate a new version of the loop, 2241 /// and replace the old version. This function generates a prolog 2242 /// that contains the initial iterations in the pipeline, and kernel 2243 /// loop, and the epilogue that contains the code for the final 2244 /// iterations. 2245 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2246 // Create a new basic block for the kernel and add it to the CFG. 2247 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2248 2249 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2250 2251 // Remember the registers that are used in different stages. The index is 2252 // the iteration, or stage, that the instruction is scheduled in. This is 2253 // a map between register names in the orignal block and the names created 2254 // in each stage of the pipelined loop. 2255 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2256 InstrMapTy InstrMap; 2257 2258 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2259 // Generate the prolog instructions that set up the pipeline. 2260 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2261 MF.insert(BB->getIterator(), KernelBB); 2262 2263 // Rearrange the instructions to generate the new, pipelined loop, 2264 // and update register names as needed. 2265 for (int Cycle = Schedule.getFirstCycle(), 2266 LastCycle = Schedule.getFinalCycle(); 2267 Cycle <= LastCycle; ++Cycle) { 2268 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2269 // This inner loop schedules each instruction in the cycle. 2270 for (SUnit *CI : CycleInstrs) { 2271 if (CI->getInstr()->isPHI()) 2272 continue; 2273 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2274 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2275 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2276 KernelBB->push_back(NewMI); 2277 InstrMap[NewMI] = CI->getInstr(); 2278 } 2279 } 2280 2281 // Copy any terminator instructions to the new kernel, and update 2282 // names as needed. 2283 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2284 E = BB->instr_end(); 2285 I != E; ++I) { 2286 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2287 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2288 KernelBB->push_back(NewMI); 2289 InstrMap[NewMI] = &*I; 2290 } 2291 2292 KernelBB->transferSuccessors(BB); 2293 KernelBB->replaceSuccessor(BB, KernelBB); 2294 2295 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2296 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2297 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2298 InstrMap, MaxStageCount, MaxStageCount, false); 2299 2300 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2301 2302 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2303 // Generate the epilog instructions to complete the pipeline. 2304 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2305 PrologBBs); 2306 2307 // We need this step because the register allocation doesn't handle some 2308 // situations well, so we insert copies to help out. 2309 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2310 2311 // Remove dead instructions due to loop induction variables. 2312 removeDeadInstructions(KernelBB, EpilogBBs); 2313 2314 // Add branches between prolog and epilog blocks. 2315 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2316 2317 // Remove the original loop since it's no longer referenced. 2318 BB->clear(); 2319 BB->eraseFromParent(); 2320 2321 delete[] VRMap; 2322 } 2323 2324 /// Generate the pipeline prolog code. 2325 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2326 MachineBasicBlock *KernelBB, 2327 ValueMapTy *VRMap, 2328 MBBVectorTy &PrologBBs) { 2329 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2330 assert(PreheaderBB != nullptr && 2331 "Need to add code to handle loops w/o preheader"); 2332 MachineBasicBlock *PredBB = PreheaderBB; 2333 InstrMapTy InstrMap; 2334 2335 // Generate a basic block for each stage, not including the last stage, 2336 // which will be generated in the kernel. Each basic block may contain 2337 // instructions from multiple stages/iterations. 2338 for (unsigned i = 0; i < LastStage; ++i) { 2339 // Create and insert the prolog basic block prior to the original loop 2340 // basic block. The original loop is removed later. 2341 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2342 PrologBBs.push_back(NewBB); 2343 MF.insert(BB->getIterator(), NewBB); 2344 NewBB->transferSuccessors(PredBB); 2345 PredBB->addSuccessor(NewBB); 2346 PredBB = NewBB; 2347 2348 // Generate instructions for each appropriate stage. Process instructions 2349 // in original program order. 2350 for (int StageNum = i; StageNum >= 0; --StageNum) { 2351 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2352 BBE = BB->getFirstTerminator(); 2353 BBI != BBE; ++BBI) { 2354 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2355 if (BBI->isPHI()) 2356 continue; 2357 MachineInstr *NewMI = 2358 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2359 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2360 VRMap); 2361 NewBB->push_back(NewMI); 2362 InstrMap[NewMI] = &*BBI; 2363 } 2364 } 2365 } 2366 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2367 DEBUG({ 2368 dbgs() << "prolog:\n"; 2369 NewBB->dump(); 2370 }); 2371 } 2372 2373 PredBB->replaceSuccessor(BB, KernelBB); 2374 2375 // Check if we need to remove the branch from the preheader to the original 2376 // loop, and replace it with a branch to the new loop. 2377 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2378 if (numBranches) { 2379 SmallVector<MachineOperand, 0> Cond; 2380 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2381 } 2382 } 2383 2384 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2385 /// that were started in either the prolog or the kernel. We create a basic 2386 /// block for each stage that needs to complete. 2387 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2388 MachineBasicBlock *KernelBB, 2389 ValueMapTy *VRMap, 2390 MBBVectorTy &EpilogBBs, 2391 MBBVectorTy &PrologBBs) { 2392 // We need to change the branch from the kernel to the first epilog block, so 2393 // this call to analyze branch uses the kernel rather than the original BB. 2394 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2395 SmallVector<MachineOperand, 4> Cond; 2396 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2397 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2398 if (checkBranch) 2399 return; 2400 2401 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2402 if (*LoopExitI == KernelBB) 2403 ++LoopExitI; 2404 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2405 MachineBasicBlock *LoopExitBB = *LoopExitI; 2406 2407 MachineBasicBlock *PredBB = KernelBB; 2408 MachineBasicBlock *EpilogStart = LoopExitBB; 2409 InstrMapTy InstrMap; 2410 2411 // Generate a basic block for each stage, not including the last stage, 2412 // which was generated for the kernel. Each basic block may contain 2413 // instructions from multiple stages/iterations. 2414 int EpilogStage = LastStage + 1; 2415 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2416 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2417 EpilogBBs.push_back(NewBB); 2418 MF.insert(BB->getIterator(), NewBB); 2419 2420 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2421 NewBB->addSuccessor(LoopExitBB); 2422 2423 if (EpilogStart == LoopExitBB) 2424 EpilogStart = NewBB; 2425 2426 // Add instructions to the epilog depending on the current block. 2427 // Process instructions in original program order. 2428 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2429 for (auto &BBI : *BB) { 2430 if (BBI.isPHI()) 2431 continue; 2432 MachineInstr *In = &BBI; 2433 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2434 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2435 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2436 NewBB->push_back(NewMI); 2437 InstrMap[NewMI] = In; 2438 } 2439 } 2440 } 2441 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2442 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2443 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2444 InstrMap, LastStage, EpilogStage, i == 1); 2445 PredBB = NewBB; 2446 2447 DEBUG({ 2448 dbgs() << "epilog:\n"; 2449 NewBB->dump(); 2450 }); 2451 } 2452 2453 // Fix any Phi nodes in the loop exit block. 2454 for (MachineInstr &MI : *LoopExitBB) { 2455 if (!MI.isPHI()) 2456 break; 2457 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2458 MachineOperand &MO = MI.getOperand(i); 2459 if (MO.getMBB() == BB) 2460 MO.setMBB(PredBB); 2461 } 2462 } 2463 2464 // Create a branch to the new epilog from the kernel. 2465 // Remove the original branch and add a new branch to the epilog. 2466 TII->removeBranch(*KernelBB); 2467 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2468 // Add a branch to the loop exit. 2469 if (EpilogBBs.size() > 0) { 2470 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2471 SmallVector<MachineOperand, 4> Cond1; 2472 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2473 } 2474 } 2475 2476 /// Replace all uses of FromReg that appear outside the specified 2477 /// basic block with ToReg. 2478 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2479 MachineBasicBlock *MBB, 2480 MachineRegisterInfo &MRI, 2481 LiveIntervals &LIS) { 2482 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2483 E = MRI.use_end(); 2484 I != E;) { 2485 MachineOperand &O = *I; 2486 ++I; 2487 if (O.getParent()->getParent() != MBB) 2488 O.setReg(ToReg); 2489 } 2490 if (!LIS.hasInterval(ToReg)) 2491 LIS.createEmptyInterval(ToReg); 2492 } 2493 2494 /// Return true if the register has a use that occurs outside the 2495 /// specified loop. 2496 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2497 MachineRegisterInfo &MRI) { 2498 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2499 E = MRI.use_end(); 2500 I != E; ++I) 2501 if (I->getParent()->getParent() != BB) 2502 return true; 2503 return false; 2504 } 2505 2506 /// Generate Phis for the specific block in the generated pipelined code. 2507 /// This function looks at the Phis from the original code to guide the 2508 /// creation of new Phis. 2509 void SwingSchedulerDAG::generateExistingPhis( 2510 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2511 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2512 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2513 bool IsLast) { 2514 // Compute the stage number for the initial value of the Phi, which 2515 // comes from the prolog. The prolog to use depends on to which kernel/ 2516 // epilog that we're adding the Phi. 2517 unsigned PrologStage = 0; 2518 unsigned PrevStage = 0; 2519 bool InKernel = (LastStageNum == CurStageNum); 2520 if (InKernel) { 2521 PrologStage = LastStageNum - 1; 2522 PrevStage = CurStageNum; 2523 } else { 2524 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2525 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2526 } 2527 2528 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2529 BBE = BB->getFirstNonPHI(); 2530 BBI != BBE; ++BBI) { 2531 unsigned Def = BBI->getOperand(0).getReg(); 2532 2533 unsigned InitVal = 0; 2534 unsigned LoopVal = 0; 2535 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2536 2537 unsigned PhiOp1 = 0; 2538 // The Phi value from the loop body typically is defined in the loop, but 2539 // not always. So, we need to check if the value is defined in the loop. 2540 unsigned PhiOp2 = LoopVal; 2541 if (VRMap[LastStageNum].count(LoopVal)) 2542 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2543 2544 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2545 int LoopValStage = 2546 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2547 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2548 if (NumStages == 0) { 2549 // We don't need to generate a Phi anymore, but we need to rename any uses 2550 // of the Phi value. 2551 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2552 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2553 Def, NewReg); 2554 if (VRMap[CurStageNum].count(LoopVal)) 2555 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2556 } 2557 // Adjust the number of Phis needed depending on the number of prologs left, 2558 // and the distance from where the Phi is first scheduled. 2559 unsigned NumPhis = NumStages; 2560 if (!InKernel && (int)PrologStage < LoopValStage) 2561 // The NumPhis is the maximum number of new Phis needed during the steady 2562 // state. If the Phi has not been scheduled in current prolog, then we 2563 // need to generate less Phis. 2564 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2565 // The number of Phis cannot exceed the number of prolog stages. Each 2566 // stage can potentially define two values. 2567 NumPhis = std::min(NumPhis, PrologStage + 2); 2568 2569 unsigned NewReg = 0; 2570 2571 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2572 // In the epilog, we may need to look back one stage to get the correct 2573 // Phi name because the epilog and prolog blocks execute the same stage. 2574 // The correct name is from the previous block only when the Phi has 2575 // been completely scheduled prior to the epilog, and Phi value is not 2576 // needed in multiple stages. 2577 int StageDiff = 0; 2578 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2579 NumPhis == 1) 2580 StageDiff = 1; 2581 // Adjust the computations below when the phi and the loop definition 2582 // are scheduled in different stages. 2583 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2584 StageDiff = StageScheduled - LoopValStage; 2585 for (unsigned np = 0; np < NumPhis; ++np) { 2586 // If the Phi hasn't been scheduled, then use the initial Phi operand 2587 // value. Otherwise, use the scheduled version of the instruction. This 2588 // is a little complicated when a Phi references another Phi. 2589 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2590 PhiOp1 = InitVal; 2591 // Check if the Phi has already been scheduled in a prolog stage. 2592 else if (PrologStage >= AccessStage + StageDiff + np && 2593 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2594 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2595 // Check if the Phi has already been scheduled, but the loop intruction 2596 // is either another Phi, or doesn't occur in the loop. 2597 else if (PrologStage >= AccessStage + StageDiff + np) { 2598 // If the Phi references another Phi, we need to examine the other 2599 // Phi to get the correct value. 2600 PhiOp1 = LoopVal; 2601 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2602 int Indirects = 1; 2603 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2604 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2605 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2606 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2607 else 2608 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2609 InstOp1 = MRI.getVRegDef(PhiOp1); 2610 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2611 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2612 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2613 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2614 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2615 break; 2616 } 2617 ++Indirects; 2618 } 2619 } else 2620 PhiOp1 = InitVal; 2621 // If this references a generated Phi in the kernel, get the Phi operand 2622 // from the incoming block. 2623 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2624 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2625 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2626 2627 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2628 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2629 // In the epilog, a map lookup is needed to get the value from the kernel, 2630 // or previous epilog block. How is does this depends on if the 2631 // instruction is scheduled in the previous block. 2632 if (!InKernel) { 2633 int StageDiffAdj = 0; 2634 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2635 StageDiffAdj = StageScheduled - LoopValStage; 2636 // Use the loop value defined in the kernel, unless the kernel 2637 // contains the last definition of the Phi. 2638 if (np == 0 && PrevStage == LastStageNum && 2639 (StageScheduled != 0 || LoopValStage != 0) && 2640 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2641 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2642 // Use the value defined by the Phi. We add one because we switch 2643 // from looking at the loop value to the Phi definition. 2644 else if (np > 0 && PrevStage == LastStageNum && 2645 VRMap[PrevStage - np + 1].count(Def)) 2646 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2647 // Use the loop value defined in the kernel. 2648 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2649 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2650 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2651 // Use the value defined by the Phi, unless we're generating the first 2652 // epilog and the Phi refers to a Phi in a different stage. 2653 else if (VRMap[PrevStage - np].count(Def) && 2654 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2655 PhiOp2 = VRMap[PrevStage - np][Def]; 2656 } 2657 2658 // Check if we can reuse an existing Phi. This occurs when a Phi 2659 // references another Phi, and the other Phi is scheduled in an 2660 // earlier stage. We can try to reuse an existing Phi up until the last 2661 // stage of the current Phi. 2662 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2663 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2664 int StageDiff = (StageScheduled - LoopValStage); 2665 LVNumStages -= StageDiff; 2666 if (LVNumStages > (int)np) { 2667 NewReg = PhiOp2; 2668 unsigned ReuseStage = CurStageNum; 2669 if (Schedule.isLoopCarried(this, *PhiInst)) 2670 ReuseStage -= LVNumStages; 2671 // Check if the Phi to reuse has been generated yet. If not, then 2672 // there is nothing to reuse. 2673 if (VRMap[ReuseStage].count(LoopVal)) { 2674 NewReg = VRMap[ReuseStage][LoopVal]; 2675 2676 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2677 &*BBI, Def, NewReg); 2678 // Update the map with the new Phi name. 2679 VRMap[CurStageNum - np][Def] = NewReg; 2680 PhiOp2 = NewReg; 2681 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2682 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2683 2684 if (IsLast && np == NumPhis - 1) 2685 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2686 continue; 2687 } 2688 } else if (InKernel && StageDiff > 0 && 2689 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2690 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2691 } 2692 2693 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2694 NewReg = MRI.createVirtualRegister(RC); 2695 2696 MachineInstrBuilder NewPhi = 2697 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2698 TII->get(TargetOpcode::PHI), NewReg); 2699 NewPhi.addReg(PhiOp1).addMBB(BB1); 2700 NewPhi.addReg(PhiOp2).addMBB(BB2); 2701 if (np == 0) 2702 InstrMap[NewPhi] = &*BBI; 2703 2704 // We define the Phis after creating the new pipelined code, so 2705 // we need to rename the Phi values in scheduled instructions. 2706 2707 unsigned PrevReg = 0; 2708 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2709 PrevReg = VRMap[PrevStage - np][LoopVal]; 2710 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2711 Def, NewReg, PrevReg); 2712 // If the Phi has been scheduled, use the new name for rewriting. 2713 if (VRMap[CurStageNum - np].count(Def)) { 2714 unsigned R = VRMap[CurStageNum - np][Def]; 2715 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2716 R, NewReg); 2717 } 2718 2719 // Check if we need to rename any uses that occurs after the loop. The 2720 // register to replace depends on whether the Phi is scheduled in the 2721 // epilog. 2722 if (IsLast && np == NumPhis - 1) 2723 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2724 2725 // In the kernel, a dependent Phi uses the value from this Phi. 2726 if (InKernel) 2727 PhiOp2 = NewReg; 2728 2729 // Update the map with the new Phi name. 2730 VRMap[CurStageNum - np][Def] = NewReg; 2731 } 2732 2733 while (NumPhis++ < NumStages) { 2734 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2735 &*BBI, Def, NewReg, 0); 2736 } 2737 2738 // Check if we need to rename a Phi that has been eliminated due to 2739 // scheduling. 2740 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2741 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2742 } 2743 } 2744 2745 /// Generate Phis for the specified block in the generated pipelined code. 2746 /// These are new Phis needed because the definition is scheduled after the 2747 /// use in the pipelened sequence. 2748 void SwingSchedulerDAG::generatePhis( 2749 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2750 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2751 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2752 bool IsLast) { 2753 // Compute the stage number that contains the initial Phi value, and 2754 // the Phi from the previous stage. 2755 unsigned PrologStage = 0; 2756 unsigned PrevStage = 0; 2757 unsigned StageDiff = CurStageNum - LastStageNum; 2758 bool InKernel = (StageDiff == 0); 2759 if (InKernel) { 2760 PrologStage = LastStageNum - 1; 2761 PrevStage = CurStageNum; 2762 } else { 2763 PrologStage = LastStageNum - StageDiff; 2764 PrevStage = LastStageNum + StageDiff - 1; 2765 } 2766 2767 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2768 BBE = BB->instr_end(); 2769 BBI != BBE; ++BBI) { 2770 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2771 MachineOperand &MO = BBI->getOperand(i); 2772 if (!MO.isReg() || !MO.isDef() || 2773 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2774 continue; 2775 2776 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2777 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2778 unsigned Def = MO.getReg(); 2779 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2780 // An instruction scheduled in stage 0 and is used after the loop 2781 // requires a phi in the epilog for the last definition from either 2782 // the kernel or prolog. 2783 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2784 hasUseAfterLoop(Def, BB, MRI)) 2785 NumPhis = 1; 2786 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2787 continue; 2788 2789 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2790 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2791 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2792 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2793 // The number of Phis can't exceed the number of prolog stages. The 2794 // prolog stage number is zero based. 2795 if (NumPhis > PrologStage + 1 - StageScheduled) 2796 NumPhis = PrologStage + 1 - StageScheduled; 2797 for (unsigned np = 0; np < NumPhis; ++np) { 2798 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2799 if (np <= PrologStage) 2800 PhiOp1 = VRMap[PrologStage - np][Def]; 2801 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2802 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2803 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2804 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2805 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2806 } 2807 if (!InKernel) 2808 PhiOp2 = VRMap[PrevStage - np][Def]; 2809 2810 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2811 unsigned NewReg = MRI.createVirtualRegister(RC); 2812 2813 MachineInstrBuilder NewPhi = 2814 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2815 TII->get(TargetOpcode::PHI), NewReg); 2816 NewPhi.addReg(PhiOp1).addMBB(BB1); 2817 NewPhi.addReg(PhiOp2).addMBB(BB2); 2818 if (np == 0) 2819 InstrMap[NewPhi] = &*BBI; 2820 2821 // Rewrite uses and update the map. The actions depend upon whether 2822 // we generating code for the kernel or epilog blocks. 2823 if (InKernel) { 2824 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2825 &*BBI, PhiOp1, NewReg); 2826 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2827 &*BBI, PhiOp2, NewReg); 2828 2829 PhiOp2 = NewReg; 2830 VRMap[PrevStage - np - 1][Def] = NewReg; 2831 } else { 2832 VRMap[CurStageNum - np][Def] = NewReg; 2833 if (np == NumPhis - 1) 2834 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2835 &*BBI, Def, NewReg); 2836 } 2837 if (IsLast && np == NumPhis - 1) 2838 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2839 } 2840 } 2841 } 2842 } 2843 2844 /// Remove instructions that generate values with no uses. 2845 /// Typically, these are induction variable operations that generate values 2846 /// used in the loop itself. A dead instruction has a definition with 2847 /// no uses, or uses that occur in the original loop only. 2848 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2849 MBBVectorTy &EpilogBBs) { 2850 // For each epilog block, check that the value defined by each instruction 2851 // is used. If not, delete it. 2852 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2853 MBE = EpilogBBs.rend(); 2854 MBB != MBE; ++MBB) 2855 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2856 ME = (*MBB)->instr_rend(); 2857 MI != ME;) { 2858 // From DeadMachineInstructionElem. Don't delete inline assembly. 2859 if (MI->isInlineAsm()) { 2860 ++MI; 2861 continue; 2862 } 2863 bool SawStore = false; 2864 // Check if it's safe to remove the instruction due to side effects. 2865 // We can, and want to, remove Phis here. 2866 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2867 ++MI; 2868 continue; 2869 } 2870 bool used = true; 2871 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2872 MOE = MI->operands_end(); 2873 MOI != MOE; ++MOI) { 2874 if (!MOI->isReg() || !MOI->isDef()) 2875 continue; 2876 unsigned reg = MOI->getReg(); 2877 unsigned realUses = 0; 2878 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2879 EI = MRI.use_end(); 2880 UI != EI; ++UI) { 2881 // Check if there are any uses that occur only in the original 2882 // loop. If so, that's not a real use. 2883 if (UI->getParent()->getParent() != BB) { 2884 realUses++; 2885 used = true; 2886 break; 2887 } 2888 } 2889 if (realUses > 0) 2890 break; 2891 used = false; 2892 } 2893 if (!used) { 2894 MI++->eraseFromParent(); 2895 continue; 2896 } 2897 ++MI; 2898 } 2899 // In the kernel block, check if we can remove a Phi that generates a value 2900 // used in an instruction removed in the epilog block. 2901 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2902 BBE = KernelBB->getFirstNonPHI(); 2903 BBI != BBE;) { 2904 MachineInstr *MI = &*BBI; 2905 ++BBI; 2906 unsigned reg = MI->getOperand(0).getReg(); 2907 if (MRI.use_begin(reg) == MRI.use_end()) { 2908 MI->eraseFromParent(); 2909 } 2910 } 2911 } 2912 2913 /// For loop carried definitions, we split the lifetime of a virtual register 2914 /// that has uses past the definition in the next iteration. A copy with a new 2915 /// virtual register is inserted before the definition, which helps with 2916 /// generating a better register assignment. 2917 /// 2918 /// v1 = phi(a, v2) v1 = phi(a, v2) 2919 /// v2 = phi(b, v3) v2 = phi(b, v3) 2920 /// v3 = .. v4 = copy v1 2921 /// .. = V1 v3 = .. 2922 /// .. = v4 2923 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2924 MBBVectorTy &EpilogBBs, 2925 SMSchedule &Schedule) { 2926 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2927 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2928 BBF = KernelBB->getFirstNonPHI(); 2929 BBI != BBF; ++BBI) { 2930 unsigned Def = BBI->getOperand(0).getReg(); 2931 // Check for any Phi definition that used as an operand of another Phi 2932 // in the same block. 2933 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2934 E = MRI.use_instr_end(); 2935 I != E; ++I) { 2936 if (I->isPHI() && I->getParent() == KernelBB) { 2937 // Get the loop carried definition. 2938 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2939 if (!LCDef) 2940 continue; 2941 MachineInstr *MI = MRI.getVRegDef(LCDef); 2942 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2943 continue; 2944 // Search through the rest of the block looking for uses of the Phi 2945 // definition. If one occurs, then split the lifetime. 2946 unsigned SplitReg = 0; 2947 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2948 KernelBB->instr_end())) 2949 if (BBJ.readsRegister(Def)) { 2950 // We split the lifetime when we find the first use. 2951 if (SplitReg == 0) { 2952 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2953 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2954 TII->get(TargetOpcode::COPY), SplitReg) 2955 .addReg(Def); 2956 } 2957 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2958 } 2959 if (!SplitReg) 2960 continue; 2961 // Search through each of the epilog blocks for any uses to be renamed. 2962 for (auto &Epilog : EpilogBBs) 2963 for (auto &I : *Epilog) 2964 if (I.readsRegister(Def)) 2965 I.substituteRegister(Def, SplitReg, 0, *TRI); 2966 break; 2967 } 2968 } 2969 } 2970 } 2971 2972 /// Remove the incoming block from the Phis in a basic block. 2973 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2974 for (MachineInstr &MI : *BB) { 2975 if (!MI.isPHI()) 2976 break; 2977 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2978 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2979 MI.RemoveOperand(i + 1); 2980 MI.RemoveOperand(i); 2981 break; 2982 } 2983 } 2984 } 2985 2986 /// Create branches from each prolog basic block to the appropriate epilog 2987 /// block. These edges are needed if the loop ends before reaching the 2988 /// kernel. 2989 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2990 MachineBasicBlock *KernelBB, 2991 MBBVectorTy &EpilogBBs, 2992 SMSchedule &Schedule, ValueMapTy *VRMap) { 2993 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2994 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2995 MachineInstr *Cmp = Pass.LI.LoopCompare; 2996 MachineBasicBlock *LastPro = KernelBB; 2997 MachineBasicBlock *LastEpi = KernelBB; 2998 2999 // Start from the blocks connected to the kernel and work "out" 3000 // to the first prolog and the last epilog blocks. 3001 SmallVector<MachineInstr *, 4> PrevInsts; 3002 unsigned MaxIter = PrologBBs.size() - 1; 3003 unsigned LC = UINT_MAX; 3004 unsigned LCMin = UINT_MAX; 3005 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3006 // Add branches to the prolog that go to the corresponding 3007 // epilog, and the fall-thru prolog/kernel block. 3008 MachineBasicBlock *Prolog = PrologBBs[j]; 3009 MachineBasicBlock *Epilog = EpilogBBs[i]; 3010 // We've executed one iteration, so decrement the loop count and check for 3011 // the loop end. 3012 SmallVector<MachineOperand, 4> Cond; 3013 // Check if the LOOP0 has already been removed. If so, then there is no need 3014 // to reduce the trip count. 3015 if (LC != 0) 3016 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3017 MaxIter); 3018 3019 // Record the value of the first trip count, which is used to determine if 3020 // branches and blocks can be removed for constant trip counts. 3021 if (LCMin == UINT_MAX) 3022 LCMin = LC; 3023 3024 unsigned numAdded = 0; 3025 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3026 Prolog->addSuccessor(Epilog); 3027 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3028 } else if (j >= LCMin) { 3029 Prolog->addSuccessor(Epilog); 3030 Prolog->removeSuccessor(LastPro); 3031 LastEpi->removeSuccessor(Epilog); 3032 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3033 removePhis(Epilog, LastEpi); 3034 // Remove the blocks that are no longer referenced. 3035 if (LastPro != LastEpi) { 3036 LastEpi->clear(); 3037 LastEpi->eraseFromParent(); 3038 } 3039 LastPro->clear(); 3040 LastPro->eraseFromParent(); 3041 } else { 3042 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3043 removePhis(Epilog, Prolog); 3044 } 3045 LastPro = Prolog; 3046 LastEpi = Epilog; 3047 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3048 E = Prolog->instr_rend(); 3049 I != E && numAdded > 0; ++I, --numAdded) 3050 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3051 } 3052 } 3053 3054 /// Return true if we can compute the amount the instruction changes 3055 /// during each iteration. Set Delta to the amount of the change. 3056 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3057 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3058 unsigned BaseReg; 3059 int64_t Offset; 3060 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3061 return false; 3062 3063 MachineRegisterInfo &MRI = MF.getRegInfo(); 3064 // Check if there is a Phi. If so, get the definition in the loop. 3065 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3066 if (BaseDef && BaseDef->isPHI()) { 3067 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3068 BaseDef = MRI.getVRegDef(BaseReg); 3069 } 3070 if (!BaseDef) 3071 return false; 3072 3073 int D = 0; 3074 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3075 return false; 3076 3077 Delta = D; 3078 return true; 3079 } 3080 3081 /// Update the memory operand with a new offset when the pipeliner 3082 /// generates a new copy of the instruction that refers to a 3083 /// different memory location. 3084 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3085 MachineInstr &OldMI, unsigned Num) { 3086 if (Num == 0) 3087 return; 3088 // If the instruction has memory operands, then adjust the offset 3089 // when the instruction appears in different stages. 3090 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3091 if (NumRefs == 0) 3092 return; 3093 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3094 unsigned Refs = 0; 3095 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3096 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3097 (!MMO->getValue())) { 3098 NewMemRefs[Refs++] = MMO; 3099 continue; 3100 } 3101 unsigned Delta; 3102 if (computeDelta(OldMI, Delta)) { 3103 int64_t AdjOffset = Delta * Num; 3104 NewMemRefs[Refs++] = 3105 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3106 } else 3107 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3108 } 3109 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3110 } 3111 3112 /// Clone the instruction for the new pipelined loop and update the 3113 /// memory operands, if needed. 3114 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3115 unsigned CurStageNum, 3116 unsigned InstStageNum) { 3117 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3118 // Check for tied operands in inline asm instructions. This should be handled 3119 // elsewhere, but I'm not sure of the best solution. 3120 if (OldMI->isInlineAsm()) 3121 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3122 const auto &MO = OldMI->getOperand(i); 3123 if (MO.isReg() && MO.isUse()) 3124 break; 3125 unsigned UseIdx; 3126 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3127 NewMI->tieOperands(i, UseIdx); 3128 } 3129 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3130 return NewMI; 3131 } 3132 3133 /// Clone the instruction for the new pipelined loop. If needed, this 3134 /// function updates the instruction using the values saved in the 3135 /// InstrChanges structure. 3136 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3137 unsigned CurStageNum, 3138 unsigned InstStageNum, 3139 SMSchedule &Schedule) { 3140 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3141 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3142 InstrChanges.find(getSUnit(OldMI)); 3143 if (It != InstrChanges.end()) { 3144 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3145 unsigned BasePos, OffsetPos; 3146 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3147 return nullptr; 3148 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3149 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3150 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3151 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3152 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3153 } 3154 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3155 return NewMI; 3156 } 3157 3158 /// Update the machine instruction with new virtual registers. This 3159 /// function may change the defintions and/or uses. 3160 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3161 unsigned CurStageNum, 3162 unsigned InstrStageNum, 3163 SMSchedule &Schedule, 3164 ValueMapTy *VRMap) { 3165 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3166 MachineOperand &MO = NewMI->getOperand(i); 3167 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3168 continue; 3169 unsigned reg = MO.getReg(); 3170 if (MO.isDef()) { 3171 // Create a new virtual register for the definition. 3172 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3173 unsigned NewReg = MRI.createVirtualRegister(RC); 3174 MO.setReg(NewReg); 3175 VRMap[CurStageNum][reg] = NewReg; 3176 if (LastDef) 3177 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3178 } else if (MO.isUse()) { 3179 MachineInstr *Def = MRI.getVRegDef(reg); 3180 // Compute the stage that contains the last definition for instruction. 3181 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3182 unsigned StageNum = CurStageNum; 3183 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3184 // Compute the difference in stages between the defintion and the use. 3185 unsigned StageDiff = (InstrStageNum - DefStageNum); 3186 // Make an adjustment to get the last definition. 3187 StageNum -= StageDiff; 3188 } 3189 if (VRMap[StageNum].count(reg)) 3190 MO.setReg(VRMap[StageNum][reg]); 3191 } 3192 } 3193 } 3194 3195 /// Return the instruction in the loop that defines the register. 3196 /// If the definition is a Phi, then follow the Phi operand to 3197 /// the instruction in the loop. 3198 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3199 SmallPtrSet<MachineInstr *, 8> Visited; 3200 MachineInstr *Def = MRI.getVRegDef(Reg); 3201 while (Def->isPHI()) { 3202 if (!Visited.insert(Def).second) 3203 break; 3204 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3205 if (Def->getOperand(i + 1).getMBB() == BB) { 3206 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3207 break; 3208 } 3209 } 3210 return Def; 3211 } 3212 3213 /// Return the new name for the value from the previous stage. 3214 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3215 unsigned LoopVal, unsigned LoopStage, 3216 ValueMapTy *VRMap, 3217 MachineBasicBlock *BB) { 3218 unsigned PrevVal = 0; 3219 if (StageNum > PhiStage) { 3220 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3221 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3222 // The name is defined in the previous stage. 3223 PrevVal = VRMap[StageNum - 1][LoopVal]; 3224 else if (VRMap[StageNum].count(LoopVal)) 3225 // The previous name is defined in the current stage when the instruction 3226 // order is swapped. 3227 PrevVal = VRMap[StageNum][LoopVal]; 3228 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3229 // The loop value hasn't yet been scheduled. 3230 PrevVal = LoopVal; 3231 else if (StageNum == PhiStage + 1) 3232 // The loop value is another phi, which has not been scheduled. 3233 PrevVal = getInitPhiReg(*LoopInst, BB); 3234 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3235 // The loop value is another phi, which has been scheduled. 3236 PrevVal = 3237 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3238 LoopStage, VRMap, BB); 3239 } 3240 return PrevVal; 3241 } 3242 3243 /// Rewrite the Phi values in the specified block to use the mappings 3244 /// from the initial operand. Once the Phi is scheduled, we switch 3245 /// to using the loop value instead of the Phi value, so those names 3246 /// do not need to be rewritten. 3247 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3248 unsigned StageNum, 3249 SMSchedule &Schedule, 3250 ValueMapTy *VRMap, 3251 InstrMapTy &InstrMap) { 3252 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3253 BBE = BB->getFirstNonPHI(); 3254 BBI != BBE; ++BBI) { 3255 unsigned InitVal = 0; 3256 unsigned LoopVal = 0; 3257 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3258 unsigned PhiDef = BBI->getOperand(0).getReg(); 3259 3260 unsigned PhiStage = 3261 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3262 unsigned LoopStage = 3263 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3264 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3265 if (NumPhis > StageNum) 3266 NumPhis = StageNum; 3267 for (unsigned np = 0; np <= NumPhis; ++np) { 3268 unsigned NewVal = 3269 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3270 if (!NewVal) 3271 NewVal = InitVal; 3272 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3273 PhiDef, NewVal); 3274 } 3275 } 3276 } 3277 3278 /// Rewrite a previously scheduled instruction to use the register value 3279 /// from the new instruction. Make sure the instruction occurs in the 3280 /// basic block, and we don't change the uses in the new instruction. 3281 void SwingSchedulerDAG::rewriteScheduledInstr( 3282 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3283 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3284 unsigned NewReg, unsigned PrevReg) { 3285 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3286 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3287 // Rewrite uses that have been scheduled already to use the new 3288 // Phi register. 3289 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3290 EI = MRI.use_end(); 3291 UI != EI;) { 3292 MachineOperand &UseOp = *UI; 3293 MachineInstr *UseMI = UseOp.getParent(); 3294 ++UI; 3295 if (UseMI->getParent() != BB) 3296 continue; 3297 if (UseMI->isPHI()) { 3298 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3299 continue; 3300 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3301 continue; 3302 } 3303 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3304 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3305 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3306 int StageSched = Schedule.stageScheduled(OrigMISU); 3307 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3308 unsigned ReplaceReg = 0; 3309 // This is the stage for the scheduled instruction. 3310 if (StagePhi == StageSched && Phi->isPHI()) { 3311 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3312 if (PrevReg && InProlog) 3313 ReplaceReg = PrevReg; 3314 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3315 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3316 ReplaceReg = PrevReg; 3317 else 3318 ReplaceReg = NewReg; 3319 } 3320 // The scheduled instruction occurs before the scheduled Phi, and the 3321 // Phi is not loop carried. 3322 if (!InProlog && StagePhi + 1 == StageSched && 3323 !Schedule.isLoopCarried(this, *Phi)) 3324 ReplaceReg = NewReg; 3325 if (StagePhi > StageSched && Phi->isPHI()) 3326 ReplaceReg = NewReg; 3327 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3328 ReplaceReg = NewReg; 3329 if (ReplaceReg) { 3330 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3331 UseOp.setReg(ReplaceReg); 3332 } 3333 } 3334 } 3335 3336 /// Check if we can change the instruction to use an offset value from the 3337 /// previous iteration. If so, return true and set the base and offset values 3338 /// so that we can rewrite the load, if necessary. 3339 /// v1 = Phi(v0, v3) 3340 /// v2 = load v1, 0 3341 /// v3 = post_store v1, 4, x 3342 /// This function enables the load to be rewritten as v2 = load v3, 4. 3343 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3344 unsigned &BasePos, 3345 unsigned &OffsetPos, 3346 unsigned &NewBase, 3347 int64_t &Offset) { 3348 // Get the load instruction. 3349 if (TII->isPostIncrement(*MI)) 3350 return false; 3351 unsigned BasePosLd, OffsetPosLd; 3352 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3353 return false; 3354 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3355 3356 // Look for the Phi instruction. 3357 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3358 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3359 if (!Phi || !Phi->isPHI()) 3360 return false; 3361 // Get the register defined in the loop block. 3362 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3363 if (!PrevReg) 3364 return false; 3365 3366 // Check for the post-increment load/store instruction. 3367 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3368 if (!PrevDef || PrevDef == MI) 3369 return false; 3370 3371 if (!TII->isPostIncrement(*PrevDef)) 3372 return false; 3373 3374 unsigned BasePos1 = 0, OffsetPos1 = 0; 3375 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3376 return false; 3377 3378 // Make sure offset values are both positive or both negative. 3379 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3380 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3381 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3382 return false; 3383 3384 // Set the return value once we determine that we return true. 3385 BasePos = BasePosLd; 3386 OffsetPos = OffsetPosLd; 3387 NewBase = PrevReg; 3388 Offset = StoreOffset; 3389 return true; 3390 } 3391 3392 /// Apply changes to the instruction if needed. The changes are need 3393 /// to improve the scheduling and depend up on the final schedule. 3394 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3395 SMSchedule &Schedule) { 3396 SUnit *SU = getSUnit(MI); 3397 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3398 InstrChanges.find(SU); 3399 if (It != InstrChanges.end()) { 3400 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3401 unsigned BasePos, OffsetPos; 3402 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3403 return; 3404 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3405 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3406 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3407 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3408 int BaseStageNum = Schedule.stageScheduled(SU); 3409 int BaseCycleNum = Schedule.cycleScheduled(SU); 3410 if (BaseStageNum < DefStageNum) { 3411 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3412 int OffsetDiff = DefStageNum - BaseStageNum; 3413 if (DefCycleNum < BaseCycleNum) { 3414 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3415 if (OffsetDiff > 0) 3416 --OffsetDiff; 3417 } 3418 int64_t NewOffset = 3419 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3420 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3421 SU->setInstr(NewMI); 3422 MISUnitMap[NewMI] = SU; 3423 NewMIs.insert(NewMI); 3424 } 3425 } 3426 } 3427 3428 /// Return true for an order dependence that is loop carried potentially. 3429 /// An order dependence is loop carried if the destination defines a value 3430 /// that may be used by the source in a subsequent iteration. 3431 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3432 bool isSucc) { 3433 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3434 return false; 3435 3436 if (!SwpPruneLoopCarried) 3437 return true; 3438 3439 MachineInstr *SI = Source->getInstr(); 3440 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3441 if (!isSucc) 3442 std::swap(SI, DI); 3443 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3444 3445 // Assume ordered loads and stores may have a loop carried dependence. 3446 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3447 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3448 return true; 3449 3450 // Only chain dependences between a load and store can be loop carried. 3451 if (!DI->mayStore() || !SI->mayLoad()) 3452 return false; 3453 3454 unsigned DeltaS, DeltaD; 3455 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3456 return true; 3457 3458 unsigned BaseRegS, BaseRegD; 3459 int64_t OffsetS, OffsetD; 3460 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3461 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3462 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3463 return true; 3464 3465 if (BaseRegS != BaseRegD) 3466 return true; 3467 3468 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3469 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3470 3471 // This is the main test, which checks the offset values and the loop 3472 // increment value to determine if the accesses may be loop carried. 3473 if (OffsetS >= OffsetD) 3474 return OffsetS + AccessSizeS > DeltaS; 3475 else 3476 return OffsetD + AccessSizeD > DeltaD; 3477 3478 return true; 3479 } 3480 3481 void SwingSchedulerDAG::postprocessDAG() { 3482 for (auto &M : Mutations) 3483 M->apply(this); 3484 } 3485 3486 /// Try to schedule the node at the specified StartCycle and continue 3487 /// until the node is schedule or the EndCycle is reached. This function 3488 /// returns true if the node is scheduled. This routine may search either 3489 /// forward or backward for a place to insert the instruction based upon 3490 /// the relative values of StartCycle and EndCycle. 3491 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3492 bool forward = true; 3493 if (StartCycle > EndCycle) 3494 forward = false; 3495 3496 // The terminating condition depends on the direction. 3497 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3498 for (int curCycle = StartCycle; curCycle != termCycle; 3499 forward ? ++curCycle : --curCycle) { 3500 3501 // Add the already scheduled instructions at the specified cycle to the DFA. 3502 Resources->clearResources(); 3503 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3504 checkCycle <= LastCycle; checkCycle += II) { 3505 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3506 3507 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3508 E = cycleInstrs.end(); 3509 I != E; ++I) { 3510 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3511 continue; 3512 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3513 "These instructions have already been scheduled."); 3514 Resources->reserveResources(*(*I)->getInstr()); 3515 } 3516 } 3517 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3518 Resources->canReserveResources(*SU->getInstr())) { 3519 DEBUG({ 3520 dbgs() << "\tinsert at cycle " << curCycle << " "; 3521 SU->getInstr()->dump(); 3522 }); 3523 3524 ScheduledInstrs[curCycle].push_back(SU); 3525 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3526 if (curCycle > LastCycle) 3527 LastCycle = curCycle; 3528 if (curCycle < FirstCycle) 3529 FirstCycle = curCycle; 3530 return true; 3531 } 3532 DEBUG({ 3533 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3534 SU->getInstr()->dump(); 3535 }); 3536 } 3537 return false; 3538 } 3539 3540 // Return the cycle of the earliest scheduled instruction in the chain. 3541 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3542 SmallPtrSet<SUnit *, 8> Visited; 3543 SmallVector<SDep, 8> Worklist; 3544 Worklist.push_back(Dep); 3545 int EarlyCycle = INT_MAX; 3546 while (!Worklist.empty()) { 3547 const SDep &Cur = Worklist.pop_back_val(); 3548 SUnit *PrevSU = Cur.getSUnit(); 3549 if (Visited.count(PrevSU)) 3550 continue; 3551 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3552 if (it == InstrToCycle.end()) 3553 continue; 3554 EarlyCycle = std::min(EarlyCycle, it->second); 3555 for (const auto &PI : PrevSU->Preds) 3556 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3557 Worklist.push_back(PI); 3558 Visited.insert(PrevSU); 3559 } 3560 return EarlyCycle; 3561 } 3562 3563 // Return the cycle of the latest scheduled instruction in the chain. 3564 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3565 SmallPtrSet<SUnit *, 8> Visited; 3566 SmallVector<SDep, 8> Worklist; 3567 Worklist.push_back(Dep); 3568 int LateCycle = INT_MIN; 3569 while (!Worklist.empty()) { 3570 const SDep &Cur = Worklist.pop_back_val(); 3571 SUnit *SuccSU = Cur.getSUnit(); 3572 if (Visited.count(SuccSU)) 3573 continue; 3574 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3575 if (it == InstrToCycle.end()) 3576 continue; 3577 LateCycle = std::max(LateCycle, it->second); 3578 for (const auto &SI : SuccSU->Succs) 3579 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3580 Worklist.push_back(SI); 3581 Visited.insert(SuccSU); 3582 } 3583 return LateCycle; 3584 } 3585 3586 /// If an instruction has a use that spans multiple iterations, then 3587 /// return true. These instructions are characterized by having a back-ege 3588 /// to a Phi, which contains a reference to another Phi. 3589 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3590 for (auto &P : SU->Preds) 3591 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3592 for (auto &S : P.getSUnit()->Succs) 3593 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3594 return P.getSUnit(); 3595 return nullptr; 3596 } 3597 3598 /// Compute the scheduling start slot for the instruction. The start slot 3599 /// depends on any predecessor or successor nodes scheduled already. 3600 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3601 int *MinEnd, int *MaxStart, int II, 3602 SwingSchedulerDAG *DAG) { 3603 // Iterate over each instruction that has been scheduled already. The start 3604 // slot computuation depends on whether the previously scheduled instruction 3605 // is a predecessor or successor of the specified instruction. 3606 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3607 3608 // Iterate over each instruction in the current cycle. 3609 for (SUnit *I : getInstructions(cycle)) { 3610 // Because we're processing a DAG for the dependences, we recognize 3611 // the back-edge in recurrences by anti dependences. 3612 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3613 const SDep &Dep = SU->Preds[i]; 3614 if (Dep.getSUnit() == I) { 3615 if (!DAG->isBackedge(SU, Dep)) { 3616 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3617 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3618 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3619 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3620 int End = earliestCycleInChain(Dep) + (II - 1); 3621 *MinEnd = std::min(*MinEnd, End); 3622 } 3623 } else { 3624 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3625 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3626 *MinLateStart = std::min(*MinLateStart, LateStart); 3627 } 3628 } 3629 // For instruction that requires multiple iterations, make sure that 3630 // the dependent instruction is not scheduled past the definition. 3631 SUnit *BE = multipleIterations(I, DAG); 3632 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3633 !SU->isPred(I)) 3634 *MinLateStart = std::min(*MinLateStart, cycle); 3635 } 3636 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3637 if (SU->Succs[i].getSUnit() == I) { 3638 const SDep &Dep = SU->Succs[i]; 3639 if (!DAG->isBackedge(SU, Dep)) { 3640 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3641 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3642 *MinLateStart = std::min(*MinLateStart, LateStart); 3643 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3644 int Start = latestCycleInChain(Dep) + 1 - II; 3645 *MaxStart = std::max(*MaxStart, Start); 3646 } 3647 } else { 3648 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3649 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3650 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3651 } 3652 } 3653 } 3654 } 3655 } 3656 3657 /// Order the instructions within a cycle so that the definitions occur 3658 /// before the uses. Returns true if the instruction is added to the start 3659 /// of the list, or false if added to the end. 3660 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3661 std::deque<SUnit *> &Insts) { 3662 MachineInstr *MI = SU->getInstr(); 3663 bool OrderBeforeUse = false; 3664 bool OrderAfterDef = false; 3665 bool OrderBeforeDef = false; 3666 unsigned MoveDef = 0; 3667 unsigned MoveUse = 0; 3668 int StageInst1 = stageScheduled(SU); 3669 3670 unsigned Pos = 0; 3671 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3672 ++I, ++Pos) { 3673 // Relative order of Phis does not matter. 3674 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3675 continue; 3676 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3677 MachineOperand &MO = MI->getOperand(i); 3678 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3679 continue; 3680 unsigned Reg = MO.getReg(); 3681 unsigned BasePos, OffsetPos; 3682 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3683 if (MI->getOperand(BasePos).getReg() == Reg) 3684 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3685 Reg = NewReg; 3686 bool Reads, Writes; 3687 std::tie(Reads, Writes) = 3688 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3689 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3690 OrderBeforeUse = true; 3691 MoveUse = Pos; 3692 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3693 // Add the instruction after the scheduled instruction. 3694 OrderAfterDef = true; 3695 MoveDef = Pos; 3696 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3697 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3698 OrderBeforeUse = true; 3699 MoveUse = Pos; 3700 } else { 3701 OrderAfterDef = true; 3702 MoveDef = Pos; 3703 } 3704 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3705 OrderBeforeUse = true; 3706 MoveUse = Pos; 3707 if (MoveUse != 0) { 3708 OrderAfterDef = true; 3709 MoveDef = Pos - 1; 3710 } 3711 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3712 // Add the instruction before the scheduled instruction. 3713 OrderBeforeUse = true; 3714 MoveUse = Pos; 3715 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3716 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3717 OrderBeforeDef = true; 3718 MoveUse = Pos; 3719 } 3720 } 3721 // Check for order dependences between instructions. Make sure the source 3722 // is ordered before the destination. 3723 for (auto &S : SU->Succs) 3724 if (S.getKind() == SDep::Order) { 3725 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3726 OrderBeforeUse = true; 3727 MoveUse = Pos; 3728 } 3729 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3730 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3731 if (S.isAssignedRegDep()) { 3732 OrderAfterDef = true; 3733 MoveDef = Pos; 3734 } 3735 } else { 3736 OrderBeforeUse = true; 3737 MoveUse = Pos; 3738 } 3739 } 3740 for (auto &P : SU->Preds) 3741 if (P.getKind() == SDep::Order) { 3742 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3743 OrderAfterDef = true; 3744 MoveDef = Pos; 3745 } 3746 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3747 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3748 if (P.isAssignedRegDep()) { 3749 OrderBeforeUse = true; 3750 MoveUse = Pos; 3751 } 3752 } else { 3753 OrderAfterDef = true; 3754 MoveDef = Pos; 3755 } 3756 } 3757 } 3758 3759 // A circular dependence. 3760 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3761 OrderBeforeUse = false; 3762 3763 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3764 // to a loop-carried dependence. 3765 if (OrderBeforeDef) 3766 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3767 3768 // The uncommon case when the instruction order needs to be updated because 3769 // there is both a use and def. 3770 if (OrderBeforeUse && OrderAfterDef) { 3771 SUnit *UseSU = Insts.at(MoveUse); 3772 SUnit *DefSU = Insts.at(MoveDef); 3773 if (MoveUse > MoveDef) { 3774 Insts.erase(Insts.begin() + MoveUse); 3775 Insts.erase(Insts.begin() + MoveDef); 3776 } else { 3777 Insts.erase(Insts.begin() + MoveDef); 3778 Insts.erase(Insts.begin() + MoveUse); 3779 } 3780 if (orderDependence(SSD, UseSU, Insts)) { 3781 Insts.push_front(SU); 3782 orderDependence(SSD, DefSU, Insts); 3783 return true; 3784 } 3785 Insts.pop_back(); 3786 Insts.push_back(SU); 3787 Insts.push_back(UseSU); 3788 orderDependence(SSD, DefSU, Insts); 3789 return false; 3790 } 3791 // Put the new instruction first if there is a use in the list. Otherwise, 3792 // put it at the end of the list. 3793 if (OrderBeforeUse) 3794 Insts.push_front(SU); 3795 else 3796 Insts.push_back(SU); 3797 return OrderBeforeUse; 3798 } 3799 3800 /// Return true if the scheduled Phi has a loop carried operand. 3801 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3802 if (!Phi.isPHI()) 3803 return false; 3804 assert(Phi.isPHI() && "Expecing a Phi."); 3805 SUnit *DefSU = SSD->getSUnit(&Phi); 3806 unsigned DefCycle = cycleScheduled(DefSU); 3807 int DefStage = stageScheduled(DefSU); 3808 3809 unsigned InitVal = 0; 3810 unsigned LoopVal = 0; 3811 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3812 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3813 if (!UseSU) 3814 return true; 3815 if (UseSU->getInstr()->isPHI()) 3816 return true; 3817 unsigned LoopCycle = cycleScheduled(UseSU); 3818 int LoopStage = stageScheduled(UseSU); 3819 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3820 } 3821 3822 /// Return true if the instruction is a definition that is loop carried 3823 /// and defines the use on the next iteration. 3824 /// v1 = phi(v2, v3) 3825 /// (Def) v3 = op v1 3826 /// (MO) = v1 3827 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3828 /// register. 3829 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3830 MachineInstr *Def, MachineOperand &MO) { 3831 if (!MO.isReg()) 3832 return false; 3833 if (Def->isPHI()) 3834 return false; 3835 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3836 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3837 return false; 3838 if (!isLoopCarried(SSD, *Phi)) 3839 return false; 3840 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3841 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3842 MachineOperand &DMO = Def->getOperand(i); 3843 if (!DMO.isReg() || !DMO.isDef()) 3844 continue; 3845 if (DMO.getReg() == LoopReg) 3846 return true; 3847 } 3848 return false; 3849 } 3850 3851 // Check if the generated schedule is valid. This function checks if 3852 // an instruction that uses a physical register is scheduled in a 3853 // different stage than the definition. The pipeliner does not handle 3854 // physical register values that may cross a basic block boundary. 3855 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3856 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3857 SUnit &SU = SSD->SUnits[i]; 3858 if (!SU.hasPhysRegDefs) 3859 continue; 3860 int StageDef = stageScheduled(&SU); 3861 assert(StageDef != -1 && "Instruction should have been scheduled."); 3862 for (auto &SI : SU.Succs) 3863 if (SI.isAssignedRegDep()) 3864 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3865 if (stageScheduled(SI.getSUnit()) != StageDef) 3866 return false; 3867 } 3868 return true; 3869 } 3870 3871 /// Attempt to fix the degenerate cases when the instruction serialization 3872 /// causes the register lifetimes to overlap. For example, 3873 /// p' = store_pi(p, b) 3874 /// = load p, offset 3875 /// In this case p and p' overlap, which means that two registers are needed. 3876 /// Instead, this function changes the load to use p' and updates the offset. 3877 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3878 unsigned OverlapReg = 0; 3879 unsigned NewBaseReg = 0; 3880 for (SUnit *SU : Instrs) { 3881 MachineInstr *MI = SU->getInstr(); 3882 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3883 const MachineOperand &MO = MI->getOperand(i); 3884 // Look for an instruction that uses p. The instruction occurs in the 3885 // same cycle but occurs later in the serialized order. 3886 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3887 // Check that the instruction appears in the InstrChanges structure, 3888 // which contains instructions that can have the offset updated. 3889 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3890 InstrChanges.find(SU); 3891 if (It != InstrChanges.end()) { 3892 unsigned BasePos, OffsetPos; 3893 // Update the base register and adjust the offset. 3894 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3895 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3896 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3897 int64_t NewOffset = 3898 MI->getOperand(OffsetPos).getImm() - It->second.second; 3899 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3900 SU->setInstr(NewMI); 3901 MISUnitMap[NewMI] = SU; 3902 NewMIs.insert(NewMI); 3903 } 3904 } 3905 OverlapReg = 0; 3906 NewBaseReg = 0; 3907 break; 3908 } 3909 // Look for an instruction of the form p' = op(p), which uses and defines 3910 // two virtual registers that get allocated to the same physical register. 3911 unsigned TiedUseIdx = 0; 3912 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3913 // OverlapReg is p in the example above. 3914 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3915 // NewBaseReg is p' in the example above. 3916 NewBaseReg = MI->getOperand(i).getReg(); 3917 break; 3918 } 3919 } 3920 } 3921 } 3922 3923 /// After the schedule has been formed, call this function to combine 3924 /// the instructions from the different stages/cycles. That is, this 3925 /// function creates a schedule that represents a single iteration. 3926 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3927 // Move all instructions to the first stage from later stages. 3928 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3929 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3930 ++stage) { 3931 std::deque<SUnit *> &cycleInstrs = 3932 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3933 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3934 E = cycleInstrs.rend(); 3935 I != E; ++I) 3936 ScheduledInstrs[cycle].push_front(*I); 3937 } 3938 } 3939 // Iterate over the definitions in each instruction, and compute the 3940 // stage difference for each use. Keep the maximum value. 3941 for (auto &I : InstrToCycle) { 3942 int DefStage = stageScheduled(I.first); 3943 MachineInstr *MI = I.first->getInstr(); 3944 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3945 MachineOperand &Op = MI->getOperand(i); 3946 if (!Op.isReg() || !Op.isDef()) 3947 continue; 3948 3949 unsigned Reg = Op.getReg(); 3950 unsigned MaxDiff = 0; 3951 bool PhiIsSwapped = false; 3952 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3953 EI = MRI.use_end(); 3954 UI != EI; ++UI) { 3955 MachineOperand &UseOp = *UI; 3956 MachineInstr *UseMI = UseOp.getParent(); 3957 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3958 int UseStage = stageScheduled(SUnitUse); 3959 unsigned Diff = 0; 3960 if (UseStage != -1 && UseStage >= DefStage) 3961 Diff = UseStage - DefStage; 3962 if (MI->isPHI()) { 3963 if (isLoopCarried(SSD, *MI)) 3964 ++Diff; 3965 else 3966 PhiIsSwapped = true; 3967 } 3968 MaxDiff = std::max(Diff, MaxDiff); 3969 } 3970 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3971 } 3972 } 3973 3974 // Erase all the elements in the later stages. Only one iteration should 3975 // remain in the scheduled list, and it contains all the instructions. 3976 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3977 ScheduledInstrs.erase(cycle); 3978 3979 // Change the registers in instruction as specified in the InstrChanges 3980 // map. We need to use the new registers to create the correct order. 3981 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3982 SUnit *SU = &SSD->SUnits[i]; 3983 SSD->applyInstrChange(SU->getInstr(), *this); 3984 } 3985 3986 // Reorder the instructions in each cycle to fix and improve the 3987 // generated code. 3988 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3989 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3990 std::deque<SUnit *> newOrderZC; 3991 // Put the zero-cost, pseudo instructions at the start of the cycle. 3992 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3993 SUnit *SU = cycleInstrs[i]; 3994 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3995 orderDependence(SSD, SU, newOrderZC); 3996 } 3997 std::deque<SUnit *> newOrderI; 3998 // Then, add the regular instructions back. 3999 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4000 SUnit *SU = cycleInstrs[i]; 4001 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 4002 orderDependence(SSD, SU, newOrderI); 4003 } 4004 // Replace the old order with the new order. 4005 cycleInstrs.swap(newOrderZC); 4006 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4007 SSD->fixupRegisterOverlaps(cycleInstrs); 4008 } 4009 4010 DEBUG(dump();); 4011 } 4012 4013 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4014 /// Print the schedule information to the given output. 4015 void SMSchedule::print(raw_ostream &os) const { 4016 // Iterate over each cycle. 4017 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4018 // Iterate over each instruction in the cycle. 4019 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4020 for (SUnit *CI : cycleInstrs->second) { 4021 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4022 os << "(" << CI->NodeNum << ") "; 4023 CI->getInstr()->print(os); 4024 os << "\n"; 4025 } 4026 } 4027 } 4028 4029 /// Utility function used for debugging to print the schedule. 4030 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4031 #endif 4032