1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 221 TII = MF->getSubtarget().getInstrInfo(); 222 RegClassInfo.runOnMachineFunction(*MF); 223 224 for (auto &L : *MLI) 225 scheduleLoop(*L); 226 227 return false; 228 } 229 230 /// Attempt to perform the SMS algorithm on the specified loop. This function is 231 /// the main entry point for the algorithm. The function identifies candidate 232 /// loops, calculates the minimum initiation interval, and attempts to schedule 233 /// the loop. 234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 235 bool Changed = false; 236 for (auto &InnerLoop : L) 237 Changed |= scheduleLoop(*InnerLoop); 238 239 #ifndef NDEBUG 240 // Stop trying after reaching the limit (if any). 241 int Limit = SwpLoopLimit; 242 if (Limit >= 0) { 243 if (NumTries >= SwpLoopLimit) 244 return Changed; 245 NumTries++; 246 } 247 #endif 248 249 setPragmaPipelineOptions(L); 250 if (!canPipelineLoop(L)) { 251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 252 ORE->emit([&]() { 253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 254 L.getStartLoc(), L.getHeader()) 255 << "Failed to pipeline loop"; 256 }); 257 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 272 MachineBasicBlock *LBLK = L.getTopBlock(); 273 274 if (LBLK == nullptr) 275 return; 276 277 const BasicBlock *BBLK = LBLK->getBasicBlock(); 278 if (BBLK == nullptr) 279 return; 280 281 const Instruction *TI = BBLK->getTerminator(); 282 if (TI == nullptr) 283 return; 284 285 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 286 if (LoopID == nullptr) 287 return; 288 289 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 290 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 291 292 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 293 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 294 295 if (MD == nullptr) 296 continue; 297 298 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 299 300 if (S == nullptr) 301 continue; 302 303 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 304 assert(MD->getNumOperands() == 2 && 305 "Pipeline initiation interval hint metadata should have two operands."); 306 II_setByPragma = 307 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 308 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 309 } else if (S->getString() == "llvm.loop.pipeline.disable") { 310 disabledByPragma = true; 311 } 312 } 313 } 314 315 /// Return true if the loop can be software pipelined. The algorithm is 316 /// restricted to loops with a single basic block. Make sure that the 317 /// branch in the loop can be analyzed. 318 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 319 if (L.getNumBlocks() != 1) { 320 ORE->emit([&]() { 321 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 322 L.getStartLoc(), L.getHeader()) 323 << "Not a single basic block: " 324 << ore::NV("NumBlocks", L.getNumBlocks()); 325 }); 326 return false; 327 } 328 329 if (disabledByPragma) { 330 ORE->emit([&]() { 331 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 332 L.getStartLoc(), L.getHeader()) 333 << "Disabled by Pragma."; 334 }); 335 return false; 336 } 337 338 // Check if the branch can't be understood because we can't do pipelining 339 // if that's the case. 340 LI.TBB = nullptr; 341 LI.FBB = nullptr; 342 LI.BrCond.clear(); 343 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 344 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 345 NumFailBranch++; 346 ORE->emit([&]() { 347 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 348 L.getStartLoc(), L.getHeader()) 349 << "The branch can't be understood"; 350 }); 351 return false; 352 } 353 354 LI.LoopInductionVar = nullptr; 355 LI.LoopCompare = nullptr; 356 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 357 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 358 NumFailLoop++; 359 ORE->emit([&]() { 360 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 361 L.getStartLoc(), L.getHeader()) 362 << "The loop structure is not supported"; 363 }); 364 return false; 365 } 366 367 if (!L.getLoopPreheader()) { 368 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 369 NumFailPreheader++; 370 ORE->emit([&]() { 371 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 372 L.getStartLoc(), L.getHeader()) 373 << "No loop preheader found"; 374 }); 375 return false; 376 } 377 378 // Remove any subregisters from inputs to phi nodes. 379 preprocessPhiNodes(*L.getHeader()); 380 return true; 381 } 382 383 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 384 MachineRegisterInfo &MRI = MF->getRegInfo(); 385 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 386 387 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 388 MachineOperand &DefOp = PI.getOperand(0); 389 assert(DefOp.getSubReg() == 0); 390 auto *RC = MRI.getRegClass(DefOp.getReg()); 391 392 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 393 MachineOperand &RegOp = PI.getOperand(i); 394 if (RegOp.getSubReg() == 0) 395 continue; 396 397 // If the operand uses a subregister, replace it with a new register 398 // without subregisters, and generate a copy to the new register. 399 Register NewReg = MRI.createVirtualRegister(RC); 400 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 401 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 402 const DebugLoc &DL = PredB.findDebugLoc(At); 403 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 404 .addReg(RegOp.getReg(), getRegState(RegOp), 405 RegOp.getSubReg()); 406 Slots.insertMachineInstrInMaps(*Copy); 407 RegOp.setReg(NewReg); 408 RegOp.setSubReg(0); 409 } 410 } 411 } 412 413 /// The SMS algorithm consists of the following main steps: 414 /// 1. Computation and analysis of the dependence graph. 415 /// 2. Ordering of the nodes (instructions). 416 /// 3. Attempt to Schedule the loop. 417 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 418 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 419 420 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 421 II_setByPragma); 422 423 MachineBasicBlock *MBB = L.getHeader(); 424 // The kernel should not include any terminator instructions. These 425 // will be added back later. 426 SMS.startBlock(MBB); 427 428 // Compute the number of 'real' instructions in the basic block by 429 // ignoring terminators. 430 unsigned size = MBB->size(); 431 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 432 E = MBB->instr_end(); 433 I != E; ++I, --size) 434 ; 435 436 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 437 SMS.schedule(); 438 SMS.exitRegion(); 439 440 SMS.finishBlock(); 441 return SMS.hasNewSchedule(); 442 } 443 444 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 445 if (II_setByPragma > 0) 446 MII = II_setByPragma; 447 else 448 MII = std::max(ResMII, RecMII); 449 } 450 451 void SwingSchedulerDAG::setMAX_II() { 452 if (II_setByPragma > 0) 453 MAX_II = II_setByPragma; 454 else 455 MAX_II = MII + 10; 456 } 457 458 /// We override the schedule function in ScheduleDAGInstrs to implement the 459 /// scheduling part of the Swing Modulo Scheduling algorithm. 460 void SwingSchedulerDAG::schedule() { 461 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 462 buildSchedGraph(AA); 463 addLoopCarriedDependences(AA); 464 updatePhiDependences(); 465 Topo.InitDAGTopologicalSorting(); 466 changeDependences(); 467 postprocessDAG(); 468 LLVM_DEBUG(dump()); 469 470 NodeSetType NodeSets; 471 findCircuits(NodeSets); 472 NodeSetType Circuits = NodeSets; 473 474 // Calculate the MII. 475 unsigned ResMII = calculateResMII(); 476 unsigned RecMII = calculateRecMII(NodeSets); 477 478 fuseRecs(NodeSets); 479 480 // This flag is used for testing and can cause correctness problems. 481 if (SwpIgnoreRecMII) 482 RecMII = 0; 483 484 setMII(ResMII, RecMII); 485 setMAX_II(); 486 487 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 488 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 489 490 // Can't schedule a loop without a valid MII. 491 if (MII == 0) { 492 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 493 NumFailZeroMII++; 494 Pass.ORE->emit([&]() { 495 return MachineOptimizationRemarkAnalysis( 496 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 497 << "Invalid Minimal Initiation Interval: 0"; 498 }); 499 return; 500 } 501 502 // Don't pipeline large loops. 503 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 504 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 505 << ", we don't pipleline large loops\n"); 506 NumFailLargeMaxMII++; 507 Pass.ORE->emit([&]() { 508 return MachineOptimizationRemarkAnalysis( 509 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 510 << "Minimal Initiation Interval too large: " 511 << ore::NV("MII", (int)MII) << " > " 512 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 513 << "Refer to -pipeliner-max-mii."; 514 }); 515 return; 516 } 517 518 computeNodeFunctions(NodeSets); 519 520 registerPressureFilter(NodeSets); 521 522 colocateNodeSets(NodeSets); 523 524 checkNodeSets(NodeSets); 525 526 LLVM_DEBUG({ 527 for (auto &I : NodeSets) { 528 dbgs() << " Rec NodeSet "; 529 I.dump(); 530 } 531 }); 532 533 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 534 535 groupRemainingNodes(NodeSets); 536 537 removeDuplicateNodes(NodeSets); 538 539 LLVM_DEBUG({ 540 for (auto &I : NodeSets) { 541 dbgs() << " NodeSet "; 542 I.dump(); 543 } 544 }); 545 546 computeNodeOrder(NodeSets); 547 548 // check for node order issues 549 checkValidNodeOrder(Circuits); 550 551 SMSchedule Schedule(Pass.MF); 552 Scheduled = schedulePipeline(Schedule); 553 554 if (!Scheduled){ 555 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 556 NumFailNoSchedule++; 557 Pass.ORE->emit([&]() { 558 return MachineOptimizationRemarkAnalysis( 559 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 560 << "Unable to find schedule"; 561 }); 562 return; 563 } 564 565 unsigned numStages = Schedule.getMaxStageCount(); 566 // No need to generate pipeline if there are no overlapped iterations. 567 if (numStages == 0) { 568 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 569 NumFailZeroStage++; 570 Pass.ORE->emit([&]() { 571 return MachineOptimizationRemarkAnalysis( 572 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 573 << "No need to pipeline - no overlapped iterations in schedule."; 574 }); 575 return; 576 } 577 // Check that the maximum stage count is less than user-defined limit. 578 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 579 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 580 << " : too many stages, abort\n"); 581 NumFailLargeMaxStage++; 582 Pass.ORE->emit([&]() { 583 return MachineOptimizationRemarkAnalysis( 584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 585 << "Too many stages in schedule: " 586 << ore::NV("numStages", (int)numStages) << " > " 587 << ore::NV("SwpMaxStages", SwpMaxStages) 588 << ". Refer to -pipeliner-max-stages."; 589 }); 590 return; 591 } 592 593 Pass.ORE->emit([&]() { 594 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 595 Loop.getHeader()) 596 << "Pipelined succesfully!"; 597 }); 598 599 // Generate the schedule as a ModuloSchedule. 600 DenseMap<MachineInstr *, int> Cycles, Stages; 601 std::vector<MachineInstr *> OrderedInsts; 602 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 603 ++Cycle) { 604 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 605 OrderedInsts.push_back(SU->getInstr()); 606 Cycles[SU->getInstr()] = Cycle; 607 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 608 } 609 } 610 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 611 for (auto &KV : NewMIs) { 612 Cycles[KV.first] = Cycles[KV.second]; 613 Stages[KV.first] = Stages[KV.second]; 614 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 615 } 616 617 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 618 std::move(Stages)); 619 if (EmitTestAnnotations) { 620 assert(NewInstrChanges.empty() && 621 "Cannot serialize a schedule with InstrChanges!"); 622 ModuloScheduleTestAnnotater MSTI(MF, MS); 623 MSTI.annotate(); 624 return; 625 } 626 // The experimental code generator can't work if there are InstChanges. 627 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 628 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 629 MSE.expand(); 630 } else { 631 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 632 MSE.expand(); 633 MSE.cleanup(); 634 } 635 ++NumPipelined; 636 } 637 638 /// Clean up after the software pipeliner runs. 639 void SwingSchedulerDAG::finishBlock() { 640 for (auto &KV : NewMIs) 641 MF.DeleteMachineInstr(KV.second); 642 NewMIs.clear(); 643 644 // Call the superclass. 645 ScheduleDAGInstrs::finishBlock(); 646 } 647 648 /// Return the register values for the operands of a Phi instruction. 649 /// This function assume the instruction is a Phi. 650 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 651 unsigned &InitVal, unsigned &LoopVal) { 652 assert(Phi.isPHI() && "Expecting a Phi."); 653 654 InitVal = 0; 655 LoopVal = 0; 656 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 657 if (Phi.getOperand(i + 1).getMBB() != Loop) 658 InitVal = Phi.getOperand(i).getReg(); 659 else 660 LoopVal = Phi.getOperand(i).getReg(); 661 662 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 663 } 664 665 /// Return the Phi register value that comes the loop block. 666 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 669 return Phi.getOperand(i).getReg(); 670 return 0; 671 } 672 673 /// Return true if SUb can be reached from SUa following the chain edges. 674 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 675 SmallPtrSet<SUnit *, 8> Visited; 676 SmallVector<SUnit *, 8> Worklist; 677 Worklist.push_back(SUa); 678 while (!Worklist.empty()) { 679 const SUnit *SU = Worklist.pop_back_val(); 680 for (auto &SI : SU->Succs) { 681 SUnit *SuccSU = SI.getSUnit(); 682 if (SI.getKind() == SDep::Order) { 683 if (Visited.count(SuccSU)) 684 continue; 685 if (SuccSU == SUb) 686 return true; 687 Worklist.push_back(SuccSU); 688 Visited.insert(SuccSU); 689 } 690 } 691 } 692 return false; 693 } 694 695 /// Return true if the instruction causes a chain between memory 696 /// references before and after it. 697 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 698 return MI.isCall() || MI.mayRaiseFPException() || 699 MI.hasUnmodeledSideEffects() || 700 (MI.hasOrderedMemoryRef() && 701 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 702 } 703 704 /// Return the underlying objects for the memory references of an instruction. 705 /// This function calls the code in ValueTracking, but first checks that the 706 /// instruction has a memory operand. 707 static void getUnderlyingObjects(const MachineInstr *MI, 708 SmallVectorImpl<const Value *> &Objs) { 709 if (!MI->hasOneMemOperand()) 710 return; 711 MachineMemOperand *MM = *MI->memoperands_begin(); 712 if (!MM->getValue()) 713 return; 714 getUnderlyingObjects(MM->getValue(), Objs); 715 for (const Value *V : Objs) { 716 if (!isIdentifiedObject(V)) { 717 Objs.clear(); 718 return; 719 } 720 Objs.push_back(V); 721 } 722 } 723 724 /// Add a chain edge between a load and store if the store can be an 725 /// alias of the load on a subsequent iteration, i.e., a loop carried 726 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 727 /// but that code doesn't create loop carried dependences. 728 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 729 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 730 Value *UnknownValue = 731 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 732 for (auto &SU : SUnits) { 733 MachineInstr &MI = *SU.getInstr(); 734 if (isDependenceBarrier(MI, AA)) 735 PendingLoads.clear(); 736 else if (MI.mayLoad()) { 737 SmallVector<const Value *, 4> Objs; 738 ::getUnderlyingObjects(&MI, Objs); 739 if (Objs.empty()) 740 Objs.push_back(UnknownValue); 741 for (auto V : Objs) { 742 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 743 SUs.push_back(&SU); 744 } 745 } else if (MI.mayStore()) { 746 SmallVector<const Value *, 4> Objs; 747 ::getUnderlyingObjects(&MI, Objs); 748 if (Objs.empty()) 749 Objs.push_back(UnknownValue); 750 for (auto V : Objs) { 751 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 752 PendingLoads.find(V); 753 if (I == PendingLoads.end()) 754 continue; 755 for (auto Load : I->second) { 756 if (isSuccOrder(Load, &SU)) 757 continue; 758 MachineInstr &LdMI = *Load->getInstr(); 759 // First, perform the cheaper check that compares the base register. 760 // If they are the same and the load offset is less than the store 761 // offset, then mark the dependence as loop carried potentially. 762 const MachineOperand *BaseOp1, *BaseOp2; 763 int64_t Offset1, Offset2; 764 bool Offset1IsScalable, Offset2IsScalable; 765 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 766 Offset1IsScalable, TRI) && 767 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 768 Offset2IsScalable, TRI)) { 769 if (BaseOp1->isIdenticalTo(*BaseOp2) && 770 Offset1IsScalable == Offset2IsScalable && 771 (int)Offset1 < (int)Offset2) { 772 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 773 "What happened to the chain edge?"); 774 SDep Dep(Load, SDep::Barrier); 775 Dep.setLatency(1); 776 SU.addPred(Dep); 777 continue; 778 } 779 } 780 // Second, the more expensive check that uses alias analysis on the 781 // base registers. If they alias, and the load offset is less than 782 // the store offset, the mark the dependence as loop carried. 783 if (!AA) { 784 SDep Dep(Load, SDep::Barrier); 785 Dep.setLatency(1); 786 SU.addPred(Dep); 787 continue; 788 } 789 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 790 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 791 if (!MMO1->getValue() || !MMO2->getValue()) { 792 SDep Dep(Load, SDep::Barrier); 793 Dep.setLatency(1); 794 SU.addPred(Dep); 795 continue; 796 } 797 if (MMO1->getValue() == MMO2->getValue() && 798 MMO1->getOffset() <= MMO2->getOffset()) { 799 SDep Dep(Load, SDep::Barrier); 800 Dep.setLatency(1); 801 SU.addPred(Dep); 802 continue; 803 } 804 AliasResult AAResult = AA->alias( 805 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 806 MMO1->getAAInfo()), 807 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 808 MMO2->getAAInfo())); 809 810 if (AAResult != NoAlias) { 811 SDep Dep(Load, SDep::Barrier); 812 Dep.setLatency(1); 813 SU.addPred(Dep); 814 } 815 } 816 } 817 } 818 } 819 } 820 821 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 822 /// processes dependences for PHIs. This function adds true dependences 823 /// from a PHI to a use, and a loop carried dependence from the use to the 824 /// PHI. The loop carried dependence is represented as an anti dependence 825 /// edge. This function also removes chain dependences between unrelated 826 /// PHIs. 827 void SwingSchedulerDAG::updatePhiDependences() { 828 SmallVector<SDep, 4> RemoveDeps; 829 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 830 831 // Iterate over each DAG node. 832 for (SUnit &I : SUnits) { 833 RemoveDeps.clear(); 834 // Set to true if the instruction has an operand defined by a Phi. 835 unsigned HasPhiUse = 0; 836 unsigned HasPhiDef = 0; 837 MachineInstr *MI = I.getInstr(); 838 // Iterate over each operand, and we process the definitions. 839 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 840 MOE = MI->operands_end(); 841 MOI != MOE; ++MOI) { 842 if (!MOI->isReg()) 843 continue; 844 Register Reg = MOI->getReg(); 845 if (MOI->isDef()) { 846 // If the register is used by a Phi, then create an anti dependence. 847 for (MachineRegisterInfo::use_instr_iterator 848 UI = MRI.use_instr_begin(Reg), 849 UE = MRI.use_instr_end(); 850 UI != UE; ++UI) { 851 MachineInstr *UseMI = &*UI; 852 SUnit *SU = getSUnit(UseMI); 853 if (SU != nullptr && UseMI->isPHI()) { 854 if (!MI->isPHI()) { 855 SDep Dep(SU, SDep::Anti, Reg); 856 Dep.setLatency(1); 857 I.addPred(Dep); 858 } else { 859 HasPhiDef = Reg; 860 // Add a chain edge to a dependent Phi that isn't an existing 861 // predecessor. 862 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 863 I.addPred(SDep(SU, SDep::Barrier)); 864 } 865 } 866 } 867 } else if (MOI->isUse()) { 868 // If the register is defined by a Phi, then create a true dependence. 869 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 870 if (DefMI == nullptr) 871 continue; 872 SUnit *SU = getSUnit(DefMI); 873 if (SU != nullptr && DefMI->isPHI()) { 874 if (!MI->isPHI()) { 875 SDep Dep(SU, SDep::Data, Reg); 876 Dep.setLatency(0); 877 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 878 I.addPred(Dep); 879 } else { 880 HasPhiUse = Reg; 881 // Add a chain edge to a dependent Phi that isn't an existing 882 // predecessor. 883 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 884 I.addPred(SDep(SU, SDep::Barrier)); 885 } 886 } 887 } 888 } 889 // Remove order dependences from an unrelated Phi. 890 if (!SwpPruneDeps) 891 continue; 892 for (auto &PI : I.Preds) { 893 MachineInstr *PMI = PI.getSUnit()->getInstr(); 894 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 895 if (I.getInstr()->isPHI()) { 896 if (PMI->getOperand(0).getReg() == HasPhiUse) 897 continue; 898 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 899 continue; 900 } 901 RemoveDeps.push_back(PI); 902 } 903 } 904 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 905 I.removePred(RemoveDeps[i]); 906 } 907 } 908 909 /// Iterate over each DAG node and see if we can change any dependences 910 /// in order to reduce the recurrence MII. 911 void SwingSchedulerDAG::changeDependences() { 912 // See if an instruction can use a value from the previous iteration. 913 // If so, we update the base and offset of the instruction and change 914 // the dependences. 915 for (SUnit &I : SUnits) { 916 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 917 int64_t NewOffset = 0; 918 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 919 NewOffset)) 920 continue; 921 922 // Get the MI and SUnit for the instruction that defines the original base. 923 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 924 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 925 if (!DefMI) 926 continue; 927 SUnit *DefSU = getSUnit(DefMI); 928 if (!DefSU) 929 continue; 930 // Get the MI and SUnit for the instruction that defins the new base. 931 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 932 if (!LastMI) 933 continue; 934 SUnit *LastSU = getSUnit(LastMI); 935 if (!LastSU) 936 continue; 937 938 if (Topo.IsReachable(&I, LastSU)) 939 continue; 940 941 // Remove the dependence. The value now depends on a prior iteration. 942 SmallVector<SDep, 4> Deps; 943 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 944 ++P) 945 if (P->getSUnit() == DefSU) 946 Deps.push_back(*P); 947 for (int i = 0, e = Deps.size(); i != e; i++) { 948 Topo.RemovePred(&I, Deps[i].getSUnit()); 949 I.removePred(Deps[i]); 950 } 951 // Remove the chain dependence between the instructions. 952 Deps.clear(); 953 for (auto &P : LastSU->Preds) 954 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 955 Deps.push_back(P); 956 for (int i = 0, e = Deps.size(); i != e; i++) { 957 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 958 LastSU->removePred(Deps[i]); 959 } 960 961 // Add a dependence between the new instruction and the instruction 962 // that defines the new base. 963 SDep Dep(&I, SDep::Anti, NewBase); 964 Topo.AddPred(LastSU, &I); 965 LastSU->addPred(Dep); 966 967 // Remember the base and offset information so that we can update the 968 // instruction during code generation. 969 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 970 } 971 } 972 973 namespace { 974 975 // FuncUnitSorter - Comparison operator used to sort instructions by 976 // the number of functional unit choices. 977 struct FuncUnitSorter { 978 const InstrItineraryData *InstrItins; 979 const MCSubtargetInfo *STI; 980 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 981 982 FuncUnitSorter(const TargetSubtargetInfo &TSI) 983 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 984 985 // Compute the number of functional unit alternatives needed 986 // at each stage, and take the minimum value. We prioritize the 987 // instructions by the least number of choices first. 988 unsigned minFuncUnits(const MachineInstr *Inst, 989 InstrStage::FuncUnits &F) const { 990 unsigned SchedClass = Inst->getDesc().getSchedClass(); 991 unsigned min = UINT_MAX; 992 if (InstrItins && !InstrItins->isEmpty()) { 993 for (const InstrStage &IS : 994 make_range(InstrItins->beginStage(SchedClass), 995 InstrItins->endStage(SchedClass))) { 996 InstrStage::FuncUnits funcUnits = IS.getUnits(); 997 unsigned numAlternatives = countPopulation(funcUnits); 998 if (numAlternatives < min) { 999 min = numAlternatives; 1000 F = funcUnits; 1001 } 1002 } 1003 return min; 1004 } 1005 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1006 const MCSchedClassDesc *SCDesc = 1007 STI->getSchedModel().getSchedClassDesc(SchedClass); 1008 if (!SCDesc->isValid()) 1009 // No valid Schedule Class Desc for schedClass, should be 1010 // Pseudo/PostRAPseudo 1011 return min; 1012 1013 for (const MCWriteProcResEntry &PRE : 1014 make_range(STI->getWriteProcResBegin(SCDesc), 1015 STI->getWriteProcResEnd(SCDesc))) { 1016 if (!PRE.Cycles) 1017 continue; 1018 const MCProcResourceDesc *ProcResource = 1019 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1020 unsigned NumUnits = ProcResource->NumUnits; 1021 if (NumUnits < min) { 1022 min = NumUnits; 1023 F = PRE.ProcResourceIdx; 1024 } 1025 } 1026 return min; 1027 } 1028 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1029 } 1030 1031 // Compute the critical resources needed by the instruction. This 1032 // function records the functional units needed by instructions that 1033 // must use only one functional unit. We use this as a tie breaker 1034 // for computing the resource MII. The instrutions that require 1035 // the same, highly used, functional unit have high priority. 1036 void calcCriticalResources(MachineInstr &MI) { 1037 unsigned SchedClass = MI.getDesc().getSchedClass(); 1038 if (InstrItins && !InstrItins->isEmpty()) { 1039 for (const InstrStage &IS : 1040 make_range(InstrItins->beginStage(SchedClass), 1041 InstrItins->endStage(SchedClass))) { 1042 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1043 if (countPopulation(FuncUnits) == 1) 1044 Resources[FuncUnits]++; 1045 } 1046 return; 1047 } 1048 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1049 const MCSchedClassDesc *SCDesc = 1050 STI->getSchedModel().getSchedClassDesc(SchedClass); 1051 if (!SCDesc->isValid()) 1052 // No valid Schedule Class Desc for schedClass, should be 1053 // Pseudo/PostRAPseudo 1054 return; 1055 1056 for (const MCWriteProcResEntry &PRE : 1057 make_range(STI->getWriteProcResBegin(SCDesc), 1058 STI->getWriteProcResEnd(SCDesc))) { 1059 if (!PRE.Cycles) 1060 continue; 1061 Resources[PRE.ProcResourceIdx]++; 1062 } 1063 return; 1064 } 1065 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1066 } 1067 1068 /// Return true if IS1 has less priority than IS2. 1069 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1070 InstrStage::FuncUnits F1 = 0, F2 = 0; 1071 unsigned MFUs1 = minFuncUnits(IS1, F1); 1072 unsigned MFUs2 = minFuncUnits(IS2, F2); 1073 if (MFUs1 == MFUs2) 1074 return Resources.lookup(F1) < Resources.lookup(F2); 1075 return MFUs1 > MFUs2; 1076 } 1077 }; 1078 1079 } // end anonymous namespace 1080 1081 /// Calculate the resource constrained minimum initiation interval for the 1082 /// specified loop. We use the DFA to model the resources needed for 1083 /// each instruction, and we ignore dependences. A different DFA is created 1084 /// for each cycle that is required. When adding a new instruction, we attempt 1085 /// to add it to each existing DFA, until a legal space is found. If the 1086 /// instruction cannot be reserved in an existing DFA, we create a new one. 1087 unsigned SwingSchedulerDAG::calculateResMII() { 1088 1089 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1090 SmallVector<ResourceManager*, 8> Resources; 1091 MachineBasicBlock *MBB = Loop.getHeader(); 1092 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1093 1094 // Sort the instructions by the number of available choices for scheduling, 1095 // least to most. Use the number of critical resources as the tie breaker. 1096 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1097 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1098 E = MBB->getFirstTerminator(); 1099 I != E; ++I) 1100 FUS.calcCriticalResources(*I); 1101 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1102 FuncUnitOrder(FUS); 1103 1104 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1105 E = MBB->getFirstTerminator(); 1106 I != E; ++I) 1107 FuncUnitOrder.push(&*I); 1108 1109 while (!FuncUnitOrder.empty()) { 1110 MachineInstr *MI = FuncUnitOrder.top(); 1111 FuncUnitOrder.pop(); 1112 if (TII->isZeroCost(MI->getOpcode())) 1113 continue; 1114 // Attempt to reserve the instruction in an existing DFA. At least one 1115 // DFA is needed for each cycle. 1116 unsigned NumCycles = getSUnit(MI)->Latency; 1117 unsigned ReservedCycles = 0; 1118 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1119 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1120 LLVM_DEBUG({ 1121 dbgs() << "Trying to reserve resource for " << NumCycles 1122 << " cycles for \n"; 1123 MI->dump(); 1124 }); 1125 for (unsigned C = 0; C < NumCycles; ++C) 1126 while (RI != RE) { 1127 if ((*RI)->canReserveResources(*MI)) { 1128 (*RI)->reserveResources(*MI); 1129 ++ReservedCycles; 1130 break; 1131 } 1132 RI++; 1133 } 1134 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1135 << ", NumCycles:" << NumCycles << "\n"); 1136 // Add new DFAs, if needed, to reserve resources. 1137 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1138 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1139 << "NewResource created to reserve resources" 1140 << "\n"); 1141 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1142 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1143 NewResource->reserveResources(*MI); 1144 Resources.push_back(NewResource); 1145 } 1146 } 1147 int Resmii = Resources.size(); 1148 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1149 // Delete the memory for each of the DFAs that were created earlier. 1150 for (ResourceManager *RI : Resources) { 1151 ResourceManager *D = RI; 1152 delete D; 1153 } 1154 Resources.clear(); 1155 return Resmii; 1156 } 1157 1158 /// Calculate the recurrence-constrainted minimum initiation interval. 1159 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1160 /// for each circuit. The II needs to satisfy the inequality 1161 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1162 /// II that satisfies the inequality, and the RecMII is the maximum 1163 /// of those values. 1164 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1165 unsigned RecMII = 0; 1166 1167 for (NodeSet &Nodes : NodeSets) { 1168 if (Nodes.empty()) 1169 continue; 1170 1171 unsigned Delay = Nodes.getLatency(); 1172 unsigned Distance = 1; 1173 1174 // ii = ceil(delay / distance) 1175 unsigned CurMII = (Delay + Distance - 1) / Distance; 1176 Nodes.setRecMII(CurMII); 1177 if (CurMII > RecMII) 1178 RecMII = CurMII; 1179 } 1180 1181 return RecMII; 1182 } 1183 1184 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1185 /// but we do this to find the circuits, and then change them back. 1186 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1187 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1188 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1189 SUnit *SU = &SUnits[i]; 1190 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1191 IP != EP; ++IP) { 1192 if (IP->getKind() != SDep::Anti) 1193 continue; 1194 DepsAdded.push_back(std::make_pair(SU, *IP)); 1195 } 1196 } 1197 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1198 E = DepsAdded.end(); 1199 I != E; ++I) { 1200 // Remove this anti dependency and add one in the reverse direction. 1201 SUnit *SU = I->first; 1202 SDep &D = I->second; 1203 SUnit *TargetSU = D.getSUnit(); 1204 unsigned Reg = D.getReg(); 1205 unsigned Lat = D.getLatency(); 1206 SU->removePred(D); 1207 SDep Dep(SU, SDep::Anti, Reg); 1208 Dep.setLatency(Lat); 1209 TargetSU->addPred(Dep); 1210 } 1211 } 1212 1213 /// Create the adjacency structure of the nodes in the graph. 1214 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1215 SwingSchedulerDAG *DAG) { 1216 BitVector Added(SUnits.size()); 1217 DenseMap<int, int> OutputDeps; 1218 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1219 Added.reset(); 1220 // Add any successor to the adjacency matrix and exclude duplicates. 1221 for (auto &SI : SUnits[i].Succs) { 1222 // Only create a back-edge on the first and last nodes of a dependence 1223 // chain. This records any chains and adds them later. 1224 if (SI.getKind() == SDep::Output) { 1225 int N = SI.getSUnit()->NodeNum; 1226 int BackEdge = i; 1227 auto Dep = OutputDeps.find(BackEdge); 1228 if (Dep != OutputDeps.end()) { 1229 BackEdge = Dep->second; 1230 OutputDeps.erase(Dep); 1231 } 1232 OutputDeps[N] = BackEdge; 1233 } 1234 // Do not process a boundary node, an artificial node. 1235 // A back-edge is processed only if it goes to a Phi. 1236 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1237 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1238 continue; 1239 int N = SI.getSUnit()->NodeNum; 1240 if (!Added.test(N)) { 1241 AdjK[i].push_back(N); 1242 Added.set(N); 1243 } 1244 } 1245 // A chain edge between a store and a load is treated as a back-edge in the 1246 // adjacency matrix. 1247 for (auto &PI : SUnits[i].Preds) { 1248 if (!SUnits[i].getInstr()->mayStore() || 1249 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1250 continue; 1251 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1252 int N = PI.getSUnit()->NodeNum; 1253 if (!Added.test(N)) { 1254 AdjK[i].push_back(N); 1255 Added.set(N); 1256 } 1257 } 1258 } 1259 } 1260 // Add back-edges in the adjacency matrix for the output dependences. 1261 for (auto &OD : OutputDeps) 1262 if (!Added.test(OD.second)) { 1263 AdjK[OD.first].push_back(OD.second); 1264 Added.set(OD.second); 1265 } 1266 } 1267 1268 /// Identify an elementary circuit in the dependence graph starting at the 1269 /// specified node. 1270 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1271 bool HasBackedge) { 1272 SUnit *SV = &SUnits[V]; 1273 bool F = false; 1274 Stack.insert(SV); 1275 Blocked.set(V); 1276 1277 for (auto W : AdjK[V]) { 1278 if (NumPaths > MaxPaths) 1279 break; 1280 if (W < S) 1281 continue; 1282 if (W == S) { 1283 if (!HasBackedge) 1284 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1285 F = true; 1286 ++NumPaths; 1287 break; 1288 } else if (!Blocked.test(W)) { 1289 if (circuit(W, S, NodeSets, 1290 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1291 F = true; 1292 } 1293 } 1294 1295 if (F) 1296 unblock(V); 1297 else { 1298 for (auto W : AdjK[V]) { 1299 if (W < S) 1300 continue; 1301 if (B[W].count(SV) == 0) 1302 B[W].insert(SV); 1303 } 1304 } 1305 Stack.pop_back(); 1306 return F; 1307 } 1308 1309 /// Unblock a node in the circuit finding algorithm. 1310 void SwingSchedulerDAG::Circuits::unblock(int U) { 1311 Blocked.reset(U); 1312 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1313 while (!BU.empty()) { 1314 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1315 assert(SI != BU.end() && "Invalid B set."); 1316 SUnit *W = *SI; 1317 BU.erase(W); 1318 if (Blocked.test(W->NodeNum)) 1319 unblock(W->NodeNum); 1320 } 1321 } 1322 1323 /// Identify all the elementary circuits in the dependence graph using 1324 /// Johnson's circuit algorithm. 1325 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1326 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1327 // but we do this to find the circuits, and then change them back. 1328 swapAntiDependences(SUnits); 1329 1330 Circuits Cir(SUnits, Topo); 1331 // Create the adjacency structure. 1332 Cir.createAdjacencyStructure(this); 1333 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1334 Cir.reset(); 1335 Cir.circuit(i, i, NodeSets); 1336 } 1337 1338 // Change the dependences back so that we've created a DAG again. 1339 swapAntiDependences(SUnits); 1340 } 1341 1342 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1343 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1344 // additional copies that are needed across iterations. An artificial dependence 1345 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1346 1347 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1348 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1349 // PHI-------True-Dep------> USEOfPhi 1350 1351 // The mutation creates 1352 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1353 1354 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1355 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1356 // late to avoid additional copies across iterations. The possible scheduling 1357 // order would be 1358 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1359 1360 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1361 for (SUnit &SU : DAG->SUnits) { 1362 // Find the COPY/REG_SEQUENCE instruction. 1363 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1364 continue; 1365 1366 // Record the loop carried PHIs. 1367 SmallVector<SUnit *, 4> PHISUs; 1368 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1369 SmallVector<SUnit *, 4> SrcSUs; 1370 1371 for (auto &Dep : SU.Preds) { 1372 SUnit *TmpSU = Dep.getSUnit(); 1373 MachineInstr *TmpMI = TmpSU->getInstr(); 1374 SDep::Kind DepKind = Dep.getKind(); 1375 // Save the loop carried PHI. 1376 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1377 PHISUs.push_back(TmpSU); 1378 // Save the source of COPY/REG_SEQUENCE. 1379 // If the source has no pre-decessors, we will end up creating cycles. 1380 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1381 SrcSUs.push_back(TmpSU); 1382 } 1383 1384 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1385 continue; 1386 1387 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1388 // SUnit to the container. 1389 SmallVector<SUnit *, 8> UseSUs; 1390 // Do not use iterator based loop here as we are updating the container. 1391 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1392 for (auto &Dep : PHISUs[Index]->Succs) { 1393 if (Dep.getKind() != SDep::Data) 1394 continue; 1395 1396 SUnit *TmpSU = Dep.getSUnit(); 1397 MachineInstr *TmpMI = TmpSU->getInstr(); 1398 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1399 PHISUs.push_back(TmpSU); 1400 continue; 1401 } 1402 UseSUs.push_back(TmpSU); 1403 } 1404 } 1405 1406 if (UseSUs.size() == 0) 1407 continue; 1408 1409 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1410 // Add the artificial dependencies if it does not form a cycle. 1411 for (auto I : UseSUs) { 1412 for (auto Src : SrcSUs) { 1413 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1414 Src->addPred(SDep(I, SDep::Artificial)); 1415 SDAG->Topo.AddPred(Src, I); 1416 } 1417 } 1418 } 1419 } 1420 } 1421 1422 /// Return true for DAG nodes that we ignore when computing the cost functions. 1423 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1424 /// in the calculation of the ASAP, ALAP, etc functions. 1425 static bool ignoreDependence(const SDep &D, bool isPred) { 1426 if (D.isArtificial()) 1427 return true; 1428 return D.getKind() == SDep::Anti && isPred; 1429 } 1430 1431 /// Compute several functions need to order the nodes for scheduling. 1432 /// ASAP - Earliest time to schedule a node. 1433 /// ALAP - Latest time to schedule a node. 1434 /// MOV - Mobility function, difference between ALAP and ASAP. 1435 /// D - Depth of each node. 1436 /// H - Height of each node. 1437 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1438 ScheduleInfo.resize(SUnits.size()); 1439 1440 LLVM_DEBUG({ 1441 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1442 E = Topo.end(); 1443 I != E; ++I) { 1444 const SUnit &SU = SUnits[*I]; 1445 dumpNode(SU); 1446 } 1447 }); 1448 1449 int maxASAP = 0; 1450 // Compute ASAP and ZeroLatencyDepth. 1451 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1452 E = Topo.end(); 1453 I != E; ++I) { 1454 int asap = 0; 1455 int zeroLatencyDepth = 0; 1456 SUnit *SU = &SUnits[*I]; 1457 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1458 EP = SU->Preds.end(); 1459 IP != EP; ++IP) { 1460 SUnit *pred = IP->getSUnit(); 1461 if (IP->getLatency() == 0) 1462 zeroLatencyDepth = 1463 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1464 if (ignoreDependence(*IP, true)) 1465 continue; 1466 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1467 getDistance(pred, SU, *IP) * MII)); 1468 } 1469 maxASAP = std::max(maxASAP, asap); 1470 ScheduleInfo[*I].ASAP = asap; 1471 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1472 } 1473 1474 // Compute ALAP, ZeroLatencyHeight, and MOV. 1475 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1476 E = Topo.rend(); 1477 I != E; ++I) { 1478 int alap = maxASAP; 1479 int zeroLatencyHeight = 0; 1480 SUnit *SU = &SUnits[*I]; 1481 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1482 ES = SU->Succs.end(); 1483 IS != ES; ++IS) { 1484 SUnit *succ = IS->getSUnit(); 1485 if (IS->getLatency() == 0) 1486 zeroLatencyHeight = 1487 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1488 if (ignoreDependence(*IS, true)) 1489 continue; 1490 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1491 getDistance(SU, succ, *IS) * MII)); 1492 } 1493 1494 ScheduleInfo[*I].ALAP = alap; 1495 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1496 } 1497 1498 // After computing the node functions, compute the summary for each node set. 1499 for (NodeSet &I : NodeSets) 1500 I.computeNodeSetInfo(this); 1501 1502 LLVM_DEBUG({ 1503 for (unsigned i = 0; i < SUnits.size(); i++) { 1504 dbgs() << "\tNode " << i << ":\n"; 1505 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1506 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1507 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1508 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1509 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1510 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1511 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1512 } 1513 }); 1514 } 1515 1516 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1517 /// as the predecessors of the elements of NodeOrder that are not also in 1518 /// NodeOrder. 1519 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1520 SmallSetVector<SUnit *, 8> &Preds, 1521 const NodeSet *S = nullptr) { 1522 Preds.clear(); 1523 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1524 I != E; ++I) { 1525 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1526 PI != PE; ++PI) { 1527 if (S && S->count(PI->getSUnit()) == 0) 1528 continue; 1529 if (ignoreDependence(*PI, true)) 1530 continue; 1531 if (NodeOrder.count(PI->getSUnit()) == 0) 1532 Preds.insert(PI->getSUnit()); 1533 } 1534 // Back-edges are predecessors with an anti-dependence. 1535 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1536 ES = (*I)->Succs.end(); 1537 IS != ES; ++IS) { 1538 if (IS->getKind() != SDep::Anti) 1539 continue; 1540 if (S && S->count(IS->getSUnit()) == 0) 1541 continue; 1542 if (NodeOrder.count(IS->getSUnit()) == 0) 1543 Preds.insert(IS->getSUnit()); 1544 } 1545 } 1546 return !Preds.empty(); 1547 } 1548 1549 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1550 /// as the successors of the elements of NodeOrder that are not also in 1551 /// NodeOrder. 1552 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1553 SmallSetVector<SUnit *, 8> &Succs, 1554 const NodeSet *S = nullptr) { 1555 Succs.clear(); 1556 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1557 I != E; ++I) { 1558 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1559 SI != SE; ++SI) { 1560 if (S && S->count(SI->getSUnit()) == 0) 1561 continue; 1562 if (ignoreDependence(*SI, false)) 1563 continue; 1564 if (NodeOrder.count(SI->getSUnit()) == 0) 1565 Succs.insert(SI->getSUnit()); 1566 } 1567 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1568 PE = (*I)->Preds.end(); 1569 PI != PE; ++PI) { 1570 if (PI->getKind() != SDep::Anti) 1571 continue; 1572 if (S && S->count(PI->getSUnit()) == 0) 1573 continue; 1574 if (NodeOrder.count(PI->getSUnit()) == 0) 1575 Succs.insert(PI->getSUnit()); 1576 } 1577 } 1578 return !Succs.empty(); 1579 } 1580 1581 /// Return true if there is a path from the specified node to any of the nodes 1582 /// in DestNodes. Keep track and return the nodes in any path. 1583 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1584 SetVector<SUnit *> &DestNodes, 1585 SetVector<SUnit *> &Exclude, 1586 SmallPtrSet<SUnit *, 8> &Visited) { 1587 if (Cur->isBoundaryNode()) 1588 return false; 1589 if (Exclude.count(Cur) != 0) 1590 return false; 1591 if (DestNodes.count(Cur) != 0) 1592 return true; 1593 if (!Visited.insert(Cur).second) 1594 return Path.count(Cur) != 0; 1595 bool FoundPath = false; 1596 for (auto &SI : Cur->Succs) 1597 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1598 for (auto &PI : Cur->Preds) 1599 if (PI.getKind() == SDep::Anti) 1600 FoundPath |= 1601 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1602 if (FoundPath) 1603 Path.insert(Cur); 1604 return FoundPath; 1605 } 1606 1607 /// Return true if Set1 is a subset of Set2. 1608 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1609 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1610 if (Set2.count(*I) == 0) 1611 return false; 1612 return true; 1613 } 1614 1615 /// Compute the live-out registers for the instructions in a node-set. 1616 /// The live-out registers are those that are defined in the node-set, 1617 /// but not used. Except for use operands of Phis. 1618 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1619 NodeSet &NS) { 1620 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1621 MachineRegisterInfo &MRI = MF.getRegInfo(); 1622 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1623 SmallSet<unsigned, 4> Uses; 1624 for (SUnit *SU : NS) { 1625 const MachineInstr *MI = SU->getInstr(); 1626 if (MI->isPHI()) 1627 continue; 1628 for (const MachineOperand &MO : MI->operands()) 1629 if (MO.isReg() && MO.isUse()) { 1630 Register Reg = MO.getReg(); 1631 if (Register::isVirtualRegister(Reg)) 1632 Uses.insert(Reg); 1633 else if (MRI.isAllocatable(Reg)) 1634 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1635 Uses.insert(*Units); 1636 } 1637 } 1638 for (SUnit *SU : NS) 1639 for (const MachineOperand &MO : SU->getInstr()->operands()) 1640 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1641 Register Reg = MO.getReg(); 1642 if (Register::isVirtualRegister(Reg)) { 1643 if (!Uses.count(Reg)) 1644 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1645 LaneBitmask::getNone())); 1646 } else if (MRI.isAllocatable(Reg)) { 1647 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1648 if (!Uses.count(*Units)) 1649 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1650 LaneBitmask::getNone())); 1651 } 1652 } 1653 RPTracker.addLiveRegs(LiveOutRegs); 1654 } 1655 1656 /// A heuristic to filter nodes in recurrent node-sets if the register 1657 /// pressure of a set is too high. 1658 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1659 for (auto &NS : NodeSets) { 1660 // Skip small node-sets since they won't cause register pressure problems. 1661 if (NS.size() <= 2) 1662 continue; 1663 IntervalPressure RecRegPressure; 1664 RegPressureTracker RecRPTracker(RecRegPressure); 1665 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1666 computeLiveOuts(MF, RecRPTracker, NS); 1667 RecRPTracker.closeBottom(); 1668 1669 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1670 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1671 return A->NodeNum > B->NodeNum; 1672 }); 1673 1674 for (auto &SU : SUnits) { 1675 // Since we're computing the register pressure for a subset of the 1676 // instructions in a block, we need to set the tracker for each 1677 // instruction in the node-set. The tracker is set to the instruction 1678 // just after the one we're interested in. 1679 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1680 RecRPTracker.setPos(std::next(CurInstI)); 1681 1682 RegPressureDelta RPDelta; 1683 ArrayRef<PressureChange> CriticalPSets; 1684 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1685 CriticalPSets, 1686 RecRegPressure.MaxSetPressure); 1687 if (RPDelta.Excess.isValid()) { 1688 LLVM_DEBUG( 1689 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1690 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1691 << ":" << RPDelta.Excess.getUnitInc()); 1692 NS.setExceedPressure(SU); 1693 break; 1694 } 1695 RecRPTracker.recede(); 1696 } 1697 } 1698 } 1699 1700 /// A heuristic to colocate node sets that have the same set of 1701 /// successors. 1702 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1703 unsigned Colocate = 0; 1704 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1705 NodeSet &N1 = NodeSets[i]; 1706 SmallSetVector<SUnit *, 8> S1; 1707 if (N1.empty() || !succ_L(N1, S1)) 1708 continue; 1709 for (int j = i + 1; j < e; ++j) { 1710 NodeSet &N2 = NodeSets[j]; 1711 if (N1.compareRecMII(N2) != 0) 1712 continue; 1713 SmallSetVector<SUnit *, 8> S2; 1714 if (N2.empty() || !succ_L(N2, S2)) 1715 continue; 1716 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1717 N1.setColocate(++Colocate); 1718 N2.setColocate(Colocate); 1719 break; 1720 } 1721 } 1722 } 1723 } 1724 1725 /// Check if the existing node-sets are profitable. If not, then ignore the 1726 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1727 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1728 /// then it's best to try to schedule all instructions together instead of 1729 /// starting with the recurrent node-sets. 1730 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1731 // Look for loops with a large MII. 1732 if (MII < 17) 1733 return; 1734 // Check if the node-set contains only a simple add recurrence. 1735 for (auto &NS : NodeSets) { 1736 if (NS.getRecMII() > 2) 1737 return; 1738 if (NS.getMaxDepth() > MII) 1739 return; 1740 } 1741 NodeSets.clear(); 1742 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1743 return; 1744 } 1745 1746 /// Add the nodes that do not belong to a recurrence set into groups 1747 /// based upon connected componenets. 1748 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1749 SetVector<SUnit *> NodesAdded; 1750 SmallPtrSet<SUnit *, 8> Visited; 1751 // Add the nodes that are on a path between the previous node sets and 1752 // the current node set. 1753 for (NodeSet &I : NodeSets) { 1754 SmallSetVector<SUnit *, 8> N; 1755 // Add the nodes from the current node set to the previous node set. 1756 if (succ_L(I, N)) { 1757 SetVector<SUnit *> Path; 1758 for (SUnit *NI : N) { 1759 Visited.clear(); 1760 computePath(NI, Path, NodesAdded, I, Visited); 1761 } 1762 if (!Path.empty()) 1763 I.insert(Path.begin(), Path.end()); 1764 } 1765 // Add the nodes from the previous node set to the current node set. 1766 N.clear(); 1767 if (succ_L(NodesAdded, N)) { 1768 SetVector<SUnit *> Path; 1769 for (SUnit *NI : N) { 1770 Visited.clear(); 1771 computePath(NI, Path, I, NodesAdded, Visited); 1772 } 1773 if (!Path.empty()) 1774 I.insert(Path.begin(), Path.end()); 1775 } 1776 NodesAdded.insert(I.begin(), I.end()); 1777 } 1778 1779 // Create a new node set with the connected nodes of any successor of a node 1780 // in a recurrent set. 1781 NodeSet NewSet; 1782 SmallSetVector<SUnit *, 8> N; 1783 if (succ_L(NodesAdded, N)) 1784 for (SUnit *I : N) 1785 addConnectedNodes(I, NewSet, NodesAdded); 1786 if (!NewSet.empty()) 1787 NodeSets.push_back(NewSet); 1788 1789 // Create a new node set with the connected nodes of any predecessor of a node 1790 // in a recurrent set. 1791 NewSet.clear(); 1792 if (pred_L(NodesAdded, N)) 1793 for (SUnit *I : N) 1794 addConnectedNodes(I, NewSet, NodesAdded); 1795 if (!NewSet.empty()) 1796 NodeSets.push_back(NewSet); 1797 1798 // Create new nodes sets with the connected nodes any remaining node that 1799 // has no predecessor. 1800 for (unsigned i = 0; i < SUnits.size(); ++i) { 1801 SUnit *SU = &SUnits[i]; 1802 if (NodesAdded.count(SU) == 0) { 1803 NewSet.clear(); 1804 addConnectedNodes(SU, NewSet, NodesAdded); 1805 if (!NewSet.empty()) 1806 NodeSets.push_back(NewSet); 1807 } 1808 } 1809 } 1810 1811 /// Add the node to the set, and add all of its connected nodes to the set. 1812 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1813 SetVector<SUnit *> &NodesAdded) { 1814 NewSet.insert(SU); 1815 NodesAdded.insert(SU); 1816 for (auto &SI : SU->Succs) { 1817 SUnit *Successor = SI.getSUnit(); 1818 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1819 addConnectedNodes(Successor, NewSet, NodesAdded); 1820 } 1821 for (auto &PI : SU->Preds) { 1822 SUnit *Predecessor = PI.getSUnit(); 1823 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1824 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1825 } 1826 } 1827 1828 /// Return true if Set1 contains elements in Set2. The elements in common 1829 /// are returned in a different container. 1830 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1831 SmallSetVector<SUnit *, 8> &Result) { 1832 Result.clear(); 1833 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1834 SUnit *SU = Set1[i]; 1835 if (Set2.count(SU) != 0) 1836 Result.insert(SU); 1837 } 1838 return !Result.empty(); 1839 } 1840 1841 /// Merge the recurrence node sets that have the same initial node. 1842 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1843 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1844 ++I) { 1845 NodeSet &NI = *I; 1846 for (NodeSetType::iterator J = I + 1; J != E;) { 1847 NodeSet &NJ = *J; 1848 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1849 if (NJ.compareRecMII(NI) > 0) 1850 NI.setRecMII(NJ.getRecMII()); 1851 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1852 ++NII) 1853 I->insert(*NII); 1854 NodeSets.erase(J); 1855 E = NodeSets.end(); 1856 } else { 1857 ++J; 1858 } 1859 } 1860 } 1861 } 1862 1863 /// Remove nodes that have been scheduled in previous NodeSets. 1864 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1865 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1866 ++I) 1867 for (NodeSetType::iterator J = I + 1; J != E;) { 1868 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1869 1870 if (J->empty()) { 1871 NodeSets.erase(J); 1872 E = NodeSets.end(); 1873 } else { 1874 ++J; 1875 } 1876 } 1877 } 1878 1879 /// Compute an ordered list of the dependence graph nodes, which 1880 /// indicates the order that the nodes will be scheduled. This is a 1881 /// two-level algorithm. First, a partial order is created, which 1882 /// consists of a list of sets ordered from highest to lowest priority. 1883 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1884 SmallSetVector<SUnit *, 8> R; 1885 NodeOrder.clear(); 1886 1887 for (auto &Nodes : NodeSets) { 1888 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1889 OrderKind Order; 1890 SmallSetVector<SUnit *, 8> N; 1891 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1892 R.insert(N.begin(), N.end()); 1893 Order = BottomUp; 1894 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1895 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1896 R.insert(N.begin(), N.end()); 1897 Order = TopDown; 1898 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1899 } else if (isIntersect(N, Nodes, R)) { 1900 // If some of the successors are in the existing node-set, then use the 1901 // top-down ordering. 1902 Order = TopDown; 1903 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1904 } else if (NodeSets.size() == 1) { 1905 for (auto &N : Nodes) 1906 if (N->Succs.size() == 0) 1907 R.insert(N); 1908 Order = BottomUp; 1909 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1910 } else { 1911 // Find the node with the highest ASAP. 1912 SUnit *maxASAP = nullptr; 1913 for (SUnit *SU : Nodes) { 1914 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1915 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1916 maxASAP = SU; 1917 } 1918 R.insert(maxASAP); 1919 Order = BottomUp; 1920 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1921 } 1922 1923 while (!R.empty()) { 1924 if (Order == TopDown) { 1925 // Choose the node with the maximum height. If more than one, choose 1926 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1927 // choose the node with the lowest MOV. 1928 while (!R.empty()) { 1929 SUnit *maxHeight = nullptr; 1930 for (SUnit *I : R) { 1931 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1932 maxHeight = I; 1933 else if (getHeight(I) == getHeight(maxHeight) && 1934 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1935 maxHeight = I; 1936 else if (getHeight(I) == getHeight(maxHeight) && 1937 getZeroLatencyHeight(I) == 1938 getZeroLatencyHeight(maxHeight) && 1939 getMOV(I) < getMOV(maxHeight)) 1940 maxHeight = I; 1941 } 1942 NodeOrder.insert(maxHeight); 1943 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1944 R.remove(maxHeight); 1945 for (const auto &I : maxHeight->Succs) { 1946 if (Nodes.count(I.getSUnit()) == 0) 1947 continue; 1948 if (NodeOrder.count(I.getSUnit()) != 0) 1949 continue; 1950 if (ignoreDependence(I, false)) 1951 continue; 1952 R.insert(I.getSUnit()); 1953 } 1954 // Back-edges are predecessors with an anti-dependence. 1955 for (const auto &I : maxHeight->Preds) { 1956 if (I.getKind() != SDep::Anti) 1957 continue; 1958 if (Nodes.count(I.getSUnit()) == 0) 1959 continue; 1960 if (NodeOrder.count(I.getSUnit()) != 0) 1961 continue; 1962 R.insert(I.getSUnit()); 1963 } 1964 } 1965 Order = BottomUp; 1966 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1967 SmallSetVector<SUnit *, 8> N; 1968 if (pred_L(NodeOrder, N, &Nodes)) 1969 R.insert(N.begin(), N.end()); 1970 } else { 1971 // Choose the node with the maximum depth. If more than one, choose 1972 // the node with the maximum ZeroLatencyDepth. If still more than one, 1973 // choose the node with the lowest MOV. 1974 while (!R.empty()) { 1975 SUnit *maxDepth = nullptr; 1976 for (SUnit *I : R) { 1977 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1978 maxDepth = I; 1979 else if (getDepth(I) == getDepth(maxDepth) && 1980 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1981 maxDepth = I; 1982 else if (getDepth(I) == getDepth(maxDepth) && 1983 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1984 getMOV(I) < getMOV(maxDepth)) 1985 maxDepth = I; 1986 } 1987 NodeOrder.insert(maxDepth); 1988 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1989 R.remove(maxDepth); 1990 if (Nodes.isExceedSU(maxDepth)) { 1991 Order = TopDown; 1992 R.clear(); 1993 R.insert(Nodes.getNode(0)); 1994 break; 1995 } 1996 for (const auto &I : maxDepth->Preds) { 1997 if (Nodes.count(I.getSUnit()) == 0) 1998 continue; 1999 if (NodeOrder.count(I.getSUnit()) != 0) 2000 continue; 2001 R.insert(I.getSUnit()); 2002 } 2003 // Back-edges are predecessors with an anti-dependence. 2004 for (const auto &I : maxDepth->Succs) { 2005 if (I.getKind() != SDep::Anti) 2006 continue; 2007 if (Nodes.count(I.getSUnit()) == 0) 2008 continue; 2009 if (NodeOrder.count(I.getSUnit()) != 0) 2010 continue; 2011 R.insert(I.getSUnit()); 2012 } 2013 } 2014 Order = TopDown; 2015 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2016 SmallSetVector<SUnit *, 8> N; 2017 if (succ_L(NodeOrder, N, &Nodes)) 2018 R.insert(N.begin(), N.end()); 2019 } 2020 } 2021 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2022 } 2023 2024 LLVM_DEBUG({ 2025 dbgs() << "Node order: "; 2026 for (SUnit *I : NodeOrder) 2027 dbgs() << " " << I->NodeNum << " "; 2028 dbgs() << "\n"; 2029 }); 2030 } 2031 2032 /// Process the nodes in the computed order and create the pipelined schedule 2033 /// of the instructions, if possible. Return true if a schedule is found. 2034 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2035 2036 if (NodeOrder.empty()){ 2037 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2038 return false; 2039 } 2040 2041 bool scheduleFound = false; 2042 unsigned II = 0; 2043 // Keep increasing II until a valid schedule is found. 2044 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 2045 Schedule.reset(); 2046 Schedule.setInitiationInterval(II); 2047 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2048 2049 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2050 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2051 do { 2052 SUnit *SU = *NI; 2053 2054 // Compute the schedule time for the instruction, which is based 2055 // upon the scheduled time for any predecessors/successors. 2056 int EarlyStart = INT_MIN; 2057 int LateStart = INT_MAX; 2058 // These values are set when the size of the schedule window is limited 2059 // due to chain dependences. 2060 int SchedEnd = INT_MAX; 2061 int SchedStart = INT_MIN; 2062 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2063 II, this); 2064 LLVM_DEBUG({ 2065 dbgs() << "\n"; 2066 dbgs() << "Inst (" << SU->NodeNum << ") "; 2067 SU->getInstr()->dump(); 2068 dbgs() << "\n"; 2069 }); 2070 LLVM_DEBUG({ 2071 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2072 LateStart, SchedEnd, SchedStart); 2073 }); 2074 2075 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2076 SchedStart > LateStart) 2077 scheduleFound = false; 2078 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2079 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2080 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2081 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2082 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2083 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2084 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2085 SchedEnd = 2086 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2087 // When scheduling a Phi it is better to start at the late cycle and go 2088 // backwards. The default order may insert the Phi too far away from 2089 // its first dependence. 2090 if (SU->getInstr()->isPHI()) 2091 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2092 else 2093 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2094 } else { 2095 int FirstCycle = Schedule.getFirstCycle(); 2096 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2097 FirstCycle + getASAP(SU) + II - 1, II); 2098 } 2099 // Even if we find a schedule, make sure the schedule doesn't exceed the 2100 // allowable number of stages. We keep trying if this happens. 2101 if (scheduleFound) 2102 if (SwpMaxStages > -1 && 2103 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2104 scheduleFound = false; 2105 2106 LLVM_DEBUG({ 2107 if (!scheduleFound) 2108 dbgs() << "\tCan't schedule\n"; 2109 }); 2110 } while (++NI != NE && scheduleFound); 2111 2112 // If a schedule is found, check if it is a valid schedule too. 2113 if (scheduleFound) 2114 scheduleFound = Schedule.isValidSchedule(this); 2115 } 2116 2117 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2118 << ")\n"); 2119 2120 if (scheduleFound) { 2121 Schedule.finalizeSchedule(this); 2122 Pass.ORE->emit([&]() { 2123 return MachineOptimizationRemarkAnalysis( 2124 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2125 << "Schedule found with Initiation Interval: " << ore::NV("II", II) 2126 << ", MaxStageCount: " 2127 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2128 }); 2129 } else 2130 Schedule.reset(); 2131 2132 return scheduleFound && Schedule.getMaxStageCount() > 0; 2133 } 2134 2135 /// Return true if we can compute the amount the instruction changes 2136 /// during each iteration. Set Delta to the amount of the change. 2137 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2138 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2139 const MachineOperand *BaseOp; 2140 int64_t Offset; 2141 bool OffsetIsScalable; 2142 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2143 return false; 2144 2145 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2146 if (OffsetIsScalable) 2147 return false; 2148 2149 if (!BaseOp->isReg()) 2150 return false; 2151 2152 Register BaseReg = BaseOp->getReg(); 2153 2154 MachineRegisterInfo &MRI = MF.getRegInfo(); 2155 // Check if there is a Phi. If so, get the definition in the loop. 2156 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2157 if (BaseDef && BaseDef->isPHI()) { 2158 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2159 BaseDef = MRI.getVRegDef(BaseReg); 2160 } 2161 if (!BaseDef) 2162 return false; 2163 2164 int D = 0; 2165 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2166 return false; 2167 2168 Delta = D; 2169 return true; 2170 } 2171 2172 /// Check if we can change the instruction to use an offset value from the 2173 /// previous iteration. If so, return true and set the base and offset values 2174 /// so that we can rewrite the load, if necessary. 2175 /// v1 = Phi(v0, v3) 2176 /// v2 = load v1, 0 2177 /// v3 = post_store v1, 4, x 2178 /// This function enables the load to be rewritten as v2 = load v3, 4. 2179 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2180 unsigned &BasePos, 2181 unsigned &OffsetPos, 2182 unsigned &NewBase, 2183 int64_t &Offset) { 2184 // Get the load instruction. 2185 if (TII->isPostIncrement(*MI)) 2186 return false; 2187 unsigned BasePosLd, OffsetPosLd; 2188 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2189 return false; 2190 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2191 2192 // Look for the Phi instruction. 2193 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2194 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2195 if (!Phi || !Phi->isPHI()) 2196 return false; 2197 // Get the register defined in the loop block. 2198 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2199 if (!PrevReg) 2200 return false; 2201 2202 // Check for the post-increment load/store instruction. 2203 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2204 if (!PrevDef || PrevDef == MI) 2205 return false; 2206 2207 if (!TII->isPostIncrement(*PrevDef)) 2208 return false; 2209 2210 unsigned BasePos1 = 0, OffsetPos1 = 0; 2211 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2212 return false; 2213 2214 // Make sure that the instructions do not access the same memory location in 2215 // the next iteration. 2216 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2217 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2218 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2219 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2220 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2221 MF.DeleteMachineInstr(NewMI); 2222 if (!Disjoint) 2223 return false; 2224 2225 // Set the return value once we determine that we return true. 2226 BasePos = BasePosLd; 2227 OffsetPos = OffsetPosLd; 2228 NewBase = PrevReg; 2229 Offset = StoreOffset; 2230 return true; 2231 } 2232 2233 /// Apply changes to the instruction if needed. The changes are need 2234 /// to improve the scheduling and depend up on the final schedule. 2235 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2236 SMSchedule &Schedule) { 2237 SUnit *SU = getSUnit(MI); 2238 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2239 InstrChanges.find(SU); 2240 if (It != InstrChanges.end()) { 2241 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2242 unsigned BasePos, OffsetPos; 2243 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2244 return; 2245 Register BaseReg = MI->getOperand(BasePos).getReg(); 2246 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2247 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2248 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2249 int BaseStageNum = Schedule.stageScheduled(SU); 2250 int BaseCycleNum = Schedule.cycleScheduled(SU); 2251 if (BaseStageNum < DefStageNum) { 2252 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2253 int OffsetDiff = DefStageNum - BaseStageNum; 2254 if (DefCycleNum < BaseCycleNum) { 2255 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2256 if (OffsetDiff > 0) 2257 --OffsetDiff; 2258 } 2259 int64_t NewOffset = 2260 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2261 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2262 SU->setInstr(NewMI); 2263 MISUnitMap[NewMI] = SU; 2264 NewMIs[MI] = NewMI; 2265 } 2266 } 2267 } 2268 2269 /// Return the instruction in the loop that defines the register. 2270 /// If the definition is a Phi, then follow the Phi operand to 2271 /// the instruction in the loop. 2272 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2273 SmallPtrSet<MachineInstr *, 8> Visited; 2274 MachineInstr *Def = MRI.getVRegDef(Reg); 2275 while (Def->isPHI()) { 2276 if (!Visited.insert(Def).second) 2277 break; 2278 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2279 if (Def->getOperand(i + 1).getMBB() == BB) { 2280 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2281 break; 2282 } 2283 } 2284 return Def; 2285 } 2286 2287 /// Return true for an order or output dependence that is loop carried 2288 /// potentially. A dependence is loop carried if the destination defines a valu 2289 /// that may be used or defined by the source in a subsequent iteration. 2290 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2291 bool isSucc) { 2292 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2293 Dep.isArtificial()) 2294 return false; 2295 2296 if (!SwpPruneLoopCarried) 2297 return true; 2298 2299 if (Dep.getKind() == SDep::Output) 2300 return true; 2301 2302 MachineInstr *SI = Source->getInstr(); 2303 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2304 if (!isSucc) 2305 std::swap(SI, DI); 2306 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2307 2308 // Assume ordered loads and stores may have a loop carried dependence. 2309 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2310 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2311 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2312 return true; 2313 2314 // Only chain dependences between a load and store can be loop carried. 2315 if (!DI->mayStore() || !SI->mayLoad()) 2316 return false; 2317 2318 unsigned DeltaS, DeltaD; 2319 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2320 return true; 2321 2322 const MachineOperand *BaseOpS, *BaseOpD; 2323 int64_t OffsetS, OffsetD; 2324 bool OffsetSIsScalable, OffsetDIsScalable; 2325 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2326 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2327 TRI) || 2328 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2329 TRI)) 2330 return true; 2331 2332 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2333 "Expected offsets to be byte offsets"); 2334 2335 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2336 return true; 2337 2338 // Check that the base register is incremented by a constant value for each 2339 // iteration. 2340 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2341 if (!Def || !Def->isPHI()) 2342 return true; 2343 unsigned InitVal = 0; 2344 unsigned LoopVal = 0; 2345 getPhiRegs(*Def, BB, InitVal, LoopVal); 2346 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2347 int D = 0; 2348 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2349 return true; 2350 2351 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2352 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2353 2354 // This is the main test, which checks the offset values and the loop 2355 // increment value to determine if the accesses may be loop carried. 2356 if (AccessSizeS == MemoryLocation::UnknownSize || 2357 AccessSizeD == MemoryLocation::UnknownSize) 2358 return true; 2359 2360 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2361 return true; 2362 2363 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2364 } 2365 2366 void SwingSchedulerDAG::postprocessDAG() { 2367 for (auto &M : Mutations) 2368 M->apply(this); 2369 } 2370 2371 /// Try to schedule the node at the specified StartCycle and continue 2372 /// until the node is schedule or the EndCycle is reached. This function 2373 /// returns true if the node is scheduled. This routine may search either 2374 /// forward or backward for a place to insert the instruction based upon 2375 /// the relative values of StartCycle and EndCycle. 2376 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2377 bool forward = true; 2378 LLVM_DEBUG({ 2379 dbgs() << "Trying to insert node between " << StartCycle << " and " 2380 << EndCycle << " II: " << II << "\n"; 2381 }); 2382 if (StartCycle > EndCycle) 2383 forward = false; 2384 2385 // The terminating condition depends on the direction. 2386 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2387 for (int curCycle = StartCycle; curCycle != termCycle; 2388 forward ? ++curCycle : --curCycle) { 2389 2390 // Add the already scheduled instructions at the specified cycle to the 2391 // DFA. 2392 ProcItinResources.clearResources(); 2393 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2394 checkCycle <= LastCycle; checkCycle += II) { 2395 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2396 2397 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 2398 E = cycleInstrs.end(); 2399 I != E; ++I) { 2400 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 2401 continue; 2402 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 2403 "These instructions have already been scheduled."); 2404 ProcItinResources.reserveResources(*(*I)->getInstr()); 2405 } 2406 } 2407 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2408 ProcItinResources.canReserveResources(*SU->getInstr())) { 2409 LLVM_DEBUG({ 2410 dbgs() << "\tinsert at cycle " << curCycle << " "; 2411 SU->getInstr()->dump(); 2412 }); 2413 2414 ScheduledInstrs[curCycle].push_back(SU); 2415 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2416 if (curCycle > LastCycle) 2417 LastCycle = curCycle; 2418 if (curCycle < FirstCycle) 2419 FirstCycle = curCycle; 2420 return true; 2421 } 2422 LLVM_DEBUG({ 2423 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2424 SU->getInstr()->dump(); 2425 }); 2426 } 2427 return false; 2428 } 2429 2430 // Return the cycle of the earliest scheduled instruction in the chain. 2431 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2432 SmallPtrSet<SUnit *, 8> Visited; 2433 SmallVector<SDep, 8> Worklist; 2434 Worklist.push_back(Dep); 2435 int EarlyCycle = INT_MAX; 2436 while (!Worklist.empty()) { 2437 const SDep &Cur = Worklist.pop_back_val(); 2438 SUnit *PrevSU = Cur.getSUnit(); 2439 if (Visited.count(PrevSU)) 2440 continue; 2441 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2442 if (it == InstrToCycle.end()) 2443 continue; 2444 EarlyCycle = std::min(EarlyCycle, it->second); 2445 for (const auto &PI : PrevSU->Preds) 2446 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2447 Worklist.push_back(PI); 2448 Visited.insert(PrevSU); 2449 } 2450 return EarlyCycle; 2451 } 2452 2453 // Return the cycle of the latest scheduled instruction in the chain. 2454 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2455 SmallPtrSet<SUnit *, 8> Visited; 2456 SmallVector<SDep, 8> Worklist; 2457 Worklist.push_back(Dep); 2458 int LateCycle = INT_MIN; 2459 while (!Worklist.empty()) { 2460 const SDep &Cur = Worklist.pop_back_val(); 2461 SUnit *SuccSU = Cur.getSUnit(); 2462 if (Visited.count(SuccSU)) 2463 continue; 2464 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2465 if (it == InstrToCycle.end()) 2466 continue; 2467 LateCycle = std::max(LateCycle, it->second); 2468 for (const auto &SI : SuccSU->Succs) 2469 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2470 Worklist.push_back(SI); 2471 Visited.insert(SuccSU); 2472 } 2473 return LateCycle; 2474 } 2475 2476 /// If an instruction has a use that spans multiple iterations, then 2477 /// return true. These instructions are characterized by having a back-ege 2478 /// to a Phi, which contains a reference to another Phi. 2479 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2480 for (auto &P : SU->Preds) 2481 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2482 for (auto &S : P.getSUnit()->Succs) 2483 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2484 return P.getSUnit(); 2485 return nullptr; 2486 } 2487 2488 /// Compute the scheduling start slot for the instruction. The start slot 2489 /// depends on any predecessor or successor nodes scheduled already. 2490 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2491 int *MinEnd, int *MaxStart, int II, 2492 SwingSchedulerDAG *DAG) { 2493 // Iterate over each instruction that has been scheduled already. The start 2494 // slot computation depends on whether the previously scheduled instruction 2495 // is a predecessor or successor of the specified instruction. 2496 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2497 2498 // Iterate over each instruction in the current cycle. 2499 for (SUnit *I : getInstructions(cycle)) { 2500 // Because we're processing a DAG for the dependences, we recognize 2501 // the back-edge in recurrences by anti dependences. 2502 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2503 const SDep &Dep = SU->Preds[i]; 2504 if (Dep.getSUnit() == I) { 2505 if (!DAG->isBackedge(SU, Dep)) { 2506 int EarlyStart = cycle + Dep.getLatency() - 2507 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2508 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2509 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2510 int End = earliestCycleInChain(Dep) + (II - 1); 2511 *MinEnd = std::min(*MinEnd, End); 2512 } 2513 } else { 2514 int LateStart = cycle - Dep.getLatency() + 2515 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2516 *MinLateStart = std::min(*MinLateStart, LateStart); 2517 } 2518 } 2519 // For instruction that requires multiple iterations, make sure that 2520 // the dependent instruction is not scheduled past the definition. 2521 SUnit *BE = multipleIterations(I, DAG); 2522 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2523 !SU->isPred(I)) 2524 *MinLateStart = std::min(*MinLateStart, cycle); 2525 } 2526 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2527 if (SU->Succs[i].getSUnit() == I) { 2528 const SDep &Dep = SU->Succs[i]; 2529 if (!DAG->isBackedge(SU, Dep)) { 2530 int LateStart = cycle - Dep.getLatency() + 2531 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2532 *MinLateStart = std::min(*MinLateStart, LateStart); 2533 if (DAG->isLoopCarriedDep(SU, Dep)) { 2534 int Start = latestCycleInChain(Dep) + 1 - II; 2535 *MaxStart = std::max(*MaxStart, Start); 2536 } 2537 } else { 2538 int EarlyStart = cycle + Dep.getLatency() - 2539 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2540 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2541 } 2542 } 2543 } 2544 } 2545 } 2546 } 2547 2548 /// Order the instructions within a cycle so that the definitions occur 2549 /// before the uses. Returns true if the instruction is added to the start 2550 /// of the list, or false if added to the end. 2551 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2552 std::deque<SUnit *> &Insts) { 2553 MachineInstr *MI = SU->getInstr(); 2554 bool OrderBeforeUse = false; 2555 bool OrderAfterDef = false; 2556 bool OrderBeforeDef = false; 2557 unsigned MoveDef = 0; 2558 unsigned MoveUse = 0; 2559 int StageInst1 = stageScheduled(SU); 2560 2561 unsigned Pos = 0; 2562 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2563 ++I, ++Pos) { 2564 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2565 MachineOperand &MO = MI->getOperand(i); 2566 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2567 continue; 2568 2569 Register Reg = MO.getReg(); 2570 unsigned BasePos, OffsetPos; 2571 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2572 if (MI->getOperand(BasePos).getReg() == Reg) 2573 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2574 Reg = NewReg; 2575 bool Reads, Writes; 2576 std::tie(Reads, Writes) = 2577 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2578 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2579 OrderBeforeUse = true; 2580 if (MoveUse == 0) 2581 MoveUse = Pos; 2582 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2583 // Add the instruction after the scheduled instruction. 2584 OrderAfterDef = true; 2585 MoveDef = Pos; 2586 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2587 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2588 OrderBeforeUse = true; 2589 if (MoveUse == 0) 2590 MoveUse = Pos; 2591 } else { 2592 OrderAfterDef = true; 2593 MoveDef = Pos; 2594 } 2595 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2596 OrderBeforeUse = true; 2597 if (MoveUse == 0) 2598 MoveUse = Pos; 2599 if (MoveUse != 0) { 2600 OrderAfterDef = true; 2601 MoveDef = Pos - 1; 2602 } 2603 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2604 // Add the instruction before the scheduled instruction. 2605 OrderBeforeUse = true; 2606 if (MoveUse == 0) 2607 MoveUse = Pos; 2608 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2609 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2610 if (MoveUse == 0) { 2611 OrderBeforeDef = true; 2612 MoveUse = Pos; 2613 } 2614 } 2615 } 2616 // Check for order dependences between instructions. Make sure the source 2617 // is ordered before the destination. 2618 for (auto &S : SU->Succs) { 2619 if (S.getSUnit() != *I) 2620 continue; 2621 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2622 OrderBeforeUse = true; 2623 if (Pos < MoveUse) 2624 MoveUse = Pos; 2625 } 2626 // We did not handle HW dependences in previous for loop, 2627 // and we normally set Latency = 0 for Anti deps, 2628 // so may have nodes in same cycle with Anti denpendent on HW regs. 2629 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2630 OrderBeforeUse = true; 2631 if ((MoveUse == 0) || (Pos < MoveUse)) 2632 MoveUse = Pos; 2633 } 2634 } 2635 for (auto &P : SU->Preds) { 2636 if (P.getSUnit() != *I) 2637 continue; 2638 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2639 OrderAfterDef = true; 2640 MoveDef = Pos; 2641 } 2642 } 2643 } 2644 2645 // A circular dependence. 2646 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2647 OrderBeforeUse = false; 2648 2649 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2650 // to a loop-carried dependence. 2651 if (OrderBeforeDef) 2652 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2653 2654 // The uncommon case when the instruction order needs to be updated because 2655 // there is both a use and def. 2656 if (OrderBeforeUse && OrderAfterDef) { 2657 SUnit *UseSU = Insts.at(MoveUse); 2658 SUnit *DefSU = Insts.at(MoveDef); 2659 if (MoveUse > MoveDef) { 2660 Insts.erase(Insts.begin() + MoveUse); 2661 Insts.erase(Insts.begin() + MoveDef); 2662 } else { 2663 Insts.erase(Insts.begin() + MoveDef); 2664 Insts.erase(Insts.begin() + MoveUse); 2665 } 2666 orderDependence(SSD, UseSU, Insts); 2667 orderDependence(SSD, SU, Insts); 2668 orderDependence(SSD, DefSU, Insts); 2669 return; 2670 } 2671 // Put the new instruction first if there is a use in the list. Otherwise, 2672 // put it at the end of the list. 2673 if (OrderBeforeUse) 2674 Insts.push_front(SU); 2675 else 2676 Insts.push_back(SU); 2677 } 2678 2679 /// Return true if the scheduled Phi has a loop carried operand. 2680 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2681 if (!Phi.isPHI()) 2682 return false; 2683 assert(Phi.isPHI() && "Expecting a Phi."); 2684 SUnit *DefSU = SSD->getSUnit(&Phi); 2685 unsigned DefCycle = cycleScheduled(DefSU); 2686 int DefStage = stageScheduled(DefSU); 2687 2688 unsigned InitVal = 0; 2689 unsigned LoopVal = 0; 2690 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2691 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2692 if (!UseSU) 2693 return true; 2694 if (UseSU->getInstr()->isPHI()) 2695 return true; 2696 unsigned LoopCycle = cycleScheduled(UseSU); 2697 int LoopStage = stageScheduled(UseSU); 2698 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2699 } 2700 2701 /// Return true if the instruction is a definition that is loop carried 2702 /// and defines the use on the next iteration. 2703 /// v1 = phi(v2, v3) 2704 /// (Def) v3 = op v1 2705 /// (MO) = v1 2706 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2707 /// register. 2708 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2709 MachineInstr *Def, MachineOperand &MO) { 2710 if (!MO.isReg()) 2711 return false; 2712 if (Def->isPHI()) 2713 return false; 2714 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2715 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2716 return false; 2717 if (!isLoopCarried(SSD, *Phi)) 2718 return false; 2719 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2720 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2721 MachineOperand &DMO = Def->getOperand(i); 2722 if (!DMO.isReg() || !DMO.isDef()) 2723 continue; 2724 if (DMO.getReg() == LoopReg) 2725 return true; 2726 } 2727 return false; 2728 } 2729 2730 // Check if the generated schedule is valid. This function checks if 2731 // an instruction that uses a physical register is scheduled in a 2732 // different stage than the definition. The pipeliner does not handle 2733 // physical register values that may cross a basic block boundary. 2734 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2735 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 2736 SUnit &SU = SSD->SUnits[i]; 2737 if (!SU.hasPhysRegDefs) 2738 continue; 2739 int StageDef = stageScheduled(&SU); 2740 assert(StageDef != -1 && "Instruction should have been scheduled."); 2741 for (auto &SI : SU.Succs) 2742 if (SI.isAssignedRegDep()) 2743 if (Register::isPhysicalRegister(SI.getReg())) 2744 if (stageScheduled(SI.getSUnit()) != StageDef) 2745 return false; 2746 } 2747 return true; 2748 } 2749 2750 /// A property of the node order in swing-modulo-scheduling is 2751 /// that for nodes outside circuits the following holds: 2752 /// none of them is scheduled after both a successor and a 2753 /// predecessor. 2754 /// The method below checks whether the property is met. 2755 /// If not, debug information is printed and statistics information updated. 2756 /// Note that we do not use an assert statement. 2757 /// The reason is that although an invalid node oder may prevent 2758 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2759 /// it does not lead to the generation of incorrect code. 2760 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2761 2762 // a sorted vector that maps each SUnit to its index in the NodeOrder 2763 typedef std::pair<SUnit *, unsigned> UnitIndex; 2764 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2765 2766 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2767 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2768 2769 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2770 return std::get<0>(i1) < std::get<0>(i2); 2771 }; 2772 2773 // sort, so that we can perform a binary search 2774 llvm::sort(Indices, CompareKey); 2775 2776 bool Valid = true; 2777 (void)Valid; 2778 // for each SUnit in the NodeOrder, check whether 2779 // it appears after both a successor and a predecessor 2780 // of the SUnit. If this is the case, and the SUnit 2781 // is not part of circuit, then the NodeOrder is not 2782 // valid. 2783 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2784 SUnit *SU = NodeOrder[i]; 2785 unsigned Index = i; 2786 2787 bool PredBefore = false; 2788 bool SuccBefore = false; 2789 2790 SUnit *Succ; 2791 SUnit *Pred; 2792 (void)Succ; 2793 (void)Pred; 2794 2795 for (SDep &PredEdge : SU->Preds) { 2796 SUnit *PredSU = PredEdge.getSUnit(); 2797 unsigned PredIndex = std::get<1>( 2798 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2799 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2800 PredBefore = true; 2801 Pred = PredSU; 2802 break; 2803 } 2804 } 2805 2806 for (SDep &SuccEdge : SU->Succs) { 2807 SUnit *SuccSU = SuccEdge.getSUnit(); 2808 // Do not process a boundary node, it was not included in NodeOrder, 2809 // hence not in Indices either, call to std::lower_bound() below will 2810 // return Indices.end(). 2811 if (SuccSU->isBoundaryNode()) 2812 continue; 2813 unsigned SuccIndex = std::get<1>( 2814 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2815 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2816 SuccBefore = true; 2817 Succ = SuccSU; 2818 break; 2819 } 2820 } 2821 2822 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2823 // instructions in circuits are allowed to be scheduled 2824 // after both a successor and predecessor. 2825 bool InCircuit = llvm::any_of( 2826 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2827 if (InCircuit) 2828 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2829 else { 2830 Valid = false; 2831 NumNodeOrderIssues++; 2832 LLVM_DEBUG(dbgs() << "Predecessor ";); 2833 } 2834 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2835 << " are scheduled before node " << SU->NodeNum 2836 << "\n";); 2837 } 2838 } 2839 2840 LLVM_DEBUG({ 2841 if (!Valid) 2842 dbgs() << "Invalid node order found!\n"; 2843 }); 2844 } 2845 2846 /// Attempt to fix the degenerate cases when the instruction serialization 2847 /// causes the register lifetimes to overlap. For example, 2848 /// p' = store_pi(p, b) 2849 /// = load p, offset 2850 /// In this case p and p' overlap, which means that two registers are needed. 2851 /// Instead, this function changes the load to use p' and updates the offset. 2852 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2853 unsigned OverlapReg = 0; 2854 unsigned NewBaseReg = 0; 2855 for (SUnit *SU : Instrs) { 2856 MachineInstr *MI = SU->getInstr(); 2857 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2858 const MachineOperand &MO = MI->getOperand(i); 2859 // Look for an instruction that uses p. The instruction occurs in the 2860 // same cycle but occurs later in the serialized order. 2861 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2862 // Check that the instruction appears in the InstrChanges structure, 2863 // which contains instructions that can have the offset updated. 2864 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2865 InstrChanges.find(SU); 2866 if (It != InstrChanges.end()) { 2867 unsigned BasePos, OffsetPos; 2868 // Update the base register and adjust the offset. 2869 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2870 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2871 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2872 int64_t NewOffset = 2873 MI->getOperand(OffsetPos).getImm() - It->second.second; 2874 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2875 SU->setInstr(NewMI); 2876 MISUnitMap[NewMI] = SU; 2877 NewMIs[MI] = NewMI; 2878 } 2879 } 2880 OverlapReg = 0; 2881 NewBaseReg = 0; 2882 break; 2883 } 2884 // Look for an instruction of the form p' = op(p), which uses and defines 2885 // two virtual registers that get allocated to the same physical register. 2886 unsigned TiedUseIdx = 0; 2887 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2888 // OverlapReg is p in the example above. 2889 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2890 // NewBaseReg is p' in the example above. 2891 NewBaseReg = MI->getOperand(i).getReg(); 2892 break; 2893 } 2894 } 2895 } 2896 } 2897 2898 /// After the schedule has been formed, call this function to combine 2899 /// the instructions from the different stages/cycles. That is, this 2900 /// function creates a schedule that represents a single iteration. 2901 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2902 // Move all instructions to the first stage from later stages. 2903 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2904 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2905 ++stage) { 2906 std::deque<SUnit *> &cycleInstrs = 2907 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2908 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2909 E = cycleInstrs.rend(); 2910 I != E; ++I) 2911 ScheduledInstrs[cycle].push_front(*I); 2912 } 2913 } 2914 2915 // Erase all the elements in the later stages. Only one iteration should 2916 // remain in the scheduled list, and it contains all the instructions. 2917 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2918 ScheduledInstrs.erase(cycle); 2919 2920 // Change the registers in instruction as specified in the InstrChanges 2921 // map. We need to use the new registers to create the correct order. 2922 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2923 SUnit *SU = &SSD->SUnits[i]; 2924 SSD->applyInstrChange(SU->getInstr(), *this); 2925 } 2926 2927 // Reorder the instructions in each cycle to fix and improve the 2928 // generated code. 2929 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2930 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2931 std::deque<SUnit *> newOrderPhi; 2932 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2933 SUnit *SU = cycleInstrs[i]; 2934 if (SU->getInstr()->isPHI()) 2935 newOrderPhi.push_back(SU); 2936 } 2937 std::deque<SUnit *> newOrderI; 2938 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2939 SUnit *SU = cycleInstrs[i]; 2940 if (!SU->getInstr()->isPHI()) 2941 orderDependence(SSD, SU, newOrderI); 2942 } 2943 // Replace the old order with the new order. 2944 cycleInstrs.swap(newOrderPhi); 2945 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 2946 SSD->fixupRegisterOverlaps(cycleInstrs); 2947 } 2948 2949 LLVM_DEBUG(dump();); 2950 } 2951 2952 void NodeSet::print(raw_ostream &os) const { 2953 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2954 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2955 for (const auto &I : Nodes) 2956 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2957 os << "\n"; 2958 } 2959 2960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2961 /// Print the schedule information to the given output. 2962 void SMSchedule::print(raw_ostream &os) const { 2963 // Iterate over each cycle. 2964 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2965 // Iterate over each instruction in the cycle. 2966 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2967 for (SUnit *CI : cycleInstrs->second) { 2968 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2969 os << "(" << CI->NodeNum << ") "; 2970 CI->getInstr()->print(os); 2971 os << "\n"; 2972 } 2973 } 2974 } 2975 2976 /// Utility function used for debugging to print the schedule. 2977 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2978 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2979 2980 #endif 2981 2982 void ResourceManager::initProcResourceVectors( 2983 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2984 unsigned ProcResourceID = 0; 2985 2986 // We currently limit the resource kinds to 64 and below so that we can use 2987 // uint64_t for Masks 2988 assert(SM.getNumProcResourceKinds() < 64 && 2989 "Too many kinds of resources, unsupported"); 2990 // Create a unique bitmask for every processor resource unit. 2991 // Skip resource at index 0, since it always references 'InvalidUnit'. 2992 Masks.resize(SM.getNumProcResourceKinds()); 2993 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2994 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2995 if (Desc.SubUnitsIdxBegin) 2996 continue; 2997 Masks[I] = 1ULL << ProcResourceID; 2998 ProcResourceID++; 2999 } 3000 // Create a unique bitmask for every processor resource group. 3001 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3002 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3003 if (!Desc.SubUnitsIdxBegin) 3004 continue; 3005 Masks[I] = 1ULL << ProcResourceID; 3006 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3007 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3008 ProcResourceID++; 3009 } 3010 LLVM_DEBUG({ 3011 if (SwpShowResMask) { 3012 dbgs() << "ProcResourceDesc:\n"; 3013 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3014 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3015 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3016 ProcResource->Name, I, Masks[I], 3017 ProcResource->NumUnits); 3018 } 3019 dbgs() << " -----------------\n"; 3020 } 3021 }); 3022 } 3023 3024 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3025 3026 LLVM_DEBUG({ 3027 if (SwpDebugResource) 3028 dbgs() << "canReserveResources:\n"; 3029 }); 3030 if (UseDFA) 3031 return DFAResources->canReserveResources(MID); 3032 3033 unsigned InsnClass = MID->getSchedClass(); 3034 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3035 if (!SCDesc->isValid()) { 3036 LLVM_DEBUG({ 3037 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3038 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3039 }); 3040 return true; 3041 } 3042 3043 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3044 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3045 for (; I != E; ++I) { 3046 if (!I->Cycles) 3047 continue; 3048 const MCProcResourceDesc *ProcResource = 3049 SM.getProcResource(I->ProcResourceIdx); 3050 unsigned NumUnits = ProcResource->NumUnits; 3051 LLVM_DEBUG({ 3052 if (SwpDebugResource) 3053 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3054 ProcResource->Name, I->ProcResourceIdx, 3055 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3056 I->Cycles); 3057 }); 3058 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3059 return false; 3060 } 3061 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3062 return true; 3063 } 3064 3065 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3066 LLVM_DEBUG({ 3067 if (SwpDebugResource) 3068 dbgs() << "reserveResources:\n"; 3069 }); 3070 if (UseDFA) 3071 return DFAResources->reserveResources(MID); 3072 3073 unsigned InsnClass = MID->getSchedClass(); 3074 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3075 if (!SCDesc->isValid()) { 3076 LLVM_DEBUG({ 3077 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3078 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3079 }); 3080 return; 3081 } 3082 for (const MCWriteProcResEntry &PRE : 3083 make_range(STI->getWriteProcResBegin(SCDesc), 3084 STI->getWriteProcResEnd(SCDesc))) { 3085 if (!PRE.Cycles) 3086 continue; 3087 ++ProcResourceCount[PRE.ProcResourceIdx]; 3088 LLVM_DEBUG({ 3089 if (SwpDebugResource) { 3090 const MCProcResourceDesc *ProcResource = 3091 SM.getProcResource(PRE.ProcResourceIdx); 3092 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3093 ProcResource->Name, PRE.ProcResourceIdx, 3094 ProcResourceCount[PRE.ProcResourceIdx], 3095 ProcResource->NumUnits, PRE.Cycles); 3096 } 3097 }); 3098 } 3099 LLVM_DEBUG({ 3100 if (SwpDebugResource) 3101 dbgs() << "reserveResources: done!\n\n"; 3102 }); 3103 } 3104 3105 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3106 return canReserveResources(&MI.getDesc()); 3107 } 3108 3109 void ResourceManager::reserveResources(const MachineInstr &MI) { 3110 return reserveResources(&MI.getDesc()); 3111 } 3112 3113 void ResourceManager::clearResources() { 3114 if (UseDFA) 3115 return DFAResources->clearResources(); 3116 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3117 } 3118