1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/DebugLoc.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/MC/LaneBitmask.h" 100 #include "llvm/MC/MCInstrDesc.h" 101 #include "llvm/MC/MCInstrItineraries.h" 102 #include "llvm/MC/MCRegisterInfo.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 129 130 /// A command line option to turn software pipelining on or off. 131 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 132 cl::ZeroOrMore, 133 cl::desc("Enable Software Pipelining")); 134 135 /// A command line option to enable SWP at -Os. 136 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 137 cl::desc("Enable SWP at Os."), cl::Hidden, 138 cl::init(false)); 139 140 /// A command line argument to limit minimum initial interval for pipelining. 141 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 142 cl::desc("Size limit for the MII."), 143 cl::Hidden, cl::init(27)); 144 145 /// A command line argument to limit the number of stages in the pipeline. 146 static cl::opt<int> 147 SwpMaxStages("pipeliner-max-stages", 148 cl::desc("Maximum stages allowed in the generated scheduled."), 149 cl::Hidden, cl::init(3)); 150 151 /// A command line option to disable the pruning of chain dependences due to 152 /// an unrelated Phi. 153 static cl::opt<bool> 154 SwpPruneDeps("pipeliner-prune-deps", 155 cl::desc("Prune dependences between unrelated Phi nodes."), 156 cl::Hidden, cl::init(true)); 157 158 /// A command line option to disable the pruning of loop carried order 159 /// dependences. 160 static cl::opt<bool> 161 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 162 cl::desc("Prune loop carried order dependences."), 163 cl::Hidden, cl::init(true)); 164 165 #ifndef NDEBUG 166 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 167 #endif 168 169 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 170 cl::ReallyHidden, cl::init(false), 171 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 172 173 namespace { 174 175 class NodeSet; 176 class SMSchedule; 177 178 /// The main class in the implementation of the target independent 179 /// software pipeliner pass. 180 class MachinePipeliner : public MachineFunctionPass { 181 public: 182 MachineFunction *MF = nullptr; 183 const MachineLoopInfo *MLI = nullptr; 184 const MachineDominatorTree *MDT = nullptr; 185 const InstrItineraryData *InstrItins; 186 const TargetInstrInfo *TII = nullptr; 187 RegisterClassInfo RegClassInfo; 188 189 #ifndef NDEBUG 190 static int NumTries; 191 #endif 192 193 /// Cache the target analysis information about the loop. 194 struct LoopInfo { 195 MachineBasicBlock *TBB = nullptr; 196 MachineBasicBlock *FBB = nullptr; 197 SmallVector<MachineOperand, 4> BrCond; 198 MachineInstr *LoopInductionVar = nullptr; 199 MachineInstr *LoopCompare = nullptr; 200 }; 201 LoopInfo LI; 202 203 static char ID; 204 205 MachinePipeliner() : MachineFunctionPass(ID) { 206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnMachineFunction(MachineFunction &MF) override; 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addPreserved<AAResultsWrapperPass>(); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 private: 221 void preprocessPhiNodes(MachineBasicBlock &B); 222 bool canPipelineLoop(MachineLoop &L); 223 bool scheduleLoop(MachineLoop &L); 224 bool swingModuloScheduler(MachineLoop &L); 225 }; 226 227 /// This class builds the dependence graph for the instructions in a loop, 228 /// and attempts to schedule the instructions using the SMS algorithm. 229 class SwingSchedulerDAG : public ScheduleDAGInstrs { 230 MachinePipeliner &Pass; 231 /// The minimum initiation interval between iterations for this schedule. 232 unsigned MII = 0; 233 /// Set to true if a valid pipelined schedule is found for the loop. 234 bool Scheduled = false; 235 MachineLoop &Loop; 236 LiveIntervals &LIS; 237 const RegisterClassInfo &RegClassInfo; 238 239 /// A toplogical ordering of the SUnits, which is needed for changing 240 /// dependences and iterating over the SUnits. 241 ScheduleDAGTopologicalSort Topo; 242 243 struct NodeInfo { 244 int ASAP = 0; 245 int ALAP = 0; 246 int ZeroLatencyDepth = 0; 247 int ZeroLatencyHeight = 0; 248 249 NodeInfo() = default; 250 }; 251 /// Computed properties for each node in the graph. 252 std::vector<NodeInfo> ScheduleInfo; 253 254 enum OrderKind { BottomUp = 0, TopDown = 1 }; 255 /// Computed node ordering for scheduling. 256 SetVector<SUnit *> NodeOrder; 257 258 using NodeSetType = SmallVector<NodeSet, 8>; 259 using ValueMapTy = DenseMap<unsigned, unsigned>; 260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 262 263 /// Instructions to change when emitting the final schedule. 264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 265 266 /// We may create a new instruction, so remember it because it 267 /// must be deleted when the pass is finished. 268 SmallPtrSet<MachineInstr *, 4> NewMIs; 269 270 /// Ordered list of DAG postprocessing steps. 271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 272 273 /// Helper class to implement Johnson's circuit finding algorithm. 274 class Circuits { 275 std::vector<SUnit> &SUnits; 276 SetVector<SUnit *> Stack; 277 BitVector Blocked; 278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 279 SmallVector<SmallVector<int, 4>, 16> AdjK; 280 unsigned NumPaths; 281 static unsigned MaxPaths; 282 283 public: 284 Circuits(std::vector<SUnit> &SUs) 285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 286 287 /// Reset the data structures used in the circuit algorithm. 288 void reset() { 289 Stack.clear(); 290 Blocked.reset(); 291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 292 NumPaths = 0; 293 } 294 295 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 297 void unblock(int U); 298 }; 299 300 public: 301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 302 const RegisterClassInfo &rci) 303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 304 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 305 P.MF->getSubtarget().getSMSMutations(Mutations); 306 } 307 308 void schedule() override; 309 void finishBlock() override; 310 311 /// Return true if the loop kernel has been scheduled. 312 bool hasNewSchedule() { return Scheduled; } 313 314 /// Return the earliest time an instruction may be scheduled. 315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 316 317 /// Return the latest time an instruction my be scheduled. 318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 319 320 /// The mobility function, which the number of slots in which 321 /// an instruction may be scheduled. 322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 323 324 /// The depth, in the dependence graph, for a node. 325 int getDepth(SUnit *Node) { return Node->getDepth(); } 326 327 /// The maximum unweighted length of a path from an arbitrary node to the 328 /// given node in which each edge has latency 0 329 int getZeroLatencyDepth(SUnit *Node) { 330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 331 } 332 333 /// The height, in the dependence graph, for a node. 334 int getHeight(SUnit *Node) { return Node->getHeight(); } 335 336 /// The maximum unweighted length of a path from the given node to an 337 /// arbitrary node in which each edge has latency 0 338 int getZeroLatencyHeight(SUnit *Node) { 339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 340 } 341 342 /// Return true if the dependence is a back-edge in the data dependence graph. 343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 344 /// using an anti dependence from a Phi to an instruction. 345 bool isBackedge(SUnit *Source, const SDep &Dep) { 346 if (Dep.getKind() != SDep::Anti) 347 return false; 348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 349 } 350 351 /// Return true if the dependence is an order dependence between non-Phis. 352 static bool isOrder(SUnit *Source, const SDep &Dep) { 353 if (Dep.getKind() != SDep::Order) 354 return false; 355 return (!Source->getInstr()->isPHI() && 356 !Dep.getSUnit()->getInstr()->isPHI()); 357 } 358 359 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 360 361 /// The distance function, which indicates that operation V of iteration I 362 /// depends on operations U of iteration I-distance. 363 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 364 // Instructions that feed a Phi have a distance of 1. Computing larger 365 // values for arrays requires data dependence information. 366 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 367 return 1; 368 return 0; 369 } 370 371 /// Set the Minimum Initiation Interval for this schedule attempt. 372 void setMII(unsigned mii) { MII = mii; } 373 374 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 375 376 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 377 378 /// Return the new base register that was stored away for the changed 379 /// instruction. 380 unsigned getInstrBaseReg(SUnit *SU) { 381 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 382 InstrChanges.find(SU); 383 if (It != InstrChanges.end()) 384 return It->second.first; 385 return 0; 386 } 387 388 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 389 Mutations.push_back(std::move(Mutation)); 390 } 391 392 private: 393 void addLoopCarriedDependences(AliasAnalysis *AA); 394 void updatePhiDependences(); 395 void changeDependences(); 396 unsigned calculateResMII(); 397 unsigned calculateRecMII(NodeSetType &RecNodeSets); 398 void findCircuits(NodeSetType &NodeSets); 399 void fuseRecs(NodeSetType &NodeSets); 400 void removeDuplicateNodes(NodeSetType &NodeSets); 401 void computeNodeFunctions(NodeSetType &NodeSets); 402 void registerPressureFilter(NodeSetType &NodeSets); 403 void colocateNodeSets(NodeSetType &NodeSets); 404 void checkNodeSets(NodeSetType &NodeSets); 405 void groupRemainingNodes(NodeSetType &NodeSets); 406 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 407 SetVector<SUnit *> &NodesAdded); 408 void computeNodeOrder(NodeSetType &NodeSets); 409 void checkValidNodeOrder(const NodeSetType &Circuits) const; 410 bool schedulePipeline(SMSchedule &Schedule); 411 void generatePipelinedLoop(SMSchedule &Schedule); 412 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 413 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 414 MBBVectorTy &PrologBBs); 415 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 416 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 417 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 418 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 419 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 420 SMSchedule &Schedule, ValueMapTy *VRMap, 421 InstrMapTy &InstrMap, unsigned LastStageNum, 422 unsigned CurStageNum, bool IsLast); 423 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 424 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 425 SMSchedule &Schedule, ValueMapTy *VRMap, 426 InstrMapTy &InstrMap, unsigned LastStageNum, 427 unsigned CurStageNum, bool IsLast); 428 void removeDeadInstructions(MachineBasicBlock *KernelBB, 429 MBBVectorTy &EpilogBBs); 430 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 431 SMSchedule &Schedule); 432 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 433 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 434 ValueMapTy *VRMap); 435 bool computeDelta(MachineInstr &MI, unsigned &Delta); 436 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 437 unsigned Num); 438 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 439 unsigned InstStageNum); 440 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 441 unsigned InstStageNum, 442 SMSchedule &Schedule); 443 void updateInstruction(MachineInstr *NewMI, bool LastDef, 444 unsigned CurStageNum, unsigned InstStageNum, 445 SMSchedule &Schedule, ValueMapTy *VRMap); 446 MachineInstr *findDefInLoop(unsigned Reg); 447 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 448 unsigned LoopStage, ValueMapTy *VRMap, 449 MachineBasicBlock *BB); 450 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 451 SMSchedule &Schedule, ValueMapTy *VRMap, 452 InstrMapTy &InstrMap); 453 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 454 InstrMapTy &InstrMap, unsigned CurStageNum, 455 unsigned PhiNum, MachineInstr *Phi, 456 unsigned OldReg, unsigned NewReg, 457 unsigned PrevReg = 0); 458 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 459 unsigned &OffsetPos, unsigned &NewBase, 460 int64_t &NewOffset); 461 void postprocessDAG(); 462 }; 463 464 /// A NodeSet contains a set of SUnit DAG nodes with additional information 465 /// that assigns a priority to the set. 466 class NodeSet { 467 SetVector<SUnit *> Nodes; 468 bool HasRecurrence = false; 469 unsigned RecMII = 0; 470 int MaxMOV = 0; 471 int MaxDepth = 0; 472 unsigned Colocate = 0; 473 SUnit *ExceedPressure = nullptr; 474 unsigned Latency = 0; 475 476 public: 477 using iterator = SetVector<SUnit *>::const_iterator; 478 479 NodeSet() = default; 480 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { 481 Latency = 0; 482 for (unsigned i = 0, e = Nodes.size(); i < e; ++i) 483 for (const SDep &Succ : Nodes[i]->Succs) 484 if (Nodes.count(Succ.getSUnit())) 485 Latency += Succ.getLatency(); 486 } 487 488 bool insert(SUnit *SU) { return Nodes.insert(SU); } 489 490 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 491 492 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 493 return Nodes.remove_if(P); 494 } 495 496 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 497 498 bool hasRecurrence() { return HasRecurrence; }; 499 500 unsigned size() const { return Nodes.size(); } 501 502 bool empty() const { return Nodes.empty(); } 503 504 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 505 506 void setRecMII(unsigned mii) { RecMII = mii; }; 507 508 void setColocate(unsigned c) { Colocate = c; }; 509 510 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 511 512 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 513 514 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 515 516 int getRecMII() { return RecMII; } 517 518 /// Summarize node functions for the entire node set. 519 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 520 for (SUnit *SU : *this) { 521 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 522 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 523 } 524 } 525 526 void clear() { 527 Nodes.clear(); 528 RecMII = 0; 529 HasRecurrence = false; 530 MaxMOV = 0; 531 MaxDepth = 0; 532 Colocate = 0; 533 ExceedPressure = nullptr; 534 } 535 536 operator SetVector<SUnit *> &() { return Nodes; } 537 538 /// Sort the node sets by importance. First, rank them by recurrence MII, 539 /// then by mobility (least mobile done first), and finally by depth. 540 /// Each node set may contain a colocate value which is used as the first 541 /// tie breaker, if it's set. 542 bool operator>(const NodeSet &RHS) const { 543 if (RecMII == RHS.RecMII) { 544 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 545 return Colocate < RHS.Colocate; 546 if (MaxMOV == RHS.MaxMOV) 547 return MaxDepth > RHS.MaxDepth; 548 return MaxMOV < RHS.MaxMOV; 549 } 550 return RecMII > RHS.RecMII; 551 } 552 553 bool operator==(const NodeSet &RHS) const { 554 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 555 MaxDepth == RHS.MaxDepth; 556 } 557 558 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 559 560 iterator begin() { return Nodes.begin(); } 561 iterator end() { return Nodes.end(); } 562 563 void print(raw_ostream &os) const { 564 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 565 << " depth " << MaxDepth << " col " << Colocate << "\n"; 566 for (const auto &I : Nodes) 567 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 568 os << "\n"; 569 } 570 571 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 572 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 573 #endif 574 }; 575 576 /// This class repesents the scheduled code. The main data structure is a 577 /// map from scheduled cycle to instructions. During scheduling, the 578 /// data structure explicitly represents all stages/iterations. When 579 /// the algorithm finshes, the schedule is collapsed into a single stage, 580 /// which represents instructions from different loop iterations. 581 /// 582 /// The SMS algorithm allows negative values for cycles, so the first cycle 583 /// in the schedule is the smallest cycle value. 584 class SMSchedule { 585 private: 586 /// Map from execution cycle to instructions. 587 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 588 589 /// Map from instruction to execution cycle. 590 std::map<SUnit *, int> InstrToCycle; 591 592 /// Map for each register and the max difference between its uses and def. 593 /// The first element in the pair is the max difference in stages. The 594 /// second is true if the register defines a Phi value and loop value is 595 /// scheduled before the Phi. 596 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 597 598 /// Keep track of the first cycle value in the schedule. It starts 599 /// as zero, but the algorithm allows negative values. 600 int FirstCycle = 0; 601 602 /// Keep track of the last cycle value in the schedule. 603 int LastCycle = 0; 604 605 /// The initiation interval (II) for the schedule. 606 int InitiationInterval = 0; 607 608 /// Target machine information. 609 const TargetSubtargetInfo &ST; 610 611 /// Virtual register information. 612 MachineRegisterInfo &MRI; 613 614 std::unique_ptr<DFAPacketizer> Resources; 615 616 public: 617 SMSchedule(MachineFunction *mf) 618 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 619 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 620 621 void reset() { 622 ScheduledInstrs.clear(); 623 InstrToCycle.clear(); 624 RegToStageDiff.clear(); 625 FirstCycle = 0; 626 LastCycle = 0; 627 InitiationInterval = 0; 628 } 629 630 /// Set the initiation interval for this schedule. 631 void setInitiationInterval(int ii) { InitiationInterval = ii; } 632 633 /// Return the first cycle in the completed schedule. This 634 /// can be a negative value. 635 int getFirstCycle() const { return FirstCycle; } 636 637 /// Return the last cycle in the finalized schedule. 638 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 639 640 /// Return the cycle of the earliest scheduled instruction in the dependence 641 /// chain. 642 int earliestCycleInChain(const SDep &Dep); 643 644 /// Return the cycle of the latest scheduled instruction in the dependence 645 /// chain. 646 int latestCycleInChain(const SDep &Dep); 647 648 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 649 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 650 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 651 652 /// Iterators for the cycle to instruction map. 653 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 654 using const_sched_iterator = 655 DenseMap<int, std::deque<SUnit *>>::const_iterator; 656 657 /// Return true if the instruction is scheduled at the specified stage. 658 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 659 return (stageScheduled(SU) == (int)StageNum); 660 } 661 662 /// Return the stage for a scheduled instruction. Return -1 if 663 /// the instruction has not been scheduled. 664 int stageScheduled(SUnit *SU) const { 665 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 666 if (it == InstrToCycle.end()) 667 return -1; 668 return (it->second - FirstCycle) / InitiationInterval; 669 } 670 671 /// Return the cycle for a scheduled instruction. This function normalizes 672 /// the first cycle to be 0. 673 unsigned cycleScheduled(SUnit *SU) const { 674 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 675 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 676 return (it->second - FirstCycle) % InitiationInterval; 677 } 678 679 /// Return the maximum stage count needed for this schedule. 680 unsigned getMaxStageCount() { 681 return (LastCycle - FirstCycle) / InitiationInterval; 682 } 683 684 /// Return the max. number of stages/iterations that can occur between a 685 /// register definition and its uses. 686 unsigned getStagesForReg(int Reg, unsigned CurStage) { 687 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 688 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 689 return 1; 690 return Stages.first; 691 } 692 693 /// The number of stages for a Phi is a little different than other 694 /// instructions. The minimum value computed in RegToStageDiff is 1 695 /// because we assume the Phi is needed for at least 1 iteration. 696 /// This is not the case if the loop value is scheduled prior to the 697 /// Phi in the same stage. This function returns the number of stages 698 /// or iterations needed between the Phi definition and any uses. 699 unsigned getStagesForPhi(int Reg) { 700 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 701 if (Stages.second) 702 return Stages.first; 703 return Stages.first - 1; 704 } 705 706 /// Return the instructions that are scheduled at the specified cycle. 707 std::deque<SUnit *> &getInstructions(int cycle) { 708 return ScheduledInstrs[cycle]; 709 } 710 711 bool isValidSchedule(SwingSchedulerDAG *SSD); 712 void finalizeSchedule(SwingSchedulerDAG *SSD); 713 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 714 std::deque<SUnit *> &Insts); 715 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 716 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 717 MachineOperand &MO); 718 void print(raw_ostream &os) const; 719 void dump() const; 720 }; 721 722 } // end anonymous namespace 723 724 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 725 char MachinePipeliner::ID = 0; 726 #ifndef NDEBUG 727 int MachinePipeliner::NumTries = 0; 728 #endif 729 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 730 731 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 732 "Modulo Software Pipelining", false, false) 733 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 734 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 735 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 736 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 737 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 738 "Modulo Software Pipelining", false, false) 739 740 /// The "main" function for implementing Swing Modulo Scheduling. 741 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 742 if (skipFunction(mf.getFunction())) 743 return false; 744 745 if (!EnableSWP) 746 return false; 747 748 if (mf.getFunction().getAttributes().hasAttribute( 749 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 750 !EnableSWPOptSize.getPosition()) 751 return false; 752 753 MF = &mf; 754 MLI = &getAnalysis<MachineLoopInfo>(); 755 MDT = &getAnalysis<MachineDominatorTree>(); 756 TII = MF->getSubtarget().getInstrInfo(); 757 RegClassInfo.runOnMachineFunction(*MF); 758 759 for (auto &L : *MLI) 760 scheduleLoop(*L); 761 762 return false; 763 } 764 765 /// Attempt to perform the SMS algorithm on the specified loop. This function is 766 /// the main entry point for the algorithm. The function identifies candidate 767 /// loops, calculates the minimum initiation interval, and attempts to schedule 768 /// the loop. 769 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 770 bool Changed = false; 771 for (auto &InnerLoop : L) 772 Changed |= scheduleLoop(*InnerLoop); 773 774 #ifndef NDEBUG 775 // Stop trying after reaching the limit (if any). 776 int Limit = SwpLoopLimit; 777 if (Limit >= 0) { 778 if (NumTries >= SwpLoopLimit) 779 return Changed; 780 NumTries++; 781 } 782 #endif 783 784 if (!canPipelineLoop(L)) 785 return Changed; 786 787 ++NumTrytoPipeline; 788 789 Changed = swingModuloScheduler(L); 790 791 return Changed; 792 } 793 794 /// Return true if the loop can be software pipelined. The algorithm is 795 /// restricted to loops with a single basic block. Make sure that the 796 /// branch in the loop can be analyzed. 797 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 798 if (L.getNumBlocks() != 1) 799 return false; 800 801 // Check if the branch can't be understood because we can't do pipelining 802 // if that's the case. 803 LI.TBB = nullptr; 804 LI.FBB = nullptr; 805 LI.BrCond.clear(); 806 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 807 return false; 808 809 LI.LoopInductionVar = nullptr; 810 LI.LoopCompare = nullptr; 811 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 812 return false; 813 814 if (!L.getLoopPreheader()) 815 return false; 816 817 // Remove any subregisters from inputs to phi nodes. 818 preprocessPhiNodes(*L.getHeader()); 819 return true; 820 } 821 822 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 823 MachineRegisterInfo &MRI = MF->getRegInfo(); 824 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 825 826 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 827 MachineOperand &DefOp = PI.getOperand(0); 828 assert(DefOp.getSubReg() == 0); 829 auto *RC = MRI.getRegClass(DefOp.getReg()); 830 831 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 832 MachineOperand &RegOp = PI.getOperand(i); 833 if (RegOp.getSubReg() == 0) 834 continue; 835 836 // If the operand uses a subregister, replace it with a new register 837 // without subregisters, and generate a copy to the new register. 838 unsigned NewReg = MRI.createVirtualRegister(RC); 839 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 840 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 841 const DebugLoc &DL = PredB.findDebugLoc(At); 842 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 843 .addReg(RegOp.getReg(), getRegState(RegOp), 844 RegOp.getSubReg()); 845 Slots.insertMachineInstrInMaps(*Copy); 846 RegOp.setReg(NewReg); 847 RegOp.setSubReg(0); 848 } 849 } 850 } 851 852 /// The SMS algorithm consists of the following main steps: 853 /// 1. Computation and analysis of the dependence graph. 854 /// 2. Ordering of the nodes (instructions). 855 /// 3. Attempt to Schedule the loop. 856 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 857 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 858 859 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 860 861 MachineBasicBlock *MBB = L.getHeader(); 862 // The kernel should not include any terminator instructions. These 863 // will be added back later. 864 SMS.startBlock(MBB); 865 866 // Compute the number of 'real' instructions in the basic block by 867 // ignoring terminators. 868 unsigned size = MBB->size(); 869 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 870 E = MBB->instr_end(); 871 I != E; ++I, --size) 872 ; 873 874 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 875 SMS.schedule(); 876 SMS.exitRegion(); 877 878 SMS.finishBlock(); 879 return SMS.hasNewSchedule(); 880 } 881 882 /// We override the schedule function in ScheduleDAGInstrs to implement the 883 /// scheduling part of the Swing Modulo Scheduling algorithm. 884 void SwingSchedulerDAG::schedule() { 885 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 886 buildSchedGraph(AA); 887 addLoopCarriedDependences(AA); 888 updatePhiDependences(); 889 Topo.InitDAGTopologicalSorting(); 890 postprocessDAG(); 891 changeDependences(); 892 DEBUG({ 893 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 894 SUnits[su].dumpAll(this); 895 }); 896 897 NodeSetType NodeSets; 898 findCircuits(NodeSets); 899 NodeSetType Circuits = NodeSets; 900 901 // Calculate the MII. 902 unsigned ResMII = calculateResMII(); 903 unsigned RecMII = calculateRecMII(NodeSets); 904 905 fuseRecs(NodeSets); 906 907 // This flag is used for testing and can cause correctness problems. 908 if (SwpIgnoreRecMII) 909 RecMII = 0; 910 911 MII = std::max(ResMII, RecMII); 912 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 913 << ")\n"); 914 915 // Can't schedule a loop without a valid MII. 916 if (MII == 0) 917 return; 918 919 // Don't pipeline large loops. 920 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 921 return; 922 923 computeNodeFunctions(NodeSets); 924 925 registerPressureFilter(NodeSets); 926 927 colocateNodeSets(NodeSets); 928 929 checkNodeSets(NodeSets); 930 931 DEBUG({ 932 for (auto &I : NodeSets) { 933 dbgs() << " Rec NodeSet "; 934 I.dump(); 935 } 936 }); 937 938 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 939 940 groupRemainingNodes(NodeSets); 941 942 removeDuplicateNodes(NodeSets); 943 944 DEBUG({ 945 for (auto &I : NodeSets) { 946 dbgs() << " NodeSet "; 947 I.dump(); 948 } 949 }); 950 951 computeNodeOrder(NodeSets); 952 953 // check for node order issues 954 checkValidNodeOrder(Circuits); 955 956 SMSchedule Schedule(Pass.MF); 957 Scheduled = schedulePipeline(Schedule); 958 959 if (!Scheduled) 960 return; 961 962 unsigned numStages = Schedule.getMaxStageCount(); 963 // No need to generate pipeline if there are no overlapped iterations. 964 if (numStages == 0) 965 return; 966 967 // Check that the maximum stage count is less than user-defined limit. 968 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 969 return; 970 971 generatePipelinedLoop(Schedule); 972 ++NumPipelined; 973 } 974 975 /// Clean up after the software pipeliner runs. 976 void SwingSchedulerDAG::finishBlock() { 977 for (MachineInstr *I : NewMIs) 978 MF.DeleteMachineInstr(I); 979 NewMIs.clear(); 980 981 // Call the superclass. 982 ScheduleDAGInstrs::finishBlock(); 983 } 984 985 /// Return the register values for the operands of a Phi instruction. 986 /// This function assume the instruction is a Phi. 987 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 988 unsigned &InitVal, unsigned &LoopVal) { 989 assert(Phi.isPHI() && "Expecting a Phi."); 990 991 InitVal = 0; 992 LoopVal = 0; 993 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 994 if (Phi.getOperand(i + 1).getMBB() != Loop) 995 InitVal = Phi.getOperand(i).getReg(); 996 else 997 LoopVal = Phi.getOperand(i).getReg(); 998 999 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 1000 } 1001 1002 /// Return the Phi register value that comes from the incoming block. 1003 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1004 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1005 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 1006 return Phi.getOperand(i).getReg(); 1007 return 0; 1008 } 1009 1010 /// Return the Phi register value that comes the loop block. 1011 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1012 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1013 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 1014 return Phi.getOperand(i).getReg(); 1015 return 0; 1016 } 1017 1018 /// Return true if SUb can be reached from SUa following the chain edges. 1019 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1020 SmallPtrSet<SUnit *, 8> Visited; 1021 SmallVector<SUnit *, 8> Worklist; 1022 Worklist.push_back(SUa); 1023 while (!Worklist.empty()) { 1024 const SUnit *SU = Worklist.pop_back_val(); 1025 for (auto &SI : SU->Succs) { 1026 SUnit *SuccSU = SI.getSUnit(); 1027 if (SI.getKind() == SDep::Order) { 1028 if (Visited.count(SuccSU)) 1029 continue; 1030 if (SuccSU == SUb) 1031 return true; 1032 Worklist.push_back(SuccSU); 1033 Visited.insert(SuccSU); 1034 } 1035 } 1036 } 1037 return false; 1038 } 1039 1040 /// Return true if the instruction causes a chain between memory 1041 /// references before and after it. 1042 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1043 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1044 (MI.hasOrderedMemoryRef() && 1045 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1046 } 1047 1048 /// Return the underlying objects for the memory references of an instruction. 1049 /// This function calls the code in ValueTracking, but first checks that the 1050 /// instruction has a memory operand. 1051 static void getUnderlyingObjects(MachineInstr *MI, 1052 SmallVectorImpl<Value *> &Objs, 1053 const DataLayout &DL) { 1054 if (!MI->hasOneMemOperand()) 1055 return; 1056 MachineMemOperand *MM = *MI->memoperands_begin(); 1057 if (!MM->getValue()) 1058 return; 1059 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1060 } 1061 1062 /// Add a chain edge between a load and store if the store can be an 1063 /// alias of the load on a subsequent iteration, i.e., a loop carried 1064 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1065 /// but that code doesn't create loop carried dependences. 1066 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1067 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1068 for (auto &SU : SUnits) { 1069 MachineInstr &MI = *SU.getInstr(); 1070 if (isDependenceBarrier(MI, AA)) 1071 PendingLoads.clear(); 1072 else if (MI.mayLoad()) { 1073 SmallVector<Value *, 4> Objs; 1074 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1075 for (auto V : Objs) { 1076 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1077 SUs.push_back(&SU); 1078 } 1079 } else if (MI.mayStore()) { 1080 SmallVector<Value *, 4> Objs; 1081 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1082 for (auto V : Objs) { 1083 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1084 PendingLoads.find(V); 1085 if (I == PendingLoads.end()) 1086 continue; 1087 for (auto Load : I->second) { 1088 if (isSuccOrder(Load, &SU)) 1089 continue; 1090 MachineInstr &LdMI = *Load->getInstr(); 1091 // First, perform the cheaper check that compares the base register. 1092 // If they are the same and the load offset is less than the store 1093 // offset, then mark the dependence as loop carried potentially. 1094 unsigned BaseReg1, BaseReg2; 1095 int64_t Offset1, Offset2; 1096 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1097 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1098 SDep Dep(Load, SDep::Barrier); 1099 Dep.setLatency(1); 1100 SU.addPred(Dep); 1101 continue; 1102 } 1103 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1104 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1105 "What happened to the chain edge?"); 1106 SDep Dep(Load, SDep::Barrier); 1107 Dep.setLatency(1); 1108 SU.addPred(Dep); 1109 continue; 1110 } 1111 // Second, the more expensive check that uses alias analysis on the 1112 // base registers. If they alias, and the load offset is less than 1113 // the store offset, the mark the dependence as loop carried. 1114 if (!AA) { 1115 SDep Dep(Load, SDep::Barrier); 1116 Dep.setLatency(1); 1117 SU.addPred(Dep); 1118 continue; 1119 } 1120 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1121 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1122 if (!MMO1->getValue() || !MMO2->getValue()) { 1123 SDep Dep(Load, SDep::Barrier); 1124 Dep.setLatency(1); 1125 SU.addPred(Dep); 1126 continue; 1127 } 1128 if (MMO1->getValue() == MMO2->getValue() && 1129 MMO1->getOffset() <= MMO2->getOffset()) { 1130 SDep Dep(Load, SDep::Barrier); 1131 Dep.setLatency(1); 1132 SU.addPred(Dep); 1133 continue; 1134 } 1135 AliasResult AAResult = AA->alias( 1136 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1137 MMO1->getAAInfo()), 1138 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1139 MMO2->getAAInfo())); 1140 1141 if (AAResult != NoAlias) { 1142 SDep Dep(Load, SDep::Barrier); 1143 Dep.setLatency(1); 1144 SU.addPred(Dep); 1145 } 1146 } 1147 } 1148 } 1149 } 1150 } 1151 1152 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1153 /// processes dependences for PHIs. This function adds true dependences 1154 /// from a PHI to a use, and a loop carried dependence from the use to the 1155 /// PHI. The loop carried dependence is represented as an anti dependence 1156 /// edge. This function also removes chain dependences between unrelated 1157 /// PHIs. 1158 void SwingSchedulerDAG::updatePhiDependences() { 1159 SmallVector<SDep, 4> RemoveDeps; 1160 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1161 1162 // Iterate over each DAG node. 1163 for (SUnit &I : SUnits) { 1164 RemoveDeps.clear(); 1165 // Set to true if the instruction has an operand defined by a Phi. 1166 unsigned HasPhiUse = 0; 1167 unsigned HasPhiDef = 0; 1168 MachineInstr *MI = I.getInstr(); 1169 // Iterate over each operand, and we process the definitions. 1170 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1171 MOE = MI->operands_end(); 1172 MOI != MOE; ++MOI) { 1173 if (!MOI->isReg()) 1174 continue; 1175 unsigned Reg = MOI->getReg(); 1176 if (MOI->isDef()) { 1177 // If the register is used by a Phi, then create an anti dependence. 1178 for (MachineRegisterInfo::use_instr_iterator 1179 UI = MRI.use_instr_begin(Reg), 1180 UE = MRI.use_instr_end(); 1181 UI != UE; ++UI) { 1182 MachineInstr *UseMI = &*UI; 1183 SUnit *SU = getSUnit(UseMI); 1184 if (SU != nullptr && UseMI->isPHI()) { 1185 if (!MI->isPHI()) { 1186 SDep Dep(SU, SDep::Anti, Reg); 1187 Dep.setLatency(1); 1188 I.addPred(Dep); 1189 } else { 1190 HasPhiDef = Reg; 1191 // Add a chain edge to a dependent Phi that isn't an existing 1192 // predecessor. 1193 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1194 I.addPred(SDep(SU, SDep::Barrier)); 1195 } 1196 } 1197 } 1198 } else if (MOI->isUse()) { 1199 // If the register is defined by a Phi, then create a true dependence. 1200 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1201 if (DefMI == nullptr) 1202 continue; 1203 SUnit *SU = getSUnit(DefMI); 1204 if (SU != nullptr && DefMI->isPHI()) { 1205 if (!MI->isPHI()) { 1206 SDep Dep(SU, SDep::Data, Reg); 1207 Dep.setLatency(0); 1208 ST.adjustSchedDependency(SU, &I, Dep); 1209 I.addPred(Dep); 1210 } else { 1211 HasPhiUse = Reg; 1212 // Add a chain edge to a dependent Phi that isn't an existing 1213 // predecessor. 1214 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1215 I.addPred(SDep(SU, SDep::Barrier)); 1216 } 1217 } 1218 } 1219 } 1220 // Remove order dependences from an unrelated Phi. 1221 if (!SwpPruneDeps) 1222 continue; 1223 for (auto &PI : I.Preds) { 1224 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1225 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1226 if (I.getInstr()->isPHI()) { 1227 if (PMI->getOperand(0).getReg() == HasPhiUse) 1228 continue; 1229 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1230 continue; 1231 } 1232 RemoveDeps.push_back(PI); 1233 } 1234 } 1235 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1236 I.removePred(RemoveDeps[i]); 1237 } 1238 } 1239 1240 /// Iterate over each DAG node and see if we can change any dependences 1241 /// in order to reduce the recurrence MII. 1242 void SwingSchedulerDAG::changeDependences() { 1243 // See if an instruction can use a value from the previous iteration. 1244 // If so, we update the base and offset of the instruction and change 1245 // the dependences. 1246 for (SUnit &I : SUnits) { 1247 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1248 int64_t NewOffset = 0; 1249 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1250 NewOffset)) 1251 continue; 1252 1253 // Get the MI and SUnit for the instruction that defines the original base. 1254 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1255 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1256 if (!DefMI) 1257 continue; 1258 SUnit *DefSU = getSUnit(DefMI); 1259 if (!DefSU) 1260 continue; 1261 // Get the MI and SUnit for the instruction that defins the new base. 1262 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1263 if (!LastMI) 1264 continue; 1265 SUnit *LastSU = getSUnit(LastMI); 1266 if (!LastSU) 1267 continue; 1268 1269 if (Topo.IsReachable(&I, LastSU)) 1270 continue; 1271 1272 // Remove the dependence. The value now depends on a prior iteration. 1273 SmallVector<SDep, 4> Deps; 1274 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1275 ++P) 1276 if (P->getSUnit() == DefSU) 1277 Deps.push_back(*P); 1278 for (int i = 0, e = Deps.size(); i != e; i++) { 1279 Topo.RemovePred(&I, Deps[i].getSUnit()); 1280 I.removePred(Deps[i]); 1281 } 1282 // Remove the chain dependence between the instructions. 1283 Deps.clear(); 1284 for (auto &P : LastSU->Preds) 1285 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1286 Deps.push_back(P); 1287 for (int i = 0, e = Deps.size(); i != e; i++) { 1288 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1289 LastSU->removePred(Deps[i]); 1290 } 1291 1292 // Add a dependence between the new instruction and the instruction 1293 // that defines the new base. 1294 SDep Dep(&I, SDep::Anti, NewBase); 1295 LastSU->addPred(Dep); 1296 1297 // Remember the base and offset information so that we can update the 1298 // instruction during code generation. 1299 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1300 } 1301 } 1302 1303 namespace { 1304 1305 // FuncUnitSorter - Comparison operator used to sort instructions by 1306 // the number of functional unit choices. 1307 struct FuncUnitSorter { 1308 const InstrItineraryData *InstrItins; 1309 DenseMap<unsigned, unsigned> Resources; 1310 1311 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1312 1313 // Compute the number of functional unit alternatives needed 1314 // at each stage, and take the minimum value. We prioritize the 1315 // instructions by the least number of choices first. 1316 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1317 unsigned schedClass = Inst->getDesc().getSchedClass(); 1318 unsigned min = UINT_MAX; 1319 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1320 *IE = InstrItins->endStage(schedClass); 1321 IS != IE; ++IS) { 1322 unsigned funcUnits = IS->getUnits(); 1323 unsigned numAlternatives = countPopulation(funcUnits); 1324 if (numAlternatives < min) { 1325 min = numAlternatives; 1326 F = funcUnits; 1327 } 1328 } 1329 return min; 1330 } 1331 1332 // Compute the critical resources needed by the instruction. This 1333 // function records the functional units needed by instructions that 1334 // must use only one functional unit. We use this as a tie breaker 1335 // for computing the resource MII. The instrutions that require 1336 // the same, highly used, functional unit have high priority. 1337 void calcCriticalResources(MachineInstr &MI) { 1338 unsigned SchedClass = MI.getDesc().getSchedClass(); 1339 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1340 *IE = InstrItins->endStage(SchedClass); 1341 IS != IE; ++IS) { 1342 unsigned FuncUnits = IS->getUnits(); 1343 if (countPopulation(FuncUnits) == 1) 1344 Resources[FuncUnits]++; 1345 } 1346 } 1347 1348 /// Return true if IS1 has less priority than IS2. 1349 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1350 unsigned F1 = 0, F2 = 0; 1351 unsigned MFUs1 = minFuncUnits(IS1, F1); 1352 unsigned MFUs2 = minFuncUnits(IS2, F2); 1353 if (MFUs1 == 1 && MFUs2 == 1) 1354 return Resources.lookup(F1) < Resources.lookup(F2); 1355 return MFUs1 > MFUs2; 1356 } 1357 }; 1358 1359 } // end anonymous namespace 1360 1361 /// Calculate the resource constrained minimum initiation interval for the 1362 /// specified loop. We use the DFA to model the resources needed for 1363 /// each instruction, and we ignore dependences. A different DFA is created 1364 /// for each cycle that is required. When adding a new instruction, we attempt 1365 /// to add it to each existing DFA, until a legal space is found. If the 1366 /// instruction cannot be reserved in an existing DFA, we create a new one. 1367 unsigned SwingSchedulerDAG::calculateResMII() { 1368 SmallVector<DFAPacketizer *, 8> Resources; 1369 MachineBasicBlock *MBB = Loop.getHeader(); 1370 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1371 1372 // Sort the instructions by the number of available choices for scheduling, 1373 // least to most. Use the number of critical resources as the tie breaker. 1374 FuncUnitSorter FUS = 1375 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1376 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1377 E = MBB->getFirstTerminator(); 1378 I != E; ++I) 1379 FUS.calcCriticalResources(*I); 1380 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1381 FuncUnitOrder(FUS); 1382 1383 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1384 E = MBB->getFirstTerminator(); 1385 I != E; ++I) 1386 FuncUnitOrder.push(&*I); 1387 1388 while (!FuncUnitOrder.empty()) { 1389 MachineInstr *MI = FuncUnitOrder.top(); 1390 FuncUnitOrder.pop(); 1391 if (TII->isZeroCost(MI->getOpcode())) 1392 continue; 1393 // Attempt to reserve the instruction in an existing DFA. At least one 1394 // DFA is needed for each cycle. 1395 unsigned NumCycles = getSUnit(MI)->Latency; 1396 unsigned ReservedCycles = 0; 1397 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1398 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1399 for (unsigned C = 0; C < NumCycles; ++C) 1400 while (RI != RE) { 1401 if ((*RI++)->canReserveResources(*MI)) { 1402 ++ReservedCycles; 1403 break; 1404 } 1405 } 1406 // Start reserving resources using existing DFAs. 1407 for (unsigned C = 0; C < ReservedCycles; ++C) { 1408 --RI; 1409 (*RI)->reserveResources(*MI); 1410 } 1411 // Add new DFAs, if needed, to reserve resources. 1412 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1413 DFAPacketizer *NewResource = 1414 TII->CreateTargetScheduleState(MF.getSubtarget()); 1415 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1416 NewResource->reserveResources(*MI); 1417 Resources.push_back(NewResource); 1418 } 1419 } 1420 int Resmii = Resources.size(); 1421 // Delete the memory for each of the DFAs that were created earlier. 1422 for (DFAPacketizer *RI : Resources) { 1423 DFAPacketizer *D = RI; 1424 delete D; 1425 } 1426 Resources.clear(); 1427 return Resmii; 1428 } 1429 1430 /// Calculate the recurrence-constrainted minimum initiation interval. 1431 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1432 /// for each circuit. The II needs to satisfy the inequality 1433 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1434 /// II that satistifies the inequality, and the RecMII is the maximum 1435 /// of those values. 1436 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1437 unsigned RecMII = 0; 1438 1439 for (NodeSet &Nodes : NodeSets) { 1440 if (Nodes.empty()) 1441 continue; 1442 1443 unsigned Delay = Nodes.size() - 1; 1444 unsigned Distance = 1; 1445 1446 // ii = ceil(delay / distance) 1447 unsigned CurMII = (Delay + Distance - 1) / Distance; 1448 Nodes.setRecMII(CurMII); 1449 if (CurMII > RecMII) 1450 RecMII = CurMII; 1451 } 1452 1453 return RecMII; 1454 } 1455 1456 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1457 /// but we do this to find the circuits, and then change them back. 1458 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1459 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1460 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1461 SUnit *SU = &SUnits[i]; 1462 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1463 IP != EP; ++IP) { 1464 if (IP->getKind() != SDep::Anti) 1465 continue; 1466 DepsAdded.push_back(std::make_pair(SU, *IP)); 1467 } 1468 } 1469 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1470 E = DepsAdded.end(); 1471 I != E; ++I) { 1472 // Remove this anti dependency and add one in the reverse direction. 1473 SUnit *SU = I->first; 1474 SDep &D = I->second; 1475 SUnit *TargetSU = D.getSUnit(); 1476 unsigned Reg = D.getReg(); 1477 unsigned Lat = D.getLatency(); 1478 SU->removePred(D); 1479 SDep Dep(SU, SDep::Anti, Reg); 1480 Dep.setLatency(Lat); 1481 TargetSU->addPred(Dep); 1482 } 1483 } 1484 1485 /// Create the adjacency structure of the nodes in the graph. 1486 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1487 SwingSchedulerDAG *DAG) { 1488 BitVector Added(SUnits.size()); 1489 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1490 Added.reset(); 1491 // Add any successor to the adjacency matrix and exclude duplicates. 1492 for (auto &SI : SUnits[i].Succs) { 1493 // Do not process a boundary node and a back-edge is processed only 1494 // if it goes to a Phi. 1495 if (SI.getSUnit()->isBoundaryNode() || 1496 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1497 continue; 1498 int N = SI.getSUnit()->NodeNum; 1499 if (!Added.test(N)) { 1500 AdjK[i].push_back(N); 1501 Added.set(N); 1502 } 1503 } 1504 // A chain edge between a store and a load is treated as a back-edge in the 1505 // adjacency matrix. 1506 for (auto &PI : SUnits[i].Preds) { 1507 if (!SUnits[i].getInstr()->mayStore() || 1508 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1509 continue; 1510 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1511 int N = PI.getSUnit()->NodeNum; 1512 if (!Added.test(N)) { 1513 AdjK[i].push_back(N); 1514 Added.set(N); 1515 } 1516 } 1517 } 1518 } 1519 } 1520 1521 /// Identify an elementary circuit in the dependence graph starting at the 1522 /// specified node. 1523 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1524 bool HasBackedge) { 1525 SUnit *SV = &SUnits[V]; 1526 bool F = false; 1527 Stack.insert(SV); 1528 Blocked.set(V); 1529 1530 for (auto W : AdjK[V]) { 1531 if (NumPaths > MaxPaths) 1532 break; 1533 if (W < S) 1534 continue; 1535 if (W == S) { 1536 if (!HasBackedge) 1537 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1538 F = true; 1539 ++NumPaths; 1540 break; 1541 } else if (!Blocked.test(W)) { 1542 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1543 F = true; 1544 } 1545 } 1546 1547 if (F) 1548 unblock(V); 1549 else { 1550 for (auto W : AdjK[V]) { 1551 if (W < S) 1552 continue; 1553 if (B[W].count(SV) == 0) 1554 B[W].insert(SV); 1555 } 1556 } 1557 Stack.pop_back(); 1558 return F; 1559 } 1560 1561 /// Unblock a node in the circuit finding algorithm. 1562 void SwingSchedulerDAG::Circuits::unblock(int U) { 1563 Blocked.reset(U); 1564 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1565 while (!BU.empty()) { 1566 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1567 assert(SI != BU.end() && "Invalid B set."); 1568 SUnit *W = *SI; 1569 BU.erase(W); 1570 if (Blocked.test(W->NodeNum)) 1571 unblock(W->NodeNum); 1572 } 1573 } 1574 1575 /// Identify all the elementary circuits in the dependence graph using 1576 /// Johnson's circuit algorithm. 1577 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1578 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1579 // but we do this to find the circuits, and then change them back. 1580 swapAntiDependences(SUnits); 1581 1582 Circuits Cir(SUnits); 1583 // Create the adjacency structure. 1584 Cir.createAdjacencyStructure(this); 1585 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1586 Cir.reset(); 1587 Cir.circuit(i, i, NodeSets); 1588 } 1589 1590 // Change the dependences back so that we've created a DAG again. 1591 swapAntiDependences(SUnits); 1592 } 1593 1594 /// Return true for DAG nodes that we ignore when computing the cost functions. 1595 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1596 /// in the calculation of the ASAP, ALAP, etc functions. 1597 static bool ignoreDependence(const SDep &D, bool isPred) { 1598 if (D.isArtificial()) 1599 return true; 1600 return D.getKind() == SDep::Anti && isPred; 1601 } 1602 1603 /// Compute several functions need to order the nodes for scheduling. 1604 /// ASAP - Earliest time to schedule a node. 1605 /// ALAP - Latest time to schedule a node. 1606 /// MOV - Mobility function, difference between ALAP and ASAP. 1607 /// D - Depth of each node. 1608 /// H - Height of each node. 1609 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1610 ScheduleInfo.resize(SUnits.size()); 1611 1612 DEBUG({ 1613 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1614 E = Topo.end(); 1615 I != E; ++I) { 1616 SUnit *SU = &SUnits[*I]; 1617 SU->dump(this); 1618 } 1619 }); 1620 1621 int maxASAP = 0; 1622 // Compute ASAP and ZeroLatencyDepth. 1623 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1624 E = Topo.end(); 1625 I != E; ++I) { 1626 int asap = 0; 1627 int zeroLatencyDepth = 0; 1628 SUnit *SU = &SUnits[*I]; 1629 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1630 EP = SU->Preds.end(); 1631 IP != EP; ++IP) { 1632 SUnit *pred = IP->getSUnit(); 1633 if (IP->getLatency() == 0) 1634 zeroLatencyDepth = 1635 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1636 if (ignoreDependence(*IP, true)) 1637 continue; 1638 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1639 getDistance(pred, SU, *IP) * MII)); 1640 } 1641 maxASAP = std::max(maxASAP, asap); 1642 ScheduleInfo[*I].ASAP = asap; 1643 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1644 } 1645 1646 // Compute ALAP, ZeroLatencyHeight, and MOV. 1647 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1648 E = Topo.rend(); 1649 I != E; ++I) { 1650 int alap = maxASAP; 1651 int zeroLatencyHeight = 0; 1652 SUnit *SU = &SUnits[*I]; 1653 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1654 ES = SU->Succs.end(); 1655 IS != ES; ++IS) { 1656 SUnit *succ = IS->getSUnit(); 1657 if (IS->getLatency() == 0) 1658 zeroLatencyHeight = 1659 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1660 if (ignoreDependence(*IS, true)) 1661 continue; 1662 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1663 getDistance(SU, succ, *IS) * MII)); 1664 } 1665 1666 ScheduleInfo[*I].ALAP = alap; 1667 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1668 } 1669 1670 // After computing the node functions, compute the summary for each node set. 1671 for (NodeSet &I : NodeSets) 1672 I.computeNodeSetInfo(this); 1673 1674 DEBUG({ 1675 for (unsigned i = 0; i < SUnits.size(); i++) { 1676 dbgs() << "\tNode " << i << ":\n"; 1677 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1678 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1679 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1680 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1681 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1682 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1683 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1684 } 1685 }); 1686 } 1687 1688 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1689 /// as the predecessors of the elements of NodeOrder that are not also in 1690 /// NodeOrder. 1691 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1692 SmallSetVector<SUnit *, 8> &Preds, 1693 const NodeSet *S = nullptr) { 1694 Preds.clear(); 1695 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1696 I != E; ++I) { 1697 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1698 PI != PE; ++PI) { 1699 if (S && S->count(PI->getSUnit()) == 0) 1700 continue; 1701 if (ignoreDependence(*PI, true)) 1702 continue; 1703 if (NodeOrder.count(PI->getSUnit()) == 0) 1704 Preds.insert(PI->getSUnit()); 1705 } 1706 // Back-edges are predecessors with an anti-dependence. 1707 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1708 ES = (*I)->Succs.end(); 1709 IS != ES; ++IS) { 1710 if (IS->getKind() != SDep::Anti) 1711 continue; 1712 if (S && S->count(IS->getSUnit()) == 0) 1713 continue; 1714 if (NodeOrder.count(IS->getSUnit()) == 0) 1715 Preds.insert(IS->getSUnit()); 1716 } 1717 } 1718 return !Preds.empty(); 1719 } 1720 1721 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1722 /// as the successors of the elements of NodeOrder that are not also in 1723 /// NodeOrder. 1724 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1725 SmallSetVector<SUnit *, 8> &Succs, 1726 const NodeSet *S = nullptr) { 1727 Succs.clear(); 1728 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1729 I != E; ++I) { 1730 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1731 SI != SE; ++SI) { 1732 if (S && S->count(SI->getSUnit()) == 0) 1733 continue; 1734 if (ignoreDependence(*SI, false)) 1735 continue; 1736 if (NodeOrder.count(SI->getSUnit()) == 0) 1737 Succs.insert(SI->getSUnit()); 1738 } 1739 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1740 PE = (*I)->Preds.end(); 1741 PI != PE; ++PI) { 1742 if (PI->getKind() != SDep::Anti) 1743 continue; 1744 if (S && S->count(PI->getSUnit()) == 0) 1745 continue; 1746 if (NodeOrder.count(PI->getSUnit()) == 0) 1747 Succs.insert(PI->getSUnit()); 1748 } 1749 } 1750 return !Succs.empty(); 1751 } 1752 1753 /// Return true if there is a path from the specified node to any of the nodes 1754 /// in DestNodes. Keep track and return the nodes in any path. 1755 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1756 SetVector<SUnit *> &DestNodes, 1757 SetVector<SUnit *> &Exclude, 1758 SmallPtrSet<SUnit *, 8> &Visited) { 1759 if (Cur->isBoundaryNode()) 1760 return false; 1761 if (Exclude.count(Cur) != 0) 1762 return false; 1763 if (DestNodes.count(Cur) != 0) 1764 return true; 1765 if (!Visited.insert(Cur).second) 1766 return Path.count(Cur) != 0; 1767 bool FoundPath = false; 1768 for (auto &SI : Cur->Succs) 1769 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1770 for (auto &PI : Cur->Preds) 1771 if (PI.getKind() == SDep::Anti) 1772 FoundPath |= 1773 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1774 if (FoundPath) 1775 Path.insert(Cur); 1776 return FoundPath; 1777 } 1778 1779 /// Return true if Set1 is a subset of Set2. 1780 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1781 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1782 if (Set2.count(*I) == 0) 1783 return false; 1784 return true; 1785 } 1786 1787 /// Compute the live-out registers for the instructions in a node-set. 1788 /// The live-out registers are those that are defined in the node-set, 1789 /// but not used. Except for use operands of Phis. 1790 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1791 NodeSet &NS) { 1792 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1793 MachineRegisterInfo &MRI = MF.getRegInfo(); 1794 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1795 SmallSet<unsigned, 4> Uses; 1796 for (SUnit *SU : NS) { 1797 const MachineInstr *MI = SU->getInstr(); 1798 if (MI->isPHI()) 1799 continue; 1800 for (const MachineOperand &MO : MI->operands()) 1801 if (MO.isReg() && MO.isUse()) { 1802 unsigned Reg = MO.getReg(); 1803 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1804 Uses.insert(Reg); 1805 else if (MRI.isAllocatable(Reg)) 1806 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1807 Uses.insert(*Units); 1808 } 1809 } 1810 for (SUnit *SU : NS) 1811 for (const MachineOperand &MO : SU->getInstr()->operands()) 1812 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1813 unsigned Reg = MO.getReg(); 1814 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1815 if (!Uses.count(Reg)) 1816 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1817 LaneBitmask::getNone())); 1818 } else if (MRI.isAllocatable(Reg)) { 1819 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1820 if (!Uses.count(*Units)) 1821 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1822 LaneBitmask::getNone())); 1823 } 1824 } 1825 RPTracker.addLiveRegs(LiveOutRegs); 1826 } 1827 1828 /// A heuristic to filter nodes in recurrent node-sets if the register 1829 /// pressure of a set is too high. 1830 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1831 for (auto &NS : NodeSets) { 1832 // Skip small node-sets since they won't cause register pressure problems. 1833 if (NS.size() <= 2) 1834 continue; 1835 IntervalPressure RecRegPressure; 1836 RegPressureTracker RecRPTracker(RecRegPressure); 1837 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1838 computeLiveOuts(MF, RecRPTracker, NS); 1839 RecRPTracker.closeBottom(); 1840 1841 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1842 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1843 return A->NodeNum > B->NodeNum; 1844 }); 1845 1846 for (auto &SU : SUnits) { 1847 // Since we're computing the register pressure for a subset of the 1848 // instructions in a block, we need to set the tracker for each 1849 // instruction in the node-set. The tracker is set to the instruction 1850 // just after the one we're interested in. 1851 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1852 RecRPTracker.setPos(std::next(CurInstI)); 1853 1854 RegPressureDelta RPDelta; 1855 ArrayRef<PressureChange> CriticalPSets; 1856 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1857 CriticalPSets, 1858 RecRegPressure.MaxSetPressure); 1859 if (RPDelta.Excess.isValid()) { 1860 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1861 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1862 << ":" << RPDelta.Excess.getUnitInc()); 1863 NS.setExceedPressure(SU); 1864 break; 1865 } 1866 RecRPTracker.recede(); 1867 } 1868 } 1869 } 1870 1871 /// A heuristic to colocate node sets that have the same set of 1872 /// successors. 1873 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1874 unsigned Colocate = 0; 1875 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1876 NodeSet &N1 = NodeSets[i]; 1877 SmallSetVector<SUnit *, 8> S1; 1878 if (N1.empty() || !succ_L(N1, S1)) 1879 continue; 1880 for (int j = i + 1; j < e; ++j) { 1881 NodeSet &N2 = NodeSets[j]; 1882 if (N1.compareRecMII(N2) != 0) 1883 continue; 1884 SmallSetVector<SUnit *, 8> S2; 1885 if (N2.empty() || !succ_L(N2, S2)) 1886 continue; 1887 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1888 N1.setColocate(++Colocate); 1889 N2.setColocate(Colocate); 1890 break; 1891 } 1892 } 1893 } 1894 } 1895 1896 /// Check if the existing node-sets are profitable. If not, then ignore the 1897 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1898 /// a heuristic. If the MII is large and there is a non-recurrent node with 1899 /// a large depth compared to the MII, then it's best to try and schedule 1900 /// all instruction together instead of starting with the recurrent node-sets. 1901 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1902 // Look for loops with a large MII. 1903 if (MII <= 20) 1904 return; 1905 // Check if the node-set contains only a simple add recurrence. 1906 for (auto &NS : NodeSets) 1907 if (NS.size() > 2) 1908 return; 1909 // If the depth of any instruction is significantly larger than the MII, then 1910 // ignore the recurrent node-sets and treat all instructions equally. 1911 for (auto &SU : SUnits) 1912 if (SU.getDepth() > MII * 1.5) { 1913 NodeSets.clear(); 1914 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1915 return; 1916 } 1917 } 1918 1919 /// Add the nodes that do not belong to a recurrence set into groups 1920 /// based upon connected componenets. 1921 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1922 SetVector<SUnit *> NodesAdded; 1923 SmallPtrSet<SUnit *, 8> Visited; 1924 // Add the nodes that are on a path between the previous node sets and 1925 // the current node set. 1926 for (NodeSet &I : NodeSets) { 1927 SmallSetVector<SUnit *, 8> N; 1928 // Add the nodes from the current node set to the previous node set. 1929 if (succ_L(I, N)) { 1930 SetVector<SUnit *> Path; 1931 for (SUnit *NI : N) { 1932 Visited.clear(); 1933 computePath(NI, Path, NodesAdded, I, Visited); 1934 } 1935 if (!Path.empty()) 1936 I.insert(Path.begin(), Path.end()); 1937 } 1938 // Add the nodes from the previous node set to the current node set. 1939 N.clear(); 1940 if (succ_L(NodesAdded, N)) { 1941 SetVector<SUnit *> Path; 1942 for (SUnit *NI : N) { 1943 Visited.clear(); 1944 computePath(NI, Path, I, NodesAdded, Visited); 1945 } 1946 if (!Path.empty()) 1947 I.insert(Path.begin(), Path.end()); 1948 } 1949 NodesAdded.insert(I.begin(), I.end()); 1950 } 1951 1952 // Create a new node set with the connected nodes of any successor of a node 1953 // in a recurrent set. 1954 NodeSet NewSet; 1955 SmallSetVector<SUnit *, 8> N; 1956 if (succ_L(NodesAdded, N)) 1957 for (SUnit *I : N) 1958 addConnectedNodes(I, NewSet, NodesAdded); 1959 if (!NewSet.empty()) 1960 NodeSets.push_back(NewSet); 1961 1962 // Create a new node set with the connected nodes of any predecessor of a node 1963 // in a recurrent set. 1964 NewSet.clear(); 1965 if (pred_L(NodesAdded, N)) 1966 for (SUnit *I : N) 1967 addConnectedNodes(I, NewSet, NodesAdded); 1968 if (!NewSet.empty()) 1969 NodeSets.push_back(NewSet); 1970 1971 // Create new nodes sets with the connected nodes any any remaining node that 1972 // has no predecessor. 1973 for (unsigned i = 0; i < SUnits.size(); ++i) { 1974 SUnit *SU = &SUnits[i]; 1975 if (NodesAdded.count(SU) == 0) { 1976 NewSet.clear(); 1977 addConnectedNodes(SU, NewSet, NodesAdded); 1978 if (!NewSet.empty()) 1979 NodeSets.push_back(NewSet); 1980 } 1981 } 1982 } 1983 1984 /// Add the node to the set, and add all is its connected nodes to the set. 1985 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1986 SetVector<SUnit *> &NodesAdded) { 1987 NewSet.insert(SU); 1988 NodesAdded.insert(SU); 1989 for (auto &SI : SU->Succs) { 1990 SUnit *Successor = SI.getSUnit(); 1991 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1992 addConnectedNodes(Successor, NewSet, NodesAdded); 1993 } 1994 for (auto &PI : SU->Preds) { 1995 SUnit *Predecessor = PI.getSUnit(); 1996 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1997 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1998 } 1999 } 2000 2001 /// Return true if Set1 contains elements in Set2. The elements in common 2002 /// are returned in a different container. 2003 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2004 SmallSetVector<SUnit *, 8> &Result) { 2005 Result.clear(); 2006 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 2007 SUnit *SU = Set1[i]; 2008 if (Set2.count(SU) != 0) 2009 Result.insert(SU); 2010 } 2011 return !Result.empty(); 2012 } 2013 2014 /// Merge the recurrence node sets that have the same initial node. 2015 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2016 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2017 ++I) { 2018 NodeSet &NI = *I; 2019 for (NodeSetType::iterator J = I + 1; J != E;) { 2020 NodeSet &NJ = *J; 2021 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2022 if (NJ.compareRecMII(NI) > 0) 2023 NI.setRecMII(NJ.getRecMII()); 2024 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 2025 ++NII) 2026 I->insert(*NII); 2027 NodeSets.erase(J); 2028 E = NodeSets.end(); 2029 } else { 2030 ++J; 2031 } 2032 } 2033 } 2034 } 2035 2036 /// Remove nodes that have been scheduled in previous NodeSets. 2037 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2038 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2039 ++I) 2040 for (NodeSetType::iterator J = I + 1; J != E;) { 2041 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2042 2043 if (J->empty()) { 2044 NodeSets.erase(J); 2045 E = NodeSets.end(); 2046 } else { 2047 ++J; 2048 } 2049 } 2050 } 2051 2052 /// Compute an ordered list of the dependence graph nodes, which 2053 /// indicates the order that the nodes will be scheduled. This is a 2054 /// two-level algorithm. First, a partial order is created, which 2055 /// consists of a list of sets ordered from highest to lowest priority. 2056 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2057 SmallSetVector<SUnit *, 8> R; 2058 NodeOrder.clear(); 2059 2060 for (auto &Nodes : NodeSets) { 2061 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2062 OrderKind Order; 2063 SmallSetVector<SUnit *, 8> N; 2064 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2065 R.insert(N.begin(), N.end()); 2066 Order = BottomUp; 2067 DEBUG(dbgs() << " Bottom up (preds) "); 2068 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2069 R.insert(N.begin(), N.end()); 2070 Order = TopDown; 2071 DEBUG(dbgs() << " Top down (succs) "); 2072 } else if (isIntersect(N, Nodes, R)) { 2073 // If some of the successors are in the existing node-set, then use the 2074 // top-down ordering. 2075 Order = TopDown; 2076 DEBUG(dbgs() << " Top down (intersect) "); 2077 } else if (NodeSets.size() == 1) { 2078 for (auto &N : Nodes) 2079 if (N->Succs.size() == 0) 2080 R.insert(N); 2081 Order = BottomUp; 2082 DEBUG(dbgs() << " Bottom up (all) "); 2083 } else { 2084 // Find the node with the highest ASAP. 2085 SUnit *maxASAP = nullptr; 2086 for (SUnit *SU : Nodes) { 2087 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2088 maxASAP = SU; 2089 } 2090 R.insert(maxASAP); 2091 Order = BottomUp; 2092 DEBUG(dbgs() << " Bottom up (default) "); 2093 } 2094 2095 while (!R.empty()) { 2096 if (Order == TopDown) { 2097 // Choose the node with the maximum height. If more than one, choose 2098 // the node with the maximum ZeroLatencyHeight. If still more than one, 2099 // choose the node with the lowest MOV. 2100 while (!R.empty()) { 2101 SUnit *maxHeight = nullptr; 2102 for (SUnit *I : R) { 2103 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2104 maxHeight = I; 2105 else if (getHeight(I) == getHeight(maxHeight) && 2106 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2107 maxHeight = I; 2108 else if (getHeight(I) == getHeight(maxHeight) && 2109 getZeroLatencyHeight(I) == 2110 getZeroLatencyHeight(maxHeight) && 2111 getMOV(I) < getMOV(maxHeight)) 2112 maxHeight = I; 2113 } 2114 NodeOrder.insert(maxHeight); 2115 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2116 R.remove(maxHeight); 2117 for (const auto &I : maxHeight->Succs) { 2118 if (Nodes.count(I.getSUnit()) == 0) 2119 continue; 2120 if (NodeOrder.count(I.getSUnit()) != 0) 2121 continue; 2122 if (ignoreDependence(I, false)) 2123 continue; 2124 R.insert(I.getSUnit()); 2125 } 2126 // Back-edges are predecessors with an anti-dependence. 2127 for (const auto &I : maxHeight->Preds) { 2128 if (I.getKind() != SDep::Anti) 2129 continue; 2130 if (Nodes.count(I.getSUnit()) == 0) 2131 continue; 2132 if (NodeOrder.count(I.getSUnit()) != 0) 2133 continue; 2134 R.insert(I.getSUnit()); 2135 } 2136 } 2137 Order = BottomUp; 2138 DEBUG(dbgs() << "\n Switching order to bottom up "); 2139 SmallSetVector<SUnit *, 8> N; 2140 if (pred_L(NodeOrder, N, &Nodes)) 2141 R.insert(N.begin(), N.end()); 2142 } else { 2143 // Choose the node with the maximum depth. If more than one, choose 2144 // the node with the maximum ZeroLatencyDepth. If still more than one, 2145 // choose the node with the lowest MOV. 2146 while (!R.empty()) { 2147 SUnit *maxDepth = nullptr; 2148 for (SUnit *I : R) { 2149 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2150 maxDepth = I; 2151 else if (getDepth(I) == getDepth(maxDepth) && 2152 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2153 maxDepth = I; 2154 else if (getDepth(I) == getDepth(maxDepth) && 2155 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2156 getMOV(I) < getMOV(maxDepth)) 2157 maxDepth = I; 2158 } 2159 NodeOrder.insert(maxDepth); 2160 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2161 R.remove(maxDepth); 2162 if (Nodes.isExceedSU(maxDepth)) { 2163 Order = TopDown; 2164 R.clear(); 2165 R.insert(Nodes.getNode(0)); 2166 break; 2167 } 2168 for (const auto &I : maxDepth->Preds) { 2169 if (Nodes.count(I.getSUnit()) == 0) 2170 continue; 2171 if (NodeOrder.count(I.getSUnit()) != 0) 2172 continue; 2173 if (I.getKind() == SDep::Anti) 2174 continue; 2175 R.insert(I.getSUnit()); 2176 } 2177 // Back-edges are predecessors with an anti-dependence. 2178 for (const auto &I : maxDepth->Succs) { 2179 if (I.getKind() != SDep::Anti) 2180 continue; 2181 if (Nodes.count(I.getSUnit()) == 0) 2182 continue; 2183 if (NodeOrder.count(I.getSUnit()) != 0) 2184 continue; 2185 R.insert(I.getSUnit()); 2186 } 2187 } 2188 Order = TopDown; 2189 DEBUG(dbgs() << "\n Switching order to top down "); 2190 SmallSetVector<SUnit *, 8> N; 2191 if (succ_L(NodeOrder, N, &Nodes)) 2192 R.insert(N.begin(), N.end()); 2193 } 2194 } 2195 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2196 } 2197 2198 DEBUG({ 2199 dbgs() << "Node order: "; 2200 for (SUnit *I : NodeOrder) 2201 dbgs() << " " << I->NodeNum << " "; 2202 dbgs() << "\n"; 2203 }); 2204 } 2205 2206 /// Process the nodes in the computed order and create the pipelined schedule 2207 /// of the instructions, if possible. Return true if a schedule is found. 2208 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2209 if (NodeOrder.empty()) 2210 return false; 2211 2212 bool scheduleFound = false; 2213 // Keep increasing II until a valid schedule is found. 2214 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2215 Schedule.reset(); 2216 Schedule.setInitiationInterval(II); 2217 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2218 2219 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2220 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2221 do { 2222 SUnit *SU = *NI; 2223 2224 // Compute the schedule time for the instruction, which is based 2225 // upon the scheduled time for any predecessors/successors. 2226 int EarlyStart = INT_MIN; 2227 int LateStart = INT_MAX; 2228 // These values are set when the size of the schedule window is limited 2229 // due to chain dependences. 2230 int SchedEnd = INT_MAX; 2231 int SchedStart = INT_MIN; 2232 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2233 II, this); 2234 DEBUG({ 2235 dbgs() << "Inst (" << SU->NodeNum << ") "; 2236 SU->getInstr()->dump(); 2237 dbgs() << "\n"; 2238 }); 2239 DEBUG({ 2240 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2241 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2242 }); 2243 2244 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2245 SchedStart > LateStart) 2246 scheduleFound = false; 2247 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2248 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2249 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2250 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2251 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2252 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2253 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2254 SchedEnd = 2255 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2256 // When scheduling a Phi it is better to start at the late cycle and go 2257 // backwards. The default order may insert the Phi too far away from 2258 // its first dependence. 2259 if (SU->getInstr()->isPHI()) 2260 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2261 else 2262 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2263 } else { 2264 int FirstCycle = Schedule.getFirstCycle(); 2265 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2266 FirstCycle + getASAP(SU) + II - 1, II); 2267 } 2268 // Even if we find a schedule, make sure the schedule doesn't exceed the 2269 // allowable number of stages. We keep trying if this happens. 2270 if (scheduleFound) 2271 if (SwpMaxStages > -1 && 2272 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2273 scheduleFound = false; 2274 2275 DEBUG({ 2276 if (!scheduleFound) 2277 dbgs() << "\tCan't schedule\n"; 2278 }); 2279 } while (++NI != NE && scheduleFound); 2280 2281 // If a schedule is found, check if it is a valid schedule too. 2282 if (scheduleFound) 2283 scheduleFound = Schedule.isValidSchedule(this); 2284 } 2285 2286 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2287 2288 if (scheduleFound) 2289 Schedule.finalizeSchedule(this); 2290 else 2291 Schedule.reset(); 2292 2293 return scheduleFound && Schedule.getMaxStageCount() > 0; 2294 } 2295 2296 /// Given a schedule for the loop, generate a new version of the loop, 2297 /// and replace the old version. This function generates a prolog 2298 /// that contains the initial iterations in the pipeline, and kernel 2299 /// loop, and the epilogue that contains the code for the final 2300 /// iterations. 2301 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2302 // Create a new basic block for the kernel and add it to the CFG. 2303 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2304 2305 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2306 2307 // Remember the registers that are used in different stages. The index is 2308 // the iteration, or stage, that the instruction is scheduled in. This is 2309 // a map between register names in the orignal block and the names created 2310 // in each stage of the pipelined loop. 2311 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2312 InstrMapTy InstrMap; 2313 2314 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2315 // Generate the prolog instructions that set up the pipeline. 2316 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2317 MF.insert(BB->getIterator(), KernelBB); 2318 2319 // Rearrange the instructions to generate the new, pipelined loop, 2320 // and update register names as needed. 2321 for (int Cycle = Schedule.getFirstCycle(), 2322 LastCycle = Schedule.getFinalCycle(); 2323 Cycle <= LastCycle; ++Cycle) { 2324 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2325 // This inner loop schedules each instruction in the cycle. 2326 for (SUnit *CI : CycleInstrs) { 2327 if (CI->getInstr()->isPHI()) 2328 continue; 2329 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2330 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2331 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2332 KernelBB->push_back(NewMI); 2333 InstrMap[NewMI] = CI->getInstr(); 2334 } 2335 } 2336 2337 // Copy any terminator instructions to the new kernel, and update 2338 // names as needed. 2339 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2340 E = BB->instr_end(); 2341 I != E; ++I) { 2342 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2343 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2344 KernelBB->push_back(NewMI); 2345 InstrMap[NewMI] = &*I; 2346 } 2347 2348 KernelBB->transferSuccessors(BB); 2349 KernelBB->replaceSuccessor(BB, KernelBB); 2350 2351 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2352 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2353 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2354 InstrMap, MaxStageCount, MaxStageCount, false); 2355 2356 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2357 2358 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2359 // Generate the epilog instructions to complete the pipeline. 2360 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2361 PrologBBs); 2362 2363 // We need this step because the register allocation doesn't handle some 2364 // situations well, so we insert copies to help out. 2365 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2366 2367 // Remove dead instructions due to loop induction variables. 2368 removeDeadInstructions(KernelBB, EpilogBBs); 2369 2370 // Add branches between prolog and epilog blocks. 2371 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2372 2373 // Remove the original loop since it's no longer referenced. 2374 for (auto &I : *BB) 2375 LIS.RemoveMachineInstrFromMaps(I); 2376 BB->clear(); 2377 BB->eraseFromParent(); 2378 2379 delete[] VRMap; 2380 } 2381 2382 /// Generate the pipeline prolog code. 2383 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2384 MachineBasicBlock *KernelBB, 2385 ValueMapTy *VRMap, 2386 MBBVectorTy &PrologBBs) { 2387 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2388 assert(PreheaderBB != nullptr && 2389 "Need to add code to handle loops w/o preheader"); 2390 MachineBasicBlock *PredBB = PreheaderBB; 2391 InstrMapTy InstrMap; 2392 2393 // Generate a basic block for each stage, not including the last stage, 2394 // which will be generated in the kernel. Each basic block may contain 2395 // instructions from multiple stages/iterations. 2396 for (unsigned i = 0; i < LastStage; ++i) { 2397 // Create and insert the prolog basic block prior to the original loop 2398 // basic block. The original loop is removed later. 2399 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2400 PrologBBs.push_back(NewBB); 2401 MF.insert(BB->getIterator(), NewBB); 2402 NewBB->transferSuccessors(PredBB); 2403 PredBB->addSuccessor(NewBB); 2404 PredBB = NewBB; 2405 2406 // Generate instructions for each appropriate stage. Process instructions 2407 // in original program order. 2408 for (int StageNum = i; StageNum >= 0; --StageNum) { 2409 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2410 BBE = BB->getFirstTerminator(); 2411 BBI != BBE; ++BBI) { 2412 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2413 if (BBI->isPHI()) 2414 continue; 2415 MachineInstr *NewMI = 2416 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2417 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2418 VRMap); 2419 NewBB->push_back(NewMI); 2420 InstrMap[NewMI] = &*BBI; 2421 } 2422 } 2423 } 2424 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2425 DEBUG({ 2426 dbgs() << "prolog:\n"; 2427 NewBB->dump(); 2428 }); 2429 } 2430 2431 PredBB->replaceSuccessor(BB, KernelBB); 2432 2433 // Check if we need to remove the branch from the preheader to the original 2434 // loop, and replace it with a branch to the new loop. 2435 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2436 if (numBranches) { 2437 SmallVector<MachineOperand, 0> Cond; 2438 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2439 } 2440 } 2441 2442 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2443 /// that were started in either the prolog or the kernel. We create a basic 2444 /// block for each stage that needs to complete. 2445 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2446 MachineBasicBlock *KernelBB, 2447 ValueMapTy *VRMap, 2448 MBBVectorTy &EpilogBBs, 2449 MBBVectorTy &PrologBBs) { 2450 // We need to change the branch from the kernel to the first epilog block, so 2451 // this call to analyze branch uses the kernel rather than the original BB. 2452 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2453 SmallVector<MachineOperand, 4> Cond; 2454 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2455 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2456 if (checkBranch) 2457 return; 2458 2459 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2460 if (*LoopExitI == KernelBB) 2461 ++LoopExitI; 2462 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2463 MachineBasicBlock *LoopExitBB = *LoopExitI; 2464 2465 MachineBasicBlock *PredBB = KernelBB; 2466 MachineBasicBlock *EpilogStart = LoopExitBB; 2467 InstrMapTy InstrMap; 2468 2469 // Generate a basic block for each stage, not including the last stage, 2470 // which was generated for the kernel. Each basic block may contain 2471 // instructions from multiple stages/iterations. 2472 int EpilogStage = LastStage + 1; 2473 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2474 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2475 EpilogBBs.push_back(NewBB); 2476 MF.insert(BB->getIterator(), NewBB); 2477 2478 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2479 NewBB->addSuccessor(LoopExitBB); 2480 2481 if (EpilogStart == LoopExitBB) 2482 EpilogStart = NewBB; 2483 2484 // Add instructions to the epilog depending on the current block. 2485 // Process instructions in original program order. 2486 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2487 for (auto &BBI : *BB) { 2488 if (BBI.isPHI()) 2489 continue; 2490 MachineInstr *In = &BBI; 2491 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2492 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2493 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2494 NewBB->push_back(NewMI); 2495 InstrMap[NewMI] = In; 2496 } 2497 } 2498 } 2499 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2500 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2501 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2502 InstrMap, LastStage, EpilogStage, i == 1); 2503 PredBB = NewBB; 2504 2505 DEBUG({ 2506 dbgs() << "epilog:\n"; 2507 NewBB->dump(); 2508 }); 2509 } 2510 2511 // Fix any Phi nodes in the loop exit block. 2512 for (MachineInstr &MI : *LoopExitBB) { 2513 if (!MI.isPHI()) 2514 break; 2515 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2516 MachineOperand &MO = MI.getOperand(i); 2517 if (MO.getMBB() == BB) 2518 MO.setMBB(PredBB); 2519 } 2520 } 2521 2522 // Create a branch to the new epilog from the kernel. 2523 // Remove the original branch and add a new branch to the epilog. 2524 TII->removeBranch(*KernelBB); 2525 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2526 // Add a branch to the loop exit. 2527 if (EpilogBBs.size() > 0) { 2528 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2529 SmallVector<MachineOperand, 4> Cond1; 2530 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2531 } 2532 } 2533 2534 /// Replace all uses of FromReg that appear outside the specified 2535 /// basic block with ToReg. 2536 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2537 MachineBasicBlock *MBB, 2538 MachineRegisterInfo &MRI, 2539 LiveIntervals &LIS) { 2540 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2541 E = MRI.use_end(); 2542 I != E;) { 2543 MachineOperand &O = *I; 2544 ++I; 2545 if (O.getParent()->getParent() != MBB) 2546 O.setReg(ToReg); 2547 } 2548 if (!LIS.hasInterval(ToReg)) 2549 LIS.createEmptyInterval(ToReg); 2550 } 2551 2552 /// Return true if the register has a use that occurs outside the 2553 /// specified loop. 2554 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2555 MachineRegisterInfo &MRI) { 2556 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2557 E = MRI.use_end(); 2558 I != E; ++I) 2559 if (I->getParent()->getParent() != BB) 2560 return true; 2561 return false; 2562 } 2563 2564 /// Generate Phis for the specific block in the generated pipelined code. 2565 /// This function looks at the Phis from the original code to guide the 2566 /// creation of new Phis. 2567 void SwingSchedulerDAG::generateExistingPhis( 2568 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2569 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2570 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2571 bool IsLast) { 2572 // Compute the stage number for the initial value of the Phi, which 2573 // comes from the prolog. The prolog to use depends on to which kernel/ 2574 // epilog that we're adding the Phi. 2575 unsigned PrologStage = 0; 2576 unsigned PrevStage = 0; 2577 bool InKernel = (LastStageNum == CurStageNum); 2578 if (InKernel) { 2579 PrologStage = LastStageNum - 1; 2580 PrevStage = CurStageNum; 2581 } else { 2582 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2583 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2584 } 2585 2586 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2587 BBE = BB->getFirstNonPHI(); 2588 BBI != BBE; ++BBI) { 2589 unsigned Def = BBI->getOperand(0).getReg(); 2590 2591 unsigned InitVal = 0; 2592 unsigned LoopVal = 0; 2593 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2594 2595 unsigned PhiOp1 = 0; 2596 // The Phi value from the loop body typically is defined in the loop, but 2597 // not always. So, we need to check if the value is defined in the loop. 2598 unsigned PhiOp2 = LoopVal; 2599 if (VRMap[LastStageNum].count(LoopVal)) 2600 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2601 2602 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2603 int LoopValStage = 2604 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2605 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2606 if (NumStages == 0) { 2607 // We don't need to generate a Phi anymore, but we need to rename any uses 2608 // of the Phi value. 2609 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2610 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2611 Def, NewReg); 2612 if (VRMap[CurStageNum].count(LoopVal)) 2613 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2614 } 2615 // Adjust the number of Phis needed depending on the number of prologs left, 2616 // and the distance from where the Phi is first scheduled. 2617 unsigned NumPhis = NumStages; 2618 if (!InKernel && (int)PrologStage < LoopValStage) 2619 // The NumPhis is the maximum number of new Phis needed during the steady 2620 // state. If the Phi has not been scheduled in current prolog, then we 2621 // need to generate less Phis. 2622 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2623 // The number of Phis cannot exceed the number of prolog stages. Each 2624 // stage can potentially define two values. 2625 NumPhis = std::min(NumPhis, PrologStage + 2); 2626 2627 unsigned NewReg = 0; 2628 2629 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2630 // In the epilog, we may need to look back one stage to get the correct 2631 // Phi name because the epilog and prolog blocks execute the same stage. 2632 // The correct name is from the previous block only when the Phi has 2633 // been completely scheduled prior to the epilog, and Phi value is not 2634 // needed in multiple stages. 2635 int StageDiff = 0; 2636 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2637 NumPhis == 1) 2638 StageDiff = 1; 2639 // Adjust the computations below when the phi and the loop definition 2640 // are scheduled in different stages. 2641 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2642 StageDiff = StageScheduled - LoopValStage; 2643 for (unsigned np = 0; np < NumPhis; ++np) { 2644 // If the Phi hasn't been scheduled, then use the initial Phi operand 2645 // value. Otherwise, use the scheduled version of the instruction. This 2646 // is a little complicated when a Phi references another Phi. 2647 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2648 PhiOp1 = InitVal; 2649 // Check if the Phi has already been scheduled in a prolog stage. 2650 else if (PrologStage >= AccessStage + StageDiff + np && 2651 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2652 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2653 // Check if the Phi has already been scheduled, but the loop intruction 2654 // is either another Phi, or doesn't occur in the loop. 2655 else if (PrologStage >= AccessStage + StageDiff + np) { 2656 // If the Phi references another Phi, we need to examine the other 2657 // Phi to get the correct value. 2658 PhiOp1 = LoopVal; 2659 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2660 int Indirects = 1; 2661 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2662 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2663 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2664 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2665 else 2666 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2667 InstOp1 = MRI.getVRegDef(PhiOp1); 2668 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2669 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2670 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2671 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2672 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2673 break; 2674 } 2675 ++Indirects; 2676 } 2677 } else 2678 PhiOp1 = InitVal; 2679 // If this references a generated Phi in the kernel, get the Phi operand 2680 // from the incoming block. 2681 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2682 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2683 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2684 2685 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2686 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2687 // In the epilog, a map lookup is needed to get the value from the kernel, 2688 // or previous epilog block. How is does this depends on if the 2689 // instruction is scheduled in the previous block. 2690 if (!InKernel) { 2691 int StageDiffAdj = 0; 2692 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2693 StageDiffAdj = StageScheduled - LoopValStage; 2694 // Use the loop value defined in the kernel, unless the kernel 2695 // contains the last definition of the Phi. 2696 if (np == 0 && PrevStage == LastStageNum && 2697 (StageScheduled != 0 || LoopValStage != 0) && 2698 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2699 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2700 // Use the value defined by the Phi. We add one because we switch 2701 // from looking at the loop value to the Phi definition. 2702 else if (np > 0 && PrevStage == LastStageNum && 2703 VRMap[PrevStage - np + 1].count(Def)) 2704 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2705 // Use the loop value defined in the kernel. 2706 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2707 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2708 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2709 // Use the value defined by the Phi, unless we're generating the first 2710 // epilog and the Phi refers to a Phi in a different stage. 2711 else if (VRMap[PrevStage - np].count(Def) && 2712 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2713 PhiOp2 = VRMap[PrevStage - np][Def]; 2714 } 2715 2716 // Check if we can reuse an existing Phi. This occurs when a Phi 2717 // references another Phi, and the other Phi is scheduled in an 2718 // earlier stage. We can try to reuse an existing Phi up until the last 2719 // stage of the current Phi. 2720 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2721 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2722 int StageDiff = (StageScheduled - LoopValStage); 2723 LVNumStages -= StageDiff; 2724 if (LVNumStages > (int)np) { 2725 NewReg = PhiOp2; 2726 unsigned ReuseStage = CurStageNum; 2727 if (Schedule.isLoopCarried(this, *PhiInst)) 2728 ReuseStage -= LVNumStages; 2729 // Check if the Phi to reuse has been generated yet. If not, then 2730 // there is nothing to reuse. 2731 if (VRMap[ReuseStage].count(LoopVal)) { 2732 NewReg = VRMap[ReuseStage][LoopVal]; 2733 2734 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2735 &*BBI, Def, NewReg); 2736 // Update the map with the new Phi name. 2737 VRMap[CurStageNum - np][Def] = NewReg; 2738 PhiOp2 = NewReg; 2739 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2740 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2741 2742 if (IsLast && np == NumPhis - 1) 2743 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2744 continue; 2745 } 2746 } else if (InKernel && StageDiff > 0 && 2747 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2748 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2749 } 2750 2751 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2752 NewReg = MRI.createVirtualRegister(RC); 2753 2754 MachineInstrBuilder NewPhi = 2755 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2756 TII->get(TargetOpcode::PHI), NewReg); 2757 NewPhi.addReg(PhiOp1).addMBB(BB1); 2758 NewPhi.addReg(PhiOp2).addMBB(BB2); 2759 if (np == 0) 2760 InstrMap[NewPhi] = &*BBI; 2761 2762 // We define the Phis after creating the new pipelined code, so 2763 // we need to rename the Phi values in scheduled instructions. 2764 2765 unsigned PrevReg = 0; 2766 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2767 PrevReg = VRMap[PrevStage - np][LoopVal]; 2768 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2769 Def, NewReg, PrevReg); 2770 // If the Phi has been scheduled, use the new name for rewriting. 2771 if (VRMap[CurStageNum - np].count(Def)) { 2772 unsigned R = VRMap[CurStageNum - np][Def]; 2773 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2774 R, NewReg); 2775 } 2776 2777 // Check if we need to rename any uses that occurs after the loop. The 2778 // register to replace depends on whether the Phi is scheduled in the 2779 // epilog. 2780 if (IsLast && np == NumPhis - 1) 2781 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2782 2783 // In the kernel, a dependent Phi uses the value from this Phi. 2784 if (InKernel) 2785 PhiOp2 = NewReg; 2786 2787 // Update the map with the new Phi name. 2788 VRMap[CurStageNum - np][Def] = NewReg; 2789 } 2790 2791 while (NumPhis++ < NumStages) { 2792 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2793 &*BBI, Def, NewReg, 0); 2794 } 2795 2796 // Check if we need to rename a Phi that has been eliminated due to 2797 // scheduling. 2798 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2799 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2800 } 2801 } 2802 2803 /// Generate Phis for the specified block in the generated pipelined code. 2804 /// These are new Phis needed because the definition is scheduled after the 2805 /// use in the pipelened sequence. 2806 void SwingSchedulerDAG::generatePhis( 2807 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2808 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2809 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2810 bool IsLast) { 2811 // Compute the stage number that contains the initial Phi value, and 2812 // the Phi from the previous stage. 2813 unsigned PrologStage = 0; 2814 unsigned PrevStage = 0; 2815 unsigned StageDiff = CurStageNum - LastStageNum; 2816 bool InKernel = (StageDiff == 0); 2817 if (InKernel) { 2818 PrologStage = LastStageNum - 1; 2819 PrevStage = CurStageNum; 2820 } else { 2821 PrologStage = LastStageNum - StageDiff; 2822 PrevStage = LastStageNum + StageDiff - 1; 2823 } 2824 2825 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2826 BBE = BB->instr_end(); 2827 BBI != BBE; ++BBI) { 2828 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2829 MachineOperand &MO = BBI->getOperand(i); 2830 if (!MO.isReg() || !MO.isDef() || 2831 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2832 continue; 2833 2834 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2835 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2836 unsigned Def = MO.getReg(); 2837 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2838 // An instruction scheduled in stage 0 and is used after the loop 2839 // requires a phi in the epilog for the last definition from either 2840 // the kernel or prolog. 2841 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2842 hasUseAfterLoop(Def, BB, MRI)) 2843 NumPhis = 1; 2844 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2845 continue; 2846 2847 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2848 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2849 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2850 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2851 // The number of Phis can't exceed the number of prolog stages. The 2852 // prolog stage number is zero based. 2853 if (NumPhis > PrologStage + 1 - StageScheduled) 2854 NumPhis = PrologStage + 1 - StageScheduled; 2855 for (unsigned np = 0; np < NumPhis; ++np) { 2856 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2857 if (np <= PrologStage) 2858 PhiOp1 = VRMap[PrologStage - np][Def]; 2859 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2860 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2861 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2862 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2863 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2864 } 2865 if (!InKernel) 2866 PhiOp2 = VRMap[PrevStage - np][Def]; 2867 2868 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2869 unsigned NewReg = MRI.createVirtualRegister(RC); 2870 2871 MachineInstrBuilder NewPhi = 2872 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2873 TII->get(TargetOpcode::PHI), NewReg); 2874 NewPhi.addReg(PhiOp1).addMBB(BB1); 2875 NewPhi.addReg(PhiOp2).addMBB(BB2); 2876 if (np == 0) 2877 InstrMap[NewPhi] = &*BBI; 2878 2879 // Rewrite uses and update the map. The actions depend upon whether 2880 // we generating code for the kernel or epilog blocks. 2881 if (InKernel) { 2882 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2883 &*BBI, PhiOp1, NewReg); 2884 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2885 &*BBI, PhiOp2, NewReg); 2886 2887 PhiOp2 = NewReg; 2888 VRMap[PrevStage - np - 1][Def] = NewReg; 2889 } else { 2890 VRMap[CurStageNum - np][Def] = NewReg; 2891 if (np == NumPhis - 1) 2892 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2893 &*BBI, Def, NewReg); 2894 } 2895 if (IsLast && np == NumPhis - 1) 2896 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2897 } 2898 } 2899 } 2900 } 2901 2902 /// Remove instructions that generate values with no uses. 2903 /// Typically, these are induction variable operations that generate values 2904 /// used in the loop itself. A dead instruction has a definition with 2905 /// no uses, or uses that occur in the original loop only. 2906 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2907 MBBVectorTy &EpilogBBs) { 2908 // For each epilog block, check that the value defined by each instruction 2909 // is used. If not, delete it. 2910 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2911 MBE = EpilogBBs.rend(); 2912 MBB != MBE; ++MBB) 2913 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2914 ME = (*MBB)->instr_rend(); 2915 MI != ME;) { 2916 // From DeadMachineInstructionElem. Don't delete inline assembly. 2917 if (MI->isInlineAsm()) { 2918 ++MI; 2919 continue; 2920 } 2921 bool SawStore = false; 2922 // Check if it's safe to remove the instruction due to side effects. 2923 // We can, and want to, remove Phis here. 2924 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2925 ++MI; 2926 continue; 2927 } 2928 bool used = true; 2929 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2930 MOE = MI->operands_end(); 2931 MOI != MOE; ++MOI) { 2932 if (!MOI->isReg() || !MOI->isDef()) 2933 continue; 2934 unsigned reg = MOI->getReg(); 2935 unsigned realUses = 0; 2936 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2937 EI = MRI.use_end(); 2938 UI != EI; ++UI) { 2939 // Check if there are any uses that occur only in the original 2940 // loop. If so, that's not a real use. 2941 if (UI->getParent()->getParent() != BB) { 2942 realUses++; 2943 used = true; 2944 break; 2945 } 2946 } 2947 if (realUses > 0) 2948 break; 2949 used = false; 2950 } 2951 if (!used) { 2952 LIS.RemoveMachineInstrFromMaps(*MI); 2953 MI++->eraseFromParent(); 2954 continue; 2955 } 2956 ++MI; 2957 } 2958 // In the kernel block, check if we can remove a Phi that generates a value 2959 // used in an instruction removed in the epilog block. 2960 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2961 BBE = KernelBB->getFirstNonPHI(); 2962 BBI != BBE;) { 2963 MachineInstr *MI = &*BBI; 2964 ++BBI; 2965 unsigned reg = MI->getOperand(0).getReg(); 2966 if (MRI.use_begin(reg) == MRI.use_end()) { 2967 LIS.RemoveMachineInstrFromMaps(*MI); 2968 MI->eraseFromParent(); 2969 } 2970 } 2971 } 2972 2973 /// For loop carried definitions, we split the lifetime of a virtual register 2974 /// that has uses past the definition in the next iteration. A copy with a new 2975 /// virtual register is inserted before the definition, which helps with 2976 /// generating a better register assignment. 2977 /// 2978 /// v1 = phi(a, v2) v1 = phi(a, v2) 2979 /// v2 = phi(b, v3) v2 = phi(b, v3) 2980 /// v3 = .. v4 = copy v1 2981 /// .. = V1 v3 = .. 2982 /// .. = v4 2983 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2984 MBBVectorTy &EpilogBBs, 2985 SMSchedule &Schedule) { 2986 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2987 for (auto &PHI : KernelBB->phis()) { 2988 unsigned Def = PHI.getOperand(0).getReg(); 2989 // Check for any Phi definition that used as an operand of another Phi 2990 // in the same block. 2991 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2992 E = MRI.use_instr_end(); 2993 I != E; ++I) { 2994 if (I->isPHI() && I->getParent() == KernelBB) { 2995 // Get the loop carried definition. 2996 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2997 if (!LCDef) 2998 continue; 2999 MachineInstr *MI = MRI.getVRegDef(LCDef); 3000 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 3001 continue; 3002 // Search through the rest of the block looking for uses of the Phi 3003 // definition. If one occurs, then split the lifetime. 3004 unsigned SplitReg = 0; 3005 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 3006 KernelBB->instr_end())) 3007 if (BBJ.readsRegister(Def)) { 3008 // We split the lifetime when we find the first use. 3009 if (SplitReg == 0) { 3010 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 3011 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 3012 TII->get(TargetOpcode::COPY), SplitReg) 3013 .addReg(Def); 3014 } 3015 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 3016 } 3017 if (!SplitReg) 3018 continue; 3019 // Search through each of the epilog blocks for any uses to be renamed. 3020 for (auto &Epilog : EpilogBBs) 3021 for (auto &I : *Epilog) 3022 if (I.readsRegister(Def)) 3023 I.substituteRegister(Def, SplitReg, 0, *TRI); 3024 break; 3025 } 3026 } 3027 } 3028 } 3029 3030 /// Remove the incoming block from the Phis in a basic block. 3031 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 3032 for (MachineInstr &MI : *BB) { 3033 if (!MI.isPHI()) 3034 break; 3035 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3036 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3037 MI.RemoveOperand(i + 1); 3038 MI.RemoveOperand(i); 3039 break; 3040 } 3041 } 3042 } 3043 3044 /// Create branches from each prolog basic block to the appropriate epilog 3045 /// block. These edges are needed if the loop ends before reaching the 3046 /// kernel. 3047 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3048 MachineBasicBlock *KernelBB, 3049 MBBVectorTy &EpilogBBs, 3050 SMSchedule &Schedule, ValueMapTy *VRMap) { 3051 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3052 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3053 MachineInstr *Cmp = Pass.LI.LoopCompare; 3054 MachineBasicBlock *LastPro = KernelBB; 3055 MachineBasicBlock *LastEpi = KernelBB; 3056 3057 // Start from the blocks connected to the kernel and work "out" 3058 // to the first prolog and the last epilog blocks. 3059 SmallVector<MachineInstr *, 4> PrevInsts; 3060 unsigned MaxIter = PrologBBs.size() - 1; 3061 unsigned LC = UINT_MAX; 3062 unsigned LCMin = UINT_MAX; 3063 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3064 // Add branches to the prolog that go to the corresponding 3065 // epilog, and the fall-thru prolog/kernel block. 3066 MachineBasicBlock *Prolog = PrologBBs[j]; 3067 MachineBasicBlock *Epilog = EpilogBBs[i]; 3068 // We've executed one iteration, so decrement the loop count and check for 3069 // the loop end. 3070 SmallVector<MachineOperand, 4> Cond; 3071 // Check if the LOOP0 has already been removed. If so, then there is no need 3072 // to reduce the trip count. 3073 if (LC != 0) 3074 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3075 MaxIter); 3076 3077 // Record the value of the first trip count, which is used to determine if 3078 // branches and blocks can be removed for constant trip counts. 3079 if (LCMin == UINT_MAX) 3080 LCMin = LC; 3081 3082 unsigned numAdded = 0; 3083 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3084 Prolog->addSuccessor(Epilog); 3085 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3086 } else if (j >= LCMin) { 3087 Prolog->addSuccessor(Epilog); 3088 Prolog->removeSuccessor(LastPro); 3089 LastEpi->removeSuccessor(Epilog); 3090 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3091 removePhis(Epilog, LastEpi); 3092 // Remove the blocks that are no longer referenced. 3093 if (LastPro != LastEpi) { 3094 LastEpi->clear(); 3095 LastEpi->eraseFromParent(); 3096 } 3097 LastPro->clear(); 3098 LastPro->eraseFromParent(); 3099 } else { 3100 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3101 removePhis(Epilog, Prolog); 3102 } 3103 LastPro = Prolog; 3104 LastEpi = Epilog; 3105 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3106 E = Prolog->instr_rend(); 3107 I != E && numAdded > 0; ++I, --numAdded) 3108 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3109 } 3110 } 3111 3112 /// Return true if we can compute the amount the instruction changes 3113 /// during each iteration. Set Delta to the amount of the change. 3114 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3115 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3116 unsigned BaseReg; 3117 int64_t Offset; 3118 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3119 return false; 3120 3121 MachineRegisterInfo &MRI = MF.getRegInfo(); 3122 // Check if there is a Phi. If so, get the definition in the loop. 3123 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3124 if (BaseDef && BaseDef->isPHI()) { 3125 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3126 BaseDef = MRI.getVRegDef(BaseReg); 3127 } 3128 if (!BaseDef) 3129 return false; 3130 3131 int D = 0; 3132 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3133 return false; 3134 3135 Delta = D; 3136 return true; 3137 } 3138 3139 /// Update the memory operand with a new offset when the pipeliner 3140 /// generates a new copy of the instruction that refers to a 3141 /// different memory location. 3142 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3143 MachineInstr &OldMI, unsigned Num) { 3144 if (Num == 0) 3145 return; 3146 // If the instruction has memory operands, then adjust the offset 3147 // when the instruction appears in different stages. 3148 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3149 if (NumRefs == 0) 3150 return; 3151 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3152 unsigned Refs = 0; 3153 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3154 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3155 (!MMO->getValue())) { 3156 NewMemRefs[Refs++] = MMO; 3157 continue; 3158 } 3159 unsigned Delta; 3160 if (computeDelta(OldMI, Delta)) { 3161 int64_t AdjOffset = Delta * Num; 3162 NewMemRefs[Refs++] = 3163 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3164 } else { 3165 NewMI.dropMemRefs(); 3166 return; 3167 } 3168 } 3169 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3170 } 3171 3172 /// Clone the instruction for the new pipelined loop and update the 3173 /// memory operands, if needed. 3174 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3175 unsigned CurStageNum, 3176 unsigned InstStageNum) { 3177 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3178 // Check for tied operands in inline asm instructions. This should be handled 3179 // elsewhere, but I'm not sure of the best solution. 3180 if (OldMI->isInlineAsm()) 3181 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3182 const auto &MO = OldMI->getOperand(i); 3183 if (MO.isReg() && MO.isUse()) 3184 break; 3185 unsigned UseIdx; 3186 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3187 NewMI->tieOperands(i, UseIdx); 3188 } 3189 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3190 return NewMI; 3191 } 3192 3193 /// Clone the instruction for the new pipelined loop. If needed, this 3194 /// function updates the instruction using the values saved in the 3195 /// InstrChanges structure. 3196 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3197 unsigned CurStageNum, 3198 unsigned InstStageNum, 3199 SMSchedule &Schedule) { 3200 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3201 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3202 InstrChanges.find(getSUnit(OldMI)); 3203 if (It != InstrChanges.end()) { 3204 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3205 unsigned BasePos, OffsetPos; 3206 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3207 return nullptr; 3208 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3209 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3210 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3211 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3212 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3213 } 3214 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3215 return NewMI; 3216 } 3217 3218 /// Update the machine instruction with new virtual registers. This 3219 /// function may change the defintions and/or uses. 3220 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3221 unsigned CurStageNum, 3222 unsigned InstrStageNum, 3223 SMSchedule &Schedule, 3224 ValueMapTy *VRMap) { 3225 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3226 MachineOperand &MO = NewMI->getOperand(i); 3227 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3228 continue; 3229 unsigned reg = MO.getReg(); 3230 if (MO.isDef()) { 3231 // Create a new virtual register for the definition. 3232 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3233 unsigned NewReg = MRI.createVirtualRegister(RC); 3234 MO.setReg(NewReg); 3235 VRMap[CurStageNum][reg] = NewReg; 3236 if (LastDef) 3237 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3238 } else if (MO.isUse()) { 3239 MachineInstr *Def = MRI.getVRegDef(reg); 3240 // Compute the stage that contains the last definition for instruction. 3241 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3242 unsigned StageNum = CurStageNum; 3243 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3244 // Compute the difference in stages between the defintion and the use. 3245 unsigned StageDiff = (InstrStageNum - DefStageNum); 3246 // Make an adjustment to get the last definition. 3247 StageNum -= StageDiff; 3248 } 3249 if (VRMap[StageNum].count(reg)) 3250 MO.setReg(VRMap[StageNum][reg]); 3251 } 3252 } 3253 } 3254 3255 /// Return the instruction in the loop that defines the register. 3256 /// If the definition is a Phi, then follow the Phi operand to 3257 /// the instruction in the loop. 3258 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3259 SmallPtrSet<MachineInstr *, 8> Visited; 3260 MachineInstr *Def = MRI.getVRegDef(Reg); 3261 while (Def->isPHI()) { 3262 if (!Visited.insert(Def).second) 3263 break; 3264 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3265 if (Def->getOperand(i + 1).getMBB() == BB) { 3266 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3267 break; 3268 } 3269 } 3270 return Def; 3271 } 3272 3273 /// Return the new name for the value from the previous stage. 3274 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3275 unsigned LoopVal, unsigned LoopStage, 3276 ValueMapTy *VRMap, 3277 MachineBasicBlock *BB) { 3278 unsigned PrevVal = 0; 3279 if (StageNum > PhiStage) { 3280 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3281 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3282 // The name is defined in the previous stage. 3283 PrevVal = VRMap[StageNum - 1][LoopVal]; 3284 else if (VRMap[StageNum].count(LoopVal)) 3285 // The previous name is defined in the current stage when the instruction 3286 // order is swapped. 3287 PrevVal = VRMap[StageNum][LoopVal]; 3288 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3289 // The loop value hasn't yet been scheduled. 3290 PrevVal = LoopVal; 3291 else if (StageNum == PhiStage + 1) 3292 // The loop value is another phi, which has not been scheduled. 3293 PrevVal = getInitPhiReg(*LoopInst, BB); 3294 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3295 // The loop value is another phi, which has been scheduled. 3296 PrevVal = 3297 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3298 LoopStage, VRMap, BB); 3299 } 3300 return PrevVal; 3301 } 3302 3303 /// Rewrite the Phi values in the specified block to use the mappings 3304 /// from the initial operand. Once the Phi is scheduled, we switch 3305 /// to using the loop value instead of the Phi value, so those names 3306 /// do not need to be rewritten. 3307 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3308 unsigned StageNum, 3309 SMSchedule &Schedule, 3310 ValueMapTy *VRMap, 3311 InstrMapTy &InstrMap) { 3312 for (auto &PHI : BB->phis()) { 3313 unsigned InitVal = 0; 3314 unsigned LoopVal = 0; 3315 getPhiRegs(PHI, BB, InitVal, LoopVal); 3316 unsigned PhiDef = PHI.getOperand(0).getReg(); 3317 3318 unsigned PhiStage = 3319 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3320 unsigned LoopStage = 3321 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3322 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3323 if (NumPhis > StageNum) 3324 NumPhis = StageNum; 3325 for (unsigned np = 0; np <= NumPhis; ++np) { 3326 unsigned NewVal = 3327 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3328 if (!NewVal) 3329 NewVal = InitVal; 3330 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3331 PhiDef, NewVal); 3332 } 3333 } 3334 } 3335 3336 /// Rewrite a previously scheduled instruction to use the register value 3337 /// from the new instruction. Make sure the instruction occurs in the 3338 /// basic block, and we don't change the uses in the new instruction. 3339 void SwingSchedulerDAG::rewriteScheduledInstr( 3340 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3341 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3342 unsigned NewReg, unsigned PrevReg) { 3343 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3344 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3345 // Rewrite uses that have been scheduled already to use the new 3346 // Phi register. 3347 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3348 EI = MRI.use_end(); 3349 UI != EI;) { 3350 MachineOperand &UseOp = *UI; 3351 MachineInstr *UseMI = UseOp.getParent(); 3352 ++UI; 3353 if (UseMI->getParent() != BB) 3354 continue; 3355 if (UseMI->isPHI()) { 3356 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3357 continue; 3358 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3359 continue; 3360 } 3361 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3362 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3363 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3364 int StageSched = Schedule.stageScheduled(OrigMISU); 3365 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3366 unsigned ReplaceReg = 0; 3367 // This is the stage for the scheduled instruction. 3368 if (StagePhi == StageSched && Phi->isPHI()) { 3369 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3370 if (PrevReg && InProlog) 3371 ReplaceReg = PrevReg; 3372 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3373 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3374 ReplaceReg = PrevReg; 3375 else 3376 ReplaceReg = NewReg; 3377 } 3378 // The scheduled instruction occurs before the scheduled Phi, and the 3379 // Phi is not loop carried. 3380 if (!InProlog && StagePhi + 1 == StageSched && 3381 !Schedule.isLoopCarried(this, *Phi)) 3382 ReplaceReg = NewReg; 3383 if (StagePhi > StageSched && Phi->isPHI()) 3384 ReplaceReg = NewReg; 3385 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3386 ReplaceReg = NewReg; 3387 if (ReplaceReg) { 3388 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3389 UseOp.setReg(ReplaceReg); 3390 } 3391 } 3392 } 3393 3394 /// Check if we can change the instruction to use an offset value from the 3395 /// previous iteration. If so, return true and set the base and offset values 3396 /// so that we can rewrite the load, if necessary. 3397 /// v1 = Phi(v0, v3) 3398 /// v2 = load v1, 0 3399 /// v3 = post_store v1, 4, x 3400 /// This function enables the load to be rewritten as v2 = load v3, 4. 3401 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3402 unsigned &BasePos, 3403 unsigned &OffsetPos, 3404 unsigned &NewBase, 3405 int64_t &Offset) { 3406 // Get the load instruction. 3407 if (TII->isPostIncrement(*MI)) 3408 return false; 3409 unsigned BasePosLd, OffsetPosLd; 3410 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3411 return false; 3412 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3413 3414 // Look for the Phi instruction. 3415 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3416 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3417 if (!Phi || !Phi->isPHI()) 3418 return false; 3419 // Get the register defined in the loop block. 3420 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3421 if (!PrevReg) 3422 return false; 3423 3424 // Check for the post-increment load/store instruction. 3425 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3426 if (!PrevDef || PrevDef == MI) 3427 return false; 3428 3429 if (!TII->isPostIncrement(*PrevDef)) 3430 return false; 3431 3432 unsigned BasePos1 = 0, OffsetPos1 = 0; 3433 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3434 return false; 3435 3436 // Make sure offset values are both positive or both negative. 3437 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3438 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3439 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3440 return false; 3441 3442 // Set the return value once we determine that we return true. 3443 BasePos = BasePosLd; 3444 OffsetPos = OffsetPosLd; 3445 NewBase = PrevReg; 3446 Offset = StoreOffset; 3447 return true; 3448 } 3449 3450 /// Apply changes to the instruction if needed. The changes are need 3451 /// to improve the scheduling and depend up on the final schedule. 3452 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3453 SMSchedule &Schedule) { 3454 SUnit *SU = getSUnit(MI); 3455 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3456 InstrChanges.find(SU); 3457 if (It != InstrChanges.end()) { 3458 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3459 unsigned BasePos, OffsetPos; 3460 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3461 return; 3462 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3463 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3464 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3465 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3466 int BaseStageNum = Schedule.stageScheduled(SU); 3467 int BaseCycleNum = Schedule.cycleScheduled(SU); 3468 if (BaseStageNum < DefStageNum) { 3469 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3470 int OffsetDiff = DefStageNum - BaseStageNum; 3471 if (DefCycleNum < BaseCycleNum) { 3472 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3473 if (OffsetDiff > 0) 3474 --OffsetDiff; 3475 } 3476 int64_t NewOffset = 3477 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3478 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3479 SU->setInstr(NewMI); 3480 MISUnitMap[NewMI] = SU; 3481 NewMIs.insert(NewMI); 3482 } 3483 } 3484 } 3485 3486 /// Return true for an order dependence that is loop carried potentially. 3487 /// An order dependence is loop carried if the destination defines a value 3488 /// that may be used by the source in a subsequent iteration. 3489 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3490 bool isSucc) { 3491 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3492 return false; 3493 3494 if (!SwpPruneLoopCarried) 3495 return true; 3496 3497 MachineInstr *SI = Source->getInstr(); 3498 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3499 if (!isSucc) 3500 std::swap(SI, DI); 3501 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3502 3503 // Assume ordered loads and stores may have a loop carried dependence. 3504 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3505 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3506 return true; 3507 3508 // Only chain dependences between a load and store can be loop carried. 3509 if (!DI->mayStore() || !SI->mayLoad()) 3510 return false; 3511 3512 unsigned DeltaS, DeltaD; 3513 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3514 return true; 3515 3516 unsigned BaseRegS, BaseRegD; 3517 int64_t OffsetS, OffsetD; 3518 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3519 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3520 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3521 return true; 3522 3523 if (BaseRegS != BaseRegD) 3524 return true; 3525 3526 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3527 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3528 3529 // This is the main test, which checks the offset values and the loop 3530 // increment value to determine if the accesses may be loop carried. 3531 if (OffsetS >= OffsetD) 3532 return OffsetS + AccessSizeS > DeltaS; 3533 else 3534 return OffsetD + AccessSizeD > DeltaD; 3535 3536 return true; 3537 } 3538 3539 void SwingSchedulerDAG::postprocessDAG() { 3540 for (auto &M : Mutations) 3541 M->apply(this); 3542 } 3543 3544 /// Try to schedule the node at the specified StartCycle and continue 3545 /// until the node is schedule or the EndCycle is reached. This function 3546 /// returns true if the node is scheduled. This routine may search either 3547 /// forward or backward for a place to insert the instruction based upon 3548 /// the relative values of StartCycle and EndCycle. 3549 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3550 bool forward = true; 3551 if (StartCycle > EndCycle) 3552 forward = false; 3553 3554 // The terminating condition depends on the direction. 3555 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3556 for (int curCycle = StartCycle; curCycle != termCycle; 3557 forward ? ++curCycle : --curCycle) { 3558 3559 // Add the already scheduled instructions at the specified cycle to the DFA. 3560 Resources->clearResources(); 3561 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3562 checkCycle <= LastCycle; checkCycle += II) { 3563 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3564 3565 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3566 E = cycleInstrs.end(); 3567 I != E; ++I) { 3568 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3569 continue; 3570 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3571 "These instructions have already been scheduled."); 3572 Resources->reserveResources(*(*I)->getInstr()); 3573 } 3574 } 3575 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3576 Resources->canReserveResources(*SU->getInstr())) { 3577 DEBUG({ 3578 dbgs() << "\tinsert at cycle " << curCycle << " "; 3579 SU->getInstr()->dump(); 3580 }); 3581 3582 ScheduledInstrs[curCycle].push_back(SU); 3583 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3584 if (curCycle > LastCycle) 3585 LastCycle = curCycle; 3586 if (curCycle < FirstCycle) 3587 FirstCycle = curCycle; 3588 return true; 3589 } 3590 DEBUG({ 3591 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3592 SU->getInstr()->dump(); 3593 }); 3594 } 3595 return false; 3596 } 3597 3598 // Return the cycle of the earliest scheduled instruction in the chain. 3599 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3600 SmallPtrSet<SUnit *, 8> Visited; 3601 SmallVector<SDep, 8> Worklist; 3602 Worklist.push_back(Dep); 3603 int EarlyCycle = INT_MAX; 3604 while (!Worklist.empty()) { 3605 const SDep &Cur = Worklist.pop_back_val(); 3606 SUnit *PrevSU = Cur.getSUnit(); 3607 if (Visited.count(PrevSU)) 3608 continue; 3609 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3610 if (it == InstrToCycle.end()) 3611 continue; 3612 EarlyCycle = std::min(EarlyCycle, it->second); 3613 for (const auto &PI : PrevSU->Preds) 3614 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3615 Worklist.push_back(PI); 3616 Visited.insert(PrevSU); 3617 } 3618 return EarlyCycle; 3619 } 3620 3621 // Return the cycle of the latest scheduled instruction in the chain. 3622 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3623 SmallPtrSet<SUnit *, 8> Visited; 3624 SmallVector<SDep, 8> Worklist; 3625 Worklist.push_back(Dep); 3626 int LateCycle = INT_MIN; 3627 while (!Worklist.empty()) { 3628 const SDep &Cur = Worklist.pop_back_val(); 3629 SUnit *SuccSU = Cur.getSUnit(); 3630 if (Visited.count(SuccSU)) 3631 continue; 3632 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3633 if (it == InstrToCycle.end()) 3634 continue; 3635 LateCycle = std::max(LateCycle, it->second); 3636 for (const auto &SI : SuccSU->Succs) 3637 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3638 Worklist.push_back(SI); 3639 Visited.insert(SuccSU); 3640 } 3641 return LateCycle; 3642 } 3643 3644 /// If an instruction has a use that spans multiple iterations, then 3645 /// return true. These instructions are characterized by having a back-ege 3646 /// to a Phi, which contains a reference to another Phi. 3647 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3648 for (auto &P : SU->Preds) 3649 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3650 for (auto &S : P.getSUnit()->Succs) 3651 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3652 return P.getSUnit(); 3653 return nullptr; 3654 } 3655 3656 /// Compute the scheduling start slot for the instruction. The start slot 3657 /// depends on any predecessor or successor nodes scheduled already. 3658 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3659 int *MinEnd, int *MaxStart, int II, 3660 SwingSchedulerDAG *DAG) { 3661 // Iterate over each instruction that has been scheduled already. The start 3662 // slot computuation depends on whether the previously scheduled instruction 3663 // is a predecessor or successor of the specified instruction. 3664 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3665 3666 // Iterate over each instruction in the current cycle. 3667 for (SUnit *I : getInstructions(cycle)) { 3668 // Because we're processing a DAG for the dependences, we recognize 3669 // the back-edge in recurrences by anti dependences. 3670 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3671 const SDep &Dep = SU->Preds[i]; 3672 if (Dep.getSUnit() == I) { 3673 if (!DAG->isBackedge(SU, Dep)) { 3674 int EarlyStart = cycle + Dep.getLatency() - 3675 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3676 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3677 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3678 int End = earliestCycleInChain(Dep) + (II - 1); 3679 *MinEnd = std::min(*MinEnd, End); 3680 } 3681 } else { 3682 int LateStart = cycle - Dep.getLatency() + 3683 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3684 *MinLateStart = std::min(*MinLateStart, LateStart); 3685 } 3686 } 3687 // For instruction that requires multiple iterations, make sure that 3688 // the dependent instruction is not scheduled past the definition. 3689 SUnit *BE = multipleIterations(I, DAG); 3690 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3691 !SU->isPred(I)) 3692 *MinLateStart = std::min(*MinLateStart, cycle); 3693 } 3694 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3695 if (SU->Succs[i].getSUnit() == I) { 3696 const SDep &Dep = SU->Succs[i]; 3697 if (!DAG->isBackedge(SU, Dep)) { 3698 int LateStart = cycle - Dep.getLatency() + 3699 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3700 *MinLateStart = std::min(*MinLateStart, LateStart); 3701 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3702 int Start = latestCycleInChain(Dep) + 1 - II; 3703 *MaxStart = std::max(*MaxStart, Start); 3704 } 3705 } else { 3706 int EarlyStart = cycle + Dep.getLatency() - 3707 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3708 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3709 } 3710 } 3711 } 3712 } 3713 } 3714 3715 /// Order the instructions within a cycle so that the definitions occur 3716 /// before the uses. Returns true if the instruction is added to the start 3717 /// of the list, or false if added to the end. 3718 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3719 std::deque<SUnit *> &Insts) { 3720 MachineInstr *MI = SU->getInstr(); 3721 bool OrderBeforeUse = false; 3722 bool OrderAfterDef = false; 3723 bool OrderBeforeDef = false; 3724 unsigned MoveDef = 0; 3725 unsigned MoveUse = 0; 3726 int StageInst1 = stageScheduled(SU); 3727 3728 unsigned Pos = 0; 3729 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3730 ++I, ++Pos) { 3731 // Relative order of Phis does not matter. 3732 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3733 continue; 3734 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3735 MachineOperand &MO = MI->getOperand(i); 3736 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3737 continue; 3738 unsigned Reg = MO.getReg(); 3739 unsigned BasePos, OffsetPos; 3740 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3741 if (MI->getOperand(BasePos).getReg() == Reg) 3742 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3743 Reg = NewReg; 3744 bool Reads, Writes; 3745 std::tie(Reads, Writes) = 3746 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3747 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3748 OrderBeforeUse = true; 3749 MoveUse = Pos; 3750 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3751 // Add the instruction after the scheduled instruction. 3752 OrderAfterDef = true; 3753 MoveDef = Pos; 3754 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3755 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3756 OrderBeforeUse = true; 3757 MoveUse = Pos; 3758 } else { 3759 OrderAfterDef = true; 3760 MoveDef = Pos; 3761 } 3762 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3763 OrderBeforeUse = true; 3764 MoveUse = Pos; 3765 if (MoveUse != 0) { 3766 OrderAfterDef = true; 3767 MoveDef = Pos - 1; 3768 } 3769 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3770 // Add the instruction before the scheduled instruction. 3771 OrderBeforeUse = true; 3772 MoveUse = Pos; 3773 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3774 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3775 OrderBeforeDef = true; 3776 MoveUse = Pos; 3777 } 3778 } 3779 // Check for order dependences between instructions. Make sure the source 3780 // is ordered before the destination. 3781 for (auto &S : SU->Succs) 3782 if (S.getKind() == SDep::Order) { 3783 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3784 OrderBeforeUse = true; 3785 MoveUse = Pos; 3786 } 3787 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3788 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3789 if (S.isAssignedRegDep()) { 3790 OrderAfterDef = true; 3791 MoveDef = Pos; 3792 } 3793 } else { 3794 OrderBeforeUse = true; 3795 MoveUse = Pos; 3796 } 3797 } 3798 for (auto &P : SU->Preds) 3799 if (P.getKind() == SDep::Order) { 3800 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3801 OrderAfterDef = true; 3802 MoveDef = Pos; 3803 } 3804 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3805 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3806 if (P.isAssignedRegDep()) { 3807 OrderBeforeUse = true; 3808 MoveUse = Pos; 3809 } 3810 } else { 3811 OrderAfterDef = true; 3812 MoveDef = Pos; 3813 } 3814 } 3815 } 3816 3817 // A circular dependence. 3818 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3819 OrderBeforeUse = false; 3820 3821 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3822 // to a loop-carried dependence. 3823 if (OrderBeforeDef) 3824 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3825 3826 // The uncommon case when the instruction order needs to be updated because 3827 // there is both a use and def. 3828 if (OrderBeforeUse && OrderAfterDef) { 3829 SUnit *UseSU = Insts.at(MoveUse); 3830 SUnit *DefSU = Insts.at(MoveDef); 3831 if (MoveUse > MoveDef) { 3832 Insts.erase(Insts.begin() + MoveUse); 3833 Insts.erase(Insts.begin() + MoveDef); 3834 } else { 3835 Insts.erase(Insts.begin() + MoveDef); 3836 Insts.erase(Insts.begin() + MoveUse); 3837 } 3838 if (orderDependence(SSD, UseSU, Insts)) { 3839 Insts.push_front(SU); 3840 orderDependence(SSD, DefSU, Insts); 3841 return true; 3842 } 3843 Insts.pop_back(); 3844 Insts.push_back(SU); 3845 Insts.push_back(UseSU); 3846 orderDependence(SSD, DefSU, Insts); 3847 return false; 3848 } 3849 // Put the new instruction first if there is a use in the list. Otherwise, 3850 // put it at the end of the list. 3851 if (OrderBeforeUse) 3852 Insts.push_front(SU); 3853 else 3854 Insts.push_back(SU); 3855 return OrderBeforeUse; 3856 } 3857 3858 /// Return true if the scheduled Phi has a loop carried operand. 3859 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3860 if (!Phi.isPHI()) 3861 return false; 3862 assert(Phi.isPHI() && "Expecing a Phi."); 3863 SUnit *DefSU = SSD->getSUnit(&Phi); 3864 unsigned DefCycle = cycleScheduled(DefSU); 3865 int DefStage = stageScheduled(DefSU); 3866 3867 unsigned InitVal = 0; 3868 unsigned LoopVal = 0; 3869 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3870 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3871 if (!UseSU) 3872 return true; 3873 if (UseSU->getInstr()->isPHI()) 3874 return true; 3875 unsigned LoopCycle = cycleScheduled(UseSU); 3876 int LoopStage = stageScheduled(UseSU); 3877 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3878 } 3879 3880 /// Return true if the instruction is a definition that is loop carried 3881 /// and defines the use on the next iteration. 3882 /// v1 = phi(v2, v3) 3883 /// (Def) v3 = op v1 3884 /// (MO) = v1 3885 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3886 /// register. 3887 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3888 MachineInstr *Def, MachineOperand &MO) { 3889 if (!MO.isReg()) 3890 return false; 3891 if (Def->isPHI()) 3892 return false; 3893 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3894 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3895 return false; 3896 if (!isLoopCarried(SSD, *Phi)) 3897 return false; 3898 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3899 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3900 MachineOperand &DMO = Def->getOperand(i); 3901 if (!DMO.isReg() || !DMO.isDef()) 3902 continue; 3903 if (DMO.getReg() == LoopReg) 3904 return true; 3905 } 3906 return false; 3907 } 3908 3909 // Check if the generated schedule is valid. This function checks if 3910 // an instruction that uses a physical register is scheduled in a 3911 // different stage than the definition. The pipeliner does not handle 3912 // physical register values that may cross a basic block boundary. 3913 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3914 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3915 SUnit &SU = SSD->SUnits[i]; 3916 if (!SU.hasPhysRegDefs) 3917 continue; 3918 int StageDef = stageScheduled(&SU); 3919 assert(StageDef != -1 && "Instruction should have been scheduled."); 3920 for (auto &SI : SU.Succs) 3921 if (SI.isAssignedRegDep()) 3922 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3923 if (stageScheduled(SI.getSUnit()) != StageDef) 3924 return false; 3925 } 3926 return true; 3927 } 3928 3929 /// A property of the node order in swing-modulo-scheduling is 3930 /// that for nodes outside circuits the following holds: 3931 /// none of them is scheduled after both a successor and a 3932 /// predecessor. 3933 /// The method below checks whether the property is met. 3934 /// If not, debug information is printed and statistics information updated. 3935 /// Note that we do not use an assert statement. 3936 /// The reason is that although an invalid node oder may prevent 3937 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3938 /// it does not lead to the generation of incorrect code. 3939 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3940 3941 // a sorted vector that maps each SUnit to its index in the NodeOrder 3942 typedef std::pair<SUnit *, unsigned> UnitIndex; 3943 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3944 3945 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3946 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3947 3948 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3949 return std::get<0>(i1) < std::get<0>(i2); 3950 }; 3951 3952 // sort, so that we can perform a binary search 3953 std::sort(Indices.begin(), Indices.end(), CompareKey); 3954 3955 bool Valid = true; 3956 (void)Valid; 3957 // for each SUnit in the NodeOrder, check whether 3958 // it appears after both a successor and a predecessor 3959 // of the SUnit. If this is the case, and the SUnit 3960 // is not part of circuit, then the NodeOrder is not 3961 // valid. 3962 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3963 SUnit *SU = NodeOrder[i]; 3964 unsigned Index = i; 3965 3966 bool PredBefore = false; 3967 bool SuccBefore = false; 3968 3969 SUnit *Succ; 3970 SUnit *Pred; 3971 (void)Succ; 3972 (void)Pred; 3973 3974 for (SDep &PredEdge : SU->Preds) { 3975 SUnit *PredSU = PredEdge.getSUnit(); 3976 unsigned PredIndex = 3977 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3978 std::make_pair(PredSU, 0), CompareKey)); 3979 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3980 PredBefore = true; 3981 Pred = PredSU; 3982 break; 3983 } 3984 } 3985 3986 for (SDep &SuccEdge : SU->Succs) { 3987 SUnit *SuccSU = SuccEdge.getSUnit(); 3988 unsigned SuccIndex = 3989 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3990 std::make_pair(SuccSU, 0), CompareKey)); 3991 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3992 SuccBefore = true; 3993 Succ = SuccSU; 3994 break; 3995 } 3996 } 3997 3998 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3999 // instructions in circuits are allowed to be scheduled 4000 // after both a successor and predecessor. 4001 bool InCircuit = std::any_of( 4002 Circuits.begin(), Circuits.end(), 4003 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 4004 if (InCircuit) 4005 DEBUG(dbgs() << "In a circuit, predecessor ";); 4006 else { 4007 Valid = false; 4008 NumNodeOrderIssues++; 4009 DEBUG(dbgs() << "Predecessor ";); 4010 } 4011 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 4012 << " are scheduled before node " << SU->NodeNum << "\n";); 4013 } 4014 } 4015 4016 DEBUG({ 4017 if (!Valid) 4018 dbgs() << "Invalid node order found!\n"; 4019 }); 4020 } 4021 4022 /// Attempt to fix the degenerate cases when the instruction serialization 4023 /// causes the register lifetimes to overlap. For example, 4024 /// p' = store_pi(p, b) 4025 /// = load p, offset 4026 /// In this case p and p' overlap, which means that two registers are needed. 4027 /// Instead, this function changes the load to use p' and updates the offset. 4028 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 4029 unsigned OverlapReg = 0; 4030 unsigned NewBaseReg = 0; 4031 for (SUnit *SU : Instrs) { 4032 MachineInstr *MI = SU->getInstr(); 4033 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4034 const MachineOperand &MO = MI->getOperand(i); 4035 // Look for an instruction that uses p. The instruction occurs in the 4036 // same cycle but occurs later in the serialized order. 4037 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4038 // Check that the instruction appears in the InstrChanges structure, 4039 // which contains instructions that can have the offset updated. 4040 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4041 InstrChanges.find(SU); 4042 if (It != InstrChanges.end()) { 4043 unsigned BasePos, OffsetPos; 4044 // Update the base register and adjust the offset. 4045 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4046 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4047 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4048 int64_t NewOffset = 4049 MI->getOperand(OffsetPos).getImm() - It->second.second; 4050 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4051 SU->setInstr(NewMI); 4052 MISUnitMap[NewMI] = SU; 4053 NewMIs.insert(NewMI); 4054 } 4055 } 4056 OverlapReg = 0; 4057 NewBaseReg = 0; 4058 break; 4059 } 4060 // Look for an instruction of the form p' = op(p), which uses and defines 4061 // two virtual registers that get allocated to the same physical register. 4062 unsigned TiedUseIdx = 0; 4063 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4064 // OverlapReg is p in the example above. 4065 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4066 // NewBaseReg is p' in the example above. 4067 NewBaseReg = MI->getOperand(i).getReg(); 4068 break; 4069 } 4070 } 4071 } 4072 } 4073 4074 /// After the schedule has been formed, call this function to combine 4075 /// the instructions from the different stages/cycles. That is, this 4076 /// function creates a schedule that represents a single iteration. 4077 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4078 // Move all instructions to the first stage from later stages. 4079 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4080 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4081 ++stage) { 4082 std::deque<SUnit *> &cycleInstrs = 4083 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4084 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4085 E = cycleInstrs.rend(); 4086 I != E; ++I) 4087 ScheduledInstrs[cycle].push_front(*I); 4088 } 4089 } 4090 // Iterate over the definitions in each instruction, and compute the 4091 // stage difference for each use. Keep the maximum value. 4092 for (auto &I : InstrToCycle) { 4093 int DefStage = stageScheduled(I.first); 4094 MachineInstr *MI = I.first->getInstr(); 4095 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4096 MachineOperand &Op = MI->getOperand(i); 4097 if (!Op.isReg() || !Op.isDef()) 4098 continue; 4099 4100 unsigned Reg = Op.getReg(); 4101 unsigned MaxDiff = 0; 4102 bool PhiIsSwapped = false; 4103 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4104 EI = MRI.use_end(); 4105 UI != EI; ++UI) { 4106 MachineOperand &UseOp = *UI; 4107 MachineInstr *UseMI = UseOp.getParent(); 4108 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4109 int UseStage = stageScheduled(SUnitUse); 4110 unsigned Diff = 0; 4111 if (UseStage != -1 && UseStage >= DefStage) 4112 Diff = UseStage - DefStage; 4113 if (MI->isPHI()) { 4114 if (isLoopCarried(SSD, *MI)) 4115 ++Diff; 4116 else 4117 PhiIsSwapped = true; 4118 } 4119 MaxDiff = std::max(Diff, MaxDiff); 4120 } 4121 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4122 } 4123 } 4124 4125 // Erase all the elements in the later stages. Only one iteration should 4126 // remain in the scheduled list, and it contains all the instructions. 4127 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4128 ScheduledInstrs.erase(cycle); 4129 4130 // Change the registers in instruction as specified in the InstrChanges 4131 // map. We need to use the new registers to create the correct order. 4132 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4133 SUnit *SU = &SSD->SUnits[i]; 4134 SSD->applyInstrChange(SU->getInstr(), *this); 4135 } 4136 4137 // Reorder the instructions in each cycle to fix and improve the 4138 // generated code. 4139 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4140 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4141 std::deque<SUnit *> newOrderZC; 4142 // Put the zero-cost, pseudo instructions at the start of the cycle. 4143 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4144 SUnit *SU = cycleInstrs[i]; 4145 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 4146 orderDependence(SSD, SU, newOrderZC); 4147 } 4148 std::deque<SUnit *> newOrderI; 4149 // Then, add the regular instructions back. 4150 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4151 SUnit *SU = cycleInstrs[i]; 4152 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 4153 orderDependence(SSD, SU, newOrderI); 4154 } 4155 // Replace the old order with the new order. 4156 cycleInstrs.swap(newOrderZC); 4157 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4158 SSD->fixupRegisterOverlaps(cycleInstrs); 4159 } 4160 4161 DEBUG(dump();); 4162 } 4163 4164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4165 /// Print the schedule information to the given output. 4166 void SMSchedule::print(raw_ostream &os) const { 4167 // Iterate over each cycle. 4168 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4169 // Iterate over each instruction in the cycle. 4170 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4171 for (SUnit *CI : cycleInstrs->second) { 4172 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4173 os << "(" << CI->NodeNum << ") "; 4174 CI->getInstr()->print(os); 4175 os << "\n"; 4176 } 4177 } 4178 } 4179 4180 /// Utility function used for debugging to print the schedule. 4181 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4182 #endif 4183