1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/RegisterPressure.h" 60 #include "llvm/CodeGen/ScheduleDAG.h" 61 #include "llvm/CodeGen/ScheduleDAGMutation.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/Config/llvm-config.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/MC/LaneBitmask.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCInstrItineraries.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <deque> 84 #include <functional> 85 #include <iterator> 86 #include <map> 87 #include <memory> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "pipeliner" 95 96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 97 STATISTIC(NumPipelined, "Number of loops software pipelined"); 98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 99 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 100 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 101 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 102 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 103 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 104 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 105 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 106 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 107 108 /// A command line option to turn software pipelining on or off. 109 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 110 cl::ZeroOrMore, 111 cl::desc("Enable Software Pipelining")); 112 113 /// A command line option to enable SWP at -Os. 114 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 115 cl::desc("Enable SWP at Os."), cl::Hidden, 116 cl::init(false)); 117 118 /// A command line argument to limit minimum initial interval for pipelining. 119 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 120 cl::desc("Size limit for the MII."), 121 cl::Hidden, cl::init(27)); 122 123 /// A command line argument to limit the number of stages in the pipeline. 124 static cl::opt<int> 125 SwpMaxStages("pipeliner-max-stages", 126 cl::desc("Maximum stages allowed in the generated scheduled."), 127 cl::Hidden, cl::init(3)); 128 129 /// A command line option to disable the pruning of chain dependences due to 130 /// an unrelated Phi. 131 static cl::opt<bool> 132 SwpPruneDeps("pipeliner-prune-deps", 133 cl::desc("Prune dependences between unrelated Phi nodes."), 134 cl::Hidden, cl::init(true)); 135 136 /// A command line option to disable the pruning of loop carried order 137 /// dependences. 138 static cl::opt<bool> 139 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 140 cl::desc("Prune loop carried order dependences."), 141 cl::Hidden, cl::init(true)); 142 143 #ifndef NDEBUG 144 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 145 #endif 146 147 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 148 cl::ReallyHidden, cl::init(false), 149 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 150 151 namespace llvm { 152 153 // A command line option to enable the CopyToPhi DAG mutation. 154 cl::opt<bool> 155 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 156 cl::init(true), cl::ZeroOrMore, 157 cl::desc("Enable CopyToPhi DAG Mutation")); 158 159 } // end namespace llvm 160 161 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 162 char MachinePipeliner::ID = 0; 163 #ifndef NDEBUG 164 int MachinePipeliner::NumTries = 0; 165 #endif 166 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 167 168 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 169 "Modulo Software Pipelining", false, false) 170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 172 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 173 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 174 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 175 "Modulo Software Pipelining", false, false) 176 177 /// The "main" function for implementing Swing Modulo Scheduling. 178 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 179 if (skipFunction(mf.getFunction())) 180 return false; 181 182 if (!EnableSWP) 183 return false; 184 185 if (mf.getFunction().getAttributes().hasAttribute( 186 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 187 !EnableSWPOptSize.getPosition()) 188 return false; 189 190 // Cannot pipeline loops without instruction itineraries if we are using 191 // DFA for the pipeliner. 192 if (mf.getSubtarget().useDFAforSMS() && 193 (!mf.getSubtarget().getInstrItineraryData() || 194 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 195 return false; 196 197 MF = &mf; 198 MLI = &getAnalysis<MachineLoopInfo>(); 199 MDT = &getAnalysis<MachineDominatorTree>(); 200 TII = MF->getSubtarget().getInstrInfo(); 201 RegClassInfo.runOnMachineFunction(*MF); 202 203 for (auto &L : *MLI) 204 scheduleLoop(*L); 205 206 return false; 207 } 208 209 /// Attempt to perform the SMS algorithm on the specified loop. This function is 210 /// the main entry point for the algorithm. The function identifies candidate 211 /// loops, calculates the minimum initiation interval, and attempts to schedule 212 /// the loop. 213 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 214 bool Changed = false; 215 for (auto &InnerLoop : L) 216 Changed |= scheduleLoop(*InnerLoop); 217 218 #ifndef NDEBUG 219 // Stop trying after reaching the limit (if any). 220 int Limit = SwpLoopLimit; 221 if (Limit >= 0) { 222 if (NumTries >= SwpLoopLimit) 223 return Changed; 224 NumTries++; 225 } 226 #endif 227 228 setPragmaPipelineOptions(L); 229 if (!canPipelineLoop(L)) { 230 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 231 return Changed; 232 } 233 234 ++NumTrytoPipeline; 235 236 Changed = swingModuloScheduler(L); 237 238 return Changed; 239 } 240 241 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 242 MachineBasicBlock *LBLK = L.getTopBlock(); 243 244 if (LBLK == nullptr) 245 return; 246 247 const BasicBlock *BBLK = LBLK->getBasicBlock(); 248 if (BBLK == nullptr) 249 return; 250 251 const Instruction *TI = BBLK->getTerminator(); 252 if (TI == nullptr) 253 return; 254 255 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 256 if (LoopID == nullptr) 257 return; 258 259 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 260 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 261 262 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 263 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 264 265 if (MD == nullptr) 266 continue; 267 268 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 269 270 if (S == nullptr) 271 continue; 272 273 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 274 assert(MD->getNumOperands() == 2 && 275 "Pipeline initiation interval hint metadata should have two operands."); 276 II_setByPragma = 277 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 278 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 279 } else if (S->getString() == "llvm.loop.pipeline.disable") { 280 disabledByPragma = true; 281 } 282 } 283 } 284 285 /// Return true if the loop can be software pipelined. The algorithm is 286 /// restricted to loops with a single basic block. Make sure that the 287 /// branch in the loop can be analyzed. 288 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 289 if (L.getNumBlocks() != 1) 290 return false; 291 292 if (disabledByPragma) 293 return false; 294 295 // Check if the branch can't be understood because we can't do pipelining 296 // if that's the case. 297 LI.TBB = nullptr; 298 LI.FBB = nullptr; 299 LI.BrCond.clear(); 300 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 301 LLVM_DEBUG( 302 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 303 NumFailBranch++; 304 return false; 305 } 306 307 LI.LoopInductionVar = nullptr; 308 LI.LoopCompare = nullptr; 309 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) { 310 LLVM_DEBUG( 311 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 312 NumFailLoop++; 313 return false; 314 } 315 316 if (!L.getLoopPreheader()) { 317 LLVM_DEBUG( 318 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 319 NumFailPreheader++; 320 return false; 321 } 322 323 // Remove any subregisters from inputs to phi nodes. 324 preprocessPhiNodes(*L.getHeader()); 325 return true; 326 } 327 328 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 329 MachineRegisterInfo &MRI = MF->getRegInfo(); 330 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 331 332 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 333 MachineOperand &DefOp = PI.getOperand(0); 334 assert(DefOp.getSubReg() == 0); 335 auto *RC = MRI.getRegClass(DefOp.getReg()); 336 337 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 338 MachineOperand &RegOp = PI.getOperand(i); 339 if (RegOp.getSubReg() == 0) 340 continue; 341 342 // If the operand uses a subregister, replace it with a new register 343 // without subregisters, and generate a copy to the new register. 344 unsigned NewReg = MRI.createVirtualRegister(RC); 345 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 346 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 347 const DebugLoc &DL = PredB.findDebugLoc(At); 348 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 349 .addReg(RegOp.getReg(), getRegState(RegOp), 350 RegOp.getSubReg()); 351 Slots.insertMachineInstrInMaps(*Copy); 352 RegOp.setReg(NewReg); 353 RegOp.setSubReg(0); 354 } 355 } 356 } 357 358 /// The SMS algorithm consists of the following main steps: 359 /// 1. Computation and analysis of the dependence graph. 360 /// 2. Ordering of the nodes (instructions). 361 /// 3. Attempt to Schedule the loop. 362 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 363 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 364 365 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 366 II_setByPragma); 367 368 MachineBasicBlock *MBB = L.getHeader(); 369 // The kernel should not include any terminator instructions. These 370 // will be added back later. 371 SMS.startBlock(MBB); 372 373 // Compute the number of 'real' instructions in the basic block by 374 // ignoring terminators. 375 unsigned size = MBB->size(); 376 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 377 E = MBB->instr_end(); 378 I != E; ++I, --size) 379 ; 380 381 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 382 SMS.schedule(); 383 SMS.exitRegion(); 384 385 SMS.finishBlock(); 386 return SMS.hasNewSchedule(); 387 } 388 389 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 390 if (II_setByPragma > 0) 391 MII = II_setByPragma; 392 else 393 MII = std::max(ResMII, RecMII); 394 } 395 396 void SwingSchedulerDAG::setMAX_II() { 397 if (II_setByPragma > 0) 398 MAX_II = II_setByPragma; 399 else 400 MAX_II = MII + 10; 401 } 402 403 /// We override the schedule function in ScheduleDAGInstrs to implement the 404 /// scheduling part of the Swing Modulo Scheduling algorithm. 405 void SwingSchedulerDAG::schedule() { 406 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 407 buildSchedGraph(AA); 408 addLoopCarriedDependences(AA); 409 updatePhiDependences(); 410 Topo.InitDAGTopologicalSorting(); 411 changeDependences(); 412 postprocessDAG(); 413 LLVM_DEBUG(dump()); 414 415 NodeSetType NodeSets; 416 findCircuits(NodeSets); 417 NodeSetType Circuits = NodeSets; 418 419 // Calculate the MII. 420 unsigned ResMII = calculateResMII(); 421 unsigned RecMII = calculateRecMII(NodeSets); 422 423 fuseRecs(NodeSets); 424 425 // This flag is used for testing and can cause correctness problems. 426 if (SwpIgnoreRecMII) 427 RecMII = 0; 428 429 setMII(ResMII, RecMII); 430 setMAX_II(); 431 432 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 433 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 434 435 // Can't schedule a loop without a valid MII. 436 if (MII == 0) { 437 LLVM_DEBUG( 438 dbgs() 439 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 440 NumFailZeroMII++; 441 return; 442 } 443 444 // Don't pipeline large loops. 445 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 446 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 447 << ", we don't pipleline large loops\n"); 448 NumFailLargeMaxMII++; 449 return; 450 } 451 452 computeNodeFunctions(NodeSets); 453 454 registerPressureFilter(NodeSets); 455 456 colocateNodeSets(NodeSets); 457 458 checkNodeSets(NodeSets); 459 460 LLVM_DEBUG({ 461 for (auto &I : NodeSets) { 462 dbgs() << " Rec NodeSet "; 463 I.dump(); 464 } 465 }); 466 467 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 468 469 groupRemainingNodes(NodeSets); 470 471 removeDuplicateNodes(NodeSets); 472 473 LLVM_DEBUG({ 474 for (auto &I : NodeSets) { 475 dbgs() << " NodeSet "; 476 I.dump(); 477 } 478 }); 479 480 computeNodeOrder(NodeSets); 481 482 // check for node order issues 483 checkValidNodeOrder(Circuits); 484 485 SMSchedule Schedule(Pass.MF); 486 Scheduled = schedulePipeline(Schedule); 487 488 if (!Scheduled){ 489 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 490 NumFailNoSchedule++; 491 return; 492 } 493 494 unsigned numStages = Schedule.getMaxStageCount(); 495 // No need to generate pipeline if there are no overlapped iterations. 496 if (numStages == 0) { 497 LLVM_DEBUG( 498 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 499 NumFailZeroStage++; 500 return; 501 } 502 // Check that the maximum stage count is less than user-defined limit. 503 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 504 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 505 << " : too many stages, abort\n"); 506 NumFailLargeMaxStage++; 507 return; 508 } 509 510 generatePipelinedLoop(Schedule); 511 ++NumPipelined; 512 } 513 514 /// Clean up after the software pipeliner runs. 515 void SwingSchedulerDAG::finishBlock() { 516 for (MachineInstr *I : NewMIs) 517 MF.DeleteMachineInstr(I); 518 NewMIs.clear(); 519 520 // Call the superclass. 521 ScheduleDAGInstrs::finishBlock(); 522 } 523 524 /// Return the register values for the operands of a Phi instruction. 525 /// This function assume the instruction is a Phi. 526 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 527 unsigned &InitVal, unsigned &LoopVal) { 528 assert(Phi.isPHI() && "Expecting a Phi."); 529 530 InitVal = 0; 531 LoopVal = 0; 532 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 533 if (Phi.getOperand(i + 1).getMBB() != Loop) 534 InitVal = Phi.getOperand(i).getReg(); 535 else 536 LoopVal = Phi.getOperand(i).getReg(); 537 538 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 539 } 540 541 /// Return the Phi register value that comes from the incoming block. 542 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 543 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 544 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 545 return Phi.getOperand(i).getReg(); 546 return 0; 547 } 548 549 /// Return the Phi register value that comes the loop block. 550 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 551 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 552 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 553 return Phi.getOperand(i).getReg(); 554 return 0; 555 } 556 557 /// Return true if SUb can be reached from SUa following the chain edges. 558 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 559 SmallPtrSet<SUnit *, 8> Visited; 560 SmallVector<SUnit *, 8> Worklist; 561 Worklist.push_back(SUa); 562 while (!Worklist.empty()) { 563 const SUnit *SU = Worklist.pop_back_val(); 564 for (auto &SI : SU->Succs) { 565 SUnit *SuccSU = SI.getSUnit(); 566 if (SI.getKind() == SDep::Order) { 567 if (Visited.count(SuccSU)) 568 continue; 569 if (SuccSU == SUb) 570 return true; 571 Worklist.push_back(SuccSU); 572 Visited.insert(SuccSU); 573 } 574 } 575 } 576 return false; 577 } 578 579 /// Return true if the instruction causes a chain between memory 580 /// references before and after it. 581 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 582 return MI.isCall() || MI.hasUnmodeledSideEffects() || 583 (MI.hasOrderedMemoryRef() && 584 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 585 } 586 587 /// Return the underlying objects for the memory references of an instruction. 588 /// This function calls the code in ValueTracking, but first checks that the 589 /// instruction has a memory operand. 590 static void getUnderlyingObjects(const MachineInstr *MI, 591 SmallVectorImpl<const Value *> &Objs, 592 const DataLayout &DL) { 593 if (!MI->hasOneMemOperand()) 594 return; 595 MachineMemOperand *MM = *MI->memoperands_begin(); 596 if (!MM->getValue()) 597 return; 598 GetUnderlyingObjects(MM->getValue(), Objs, DL); 599 for (const Value *V : Objs) { 600 if (!isIdentifiedObject(V)) { 601 Objs.clear(); 602 return; 603 } 604 Objs.push_back(V); 605 } 606 } 607 608 /// Add a chain edge between a load and store if the store can be an 609 /// alias of the load on a subsequent iteration, i.e., a loop carried 610 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 611 /// but that code doesn't create loop carried dependences. 612 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 613 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 614 Value *UnknownValue = 615 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 616 for (auto &SU : SUnits) { 617 MachineInstr &MI = *SU.getInstr(); 618 if (isDependenceBarrier(MI, AA)) 619 PendingLoads.clear(); 620 else if (MI.mayLoad()) { 621 SmallVector<const Value *, 4> Objs; 622 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 623 if (Objs.empty()) 624 Objs.push_back(UnknownValue); 625 for (auto V : Objs) { 626 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 627 SUs.push_back(&SU); 628 } 629 } else if (MI.mayStore()) { 630 SmallVector<const Value *, 4> Objs; 631 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 632 if (Objs.empty()) 633 Objs.push_back(UnknownValue); 634 for (auto V : Objs) { 635 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 636 PendingLoads.find(V); 637 if (I == PendingLoads.end()) 638 continue; 639 for (auto Load : I->second) { 640 if (isSuccOrder(Load, &SU)) 641 continue; 642 MachineInstr &LdMI = *Load->getInstr(); 643 // First, perform the cheaper check that compares the base register. 644 // If they are the same and the load offset is less than the store 645 // offset, then mark the dependence as loop carried potentially. 646 const MachineOperand *BaseOp1, *BaseOp2; 647 int64_t Offset1, Offset2; 648 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 649 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 650 if (BaseOp1->isIdenticalTo(*BaseOp2) && 651 (int)Offset1 < (int)Offset2) { 652 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 653 "What happened to the chain edge?"); 654 SDep Dep(Load, SDep::Barrier); 655 Dep.setLatency(1); 656 SU.addPred(Dep); 657 continue; 658 } 659 } 660 // Second, the more expensive check that uses alias analysis on the 661 // base registers. If they alias, and the load offset is less than 662 // the store offset, the mark the dependence as loop carried. 663 if (!AA) { 664 SDep Dep(Load, SDep::Barrier); 665 Dep.setLatency(1); 666 SU.addPred(Dep); 667 continue; 668 } 669 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 670 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 671 if (!MMO1->getValue() || !MMO2->getValue()) { 672 SDep Dep(Load, SDep::Barrier); 673 Dep.setLatency(1); 674 SU.addPred(Dep); 675 continue; 676 } 677 if (MMO1->getValue() == MMO2->getValue() && 678 MMO1->getOffset() <= MMO2->getOffset()) { 679 SDep Dep(Load, SDep::Barrier); 680 Dep.setLatency(1); 681 SU.addPred(Dep); 682 continue; 683 } 684 AliasResult AAResult = AA->alias( 685 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 686 MMO1->getAAInfo()), 687 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 688 MMO2->getAAInfo())); 689 690 if (AAResult != NoAlias) { 691 SDep Dep(Load, SDep::Barrier); 692 Dep.setLatency(1); 693 SU.addPred(Dep); 694 } 695 } 696 } 697 } 698 } 699 } 700 701 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 702 /// processes dependences for PHIs. This function adds true dependences 703 /// from a PHI to a use, and a loop carried dependence from the use to the 704 /// PHI. The loop carried dependence is represented as an anti dependence 705 /// edge. This function also removes chain dependences between unrelated 706 /// PHIs. 707 void SwingSchedulerDAG::updatePhiDependences() { 708 SmallVector<SDep, 4> RemoveDeps; 709 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 710 711 // Iterate over each DAG node. 712 for (SUnit &I : SUnits) { 713 RemoveDeps.clear(); 714 // Set to true if the instruction has an operand defined by a Phi. 715 unsigned HasPhiUse = 0; 716 unsigned HasPhiDef = 0; 717 MachineInstr *MI = I.getInstr(); 718 // Iterate over each operand, and we process the definitions. 719 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 720 MOE = MI->operands_end(); 721 MOI != MOE; ++MOI) { 722 if (!MOI->isReg()) 723 continue; 724 unsigned Reg = MOI->getReg(); 725 if (MOI->isDef()) { 726 // If the register is used by a Phi, then create an anti dependence. 727 for (MachineRegisterInfo::use_instr_iterator 728 UI = MRI.use_instr_begin(Reg), 729 UE = MRI.use_instr_end(); 730 UI != UE; ++UI) { 731 MachineInstr *UseMI = &*UI; 732 SUnit *SU = getSUnit(UseMI); 733 if (SU != nullptr && UseMI->isPHI()) { 734 if (!MI->isPHI()) { 735 SDep Dep(SU, SDep::Anti, Reg); 736 Dep.setLatency(1); 737 I.addPred(Dep); 738 } else { 739 HasPhiDef = Reg; 740 // Add a chain edge to a dependent Phi that isn't an existing 741 // predecessor. 742 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 743 I.addPred(SDep(SU, SDep::Barrier)); 744 } 745 } 746 } 747 } else if (MOI->isUse()) { 748 // If the register is defined by a Phi, then create a true dependence. 749 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 750 if (DefMI == nullptr) 751 continue; 752 SUnit *SU = getSUnit(DefMI); 753 if (SU != nullptr && DefMI->isPHI()) { 754 if (!MI->isPHI()) { 755 SDep Dep(SU, SDep::Data, Reg); 756 Dep.setLatency(0); 757 ST.adjustSchedDependency(SU, &I, Dep); 758 I.addPred(Dep); 759 } else { 760 HasPhiUse = Reg; 761 // Add a chain edge to a dependent Phi that isn't an existing 762 // predecessor. 763 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 764 I.addPred(SDep(SU, SDep::Barrier)); 765 } 766 } 767 } 768 } 769 // Remove order dependences from an unrelated Phi. 770 if (!SwpPruneDeps) 771 continue; 772 for (auto &PI : I.Preds) { 773 MachineInstr *PMI = PI.getSUnit()->getInstr(); 774 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 775 if (I.getInstr()->isPHI()) { 776 if (PMI->getOperand(0).getReg() == HasPhiUse) 777 continue; 778 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 779 continue; 780 } 781 RemoveDeps.push_back(PI); 782 } 783 } 784 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 785 I.removePred(RemoveDeps[i]); 786 } 787 } 788 789 /// Iterate over each DAG node and see if we can change any dependences 790 /// in order to reduce the recurrence MII. 791 void SwingSchedulerDAG::changeDependences() { 792 // See if an instruction can use a value from the previous iteration. 793 // If so, we update the base and offset of the instruction and change 794 // the dependences. 795 for (SUnit &I : SUnits) { 796 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 797 int64_t NewOffset = 0; 798 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 799 NewOffset)) 800 continue; 801 802 // Get the MI and SUnit for the instruction that defines the original base. 803 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 804 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 805 if (!DefMI) 806 continue; 807 SUnit *DefSU = getSUnit(DefMI); 808 if (!DefSU) 809 continue; 810 // Get the MI and SUnit for the instruction that defins the new base. 811 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 812 if (!LastMI) 813 continue; 814 SUnit *LastSU = getSUnit(LastMI); 815 if (!LastSU) 816 continue; 817 818 if (Topo.IsReachable(&I, LastSU)) 819 continue; 820 821 // Remove the dependence. The value now depends on a prior iteration. 822 SmallVector<SDep, 4> Deps; 823 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 824 ++P) 825 if (P->getSUnit() == DefSU) 826 Deps.push_back(*P); 827 for (int i = 0, e = Deps.size(); i != e; i++) { 828 Topo.RemovePred(&I, Deps[i].getSUnit()); 829 I.removePred(Deps[i]); 830 } 831 // Remove the chain dependence between the instructions. 832 Deps.clear(); 833 for (auto &P : LastSU->Preds) 834 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 835 Deps.push_back(P); 836 for (int i = 0, e = Deps.size(); i != e; i++) { 837 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 838 LastSU->removePred(Deps[i]); 839 } 840 841 // Add a dependence between the new instruction and the instruction 842 // that defines the new base. 843 SDep Dep(&I, SDep::Anti, NewBase); 844 Topo.AddPred(LastSU, &I); 845 LastSU->addPred(Dep); 846 847 // Remember the base and offset information so that we can update the 848 // instruction during code generation. 849 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 850 } 851 } 852 853 namespace { 854 855 // FuncUnitSorter - Comparison operator used to sort instructions by 856 // the number of functional unit choices. 857 struct FuncUnitSorter { 858 const InstrItineraryData *InstrItins; 859 const MCSubtargetInfo *STI; 860 DenseMap<unsigned, unsigned> Resources; 861 862 FuncUnitSorter(const TargetSubtargetInfo &TSI) 863 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 864 865 // Compute the number of functional unit alternatives needed 866 // at each stage, and take the minimum value. We prioritize the 867 // instructions by the least number of choices first. 868 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 869 unsigned SchedClass = Inst->getDesc().getSchedClass(); 870 unsigned min = UINT_MAX; 871 if (InstrItins && !InstrItins->isEmpty()) { 872 for (const InstrStage &IS : 873 make_range(InstrItins->beginStage(SchedClass), 874 InstrItins->endStage(SchedClass))) { 875 unsigned funcUnits = IS.getUnits(); 876 unsigned numAlternatives = countPopulation(funcUnits); 877 if (numAlternatives < min) { 878 min = numAlternatives; 879 F = funcUnits; 880 } 881 } 882 return min; 883 } 884 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 885 const MCSchedClassDesc *SCDesc = 886 STI->getSchedModel().getSchedClassDesc(SchedClass); 887 if (!SCDesc->isValid()) 888 // No valid Schedule Class Desc for schedClass, should be 889 // Pseudo/PostRAPseudo 890 return min; 891 892 for (const MCWriteProcResEntry &PRE : 893 make_range(STI->getWriteProcResBegin(SCDesc), 894 STI->getWriteProcResEnd(SCDesc))) { 895 if (!PRE.Cycles) 896 continue; 897 const MCProcResourceDesc *ProcResource = 898 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 899 unsigned NumUnits = ProcResource->NumUnits; 900 if (NumUnits < min) { 901 min = NumUnits; 902 F = PRE.ProcResourceIdx; 903 } 904 } 905 return min; 906 } 907 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 908 } 909 910 // Compute the critical resources needed by the instruction. This 911 // function records the functional units needed by instructions that 912 // must use only one functional unit. We use this as a tie breaker 913 // for computing the resource MII. The instrutions that require 914 // the same, highly used, functional unit have high priority. 915 void calcCriticalResources(MachineInstr &MI) { 916 unsigned SchedClass = MI.getDesc().getSchedClass(); 917 if (InstrItins && !InstrItins->isEmpty()) { 918 for (const InstrStage &IS : 919 make_range(InstrItins->beginStage(SchedClass), 920 InstrItins->endStage(SchedClass))) { 921 unsigned FuncUnits = IS.getUnits(); 922 if (countPopulation(FuncUnits) == 1) 923 Resources[FuncUnits]++; 924 } 925 return; 926 } 927 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 928 const MCSchedClassDesc *SCDesc = 929 STI->getSchedModel().getSchedClassDesc(SchedClass); 930 if (!SCDesc->isValid()) 931 // No valid Schedule Class Desc for schedClass, should be 932 // Pseudo/PostRAPseudo 933 return; 934 935 for (const MCWriteProcResEntry &PRE : 936 make_range(STI->getWriteProcResBegin(SCDesc), 937 STI->getWriteProcResEnd(SCDesc))) { 938 if (!PRE.Cycles) 939 continue; 940 Resources[PRE.ProcResourceIdx]++; 941 } 942 return; 943 } 944 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 945 } 946 947 /// Return true if IS1 has less priority than IS2. 948 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 949 unsigned F1 = 0, F2 = 0; 950 unsigned MFUs1 = minFuncUnits(IS1, F1); 951 unsigned MFUs2 = minFuncUnits(IS2, F2); 952 if (MFUs1 == 1 && MFUs2 == 1) 953 return Resources.lookup(F1) < Resources.lookup(F2); 954 return MFUs1 > MFUs2; 955 } 956 }; 957 958 } // end anonymous namespace 959 960 /// Calculate the resource constrained minimum initiation interval for the 961 /// specified loop. We use the DFA to model the resources needed for 962 /// each instruction, and we ignore dependences. A different DFA is created 963 /// for each cycle that is required. When adding a new instruction, we attempt 964 /// to add it to each existing DFA, until a legal space is found. If the 965 /// instruction cannot be reserved in an existing DFA, we create a new one. 966 unsigned SwingSchedulerDAG::calculateResMII() { 967 968 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 969 SmallVector<ResourceManager*, 8> Resources; 970 MachineBasicBlock *MBB = Loop.getHeader(); 971 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 972 973 // Sort the instructions by the number of available choices for scheduling, 974 // least to most. Use the number of critical resources as the tie breaker. 975 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 976 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 977 E = MBB->getFirstTerminator(); 978 I != E; ++I) 979 FUS.calcCriticalResources(*I); 980 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 981 FuncUnitOrder(FUS); 982 983 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 984 E = MBB->getFirstTerminator(); 985 I != E; ++I) 986 FuncUnitOrder.push(&*I); 987 988 while (!FuncUnitOrder.empty()) { 989 MachineInstr *MI = FuncUnitOrder.top(); 990 FuncUnitOrder.pop(); 991 if (TII->isZeroCost(MI->getOpcode())) 992 continue; 993 // Attempt to reserve the instruction in an existing DFA. At least one 994 // DFA is needed for each cycle. 995 unsigned NumCycles = getSUnit(MI)->Latency; 996 unsigned ReservedCycles = 0; 997 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 998 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 999 LLVM_DEBUG({ 1000 dbgs() << "Trying to reserve resource for " << NumCycles 1001 << " cycles for \n"; 1002 MI->dump(); 1003 }); 1004 for (unsigned C = 0; C < NumCycles; ++C) 1005 while (RI != RE) { 1006 if ((*RI++)->canReserveResources(*MI)) { 1007 ++ReservedCycles; 1008 break; 1009 } 1010 } 1011 // Start reserving resources using existing DFAs. 1012 for (unsigned C = 0; C < ReservedCycles; ++C) { 1013 --RI; 1014 (*RI)->reserveResources(*MI); 1015 } 1016 1017 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1018 << ", NumCycles:" << NumCycles << "\n"); 1019 // Add new DFAs, if needed, to reserve resources. 1020 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1021 LLVM_DEBUG(dbgs() << "NewResource created to reserve resources" 1022 << "\n"); 1023 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1024 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1025 NewResource->reserveResources(*MI); 1026 Resources.push_back(NewResource); 1027 } 1028 } 1029 int Resmii = Resources.size(); 1030 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1031 // Delete the memory for each of the DFAs that were created earlier. 1032 for (ResourceManager *RI : Resources) { 1033 ResourceManager *D = RI; 1034 delete D; 1035 } 1036 Resources.clear(); 1037 return Resmii; 1038 } 1039 1040 /// Calculate the recurrence-constrainted minimum initiation interval. 1041 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1042 /// for each circuit. The II needs to satisfy the inequality 1043 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1044 /// II that satisfies the inequality, and the RecMII is the maximum 1045 /// of those values. 1046 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1047 unsigned RecMII = 0; 1048 1049 for (NodeSet &Nodes : NodeSets) { 1050 if (Nodes.empty()) 1051 continue; 1052 1053 unsigned Delay = Nodes.getLatency(); 1054 unsigned Distance = 1; 1055 1056 // ii = ceil(delay / distance) 1057 unsigned CurMII = (Delay + Distance - 1) / Distance; 1058 Nodes.setRecMII(CurMII); 1059 if (CurMII > RecMII) 1060 RecMII = CurMII; 1061 } 1062 1063 return RecMII; 1064 } 1065 1066 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1067 /// but we do this to find the circuits, and then change them back. 1068 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1069 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1070 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1071 SUnit *SU = &SUnits[i]; 1072 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1073 IP != EP; ++IP) { 1074 if (IP->getKind() != SDep::Anti) 1075 continue; 1076 DepsAdded.push_back(std::make_pair(SU, *IP)); 1077 } 1078 } 1079 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1080 E = DepsAdded.end(); 1081 I != E; ++I) { 1082 // Remove this anti dependency and add one in the reverse direction. 1083 SUnit *SU = I->first; 1084 SDep &D = I->second; 1085 SUnit *TargetSU = D.getSUnit(); 1086 unsigned Reg = D.getReg(); 1087 unsigned Lat = D.getLatency(); 1088 SU->removePred(D); 1089 SDep Dep(SU, SDep::Anti, Reg); 1090 Dep.setLatency(Lat); 1091 TargetSU->addPred(Dep); 1092 } 1093 } 1094 1095 /// Create the adjacency structure of the nodes in the graph. 1096 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1097 SwingSchedulerDAG *DAG) { 1098 BitVector Added(SUnits.size()); 1099 DenseMap<int, int> OutputDeps; 1100 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1101 Added.reset(); 1102 // Add any successor to the adjacency matrix and exclude duplicates. 1103 for (auto &SI : SUnits[i].Succs) { 1104 // Only create a back-edge on the first and last nodes of a dependence 1105 // chain. This records any chains and adds them later. 1106 if (SI.getKind() == SDep::Output) { 1107 int N = SI.getSUnit()->NodeNum; 1108 int BackEdge = i; 1109 auto Dep = OutputDeps.find(BackEdge); 1110 if (Dep != OutputDeps.end()) { 1111 BackEdge = Dep->second; 1112 OutputDeps.erase(Dep); 1113 } 1114 OutputDeps[N] = BackEdge; 1115 } 1116 // Do not process a boundary node, an artificial node. 1117 // A back-edge is processed only if it goes to a Phi. 1118 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1119 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1120 continue; 1121 int N = SI.getSUnit()->NodeNum; 1122 if (!Added.test(N)) { 1123 AdjK[i].push_back(N); 1124 Added.set(N); 1125 } 1126 } 1127 // A chain edge between a store and a load is treated as a back-edge in the 1128 // adjacency matrix. 1129 for (auto &PI : SUnits[i].Preds) { 1130 if (!SUnits[i].getInstr()->mayStore() || 1131 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1132 continue; 1133 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1134 int N = PI.getSUnit()->NodeNum; 1135 if (!Added.test(N)) { 1136 AdjK[i].push_back(N); 1137 Added.set(N); 1138 } 1139 } 1140 } 1141 } 1142 // Add back-edges in the adjacency matrix for the output dependences. 1143 for (auto &OD : OutputDeps) 1144 if (!Added.test(OD.second)) { 1145 AdjK[OD.first].push_back(OD.second); 1146 Added.set(OD.second); 1147 } 1148 } 1149 1150 /// Identify an elementary circuit in the dependence graph starting at the 1151 /// specified node. 1152 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1153 bool HasBackedge) { 1154 SUnit *SV = &SUnits[V]; 1155 bool F = false; 1156 Stack.insert(SV); 1157 Blocked.set(V); 1158 1159 for (auto W : AdjK[V]) { 1160 if (NumPaths > MaxPaths) 1161 break; 1162 if (W < S) 1163 continue; 1164 if (W == S) { 1165 if (!HasBackedge) 1166 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1167 F = true; 1168 ++NumPaths; 1169 break; 1170 } else if (!Blocked.test(W)) { 1171 if (circuit(W, S, NodeSets, 1172 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1173 F = true; 1174 } 1175 } 1176 1177 if (F) 1178 unblock(V); 1179 else { 1180 for (auto W : AdjK[V]) { 1181 if (W < S) 1182 continue; 1183 if (B[W].count(SV) == 0) 1184 B[W].insert(SV); 1185 } 1186 } 1187 Stack.pop_back(); 1188 return F; 1189 } 1190 1191 /// Unblock a node in the circuit finding algorithm. 1192 void SwingSchedulerDAG::Circuits::unblock(int U) { 1193 Blocked.reset(U); 1194 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1195 while (!BU.empty()) { 1196 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1197 assert(SI != BU.end() && "Invalid B set."); 1198 SUnit *W = *SI; 1199 BU.erase(W); 1200 if (Blocked.test(W->NodeNum)) 1201 unblock(W->NodeNum); 1202 } 1203 } 1204 1205 /// Identify all the elementary circuits in the dependence graph using 1206 /// Johnson's circuit algorithm. 1207 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1208 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1209 // but we do this to find the circuits, and then change them back. 1210 swapAntiDependences(SUnits); 1211 1212 Circuits Cir(SUnits, Topo); 1213 // Create the adjacency structure. 1214 Cir.createAdjacencyStructure(this); 1215 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1216 Cir.reset(); 1217 Cir.circuit(i, i, NodeSets); 1218 } 1219 1220 // Change the dependences back so that we've created a DAG again. 1221 swapAntiDependences(SUnits); 1222 } 1223 1224 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1225 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1226 // additional copies that are needed across iterations. An artificial dependence 1227 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1228 1229 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1230 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1231 // PHI-------True-Dep------> USEOfPhi 1232 1233 // The mutation creates 1234 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1235 1236 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1237 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1238 // late to avoid additional copies across iterations. The possible scheduling 1239 // order would be 1240 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1241 1242 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1243 for (SUnit &SU : DAG->SUnits) { 1244 // Find the COPY/REG_SEQUENCE instruction. 1245 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1246 continue; 1247 1248 // Record the loop carried PHIs. 1249 SmallVector<SUnit *, 4> PHISUs; 1250 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1251 SmallVector<SUnit *, 4> SrcSUs; 1252 1253 for (auto &Dep : SU.Preds) { 1254 SUnit *TmpSU = Dep.getSUnit(); 1255 MachineInstr *TmpMI = TmpSU->getInstr(); 1256 SDep::Kind DepKind = Dep.getKind(); 1257 // Save the loop carried PHI. 1258 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1259 PHISUs.push_back(TmpSU); 1260 // Save the source of COPY/REG_SEQUENCE. 1261 // If the source has no pre-decessors, we will end up creating cycles. 1262 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1263 SrcSUs.push_back(TmpSU); 1264 } 1265 1266 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1267 continue; 1268 1269 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1270 // SUnit to the container. 1271 SmallVector<SUnit *, 8> UseSUs; 1272 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1273 for (auto &Dep : (*I)->Succs) { 1274 if (Dep.getKind() != SDep::Data) 1275 continue; 1276 1277 SUnit *TmpSU = Dep.getSUnit(); 1278 MachineInstr *TmpMI = TmpSU->getInstr(); 1279 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1280 PHISUs.push_back(TmpSU); 1281 continue; 1282 } 1283 UseSUs.push_back(TmpSU); 1284 } 1285 } 1286 1287 if (UseSUs.size() == 0) 1288 continue; 1289 1290 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1291 // Add the artificial dependencies if it does not form a cycle. 1292 for (auto I : UseSUs) { 1293 for (auto Src : SrcSUs) { 1294 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1295 Src->addPred(SDep(I, SDep::Artificial)); 1296 SDAG->Topo.AddPred(Src, I); 1297 } 1298 } 1299 } 1300 } 1301 } 1302 1303 /// Return true for DAG nodes that we ignore when computing the cost functions. 1304 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1305 /// in the calculation of the ASAP, ALAP, etc functions. 1306 static bool ignoreDependence(const SDep &D, bool isPred) { 1307 if (D.isArtificial()) 1308 return true; 1309 return D.getKind() == SDep::Anti && isPred; 1310 } 1311 1312 /// Compute several functions need to order the nodes for scheduling. 1313 /// ASAP - Earliest time to schedule a node. 1314 /// ALAP - Latest time to schedule a node. 1315 /// MOV - Mobility function, difference between ALAP and ASAP. 1316 /// D - Depth of each node. 1317 /// H - Height of each node. 1318 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1319 ScheduleInfo.resize(SUnits.size()); 1320 1321 LLVM_DEBUG({ 1322 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1323 E = Topo.end(); 1324 I != E; ++I) { 1325 const SUnit &SU = SUnits[*I]; 1326 dumpNode(SU); 1327 } 1328 }); 1329 1330 int maxASAP = 0; 1331 // Compute ASAP and ZeroLatencyDepth. 1332 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1333 E = Topo.end(); 1334 I != E; ++I) { 1335 int asap = 0; 1336 int zeroLatencyDepth = 0; 1337 SUnit *SU = &SUnits[*I]; 1338 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1339 EP = SU->Preds.end(); 1340 IP != EP; ++IP) { 1341 SUnit *pred = IP->getSUnit(); 1342 if (IP->getLatency() == 0) 1343 zeroLatencyDepth = 1344 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1345 if (ignoreDependence(*IP, true)) 1346 continue; 1347 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1348 getDistance(pred, SU, *IP) * MII)); 1349 } 1350 maxASAP = std::max(maxASAP, asap); 1351 ScheduleInfo[*I].ASAP = asap; 1352 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1353 } 1354 1355 // Compute ALAP, ZeroLatencyHeight, and MOV. 1356 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1357 E = Topo.rend(); 1358 I != E; ++I) { 1359 int alap = maxASAP; 1360 int zeroLatencyHeight = 0; 1361 SUnit *SU = &SUnits[*I]; 1362 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1363 ES = SU->Succs.end(); 1364 IS != ES; ++IS) { 1365 SUnit *succ = IS->getSUnit(); 1366 if (IS->getLatency() == 0) 1367 zeroLatencyHeight = 1368 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1369 if (ignoreDependence(*IS, true)) 1370 continue; 1371 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1372 getDistance(SU, succ, *IS) * MII)); 1373 } 1374 1375 ScheduleInfo[*I].ALAP = alap; 1376 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1377 } 1378 1379 // After computing the node functions, compute the summary for each node set. 1380 for (NodeSet &I : NodeSets) 1381 I.computeNodeSetInfo(this); 1382 1383 LLVM_DEBUG({ 1384 for (unsigned i = 0; i < SUnits.size(); i++) { 1385 dbgs() << "\tNode " << i << ":\n"; 1386 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1387 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1388 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1389 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1390 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1391 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1392 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1393 } 1394 }); 1395 } 1396 1397 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1398 /// as the predecessors of the elements of NodeOrder that are not also in 1399 /// NodeOrder. 1400 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1401 SmallSetVector<SUnit *, 8> &Preds, 1402 const NodeSet *S = nullptr) { 1403 Preds.clear(); 1404 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1405 I != E; ++I) { 1406 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1407 PI != PE; ++PI) { 1408 if (S && S->count(PI->getSUnit()) == 0) 1409 continue; 1410 if (ignoreDependence(*PI, true)) 1411 continue; 1412 if (NodeOrder.count(PI->getSUnit()) == 0) 1413 Preds.insert(PI->getSUnit()); 1414 } 1415 // Back-edges are predecessors with an anti-dependence. 1416 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1417 ES = (*I)->Succs.end(); 1418 IS != ES; ++IS) { 1419 if (IS->getKind() != SDep::Anti) 1420 continue; 1421 if (S && S->count(IS->getSUnit()) == 0) 1422 continue; 1423 if (NodeOrder.count(IS->getSUnit()) == 0) 1424 Preds.insert(IS->getSUnit()); 1425 } 1426 } 1427 return !Preds.empty(); 1428 } 1429 1430 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1431 /// as the successors of the elements of NodeOrder that are not also in 1432 /// NodeOrder. 1433 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1434 SmallSetVector<SUnit *, 8> &Succs, 1435 const NodeSet *S = nullptr) { 1436 Succs.clear(); 1437 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1438 I != E; ++I) { 1439 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1440 SI != SE; ++SI) { 1441 if (S && S->count(SI->getSUnit()) == 0) 1442 continue; 1443 if (ignoreDependence(*SI, false)) 1444 continue; 1445 if (NodeOrder.count(SI->getSUnit()) == 0) 1446 Succs.insert(SI->getSUnit()); 1447 } 1448 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1449 PE = (*I)->Preds.end(); 1450 PI != PE; ++PI) { 1451 if (PI->getKind() != SDep::Anti) 1452 continue; 1453 if (S && S->count(PI->getSUnit()) == 0) 1454 continue; 1455 if (NodeOrder.count(PI->getSUnit()) == 0) 1456 Succs.insert(PI->getSUnit()); 1457 } 1458 } 1459 return !Succs.empty(); 1460 } 1461 1462 /// Return true if there is a path from the specified node to any of the nodes 1463 /// in DestNodes. Keep track and return the nodes in any path. 1464 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1465 SetVector<SUnit *> &DestNodes, 1466 SetVector<SUnit *> &Exclude, 1467 SmallPtrSet<SUnit *, 8> &Visited) { 1468 if (Cur->isBoundaryNode()) 1469 return false; 1470 if (Exclude.count(Cur) != 0) 1471 return false; 1472 if (DestNodes.count(Cur) != 0) 1473 return true; 1474 if (!Visited.insert(Cur).second) 1475 return Path.count(Cur) != 0; 1476 bool FoundPath = false; 1477 for (auto &SI : Cur->Succs) 1478 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1479 for (auto &PI : Cur->Preds) 1480 if (PI.getKind() == SDep::Anti) 1481 FoundPath |= 1482 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1483 if (FoundPath) 1484 Path.insert(Cur); 1485 return FoundPath; 1486 } 1487 1488 /// Return true if Set1 is a subset of Set2. 1489 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1490 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1491 if (Set2.count(*I) == 0) 1492 return false; 1493 return true; 1494 } 1495 1496 /// Compute the live-out registers for the instructions in a node-set. 1497 /// The live-out registers are those that are defined in the node-set, 1498 /// but not used. Except for use operands of Phis. 1499 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1500 NodeSet &NS) { 1501 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1502 MachineRegisterInfo &MRI = MF.getRegInfo(); 1503 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1504 SmallSet<unsigned, 4> Uses; 1505 for (SUnit *SU : NS) { 1506 const MachineInstr *MI = SU->getInstr(); 1507 if (MI->isPHI()) 1508 continue; 1509 for (const MachineOperand &MO : MI->operands()) 1510 if (MO.isReg() && MO.isUse()) { 1511 unsigned Reg = MO.getReg(); 1512 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1513 Uses.insert(Reg); 1514 else if (MRI.isAllocatable(Reg)) 1515 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1516 Uses.insert(*Units); 1517 } 1518 } 1519 for (SUnit *SU : NS) 1520 for (const MachineOperand &MO : SU->getInstr()->operands()) 1521 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1522 unsigned Reg = MO.getReg(); 1523 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1524 if (!Uses.count(Reg)) 1525 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1526 LaneBitmask::getNone())); 1527 } else if (MRI.isAllocatable(Reg)) { 1528 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1529 if (!Uses.count(*Units)) 1530 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1531 LaneBitmask::getNone())); 1532 } 1533 } 1534 RPTracker.addLiveRegs(LiveOutRegs); 1535 } 1536 1537 /// A heuristic to filter nodes in recurrent node-sets if the register 1538 /// pressure of a set is too high. 1539 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1540 for (auto &NS : NodeSets) { 1541 // Skip small node-sets since they won't cause register pressure problems. 1542 if (NS.size() <= 2) 1543 continue; 1544 IntervalPressure RecRegPressure; 1545 RegPressureTracker RecRPTracker(RecRegPressure); 1546 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1547 computeLiveOuts(MF, RecRPTracker, NS); 1548 RecRPTracker.closeBottom(); 1549 1550 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1551 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1552 return A->NodeNum > B->NodeNum; 1553 }); 1554 1555 for (auto &SU : SUnits) { 1556 // Since we're computing the register pressure for a subset of the 1557 // instructions in a block, we need to set the tracker for each 1558 // instruction in the node-set. The tracker is set to the instruction 1559 // just after the one we're interested in. 1560 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1561 RecRPTracker.setPos(std::next(CurInstI)); 1562 1563 RegPressureDelta RPDelta; 1564 ArrayRef<PressureChange> CriticalPSets; 1565 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1566 CriticalPSets, 1567 RecRegPressure.MaxSetPressure); 1568 if (RPDelta.Excess.isValid()) { 1569 LLVM_DEBUG( 1570 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1571 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1572 << ":" << RPDelta.Excess.getUnitInc()); 1573 NS.setExceedPressure(SU); 1574 break; 1575 } 1576 RecRPTracker.recede(); 1577 } 1578 } 1579 } 1580 1581 /// A heuristic to colocate node sets that have the same set of 1582 /// successors. 1583 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1584 unsigned Colocate = 0; 1585 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1586 NodeSet &N1 = NodeSets[i]; 1587 SmallSetVector<SUnit *, 8> S1; 1588 if (N1.empty() || !succ_L(N1, S1)) 1589 continue; 1590 for (int j = i + 1; j < e; ++j) { 1591 NodeSet &N2 = NodeSets[j]; 1592 if (N1.compareRecMII(N2) != 0) 1593 continue; 1594 SmallSetVector<SUnit *, 8> S2; 1595 if (N2.empty() || !succ_L(N2, S2)) 1596 continue; 1597 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1598 N1.setColocate(++Colocate); 1599 N2.setColocate(Colocate); 1600 break; 1601 } 1602 } 1603 } 1604 } 1605 1606 /// Check if the existing node-sets are profitable. If not, then ignore the 1607 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1608 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1609 /// then it's best to try to schedule all instructions together instead of 1610 /// starting with the recurrent node-sets. 1611 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1612 // Look for loops with a large MII. 1613 if (MII < 17) 1614 return; 1615 // Check if the node-set contains only a simple add recurrence. 1616 for (auto &NS : NodeSets) { 1617 if (NS.getRecMII() > 2) 1618 return; 1619 if (NS.getMaxDepth() > MII) 1620 return; 1621 } 1622 NodeSets.clear(); 1623 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1624 return; 1625 } 1626 1627 /// Add the nodes that do not belong to a recurrence set into groups 1628 /// based upon connected componenets. 1629 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1630 SetVector<SUnit *> NodesAdded; 1631 SmallPtrSet<SUnit *, 8> Visited; 1632 // Add the nodes that are on a path between the previous node sets and 1633 // the current node set. 1634 for (NodeSet &I : NodeSets) { 1635 SmallSetVector<SUnit *, 8> N; 1636 // Add the nodes from the current node set to the previous node set. 1637 if (succ_L(I, N)) { 1638 SetVector<SUnit *> Path; 1639 for (SUnit *NI : N) { 1640 Visited.clear(); 1641 computePath(NI, Path, NodesAdded, I, Visited); 1642 } 1643 if (!Path.empty()) 1644 I.insert(Path.begin(), Path.end()); 1645 } 1646 // Add the nodes from the previous node set to the current node set. 1647 N.clear(); 1648 if (succ_L(NodesAdded, N)) { 1649 SetVector<SUnit *> Path; 1650 for (SUnit *NI : N) { 1651 Visited.clear(); 1652 computePath(NI, Path, I, NodesAdded, Visited); 1653 } 1654 if (!Path.empty()) 1655 I.insert(Path.begin(), Path.end()); 1656 } 1657 NodesAdded.insert(I.begin(), I.end()); 1658 } 1659 1660 // Create a new node set with the connected nodes of any successor of a node 1661 // in a recurrent set. 1662 NodeSet NewSet; 1663 SmallSetVector<SUnit *, 8> N; 1664 if (succ_L(NodesAdded, N)) 1665 for (SUnit *I : N) 1666 addConnectedNodes(I, NewSet, NodesAdded); 1667 if (!NewSet.empty()) 1668 NodeSets.push_back(NewSet); 1669 1670 // Create a new node set with the connected nodes of any predecessor of a node 1671 // in a recurrent set. 1672 NewSet.clear(); 1673 if (pred_L(NodesAdded, N)) 1674 for (SUnit *I : N) 1675 addConnectedNodes(I, NewSet, NodesAdded); 1676 if (!NewSet.empty()) 1677 NodeSets.push_back(NewSet); 1678 1679 // Create new nodes sets with the connected nodes any remaining node that 1680 // has no predecessor. 1681 for (unsigned i = 0; i < SUnits.size(); ++i) { 1682 SUnit *SU = &SUnits[i]; 1683 if (NodesAdded.count(SU) == 0) { 1684 NewSet.clear(); 1685 addConnectedNodes(SU, NewSet, NodesAdded); 1686 if (!NewSet.empty()) 1687 NodeSets.push_back(NewSet); 1688 } 1689 } 1690 } 1691 1692 /// Add the node to the set, and add all of its connected nodes to the set. 1693 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1694 SetVector<SUnit *> &NodesAdded) { 1695 NewSet.insert(SU); 1696 NodesAdded.insert(SU); 1697 for (auto &SI : SU->Succs) { 1698 SUnit *Successor = SI.getSUnit(); 1699 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1700 addConnectedNodes(Successor, NewSet, NodesAdded); 1701 } 1702 for (auto &PI : SU->Preds) { 1703 SUnit *Predecessor = PI.getSUnit(); 1704 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1705 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1706 } 1707 } 1708 1709 /// Return true if Set1 contains elements in Set2. The elements in common 1710 /// are returned in a different container. 1711 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1712 SmallSetVector<SUnit *, 8> &Result) { 1713 Result.clear(); 1714 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1715 SUnit *SU = Set1[i]; 1716 if (Set2.count(SU) != 0) 1717 Result.insert(SU); 1718 } 1719 return !Result.empty(); 1720 } 1721 1722 /// Merge the recurrence node sets that have the same initial node. 1723 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1724 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1725 ++I) { 1726 NodeSet &NI = *I; 1727 for (NodeSetType::iterator J = I + 1; J != E;) { 1728 NodeSet &NJ = *J; 1729 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1730 if (NJ.compareRecMII(NI) > 0) 1731 NI.setRecMII(NJ.getRecMII()); 1732 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1733 ++NII) 1734 I->insert(*NII); 1735 NodeSets.erase(J); 1736 E = NodeSets.end(); 1737 } else { 1738 ++J; 1739 } 1740 } 1741 } 1742 } 1743 1744 /// Remove nodes that have been scheduled in previous NodeSets. 1745 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1746 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1747 ++I) 1748 for (NodeSetType::iterator J = I + 1; J != E;) { 1749 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1750 1751 if (J->empty()) { 1752 NodeSets.erase(J); 1753 E = NodeSets.end(); 1754 } else { 1755 ++J; 1756 } 1757 } 1758 } 1759 1760 /// Compute an ordered list of the dependence graph nodes, which 1761 /// indicates the order that the nodes will be scheduled. This is a 1762 /// two-level algorithm. First, a partial order is created, which 1763 /// consists of a list of sets ordered from highest to lowest priority. 1764 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1765 SmallSetVector<SUnit *, 8> R; 1766 NodeOrder.clear(); 1767 1768 for (auto &Nodes : NodeSets) { 1769 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1770 OrderKind Order; 1771 SmallSetVector<SUnit *, 8> N; 1772 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1773 R.insert(N.begin(), N.end()); 1774 Order = BottomUp; 1775 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1776 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1777 R.insert(N.begin(), N.end()); 1778 Order = TopDown; 1779 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1780 } else if (isIntersect(N, Nodes, R)) { 1781 // If some of the successors are in the existing node-set, then use the 1782 // top-down ordering. 1783 Order = TopDown; 1784 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1785 } else if (NodeSets.size() == 1) { 1786 for (auto &N : Nodes) 1787 if (N->Succs.size() == 0) 1788 R.insert(N); 1789 Order = BottomUp; 1790 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1791 } else { 1792 // Find the node with the highest ASAP. 1793 SUnit *maxASAP = nullptr; 1794 for (SUnit *SU : Nodes) { 1795 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1796 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1797 maxASAP = SU; 1798 } 1799 R.insert(maxASAP); 1800 Order = BottomUp; 1801 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1802 } 1803 1804 while (!R.empty()) { 1805 if (Order == TopDown) { 1806 // Choose the node with the maximum height. If more than one, choose 1807 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1808 // choose the node with the lowest MOV. 1809 while (!R.empty()) { 1810 SUnit *maxHeight = nullptr; 1811 for (SUnit *I : R) { 1812 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1813 maxHeight = I; 1814 else if (getHeight(I) == getHeight(maxHeight) && 1815 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1816 maxHeight = I; 1817 else if (getHeight(I) == getHeight(maxHeight) && 1818 getZeroLatencyHeight(I) == 1819 getZeroLatencyHeight(maxHeight) && 1820 getMOV(I) < getMOV(maxHeight)) 1821 maxHeight = I; 1822 } 1823 NodeOrder.insert(maxHeight); 1824 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1825 R.remove(maxHeight); 1826 for (const auto &I : maxHeight->Succs) { 1827 if (Nodes.count(I.getSUnit()) == 0) 1828 continue; 1829 if (NodeOrder.count(I.getSUnit()) != 0) 1830 continue; 1831 if (ignoreDependence(I, false)) 1832 continue; 1833 R.insert(I.getSUnit()); 1834 } 1835 // Back-edges are predecessors with an anti-dependence. 1836 for (const auto &I : maxHeight->Preds) { 1837 if (I.getKind() != SDep::Anti) 1838 continue; 1839 if (Nodes.count(I.getSUnit()) == 0) 1840 continue; 1841 if (NodeOrder.count(I.getSUnit()) != 0) 1842 continue; 1843 R.insert(I.getSUnit()); 1844 } 1845 } 1846 Order = BottomUp; 1847 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1848 SmallSetVector<SUnit *, 8> N; 1849 if (pred_L(NodeOrder, N, &Nodes)) 1850 R.insert(N.begin(), N.end()); 1851 } else { 1852 // Choose the node with the maximum depth. If more than one, choose 1853 // the node with the maximum ZeroLatencyDepth. If still more than one, 1854 // choose the node with the lowest MOV. 1855 while (!R.empty()) { 1856 SUnit *maxDepth = nullptr; 1857 for (SUnit *I : R) { 1858 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1859 maxDepth = I; 1860 else if (getDepth(I) == getDepth(maxDepth) && 1861 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1862 maxDepth = I; 1863 else if (getDepth(I) == getDepth(maxDepth) && 1864 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1865 getMOV(I) < getMOV(maxDepth)) 1866 maxDepth = I; 1867 } 1868 NodeOrder.insert(maxDepth); 1869 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1870 R.remove(maxDepth); 1871 if (Nodes.isExceedSU(maxDepth)) { 1872 Order = TopDown; 1873 R.clear(); 1874 R.insert(Nodes.getNode(0)); 1875 break; 1876 } 1877 for (const auto &I : maxDepth->Preds) { 1878 if (Nodes.count(I.getSUnit()) == 0) 1879 continue; 1880 if (NodeOrder.count(I.getSUnit()) != 0) 1881 continue; 1882 R.insert(I.getSUnit()); 1883 } 1884 // Back-edges are predecessors with an anti-dependence. 1885 for (const auto &I : maxDepth->Succs) { 1886 if (I.getKind() != SDep::Anti) 1887 continue; 1888 if (Nodes.count(I.getSUnit()) == 0) 1889 continue; 1890 if (NodeOrder.count(I.getSUnit()) != 0) 1891 continue; 1892 R.insert(I.getSUnit()); 1893 } 1894 } 1895 Order = TopDown; 1896 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1897 SmallSetVector<SUnit *, 8> N; 1898 if (succ_L(NodeOrder, N, &Nodes)) 1899 R.insert(N.begin(), N.end()); 1900 } 1901 } 1902 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1903 } 1904 1905 LLVM_DEBUG({ 1906 dbgs() << "Node order: "; 1907 for (SUnit *I : NodeOrder) 1908 dbgs() << " " << I->NodeNum << " "; 1909 dbgs() << "\n"; 1910 }); 1911 } 1912 1913 /// Process the nodes in the computed order and create the pipelined schedule 1914 /// of the instructions, if possible. Return true if a schedule is found. 1915 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1916 1917 if (NodeOrder.empty()){ 1918 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1919 return false; 1920 } 1921 1922 bool scheduleFound = false; 1923 unsigned II = 0; 1924 // Keep increasing II until a valid schedule is found. 1925 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1926 Schedule.reset(); 1927 Schedule.setInitiationInterval(II); 1928 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1929 1930 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1931 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1932 do { 1933 SUnit *SU = *NI; 1934 1935 // Compute the schedule time for the instruction, which is based 1936 // upon the scheduled time for any predecessors/successors. 1937 int EarlyStart = INT_MIN; 1938 int LateStart = INT_MAX; 1939 // These values are set when the size of the schedule window is limited 1940 // due to chain dependences. 1941 int SchedEnd = INT_MAX; 1942 int SchedStart = INT_MIN; 1943 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1944 II, this); 1945 LLVM_DEBUG({ 1946 dbgs() << "\n"; 1947 dbgs() << "Inst (" << SU->NodeNum << ") "; 1948 SU->getInstr()->dump(); 1949 dbgs() << "\n"; 1950 }); 1951 LLVM_DEBUG({ 1952 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 1953 LateStart, SchedEnd, SchedStart); 1954 }); 1955 1956 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1957 SchedStart > LateStart) 1958 scheduleFound = false; 1959 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1960 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1961 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1962 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1963 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1964 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1965 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1966 SchedEnd = 1967 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1968 // When scheduling a Phi it is better to start at the late cycle and go 1969 // backwards. The default order may insert the Phi too far away from 1970 // its first dependence. 1971 if (SU->getInstr()->isPHI()) 1972 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1973 else 1974 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1975 } else { 1976 int FirstCycle = Schedule.getFirstCycle(); 1977 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1978 FirstCycle + getASAP(SU) + II - 1, II); 1979 } 1980 // Even if we find a schedule, make sure the schedule doesn't exceed the 1981 // allowable number of stages. We keep trying if this happens. 1982 if (scheduleFound) 1983 if (SwpMaxStages > -1 && 1984 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1985 scheduleFound = false; 1986 1987 LLVM_DEBUG({ 1988 if (!scheduleFound) 1989 dbgs() << "\tCan't schedule\n"; 1990 }); 1991 } while (++NI != NE && scheduleFound); 1992 1993 // If a schedule is found, check if it is a valid schedule too. 1994 if (scheduleFound) 1995 scheduleFound = Schedule.isValidSchedule(this); 1996 } 1997 1998 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 1999 << ")\n"); 2000 2001 if (scheduleFound) 2002 Schedule.finalizeSchedule(this); 2003 else 2004 Schedule.reset(); 2005 2006 return scheduleFound && Schedule.getMaxStageCount() > 0; 2007 } 2008 2009 /// Given a schedule for the loop, generate a new version of the loop, 2010 /// and replace the old version. This function generates a prolog 2011 /// that contains the initial iterations in the pipeline, and kernel 2012 /// loop, and the epilogue that contains the code for the final 2013 /// iterations. 2014 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2015 // Create a new basic block for the kernel and add it to the CFG. 2016 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2017 2018 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2019 2020 // Remember the registers that are used in different stages. The index is 2021 // the iteration, or stage, that the instruction is scheduled in. This is 2022 // a map between register names in the original block and the names created 2023 // in each stage of the pipelined loop. 2024 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2025 InstrMapTy InstrMap; 2026 2027 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2028 // Generate the prolog instructions that set up the pipeline. 2029 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2030 MF.insert(BB->getIterator(), KernelBB); 2031 2032 // Rearrange the instructions to generate the new, pipelined loop, 2033 // and update register names as needed. 2034 for (int Cycle = Schedule.getFirstCycle(), 2035 LastCycle = Schedule.getFinalCycle(); 2036 Cycle <= LastCycle; ++Cycle) { 2037 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2038 // This inner loop schedules each instruction in the cycle. 2039 for (SUnit *CI : CycleInstrs) { 2040 if (CI->getInstr()->isPHI()) 2041 continue; 2042 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2043 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2044 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2045 KernelBB->push_back(NewMI); 2046 InstrMap[NewMI] = CI->getInstr(); 2047 } 2048 } 2049 2050 // Copy any terminator instructions to the new kernel, and update 2051 // names as needed. 2052 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2053 E = BB->instr_end(); 2054 I != E; ++I) { 2055 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2056 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2057 KernelBB->push_back(NewMI); 2058 InstrMap[NewMI] = &*I; 2059 } 2060 2061 KernelBB->transferSuccessors(BB); 2062 KernelBB->replaceSuccessor(BB, KernelBB); 2063 2064 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2065 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2066 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2067 InstrMap, MaxStageCount, MaxStageCount, false); 2068 2069 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2070 2071 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2072 // Generate the epilog instructions to complete the pipeline. 2073 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2074 PrologBBs); 2075 2076 // We need this step because the register allocation doesn't handle some 2077 // situations well, so we insert copies to help out. 2078 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2079 2080 // Remove dead instructions due to loop induction variables. 2081 removeDeadInstructions(KernelBB, EpilogBBs); 2082 2083 // Add branches between prolog and epilog blocks. 2084 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2085 2086 // Remove the original loop since it's no longer referenced. 2087 for (auto &I : *BB) 2088 LIS.RemoveMachineInstrFromMaps(I); 2089 BB->clear(); 2090 BB->eraseFromParent(); 2091 2092 delete[] VRMap; 2093 } 2094 2095 /// Generate the pipeline prolog code. 2096 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2097 MachineBasicBlock *KernelBB, 2098 ValueMapTy *VRMap, 2099 MBBVectorTy &PrologBBs) { 2100 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2101 assert(PreheaderBB != nullptr && 2102 "Need to add code to handle loops w/o preheader"); 2103 MachineBasicBlock *PredBB = PreheaderBB; 2104 InstrMapTy InstrMap; 2105 2106 // Generate a basic block for each stage, not including the last stage, 2107 // which will be generated in the kernel. Each basic block may contain 2108 // instructions from multiple stages/iterations. 2109 for (unsigned i = 0; i < LastStage; ++i) { 2110 // Create and insert the prolog basic block prior to the original loop 2111 // basic block. The original loop is removed later. 2112 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2113 PrologBBs.push_back(NewBB); 2114 MF.insert(BB->getIterator(), NewBB); 2115 NewBB->transferSuccessors(PredBB); 2116 PredBB->addSuccessor(NewBB); 2117 PredBB = NewBB; 2118 2119 // Generate instructions for each appropriate stage. Process instructions 2120 // in original program order. 2121 for (int StageNum = i; StageNum >= 0; --StageNum) { 2122 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2123 BBE = BB->getFirstTerminator(); 2124 BBI != BBE; ++BBI) { 2125 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2126 if (BBI->isPHI()) 2127 continue; 2128 MachineInstr *NewMI = 2129 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2130 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2131 VRMap); 2132 NewBB->push_back(NewMI); 2133 InstrMap[NewMI] = &*BBI; 2134 } 2135 } 2136 } 2137 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2138 LLVM_DEBUG({ 2139 dbgs() << "prolog:\n"; 2140 NewBB->dump(); 2141 }); 2142 } 2143 2144 PredBB->replaceSuccessor(BB, KernelBB); 2145 2146 // Check if we need to remove the branch from the preheader to the original 2147 // loop, and replace it with a branch to the new loop. 2148 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2149 if (numBranches) { 2150 SmallVector<MachineOperand, 0> Cond; 2151 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2152 } 2153 } 2154 2155 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2156 /// that were started in either the prolog or the kernel. We create a basic 2157 /// block for each stage that needs to complete. 2158 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2159 MachineBasicBlock *KernelBB, 2160 ValueMapTy *VRMap, 2161 MBBVectorTy &EpilogBBs, 2162 MBBVectorTy &PrologBBs) { 2163 // We need to change the branch from the kernel to the first epilog block, so 2164 // this call to analyze branch uses the kernel rather than the original BB. 2165 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2166 SmallVector<MachineOperand, 4> Cond; 2167 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2168 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2169 if (checkBranch) 2170 return; 2171 2172 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2173 if (*LoopExitI == KernelBB) 2174 ++LoopExitI; 2175 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2176 MachineBasicBlock *LoopExitBB = *LoopExitI; 2177 2178 MachineBasicBlock *PredBB = KernelBB; 2179 MachineBasicBlock *EpilogStart = LoopExitBB; 2180 InstrMapTy InstrMap; 2181 2182 // Generate a basic block for each stage, not including the last stage, 2183 // which was generated for the kernel. Each basic block may contain 2184 // instructions from multiple stages/iterations. 2185 int EpilogStage = LastStage + 1; 2186 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2187 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2188 EpilogBBs.push_back(NewBB); 2189 MF.insert(BB->getIterator(), NewBB); 2190 2191 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2192 NewBB->addSuccessor(LoopExitBB); 2193 2194 if (EpilogStart == LoopExitBB) 2195 EpilogStart = NewBB; 2196 2197 // Add instructions to the epilog depending on the current block. 2198 // Process instructions in original program order. 2199 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2200 for (auto &BBI : *BB) { 2201 if (BBI.isPHI()) 2202 continue; 2203 MachineInstr *In = &BBI; 2204 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2205 // Instructions with memoperands in the epilog are updated with 2206 // conservative values. 2207 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2208 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2209 NewBB->push_back(NewMI); 2210 InstrMap[NewMI] = In; 2211 } 2212 } 2213 } 2214 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2215 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2216 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2217 InstrMap, LastStage, EpilogStage, i == 1); 2218 PredBB = NewBB; 2219 2220 LLVM_DEBUG({ 2221 dbgs() << "epilog:\n"; 2222 NewBB->dump(); 2223 }); 2224 } 2225 2226 // Fix any Phi nodes in the loop exit block. 2227 for (MachineInstr &MI : *LoopExitBB) { 2228 if (!MI.isPHI()) 2229 break; 2230 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2231 MachineOperand &MO = MI.getOperand(i); 2232 if (MO.getMBB() == BB) 2233 MO.setMBB(PredBB); 2234 } 2235 } 2236 2237 // Create a branch to the new epilog from the kernel. 2238 // Remove the original branch and add a new branch to the epilog. 2239 TII->removeBranch(*KernelBB); 2240 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2241 // Add a branch to the loop exit. 2242 if (EpilogBBs.size() > 0) { 2243 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2244 SmallVector<MachineOperand, 4> Cond1; 2245 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2246 } 2247 } 2248 2249 /// Replace all uses of FromReg that appear outside the specified 2250 /// basic block with ToReg. 2251 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2252 MachineBasicBlock *MBB, 2253 MachineRegisterInfo &MRI, 2254 LiveIntervals &LIS) { 2255 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2256 E = MRI.use_end(); 2257 I != E;) { 2258 MachineOperand &O = *I; 2259 ++I; 2260 if (O.getParent()->getParent() != MBB) 2261 O.setReg(ToReg); 2262 } 2263 if (!LIS.hasInterval(ToReg)) 2264 LIS.createEmptyInterval(ToReg); 2265 } 2266 2267 /// Return true if the register has a use that occurs outside the 2268 /// specified loop. 2269 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2270 MachineRegisterInfo &MRI) { 2271 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2272 E = MRI.use_end(); 2273 I != E; ++I) 2274 if (I->getParent()->getParent() != BB) 2275 return true; 2276 return false; 2277 } 2278 2279 /// Generate Phis for the specific block in the generated pipelined code. 2280 /// This function looks at the Phis from the original code to guide the 2281 /// creation of new Phis. 2282 void SwingSchedulerDAG::generateExistingPhis( 2283 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2284 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2285 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2286 bool IsLast) { 2287 // Compute the stage number for the initial value of the Phi, which 2288 // comes from the prolog. The prolog to use depends on to which kernel/ 2289 // epilog that we're adding the Phi. 2290 unsigned PrologStage = 0; 2291 unsigned PrevStage = 0; 2292 bool InKernel = (LastStageNum == CurStageNum); 2293 if (InKernel) { 2294 PrologStage = LastStageNum - 1; 2295 PrevStage = CurStageNum; 2296 } else { 2297 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2298 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2299 } 2300 2301 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2302 BBE = BB->getFirstNonPHI(); 2303 BBI != BBE; ++BBI) { 2304 unsigned Def = BBI->getOperand(0).getReg(); 2305 2306 unsigned InitVal = 0; 2307 unsigned LoopVal = 0; 2308 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2309 2310 unsigned PhiOp1 = 0; 2311 // The Phi value from the loop body typically is defined in the loop, but 2312 // not always. So, we need to check if the value is defined in the loop. 2313 unsigned PhiOp2 = LoopVal; 2314 if (VRMap[LastStageNum].count(LoopVal)) 2315 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2316 2317 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2318 int LoopValStage = 2319 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2320 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2321 if (NumStages == 0) { 2322 // We don't need to generate a Phi anymore, but we need to rename any uses 2323 // of the Phi value. 2324 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2325 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2326 Def, InitVal, NewReg); 2327 if (VRMap[CurStageNum].count(LoopVal)) 2328 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2329 } 2330 // Adjust the number of Phis needed depending on the number of prologs left, 2331 // and the distance from where the Phi is first scheduled. The number of 2332 // Phis cannot exceed the number of prolog stages. Each stage can 2333 // potentially define two values. 2334 unsigned MaxPhis = PrologStage + 2; 2335 if (!InKernel && (int)PrologStage <= LoopValStage) 2336 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2337 unsigned NumPhis = std::min(NumStages, MaxPhis); 2338 2339 unsigned NewReg = 0; 2340 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2341 // In the epilog, we may need to look back one stage to get the correct 2342 // Phi name because the epilog and prolog blocks execute the same stage. 2343 // The correct name is from the previous block only when the Phi has 2344 // been completely scheduled prior to the epilog, and Phi value is not 2345 // needed in multiple stages. 2346 int StageDiff = 0; 2347 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2348 NumPhis == 1) 2349 StageDiff = 1; 2350 // Adjust the computations below when the phi and the loop definition 2351 // are scheduled in different stages. 2352 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2353 StageDiff = StageScheduled - LoopValStage; 2354 for (unsigned np = 0; np < NumPhis; ++np) { 2355 // If the Phi hasn't been scheduled, then use the initial Phi operand 2356 // value. Otherwise, use the scheduled version of the instruction. This 2357 // is a little complicated when a Phi references another Phi. 2358 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2359 PhiOp1 = InitVal; 2360 // Check if the Phi has already been scheduled in a prolog stage. 2361 else if (PrologStage >= AccessStage + StageDiff + np && 2362 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2363 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2364 // Check if the Phi has already been scheduled, but the loop instruction 2365 // is either another Phi, or doesn't occur in the loop. 2366 else if (PrologStage >= AccessStage + StageDiff + np) { 2367 // If the Phi references another Phi, we need to examine the other 2368 // Phi to get the correct value. 2369 PhiOp1 = LoopVal; 2370 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2371 int Indirects = 1; 2372 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2373 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2374 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2375 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2376 else 2377 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2378 InstOp1 = MRI.getVRegDef(PhiOp1); 2379 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2380 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2381 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2382 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2383 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2384 break; 2385 } 2386 ++Indirects; 2387 } 2388 } else 2389 PhiOp1 = InitVal; 2390 // If this references a generated Phi in the kernel, get the Phi operand 2391 // from the incoming block. 2392 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2393 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2394 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2395 2396 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2397 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2398 // In the epilog, a map lookup is needed to get the value from the kernel, 2399 // or previous epilog block. How is does this depends on if the 2400 // instruction is scheduled in the previous block. 2401 if (!InKernel) { 2402 int StageDiffAdj = 0; 2403 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2404 StageDiffAdj = StageScheduled - LoopValStage; 2405 // Use the loop value defined in the kernel, unless the kernel 2406 // contains the last definition of the Phi. 2407 if (np == 0 && PrevStage == LastStageNum && 2408 (StageScheduled != 0 || LoopValStage != 0) && 2409 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2410 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2411 // Use the value defined by the Phi. We add one because we switch 2412 // from looking at the loop value to the Phi definition. 2413 else if (np > 0 && PrevStage == LastStageNum && 2414 VRMap[PrevStage - np + 1].count(Def)) 2415 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2416 // Use the loop value defined in the kernel. 2417 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2418 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2419 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2420 // Use the value defined by the Phi, unless we're generating the first 2421 // epilog and the Phi refers to a Phi in a different stage. 2422 else if (VRMap[PrevStage - np].count(Def) && 2423 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2424 PhiOp2 = VRMap[PrevStage - np][Def]; 2425 } 2426 2427 // Check if we can reuse an existing Phi. This occurs when a Phi 2428 // references another Phi, and the other Phi is scheduled in an 2429 // earlier stage. We can try to reuse an existing Phi up until the last 2430 // stage of the current Phi. 2431 if (LoopDefIsPhi) { 2432 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2433 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2434 int StageDiff = (StageScheduled - LoopValStage); 2435 LVNumStages -= StageDiff; 2436 // Make sure the loop value Phi has been processed already. 2437 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2438 NewReg = PhiOp2; 2439 unsigned ReuseStage = CurStageNum; 2440 if (Schedule.isLoopCarried(this, *PhiInst)) 2441 ReuseStage -= LVNumStages; 2442 // Check if the Phi to reuse has been generated yet. If not, then 2443 // there is nothing to reuse. 2444 if (VRMap[ReuseStage - np].count(LoopVal)) { 2445 NewReg = VRMap[ReuseStage - np][LoopVal]; 2446 2447 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2448 &*BBI, Def, NewReg); 2449 // Update the map with the new Phi name. 2450 VRMap[CurStageNum - np][Def] = NewReg; 2451 PhiOp2 = NewReg; 2452 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2453 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2454 2455 if (IsLast && np == NumPhis - 1) 2456 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2457 continue; 2458 } 2459 } 2460 } 2461 if (InKernel && StageDiff > 0 && 2462 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2463 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2464 } 2465 2466 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2467 NewReg = MRI.createVirtualRegister(RC); 2468 2469 MachineInstrBuilder NewPhi = 2470 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2471 TII->get(TargetOpcode::PHI), NewReg); 2472 NewPhi.addReg(PhiOp1).addMBB(BB1); 2473 NewPhi.addReg(PhiOp2).addMBB(BB2); 2474 if (np == 0) 2475 InstrMap[NewPhi] = &*BBI; 2476 2477 // We define the Phis after creating the new pipelined code, so 2478 // we need to rename the Phi values in scheduled instructions. 2479 2480 unsigned PrevReg = 0; 2481 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2482 PrevReg = VRMap[PrevStage - np][LoopVal]; 2483 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2484 Def, NewReg, PrevReg); 2485 // If the Phi has been scheduled, use the new name for rewriting. 2486 if (VRMap[CurStageNum - np].count(Def)) { 2487 unsigned R = VRMap[CurStageNum - np][Def]; 2488 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2489 R, NewReg); 2490 } 2491 2492 // Check if we need to rename any uses that occurs after the loop. The 2493 // register to replace depends on whether the Phi is scheduled in the 2494 // epilog. 2495 if (IsLast && np == NumPhis - 1) 2496 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2497 2498 // In the kernel, a dependent Phi uses the value from this Phi. 2499 if (InKernel) 2500 PhiOp2 = NewReg; 2501 2502 // Update the map with the new Phi name. 2503 VRMap[CurStageNum - np][Def] = NewReg; 2504 } 2505 2506 while (NumPhis++ < NumStages) { 2507 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2508 &*BBI, Def, NewReg, 0); 2509 } 2510 2511 // Check if we need to rename a Phi that has been eliminated due to 2512 // scheduling. 2513 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2514 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2515 } 2516 } 2517 2518 /// Generate Phis for the specified block in the generated pipelined code. 2519 /// These are new Phis needed because the definition is scheduled after the 2520 /// use in the pipelined sequence. 2521 void SwingSchedulerDAG::generatePhis( 2522 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2523 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2524 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2525 bool IsLast) { 2526 // Compute the stage number that contains the initial Phi value, and 2527 // the Phi from the previous stage. 2528 unsigned PrologStage = 0; 2529 unsigned PrevStage = 0; 2530 unsigned StageDiff = CurStageNum - LastStageNum; 2531 bool InKernel = (StageDiff == 0); 2532 if (InKernel) { 2533 PrologStage = LastStageNum - 1; 2534 PrevStage = CurStageNum; 2535 } else { 2536 PrologStage = LastStageNum - StageDiff; 2537 PrevStage = LastStageNum + StageDiff - 1; 2538 } 2539 2540 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2541 BBE = BB->instr_end(); 2542 BBI != BBE; ++BBI) { 2543 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2544 MachineOperand &MO = BBI->getOperand(i); 2545 if (!MO.isReg() || !MO.isDef() || 2546 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2547 continue; 2548 2549 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2550 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2551 unsigned Def = MO.getReg(); 2552 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2553 // An instruction scheduled in stage 0 and is used after the loop 2554 // requires a phi in the epilog for the last definition from either 2555 // the kernel or prolog. 2556 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2557 hasUseAfterLoop(Def, BB, MRI)) 2558 NumPhis = 1; 2559 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2560 continue; 2561 2562 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2563 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2564 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2565 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2566 // The number of Phis can't exceed the number of prolog stages. The 2567 // prolog stage number is zero based. 2568 if (NumPhis > PrologStage + 1 - StageScheduled) 2569 NumPhis = PrologStage + 1 - StageScheduled; 2570 for (unsigned np = 0; np < NumPhis; ++np) { 2571 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2572 if (np <= PrologStage) 2573 PhiOp1 = VRMap[PrologStage - np][Def]; 2574 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2575 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2576 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2577 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2578 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2579 } 2580 if (!InKernel) 2581 PhiOp2 = VRMap[PrevStage - np][Def]; 2582 2583 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2584 unsigned NewReg = MRI.createVirtualRegister(RC); 2585 2586 MachineInstrBuilder NewPhi = 2587 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2588 TII->get(TargetOpcode::PHI), NewReg); 2589 NewPhi.addReg(PhiOp1).addMBB(BB1); 2590 NewPhi.addReg(PhiOp2).addMBB(BB2); 2591 if (np == 0) 2592 InstrMap[NewPhi] = &*BBI; 2593 2594 // Rewrite uses and update the map. The actions depend upon whether 2595 // we generating code for the kernel or epilog blocks. 2596 if (InKernel) { 2597 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2598 &*BBI, PhiOp1, NewReg); 2599 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2600 &*BBI, PhiOp2, NewReg); 2601 2602 PhiOp2 = NewReg; 2603 VRMap[PrevStage - np - 1][Def] = NewReg; 2604 } else { 2605 VRMap[CurStageNum - np][Def] = NewReg; 2606 if (np == NumPhis - 1) 2607 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2608 &*BBI, Def, NewReg); 2609 } 2610 if (IsLast && np == NumPhis - 1) 2611 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2612 } 2613 } 2614 } 2615 } 2616 2617 /// Remove instructions that generate values with no uses. 2618 /// Typically, these are induction variable operations that generate values 2619 /// used in the loop itself. A dead instruction has a definition with 2620 /// no uses, or uses that occur in the original loop only. 2621 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2622 MBBVectorTy &EpilogBBs) { 2623 // For each epilog block, check that the value defined by each instruction 2624 // is used. If not, delete it. 2625 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2626 MBE = EpilogBBs.rend(); 2627 MBB != MBE; ++MBB) 2628 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2629 ME = (*MBB)->instr_rend(); 2630 MI != ME;) { 2631 // From DeadMachineInstructionElem. Don't delete inline assembly. 2632 if (MI->isInlineAsm()) { 2633 ++MI; 2634 continue; 2635 } 2636 bool SawStore = false; 2637 // Check if it's safe to remove the instruction due to side effects. 2638 // We can, and want to, remove Phis here. 2639 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2640 ++MI; 2641 continue; 2642 } 2643 bool used = true; 2644 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2645 MOE = MI->operands_end(); 2646 MOI != MOE; ++MOI) { 2647 if (!MOI->isReg() || !MOI->isDef()) 2648 continue; 2649 unsigned reg = MOI->getReg(); 2650 // Assume physical registers are used, unless they are marked dead. 2651 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2652 used = !MOI->isDead(); 2653 if (used) 2654 break; 2655 continue; 2656 } 2657 unsigned realUses = 0; 2658 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2659 EI = MRI.use_end(); 2660 UI != EI; ++UI) { 2661 // Check if there are any uses that occur only in the original 2662 // loop. If so, that's not a real use. 2663 if (UI->getParent()->getParent() != BB) { 2664 realUses++; 2665 used = true; 2666 break; 2667 } 2668 } 2669 if (realUses > 0) 2670 break; 2671 used = false; 2672 } 2673 if (!used) { 2674 LIS.RemoveMachineInstrFromMaps(*MI); 2675 MI++->eraseFromParent(); 2676 continue; 2677 } 2678 ++MI; 2679 } 2680 // In the kernel block, check if we can remove a Phi that generates a value 2681 // used in an instruction removed in the epilog block. 2682 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2683 BBE = KernelBB->getFirstNonPHI(); 2684 BBI != BBE;) { 2685 MachineInstr *MI = &*BBI; 2686 ++BBI; 2687 unsigned reg = MI->getOperand(0).getReg(); 2688 if (MRI.use_begin(reg) == MRI.use_end()) { 2689 LIS.RemoveMachineInstrFromMaps(*MI); 2690 MI->eraseFromParent(); 2691 } 2692 } 2693 } 2694 2695 /// For loop carried definitions, we split the lifetime of a virtual register 2696 /// that has uses past the definition in the next iteration. A copy with a new 2697 /// virtual register is inserted before the definition, which helps with 2698 /// generating a better register assignment. 2699 /// 2700 /// v1 = phi(a, v2) v1 = phi(a, v2) 2701 /// v2 = phi(b, v3) v2 = phi(b, v3) 2702 /// v3 = .. v4 = copy v1 2703 /// .. = V1 v3 = .. 2704 /// .. = v4 2705 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2706 MBBVectorTy &EpilogBBs, 2707 SMSchedule &Schedule) { 2708 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2709 for (auto &PHI : KernelBB->phis()) { 2710 unsigned Def = PHI.getOperand(0).getReg(); 2711 // Check for any Phi definition that used as an operand of another Phi 2712 // in the same block. 2713 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2714 E = MRI.use_instr_end(); 2715 I != E; ++I) { 2716 if (I->isPHI() && I->getParent() == KernelBB) { 2717 // Get the loop carried definition. 2718 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2719 if (!LCDef) 2720 continue; 2721 MachineInstr *MI = MRI.getVRegDef(LCDef); 2722 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2723 continue; 2724 // Search through the rest of the block looking for uses of the Phi 2725 // definition. If one occurs, then split the lifetime. 2726 unsigned SplitReg = 0; 2727 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2728 KernelBB->instr_end())) 2729 if (BBJ.readsRegister(Def)) { 2730 // We split the lifetime when we find the first use. 2731 if (SplitReg == 0) { 2732 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2733 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2734 TII->get(TargetOpcode::COPY), SplitReg) 2735 .addReg(Def); 2736 } 2737 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2738 } 2739 if (!SplitReg) 2740 continue; 2741 // Search through each of the epilog blocks for any uses to be renamed. 2742 for (auto &Epilog : EpilogBBs) 2743 for (auto &I : *Epilog) 2744 if (I.readsRegister(Def)) 2745 I.substituteRegister(Def, SplitReg, 0, *TRI); 2746 break; 2747 } 2748 } 2749 } 2750 } 2751 2752 /// Remove the incoming block from the Phis in a basic block. 2753 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2754 for (MachineInstr &MI : *BB) { 2755 if (!MI.isPHI()) 2756 break; 2757 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2758 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2759 MI.RemoveOperand(i + 1); 2760 MI.RemoveOperand(i); 2761 break; 2762 } 2763 } 2764 } 2765 2766 /// Create branches from each prolog basic block to the appropriate epilog 2767 /// block. These edges are needed if the loop ends before reaching the 2768 /// kernel. 2769 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2770 MachineBasicBlock *KernelBB, 2771 MBBVectorTy &EpilogBBs, 2772 SMSchedule &Schedule, ValueMapTy *VRMap) { 2773 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2774 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2775 MachineInstr *Cmp = Pass.LI.LoopCompare; 2776 MachineBasicBlock *LastPro = KernelBB; 2777 MachineBasicBlock *LastEpi = KernelBB; 2778 2779 // Start from the blocks connected to the kernel and work "out" 2780 // to the first prolog and the last epilog blocks. 2781 SmallVector<MachineInstr *, 4> PrevInsts; 2782 unsigned MaxIter = PrologBBs.size() - 1; 2783 unsigned LC = UINT_MAX; 2784 unsigned LCMin = UINT_MAX; 2785 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2786 // Add branches to the prolog that go to the corresponding 2787 // epilog, and the fall-thru prolog/kernel block. 2788 MachineBasicBlock *Prolog = PrologBBs[j]; 2789 MachineBasicBlock *Epilog = EpilogBBs[i]; 2790 // We've executed one iteration, so decrement the loop count and check for 2791 // the loop end. 2792 SmallVector<MachineOperand, 4> Cond; 2793 // Check if the LOOP0 has already been removed. If so, then there is no need 2794 // to reduce the trip count. 2795 if (LC != 0) 2796 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 2797 MaxIter); 2798 2799 // Record the value of the first trip count, which is used to determine if 2800 // branches and blocks can be removed for constant trip counts. 2801 if (LCMin == UINT_MAX) 2802 LCMin = LC; 2803 2804 unsigned numAdded = 0; 2805 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2806 Prolog->addSuccessor(Epilog); 2807 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2808 } else if (j >= LCMin) { 2809 Prolog->addSuccessor(Epilog); 2810 Prolog->removeSuccessor(LastPro); 2811 LastEpi->removeSuccessor(Epilog); 2812 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2813 removePhis(Epilog, LastEpi); 2814 // Remove the blocks that are no longer referenced. 2815 if (LastPro != LastEpi) { 2816 LastEpi->clear(); 2817 LastEpi->eraseFromParent(); 2818 } 2819 LastPro->clear(); 2820 LastPro->eraseFromParent(); 2821 } else { 2822 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2823 removePhis(Epilog, Prolog); 2824 } 2825 LastPro = Prolog; 2826 LastEpi = Epilog; 2827 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2828 E = Prolog->instr_rend(); 2829 I != E && numAdded > 0; ++I, --numAdded) 2830 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2831 } 2832 } 2833 2834 /// Return true if we can compute the amount the instruction changes 2835 /// during each iteration. Set Delta to the amount of the change. 2836 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2837 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2838 const MachineOperand *BaseOp; 2839 int64_t Offset; 2840 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2841 return false; 2842 2843 if (!BaseOp->isReg()) 2844 return false; 2845 2846 unsigned BaseReg = BaseOp->getReg(); 2847 2848 MachineRegisterInfo &MRI = MF.getRegInfo(); 2849 // Check if there is a Phi. If so, get the definition in the loop. 2850 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2851 if (BaseDef && BaseDef->isPHI()) { 2852 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2853 BaseDef = MRI.getVRegDef(BaseReg); 2854 } 2855 if (!BaseDef) 2856 return false; 2857 2858 int D = 0; 2859 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2860 return false; 2861 2862 Delta = D; 2863 return true; 2864 } 2865 2866 /// Update the memory operand with a new offset when the pipeliner 2867 /// generates a new copy of the instruction that refers to a 2868 /// different memory location. 2869 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2870 MachineInstr &OldMI, unsigned Num) { 2871 if (Num == 0) 2872 return; 2873 // If the instruction has memory operands, then adjust the offset 2874 // when the instruction appears in different stages. 2875 if (NewMI.memoperands_empty()) 2876 return; 2877 SmallVector<MachineMemOperand *, 2> NewMMOs; 2878 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2879 // TODO: Figure out whether isAtomic is really necessary (see D57601). 2880 if (MMO->isVolatile() || MMO->isAtomic() || 2881 (MMO->isInvariant() && MMO->isDereferenceable()) || 2882 (!MMO->getValue())) { 2883 NewMMOs.push_back(MMO); 2884 continue; 2885 } 2886 unsigned Delta; 2887 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2888 int64_t AdjOffset = Delta * Num; 2889 NewMMOs.push_back( 2890 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2891 } else { 2892 NewMMOs.push_back( 2893 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2894 } 2895 } 2896 NewMI.setMemRefs(MF, NewMMOs); 2897 } 2898 2899 /// Clone the instruction for the new pipelined loop and update the 2900 /// memory operands, if needed. 2901 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2902 unsigned CurStageNum, 2903 unsigned InstStageNum) { 2904 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2905 // Check for tied operands in inline asm instructions. This should be handled 2906 // elsewhere, but I'm not sure of the best solution. 2907 if (OldMI->isInlineAsm()) 2908 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2909 const auto &MO = OldMI->getOperand(i); 2910 if (MO.isReg() && MO.isUse()) 2911 break; 2912 unsigned UseIdx; 2913 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2914 NewMI->tieOperands(i, UseIdx); 2915 } 2916 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2917 return NewMI; 2918 } 2919 2920 /// Clone the instruction for the new pipelined loop. If needed, this 2921 /// function updates the instruction using the values saved in the 2922 /// InstrChanges structure. 2923 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2924 unsigned CurStageNum, 2925 unsigned InstStageNum, 2926 SMSchedule &Schedule) { 2927 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2928 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2929 InstrChanges.find(getSUnit(OldMI)); 2930 if (It != InstrChanges.end()) { 2931 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2932 unsigned BasePos, OffsetPos; 2933 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2934 return nullptr; 2935 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2936 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2937 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2938 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2939 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2940 } 2941 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2942 return NewMI; 2943 } 2944 2945 /// Update the machine instruction with new virtual registers. This 2946 /// function may change the defintions and/or uses. 2947 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2948 unsigned CurStageNum, 2949 unsigned InstrStageNum, 2950 SMSchedule &Schedule, 2951 ValueMapTy *VRMap) { 2952 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2953 MachineOperand &MO = NewMI->getOperand(i); 2954 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2955 continue; 2956 unsigned reg = MO.getReg(); 2957 if (MO.isDef()) { 2958 // Create a new virtual register for the definition. 2959 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2960 unsigned NewReg = MRI.createVirtualRegister(RC); 2961 MO.setReg(NewReg); 2962 VRMap[CurStageNum][reg] = NewReg; 2963 if (LastDef) 2964 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2965 } else if (MO.isUse()) { 2966 MachineInstr *Def = MRI.getVRegDef(reg); 2967 // Compute the stage that contains the last definition for instruction. 2968 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2969 unsigned StageNum = CurStageNum; 2970 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2971 // Compute the difference in stages between the defintion and the use. 2972 unsigned StageDiff = (InstrStageNum - DefStageNum); 2973 // Make an adjustment to get the last definition. 2974 StageNum -= StageDiff; 2975 } 2976 if (VRMap[StageNum].count(reg)) 2977 MO.setReg(VRMap[StageNum][reg]); 2978 } 2979 } 2980 } 2981 2982 /// Return the instruction in the loop that defines the register. 2983 /// If the definition is a Phi, then follow the Phi operand to 2984 /// the instruction in the loop. 2985 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2986 SmallPtrSet<MachineInstr *, 8> Visited; 2987 MachineInstr *Def = MRI.getVRegDef(Reg); 2988 while (Def->isPHI()) { 2989 if (!Visited.insert(Def).second) 2990 break; 2991 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2992 if (Def->getOperand(i + 1).getMBB() == BB) { 2993 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2994 break; 2995 } 2996 } 2997 return Def; 2998 } 2999 3000 /// Return the new name for the value from the previous stage. 3001 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3002 unsigned LoopVal, unsigned LoopStage, 3003 ValueMapTy *VRMap, 3004 MachineBasicBlock *BB) { 3005 unsigned PrevVal = 0; 3006 if (StageNum > PhiStage) { 3007 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3008 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3009 // The name is defined in the previous stage. 3010 PrevVal = VRMap[StageNum - 1][LoopVal]; 3011 else if (VRMap[StageNum].count(LoopVal)) 3012 // The previous name is defined in the current stage when the instruction 3013 // order is swapped. 3014 PrevVal = VRMap[StageNum][LoopVal]; 3015 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3016 // The loop value hasn't yet been scheduled. 3017 PrevVal = LoopVal; 3018 else if (StageNum == PhiStage + 1) 3019 // The loop value is another phi, which has not been scheduled. 3020 PrevVal = getInitPhiReg(*LoopInst, BB); 3021 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3022 // The loop value is another phi, which has been scheduled. 3023 PrevVal = 3024 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3025 LoopStage, VRMap, BB); 3026 } 3027 return PrevVal; 3028 } 3029 3030 /// Rewrite the Phi values in the specified block to use the mappings 3031 /// from the initial operand. Once the Phi is scheduled, we switch 3032 /// to using the loop value instead of the Phi value, so those names 3033 /// do not need to be rewritten. 3034 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3035 unsigned StageNum, 3036 SMSchedule &Schedule, 3037 ValueMapTy *VRMap, 3038 InstrMapTy &InstrMap) { 3039 for (auto &PHI : BB->phis()) { 3040 unsigned InitVal = 0; 3041 unsigned LoopVal = 0; 3042 getPhiRegs(PHI, BB, InitVal, LoopVal); 3043 unsigned PhiDef = PHI.getOperand(0).getReg(); 3044 3045 unsigned PhiStage = 3046 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3047 unsigned LoopStage = 3048 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3049 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3050 if (NumPhis > StageNum) 3051 NumPhis = StageNum; 3052 for (unsigned np = 0; np <= NumPhis; ++np) { 3053 unsigned NewVal = 3054 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3055 if (!NewVal) 3056 NewVal = InitVal; 3057 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3058 PhiDef, NewVal); 3059 } 3060 } 3061 } 3062 3063 /// Rewrite a previously scheduled instruction to use the register value 3064 /// from the new instruction. Make sure the instruction occurs in the 3065 /// basic block, and we don't change the uses in the new instruction. 3066 void SwingSchedulerDAG::rewriteScheduledInstr( 3067 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3068 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3069 unsigned NewReg, unsigned PrevReg) { 3070 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3071 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3072 // Rewrite uses that have been scheduled already to use the new 3073 // Phi register. 3074 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3075 EI = MRI.use_end(); 3076 UI != EI;) { 3077 MachineOperand &UseOp = *UI; 3078 MachineInstr *UseMI = UseOp.getParent(); 3079 ++UI; 3080 if (UseMI->getParent() != BB) 3081 continue; 3082 if (UseMI->isPHI()) { 3083 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3084 continue; 3085 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3086 continue; 3087 } 3088 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3089 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3090 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3091 int StageSched = Schedule.stageScheduled(OrigMISU); 3092 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3093 unsigned ReplaceReg = 0; 3094 // This is the stage for the scheduled instruction. 3095 if (StagePhi == StageSched && Phi->isPHI()) { 3096 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3097 if (PrevReg && InProlog) 3098 ReplaceReg = PrevReg; 3099 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3100 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3101 ReplaceReg = PrevReg; 3102 else 3103 ReplaceReg = NewReg; 3104 } 3105 // The scheduled instruction occurs before the scheduled Phi, and the 3106 // Phi is not loop carried. 3107 if (!InProlog && StagePhi + 1 == StageSched && 3108 !Schedule.isLoopCarried(this, *Phi)) 3109 ReplaceReg = NewReg; 3110 if (StagePhi > StageSched && Phi->isPHI()) 3111 ReplaceReg = NewReg; 3112 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3113 ReplaceReg = NewReg; 3114 if (ReplaceReg) { 3115 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3116 UseOp.setReg(ReplaceReg); 3117 } 3118 } 3119 } 3120 3121 /// Check if we can change the instruction to use an offset value from the 3122 /// previous iteration. If so, return true and set the base and offset values 3123 /// so that we can rewrite the load, if necessary. 3124 /// v1 = Phi(v0, v3) 3125 /// v2 = load v1, 0 3126 /// v3 = post_store v1, 4, x 3127 /// This function enables the load to be rewritten as v2 = load v3, 4. 3128 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3129 unsigned &BasePos, 3130 unsigned &OffsetPos, 3131 unsigned &NewBase, 3132 int64_t &Offset) { 3133 // Get the load instruction. 3134 if (TII->isPostIncrement(*MI)) 3135 return false; 3136 unsigned BasePosLd, OffsetPosLd; 3137 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3138 return false; 3139 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3140 3141 // Look for the Phi instruction. 3142 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3143 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3144 if (!Phi || !Phi->isPHI()) 3145 return false; 3146 // Get the register defined in the loop block. 3147 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3148 if (!PrevReg) 3149 return false; 3150 3151 // Check for the post-increment load/store instruction. 3152 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3153 if (!PrevDef || PrevDef == MI) 3154 return false; 3155 3156 if (!TII->isPostIncrement(*PrevDef)) 3157 return false; 3158 3159 unsigned BasePos1 = 0, OffsetPos1 = 0; 3160 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3161 return false; 3162 3163 // Make sure that the instructions do not access the same memory location in 3164 // the next iteration. 3165 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3166 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3167 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3168 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3169 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3170 MF.DeleteMachineInstr(NewMI); 3171 if (!Disjoint) 3172 return false; 3173 3174 // Set the return value once we determine that we return true. 3175 BasePos = BasePosLd; 3176 OffsetPos = OffsetPosLd; 3177 NewBase = PrevReg; 3178 Offset = StoreOffset; 3179 return true; 3180 } 3181 3182 /// Apply changes to the instruction if needed. The changes are need 3183 /// to improve the scheduling and depend up on the final schedule. 3184 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3185 SMSchedule &Schedule) { 3186 SUnit *SU = getSUnit(MI); 3187 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3188 InstrChanges.find(SU); 3189 if (It != InstrChanges.end()) { 3190 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3191 unsigned BasePos, OffsetPos; 3192 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3193 return; 3194 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3195 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3196 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3197 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3198 int BaseStageNum = Schedule.stageScheduled(SU); 3199 int BaseCycleNum = Schedule.cycleScheduled(SU); 3200 if (BaseStageNum < DefStageNum) { 3201 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3202 int OffsetDiff = DefStageNum - BaseStageNum; 3203 if (DefCycleNum < BaseCycleNum) { 3204 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3205 if (OffsetDiff > 0) 3206 --OffsetDiff; 3207 } 3208 int64_t NewOffset = 3209 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3210 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3211 SU->setInstr(NewMI); 3212 MISUnitMap[NewMI] = SU; 3213 NewMIs.insert(NewMI); 3214 } 3215 } 3216 } 3217 3218 /// Return true for an order or output dependence that is loop carried 3219 /// potentially. A dependence is loop carried if the destination defines a valu 3220 /// that may be used or defined by the source in a subsequent iteration. 3221 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3222 bool isSucc) { 3223 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3224 Dep.isArtificial()) 3225 return false; 3226 3227 if (!SwpPruneLoopCarried) 3228 return true; 3229 3230 if (Dep.getKind() == SDep::Output) 3231 return true; 3232 3233 MachineInstr *SI = Source->getInstr(); 3234 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3235 if (!isSucc) 3236 std::swap(SI, DI); 3237 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3238 3239 // Assume ordered loads and stores may have a loop carried dependence. 3240 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3241 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3242 return true; 3243 3244 // Only chain dependences between a load and store can be loop carried. 3245 if (!DI->mayStore() || !SI->mayLoad()) 3246 return false; 3247 3248 unsigned DeltaS, DeltaD; 3249 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3250 return true; 3251 3252 const MachineOperand *BaseOpS, *BaseOpD; 3253 int64_t OffsetS, OffsetD; 3254 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3255 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3256 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3257 return true; 3258 3259 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3260 return true; 3261 3262 // Check that the base register is incremented by a constant value for each 3263 // iteration. 3264 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3265 if (!Def || !Def->isPHI()) 3266 return true; 3267 unsigned InitVal = 0; 3268 unsigned LoopVal = 0; 3269 getPhiRegs(*Def, BB, InitVal, LoopVal); 3270 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3271 int D = 0; 3272 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3273 return true; 3274 3275 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3276 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3277 3278 // This is the main test, which checks the offset values and the loop 3279 // increment value to determine if the accesses may be loop carried. 3280 if (AccessSizeS == MemoryLocation::UnknownSize || 3281 AccessSizeD == MemoryLocation::UnknownSize) 3282 return true; 3283 3284 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 3285 return true; 3286 3287 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 3288 } 3289 3290 void SwingSchedulerDAG::postprocessDAG() { 3291 for (auto &M : Mutations) 3292 M->apply(this); 3293 } 3294 3295 /// Try to schedule the node at the specified StartCycle and continue 3296 /// until the node is schedule or the EndCycle is reached. This function 3297 /// returns true if the node is scheduled. This routine may search either 3298 /// forward or backward for a place to insert the instruction based upon 3299 /// the relative values of StartCycle and EndCycle. 3300 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3301 bool forward = true; 3302 LLVM_DEBUG({ 3303 dbgs() << "Trying to insert node between " << StartCycle << " and " 3304 << EndCycle << " II: " << II << "\n"; 3305 }); 3306 if (StartCycle > EndCycle) 3307 forward = false; 3308 3309 // The terminating condition depends on the direction. 3310 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3311 for (int curCycle = StartCycle; curCycle != termCycle; 3312 forward ? ++curCycle : --curCycle) { 3313 3314 // Add the already scheduled instructions at the specified cycle to the 3315 // DFA. 3316 ProcItinResources.clearResources(); 3317 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3318 checkCycle <= LastCycle; checkCycle += II) { 3319 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3320 3321 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3322 E = cycleInstrs.end(); 3323 I != E; ++I) { 3324 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3325 continue; 3326 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 3327 "These instructions have already been scheduled."); 3328 ProcItinResources.reserveResources(*(*I)->getInstr()); 3329 } 3330 } 3331 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3332 ProcItinResources.canReserveResources(*SU->getInstr())) { 3333 LLVM_DEBUG({ 3334 dbgs() << "\tinsert at cycle " << curCycle << " "; 3335 SU->getInstr()->dump(); 3336 }); 3337 3338 ScheduledInstrs[curCycle].push_back(SU); 3339 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3340 if (curCycle > LastCycle) 3341 LastCycle = curCycle; 3342 if (curCycle < FirstCycle) 3343 FirstCycle = curCycle; 3344 return true; 3345 } 3346 LLVM_DEBUG({ 3347 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3348 SU->getInstr()->dump(); 3349 }); 3350 } 3351 return false; 3352 } 3353 3354 // Return the cycle of the earliest scheduled instruction in the chain. 3355 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3356 SmallPtrSet<SUnit *, 8> Visited; 3357 SmallVector<SDep, 8> Worklist; 3358 Worklist.push_back(Dep); 3359 int EarlyCycle = INT_MAX; 3360 while (!Worklist.empty()) { 3361 const SDep &Cur = Worklist.pop_back_val(); 3362 SUnit *PrevSU = Cur.getSUnit(); 3363 if (Visited.count(PrevSU)) 3364 continue; 3365 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3366 if (it == InstrToCycle.end()) 3367 continue; 3368 EarlyCycle = std::min(EarlyCycle, it->second); 3369 for (const auto &PI : PrevSU->Preds) 3370 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3371 Worklist.push_back(PI); 3372 Visited.insert(PrevSU); 3373 } 3374 return EarlyCycle; 3375 } 3376 3377 // Return the cycle of the latest scheduled instruction in the chain. 3378 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3379 SmallPtrSet<SUnit *, 8> Visited; 3380 SmallVector<SDep, 8> Worklist; 3381 Worklist.push_back(Dep); 3382 int LateCycle = INT_MIN; 3383 while (!Worklist.empty()) { 3384 const SDep &Cur = Worklist.pop_back_val(); 3385 SUnit *SuccSU = Cur.getSUnit(); 3386 if (Visited.count(SuccSU)) 3387 continue; 3388 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3389 if (it == InstrToCycle.end()) 3390 continue; 3391 LateCycle = std::max(LateCycle, it->second); 3392 for (const auto &SI : SuccSU->Succs) 3393 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3394 Worklist.push_back(SI); 3395 Visited.insert(SuccSU); 3396 } 3397 return LateCycle; 3398 } 3399 3400 /// If an instruction has a use that spans multiple iterations, then 3401 /// return true. These instructions are characterized by having a back-ege 3402 /// to a Phi, which contains a reference to another Phi. 3403 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3404 for (auto &P : SU->Preds) 3405 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3406 for (auto &S : P.getSUnit()->Succs) 3407 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3408 return P.getSUnit(); 3409 return nullptr; 3410 } 3411 3412 /// Compute the scheduling start slot for the instruction. The start slot 3413 /// depends on any predecessor or successor nodes scheduled already. 3414 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3415 int *MinEnd, int *MaxStart, int II, 3416 SwingSchedulerDAG *DAG) { 3417 // Iterate over each instruction that has been scheduled already. The start 3418 // slot computation depends on whether the previously scheduled instruction 3419 // is a predecessor or successor of the specified instruction. 3420 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3421 3422 // Iterate over each instruction in the current cycle. 3423 for (SUnit *I : getInstructions(cycle)) { 3424 // Because we're processing a DAG for the dependences, we recognize 3425 // the back-edge in recurrences by anti dependences. 3426 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3427 const SDep &Dep = SU->Preds[i]; 3428 if (Dep.getSUnit() == I) { 3429 if (!DAG->isBackedge(SU, Dep)) { 3430 int EarlyStart = cycle + Dep.getLatency() - 3431 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3432 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3433 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3434 int End = earliestCycleInChain(Dep) + (II - 1); 3435 *MinEnd = std::min(*MinEnd, End); 3436 } 3437 } else { 3438 int LateStart = cycle - Dep.getLatency() + 3439 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3440 *MinLateStart = std::min(*MinLateStart, LateStart); 3441 } 3442 } 3443 // For instruction that requires multiple iterations, make sure that 3444 // the dependent instruction is not scheduled past the definition. 3445 SUnit *BE = multipleIterations(I, DAG); 3446 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3447 !SU->isPred(I)) 3448 *MinLateStart = std::min(*MinLateStart, cycle); 3449 } 3450 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3451 if (SU->Succs[i].getSUnit() == I) { 3452 const SDep &Dep = SU->Succs[i]; 3453 if (!DAG->isBackedge(SU, Dep)) { 3454 int LateStart = cycle - Dep.getLatency() + 3455 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3456 *MinLateStart = std::min(*MinLateStart, LateStart); 3457 if (DAG->isLoopCarriedDep(SU, Dep)) { 3458 int Start = latestCycleInChain(Dep) + 1 - II; 3459 *MaxStart = std::max(*MaxStart, Start); 3460 } 3461 } else { 3462 int EarlyStart = cycle + Dep.getLatency() - 3463 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3464 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3465 } 3466 } 3467 } 3468 } 3469 } 3470 } 3471 3472 /// Order the instructions within a cycle so that the definitions occur 3473 /// before the uses. Returns true if the instruction is added to the start 3474 /// of the list, or false if added to the end. 3475 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3476 std::deque<SUnit *> &Insts) { 3477 MachineInstr *MI = SU->getInstr(); 3478 bool OrderBeforeUse = false; 3479 bool OrderAfterDef = false; 3480 bool OrderBeforeDef = false; 3481 unsigned MoveDef = 0; 3482 unsigned MoveUse = 0; 3483 int StageInst1 = stageScheduled(SU); 3484 3485 unsigned Pos = 0; 3486 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3487 ++I, ++Pos) { 3488 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3489 MachineOperand &MO = MI->getOperand(i); 3490 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3491 continue; 3492 3493 unsigned Reg = MO.getReg(); 3494 unsigned BasePos, OffsetPos; 3495 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3496 if (MI->getOperand(BasePos).getReg() == Reg) 3497 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3498 Reg = NewReg; 3499 bool Reads, Writes; 3500 std::tie(Reads, Writes) = 3501 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3502 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3503 OrderBeforeUse = true; 3504 if (MoveUse == 0) 3505 MoveUse = Pos; 3506 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3507 // Add the instruction after the scheduled instruction. 3508 OrderAfterDef = true; 3509 MoveDef = Pos; 3510 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3511 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3512 OrderBeforeUse = true; 3513 if (MoveUse == 0) 3514 MoveUse = Pos; 3515 } else { 3516 OrderAfterDef = true; 3517 MoveDef = Pos; 3518 } 3519 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3520 OrderBeforeUse = true; 3521 if (MoveUse == 0) 3522 MoveUse = Pos; 3523 if (MoveUse != 0) { 3524 OrderAfterDef = true; 3525 MoveDef = Pos - 1; 3526 } 3527 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3528 // Add the instruction before the scheduled instruction. 3529 OrderBeforeUse = true; 3530 if (MoveUse == 0) 3531 MoveUse = Pos; 3532 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3533 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3534 if (MoveUse == 0) { 3535 OrderBeforeDef = true; 3536 MoveUse = Pos; 3537 } 3538 } 3539 } 3540 // Check for order dependences between instructions. Make sure the source 3541 // is ordered before the destination. 3542 for (auto &S : SU->Succs) { 3543 if (S.getSUnit() != *I) 3544 continue; 3545 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3546 OrderBeforeUse = true; 3547 if (Pos < MoveUse) 3548 MoveUse = Pos; 3549 } 3550 } 3551 for (auto &P : SU->Preds) { 3552 if (P.getSUnit() != *I) 3553 continue; 3554 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3555 OrderAfterDef = true; 3556 MoveDef = Pos; 3557 } 3558 } 3559 } 3560 3561 // A circular dependence. 3562 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3563 OrderBeforeUse = false; 3564 3565 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3566 // to a loop-carried dependence. 3567 if (OrderBeforeDef) 3568 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3569 3570 // The uncommon case when the instruction order needs to be updated because 3571 // there is both a use and def. 3572 if (OrderBeforeUse && OrderAfterDef) { 3573 SUnit *UseSU = Insts.at(MoveUse); 3574 SUnit *DefSU = Insts.at(MoveDef); 3575 if (MoveUse > MoveDef) { 3576 Insts.erase(Insts.begin() + MoveUse); 3577 Insts.erase(Insts.begin() + MoveDef); 3578 } else { 3579 Insts.erase(Insts.begin() + MoveDef); 3580 Insts.erase(Insts.begin() + MoveUse); 3581 } 3582 orderDependence(SSD, UseSU, Insts); 3583 orderDependence(SSD, SU, Insts); 3584 orderDependence(SSD, DefSU, Insts); 3585 return; 3586 } 3587 // Put the new instruction first if there is a use in the list. Otherwise, 3588 // put it at the end of the list. 3589 if (OrderBeforeUse) 3590 Insts.push_front(SU); 3591 else 3592 Insts.push_back(SU); 3593 } 3594 3595 /// Return true if the scheduled Phi has a loop carried operand. 3596 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3597 if (!Phi.isPHI()) 3598 return false; 3599 assert(Phi.isPHI() && "Expecting a Phi."); 3600 SUnit *DefSU = SSD->getSUnit(&Phi); 3601 unsigned DefCycle = cycleScheduled(DefSU); 3602 int DefStage = stageScheduled(DefSU); 3603 3604 unsigned InitVal = 0; 3605 unsigned LoopVal = 0; 3606 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3607 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3608 if (!UseSU) 3609 return true; 3610 if (UseSU->getInstr()->isPHI()) 3611 return true; 3612 unsigned LoopCycle = cycleScheduled(UseSU); 3613 int LoopStage = stageScheduled(UseSU); 3614 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3615 } 3616 3617 /// Return true if the instruction is a definition that is loop carried 3618 /// and defines the use on the next iteration. 3619 /// v1 = phi(v2, v3) 3620 /// (Def) v3 = op v1 3621 /// (MO) = v1 3622 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3623 /// register. 3624 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3625 MachineInstr *Def, MachineOperand &MO) { 3626 if (!MO.isReg()) 3627 return false; 3628 if (Def->isPHI()) 3629 return false; 3630 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3631 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3632 return false; 3633 if (!isLoopCarried(SSD, *Phi)) 3634 return false; 3635 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3636 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3637 MachineOperand &DMO = Def->getOperand(i); 3638 if (!DMO.isReg() || !DMO.isDef()) 3639 continue; 3640 if (DMO.getReg() == LoopReg) 3641 return true; 3642 } 3643 return false; 3644 } 3645 3646 // Check if the generated schedule is valid. This function checks if 3647 // an instruction that uses a physical register is scheduled in a 3648 // different stage than the definition. The pipeliner does not handle 3649 // physical register values that may cross a basic block boundary. 3650 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3651 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3652 SUnit &SU = SSD->SUnits[i]; 3653 if (!SU.hasPhysRegDefs) 3654 continue; 3655 int StageDef = stageScheduled(&SU); 3656 assert(StageDef != -1 && "Instruction should have been scheduled."); 3657 for (auto &SI : SU.Succs) 3658 if (SI.isAssignedRegDep()) 3659 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3660 if (stageScheduled(SI.getSUnit()) != StageDef) 3661 return false; 3662 } 3663 return true; 3664 } 3665 3666 /// A property of the node order in swing-modulo-scheduling is 3667 /// that for nodes outside circuits the following holds: 3668 /// none of them is scheduled after both a successor and a 3669 /// predecessor. 3670 /// The method below checks whether the property is met. 3671 /// If not, debug information is printed and statistics information updated. 3672 /// Note that we do not use an assert statement. 3673 /// The reason is that although an invalid node oder may prevent 3674 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3675 /// it does not lead to the generation of incorrect code. 3676 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3677 3678 // a sorted vector that maps each SUnit to its index in the NodeOrder 3679 typedef std::pair<SUnit *, unsigned> UnitIndex; 3680 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3681 3682 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3683 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3684 3685 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3686 return std::get<0>(i1) < std::get<0>(i2); 3687 }; 3688 3689 // sort, so that we can perform a binary search 3690 llvm::sort(Indices, CompareKey); 3691 3692 bool Valid = true; 3693 (void)Valid; 3694 // for each SUnit in the NodeOrder, check whether 3695 // it appears after both a successor and a predecessor 3696 // of the SUnit. If this is the case, and the SUnit 3697 // is not part of circuit, then the NodeOrder is not 3698 // valid. 3699 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3700 SUnit *SU = NodeOrder[i]; 3701 unsigned Index = i; 3702 3703 bool PredBefore = false; 3704 bool SuccBefore = false; 3705 3706 SUnit *Succ; 3707 SUnit *Pred; 3708 (void)Succ; 3709 (void)Pred; 3710 3711 for (SDep &PredEdge : SU->Preds) { 3712 SUnit *PredSU = PredEdge.getSUnit(); 3713 unsigned PredIndex = 3714 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3715 std::make_pair(PredSU, 0), CompareKey)); 3716 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3717 PredBefore = true; 3718 Pred = PredSU; 3719 break; 3720 } 3721 } 3722 3723 for (SDep &SuccEdge : SU->Succs) { 3724 SUnit *SuccSU = SuccEdge.getSUnit(); 3725 unsigned SuccIndex = 3726 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3727 std::make_pair(SuccSU, 0), CompareKey)); 3728 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3729 SuccBefore = true; 3730 Succ = SuccSU; 3731 break; 3732 } 3733 } 3734 3735 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3736 // instructions in circuits are allowed to be scheduled 3737 // after both a successor and predecessor. 3738 bool InCircuit = std::any_of( 3739 Circuits.begin(), Circuits.end(), 3740 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3741 if (InCircuit) 3742 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3743 else { 3744 Valid = false; 3745 NumNodeOrderIssues++; 3746 LLVM_DEBUG(dbgs() << "Predecessor ";); 3747 } 3748 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3749 << " are scheduled before node " << SU->NodeNum 3750 << "\n";); 3751 } 3752 } 3753 3754 LLVM_DEBUG({ 3755 if (!Valid) 3756 dbgs() << "Invalid node order found!\n"; 3757 }); 3758 } 3759 3760 /// Attempt to fix the degenerate cases when the instruction serialization 3761 /// causes the register lifetimes to overlap. For example, 3762 /// p' = store_pi(p, b) 3763 /// = load p, offset 3764 /// In this case p and p' overlap, which means that two registers are needed. 3765 /// Instead, this function changes the load to use p' and updates the offset. 3766 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3767 unsigned OverlapReg = 0; 3768 unsigned NewBaseReg = 0; 3769 for (SUnit *SU : Instrs) { 3770 MachineInstr *MI = SU->getInstr(); 3771 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3772 const MachineOperand &MO = MI->getOperand(i); 3773 // Look for an instruction that uses p. The instruction occurs in the 3774 // same cycle but occurs later in the serialized order. 3775 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3776 // Check that the instruction appears in the InstrChanges structure, 3777 // which contains instructions that can have the offset updated. 3778 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3779 InstrChanges.find(SU); 3780 if (It != InstrChanges.end()) { 3781 unsigned BasePos, OffsetPos; 3782 // Update the base register and adjust the offset. 3783 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3784 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3785 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3786 int64_t NewOffset = 3787 MI->getOperand(OffsetPos).getImm() - It->second.second; 3788 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3789 SU->setInstr(NewMI); 3790 MISUnitMap[NewMI] = SU; 3791 NewMIs.insert(NewMI); 3792 } 3793 } 3794 OverlapReg = 0; 3795 NewBaseReg = 0; 3796 break; 3797 } 3798 // Look for an instruction of the form p' = op(p), which uses and defines 3799 // two virtual registers that get allocated to the same physical register. 3800 unsigned TiedUseIdx = 0; 3801 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3802 // OverlapReg is p in the example above. 3803 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3804 // NewBaseReg is p' in the example above. 3805 NewBaseReg = MI->getOperand(i).getReg(); 3806 break; 3807 } 3808 } 3809 } 3810 } 3811 3812 /// After the schedule has been formed, call this function to combine 3813 /// the instructions from the different stages/cycles. That is, this 3814 /// function creates a schedule that represents a single iteration. 3815 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3816 // Move all instructions to the first stage from later stages. 3817 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3818 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3819 ++stage) { 3820 std::deque<SUnit *> &cycleInstrs = 3821 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3822 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3823 E = cycleInstrs.rend(); 3824 I != E; ++I) 3825 ScheduledInstrs[cycle].push_front(*I); 3826 } 3827 } 3828 // Iterate over the definitions in each instruction, and compute the 3829 // stage difference for each use. Keep the maximum value. 3830 for (auto &I : InstrToCycle) { 3831 int DefStage = stageScheduled(I.first); 3832 MachineInstr *MI = I.first->getInstr(); 3833 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3834 MachineOperand &Op = MI->getOperand(i); 3835 if (!Op.isReg() || !Op.isDef()) 3836 continue; 3837 3838 unsigned Reg = Op.getReg(); 3839 unsigned MaxDiff = 0; 3840 bool PhiIsSwapped = false; 3841 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3842 EI = MRI.use_end(); 3843 UI != EI; ++UI) { 3844 MachineOperand &UseOp = *UI; 3845 MachineInstr *UseMI = UseOp.getParent(); 3846 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3847 int UseStage = stageScheduled(SUnitUse); 3848 unsigned Diff = 0; 3849 if (UseStage != -1 && UseStage >= DefStage) 3850 Diff = UseStage - DefStage; 3851 if (MI->isPHI()) { 3852 if (isLoopCarried(SSD, *MI)) 3853 ++Diff; 3854 else 3855 PhiIsSwapped = true; 3856 } 3857 MaxDiff = std::max(Diff, MaxDiff); 3858 } 3859 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3860 } 3861 } 3862 3863 // Erase all the elements in the later stages. Only one iteration should 3864 // remain in the scheduled list, and it contains all the instructions. 3865 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3866 ScheduledInstrs.erase(cycle); 3867 3868 // Change the registers in instruction as specified in the InstrChanges 3869 // map. We need to use the new registers to create the correct order. 3870 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3871 SUnit *SU = &SSD->SUnits[i]; 3872 SSD->applyInstrChange(SU->getInstr(), *this); 3873 } 3874 3875 // Reorder the instructions in each cycle to fix and improve the 3876 // generated code. 3877 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3878 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3879 std::deque<SUnit *> newOrderPhi; 3880 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3881 SUnit *SU = cycleInstrs[i]; 3882 if (SU->getInstr()->isPHI()) 3883 newOrderPhi.push_back(SU); 3884 } 3885 std::deque<SUnit *> newOrderI; 3886 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3887 SUnit *SU = cycleInstrs[i]; 3888 if (!SU->getInstr()->isPHI()) 3889 orderDependence(SSD, SU, newOrderI); 3890 } 3891 // Replace the old order with the new order. 3892 cycleInstrs.swap(newOrderPhi); 3893 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3894 SSD->fixupRegisterOverlaps(cycleInstrs); 3895 } 3896 3897 LLVM_DEBUG(dump();); 3898 } 3899 3900 void NodeSet::print(raw_ostream &os) const { 3901 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3902 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3903 for (const auto &I : Nodes) 3904 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3905 os << "\n"; 3906 } 3907 3908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3909 /// Print the schedule information to the given output. 3910 void SMSchedule::print(raw_ostream &os) const { 3911 // Iterate over each cycle. 3912 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3913 // Iterate over each instruction in the cycle. 3914 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3915 for (SUnit *CI : cycleInstrs->second) { 3916 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3917 os << "(" << CI->NodeNum << ") "; 3918 CI->getInstr()->print(os); 3919 os << "\n"; 3920 } 3921 } 3922 } 3923 3924 /// Utility function used for debugging to print the schedule. 3925 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3926 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3927 3928 #endif 3929 3930 void ResourceManager::initProcResourceVectors( 3931 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3932 unsigned ProcResourceID = 0; 3933 3934 // We currently limit the resource kinds to 64 and below so that we can use 3935 // uint64_t for Masks 3936 assert(SM.getNumProcResourceKinds() < 64 && 3937 "Too many kinds of resources, unsupported"); 3938 // Create a unique bitmask for every processor resource unit. 3939 // Skip resource at index 0, since it always references 'InvalidUnit'. 3940 Masks.resize(SM.getNumProcResourceKinds()); 3941 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3942 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3943 if (Desc.SubUnitsIdxBegin) 3944 continue; 3945 Masks[I] = 1ULL << ProcResourceID; 3946 ProcResourceID++; 3947 } 3948 // Create a unique bitmask for every processor resource group. 3949 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3950 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3951 if (!Desc.SubUnitsIdxBegin) 3952 continue; 3953 Masks[I] = 1ULL << ProcResourceID; 3954 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3955 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3956 ProcResourceID++; 3957 } 3958 LLVM_DEBUG({ 3959 dbgs() << "ProcResourceDesc:\n"; 3960 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3961 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3962 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3963 ProcResource->Name, I, Masks[I], ProcResource->NumUnits); 3964 } 3965 dbgs() << " -----------------\n"; 3966 }); 3967 } 3968 3969 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3970 3971 LLVM_DEBUG({ dbgs() << "canReserveResources:\n"; }); 3972 if (UseDFA) 3973 return DFAResources->canReserveResources(MID); 3974 3975 unsigned InsnClass = MID->getSchedClass(); 3976 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3977 if (!SCDesc->isValid()) { 3978 LLVM_DEBUG({ 3979 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3980 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3981 }); 3982 return true; 3983 } 3984 3985 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3986 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3987 for (; I != E; ++I) { 3988 if (!I->Cycles) 3989 continue; 3990 const MCProcResourceDesc *ProcResource = 3991 SM.getProcResource(I->ProcResourceIdx); 3992 unsigned NumUnits = ProcResource->NumUnits; 3993 LLVM_DEBUG({ 3994 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3995 ProcResource->Name, I->ProcResourceIdx, 3996 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3997 I->Cycles); 3998 }); 3999 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 4000 return false; 4001 } 4002 LLVM_DEBUG(dbgs() << "return true\n\n";); 4003 return true; 4004 } 4005 4006 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 4007 LLVM_DEBUG({ dbgs() << "reserveResources:\n"; }); 4008 if (UseDFA) 4009 return DFAResources->reserveResources(MID); 4010 4011 unsigned InsnClass = MID->getSchedClass(); 4012 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 4013 if (!SCDesc->isValid()) { 4014 LLVM_DEBUG({ 4015 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 4016 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 4017 }); 4018 return; 4019 } 4020 for (const MCWriteProcResEntry &PRE : 4021 make_range(STI->getWriteProcResBegin(SCDesc), 4022 STI->getWriteProcResEnd(SCDesc))) { 4023 if (!PRE.Cycles) 4024 continue; 4025 ++ProcResourceCount[PRE.ProcResourceIdx]; 4026 LLVM_DEBUG({ 4027 const MCProcResourceDesc *ProcResource = 4028 SM.getProcResource(PRE.ProcResourceIdx); 4029 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 4030 ProcResource->Name, PRE.ProcResourceIdx, 4031 ProcResourceCount[PRE.ProcResourceIdx], 4032 ProcResource->NumUnits, PRE.Cycles); 4033 }); 4034 } 4035 LLVM_DEBUG({ dbgs() << "reserveResources: done!\n\n"; }); 4036 } 4037 4038 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 4039 return canReserveResources(&MI.getDesc()); 4040 } 4041 4042 void ResourceManager::reserveResources(const MachineInstr &MI) { 4043 return reserveResources(&MI.getDesc()); 4044 } 4045 4046 void ResourceManager::clearResources() { 4047 if (UseDFA) 4048 return DFAResources->clearResources(); 4049 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 4050 } 4051 4052