1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 221 TII = MF->getSubtarget().getInstrInfo(); 222 RegClassInfo.runOnMachineFunction(*MF); 223 224 for (auto &L : *MLI) 225 scheduleLoop(*L); 226 227 return false; 228 } 229 230 /// Attempt to perform the SMS algorithm on the specified loop. This function is 231 /// the main entry point for the algorithm. The function identifies candidate 232 /// loops, calculates the minimum initiation interval, and attempts to schedule 233 /// the loop. 234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 235 bool Changed = false; 236 for (auto &InnerLoop : L) 237 Changed |= scheduleLoop(*InnerLoop); 238 239 #ifndef NDEBUG 240 // Stop trying after reaching the limit (if any). 241 int Limit = SwpLoopLimit; 242 if (Limit >= 0) { 243 if (NumTries >= SwpLoopLimit) 244 return Changed; 245 NumTries++; 246 } 247 #endif 248 249 setPragmaPipelineOptions(L); 250 if (!canPipelineLoop(L)) { 251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 252 ORE->emit([&]() { 253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 254 L.getStartLoc(), L.getHeader()) 255 << "Failed to pipeline loop"; 256 }); 257 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 II_setByPragma = 0; 272 273 MachineBasicBlock *LBLK = L.getTopBlock(); 274 275 if (LBLK == nullptr) 276 return; 277 278 const BasicBlock *BBLK = LBLK->getBasicBlock(); 279 if (BBLK == nullptr) 280 return; 281 282 const Instruction *TI = BBLK->getTerminator(); 283 if (TI == nullptr) 284 return; 285 286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 287 if (LoopID == nullptr) 288 return; 289 290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 291 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 292 293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 295 296 if (MD == nullptr) 297 continue; 298 299 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 300 301 if (S == nullptr) 302 continue; 303 304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 305 assert(MD->getNumOperands() == 2 && 306 "Pipeline initiation interval hint metadata should have two operands."); 307 II_setByPragma = 308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 310 } else if (S->getString() == "llvm.loop.pipeline.disable") { 311 disabledByPragma = true; 312 } 313 } 314 } 315 316 /// Return true if the loop can be software pipelined. The algorithm is 317 /// restricted to loops with a single basic block. Make sure that the 318 /// branch in the loop can be analyzed. 319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 320 if (L.getNumBlocks() != 1) { 321 ORE->emit([&]() { 322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 323 L.getStartLoc(), L.getHeader()) 324 << "Not a single basic block: " 325 << ore::NV("NumBlocks", L.getNumBlocks()); 326 }); 327 return false; 328 } 329 330 if (disabledByPragma) { 331 ORE->emit([&]() { 332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 333 L.getStartLoc(), L.getHeader()) 334 << "Disabled by Pragma."; 335 }); 336 return false; 337 } 338 339 // Check if the branch can't be understood because we can't do pipelining 340 // if that's the case. 341 LI.TBB = nullptr; 342 LI.FBB = nullptr; 343 LI.BrCond.clear(); 344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 346 NumFailBranch++; 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "The branch can't be understood"; 351 }); 352 return false; 353 } 354 355 LI.LoopInductionVar = nullptr; 356 LI.LoopCompare = nullptr; 357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 359 NumFailLoop++; 360 ORE->emit([&]() { 361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 362 L.getStartLoc(), L.getHeader()) 363 << "The loop structure is not supported"; 364 }); 365 return false; 366 } 367 368 if (!L.getLoopPreheader()) { 369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 370 NumFailPreheader++; 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "No loop preheader found"; 375 }); 376 return false; 377 } 378 379 // Remove any subregisters from inputs to phi nodes. 380 preprocessPhiNodes(*L.getHeader()); 381 return true; 382 } 383 384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 385 MachineRegisterInfo &MRI = MF->getRegInfo(); 386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 387 388 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 389 MachineOperand &DefOp = PI.getOperand(0); 390 assert(DefOp.getSubReg() == 0); 391 auto *RC = MRI.getRegClass(DefOp.getReg()); 392 393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 394 MachineOperand &RegOp = PI.getOperand(i); 395 if (RegOp.getSubReg() == 0) 396 continue; 397 398 // If the operand uses a subregister, replace it with a new register 399 // without subregisters, and generate a copy to the new register. 400 Register NewReg = MRI.createVirtualRegister(RC); 401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 402 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 403 const DebugLoc &DL = PredB.findDebugLoc(At); 404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 405 .addReg(RegOp.getReg(), getRegState(RegOp), 406 RegOp.getSubReg()); 407 Slots.insertMachineInstrInMaps(*Copy); 408 RegOp.setReg(NewReg); 409 RegOp.setSubReg(0); 410 } 411 } 412 } 413 414 /// The SMS algorithm consists of the following main steps: 415 /// 1. Computation and analysis of the dependence graph. 416 /// 2. Ordering of the nodes (instructions). 417 /// 3. Attempt to Schedule the loop. 418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 420 421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 422 II_setByPragma); 423 424 MachineBasicBlock *MBB = L.getHeader(); 425 // The kernel should not include any terminator instructions. These 426 // will be added back later. 427 SMS.startBlock(MBB); 428 429 // Compute the number of 'real' instructions in the basic block by 430 // ignoring terminators. 431 unsigned size = MBB->size(); 432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 433 E = MBB->instr_end(); 434 I != E; ++I, --size) 435 ; 436 437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 438 SMS.schedule(); 439 SMS.exitRegion(); 440 441 SMS.finishBlock(); 442 return SMS.hasNewSchedule(); 443 } 444 445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 446 AU.addRequired<AAResultsWrapperPass>(); 447 AU.addPreserved<AAResultsWrapperPass>(); 448 AU.addRequired<MachineLoopInfo>(); 449 AU.addRequired<MachineDominatorTree>(); 450 AU.addRequired<LiveIntervals>(); 451 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 452 MachineFunctionPass::getAnalysisUsage(AU); 453 } 454 455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 456 if (II_setByPragma > 0) 457 MII = II_setByPragma; 458 else 459 MII = std::max(ResMII, RecMII); 460 } 461 462 void SwingSchedulerDAG::setMAX_II() { 463 if (II_setByPragma > 0) 464 MAX_II = II_setByPragma; 465 else 466 MAX_II = MII + 10; 467 } 468 469 /// We override the schedule function in ScheduleDAGInstrs to implement the 470 /// scheduling part of the Swing Modulo Scheduling algorithm. 471 void SwingSchedulerDAG::schedule() { 472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 buildSchedGraph(AA); 474 addLoopCarriedDependences(AA); 475 updatePhiDependences(); 476 Topo.InitDAGTopologicalSorting(); 477 changeDependences(); 478 postprocessDAG(); 479 LLVM_DEBUG(dump()); 480 481 NodeSetType NodeSets; 482 findCircuits(NodeSets); 483 NodeSetType Circuits = NodeSets; 484 485 // Calculate the MII. 486 unsigned ResMII = calculateResMII(); 487 unsigned RecMII = calculateRecMII(NodeSets); 488 489 fuseRecs(NodeSets); 490 491 // This flag is used for testing and can cause correctness problems. 492 if (SwpIgnoreRecMII) 493 RecMII = 0; 494 495 setMII(ResMII, RecMII); 496 setMAX_II(); 497 498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 500 501 // Can't schedule a loop without a valid MII. 502 if (MII == 0) { 503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 504 NumFailZeroMII++; 505 Pass.ORE->emit([&]() { 506 return MachineOptimizationRemarkAnalysis( 507 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 508 << "Invalid Minimal Initiation Interval: 0"; 509 }); 510 return; 511 } 512 513 // Don't pipeline large loops. 514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 516 << ", we don't pipleline large loops\n"); 517 NumFailLargeMaxMII++; 518 Pass.ORE->emit([&]() { 519 return MachineOptimizationRemarkAnalysis( 520 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 521 << "Minimal Initiation Interval too large: " 522 << ore::NV("MII", (int)MII) << " > " 523 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 524 << "Refer to -pipeliner-max-mii."; 525 }); 526 return; 527 } 528 529 computeNodeFunctions(NodeSets); 530 531 registerPressureFilter(NodeSets); 532 533 colocateNodeSets(NodeSets); 534 535 checkNodeSets(NodeSets); 536 537 LLVM_DEBUG({ 538 for (auto &I : NodeSets) { 539 dbgs() << " Rec NodeSet "; 540 I.dump(); 541 } 542 }); 543 544 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 545 546 groupRemainingNodes(NodeSets); 547 548 removeDuplicateNodes(NodeSets); 549 550 LLVM_DEBUG({ 551 for (auto &I : NodeSets) { 552 dbgs() << " NodeSet "; 553 I.dump(); 554 } 555 }); 556 557 computeNodeOrder(NodeSets); 558 559 // check for node order issues 560 checkValidNodeOrder(Circuits); 561 562 SMSchedule Schedule(Pass.MF); 563 Scheduled = schedulePipeline(Schedule); 564 565 if (!Scheduled){ 566 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 567 NumFailNoSchedule++; 568 Pass.ORE->emit([&]() { 569 return MachineOptimizationRemarkAnalysis( 570 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 571 << "Unable to find schedule"; 572 }); 573 return; 574 } 575 576 unsigned numStages = Schedule.getMaxStageCount(); 577 // No need to generate pipeline if there are no overlapped iterations. 578 if (numStages == 0) { 579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 580 NumFailZeroStage++; 581 Pass.ORE->emit([&]() { 582 return MachineOptimizationRemarkAnalysis( 583 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 584 << "No need to pipeline - no overlapped iterations in schedule."; 585 }); 586 return; 587 } 588 // Check that the maximum stage count is less than user-defined limit. 589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 591 << " : too many stages, abort\n"); 592 NumFailLargeMaxStage++; 593 Pass.ORE->emit([&]() { 594 return MachineOptimizationRemarkAnalysis( 595 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 596 << "Too many stages in schedule: " 597 << ore::NV("numStages", (int)numStages) << " > " 598 << ore::NV("SwpMaxStages", SwpMaxStages) 599 << ". Refer to -pipeliner-max-stages."; 600 }); 601 return; 602 } 603 604 Pass.ORE->emit([&]() { 605 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 606 Loop.getHeader()) 607 << "Pipelined succesfully!"; 608 }); 609 610 // Generate the schedule as a ModuloSchedule. 611 DenseMap<MachineInstr *, int> Cycles, Stages; 612 std::vector<MachineInstr *> OrderedInsts; 613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 614 ++Cycle) { 615 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 616 OrderedInsts.push_back(SU->getInstr()); 617 Cycles[SU->getInstr()] = Cycle; 618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 619 } 620 } 621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 622 for (auto &KV : NewMIs) { 623 Cycles[KV.first] = Cycles[KV.second]; 624 Stages[KV.first] = Stages[KV.second]; 625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 626 } 627 628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 629 std::move(Stages)); 630 if (EmitTestAnnotations) { 631 assert(NewInstrChanges.empty() && 632 "Cannot serialize a schedule with InstrChanges!"); 633 ModuloScheduleTestAnnotater MSTI(MF, MS); 634 MSTI.annotate(); 635 return; 636 } 637 // The experimental code generator can't work if there are InstChanges. 638 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 640 MSE.expand(); 641 } else { 642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 643 MSE.expand(); 644 MSE.cleanup(); 645 } 646 ++NumPipelined; 647 } 648 649 /// Clean up after the software pipeliner runs. 650 void SwingSchedulerDAG::finishBlock() { 651 for (auto &KV : NewMIs) 652 MF.DeleteMachineInstr(KV.second); 653 NewMIs.clear(); 654 655 // Call the superclass. 656 ScheduleDAGInstrs::finishBlock(); 657 } 658 659 /// Return the register values for the operands of a Phi instruction. 660 /// This function assume the instruction is a Phi. 661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 662 unsigned &InitVal, unsigned &LoopVal) { 663 assert(Phi.isPHI() && "Expecting a Phi."); 664 665 InitVal = 0; 666 LoopVal = 0; 667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668 if (Phi.getOperand(i + 1).getMBB() != Loop) 669 InitVal = Phi.getOperand(i).getReg(); 670 else 671 LoopVal = Phi.getOperand(i).getReg(); 672 673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 674 } 675 676 /// Return the Phi register value that comes the loop block. 677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 679 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 680 return Phi.getOperand(i).getReg(); 681 return 0; 682 } 683 684 /// Return true if SUb can be reached from SUa following the chain edges. 685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 686 SmallPtrSet<SUnit *, 8> Visited; 687 SmallVector<SUnit *, 8> Worklist; 688 Worklist.push_back(SUa); 689 while (!Worklist.empty()) { 690 const SUnit *SU = Worklist.pop_back_val(); 691 for (auto &SI : SU->Succs) { 692 SUnit *SuccSU = SI.getSUnit(); 693 if (SI.getKind() == SDep::Order) { 694 if (Visited.count(SuccSU)) 695 continue; 696 if (SuccSU == SUb) 697 return true; 698 Worklist.push_back(SuccSU); 699 Visited.insert(SuccSU); 700 } 701 } 702 } 703 return false; 704 } 705 706 /// Return true if the instruction causes a chain between memory 707 /// references before and after it. 708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 709 return MI.isCall() || MI.mayRaiseFPException() || 710 MI.hasUnmodeledSideEffects() || 711 (MI.hasOrderedMemoryRef() && 712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 713 } 714 715 /// Return the underlying objects for the memory references of an instruction. 716 /// This function calls the code in ValueTracking, but first checks that the 717 /// instruction has a memory operand. 718 static void getUnderlyingObjects(const MachineInstr *MI, 719 SmallVectorImpl<const Value *> &Objs) { 720 if (!MI->hasOneMemOperand()) 721 return; 722 MachineMemOperand *MM = *MI->memoperands_begin(); 723 if (!MM->getValue()) 724 return; 725 getUnderlyingObjects(MM->getValue(), Objs); 726 for (const Value *V : Objs) { 727 if (!isIdentifiedObject(V)) { 728 Objs.clear(); 729 return; 730 } 731 Objs.push_back(V); 732 } 733 } 734 735 /// Add a chain edge between a load and store if the store can be an 736 /// alias of the load on a subsequent iteration, i.e., a loop carried 737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 738 /// but that code doesn't create loop carried dependences. 739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 741 Value *UnknownValue = 742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 743 for (auto &SU : SUnits) { 744 MachineInstr &MI = *SU.getInstr(); 745 if (isDependenceBarrier(MI, AA)) 746 PendingLoads.clear(); 747 else if (MI.mayLoad()) { 748 SmallVector<const Value *, 4> Objs; 749 ::getUnderlyingObjects(&MI, Objs); 750 if (Objs.empty()) 751 Objs.push_back(UnknownValue); 752 for (auto V : Objs) { 753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 754 SUs.push_back(&SU); 755 } 756 } else if (MI.mayStore()) { 757 SmallVector<const Value *, 4> Objs; 758 ::getUnderlyingObjects(&MI, Objs); 759 if (Objs.empty()) 760 Objs.push_back(UnknownValue); 761 for (auto V : Objs) { 762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 763 PendingLoads.find(V); 764 if (I == PendingLoads.end()) 765 continue; 766 for (auto Load : I->second) { 767 if (isSuccOrder(Load, &SU)) 768 continue; 769 MachineInstr &LdMI = *Load->getInstr(); 770 // First, perform the cheaper check that compares the base register. 771 // If they are the same and the load offset is less than the store 772 // offset, then mark the dependence as loop carried potentially. 773 const MachineOperand *BaseOp1, *BaseOp2; 774 int64_t Offset1, Offset2; 775 bool Offset1IsScalable, Offset2IsScalable; 776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 777 Offset1IsScalable, TRI) && 778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 779 Offset2IsScalable, TRI)) { 780 if (BaseOp1->isIdenticalTo(*BaseOp2) && 781 Offset1IsScalable == Offset2IsScalable && 782 (int)Offset1 < (int)Offset2) { 783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 784 "What happened to the chain edge?"); 785 SDep Dep(Load, SDep::Barrier); 786 Dep.setLatency(1); 787 SU.addPred(Dep); 788 continue; 789 } 790 } 791 // Second, the more expensive check that uses alias analysis on the 792 // base registers. If they alias, and the load offset is less than 793 // the store offset, the mark the dependence as loop carried. 794 if (!AA) { 795 SDep Dep(Load, SDep::Barrier); 796 Dep.setLatency(1); 797 SU.addPred(Dep); 798 continue; 799 } 800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 801 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 802 if (!MMO1->getValue() || !MMO2->getValue()) { 803 SDep Dep(Load, SDep::Barrier); 804 Dep.setLatency(1); 805 SU.addPred(Dep); 806 continue; 807 } 808 if (MMO1->getValue() == MMO2->getValue() && 809 MMO1->getOffset() <= MMO2->getOffset()) { 810 SDep Dep(Load, SDep::Barrier); 811 Dep.setLatency(1); 812 SU.addPred(Dep); 813 continue; 814 } 815 AliasResult AAResult = AA->alias( 816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 817 MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); 818 819 if (AAResult != NoAlias) { 820 SDep Dep(Load, SDep::Barrier); 821 Dep.setLatency(1); 822 SU.addPred(Dep); 823 } 824 } 825 } 826 } 827 } 828 } 829 830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 831 /// processes dependences for PHIs. This function adds true dependences 832 /// from a PHI to a use, and a loop carried dependence from the use to the 833 /// PHI. The loop carried dependence is represented as an anti dependence 834 /// edge. This function also removes chain dependences between unrelated 835 /// PHIs. 836 void SwingSchedulerDAG::updatePhiDependences() { 837 SmallVector<SDep, 4> RemoveDeps; 838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 839 840 // Iterate over each DAG node. 841 for (SUnit &I : SUnits) { 842 RemoveDeps.clear(); 843 // Set to true if the instruction has an operand defined by a Phi. 844 unsigned HasPhiUse = 0; 845 unsigned HasPhiDef = 0; 846 MachineInstr *MI = I.getInstr(); 847 // Iterate over each operand, and we process the definitions. 848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 849 MOE = MI->operands_end(); 850 MOI != MOE; ++MOI) { 851 if (!MOI->isReg()) 852 continue; 853 Register Reg = MOI->getReg(); 854 if (MOI->isDef()) { 855 // If the register is used by a Phi, then create an anti dependence. 856 for (MachineRegisterInfo::use_instr_iterator 857 UI = MRI.use_instr_begin(Reg), 858 UE = MRI.use_instr_end(); 859 UI != UE; ++UI) { 860 MachineInstr *UseMI = &*UI; 861 SUnit *SU = getSUnit(UseMI); 862 if (SU != nullptr && UseMI->isPHI()) { 863 if (!MI->isPHI()) { 864 SDep Dep(SU, SDep::Anti, Reg); 865 Dep.setLatency(1); 866 I.addPred(Dep); 867 } else { 868 HasPhiDef = Reg; 869 // Add a chain edge to a dependent Phi that isn't an existing 870 // predecessor. 871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 872 I.addPred(SDep(SU, SDep::Barrier)); 873 } 874 } 875 } 876 } else if (MOI->isUse()) { 877 // If the register is defined by a Phi, then create a true dependence. 878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 879 if (DefMI == nullptr) 880 continue; 881 SUnit *SU = getSUnit(DefMI); 882 if (SU != nullptr && DefMI->isPHI()) { 883 if (!MI->isPHI()) { 884 SDep Dep(SU, SDep::Data, Reg); 885 Dep.setLatency(0); 886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 887 I.addPred(Dep); 888 } else { 889 HasPhiUse = Reg; 890 // Add a chain edge to a dependent Phi that isn't an existing 891 // predecessor. 892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 893 I.addPred(SDep(SU, SDep::Barrier)); 894 } 895 } 896 } 897 } 898 // Remove order dependences from an unrelated Phi. 899 if (!SwpPruneDeps) 900 continue; 901 for (auto &PI : I.Preds) { 902 MachineInstr *PMI = PI.getSUnit()->getInstr(); 903 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 904 if (I.getInstr()->isPHI()) { 905 if (PMI->getOperand(0).getReg() == HasPhiUse) 906 continue; 907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 908 continue; 909 } 910 RemoveDeps.push_back(PI); 911 } 912 } 913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 914 I.removePred(RemoveDeps[i]); 915 } 916 } 917 918 /// Iterate over each DAG node and see if we can change any dependences 919 /// in order to reduce the recurrence MII. 920 void SwingSchedulerDAG::changeDependences() { 921 // See if an instruction can use a value from the previous iteration. 922 // If so, we update the base and offset of the instruction and change 923 // the dependences. 924 for (SUnit &I : SUnits) { 925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 926 int64_t NewOffset = 0; 927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 928 NewOffset)) 929 continue; 930 931 // Get the MI and SUnit for the instruction that defines the original base. 932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 934 if (!DefMI) 935 continue; 936 SUnit *DefSU = getSUnit(DefMI); 937 if (!DefSU) 938 continue; 939 // Get the MI and SUnit for the instruction that defins the new base. 940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 941 if (!LastMI) 942 continue; 943 SUnit *LastSU = getSUnit(LastMI); 944 if (!LastSU) 945 continue; 946 947 if (Topo.IsReachable(&I, LastSU)) 948 continue; 949 950 // Remove the dependence. The value now depends on a prior iteration. 951 SmallVector<SDep, 4> Deps; 952 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 953 ++P) 954 if (P->getSUnit() == DefSU) 955 Deps.push_back(*P); 956 for (int i = 0, e = Deps.size(); i != e; i++) { 957 Topo.RemovePred(&I, Deps[i].getSUnit()); 958 I.removePred(Deps[i]); 959 } 960 // Remove the chain dependence between the instructions. 961 Deps.clear(); 962 for (auto &P : LastSU->Preds) 963 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 964 Deps.push_back(P); 965 for (int i = 0, e = Deps.size(); i != e; i++) { 966 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 967 LastSU->removePred(Deps[i]); 968 } 969 970 // Add a dependence between the new instruction and the instruction 971 // that defines the new base. 972 SDep Dep(&I, SDep::Anti, NewBase); 973 Topo.AddPred(LastSU, &I); 974 LastSU->addPred(Dep); 975 976 // Remember the base and offset information so that we can update the 977 // instruction during code generation. 978 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 979 } 980 } 981 982 namespace { 983 984 // FuncUnitSorter - Comparison operator used to sort instructions by 985 // the number of functional unit choices. 986 struct FuncUnitSorter { 987 const InstrItineraryData *InstrItins; 988 const MCSubtargetInfo *STI; 989 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 990 991 FuncUnitSorter(const TargetSubtargetInfo &TSI) 992 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 993 994 // Compute the number of functional unit alternatives needed 995 // at each stage, and take the minimum value. We prioritize the 996 // instructions by the least number of choices first. 997 unsigned minFuncUnits(const MachineInstr *Inst, 998 InstrStage::FuncUnits &F) const { 999 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1000 unsigned min = UINT_MAX; 1001 if (InstrItins && !InstrItins->isEmpty()) { 1002 for (const InstrStage &IS : 1003 make_range(InstrItins->beginStage(SchedClass), 1004 InstrItins->endStage(SchedClass))) { 1005 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1006 unsigned numAlternatives = countPopulation(funcUnits); 1007 if (numAlternatives < min) { 1008 min = numAlternatives; 1009 F = funcUnits; 1010 } 1011 } 1012 return min; 1013 } 1014 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1015 const MCSchedClassDesc *SCDesc = 1016 STI->getSchedModel().getSchedClassDesc(SchedClass); 1017 if (!SCDesc->isValid()) 1018 // No valid Schedule Class Desc for schedClass, should be 1019 // Pseudo/PostRAPseudo 1020 return min; 1021 1022 for (const MCWriteProcResEntry &PRE : 1023 make_range(STI->getWriteProcResBegin(SCDesc), 1024 STI->getWriteProcResEnd(SCDesc))) { 1025 if (!PRE.Cycles) 1026 continue; 1027 const MCProcResourceDesc *ProcResource = 1028 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1029 unsigned NumUnits = ProcResource->NumUnits; 1030 if (NumUnits < min) { 1031 min = NumUnits; 1032 F = PRE.ProcResourceIdx; 1033 } 1034 } 1035 return min; 1036 } 1037 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1038 } 1039 1040 // Compute the critical resources needed by the instruction. This 1041 // function records the functional units needed by instructions that 1042 // must use only one functional unit. We use this as a tie breaker 1043 // for computing the resource MII. The instrutions that require 1044 // the same, highly used, functional unit have high priority. 1045 void calcCriticalResources(MachineInstr &MI) { 1046 unsigned SchedClass = MI.getDesc().getSchedClass(); 1047 if (InstrItins && !InstrItins->isEmpty()) { 1048 for (const InstrStage &IS : 1049 make_range(InstrItins->beginStage(SchedClass), 1050 InstrItins->endStage(SchedClass))) { 1051 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1052 if (countPopulation(FuncUnits) == 1) 1053 Resources[FuncUnits]++; 1054 } 1055 return; 1056 } 1057 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1058 const MCSchedClassDesc *SCDesc = 1059 STI->getSchedModel().getSchedClassDesc(SchedClass); 1060 if (!SCDesc->isValid()) 1061 // No valid Schedule Class Desc for schedClass, should be 1062 // Pseudo/PostRAPseudo 1063 return; 1064 1065 for (const MCWriteProcResEntry &PRE : 1066 make_range(STI->getWriteProcResBegin(SCDesc), 1067 STI->getWriteProcResEnd(SCDesc))) { 1068 if (!PRE.Cycles) 1069 continue; 1070 Resources[PRE.ProcResourceIdx]++; 1071 } 1072 return; 1073 } 1074 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1075 } 1076 1077 /// Return true if IS1 has less priority than IS2. 1078 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1079 InstrStage::FuncUnits F1 = 0, F2 = 0; 1080 unsigned MFUs1 = minFuncUnits(IS1, F1); 1081 unsigned MFUs2 = minFuncUnits(IS2, F2); 1082 if (MFUs1 == MFUs2) 1083 return Resources.lookup(F1) < Resources.lookup(F2); 1084 return MFUs1 > MFUs2; 1085 } 1086 }; 1087 1088 } // end anonymous namespace 1089 1090 /// Calculate the resource constrained minimum initiation interval for the 1091 /// specified loop. We use the DFA to model the resources needed for 1092 /// each instruction, and we ignore dependences. A different DFA is created 1093 /// for each cycle that is required. When adding a new instruction, we attempt 1094 /// to add it to each existing DFA, until a legal space is found. If the 1095 /// instruction cannot be reserved in an existing DFA, we create a new one. 1096 unsigned SwingSchedulerDAG::calculateResMII() { 1097 1098 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1099 SmallVector<ResourceManager*, 8> Resources; 1100 MachineBasicBlock *MBB = Loop.getHeader(); 1101 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1102 1103 // Sort the instructions by the number of available choices for scheduling, 1104 // least to most. Use the number of critical resources as the tie breaker. 1105 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1106 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1107 E = MBB->getFirstTerminator(); 1108 I != E; ++I) 1109 FUS.calcCriticalResources(*I); 1110 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1111 FuncUnitOrder(FUS); 1112 1113 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1114 E = MBB->getFirstTerminator(); 1115 I != E; ++I) 1116 FuncUnitOrder.push(&*I); 1117 1118 while (!FuncUnitOrder.empty()) { 1119 MachineInstr *MI = FuncUnitOrder.top(); 1120 FuncUnitOrder.pop(); 1121 if (TII->isZeroCost(MI->getOpcode())) 1122 continue; 1123 // Attempt to reserve the instruction in an existing DFA. At least one 1124 // DFA is needed for each cycle. 1125 unsigned NumCycles = getSUnit(MI)->Latency; 1126 unsigned ReservedCycles = 0; 1127 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1128 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1129 LLVM_DEBUG({ 1130 dbgs() << "Trying to reserve resource for " << NumCycles 1131 << " cycles for \n"; 1132 MI->dump(); 1133 }); 1134 for (unsigned C = 0; C < NumCycles; ++C) 1135 while (RI != RE) { 1136 if ((*RI)->canReserveResources(*MI)) { 1137 (*RI)->reserveResources(*MI); 1138 ++ReservedCycles; 1139 break; 1140 } 1141 RI++; 1142 } 1143 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1144 << ", NumCycles:" << NumCycles << "\n"); 1145 // Add new DFAs, if needed, to reserve resources. 1146 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1147 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1148 << "NewResource created to reserve resources" 1149 << "\n"); 1150 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1151 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1152 NewResource->reserveResources(*MI); 1153 Resources.push_back(NewResource); 1154 } 1155 } 1156 int Resmii = Resources.size(); 1157 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1158 // Delete the memory for each of the DFAs that were created earlier. 1159 for (ResourceManager *RI : Resources) { 1160 ResourceManager *D = RI; 1161 delete D; 1162 } 1163 Resources.clear(); 1164 return Resmii; 1165 } 1166 1167 /// Calculate the recurrence-constrainted minimum initiation interval. 1168 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1169 /// for each circuit. The II needs to satisfy the inequality 1170 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1171 /// II that satisfies the inequality, and the RecMII is the maximum 1172 /// of those values. 1173 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1174 unsigned RecMII = 0; 1175 1176 for (NodeSet &Nodes : NodeSets) { 1177 if (Nodes.empty()) 1178 continue; 1179 1180 unsigned Delay = Nodes.getLatency(); 1181 unsigned Distance = 1; 1182 1183 // ii = ceil(delay / distance) 1184 unsigned CurMII = (Delay + Distance - 1) / Distance; 1185 Nodes.setRecMII(CurMII); 1186 if (CurMII > RecMII) 1187 RecMII = CurMII; 1188 } 1189 1190 return RecMII; 1191 } 1192 1193 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1194 /// but we do this to find the circuits, and then change them back. 1195 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1196 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1197 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1198 SUnit *SU = &SUnits[i]; 1199 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1200 IP != EP; ++IP) { 1201 if (IP->getKind() != SDep::Anti) 1202 continue; 1203 DepsAdded.push_back(std::make_pair(SU, *IP)); 1204 } 1205 } 1206 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1207 E = DepsAdded.end(); 1208 I != E; ++I) { 1209 // Remove this anti dependency and add one in the reverse direction. 1210 SUnit *SU = I->first; 1211 SDep &D = I->second; 1212 SUnit *TargetSU = D.getSUnit(); 1213 unsigned Reg = D.getReg(); 1214 unsigned Lat = D.getLatency(); 1215 SU->removePred(D); 1216 SDep Dep(SU, SDep::Anti, Reg); 1217 Dep.setLatency(Lat); 1218 TargetSU->addPred(Dep); 1219 } 1220 } 1221 1222 /// Create the adjacency structure of the nodes in the graph. 1223 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1224 SwingSchedulerDAG *DAG) { 1225 BitVector Added(SUnits.size()); 1226 DenseMap<int, int> OutputDeps; 1227 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1228 Added.reset(); 1229 // Add any successor to the adjacency matrix and exclude duplicates. 1230 for (auto &SI : SUnits[i].Succs) { 1231 // Only create a back-edge on the first and last nodes of a dependence 1232 // chain. This records any chains and adds them later. 1233 if (SI.getKind() == SDep::Output) { 1234 int N = SI.getSUnit()->NodeNum; 1235 int BackEdge = i; 1236 auto Dep = OutputDeps.find(BackEdge); 1237 if (Dep != OutputDeps.end()) { 1238 BackEdge = Dep->second; 1239 OutputDeps.erase(Dep); 1240 } 1241 OutputDeps[N] = BackEdge; 1242 } 1243 // Do not process a boundary node, an artificial node. 1244 // A back-edge is processed only if it goes to a Phi. 1245 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1246 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1247 continue; 1248 int N = SI.getSUnit()->NodeNum; 1249 if (!Added.test(N)) { 1250 AdjK[i].push_back(N); 1251 Added.set(N); 1252 } 1253 } 1254 // A chain edge between a store and a load is treated as a back-edge in the 1255 // adjacency matrix. 1256 for (auto &PI : SUnits[i].Preds) { 1257 if (!SUnits[i].getInstr()->mayStore() || 1258 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1259 continue; 1260 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1261 int N = PI.getSUnit()->NodeNum; 1262 if (!Added.test(N)) { 1263 AdjK[i].push_back(N); 1264 Added.set(N); 1265 } 1266 } 1267 } 1268 } 1269 // Add back-edges in the adjacency matrix for the output dependences. 1270 for (auto &OD : OutputDeps) 1271 if (!Added.test(OD.second)) { 1272 AdjK[OD.first].push_back(OD.second); 1273 Added.set(OD.second); 1274 } 1275 } 1276 1277 /// Identify an elementary circuit in the dependence graph starting at the 1278 /// specified node. 1279 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1280 bool HasBackedge) { 1281 SUnit *SV = &SUnits[V]; 1282 bool F = false; 1283 Stack.insert(SV); 1284 Blocked.set(V); 1285 1286 for (auto W : AdjK[V]) { 1287 if (NumPaths > MaxPaths) 1288 break; 1289 if (W < S) 1290 continue; 1291 if (W == S) { 1292 if (!HasBackedge) 1293 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1294 F = true; 1295 ++NumPaths; 1296 break; 1297 } else if (!Blocked.test(W)) { 1298 if (circuit(W, S, NodeSets, 1299 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1300 F = true; 1301 } 1302 } 1303 1304 if (F) 1305 unblock(V); 1306 else { 1307 for (auto W : AdjK[V]) { 1308 if (W < S) 1309 continue; 1310 if (B[W].count(SV) == 0) 1311 B[W].insert(SV); 1312 } 1313 } 1314 Stack.pop_back(); 1315 return F; 1316 } 1317 1318 /// Unblock a node in the circuit finding algorithm. 1319 void SwingSchedulerDAG::Circuits::unblock(int U) { 1320 Blocked.reset(U); 1321 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1322 while (!BU.empty()) { 1323 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1324 assert(SI != BU.end() && "Invalid B set."); 1325 SUnit *W = *SI; 1326 BU.erase(W); 1327 if (Blocked.test(W->NodeNum)) 1328 unblock(W->NodeNum); 1329 } 1330 } 1331 1332 /// Identify all the elementary circuits in the dependence graph using 1333 /// Johnson's circuit algorithm. 1334 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1335 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1336 // but we do this to find the circuits, and then change them back. 1337 swapAntiDependences(SUnits); 1338 1339 Circuits Cir(SUnits, Topo); 1340 // Create the adjacency structure. 1341 Cir.createAdjacencyStructure(this); 1342 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1343 Cir.reset(); 1344 Cir.circuit(i, i, NodeSets); 1345 } 1346 1347 // Change the dependences back so that we've created a DAG again. 1348 swapAntiDependences(SUnits); 1349 } 1350 1351 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1352 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1353 // additional copies that are needed across iterations. An artificial dependence 1354 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1355 1356 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1357 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1358 // PHI-------True-Dep------> USEOfPhi 1359 1360 // The mutation creates 1361 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1362 1363 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1364 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1365 // late to avoid additional copies across iterations. The possible scheduling 1366 // order would be 1367 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1368 1369 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1370 for (SUnit &SU : DAG->SUnits) { 1371 // Find the COPY/REG_SEQUENCE instruction. 1372 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1373 continue; 1374 1375 // Record the loop carried PHIs. 1376 SmallVector<SUnit *, 4> PHISUs; 1377 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1378 SmallVector<SUnit *, 4> SrcSUs; 1379 1380 for (auto &Dep : SU.Preds) { 1381 SUnit *TmpSU = Dep.getSUnit(); 1382 MachineInstr *TmpMI = TmpSU->getInstr(); 1383 SDep::Kind DepKind = Dep.getKind(); 1384 // Save the loop carried PHI. 1385 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1386 PHISUs.push_back(TmpSU); 1387 // Save the source of COPY/REG_SEQUENCE. 1388 // If the source has no pre-decessors, we will end up creating cycles. 1389 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1390 SrcSUs.push_back(TmpSU); 1391 } 1392 1393 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1394 continue; 1395 1396 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1397 // SUnit to the container. 1398 SmallVector<SUnit *, 8> UseSUs; 1399 // Do not use iterator based loop here as we are updating the container. 1400 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1401 for (auto &Dep : PHISUs[Index]->Succs) { 1402 if (Dep.getKind() != SDep::Data) 1403 continue; 1404 1405 SUnit *TmpSU = Dep.getSUnit(); 1406 MachineInstr *TmpMI = TmpSU->getInstr(); 1407 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1408 PHISUs.push_back(TmpSU); 1409 continue; 1410 } 1411 UseSUs.push_back(TmpSU); 1412 } 1413 } 1414 1415 if (UseSUs.size() == 0) 1416 continue; 1417 1418 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1419 // Add the artificial dependencies if it does not form a cycle. 1420 for (auto I : UseSUs) { 1421 for (auto Src : SrcSUs) { 1422 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1423 Src->addPred(SDep(I, SDep::Artificial)); 1424 SDAG->Topo.AddPred(Src, I); 1425 } 1426 } 1427 } 1428 } 1429 } 1430 1431 /// Return true for DAG nodes that we ignore when computing the cost functions. 1432 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1433 /// in the calculation of the ASAP, ALAP, etc functions. 1434 static bool ignoreDependence(const SDep &D, bool isPred) { 1435 if (D.isArtificial()) 1436 return true; 1437 return D.getKind() == SDep::Anti && isPred; 1438 } 1439 1440 /// Compute several functions need to order the nodes for scheduling. 1441 /// ASAP - Earliest time to schedule a node. 1442 /// ALAP - Latest time to schedule a node. 1443 /// MOV - Mobility function, difference between ALAP and ASAP. 1444 /// D - Depth of each node. 1445 /// H - Height of each node. 1446 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1447 ScheduleInfo.resize(SUnits.size()); 1448 1449 LLVM_DEBUG({ 1450 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1451 E = Topo.end(); 1452 I != E; ++I) { 1453 const SUnit &SU = SUnits[*I]; 1454 dumpNode(SU); 1455 } 1456 }); 1457 1458 int maxASAP = 0; 1459 // Compute ASAP and ZeroLatencyDepth. 1460 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1461 E = Topo.end(); 1462 I != E; ++I) { 1463 int asap = 0; 1464 int zeroLatencyDepth = 0; 1465 SUnit *SU = &SUnits[*I]; 1466 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1467 EP = SU->Preds.end(); 1468 IP != EP; ++IP) { 1469 SUnit *pred = IP->getSUnit(); 1470 if (IP->getLatency() == 0) 1471 zeroLatencyDepth = 1472 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1473 if (ignoreDependence(*IP, true)) 1474 continue; 1475 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1476 getDistance(pred, SU, *IP) * MII)); 1477 } 1478 maxASAP = std::max(maxASAP, asap); 1479 ScheduleInfo[*I].ASAP = asap; 1480 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1481 } 1482 1483 // Compute ALAP, ZeroLatencyHeight, and MOV. 1484 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1485 E = Topo.rend(); 1486 I != E; ++I) { 1487 int alap = maxASAP; 1488 int zeroLatencyHeight = 0; 1489 SUnit *SU = &SUnits[*I]; 1490 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1491 ES = SU->Succs.end(); 1492 IS != ES; ++IS) { 1493 SUnit *succ = IS->getSUnit(); 1494 if (IS->getLatency() == 0) 1495 zeroLatencyHeight = 1496 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1497 if (ignoreDependence(*IS, true)) 1498 continue; 1499 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1500 getDistance(SU, succ, *IS) * MII)); 1501 } 1502 1503 ScheduleInfo[*I].ALAP = alap; 1504 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1505 } 1506 1507 // After computing the node functions, compute the summary for each node set. 1508 for (NodeSet &I : NodeSets) 1509 I.computeNodeSetInfo(this); 1510 1511 LLVM_DEBUG({ 1512 for (unsigned i = 0; i < SUnits.size(); i++) { 1513 dbgs() << "\tNode " << i << ":\n"; 1514 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1515 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1516 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1517 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1518 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1519 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1520 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1521 } 1522 }); 1523 } 1524 1525 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1526 /// as the predecessors of the elements of NodeOrder that are not also in 1527 /// NodeOrder. 1528 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1529 SmallSetVector<SUnit *, 8> &Preds, 1530 const NodeSet *S = nullptr) { 1531 Preds.clear(); 1532 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1533 I != E; ++I) { 1534 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1535 PI != PE; ++PI) { 1536 if (S && S->count(PI->getSUnit()) == 0) 1537 continue; 1538 if (ignoreDependence(*PI, true)) 1539 continue; 1540 if (NodeOrder.count(PI->getSUnit()) == 0) 1541 Preds.insert(PI->getSUnit()); 1542 } 1543 // Back-edges are predecessors with an anti-dependence. 1544 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1545 ES = (*I)->Succs.end(); 1546 IS != ES; ++IS) { 1547 if (IS->getKind() != SDep::Anti) 1548 continue; 1549 if (S && S->count(IS->getSUnit()) == 0) 1550 continue; 1551 if (NodeOrder.count(IS->getSUnit()) == 0) 1552 Preds.insert(IS->getSUnit()); 1553 } 1554 } 1555 return !Preds.empty(); 1556 } 1557 1558 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1559 /// as the successors of the elements of NodeOrder that are not also in 1560 /// NodeOrder. 1561 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1562 SmallSetVector<SUnit *, 8> &Succs, 1563 const NodeSet *S = nullptr) { 1564 Succs.clear(); 1565 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1566 I != E; ++I) { 1567 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1568 SI != SE; ++SI) { 1569 if (S && S->count(SI->getSUnit()) == 0) 1570 continue; 1571 if (ignoreDependence(*SI, false)) 1572 continue; 1573 if (NodeOrder.count(SI->getSUnit()) == 0) 1574 Succs.insert(SI->getSUnit()); 1575 } 1576 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1577 PE = (*I)->Preds.end(); 1578 PI != PE; ++PI) { 1579 if (PI->getKind() != SDep::Anti) 1580 continue; 1581 if (S && S->count(PI->getSUnit()) == 0) 1582 continue; 1583 if (NodeOrder.count(PI->getSUnit()) == 0) 1584 Succs.insert(PI->getSUnit()); 1585 } 1586 } 1587 return !Succs.empty(); 1588 } 1589 1590 /// Return true if there is a path from the specified node to any of the nodes 1591 /// in DestNodes. Keep track and return the nodes in any path. 1592 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1593 SetVector<SUnit *> &DestNodes, 1594 SetVector<SUnit *> &Exclude, 1595 SmallPtrSet<SUnit *, 8> &Visited) { 1596 if (Cur->isBoundaryNode()) 1597 return false; 1598 if (Exclude.count(Cur) != 0) 1599 return false; 1600 if (DestNodes.count(Cur) != 0) 1601 return true; 1602 if (!Visited.insert(Cur).second) 1603 return Path.count(Cur) != 0; 1604 bool FoundPath = false; 1605 for (auto &SI : Cur->Succs) 1606 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1607 for (auto &PI : Cur->Preds) 1608 if (PI.getKind() == SDep::Anti) 1609 FoundPath |= 1610 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1611 if (FoundPath) 1612 Path.insert(Cur); 1613 return FoundPath; 1614 } 1615 1616 /// Return true if Set1 is a subset of Set2. 1617 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1618 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1619 if (Set2.count(*I) == 0) 1620 return false; 1621 return true; 1622 } 1623 1624 /// Compute the live-out registers for the instructions in a node-set. 1625 /// The live-out registers are those that are defined in the node-set, 1626 /// but not used. Except for use operands of Phis. 1627 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1628 NodeSet &NS) { 1629 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1630 MachineRegisterInfo &MRI = MF.getRegInfo(); 1631 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1632 SmallSet<unsigned, 4> Uses; 1633 for (SUnit *SU : NS) { 1634 const MachineInstr *MI = SU->getInstr(); 1635 if (MI->isPHI()) 1636 continue; 1637 for (const MachineOperand &MO : MI->operands()) 1638 if (MO.isReg() && MO.isUse()) { 1639 Register Reg = MO.getReg(); 1640 if (Register::isVirtualRegister(Reg)) 1641 Uses.insert(Reg); 1642 else if (MRI.isAllocatable(Reg)) 1643 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1644 ++Units) 1645 Uses.insert(*Units); 1646 } 1647 } 1648 for (SUnit *SU : NS) 1649 for (const MachineOperand &MO : SU->getInstr()->operands()) 1650 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1651 Register Reg = MO.getReg(); 1652 if (Register::isVirtualRegister(Reg)) { 1653 if (!Uses.count(Reg)) 1654 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1655 LaneBitmask::getNone())); 1656 } else if (MRI.isAllocatable(Reg)) { 1657 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1658 ++Units) 1659 if (!Uses.count(*Units)) 1660 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1661 LaneBitmask::getNone())); 1662 } 1663 } 1664 RPTracker.addLiveRegs(LiveOutRegs); 1665 } 1666 1667 /// A heuristic to filter nodes in recurrent node-sets if the register 1668 /// pressure of a set is too high. 1669 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1670 for (auto &NS : NodeSets) { 1671 // Skip small node-sets since they won't cause register pressure problems. 1672 if (NS.size() <= 2) 1673 continue; 1674 IntervalPressure RecRegPressure; 1675 RegPressureTracker RecRPTracker(RecRegPressure); 1676 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1677 computeLiveOuts(MF, RecRPTracker, NS); 1678 RecRPTracker.closeBottom(); 1679 1680 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1681 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1682 return A->NodeNum > B->NodeNum; 1683 }); 1684 1685 for (auto &SU : SUnits) { 1686 // Since we're computing the register pressure for a subset of the 1687 // instructions in a block, we need to set the tracker for each 1688 // instruction in the node-set. The tracker is set to the instruction 1689 // just after the one we're interested in. 1690 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1691 RecRPTracker.setPos(std::next(CurInstI)); 1692 1693 RegPressureDelta RPDelta; 1694 ArrayRef<PressureChange> CriticalPSets; 1695 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1696 CriticalPSets, 1697 RecRegPressure.MaxSetPressure); 1698 if (RPDelta.Excess.isValid()) { 1699 LLVM_DEBUG( 1700 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1701 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1702 << ":" << RPDelta.Excess.getUnitInc()); 1703 NS.setExceedPressure(SU); 1704 break; 1705 } 1706 RecRPTracker.recede(); 1707 } 1708 } 1709 } 1710 1711 /// A heuristic to colocate node sets that have the same set of 1712 /// successors. 1713 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1714 unsigned Colocate = 0; 1715 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1716 NodeSet &N1 = NodeSets[i]; 1717 SmallSetVector<SUnit *, 8> S1; 1718 if (N1.empty() || !succ_L(N1, S1)) 1719 continue; 1720 for (int j = i + 1; j < e; ++j) { 1721 NodeSet &N2 = NodeSets[j]; 1722 if (N1.compareRecMII(N2) != 0) 1723 continue; 1724 SmallSetVector<SUnit *, 8> S2; 1725 if (N2.empty() || !succ_L(N2, S2)) 1726 continue; 1727 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1728 N1.setColocate(++Colocate); 1729 N2.setColocate(Colocate); 1730 break; 1731 } 1732 } 1733 } 1734 } 1735 1736 /// Check if the existing node-sets are profitable. If not, then ignore the 1737 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1738 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1739 /// then it's best to try to schedule all instructions together instead of 1740 /// starting with the recurrent node-sets. 1741 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1742 // Look for loops with a large MII. 1743 if (MII < 17) 1744 return; 1745 // Check if the node-set contains only a simple add recurrence. 1746 for (auto &NS : NodeSets) { 1747 if (NS.getRecMII() > 2) 1748 return; 1749 if (NS.getMaxDepth() > MII) 1750 return; 1751 } 1752 NodeSets.clear(); 1753 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1754 return; 1755 } 1756 1757 /// Add the nodes that do not belong to a recurrence set into groups 1758 /// based upon connected componenets. 1759 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1760 SetVector<SUnit *> NodesAdded; 1761 SmallPtrSet<SUnit *, 8> Visited; 1762 // Add the nodes that are on a path between the previous node sets and 1763 // the current node set. 1764 for (NodeSet &I : NodeSets) { 1765 SmallSetVector<SUnit *, 8> N; 1766 // Add the nodes from the current node set to the previous node set. 1767 if (succ_L(I, N)) { 1768 SetVector<SUnit *> Path; 1769 for (SUnit *NI : N) { 1770 Visited.clear(); 1771 computePath(NI, Path, NodesAdded, I, Visited); 1772 } 1773 if (!Path.empty()) 1774 I.insert(Path.begin(), Path.end()); 1775 } 1776 // Add the nodes from the previous node set to the current node set. 1777 N.clear(); 1778 if (succ_L(NodesAdded, N)) { 1779 SetVector<SUnit *> Path; 1780 for (SUnit *NI : N) { 1781 Visited.clear(); 1782 computePath(NI, Path, I, NodesAdded, Visited); 1783 } 1784 if (!Path.empty()) 1785 I.insert(Path.begin(), Path.end()); 1786 } 1787 NodesAdded.insert(I.begin(), I.end()); 1788 } 1789 1790 // Create a new node set with the connected nodes of any successor of a node 1791 // in a recurrent set. 1792 NodeSet NewSet; 1793 SmallSetVector<SUnit *, 8> N; 1794 if (succ_L(NodesAdded, N)) 1795 for (SUnit *I : N) 1796 addConnectedNodes(I, NewSet, NodesAdded); 1797 if (!NewSet.empty()) 1798 NodeSets.push_back(NewSet); 1799 1800 // Create a new node set with the connected nodes of any predecessor of a node 1801 // in a recurrent set. 1802 NewSet.clear(); 1803 if (pred_L(NodesAdded, N)) 1804 for (SUnit *I : N) 1805 addConnectedNodes(I, NewSet, NodesAdded); 1806 if (!NewSet.empty()) 1807 NodeSets.push_back(NewSet); 1808 1809 // Create new nodes sets with the connected nodes any remaining node that 1810 // has no predecessor. 1811 for (unsigned i = 0; i < SUnits.size(); ++i) { 1812 SUnit *SU = &SUnits[i]; 1813 if (NodesAdded.count(SU) == 0) { 1814 NewSet.clear(); 1815 addConnectedNodes(SU, NewSet, NodesAdded); 1816 if (!NewSet.empty()) 1817 NodeSets.push_back(NewSet); 1818 } 1819 } 1820 } 1821 1822 /// Add the node to the set, and add all of its connected nodes to the set. 1823 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1824 SetVector<SUnit *> &NodesAdded) { 1825 NewSet.insert(SU); 1826 NodesAdded.insert(SU); 1827 for (auto &SI : SU->Succs) { 1828 SUnit *Successor = SI.getSUnit(); 1829 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1830 addConnectedNodes(Successor, NewSet, NodesAdded); 1831 } 1832 for (auto &PI : SU->Preds) { 1833 SUnit *Predecessor = PI.getSUnit(); 1834 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1835 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1836 } 1837 } 1838 1839 /// Return true if Set1 contains elements in Set2. The elements in common 1840 /// are returned in a different container. 1841 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1842 SmallSetVector<SUnit *, 8> &Result) { 1843 Result.clear(); 1844 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1845 SUnit *SU = Set1[i]; 1846 if (Set2.count(SU) != 0) 1847 Result.insert(SU); 1848 } 1849 return !Result.empty(); 1850 } 1851 1852 /// Merge the recurrence node sets that have the same initial node. 1853 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1854 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1855 ++I) { 1856 NodeSet &NI = *I; 1857 for (NodeSetType::iterator J = I + 1; J != E;) { 1858 NodeSet &NJ = *J; 1859 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1860 if (NJ.compareRecMII(NI) > 0) 1861 NI.setRecMII(NJ.getRecMII()); 1862 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1863 ++NII) 1864 I->insert(*NII); 1865 NodeSets.erase(J); 1866 E = NodeSets.end(); 1867 } else { 1868 ++J; 1869 } 1870 } 1871 } 1872 } 1873 1874 /// Remove nodes that have been scheduled in previous NodeSets. 1875 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1876 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1877 ++I) 1878 for (NodeSetType::iterator J = I + 1; J != E;) { 1879 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1880 1881 if (J->empty()) { 1882 NodeSets.erase(J); 1883 E = NodeSets.end(); 1884 } else { 1885 ++J; 1886 } 1887 } 1888 } 1889 1890 /// Compute an ordered list of the dependence graph nodes, which 1891 /// indicates the order that the nodes will be scheduled. This is a 1892 /// two-level algorithm. First, a partial order is created, which 1893 /// consists of a list of sets ordered from highest to lowest priority. 1894 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1895 SmallSetVector<SUnit *, 8> R; 1896 NodeOrder.clear(); 1897 1898 for (auto &Nodes : NodeSets) { 1899 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1900 OrderKind Order; 1901 SmallSetVector<SUnit *, 8> N; 1902 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1903 R.insert(N.begin(), N.end()); 1904 Order = BottomUp; 1905 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1906 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1907 R.insert(N.begin(), N.end()); 1908 Order = TopDown; 1909 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1910 } else if (isIntersect(N, Nodes, R)) { 1911 // If some of the successors are in the existing node-set, then use the 1912 // top-down ordering. 1913 Order = TopDown; 1914 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1915 } else if (NodeSets.size() == 1) { 1916 for (auto &N : Nodes) 1917 if (N->Succs.size() == 0) 1918 R.insert(N); 1919 Order = BottomUp; 1920 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1921 } else { 1922 // Find the node with the highest ASAP. 1923 SUnit *maxASAP = nullptr; 1924 for (SUnit *SU : Nodes) { 1925 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1926 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1927 maxASAP = SU; 1928 } 1929 R.insert(maxASAP); 1930 Order = BottomUp; 1931 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1932 } 1933 1934 while (!R.empty()) { 1935 if (Order == TopDown) { 1936 // Choose the node with the maximum height. If more than one, choose 1937 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1938 // choose the node with the lowest MOV. 1939 while (!R.empty()) { 1940 SUnit *maxHeight = nullptr; 1941 for (SUnit *I : R) { 1942 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1943 maxHeight = I; 1944 else if (getHeight(I) == getHeight(maxHeight) && 1945 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1946 maxHeight = I; 1947 else if (getHeight(I) == getHeight(maxHeight) && 1948 getZeroLatencyHeight(I) == 1949 getZeroLatencyHeight(maxHeight) && 1950 getMOV(I) < getMOV(maxHeight)) 1951 maxHeight = I; 1952 } 1953 NodeOrder.insert(maxHeight); 1954 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1955 R.remove(maxHeight); 1956 for (const auto &I : maxHeight->Succs) { 1957 if (Nodes.count(I.getSUnit()) == 0) 1958 continue; 1959 if (NodeOrder.count(I.getSUnit()) != 0) 1960 continue; 1961 if (ignoreDependence(I, false)) 1962 continue; 1963 R.insert(I.getSUnit()); 1964 } 1965 // Back-edges are predecessors with an anti-dependence. 1966 for (const auto &I : maxHeight->Preds) { 1967 if (I.getKind() != SDep::Anti) 1968 continue; 1969 if (Nodes.count(I.getSUnit()) == 0) 1970 continue; 1971 if (NodeOrder.count(I.getSUnit()) != 0) 1972 continue; 1973 R.insert(I.getSUnit()); 1974 } 1975 } 1976 Order = BottomUp; 1977 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1978 SmallSetVector<SUnit *, 8> N; 1979 if (pred_L(NodeOrder, N, &Nodes)) 1980 R.insert(N.begin(), N.end()); 1981 } else { 1982 // Choose the node with the maximum depth. If more than one, choose 1983 // the node with the maximum ZeroLatencyDepth. If still more than one, 1984 // choose the node with the lowest MOV. 1985 while (!R.empty()) { 1986 SUnit *maxDepth = nullptr; 1987 for (SUnit *I : R) { 1988 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1989 maxDepth = I; 1990 else if (getDepth(I) == getDepth(maxDepth) && 1991 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1992 maxDepth = I; 1993 else if (getDepth(I) == getDepth(maxDepth) && 1994 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1995 getMOV(I) < getMOV(maxDepth)) 1996 maxDepth = I; 1997 } 1998 NodeOrder.insert(maxDepth); 1999 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2000 R.remove(maxDepth); 2001 if (Nodes.isExceedSU(maxDepth)) { 2002 Order = TopDown; 2003 R.clear(); 2004 R.insert(Nodes.getNode(0)); 2005 break; 2006 } 2007 for (const auto &I : maxDepth->Preds) { 2008 if (Nodes.count(I.getSUnit()) == 0) 2009 continue; 2010 if (NodeOrder.count(I.getSUnit()) != 0) 2011 continue; 2012 R.insert(I.getSUnit()); 2013 } 2014 // Back-edges are predecessors with an anti-dependence. 2015 for (const auto &I : maxDepth->Succs) { 2016 if (I.getKind() != SDep::Anti) 2017 continue; 2018 if (Nodes.count(I.getSUnit()) == 0) 2019 continue; 2020 if (NodeOrder.count(I.getSUnit()) != 0) 2021 continue; 2022 R.insert(I.getSUnit()); 2023 } 2024 } 2025 Order = TopDown; 2026 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2027 SmallSetVector<SUnit *, 8> N; 2028 if (succ_L(NodeOrder, N, &Nodes)) 2029 R.insert(N.begin(), N.end()); 2030 } 2031 } 2032 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2033 } 2034 2035 LLVM_DEBUG({ 2036 dbgs() << "Node order: "; 2037 for (SUnit *I : NodeOrder) 2038 dbgs() << " " << I->NodeNum << " "; 2039 dbgs() << "\n"; 2040 }); 2041 } 2042 2043 /// Process the nodes in the computed order and create the pipelined schedule 2044 /// of the instructions, if possible. Return true if a schedule is found. 2045 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2046 2047 if (NodeOrder.empty()){ 2048 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2049 return false; 2050 } 2051 2052 bool scheduleFound = false; 2053 unsigned II = 0; 2054 // Keep increasing II until a valid schedule is found. 2055 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 2056 Schedule.reset(); 2057 Schedule.setInitiationInterval(II); 2058 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2059 2060 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2061 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2062 do { 2063 SUnit *SU = *NI; 2064 2065 // Compute the schedule time for the instruction, which is based 2066 // upon the scheduled time for any predecessors/successors. 2067 int EarlyStart = INT_MIN; 2068 int LateStart = INT_MAX; 2069 // These values are set when the size of the schedule window is limited 2070 // due to chain dependences. 2071 int SchedEnd = INT_MAX; 2072 int SchedStart = INT_MIN; 2073 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2074 II, this); 2075 LLVM_DEBUG({ 2076 dbgs() << "\n"; 2077 dbgs() << "Inst (" << SU->NodeNum << ") "; 2078 SU->getInstr()->dump(); 2079 dbgs() << "\n"; 2080 }); 2081 LLVM_DEBUG({ 2082 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2083 LateStart, SchedEnd, SchedStart); 2084 }); 2085 2086 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2087 SchedStart > LateStart) 2088 scheduleFound = false; 2089 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2090 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2091 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2092 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2093 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2094 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2095 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2096 SchedEnd = 2097 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2098 // When scheduling a Phi it is better to start at the late cycle and go 2099 // backwards. The default order may insert the Phi too far away from 2100 // its first dependence. 2101 if (SU->getInstr()->isPHI()) 2102 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2103 else 2104 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2105 } else { 2106 int FirstCycle = Schedule.getFirstCycle(); 2107 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2108 FirstCycle + getASAP(SU) + II - 1, II); 2109 } 2110 // Even if we find a schedule, make sure the schedule doesn't exceed the 2111 // allowable number of stages. We keep trying if this happens. 2112 if (scheduleFound) 2113 if (SwpMaxStages > -1 && 2114 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2115 scheduleFound = false; 2116 2117 LLVM_DEBUG({ 2118 if (!scheduleFound) 2119 dbgs() << "\tCan't schedule\n"; 2120 }); 2121 } while (++NI != NE && scheduleFound); 2122 2123 // If a schedule is found, check if it is a valid schedule too. 2124 if (scheduleFound) 2125 scheduleFound = Schedule.isValidSchedule(this); 2126 } 2127 2128 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2129 << ")\n"); 2130 2131 if (scheduleFound) { 2132 Schedule.finalizeSchedule(this); 2133 Pass.ORE->emit([&]() { 2134 return MachineOptimizationRemarkAnalysis( 2135 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2136 << "Schedule found with Initiation Interval: " << ore::NV("II", II) 2137 << ", MaxStageCount: " 2138 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2139 }); 2140 } else 2141 Schedule.reset(); 2142 2143 return scheduleFound && Schedule.getMaxStageCount() > 0; 2144 } 2145 2146 /// Return true if we can compute the amount the instruction changes 2147 /// during each iteration. Set Delta to the amount of the change. 2148 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2149 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2150 const MachineOperand *BaseOp; 2151 int64_t Offset; 2152 bool OffsetIsScalable; 2153 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2154 return false; 2155 2156 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2157 if (OffsetIsScalable) 2158 return false; 2159 2160 if (!BaseOp->isReg()) 2161 return false; 2162 2163 Register BaseReg = BaseOp->getReg(); 2164 2165 MachineRegisterInfo &MRI = MF.getRegInfo(); 2166 // Check if there is a Phi. If so, get the definition in the loop. 2167 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2168 if (BaseDef && BaseDef->isPHI()) { 2169 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2170 BaseDef = MRI.getVRegDef(BaseReg); 2171 } 2172 if (!BaseDef) 2173 return false; 2174 2175 int D = 0; 2176 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2177 return false; 2178 2179 Delta = D; 2180 return true; 2181 } 2182 2183 /// Check if we can change the instruction to use an offset value from the 2184 /// previous iteration. If so, return true and set the base and offset values 2185 /// so that we can rewrite the load, if necessary. 2186 /// v1 = Phi(v0, v3) 2187 /// v2 = load v1, 0 2188 /// v3 = post_store v1, 4, x 2189 /// This function enables the load to be rewritten as v2 = load v3, 4. 2190 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2191 unsigned &BasePos, 2192 unsigned &OffsetPos, 2193 unsigned &NewBase, 2194 int64_t &Offset) { 2195 // Get the load instruction. 2196 if (TII->isPostIncrement(*MI)) 2197 return false; 2198 unsigned BasePosLd, OffsetPosLd; 2199 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2200 return false; 2201 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2202 2203 // Look for the Phi instruction. 2204 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2205 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2206 if (!Phi || !Phi->isPHI()) 2207 return false; 2208 // Get the register defined in the loop block. 2209 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2210 if (!PrevReg) 2211 return false; 2212 2213 // Check for the post-increment load/store instruction. 2214 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2215 if (!PrevDef || PrevDef == MI) 2216 return false; 2217 2218 if (!TII->isPostIncrement(*PrevDef)) 2219 return false; 2220 2221 unsigned BasePos1 = 0, OffsetPos1 = 0; 2222 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2223 return false; 2224 2225 // Make sure that the instructions do not access the same memory location in 2226 // the next iteration. 2227 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2228 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2229 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2230 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2231 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2232 MF.DeleteMachineInstr(NewMI); 2233 if (!Disjoint) 2234 return false; 2235 2236 // Set the return value once we determine that we return true. 2237 BasePos = BasePosLd; 2238 OffsetPos = OffsetPosLd; 2239 NewBase = PrevReg; 2240 Offset = StoreOffset; 2241 return true; 2242 } 2243 2244 /// Apply changes to the instruction if needed. The changes are need 2245 /// to improve the scheduling and depend up on the final schedule. 2246 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2247 SMSchedule &Schedule) { 2248 SUnit *SU = getSUnit(MI); 2249 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2250 InstrChanges.find(SU); 2251 if (It != InstrChanges.end()) { 2252 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2253 unsigned BasePos, OffsetPos; 2254 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2255 return; 2256 Register BaseReg = MI->getOperand(BasePos).getReg(); 2257 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2258 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2259 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2260 int BaseStageNum = Schedule.stageScheduled(SU); 2261 int BaseCycleNum = Schedule.cycleScheduled(SU); 2262 if (BaseStageNum < DefStageNum) { 2263 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2264 int OffsetDiff = DefStageNum - BaseStageNum; 2265 if (DefCycleNum < BaseCycleNum) { 2266 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2267 if (OffsetDiff > 0) 2268 --OffsetDiff; 2269 } 2270 int64_t NewOffset = 2271 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2272 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2273 SU->setInstr(NewMI); 2274 MISUnitMap[NewMI] = SU; 2275 NewMIs[MI] = NewMI; 2276 } 2277 } 2278 } 2279 2280 /// Return the instruction in the loop that defines the register. 2281 /// If the definition is a Phi, then follow the Phi operand to 2282 /// the instruction in the loop. 2283 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2284 SmallPtrSet<MachineInstr *, 8> Visited; 2285 MachineInstr *Def = MRI.getVRegDef(Reg); 2286 while (Def->isPHI()) { 2287 if (!Visited.insert(Def).second) 2288 break; 2289 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2290 if (Def->getOperand(i + 1).getMBB() == BB) { 2291 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2292 break; 2293 } 2294 } 2295 return Def; 2296 } 2297 2298 /// Return true for an order or output dependence that is loop carried 2299 /// potentially. A dependence is loop carried if the destination defines a valu 2300 /// that may be used or defined by the source in a subsequent iteration. 2301 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2302 bool isSucc) { 2303 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2304 Dep.isArtificial()) 2305 return false; 2306 2307 if (!SwpPruneLoopCarried) 2308 return true; 2309 2310 if (Dep.getKind() == SDep::Output) 2311 return true; 2312 2313 MachineInstr *SI = Source->getInstr(); 2314 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2315 if (!isSucc) 2316 std::swap(SI, DI); 2317 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2318 2319 // Assume ordered loads and stores may have a loop carried dependence. 2320 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2321 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2322 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2323 return true; 2324 2325 // Only chain dependences between a load and store can be loop carried. 2326 if (!DI->mayStore() || !SI->mayLoad()) 2327 return false; 2328 2329 unsigned DeltaS, DeltaD; 2330 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2331 return true; 2332 2333 const MachineOperand *BaseOpS, *BaseOpD; 2334 int64_t OffsetS, OffsetD; 2335 bool OffsetSIsScalable, OffsetDIsScalable; 2336 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2337 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2338 TRI) || 2339 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2340 TRI)) 2341 return true; 2342 2343 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2344 "Expected offsets to be byte offsets"); 2345 2346 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2347 return true; 2348 2349 // Check that the base register is incremented by a constant value for each 2350 // iteration. 2351 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2352 if (!Def || !Def->isPHI()) 2353 return true; 2354 unsigned InitVal = 0; 2355 unsigned LoopVal = 0; 2356 getPhiRegs(*Def, BB, InitVal, LoopVal); 2357 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2358 int D = 0; 2359 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2360 return true; 2361 2362 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2363 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2364 2365 // This is the main test, which checks the offset values and the loop 2366 // increment value to determine if the accesses may be loop carried. 2367 if (AccessSizeS == MemoryLocation::UnknownSize || 2368 AccessSizeD == MemoryLocation::UnknownSize) 2369 return true; 2370 2371 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2372 return true; 2373 2374 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2375 } 2376 2377 void SwingSchedulerDAG::postprocessDAG() { 2378 for (auto &M : Mutations) 2379 M->apply(this); 2380 } 2381 2382 /// Try to schedule the node at the specified StartCycle and continue 2383 /// until the node is schedule or the EndCycle is reached. This function 2384 /// returns true if the node is scheduled. This routine may search either 2385 /// forward or backward for a place to insert the instruction based upon 2386 /// the relative values of StartCycle and EndCycle. 2387 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2388 bool forward = true; 2389 LLVM_DEBUG({ 2390 dbgs() << "Trying to insert node between " << StartCycle << " and " 2391 << EndCycle << " II: " << II << "\n"; 2392 }); 2393 if (StartCycle > EndCycle) 2394 forward = false; 2395 2396 // The terminating condition depends on the direction. 2397 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2398 for (int curCycle = StartCycle; curCycle != termCycle; 2399 forward ? ++curCycle : --curCycle) { 2400 2401 // Add the already scheduled instructions at the specified cycle to the 2402 // DFA. 2403 ProcItinResources.clearResources(); 2404 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2405 checkCycle <= LastCycle; checkCycle += II) { 2406 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2407 2408 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 2409 E = cycleInstrs.end(); 2410 I != E; ++I) { 2411 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 2412 continue; 2413 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 2414 "These instructions have already been scheduled."); 2415 ProcItinResources.reserveResources(*(*I)->getInstr()); 2416 } 2417 } 2418 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2419 ProcItinResources.canReserveResources(*SU->getInstr())) { 2420 LLVM_DEBUG({ 2421 dbgs() << "\tinsert at cycle " << curCycle << " "; 2422 SU->getInstr()->dump(); 2423 }); 2424 2425 ScheduledInstrs[curCycle].push_back(SU); 2426 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2427 if (curCycle > LastCycle) 2428 LastCycle = curCycle; 2429 if (curCycle < FirstCycle) 2430 FirstCycle = curCycle; 2431 return true; 2432 } 2433 LLVM_DEBUG({ 2434 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2435 SU->getInstr()->dump(); 2436 }); 2437 } 2438 return false; 2439 } 2440 2441 // Return the cycle of the earliest scheduled instruction in the chain. 2442 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2443 SmallPtrSet<SUnit *, 8> Visited; 2444 SmallVector<SDep, 8> Worklist; 2445 Worklist.push_back(Dep); 2446 int EarlyCycle = INT_MAX; 2447 while (!Worklist.empty()) { 2448 const SDep &Cur = Worklist.pop_back_val(); 2449 SUnit *PrevSU = Cur.getSUnit(); 2450 if (Visited.count(PrevSU)) 2451 continue; 2452 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2453 if (it == InstrToCycle.end()) 2454 continue; 2455 EarlyCycle = std::min(EarlyCycle, it->second); 2456 for (const auto &PI : PrevSU->Preds) 2457 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2458 Worklist.push_back(PI); 2459 Visited.insert(PrevSU); 2460 } 2461 return EarlyCycle; 2462 } 2463 2464 // Return the cycle of the latest scheduled instruction in the chain. 2465 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2466 SmallPtrSet<SUnit *, 8> Visited; 2467 SmallVector<SDep, 8> Worklist; 2468 Worklist.push_back(Dep); 2469 int LateCycle = INT_MIN; 2470 while (!Worklist.empty()) { 2471 const SDep &Cur = Worklist.pop_back_val(); 2472 SUnit *SuccSU = Cur.getSUnit(); 2473 if (Visited.count(SuccSU)) 2474 continue; 2475 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2476 if (it == InstrToCycle.end()) 2477 continue; 2478 LateCycle = std::max(LateCycle, it->second); 2479 for (const auto &SI : SuccSU->Succs) 2480 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2481 Worklist.push_back(SI); 2482 Visited.insert(SuccSU); 2483 } 2484 return LateCycle; 2485 } 2486 2487 /// If an instruction has a use that spans multiple iterations, then 2488 /// return true. These instructions are characterized by having a back-ege 2489 /// to a Phi, which contains a reference to another Phi. 2490 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2491 for (auto &P : SU->Preds) 2492 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2493 for (auto &S : P.getSUnit()->Succs) 2494 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2495 return P.getSUnit(); 2496 return nullptr; 2497 } 2498 2499 /// Compute the scheduling start slot for the instruction. The start slot 2500 /// depends on any predecessor or successor nodes scheduled already. 2501 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2502 int *MinEnd, int *MaxStart, int II, 2503 SwingSchedulerDAG *DAG) { 2504 // Iterate over each instruction that has been scheduled already. The start 2505 // slot computation depends on whether the previously scheduled instruction 2506 // is a predecessor or successor of the specified instruction. 2507 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2508 2509 // Iterate over each instruction in the current cycle. 2510 for (SUnit *I : getInstructions(cycle)) { 2511 // Because we're processing a DAG for the dependences, we recognize 2512 // the back-edge in recurrences by anti dependences. 2513 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2514 const SDep &Dep = SU->Preds[i]; 2515 if (Dep.getSUnit() == I) { 2516 if (!DAG->isBackedge(SU, Dep)) { 2517 int EarlyStart = cycle + Dep.getLatency() - 2518 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2519 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2520 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2521 int End = earliestCycleInChain(Dep) + (II - 1); 2522 *MinEnd = std::min(*MinEnd, End); 2523 } 2524 } else { 2525 int LateStart = cycle - Dep.getLatency() + 2526 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2527 *MinLateStart = std::min(*MinLateStart, LateStart); 2528 } 2529 } 2530 // For instruction that requires multiple iterations, make sure that 2531 // the dependent instruction is not scheduled past the definition. 2532 SUnit *BE = multipleIterations(I, DAG); 2533 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2534 !SU->isPred(I)) 2535 *MinLateStart = std::min(*MinLateStart, cycle); 2536 } 2537 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2538 if (SU->Succs[i].getSUnit() == I) { 2539 const SDep &Dep = SU->Succs[i]; 2540 if (!DAG->isBackedge(SU, Dep)) { 2541 int LateStart = cycle - Dep.getLatency() + 2542 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2543 *MinLateStart = std::min(*MinLateStart, LateStart); 2544 if (DAG->isLoopCarriedDep(SU, Dep)) { 2545 int Start = latestCycleInChain(Dep) + 1 - II; 2546 *MaxStart = std::max(*MaxStart, Start); 2547 } 2548 } else { 2549 int EarlyStart = cycle + Dep.getLatency() - 2550 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2551 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2552 } 2553 } 2554 } 2555 } 2556 } 2557 } 2558 2559 /// Order the instructions within a cycle so that the definitions occur 2560 /// before the uses. Returns true if the instruction is added to the start 2561 /// of the list, or false if added to the end. 2562 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2563 std::deque<SUnit *> &Insts) { 2564 MachineInstr *MI = SU->getInstr(); 2565 bool OrderBeforeUse = false; 2566 bool OrderAfterDef = false; 2567 bool OrderBeforeDef = false; 2568 unsigned MoveDef = 0; 2569 unsigned MoveUse = 0; 2570 int StageInst1 = stageScheduled(SU); 2571 2572 unsigned Pos = 0; 2573 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2574 ++I, ++Pos) { 2575 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2576 MachineOperand &MO = MI->getOperand(i); 2577 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2578 continue; 2579 2580 Register Reg = MO.getReg(); 2581 unsigned BasePos, OffsetPos; 2582 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2583 if (MI->getOperand(BasePos).getReg() == Reg) 2584 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2585 Reg = NewReg; 2586 bool Reads, Writes; 2587 std::tie(Reads, Writes) = 2588 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2589 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2590 OrderBeforeUse = true; 2591 if (MoveUse == 0) 2592 MoveUse = Pos; 2593 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2594 // Add the instruction after the scheduled instruction. 2595 OrderAfterDef = true; 2596 MoveDef = Pos; 2597 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2598 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2599 OrderBeforeUse = true; 2600 if (MoveUse == 0) 2601 MoveUse = Pos; 2602 } else { 2603 OrderAfterDef = true; 2604 MoveDef = Pos; 2605 } 2606 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2607 OrderBeforeUse = true; 2608 if (MoveUse == 0) 2609 MoveUse = Pos; 2610 if (MoveUse != 0) { 2611 OrderAfterDef = true; 2612 MoveDef = Pos - 1; 2613 } 2614 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2615 // Add the instruction before the scheduled instruction. 2616 OrderBeforeUse = true; 2617 if (MoveUse == 0) 2618 MoveUse = Pos; 2619 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2620 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2621 if (MoveUse == 0) { 2622 OrderBeforeDef = true; 2623 MoveUse = Pos; 2624 } 2625 } 2626 } 2627 // Check for order dependences between instructions. Make sure the source 2628 // is ordered before the destination. 2629 for (auto &S : SU->Succs) { 2630 if (S.getSUnit() != *I) 2631 continue; 2632 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2633 OrderBeforeUse = true; 2634 if (Pos < MoveUse) 2635 MoveUse = Pos; 2636 } 2637 // We did not handle HW dependences in previous for loop, 2638 // and we normally set Latency = 0 for Anti deps, 2639 // so may have nodes in same cycle with Anti denpendent on HW regs. 2640 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2641 OrderBeforeUse = true; 2642 if ((MoveUse == 0) || (Pos < MoveUse)) 2643 MoveUse = Pos; 2644 } 2645 } 2646 for (auto &P : SU->Preds) { 2647 if (P.getSUnit() != *I) 2648 continue; 2649 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2650 OrderAfterDef = true; 2651 MoveDef = Pos; 2652 } 2653 } 2654 } 2655 2656 // A circular dependence. 2657 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2658 OrderBeforeUse = false; 2659 2660 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2661 // to a loop-carried dependence. 2662 if (OrderBeforeDef) 2663 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2664 2665 // The uncommon case when the instruction order needs to be updated because 2666 // there is both a use and def. 2667 if (OrderBeforeUse && OrderAfterDef) { 2668 SUnit *UseSU = Insts.at(MoveUse); 2669 SUnit *DefSU = Insts.at(MoveDef); 2670 if (MoveUse > MoveDef) { 2671 Insts.erase(Insts.begin() + MoveUse); 2672 Insts.erase(Insts.begin() + MoveDef); 2673 } else { 2674 Insts.erase(Insts.begin() + MoveDef); 2675 Insts.erase(Insts.begin() + MoveUse); 2676 } 2677 orderDependence(SSD, UseSU, Insts); 2678 orderDependence(SSD, SU, Insts); 2679 orderDependence(SSD, DefSU, Insts); 2680 return; 2681 } 2682 // Put the new instruction first if there is a use in the list. Otherwise, 2683 // put it at the end of the list. 2684 if (OrderBeforeUse) 2685 Insts.push_front(SU); 2686 else 2687 Insts.push_back(SU); 2688 } 2689 2690 /// Return true if the scheduled Phi has a loop carried operand. 2691 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2692 if (!Phi.isPHI()) 2693 return false; 2694 assert(Phi.isPHI() && "Expecting a Phi."); 2695 SUnit *DefSU = SSD->getSUnit(&Phi); 2696 unsigned DefCycle = cycleScheduled(DefSU); 2697 int DefStage = stageScheduled(DefSU); 2698 2699 unsigned InitVal = 0; 2700 unsigned LoopVal = 0; 2701 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2702 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2703 if (!UseSU) 2704 return true; 2705 if (UseSU->getInstr()->isPHI()) 2706 return true; 2707 unsigned LoopCycle = cycleScheduled(UseSU); 2708 int LoopStage = stageScheduled(UseSU); 2709 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2710 } 2711 2712 /// Return true if the instruction is a definition that is loop carried 2713 /// and defines the use on the next iteration. 2714 /// v1 = phi(v2, v3) 2715 /// (Def) v3 = op v1 2716 /// (MO) = v1 2717 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2718 /// register. 2719 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2720 MachineInstr *Def, MachineOperand &MO) { 2721 if (!MO.isReg()) 2722 return false; 2723 if (Def->isPHI()) 2724 return false; 2725 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2726 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2727 return false; 2728 if (!isLoopCarried(SSD, *Phi)) 2729 return false; 2730 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2731 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2732 MachineOperand &DMO = Def->getOperand(i); 2733 if (!DMO.isReg() || !DMO.isDef()) 2734 continue; 2735 if (DMO.getReg() == LoopReg) 2736 return true; 2737 } 2738 return false; 2739 } 2740 2741 // Check if the generated schedule is valid. This function checks if 2742 // an instruction that uses a physical register is scheduled in a 2743 // different stage than the definition. The pipeliner does not handle 2744 // physical register values that may cross a basic block boundary. 2745 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2746 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 2747 SUnit &SU = SSD->SUnits[i]; 2748 if (!SU.hasPhysRegDefs) 2749 continue; 2750 int StageDef = stageScheduled(&SU); 2751 assert(StageDef != -1 && "Instruction should have been scheduled."); 2752 for (auto &SI : SU.Succs) 2753 if (SI.isAssignedRegDep()) 2754 if (Register::isPhysicalRegister(SI.getReg())) 2755 if (stageScheduled(SI.getSUnit()) != StageDef) 2756 return false; 2757 } 2758 return true; 2759 } 2760 2761 /// A property of the node order in swing-modulo-scheduling is 2762 /// that for nodes outside circuits the following holds: 2763 /// none of them is scheduled after both a successor and a 2764 /// predecessor. 2765 /// The method below checks whether the property is met. 2766 /// If not, debug information is printed and statistics information updated. 2767 /// Note that we do not use an assert statement. 2768 /// The reason is that although an invalid node oder may prevent 2769 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2770 /// it does not lead to the generation of incorrect code. 2771 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2772 2773 // a sorted vector that maps each SUnit to its index in the NodeOrder 2774 typedef std::pair<SUnit *, unsigned> UnitIndex; 2775 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2776 2777 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2778 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2779 2780 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2781 return std::get<0>(i1) < std::get<0>(i2); 2782 }; 2783 2784 // sort, so that we can perform a binary search 2785 llvm::sort(Indices, CompareKey); 2786 2787 bool Valid = true; 2788 (void)Valid; 2789 // for each SUnit in the NodeOrder, check whether 2790 // it appears after both a successor and a predecessor 2791 // of the SUnit. If this is the case, and the SUnit 2792 // is not part of circuit, then the NodeOrder is not 2793 // valid. 2794 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2795 SUnit *SU = NodeOrder[i]; 2796 unsigned Index = i; 2797 2798 bool PredBefore = false; 2799 bool SuccBefore = false; 2800 2801 SUnit *Succ; 2802 SUnit *Pred; 2803 (void)Succ; 2804 (void)Pred; 2805 2806 for (SDep &PredEdge : SU->Preds) { 2807 SUnit *PredSU = PredEdge.getSUnit(); 2808 unsigned PredIndex = std::get<1>( 2809 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2810 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2811 PredBefore = true; 2812 Pred = PredSU; 2813 break; 2814 } 2815 } 2816 2817 for (SDep &SuccEdge : SU->Succs) { 2818 SUnit *SuccSU = SuccEdge.getSUnit(); 2819 // Do not process a boundary node, it was not included in NodeOrder, 2820 // hence not in Indices either, call to std::lower_bound() below will 2821 // return Indices.end(). 2822 if (SuccSU->isBoundaryNode()) 2823 continue; 2824 unsigned SuccIndex = std::get<1>( 2825 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2826 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2827 SuccBefore = true; 2828 Succ = SuccSU; 2829 break; 2830 } 2831 } 2832 2833 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2834 // instructions in circuits are allowed to be scheduled 2835 // after both a successor and predecessor. 2836 bool InCircuit = llvm::any_of( 2837 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2838 if (InCircuit) 2839 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2840 else { 2841 Valid = false; 2842 NumNodeOrderIssues++; 2843 LLVM_DEBUG(dbgs() << "Predecessor ";); 2844 } 2845 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2846 << " are scheduled before node " << SU->NodeNum 2847 << "\n";); 2848 } 2849 } 2850 2851 LLVM_DEBUG({ 2852 if (!Valid) 2853 dbgs() << "Invalid node order found!\n"; 2854 }); 2855 } 2856 2857 /// Attempt to fix the degenerate cases when the instruction serialization 2858 /// causes the register lifetimes to overlap. For example, 2859 /// p' = store_pi(p, b) 2860 /// = load p, offset 2861 /// In this case p and p' overlap, which means that two registers are needed. 2862 /// Instead, this function changes the load to use p' and updates the offset. 2863 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2864 unsigned OverlapReg = 0; 2865 unsigned NewBaseReg = 0; 2866 for (SUnit *SU : Instrs) { 2867 MachineInstr *MI = SU->getInstr(); 2868 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2869 const MachineOperand &MO = MI->getOperand(i); 2870 // Look for an instruction that uses p. The instruction occurs in the 2871 // same cycle but occurs later in the serialized order. 2872 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2873 // Check that the instruction appears in the InstrChanges structure, 2874 // which contains instructions that can have the offset updated. 2875 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2876 InstrChanges.find(SU); 2877 if (It != InstrChanges.end()) { 2878 unsigned BasePos, OffsetPos; 2879 // Update the base register and adjust the offset. 2880 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2881 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2882 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2883 int64_t NewOffset = 2884 MI->getOperand(OffsetPos).getImm() - It->second.second; 2885 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2886 SU->setInstr(NewMI); 2887 MISUnitMap[NewMI] = SU; 2888 NewMIs[MI] = NewMI; 2889 } 2890 } 2891 OverlapReg = 0; 2892 NewBaseReg = 0; 2893 break; 2894 } 2895 // Look for an instruction of the form p' = op(p), which uses and defines 2896 // two virtual registers that get allocated to the same physical register. 2897 unsigned TiedUseIdx = 0; 2898 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2899 // OverlapReg is p in the example above. 2900 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2901 // NewBaseReg is p' in the example above. 2902 NewBaseReg = MI->getOperand(i).getReg(); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 2909 /// After the schedule has been formed, call this function to combine 2910 /// the instructions from the different stages/cycles. That is, this 2911 /// function creates a schedule that represents a single iteration. 2912 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2913 // Move all instructions to the first stage from later stages. 2914 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2915 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2916 ++stage) { 2917 std::deque<SUnit *> &cycleInstrs = 2918 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2919 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2920 E = cycleInstrs.rend(); 2921 I != E; ++I) 2922 ScheduledInstrs[cycle].push_front(*I); 2923 } 2924 } 2925 2926 // Erase all the elements in the later stages. Only one iteration should 2927 // remain in the scheduled list, and it contains all the instructions. 2928 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2929 ScheduledInstrs.erase(cycle); 2930 2931 // Change the registers in instruction as specified in the InstrChanges 2932 // map. We need to use the new registers to create the correct order. 2933 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2934 SUnit *SU = &SSD->SUnits[i]; 2935 SSD->applyInstrChange(SU->getInstr(), *this); 2936 } 2937 2938 // Reorder the instructions in each cycle to fix and improve the 2939 // generated code. 2940 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2941 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2942 std::deque<SUnit *> newOrderPhi; 2943 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2944 SUnit *SU = cycleInstrs[i]; 2945 if (SU->getInstr()->isPHI()) 2946 newOrderPhi.push_back(SU); 2947 } 2948 std::deque<SUnit *> newOrderI; 2949 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2950 SUnit *SU = cycleInstrs[i]; 2951 if (!SU->getInstr()->isPHI()) 2952 orderDependence(SSD, SU, newOrderI); 2953 } 2954 // Replace the old order with the new order. 2955 cycleInstrs.swap(newOrderPhi); 2956 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 2957 SSD->fixupRegisterOverlaps(cycleInstrs); 2958 } 2959 2960 LLVM_DEBUG(dump();); 2961 } 2962 2963 void NodeSet::print(raw_ostream &os) const { 2964 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2965 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2966 for (const auto &I : Nodes) 2967 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2968 os << "\n"; 2969 } 2970 2971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2972 /// Print the schedule information to the given output. 2973 void SMSchedule::print(raw_ostream &os) const { 2974 // Iterate over each cycle. 2975 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2976 // Iterate over each instruction in the cycle. 2977 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2978 for (SUnit *CI : cycleInstrs->second) { 2979 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2980 os << "(" << CI->NodeNum << ") "; 2981 CI->getInstr()->print(os); 2982 os << "\n"; 2983 } 2984 } 2985 } 2986 2987 /// Utility function used for debugging to print the schedule. 2988 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2989 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2990 2991 #endif 2992 2993 void ResourceManager::initProcResourceVectors( 2994 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2995 unsigned ProcResourceID = 0; 2996 2997 // We currently limit the resource kinds to 64 and below so that we can use 2998 // uint64_t for Masks 2999 assert(SM.getNumProcResourceKinds() < 64 && 3000 "Too many kinds of resources, unsupported"); 3001 // Create a unique bitmask for every processor resource unit. 3002 // Skip resource at index 0, since it always references 'InvalidUnit'. 3003 Masks.resize(SM.getNumProcResourceKinds()); 3004 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3005 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3006 if (Desc.SubUnitsIdxBegin) 3007 continue; 3008 Masks[I] = 1ULL << ProcResourceID; 3009 ProcResourceID++; 3010 } 3011 // Create a unique bitmask for every processor resource group. 3012 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3013 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3014 if (!Desc.SubUnitsIdxBegin) 3015 continue; 3016 Masks[I] = 1ULL << ProcResourceID; 3017 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3018 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3019 ProcResourceID++; 3020 } 3021 LLVM_DEBUG({ 3022 if (SwpShowResMask) { 3023 dbgs() << "ProcResourceDesc:\n"; 3024 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3025 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3026 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3027 ProcResource->Name, I, Masks[I], 3028 ProcResource->NumUnits); 3029 } 3030 dbgs() << " -----------------\n"; 3031 } 3032 }); 3033 } 3034 3035 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3036 3037 LLVM_DEBUG({ 3038 if (SwpDebugResource) 3039 dbgs() << "canReserveResources:\n"; 3040 }); 3041 if (UseDFA) 3042 return DFAResources->canReserveResources(MID); 3043 3044 unsigned InsnClass = MID->getSchedClass(); 3045 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3046 if (!SCDesc->isValid()) { 3047 LLVM_DEBUG({ 3048 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3049 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3050 }); 3051 return true; 3052 } 3053 3054 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3055 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3056 for (; I != E; ++I) { 3057 if (!I->Cycles) 3058 continue; 3059 const MCProcResourceDesc *ProcResource = 3060 SM.getProcResource(I->ProcResourceIdx); 3061 unsigned NumUnits = ProcResource->NumUnits; 3062 LLVM_DEBUG({ 3063 if (SwpDebugResource) 3064 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3065 ProcResource->Name, I->ProcResourceIdx, 3066 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3067 I->Cycles); 3068 }); 3069 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3070 return false; 3071 } 3072 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3073 return true; 3074 } 3075 3076 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3077 LLVM_DEBUG({ 3078 if (SwpDebugResource) 3079 dbgs() << "reserveResources:\n"; 3080 }); 3081 if (UseDFA) 3082 return DFAResources->reserveResources(MID); 3083 3084 unsigned InsnClass = MID->getSchedClass(); 3085 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3086 if (!SCDesc->isValid()) { 3087 LLVM_DEBUG({ 3088 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3089 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3090 }); 3091 return; 3092 } 3093 for (const MCWriteProcResEntry &PRE : 3094 make_range(STI->getWriteProcResBegin(SCDesc), 3095 STI->getWriteProcResEnd(SCDesc))) { 3096 if (!PRE.Cycles) 3097 continue; 3098 ++ProcResourceCount[PRE.ProcResourceIdx]; 3099 LLVM_DEBUG({ 3100 if (SwpDebugResource) { 3101 const MCProcResourceDesc *ProcResource = 3102 SM.getProcResource(PRE.ProcResourceIdx); 3103 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3104 ProcResource->Name, PRE.ProcResourceIdx, 3105 ProcResourceCount[PRE.ProcResourceIdx], 3106 ProcResource->NumUnits, PRE.Cycles); 3107 } 3108 }); 3109 } 3110 LLVM_DEBUG({ 3111 if (SwpDebugResource) 3112 dbgs() << "reserveResources: done!\n\n"; 3113 }); 3114 } 3115 3116 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3117 return canReserveResources(&MI.getDesc()); 3118 } 3119 3120 void ResourceManager::reserveResources(const MachineInstr &MI) { 3121 return reserveResources(&MI.getDesc()); 3122 } 3123 3124 void ResourceManager::clearResources() { 3125 if (UseDFA) 3126 return DFAResources->clearResources(); 3127 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3128 } 3129