1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/ModuloSchedule.h"
60 #include "llvm/CodeGen/RegisterPressure.h"
61 #include "llvm/CodeGen/ScheduleDAG.h"
62 #include "llvm/CodeGen/ScheduleDAGMutation.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/Config/llvm-config.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/MC/LaneBitmask.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCInstrItineraries.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <deque>
85 #include <functional>
86 #include <iterator>
87 #include <map>
88 #include <memory>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 #define DEBUG_TYPE "pipeliner"
96 
97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98 STATISTIC(NumPipelined, "Number of loops software pipelined");
99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
108 
109 /// A command line option to turn software pipelining on or off.
110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
111                                cl::ZeroOrMore,
112                                cl::desc("Enable Software Pipelining"));
113 
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116                                       cl::desc("Enable SWP at Os."), cl::Hidden,
117                                       cl::init(false));
118 
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121                               cl::desc("Size limit for the MII."),
122                               cl::Hidden, cl::init(27));
123 
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126     SwpMaxStages("pipeliner-max-stages",
127                  cl::desc("Maximum stages allowed in the generated scheduled."),
128                  cl::Hidden, cl::init(3));
129 
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133     SwpPruneDeps("pipeliner-prune-deps",
134                  cl::desc("Prune dependences between unrelated Phi nodes."),
135                  cl::Hidden, cl::init(true));
136 
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141                         cl::desc("Prune loop carried order dependences."),
142                         cl::Hidden, cl::init(true));
143 
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
147 
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149                                      cl::ReallyHidden, cl::init(false),
150                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
151 
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153                                     cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155                                       cl::init(false));
156 
157 static cl::opt<bool> EmitTestAnnotations(
158     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159     cl::desc("Instead of emitting the pipelined code, annotate instructions "
160              "with the generated schedule for feeding into the "
161              "-modulo-schedule-test pass"));
162 
163 static cl::opt<bool> ExperimentalCodeGen(
164     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165     cl::desc(
166         "Use the experimental peeling code generator for software pipelining"));
167 
168 namespace llvm {
169 
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool>
172     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
173                        cl::init(true), cl::ZeroOrMore,
174                        cl::desc("Enable CopyToPhi DAG Mutation"));
175 
176 } // end namespace llvm
177 
178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
179 char MachinePipeliner::ID = 0;
180 #ifndef NDEBUG
181 int MachinePipeliner::NumTries = 0;
182 #endif
183 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
184 
185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
186                       "Modulo Software Pipelining", false, false)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
192                     "Modulo Software Pipelining", false, false)
193 
194 /// The "main" function for implementing Swing Modulo Scheduling.
195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
196   if (skipFunction(mf.getFunction()))
197     return false;
198 
199   if (!EnableSWP)
200     return false;
201 
202   if (mf.getFunction().getAttributes().hasAttribute(
203           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
204       !EnableSWPOptSize.getPosition())
205     return false;
206 
207   if (!mf.getSubtarget().enableMachinePipeliner())
208     return false;
209 
210   // Cannot pipeline loops without instruction itineraries if we are using
211   // DFA for the pipeliner.
212   if (mf.getSubtarget().useDFAforSMS() &&
213       (!mf.getSubtarget().getInstrItineraryData() ||
214        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215     return false;
216 
217   MF = &mf;
218   MLI = &getAnalysis<MachineLoopInfo>();
219   MDT = &getAnalysis<MachineDominatorTree>();
220   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
221   TII = MF->getSubtarget().getInstrInfo();
222   RegClassInfo.runOnMachineFunction(*MF);
223 
224   for (auto &L : *MLI)
225     scheduleLoop(*L);
226 
227   return false;
228 }
229 
230 /// Attempt to perform the SMS algorithm on the specified loop. This function is
231 /// the main entry point for the algorithm.  The function identifies candidate
232 /// loops, calculates the minimum initiation interval, and attempts to schedule
233 /// the loop.
234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
235   bool Changed = false;
236   for (auto &InnerLoop : L)
237     Changed |= scheduleLoop(*InnerLoop);
238 
239 #ifndef NDEBUG
240   // Stop trying after reaching the limit (if any).
241   int Limit = SwpLoopLimit;
242   if (Limit >= 0) {
243     if (NumTries >= SwpLoopLimit)
244       return Changed;
245     NumTries++;
246   }
247 #endif
248 
249   setPragmaPipelineOptions(L);
250   if (!canPipelineLoop(L)) {
251     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
252     ORE->emit([&]() {
253       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
254                                              L.getStartLoc(), L.getHeader())
255              << "Failed to pipeline loop";
256     });
257 
258     return Changed;
259   }
260 
261   ++NumTrytoPipeline;
262 
263   Changed = swingModuloScheduler(L);
264 
265   return Changed;
266 }
267 
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269   // Reset the pragma for the next loop in iteration.
270   disabledByPragma = false;
271   II_setByPragma = 0;
272 
273   MachineBasicBlock *LBLK = L.getTopBlock();
274 
275   if (LBLK == nullptr)
276     return;
277 
278   const BasicBlock *BBLK = LBLK->getBasicBlock();
279   if (BBLK == nullptr)
280     return;
281 
282   const Instruction *TI = BBLK->getTerminator();
283   if (TI == nullptr)
284     return;
285 
286   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287   if (LoopID == nullptr)
288     return;
289 
290   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
292 
293   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
295 
296     if (MD == nullptr)
297       continue;
298 
299     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
300 
301     if (S == nullptr)
302       continue;
303 
304     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305       assert(MD->getNumOperands() == 2 &&
306              "Pipeline initiation interval hint metadata should have two operands.");
307       II_setByPragma =
308           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310     } else if (S->getString() == "llvm.loop.pipeline.disable") {
311       disabledByPragma = true;
312     }
313   }
314 }
315 
316 /// Return true if the loop can be software pipelined.  The algorithm is
317 /// restricted to loops with a single basic block.  Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320   if (L.getNumBlocks() != 1) {
321     ORE->emit([&]() {
322       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323                                                L.getStartLoc(), L.getHeader())
324              << "Not a single basic block: "
325              << ore::NV("NumBlocks", L.getNumBlocks());
326     });
327     return false;
328   }
329 
330   if (disabledByPragma) {
331     ORE->emit([&]() {
332       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333                                                L.getStartLoc(), L.getHeader())
334              << "Disabled by Pragma.";
335     });
336     return false;
337   }
338 
339   // Check if the branch can't be understood because we can't do pipelining
340   // if that's the case.
341   LI.TBB = nullptr;
342   LI.FBB = nullptr;
343   LI.BrCond.clear();
344   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346     NumFailBranch++;
347     ORE->emit([&]() {
348       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349                                                L.getStartLoc(), L.getHeader())
350              << "The branch can't be understood";
351     });
352     return false;
353   }
354 
355   LI.LoopInductionVar = nullptr;
356   LI.LoopCompare = nullptr;
357   if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
358     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
359     NumFailLoop++;
360     ORE->emit([&]() {
361       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
362                                                L.getStartLoc(), L.getHeader())
363              << "The loop structure is not supported";
364     });
365     return false;
366   }
367 
368   if (!L.getLoopPreheader()) {
369     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
370     NumFailPreheader++;
371     ORE->emit([&]() {
372       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
373                                                L.getStartLoc(), L.getHeader())
374              << "No loop preheader found";
375     });
376     return false;
377   }
378 
379   // Remove any subregisters from inputs to phi nodes.
380   preprocessPhiNodes(*L.getHeader());
381   return true;
382 }
383 
384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
385   MachineRegisterInfo &MRI = MF->getRegInfo();
386   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
387 
388   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
389     MachineOperand &DefOp = PI.getOperand(0);
390     assert(DefOp.getSubReg() == 0);
391     auto *RC = MRI.getRegClass(DefOp.getReg());
392 
393     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
394       MachineOperand &RegOp = PI.getOperand(i);
395       if (RegOp.getSubReg() == 0)
396         continue;
397 
398       // If the operand uses a subregister, replace it with a new register
399       // without subregisters, and generate a copy to the new register.
400       Register NewReg = MRI.createVirtualRegister(RC);
401       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
402       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
403       const DebugLoc &DL = PredB.findDebugLoc(At);
404       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
405                     .addReg(RegOp.getReg(), getRegState(RegOp),
406                             RegOp.getSubReg());
407       Slots.insertMachineInstrInMaps(*Copy);
408       RegOp.setReg(NewReg);
409       RegOp.setSubReg(0);
410     }
411   }
412 }
413 
414 /// The SMS algorithm consists of the following main steps:
415 /// 1. Computation and analysis of the dependence graph.
416 /// 2. Ordering of the nodes (instructions).
417 /// 3. Attempt to Schedule the loop.
418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
419   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
420 
421   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
422                         II_setByPragma);
423 
424   MachineBasicBlock *MBB = L.getHeader();
425   // The kernel should not include any terminator instructions.  These
426   // will be added back later.
427   SMS.startBlock(MBB);
428 
429   // Compute the number of 'real' instructions in the basic block by
430   // ignoring terminators.
431   unsigned size = MBB->size();
432   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
433                                    E = MBB->instr_end();
434        I != E; ++I, --size)
435     ;
436 
437   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
438   SMS.schedule();
439   SMS.exitRegion();
440 
441   SMS.finishBlock();
442   return SMS.hasNewSchedule();
443 }
444 
445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
446   AU.addRequired<AAResultsWrapperPass>();
447   AU.addPreserved<AAResultsWrapperPass>();
448   AU.addRequired<MachineLoopInfo>();
449   AU.addRequired<MachineDominatorTree>();
450   AU.addRequired<LiveIntervals>();
451   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
452   MachineFunctionPass::getAnalysisUsage(AU);
453 }
454 
455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
456   if (II_setByPragma > 0)
457     MII = II_setByPragma;
458   else
459     MII = std::max(ResMII, RecMII);
460 }
461 
462 void SwingSchedulerDAG::setMAX_II() {
463   if (II_setByPragma > 0)
464     MAX_II = II_setByPragma;
465   else
466     MAX_II = MII + 10;
467 }
468 
469 /// We override the schedule function in ScheduleDAGInstrs to implement the
470 /// scheduling part of the Swing Modulo Scheduling algorithm.
471 void SwingSchedulerDAG::schedule() {
472   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
473   buildSchedGraph(AA);
474   addLoopCarriedDependences(AA);
475   updatePhiDependences();
476   Topo.InitDAGTopologicalSorting();
477   changeDependences();
478   postprocessDAG();
479   LLVM_DEBUG(dump());
480 
481   NodeSetType NodeSets;
482   findCircuits(NodeSets);
483   NodeSetType Circuits = NodeSets;
484 
485   // Calculate the MII.
486   unsigned ResMII = calculateResMII();
487   unsigned RecMII = calculateRecMII(NodeSets);
488 
489   fuseRecs(NodeSets);
490 
491   // This flag is used for testing and can cause correctness problems.
492   if (SwpIgnoreRecMII)
493     RecMII = 0;
494 
495   setMII(ResMII, RecMII);
496   setMAX_II();
497 
498   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
499                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
500 
501   // Can't schedule a loop without a valid MII.
502   if (MII == 0) {
503     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
504     NumFailZeroMII++;
505     Pass.ORE->emit([&]() {
506       return MachineOptimizationRemarkAnalysis(
507                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
508              << "Invalid Minimal Initiation Interval: 0";
509     });
510     return;
511   }
512 
513   // Don't pipeline large loops.
514   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
515     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
516                       << ", we don't pipleline large loops\n");
517     NumFailLargeMaxMII++;
518     Pass.ORE->emit([&]() {
519       return MachineOptimizationRemarkAnalysis(
520                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
521              << "Minimal Initiation Interval too large: "
522              << ore::NV("MII", (int)MII) << " > "
523              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
524              << "Refer to -pipeliner-max-mii.";
525     });
526     return;
527   }
528 
529   computeNodeFunctions(NodeSets);
530 
531   registerPressureFilter(NodeSets);
532 
533   colocateNodeSets(NodeSets);
534 
535   checkNodeSets(NodeSets);
536 
537   LLVM_DEBUG({
538     for (auto &I : NodeSets) {
539       dbgs() << "  Rec NodeSet ";
540       I.dump();
541     }
542   });
543 
544   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
545 
546   groupRemainingNodes(NodeSets);
547 
548   removeDuplicateNodes(NodeSets);
549 
550   LLVM_DEBUG({
551     for (auto &I : NodeSets) {
552       dbgs() << "  NodeSet ";
553       I.dump();
554     }
555   });
556 
557   computeNodeOrder(NodeSets);
558 
559   // check for node order issues
560   checkValidNodeOrder(Circuits);
561 
562   SMSchedule Schedule(Pass.MF);
563   Scheduled = schedulePipeline(Schedule);
564 
565   if (!Scheduled){
566     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
567     NumFailNoSchedule++;
568     Pass.ORE->emit([&]() {
569       return MachineOptimizationRemarkAnalysis(
570                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
571              << "Unable to find schedule";
572     });
573     return;
574   }
575 
576   unsigned numStages = Schedule.getMaxStageCount();
577   // No need to generate pipeline if there are no overlapped iterations.
578   if (numStages == 0) {
579     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
580     NumFailZeroStage++;
581     Pass.ORE->emit([&]() {
582       return MachineOptimizationRemarkAnalysis(
583                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
584              << "No need to pipeline - no overlapped iterations in schedule.";
585     });
586     return;
587   }
588   // Check that the maximum stage count is less than user-defined limit.
589   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
590     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
591                       << " : too many stages, abort\n");
592     NumFailLargeMaxStage++;
593     Pass.ORE->emit([&]() {
594       return MachineOptimizationRemarkAnalysis(
595                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
596              << "Too many stages in schedule: "
597              << ore::NV("numStages", (int)numStages) << " > "
598              << ore::NV("SwpMaxStages", SwpMaxStages)
599              << ". Refer to -pipeliner-max-stages.";
600     });
601     return;
602   }
603 
604   Pass.ORE->emit([&]() {
605     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
606                                      Loop.getHeader())
607            << "Pipelined succesfully!";
608   });
609 
610   // Generate the schedule as a ModuloSchedule.
611   DenseMap<MachineInstr *, int> Cycles, Stages;
612   std::vector<MachineInstr *> OrderedInsts;
613   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
614        ++Cycle) {
615     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
616       OrderedInsts.push_back(SU->getInstr());
617       Cycles[SU->getInstr()] = Cycle;
618       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
619     }
620   }
621   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
622   for (auto &KV : NewMIs) {
623     Cycles[KV.first] = Cycles[KV.second];
624     Stages[KV.first] = Stages[KV.second];
625     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
626   }
627 
628   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
629                     std::move(Stages));
630   if (EmitTestAnnotations) {
631     assert(NewInstrChanges.empty() &&
632            "Cannot serialize a schedule with InstrChanges!");
633     ModuloScheduleTestAnnotater MSTI(MF, MS);
634     MSTI.annotate();
635     return;
636   }
637   // The experimental code generator can't work if there are InstChanges.
638   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
639     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
640     MSE.expand();
641   } else {
642     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
643     MSE.expand();
644     MSE.cleanup();
645   }
646   ++NumPipelined;
647 }
648 
649 /// Clean up after the software pipeliner runs.
650 void SwingSchedulerDAG::finishBlock() {
651   for (auto &KV : NewMIs)
652     MF.DeleteMachineInstr(KV.second);
653   NewMIs.clear();
654 
655   // Call the superclass.
656   ScheduleDAGInstrs::finishBlock();
657 }
658 
659 /// Return the register values for  the operands of a Phi instruction.
660 /// This function assume the instruction is a Phi.
661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
662                        unsigned &InitVal, unsigned &LoopVal) {
663   assert(Phi.isPHI() && "Expecting a Phi.");
664 
665   InitVal = 0;
666   LoopVal = 0;
667   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668     if (Phi.getOperand(i + 1).getMBB() != Loop)
669       InitVal = Phi.getOperand(i).getReg();
670     else
671       LoopVal = Phi.getOperand(i).getReg();
672 
673   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
674 }
675 
676 /// Return the Phi register value that comes the loop block.
677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
678   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
679     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
680       return Phi.getOperand(i).getReg();
681   return 0;
682 }
683 
684 /// Return true if SUb can be reached from SUa following the chain edges.
685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
686   SmallPtrSet<SUnit *, 8> Visited;
687   SmallVector<SUnit *, 8> Worklist;
688   Worklist.push_back(SUa);
689   while (!Worklist.empty()) {
690     const SUnit *SU = Worklist.pop_back_val();
691     for (auto &SI : SU->Succs) {
692       SUnit *SuccSU = SI.getSUnit();
693       if (SI.getKind() == SDep::Order) {
694         if (Visited.count(SuccSU))
695           continue;
696         if (SuccSU == SUb)
697           return true;
698         Worklist.push_back(SuccSU);
699         Visited.insert(SuccSU);
700       }
701     }
702   }
703   return false;
704 }
705 
706 /// Return true if the instruction causes a chain between memory
707 /// references before and after it.
708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
709   return MI.isCall() || MI.mayRaiseFPException() ||
710          MI.hasUnmodeledSideEffects() ||
711          (MI.hasOrderedMemoryRef() &&
712           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
713 }
714 
715 /// Return the underlying objects for the memory references of an instruction.
716 /// This function calls the code in ValueTracking, but first checks that the
717 /// instruction has a memory operand.
718 static void getUnderlyingObjects(const MachineInstr *MI,
719                                  SmallVectorImpl<const Value *> &Objs) {
720   if (!MI->hasOneMemOperand())
721     return;
722   MachineMemOperand *MM = *MI->memoperands_begin();
723   if (!MM->getValue())
724     return;
725   getUnderlyingObjects(MM->getValue(), Objs);
726   for (const Value *V : Objs) {
727     if (!isIdentifiedObject(V)) {
728       Objs.clear();
729       return;
730     }
731     Objs.push_back(V);
732   }
733 }
734 
735 /// Add a chain edge between a load and store if the store can be an
736 /// alias of the load on a subsequent iteration, i.e., a loop carried
737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
738 /// but that code doesn't create loop carried dependences.
739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
740   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
741   Value *UnknownValue =
742     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
743   for (auto &SU : SUnits) {
744     MachineInstr &MI = *SU.getInstr();
745     if (isDependenceBarrier(MI, AA))
746       PendingLoads.clear();
747     else if (MI.mayLoad()) {
748       SmallVector<const Value *, 4> Objs;
749       ::getUnderlyingObjects(&MI, Objs);
750       if (Objs.empty())
751         Objs.push_back(UnknownValue);
752       for (auto V : Objs) {
753         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
754         SUs.push_back(&SU);
755       }
756     } else if (MI.mayStore()) {
757       SmallVector<const Value *, 4> Objs;
758       ::getUnderlyingObjects(&MI, Objs);
759       if (Objs.empty())
760         Objs.push_back(UnknownValue);
761       for (auto V : Objs) {
762         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
763             PendingLoads.find(V);
764         if (I == PendingLoads.end())
765           continue;
766         for (auto Load : I->second) {
767           if (isSuccOrder(Load, &SU))
768             continue;
769           MachineInstr &LdMI = *Load->getInstr();
770           // First, perform the cheaper check that compares the base register.
771           // If they are the same and the load offset is less than the store
772           // offset, then mark the dependence as loop carried potentially.
773           const MachineOperand *BaseOp1, *BaseOp2;
774           int64_t Offset1, Offset2;
775           bool Offset1IsScalable, Offset2IsScalable;
776           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
777                                            Offset1IsScalable, TRI) &&
778               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
779                                            Offset2IsScalable, TRI)) {
780             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
781                 Offset1IsScalable == Offset2IsScalable &&
782                 (int)Offset1 < (int)Offset2) {
783               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
784                      "What happened to the chain edge?");
785               SDep Dep(Load, SDep::Barrier);
786               Dep.setLatency(1);
787               SU.addPred(Dep);
788               continue;
789             }
790           }
791           // Second, the more expensive check that uses alias analysis on the
792           // base registers. If they alias, and the load offset is less than
793           // the store offset, the mark the dependence as loop carried.
794           if (!AA) {
795             SDep Dep(Load, SDep::Barrier);
796             Dep.setLatency(1);
797             SU.addPred(Dep);
798             continue;
799           }
800           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
801           MachineMemOperand *MMO2 = *MI.memoperands_begin();
802           if (!MMO1->getValue() || !MMO2->getValue()) {
803             SDep Dep(Load, SDep::Barrier);
804             Dep.setLatency(1);
805             SU.addPred(Dep);
806             continue;
807           }
808           if (MMO1->getValue() == MMO2->getValue() &&
809               MMO1->getOffset() <= MMO2->getOffset()) {
810             SDep Dep(Load, SDep::Barrier);
811             Dep.setLatency(1);
812             SU.addPred(Dep);
813             continue;
814           }
815           AliasResult AAResult = AA->alias(
816               MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
817               MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()));
818 
819           if (AAResult != NoAlias) {
820             SDep Dep(Load, SDep::Barrier);
821             Dep.setLatency(1);
822             SU.addPred(Dep);
823           }
824         }
825       }
826     }
827   }
828 }
829 
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
836 void SwingSchedulerDAG::updatePhiDependences() {
837   SmallVector<SDep, 4> RemoveDeps;
838   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839 
840   // Iterate over each DAG node.
841   for (SUnit &I : SUnits) {
842     RemoveDeps.clear();
843     // Set to true if the instruction has an operand defined by a Phi.
844     unsigned HasPhiUse = 0;
845     unsigned HasPhiDef = 0;
846     MachineInstr *MI = I.getInstr();
847     // Iterate over each operand, and we process the definitions.
848     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849                                     MOE = MI->operands_end();
850          MOI != MOE; ++MOI) {
851       if (!MOI->isReg())
852         continue;
853       Register Reg = MOI->getReg();
854       if (MOI->isDef()) {
855         // If the register is used by a Phi, then create an anti dependence.
856         for (MachineRegisterInfo::use_instr_iterator
857                  UI = MRI.use_instr_begin(Reg),
858                  UE = MRI.use_instr_end();
859              UI != UE; ++UI) {
860           MachineInstr *UseMI = &*UI;
861           SUnit *SU = getSUnit(UseMI);
862           if (SU != nullptr && UseMI->isPHI()) {
863             if (!MI->isPHI()) {
864               SDep Dep(SU, SDep::Anti, Reg);
865               Dep.setLatency(1);
866               I.addPred(Dep);
867             } else {
868               HasPhiDef = Reg;
869               // Add a chain edge to a dependent Phi that isn't an existing
870               // predecessor.
871               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872                 I.addPred(SDep(SU, SDep::Barrier));
873             }
874           }
875         }
876       } else if (MOI->isUse()) {
877         // If the register is defined by a Phi, then create a true dependence.
878         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879         if (DefMI == nullptr)
880           continue;
881         SUnit *SU = getSUnit(DefMI);
882         if (SU != nullptr && DefMI->isPHI()) {
883           if (!MI->isPHI()) {
884             SDep Dep(SU, SDep::Data, Reg);
885             Dep.setLatency(0);
886             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887             I.addPred(Dep);
888           } else {
889             HasPhiUse = Reg;
890             // Add a chain edge to a dependent Phi that isn't an existing
891             // predecessor.
892             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893               I.addPred(SDep(SU, SDep::Barrier));
894           }
895         }
896       }
897     }
898     // Remove order dependences from an unrelated Phi.
899     if (!SwpPruneDeps)
900       continue;
901     for (auto &PI : I.Preds) {
902       MachineInstr *PMI = PI.getSUnit()->getInstr();
903       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904         if (I.getInstr()->isPHI()) {
905           if (PMI->getOperand(0).getReg() == HasPhiUse)
906             continue;
907           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908             continue;
909         }
910         RemoveDeps.push_back(PI);
911       }
912     }
913     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914       I.removePred(RemoveDeps[i]);
915   }
916 }
917 
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
920 void SwingSchedulerDAG::changeDependences() {
921   // See if an instruction can use a value from the previous iteration.
922   // If so, we update the base and offset of the instruction and change
923   // the dependences.
924   for (SUnit &I : SUnits) {
925     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926     int64_t NewOffset = 0;
927     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928                                NewOffset))
929       continue;
930 
931     // Get the MI and SUnit for the instruction that defines the original base.
932     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934     if (!DefMI)
935       continue;
936     SUnit *DefSU = getSUnit(DefMI);
937     if (!DefSU)
938       continue;
939     // Get the MI and SUnit for the instruction that defins the new base.
940     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941     if (!LastMI)
942       continue;
943     SUnit *LastSU = getSUnit(LastMI);
944     if (!LastSU)
945       continue;
946 
947     if (Topo.IsReachable(&I, LastSU))
948       continue;
949 
950     // Remove the dependence. The value now depends on a prior iteration.
951     SmallVector<SDep, 4> Deps;
952     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
953          ++P)
954       if (P->getSUnit() == DefSU)
955         Deps.push_back(*P);
956     for (int i = 0, e = Deps.size(); i != e; i++) {
957       Topo.RemovePred(&I, Deps[i].getSUnit());
958       I.removePred(Deps[i]);
959     }
960     // Remove the chain dependence between the instructions.
961     Deps.clear();
962     for (auto &P : LastSU->Preds)
963       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
964         Deps.push_back(P);
965     for (int i = 0, e = Deps.size(); i != e; i++) {
966       Topo.RemovePred(LastSU, Deps[i].getSUnit());
967       LastSU->removePred(Deps[i]);
968     }
969 
970     // Add a dependence between the new instruction and the instruction
971     // that defines the new base.
972     SDep Dep(&I, SDep::Anti, NewBase);
973     Topo.AddPred(LastSU, &I);
974     LastSU->addPred(Dep);
975 
976     // Remember the base and offset information so that we can update the
977     // instruction during code generation.
978     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
979   }
980 }
981 
982 namespace {
983 
984 // FuncUnitSorter - Comparison operator used to sort instructions by
985 // the number of functional unit choices.
986 struct FuncUnitSorter {
987   const InstrItineraryData *InstrItins;
988   const MCSubtargetInfo *STI;
989   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
990 
991   FuncUnitSorter(const TargetSubtargetInfo &TSI)
992       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
993 
994   // Compute the number of functional unit alternatives needed
995   // at each stage, and take the minimum value. We prioritize the
996   // instructions by the least number of choices first.
997   unsigned minFuncUnits(const MachineInstr *Inst,
998                         InstrStage::FuncUnits &F) const {
999     unsigned SchedClass = Inst->getDesc().getSchedClass();
1000     unsigned min = UINT_MAX;
1001     if (InstrItins && !InstrItins->isEmpty()) {
1002       for (const InstrStage &IS :
1003            make_range(InstrItins->beginStage(SchedClass),
1004                       InstrItins->endStage(SchedClass))) {
1005         InstrStage::FuncUnits funcUnits = IS.getUnits();
1006         unsigned numAlternatives = countPopulation(funcUnits);
1007         if (numAlternatives < min) {
1008           min = numAlternatives;
1009           F = funcUnits;
1010         }
1011       }
1012       return min;
1013     }
1014     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1015       const MCSchedClassDesc *SCDesc =
1016           STI->getSchedModel().getSchedClassDesc(SchedClass);
1017       if (!SCDesc->isValid())
1018         // No valid Schedule Class Desc for schedClass, should be
1019         // Pseudo/PostRAPseudo
1020         return min;
1021 
1022       for (const MCWriteProcResEntry &PRE :
1023            make_range(STI->getWriteProcResBegin(SCDesc),
1024                       STI->getWriteProcResEnd(SCDesc))) {
1025         if (!PRE.Cycles)
1026           continue;
1027         const MCProcResourceDesc *ProcResource =
1028             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1029         unsigned NumUnits = ProcResource->NumUnits;
1030         if (NumUnits < min) {
1031           min = NumUnits;
1032           F = PRE.ProcResourceIdx;
1033         }
1034       }
1035       return min;
1036     }
1037     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1038   }
1039 
1040   // Compute the critical resources needed by the instruction. This
1041   // function records the functional units needed by instructions that
1042   // must use only one functional unit. We use this as a tie breaker
1043   // for computing the resource MII. The instrutions that require
1044   // the same, highly used, functional unit have high priority.
1045   void calcCriticalResources(MachineInstr &MI) {
1046     unsigned SchedClass = MI.getDesc().getSchedClass();
1047     if (InstrItins && !InstrItins->isEmpty()) {
1048       for (const InstrStage &IS :
1049            make_range(InstrItins->beginStage(SchedClass),
1050                       InstrItins->endStage(SchedClass))) {
1051         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1052         if (countPopulation(FuncUnits) == 1)
1053           Resources[FuncUnits]++;
1054       }
1055       return;
1056     }
1057     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1058       const MCSchedClassDesc *SCDesc =
1059           STI->getSchedModel().getSchedClassDesc(SchedClass);
1060       if (!SCDesc->isValid())
1061         // No valid Schedule Class Desc for schedClass, should be
1062         // Pseudo/PostRAPseudo
1063         return;
1064 
1065       for (const MCWriteProcResEntry &PRE :
1066            make_range(STI->getWriteProcResBegin(SCDesc),
1067                       STI->getWriteProcResEnd(SCDesc))) {
1068         if (!PRE.Cycles)
1069           continue;
1070         Resources[PRE.ProcResourceIdx]++;
1071       }
1072       return;
1073     }
1074     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1075   }
1076 
1077   /// Return true if IS1 has less priority than IS2.
1078   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1079     InstrStage::FuncUnits F1 = 0, F2 = 0;
1080     unsigned MFUs1 = minFuncUnits(IS1, F1);
1081     unsigned MFUs2 = minFuncUnits(IS2, F2);
1082     if (MFUs1 == MFUs2)
1083       return Resources.lookup(F1) < Resources.lookup(F2);
1084     return MFUs1 > MFUs2;
1085   }
1086 };
1087 
1088 } // end anonymous namespace
1089 
1090 /// Calculate the resource constrained minimum initiation interval for the
1091 /// specified loop. We use the DFA to model the resources needed for
1092 /// each instruction, and we ignore dependences. A different DFA is created
1093 /// for each cycle that is required. When adding a new instruction, we attempt
1094 /// to add it to each existing DFA, until a legal space is found. If the
1095 /// instruction cannot be reserved in an existing DFA, we create a new one.
1096 unsigned SwingSchedulerDAG::calculateResMII() {
1097 
1098   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1099   SmallVector<ResourceManager*, 8> Resources;
1100   MachineBasicBlock *MBB = Loop.getHeader();
1101   Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1102 
1103   // Sort the instructions by the number of available choices for scheduling,
1104   // least to most. Use the number of critical resources as the tie breaker.
1105   FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1106   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1107                                    E = MBB->getFirstTerminator();
1108        I != E; ++I)
1109     FUS.calcCriticalResources(*I);
1110   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1111       FuncUnitOrder(FUS);
1112 
1113   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1114                                    E = MBB->getFirstTerminator();
1115        I != E; ++I)
1116     FuncUnitOrder.push(&*I);
1117 
1118   while (!FuncUnitOrder.empty()) {
1119     MachineInstr *MI = FuncUnitOrder.top();
1120     FuncUnitOrder.pop();
1121     if (TII->isZeroCost(MI->getOpcode()))
1122       continue;
1123     // Attempt to reserve the instruction in an existing DFA. At least one
1124     // DFA is needed for each cycle.
1125     unsigned NumCycles = getSUnit(MI)->Latency;
1126     unsigned ReservedCycles = 0;
1127     SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1128     SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1129     LLVM_DEBUG({
1130       dbgs() << "Trying to reserve resource for " << NumCycles
1131              << " cycles for \n";
1132       MI->dump();
1133     });
1134     for (unsigned C = 0; C < NumCycles; ++C)
1135       while (RI != RE) {
1136         if ((*RI)->canReserveResources(*MI)) {
1137           (*RI)->reserveResources(*MI);
1138           ++ReservedCycles;
1139           break;
1140         }
1141         RI++;
1142       }
1143     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1144                       << ", NumCycles:" << NumCycles << "\n");
1145     // Add new DFAs, if needed, to reserve resources.
1146     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1147       LLVM_DEBUG(if (SwpDebugResource) dbgs()
1148                  << "NewResource created to reserve resources"
1149                  << "\n");
1150       ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1151       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1152       NewResource->reserveResources(*MI);
1153       Resources.push_back(NewResource);
1154     }
1155   }
1156   int Resmii = Resources.size();
1157   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1158   // Delete the memory for each of the DFAs that were created earlier.
1159   for (ResourceManager *RI : Resources) {
1160     ResourceManager *D = RI;
1161     delete D;
1162   }
1163   Resources.clear();
1164   return Resmii;
1165 }
1166 
1167 /// Calculate the recurrence-constrainted minimum initiation interval.
1168 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1169 /// for each circuit. The II needs to satisfy the inequality
1170 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1171 /// II that satisfies the inequality, and the RecMII is the maximum
1172 /// of those values.
1173 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1174   unsigned RecMII = 0;
1175 
1176   for (NodeSet &Nodes : NodeSets) {
1177     if (Nodes.empty())
1178       continue;
1179 
1180     unsigned Delay = Nodes.getLatency();
1181     unsigned Distance = 1;
1182 
1183     // ii = ceil(delay / distance)
1184     unsigned CurMII = (Delay + Distance - 1) / Distance;
1185     Nodes.setRecMII(CurMII);
1186     if (CurMII > RecMII)
1187       RecMII = CurMII;
1188   }
1189 
1190   return RecMII;
1191 }
1192 
1193 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1194 /// but we do this to find the circuits, and then change them back.
1195 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1196   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1197   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1198     SUnit *SU = &SUnits[i];
1199     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1200          IP != EP; ++IP) {
1201       if (IP->getKind() != SDep::Anti)
1202         continue;
1203       DepsAdded.push_back(std::make_pair(SU, *IP));
1204     }
1205   }
1206   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1207                                                           E = DepsAdded.end();
1208        I != E; ++I) {
1209     // Remove this anti dependency and add one in the reverse direction.
1210     SUnit *SU = I->first;
1211     SDep &D = I->second;
1212     SUnit *TargetSU = D.getSUnit();
1213     unsigned Reg = D.getReg();
1214     unsigned Lat = D.getLatency();
1215     SU->removePred(D);
1216     SDep Dep(SU, SDep::Anti, Reg);
1217     Dep.setLatency(Lat);
1218     TargetSU->addPred(Dep);
1219   }
1220 }
1221 
1222 /// Create the adjacency structure of the nodes in the graph.
1223 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1224     SwingSchedulerDAG *DAG) {
1225   BitVector Added(SUnits.size());
1226   DenseMap<int, int> OutputDeps;
1227   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1228     Added.reset();
1229     // Add any successor to the adjacency matrix and exclude duplicates.
1230     for (auto &SI : SUnits[i].Succs) {
1231       // Only create a back-edge on the first and last nodes of a dependence
1232       // chain. This records any chains and adds them later.
1233       if (SI.getKind() == SDep::Output) {
1234         int N = SI.getSUnit()->NodeNum;
1235         int BackEdge = i;
1236         auto Dep = OutputDeps.find(BackEdge);
1237         if (Dep != OutputDeps.end()) {
1238           BackEdge = Dep->second;
1239           OutputDeps.erase(Dep);
1240         }
1241         OutputDeps[N] = BackEdge;
1242       }
1243       // Do not process a boundary node, an artificial node.
1244       // A back-edge is processed only if it goes to a Phi.
1245       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1246           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1247         continue;
1248       int N = SI.getSUnit()->NodeNum;
1249       if (!Added.test(N)) {
1250         AdjK[i].push_back(N);
1251         Added.set(N);
1252       }
1253     }
1254     // A chain edge between a store and a load is treated as a back-edge in the
1255     // adjacency matrix.
1256     for (auto &PI : SUnits[i].Preds) {
1257       if (!SUnits[i].getInstr()->mayStore() ||
1258           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1259         continue;
1260       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1261         int N = PI.getSUnit()->NodeNum;
1262         if (!Added.test(N)) {
1263           AdjK[i].push_back(N);
1264           Added.set(N);
1265         }
1266       }
1267     }
1268   }
1269   // Add back-edges in the adjacency matrix for the output dependences.
1270   for (auto &OD : OutputDeps)
1271     if (!Added.test(OD.second)) {
1272       AdjK[OD.first].push_back(OD.second);
1273       Added.set(OD.second);
1274     }
1275 }
1276 
1277 /// Identify an elementary circuit in the dependence graph starting at the
1278 /// specified node.
1279 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1280                                           bool HasBackedge) {
1281   SUnit *SV = &SUnits[V];
1282   bool F = false;
1283   Stack.insert(SV);
1284   Blocked.set(V);
1285 
1286   for (auto W : AdjK[V]) {
1287     if (NumPaths > MaxPaths)
1288       break;
1289     if (W < S)
1290       continue;
1291     if (W == S) {
1292       if (!HasBackedge)
1293         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1294       F = true;
1295       ++NumPaths;
1296       break;
1297     } else if (!Blocked.test(W)) {
1298       if (circuit(W, S, NodeSets,
1299                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1300         F = true;
1301     }
1302   }
1303 
1304   if (F)
1305     unblock(V);
1306   else {
1307     for (auto W : AdjK[V]) {
1308       if (W < S)
1309         continue;
1310       if (B[W].count(SV) == 0)
1311         B[W].insert(SV);
1312     }
1313   }
1314   Stack.pop_back();
1315   return F;
1316 }
1317 
1318 /// Unblock a node in the circuit finding algorithm.
1319 void SwingSchedulerDAG::Circuits::unblock(int U) {
1320   Blocked.reset(U);
1321   SmallPtrSet<SUnit *, 4> &BU = B[U];
1322   while (!BU.empty()) {
1323     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1324     assert(SI != BU.end() && "Invalid B set.");
1325     SUnit *W = *SI;
1326     BU.erase(W);
1327     if (Blocked.test(W->NodeNum))
1328       unblock(W->NodeNum);
1329   }
1330 }
1331 
1332 /// Identify all the elementary circuits in the dependence graph using
1333 /// Johnson's circuit algorithm.
1334 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1335   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1336   // but we do this to find the circuits, and then change them back.
1337   swapAntiDependences(SUnits);
1338 
1339   Circuits Cir(SUnits, Topo);
1340   // Create the adjacency structure.
1341   Cir.createAdjacencyStructure(this);
1342   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1343     Cir.reset();
1344     Cir.circuit(i, i, NodeSets);
1345   }
1346 
1347   // Change the dependences back so that we've created a DAG again.
1348   swapAntiDependences(SUnits);
1349 }
1350 
1351 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1352 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1353 // additional copies that are needed across iterations. An artificial dependence
1354 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1355 
1356 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1357 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1358 // PHI-------True-Dep------> USEOfPhi
1359 
1360 // The mutation creates
1361 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1362 
1363 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1364 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1365 // late  to avoid additional copies across iterations. The possible scheduling
1366 // order would be
1367 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1368 
1369 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1370   for (SUnit &SU : DAG->SUnits) {
1371     // Find the COPY/REG_SEQUENCE instruction.
1372     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1373       continue;
1374 
1375     // Record the loop carried PHIs.
1376     SmallVector<SUnit *, 4> PHISUs;
1377     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1378     SmallVector<SUnit *, 4> SrcSUs;
1379 
1380     for (auto &Dep : SU.Preds) {
1381       SUnit *TmpSU = Dep.getSUnit();
1382       MachineInstr *TmpMI = TmpSU->getInstr();
1383       SDep::Kind DepKind = Dep.getKind();
1384       // Save the loop carried PHI.
1385       if (DepKind == SDep::Anti && TmpMI->isPHI())
1386         PHISUs.push_back(TmpSU);
1387       // Save the source of COPY/REG_SEQUENCE.
1388       // If the source has no pre-decessors, we will end up creating cycles.
1389       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1390         SrcSUs.push_back(TmpSU);
1391     }
1392 
1393     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1394       continue;
1395 
1396     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1397     // SUnit to the container.
1398     SmallVector<SUnit *, 8> UseSUs;
1399     // Do not use iterator based loop here as we are updating the container.
1400     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1401       for (auto &Dep : PHISUs[Index]->Succs) {
1402         if (Dep.getKind() != SDep::Data)
1403           continue;
1404 
1405         SUnit *TmpSU = Dep.getSUnit();
1406         MachineInstr *TmpMI = TmpSU->getInstr();
1407         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1408           PHISUs.push_back(TmpSU);
1409           continue;
1410         }
1411         UseSUs.push_back(TmpSU);
1412       }
1413     }
1414 
1415     if (UseSUs.size() == 0)
1416       continue;
1417 
1418     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1419     // Add the artificial dependencies if it does not form a cycle.
1420     for (auto I : UseSUs) {
1421       for (auto Src : SrcSUs) {
1422         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1423           Src->addPred(SDep(I, SDep::Artificial));
1424           SDAG->Topo.AddPred(Src, I);
1425         }
1426       }
1427     }
1428   }
1429 }
1430 
1431 /// Return true for DAG nodes that we ignore when computing the cost functions.
1432 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1433 /// in the calculation of the ASAP, ALAP, etc functions.
1434 static bool ignoreDependence(const SDep &D, bool isPred) {
1435   if (D.isArtificial())
1436     return true;
1437   return D.getKind() == SDep::Anti && isPred;
1438 }
1439 
1440 /// Compute several functions need to order the nodes for scheduling.
1441 ///  ASAP - Earliest time to schedule a node.
1442 ///  ALAP - Latest time to schedule a node.
1443 ///  MOV - Mobility function, difference between ALAP and ASAP.
1444 ///  D - Depth of each node.
1445 ///  H - Height of each node.
1446 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1447   ScheduleInfo.resize(SUnits.size());
1448 
1449   LLVM_DEBUG({
1450     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1451                                                     E = Topo.end();
1452          I != E; ++I) {
1453       const SUnit &SU = SUnits[*I];
1454       dumpNode(SU);
1455     }
1456   });
1457 
1458   int maxASAP = 0;
1459   // Compute ASAP and ZeroLatencyDepth.
1460   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1461                                                   E = Topo.end();
1462        I != E; ++I) {
1463     int asap = 0;
1464     int zeroLatencyDepth = 0;
1465     SUnit *SU = &SUnits[*I];
1466     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1467                                     EP = SU->Preds.end();
1468          IP != EP; ++IP) {
1469       SUnit *pred = IP->getSUnit();
1470       if (IP->getLatency() == 0)
1471         zeroLatencyDepth =
1472             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1473       if (ignoreDependence(*IP, true))
1474         continue;
1475       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1476                                   getDistance(pred, SU, *IP) * MII));
1477     }
1478     maxASAP = std::max(maxASAP, asap);
1479     ScheduleInfo[*I].ASAP = asap;
1480     ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1481   }
1482 
1483   // Compute ALAP, ZeroLatencyHeight, and MOV.
1484   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1485                                                           E = Topo.rend();
1486        I != E; ++I) {
1487     int alap = maxASAP;
1488     int zeroLatencyHeight = 0;
1489     SUnit *SU = &SUnits[*I];
1490     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1491                                     ES = SU->Succs.end();
1492          IS != ES; ++IS) {
1493       SUnit *succ = IS->getSUnit();
1494       if (IS->getLatency() == 0)
1495         zeroLatencyHeight =
1496             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1497       if (ignoreDependence(*IS, true))
1498         continue;
1499       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1500                                   getDistance(SU, succ, *IS) * MII));
1501     }
1502 
1503     ScheduleInfo[*I].ALAP = alap;
1504     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1505   }
1506 
1507   // After computing the node functions, compute the summary for each node set.
1508   for (NodeSet &I : NodeSets)
1509     I.computeNodeSetInfo(this);
1510 
1511   LLVM_DEBUG({
1512     for (unsigned i = 0; i < SUnits.size(); i++) {
1513       dbgs() << "\tNode " << i << ":\n";
1514       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1515       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1516       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1517       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1518       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1519       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1520       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1521     }
1522   });
1523 }
1524 
1525 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1526 /// as the predecessors of the elements of NodeOrder that are not also in
1527 /// NodeOrder.
1528 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1529                    SmallSetVector<SUnit *, 8> &Preds,
1530                    const NodeSet *S = nullptr) {
1531   Preds.clear();
1532   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1533        I != E; ++I) {
1534     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1535          PI != PE; ++PI) {
1536       if (S && S->count(PI->getSUnit()) == 0)
1537         continue;
1538       if (ignoreDependence(*PI, true))
1539         continue;
1540       if (NodeOrder.count(PI->getSUnit()) == 0)
1541         Preds.insert(PI->getSUnit());
1542     }
1543     // Back-edges are predecessors with an anti-dependence.
1544     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1545                                     ES = (*I)->Succs.end();
1546          IS != ES; ++IS) {
1547       if (IS->getKind() != SDep::Anti)
1548         continue;
1549       if (S && S->count(IS->getSUnit()) == 0)
1550         continue;
1551       if (NodeOrder.count(IS->getSUnit()) == 0)
1552         Preds.insert(IS->getSUnit());
1553     }
1554   }
1555   return !Preds.empty();
1556 }
1557 
1558 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1559 /// as the successors of the elements of NodeOrder that are not also in
1560 /// NodeOrder.
1561 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1562                    SmallSetVector<SUnit *, 8> &Succs,
1563                    const NodeSet *S = nullptr) {
1564   Succs.clear();
1565   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1566        I != E; ++I) {
1567     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1568          SI != SE; ++SI) {
1569       if (S && S->count(SI->getSUnit()) == 0)
1570         continue;
1571       if (ignoreDependence(*SI, false))
1572         continue;
1573       if (NodeOrder.count(SI->getSUnit()) == 0)
1574         Succs.insert(SI->getSUnit());
1575     }
1576     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1577                                     PE = (*I)->Preds.end();
1578          PI != PE; ++PI) {
1579       if (PI->getKind() != SDep::Anti)
1580         continue;
1581       if (S && S->count(PI->getSUnit()) == 0)
1582         continue;
1583       if (NodeOrder.count(PI->getSUnit()) == 0)
1584         Succs.insert(PI->getSUnit());
1585     }
1586   }
1587   return !Succs.empty();
1588 }
1589 
1590 /// Return true if there is a path from the specified node to any of the nodes
1591 /// in DestNodes. Keep track and return the nodes in any path.
1592 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1593                         SetVector<SUnit *> &DestNodes,
1594                         SetVector<SUnit *> &Exclude,
1595                         SmallPtrSet<SUnit *, 8> &Visited) {
1596   if (Cur->isBoundaryNode())
1597     return false;
1598   if (Exclude.count(Cur) != 0)
1599     return false;
1600   if (DestNodes.count(Cur) != 0)
1601     return true;
1602   if (!Visited.insert(Cur).second)
1603     return Path.count(Cur) != 0;
1604   bool FoundPath = false;
1605   for (auto &SI : Cur->Succs)
1606     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1607   for (auto &PI : Cur->Preds)
1608     if (PI.getKind() == SDep::Anti)
1609       FoundPath |=
1610           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1611   if (FoundPath)
1612     Path.insert(Cur);
1613   return FoundPath;
1614 }
1615 
1616 /// Return true if Set1 is a subset of Set2.
1617 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1618   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1619     if (Set2.count(*I) == 0)
1620       return false;
1621   return true;
1622 }
1623 
1624 /// Compute the live-out registers for the instructions in a node-set.
1625 /// The live-out registers are those that are defined in the node-set,
1626 /// but not used. Except for use operands of Phis.
1627 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1628                             NodeSet &NS) {
1629   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1630   MachineRegisterInfo &MRI = MF.getRegInfo();
1631   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1632   SmallSet<unsigned, 4> Uses;
1633   for (SUnit *SU : NS) {
1634     const MachineInstr *MI = SU->getInstr();
1635     if (MI->isPHI())
1636       continue;
1637     for (const MachineOperand &MO : MI->operands())
1638       if (MO.isReg() && MO.isUse()) {
1639         Register Reg = MO.getReg();
1640         if (Register::isVirtualRegister(Reg))
1641           Uses.insert(Reg);
1642         else if (MRI.isAllocatable(Reg))
1643           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1644                ++Units)
1645             Uses.insert(*Units);
1646       }
1647   }
1648   for (SUnit *SU : NS)
1649     for (const MachineOperand &MO : SU->getInstr()->operands())
1650       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1651         Register Reg = MO.getReg();
1652         if (Register::isVirtualRegister(Reg)) {
1653           if (!Uses.count(Reg))
1654             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1655                                                    LaneBitmask::getNone()));
1656         } else if (MRI.isAllocatable(Reg)) {
1657           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1658                ++Units)
1659             if (!Uses.count(*Units))
1660               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1661                                                      LaneBitmask::getNone()));
1662         }
1663       }
1664   RPTracker.addLiveRegs(LiveOutRegs);
1665 }
1666 
1667 /// A heuristic to filter nodes in recurrent node-sets if the register
1668 /// pressure of a set is too high.
1669 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1670   for (auto &NS : NodeSets) {
1671     // Skip small node-sets since they won't cause register pressure problems.
1672     if (NS.size() <= 2)
1673       continue;
1674     IntervalPressure RecRegPressure;
1675     RegPressureTracker RecRPTracker(RecRegPressure);
1676     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1677     computeLiveOuts(MF, RecRPTracker, NS);
1678     RecRPTracker.closeBottom();
1679 
1680     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1681     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1682       return A->NodeNum > B->NodeNum;
1683     });
1684 
1685     for (auto &SU : SUnits) {
1686       // Since we're computing the register pressure for a subset of the
1687       // instructions in a block, we need to set the tracker for each
1688       // instruction in the node-set. The tracker is set to the instruction
1689       // just after the one we're interested in.
1690       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1691       RecRPTracker.setPos(std::next(CurInstI));
1692 
1693       RegPressureDelta RPDelta;
1694       ArrayRef<PressureChange> CriticalPSets;
1695       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1696                                              CriticalPSets,
1697                                              RecRegPressure.MaxSetPressure);
1698       if (RPDelta.Excess.isValid()) {
1699         LLVM_DEBUG(
1700             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1701                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1702                    << ":" << RPDelta.Excess.getUnitInc());
1703         NS.setExceedPressure(SU);
1704         break;
1705       }
1706       RecRPTracker.recede();
1707     }
1708   }
1709 }
1710 
1711 /// A heuristic to colocate node sets that have the same set of
1712 /// successors.
1713 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1714   unsigned Colocate = 0;
1715   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1716     NodeSet &N1 = NodeSets[i];
1717     SmallSetVector<SUnit *, 8> S1;
1718     if (N1.empty() || !succ_L(N1, S1))
1719       continue;
1720     for (int j = i + 1; j < e; ++j) {
1721       NodeSet &N2 = NodeSets[j];
1722       if (N1.compareRecMII(N2) != 0)
1723         continue;
1724       SmallSetVector<SUnit *, 8> S2;
1725       if (N2.empty() || !succ_L(N2, S2))
1726         continue;
1727       if (isSubset(S1, S2) && S1.size() == S2.size()) {
1728         N1.setColocate(++Colocate);
1729         N2.setColocate(Colocate);
1730         break;
1731       }
1732     }
1733   }
1734 }
1735 
1736 /// Check if the existing node-sets are profitable. If not, then ignore the
1737 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1738 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1739 /// then it's best to try to schedule all instructions together instead of
1740 /// starting with the recurrent node-sets.
1741 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1742   // Look for loops with a large MII.
1743   if (MII < 17)
1744     return;
1745   // Check if the node-set contains only a simple add recurrence.
1746   for (auto &NS : NodeSets) {
1747     if (NS.getRecMII() > 2)
1748       return;
1749     if (NS.getMaxDepth() > MII)
1750       return;
1751   }
1752   NodeSets.clear();
1753   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1754   return;
1755 }
1756 
1757 /// Add the nodes that do not belong to a recurrence set into groups
1758 /// based upon connected componenets.
1759 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1760   SetVector<SUnit *> NodesAdded;
1761   SmallPtrSet<SUnit *, 8> Visited;
1762   // Add the nodes that are on a path between the previous node sets and
1763   // the current node set.
1764   for (NodeSet &I : NodeSets) {
1765     SmallSetVector<SUnit *, 8> N;
1766     // Add the nodes from the current node set to the previous node set.
1767     if (succ_L(I, N)) {
1768       SetVector<SUnit *> Path;
1769       for (SUnit *NI : N) {
1770         Visited.clear();
1771         computePath(NI, Path, NodesAdded, I, Visited);
1772       }
1773       if (!Path.empty())
1774         I.insert(Path.begin(), Path.end());
1775     }
1776     // Add the nodes from the previous node set to the current node set.
1777     N.clear();
1778     if (succ_L(NodesAdded, N)) {
1779       SetVector<SUnit *> Path;
1780       for (SUnit *NI : N) {
1781         Visited.clear();
1782         computePath(NI, Path, I, NodesAdded, Visited);
1783       }
1784       if (!Path.empty())
1785         I.insert(Path.begin(), Path.end());
1786     }
1787     NodesAdded.insert(I.begin(), I.end());
1788   }
1789 
1790   // Create a new node set with the connected nodes of any successor of a node
1791   // in a recurrent set.
1792   NodeSet NewSet;
1793   SmallSetVector<SUnit *, 8> N;
1794   if (succ_L(NodesAdded, N))
1795     for (SUnit *I : N)
1796       addConnectedNodes(I, NewSet, NodesAdded);
1797   if (!NewSet.empty())
1798     NodeSets.push_back(NewSet);
1799 
1800   // Create a new node set with the connected nodes of any predecessor of a node
1801   // in a recurrent set.
1802   NewSet.clear();
1803   if (pred_L(NodesAdded, N))
1804     for (SUnit *I : N)
1805       addConnectedNodes(I, NewSet, NodesAdded);
1806   if (!NewSet.empty())
1807     NodeSets.push_back(NewSet);
1808 
1809   // Create new nodes sets with the connected nodes any remaining node that
1810   // has no predecessor.
1811   for (unsigned i = 0; i < SUnits.size(); ++i) {
1812     SUnit *SU = &SUnits[i];
1813     if (NodesAdded.count(SU) == 0) {
1814       NewSet.clear();
1815       addConnectedNodes(SU, NewSet, NodesAdded);
1816       if (!NewSet.empty())
1817         NodeSets.push_back(NewSet);
1818     }
1819   }
1820 }
1821 
1822 /// Add the node to the set, and add all of its connected nodes to the set.
1823 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1824                                           SetVector<SUnit *> &NodesAdded) {
1825   NewSet.insert(SU);
1826   NodesAdded.insert(SU);
1827   for (auto &SI : SU->Succs) {
1828     SUnit *Successor = SI.getSUnit();
1829     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1830       addConnectedNodes(Successor, NewSet, NodesAdded);
1831   }
1832   for (auto &PI : SU->Preds) {
1833     SUnit *Predecessor = PI.getSUnit();
1834     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1835       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1836   }
1837 }
1838 
1839 /// Return true if Set1 contains elements in Set2. The elements in common
1840 /// are returned in a different container.
1841 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1842                         SmallSetVector<SUnit *, 8> &Result) {
1843   Result.clear();
1844   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1845     SUnit *SU = Set1[i];
1846     if (Set2.count(SU) != 0)
1847       Result.insert(SU);
1848   }
1849   return !Result.empty();
1850 }
1851 
1852 /// Merge the recurrence node sets that have the same initial node.
1853 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1854   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1855        ++I) {
1856     NodeSet &NI = *I;
1857     for (NodeSetType::iterator J = I + 1; J != E;) {
1858       NodeSet &NJ = *J;
1859       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1860         if (NJ.compareRecMII(NI) > 0)
1861           NI.setRecMII(NJ.getRecMII());
1862         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1863              ++NII)
1864           I->insert(*NII);
1865         NodeSets.erase(J);
1866         E = NodeSets.end();
1867       } else {
1868         ++J;
1869       }
1870     }
1871   }
1872 }
1873 
1874 /// Remove nodes that have been scheduled in previous NodeSets.
1875 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1876   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1877        ++I)
1878     for (NodeSetType::iterator J = I + 1; J != E;) {
1879       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1880 
1881       if (J->empty()) {
1882         NodeSets.erase(J);
1883         E = NodeSets.end();
1884       } else {
1885         ++J;
1886       }
1887     }
1888 }
1889 
1890 /// Compute an ordered list of the dependence graph nodes, which
1891 /// indicates the order that the nodes will be scheduled.  This is a
1892 /// two-level algorithm. First, a partial order is created, which
1893 /// consists of a list of sets ordered from highest to lowest priority.
1894 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1895   SmallSetVector<SUnit *, 8> R;
1896   NodeOrder.clear();
1897 
1898   for (auto &Nodes : NodeSets) {
1899     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1900     OrderKind Order;
1901     SmallSetVector<SUnit *, 8> N;
1902     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1903       R.insert(N.begin(), N.end());
1904       Order = BottomUp;
1905       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1906     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1907       R.insert(N.begin(), N.end());
1908       Order = TopDown;
1909       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1910     } else if (isIntersect(N, Nodes, R)) {
1911       // If some of the successors are in the existing node-set, then use the
1912       // top-down ordering.
1913       Order = TopDown;
1914       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1915     } else if (NodeSets.size() == 1) {
1916       for (auto &N : Nodes)
1917         if (N->Succs.size() == 0)
1918           R.insert(N);
1919       Order = BottomUp;
1920       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1921     } else {
1922       // Find the node with the highest ASAP.
1923       SUnit *maxASAP = nullptr;
1924       for (SUnit *SU : Nodes) {
1925         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1926             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1927           maxASAP = SU;
1928       }
1929       R.insert(maxASAP);
1930       Order = BottomUp;
1931       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1932     }
1933 
1934     while (!R.empty()) {
1935       if (Order == TopDown) {
1936         // Choose the node with the maximum height.  If more than one, choose
1937         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1938         // choose the node with the lowest MOV.
1939         while (!R.empty()) {
1940           SUnit *maxHeight = nullptr;
1941           for (SUnit *I : R) {
1942             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1943               maxHeight = I;
1944             else if (getHeight(I) == getHeight(maxHeight) &&
1945                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1946               maxHeight = I;
1947             else if (getHeight(I) == getHeight(maxHeight) &&
1948                      getZeroLatencyHeight(I) ==
1949                          getZeroLatencyHeight(maxHeight) &&
1950                      getMOV(I) < getMOV(maxHeight))
1951               maxHeight = I;
1952           }
1953           NodeOrder.insert(maxHeight);
1954           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1955           R.remove(maxHeight);
1956           for (const auto &I : maxHeight->Succs) {
1957             if (Nodes.count(I.getSUnit()) == 0)
1958               continue;
1959             if (NodeOrder.count(I.getSUnit()) != 0)
1960               continue;
1961             if (ignoreDependence(I, false))
1962               continue;
1963             R.insert(I.getSUnit());
1964           }
1965           // Back-edges are predecessors with an anti-dependence.
1966           for (const auto &I : maxHeight->Preds) {
1967             if (I.getKind() != SDep::Anti)
1968               continue;
1969             if (Nodes.count(I.getSUnit()) == 0)
1970               continue;
1971             if (NodeOrder.count(I.getSUnit()) != 0)
1972               continue;
1973             R.insert(I.getSUnit());
1974           }
1975         }
1976         Order = BottomUp;
1977         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1978         SmallSetVector<SUnit *, 8> N;
1979         if (pred_L(NodeOrder, N, &Nodes))
1980           R.insert(N.begin(), N.end());
1981       } else {
1982         // Choose the node with the maximum depth.  If more than one, choose
1983         // the node with the maximum ZeroLatencyDepth. If still more than one,
1984         // choose the node with the lowest MOV.
1985         while (!R.empty()) {
1986           SUnit *maxDepth = nullptr;
1987           for (SUnit *I : R) {
1988             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1989               maxDepth = I;
1990             else if (getDepth(I) == getDepth(maxDepth) &&
1991                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1992               maxDepth = I;
1993             else if (getDepth(I) == getDepth(maxDepth) &&
1994                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1995                      getMOV(I) < getMOV(maxDepth))
1996               maxDepth = I;
1997           }
1998           NodeOrder.insert(maxDepth);
1999           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2000           R.remove(maxDepth);
2001           if (Nodes.isExceedSU(maxDepth)) {
2002             Order = TopDown;
2003             R.clear();
2004             R.insert(Nodes.getNode(0));
2005             break;
2006           }
2007           for (const auto &I : maxDepth->Preds) {
2008             if (Nodes.count(I.getSUnit()) == 0)
2009               continue;
2010             if (NodeOrder.count(I.getSUnit()) != 0)
2011               continue;
2012             R.insert(I.getSUnit());
2013           }
2014           // Back-edges are predecessors with an anti-dependence.
2015           for (const auto &I : maxDepth->Succs) {
2016             if (I.getKind() != SDep::Anti)
2017               continue;
2018             if (Nodes.count(I.getSUnit()) == 0)
2019               continue;
2020             if (NodeOrder.count(I.getSUnit()) != 0)
2021               continue;
2022             R.insert(I.getSUnit());
2023           }
2024         }
2025         Order = TopDown;
2026         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2027         SmallSetVector<SUnit *, 8> N;
2028         if (succ_L(NodeOrder, N, &Nodes))
2029           R.insert(N.begin(), N.end());
2030       }
2031     }
2032     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2033   }
2034 
2035   LLVM_DEBUG({
2036     dbgs() << "Node order: ";
2037     for (SUnit *I : NodeOrder)
2038       dbgs() << " " << I->NodeNum << " ";
2039     dbgs() << "\n";
2040   });
2041 }
2042 
2043 /// Process the nodes in the computed order and create the pipelined schedule
2044 /// of the instructions, if possible. Return true if a schedule is found.
2045 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2046 
2047   if (NodeOrder.empty()){
2048     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2049     return false;
2050   }
2051 
2052   bool scheduleFound = false;
2053   unsigned II = 0;
2054   // Keep increasing II until a valid schedule is found.
2055   for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
2056     Schedule.reset();
2057     Schedule.setInitiationInterval(II);
2058     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2059 
2060     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2061     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2062     do {
2063       SUnit *SU = *NI;
2064 
2065       // Compute the schedule time for the instruction, which is based
2066       // upon the scheduled time for any predecessors/successors.
2067       int EarlyStart = INT_MIN;
2068       int LateStart = INT_MAX;
2069       // These values are set when the size of the schedule window is limited
2070       // due to chain dependences.
2071       int SchedEnd = INT_MAX;
2072       int SchedStart = INT_MIN;
2073       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2074                             II, this);
2075       LLVM_DEBUG({
2076         dbgs() << "\n";
2077         dbgs() << "Inst (" << SU->NodeNum << ") ";
2078         SU->getInstr()->dump();
2079         dbgs() << "\n";
2080       });
2081       LLVM_DEBUG({
2082         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2083                          LateStart, SchedEnd, SchedStart);
2084       });
2085 
2086       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2087           SchedStart > LateStart)
2088         scheduleFound = false;
2089       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2090         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2091         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2092       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2093         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2094         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2095       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2096         SchedEnd =
2097             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2098         // When scheduling a Phi it is better to start at the late cycle and go
2099         // backwards. The default order may insert the Phi too far away from
2100         // its first dependence.
2101         if (SU->getInstr()->isPHI())
2102           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2103         else
2104           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2105       } else {
2106         int FirstCycle = Schedule.getFirstCycle();
2107         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2108                                         FirstCycle + getASAP(SU) + II - 1, II);
2109       }
2110       // Even if we find a schedule, make sure the schedule doesn't exceed the
2111       // allowable number of stages. We keep trying if this happens.
2112       if (scheduleFound)
2113         if (SwpMaxStages > -1 &&
2114             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2115           scheduleFound = false;
2116 
2117       LLVM_DEBUG({
2118         if (!scheduleFound)
2119           dbgs() << "\tCan't schedule\n";
2120       });
2121     } while (++NI != NE && scheduleFound);
2122 
2123     // If a schedule is found, check if it is a valid schedule too.
2124     if (scheduleFound)
2125       scheduleFound = Schedule.isValidSchedule(this);
2126   }
2127 
2128   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
2129                     << ")\n");
2130 
2131   if (scheduleFound) {
2132     Schedule.finalizeSchedule(this);
2133     Pass.ORE->emit([&]() {
2134       return MachineOptimizationRemarkAnalysis(
2135                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2136              << "Schedule found with Initiation Interval: " << ore::NV("II", II)
2137              << ", MaxStageCount: "
2138              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2139     });
2140   } else
2141     Schedule.reset();
2142 
2143   return scheduleFound && Schedule.getMaxStageCount() > 0;
2144 }
2145 
2146 /// Return true if we can compute the amount the instruction changes
2147 /// during each iteration. Set Delta to the amount of the change.
2148 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2149   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2150   const MachineOperand *BaseOp;
2151   int64_t Offset;
2152   bool OffsetIsScalable;
2153   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2154     return false;
2155 
2156   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2157   if (OffsetIsScalable)
2158     return false;
2159 
2160   if (!BaseOp->isReg())
2161     return false;
2162 
2163   Register BaseReg = BaseOp->getReg();
2164 
2165   MachineRegisterInfo &MRI = MF.getRegInfo();
2166   // Check if there is a Phi. If so, get the definition in the loop.
2167   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2168   if (BaseDef && BaseDef->isPHI()) {
2169     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2170     BaseDef = MRI.getVRegDef(BaseReg);
2171   }
2172   if (!BaseDef)
2173     return false;
2174 
2175   int D = 0;
2176   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2177     return false;
2178 
2179   Delta = D;
2180   return true;
2181 }
2182 
2183 /// Check if we can change the instruction to use an offset value from the
2184 /// previous iteration. If so, return true and set the base and offset values
2185 /// so that we can rewrite the load, if necessary.
2186 ///   v1 = Phi(v0, v3)
2187 ///   v2 = load v1, 0
2188 ///   v3 = post_store v1, 4, x
2189 /// This function enables the load to be rewritten as v2 = load v3, 4.
2190 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2191                                               unsigned &BasePos,
2192                                               unsigned &OffsetPos,
2193                                               unsigned &NewBase,
2194                                               int64_t &Offset) {
2195   // Get the load instruction.
2196   if (TII->isPostIncrement(*MI))
2197     return false;
2198   unsigned BasePosLd, OffsetPosLd;
2199   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2200     return false;
2201   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2202 
2203   // Look for the Phi instruction.
2204   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2205   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2206   if (!Phi || !Phi->isPHI())
2207     return false;
2208   // Get the register defined in the loop block.
2209   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2210   if (!PrevReg)
2211     return false;
2212 
2213   // Check for the post-increment load/store instruction.
2214   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2215   if (!PrevDef || PrevDef == MI)
2216     return false;
2217 
2218   if (!TII->isPostIncrement(*PrevDef))
2219     return false;
2220 
2221   unsigned BasePos1 = 0, OffsetPos1 = 0;
2222   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2223     return false;
2224 
2225   // Make sure that the instructions do not access the same memory location in
2226   // the next iteration.
2227   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2228   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2229   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2230   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2231   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2232   MF.DeleteMachineInstr(NewMI);
2233   if (!Disjoint)
2234     return false;
2235 
2236   // Set the return value once we determine that we return true.
2237   BasePos = BasePosLd;
2238   OffsetPos = OffsetPosLd;
2239   NewBase = PrevReg;
2240   Offset = StoreOffset;
2241   return true;
2242 }
2243 
2244 /// Apply changes to the instruction if needed. The changes are need
2245 /// to improve the scheduling and depend up on the final schedule.
2246 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2247                                          SMSchedule &Schedule) {
2248   SUnit *SU = getSUnit(MI);
2249   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2250       InstrChanges.find(SU);
2251   if (It != InstrChanges.end()) {
2252     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2253     unsigned BasePos, OffsetPos;
2254     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2255       return;
2256     Register BaseReg = MI->getOperand(BasePos).getReg();
2257     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2258     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2259     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2260     int BaseStageNum = Schedule.stageScheduled(SU);
2261     int BaseCycleNum = Schedule.cycleScheduled(SU);
2262     if (BaseStageNum < DefStageNum) {
2263       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2264       int OffsetDiff = DefStageNum - BaseStageNum;
2265       if (DefCycleNum < BaseCycleNum) {
2266         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2267         if (OffsetDiff > 0)
2268           --OffsetDiff;
2269       }
2270       int64_t NewOffset =
2271           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2272       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2273       SU->setInstr(NewMI);
2274       MISUnitMap[NewMI] = SU;
2275       NewMIs[MI] = NewMI;
2276     }
2277   }
2278 }
2279 
2280 /// Return the instruction in the loop that defines the register.
2281 /// If the definition is a Phi, then follow the Phi operand to
2282 /// the instruction in the loop.
2283 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2284   SmallPtrSet<MachineInstr *, 8> Visited;
2285   MachineInstr *Def = MRI.getVRegDef(Reg);
2286   while (Def->isPHI()) {
2287     if (!Visited.insert(Def).second)
2288       break;
2289     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2290       if (Def->getOperand(i + 1).getMBB() == BB) {
2291         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2292         break;
2293       }
2294   }
2295   return Def;
2296 }
2297 
2298 /// Return true for an order or output dependence that is loop carried
2299 /// potentially. A dependence is loop carried if the destination defines a valu
2300 /// that may be used or defined by the source in a subsequent iteration.
2301 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2302                                          bool isSucc) {
2303   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2304       Dep.isArtificial())
2305     return false;
2306 
2307   if (!SwpPruneLoopCarried)
2308     return true;
2309 
2310   if (Dep.getKind() == SDep::Output)
2311     return true;
2312 
2313   MachineInstr *SI = Source->getInstr();
2314   MachineInstr *DI = Dep.getSUnit()->getInstr();
2315   if (!isSucc)
2316     std::swap(SI, DI);
2317   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2318 
2319   // Assume ordered loads and stores may have a loop carried dependence.
2320   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2321       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2322       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2323     return true;
2324 
2325   // Only chain dependences between a load and store can be loop carried.
2326   if (!DI->mayStore() || !SI->mayLoad())
2327     return false;
2328 
2329   unsigned DeltaS, DeltaD;
2330   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2331     return true;
2332 
2333   const MachineOperand *BaseOpS, *BaseOpD;
2334   int64_t OffsetS, OffsetD;
2335   bool OffsetSIsScalable, OffsetDIsScalable;
2336   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2337   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2338                                     TRI) ||
2339       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2340                                     TRI))
2341     return true;
2342 
2343   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2344          "Expected offsets to be byte offsets");
2345 
2346   if (!BaseOpS->isIdenticalTo(*BaseOpD))
2347     return true;
2348 
2349   // Check that the base register is incremented by a constant value for each
2350   // iteration.
2351   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2352   if (!Def || !Def->isPHI())
2353     return true;
2354   unsigned InitVal = 0;
2355   unsigned LoopVal = 0;
2356   getPhiRegs(*Def, BB, InitVal, LoopVal);
2357   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2358   int D = 0;
2359   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2360     return true;
2361 
2362   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2363   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2364 
2365   // This is the main test, which checks the offset values and the loop
2366   // increment value to determine if the accesses may be loop carried.
2367   if (AccessSizeS == MemoryLocation::UnknownSize ||
2368       AccessSizeD == MemoryLocation::UnknownSize)
2369     return true;
2370 
2371   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2372     return true;
2373 
2374   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2375 }
2376 
2377 void SwingSchedulerDAG::postprocessDAG() {
2378   for (auto &M : Mutations)
2379     M->apply(this);
2380 }
2381 
2382 /// Try to schedule the node at the specified StartCycle and continue
2383 /// until the node is schedule or the EndCycle is reached.  This function
2384 /// returns true if the node is scheduled.  This routine may search either
2385 /// forward or backward for a place to insert the instruction based upon
2386 /// the relative values of StartCycle and EndCycle.
2387 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2388   bool forward = true;
2389   LLVM_DEBUG({
2390     dbgs() << "Trying to insert node between " << StartCycle << " and "
2391            << EndCycle << " II: " << II << "\n";
2392   });
2393   if (StartCycle > EndCycle)
2394     forward = false;
2395 
2396   // The terminating condition depends on the direction.
2397   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2398   for (int curCycle = StartCycle; curCycle != termCycle;
2399        forward ? ++curCycle : --curCycle) {
2400 
2401     // Add the already scheduled instructions at the specified cycle to the
2402     // DFA.
2403     ProcItinResources.clearResources();
2404     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2405          checkCycle <= LastCycle; checkCycle += II) {
2406       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2407 
2408       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
2409                                          E = cycleInstrs.end();
2410            I != E; ++I) {
2411         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
2412           continue;
2413         assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
2414                "These instructions have already been scheduled.");
2415         ProcItinResources.reserveResources(*(*I)->getInstr());
2416       }
2417     }
2418     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2419         ProcItinResources.canReserveResources(*SU->getInstr())) {
2420       LLVM_DEBUG({
2421         dbgs() << "\tinsert at cycle " << curCycle << " ";
2422         SU->getInstr()->dump();
2423       });
2424 
2425       ScheduledInstrs[curCycle].push_back(SU);
2426       InstrToCycle.insert(std::make_pair(SU, curCycle));
2427       if (curCycle > LastCycle)
2428         LastCycle = curCycle;
2429       if (curCycle < FirstCycle)
2430         FirstCycle = curCycle;
2431       return true;
2432     }
2433     LLVM_DEBUG({
2434       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2435       SU->getInstr()->dump();
2436     });
2437   }
2438   return false;
2439 }
2440 
2441 // Return the cycle of the earliest scheduled instruction in the chain.
2442 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2443   SmallPtrSet<SUnit *, 8> Visited;
2444   SmallVector<SDep, 8> Worklist;
2445   Worklist.push_back(Dep);
2446   int EarlyCycle = INT_MAX;
2447   while (!Worklist.empty()) {
2448     const SDep &Cur = Worklist.pop_back_val();
2449     SUnit *PrevSU = Cur.getSUnit();
2450     if (Visited.count(PrevSU))
2451       continue;
2452     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2453     if (it == InstrToCycle.end())
2454       continue;
2455     EarlyCycle = std::min(EarlyCycle, it->second);
2456     for (const auto &PI : PrevSU->Preds)
2457       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2458         Worklist.push_back(PI);
2459     Visited.insert(PrevSU);
2460   }
2461   return EarlyCycle;
2462 }
2463 
2464 // Return the cycle of the latest scheduled instruction in the chain.
2465 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2466   SmallPtrSet<SUnit *, 8> Visited;
2467   SmallVector<SDep, 8> Worklist;
2468   Worklist.push_back(Dep);
2469   int LateCycle = INT_MIN;
2470   while (!Worklist.empty()) {
2471     const SDep &Cur = Worklist.pop_back_val();
2472     SUnit *SuccSU = Cur.getSUnit();
2473     if (Visited.count(SuccSU))
2474       continue;
2475     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2476     if (it == InstrToCycle.end())
2477       continue;
2478     LateCycle = std::max(LateCycle, it->second);
2479     for (const auto &SI : SuccSU->Succs)
2480       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2481         Worklist.push_back(SI);
2482     Visited.insert(SuccSU);
2483   }
2484   return LateCycle;
2485 }
2486 
2487 /// If an instruction has a use that spans multiple iterations, then
2488 /// return true. These instructions are characterized by having a back-ege
2489 /// to a Phi, which contains a reference to another Phi.
2490 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2491   for (auto &P : SU->Preds)
2492     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2493       for (auto &S : P.getSUnit()->Succs)
2494         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2495           return P.getSUnit();
2496   return nullptr;
2497 }
2498 
2499 /// Compute the scheduling start slot for the instruction.  The start slot
2500 /// depends on any predecessor or successor nodes scheduled already.
2501 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2502                               int *MinEnd, int *MaxStart, int II,
2503                               SwingSchedulerDAG *DAG) {
2504   // Iterate over each instruction that has been scheduled already.  The start
2505   // slot computation depends on whether the previously scheduled instruction
2506   // is a predecessor or successor of the specified instruction.
2507   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2508 
2509     // Iterate over each instruction in the current cycle.
2510     for (SUnit *I : getInstructions(cycle)) {
2511       // Because we're processing a DAG for the dependences, we recognize
2512       // the back-edge in recurrences by anti dependences.
2513       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2514         const SDep &Dep = SU->Preds[i];
2515         if (Dep.getSUnit() == I) {
2516           if (!DAG->isBackedge(SU, Dep)) {
2517             int EarlyStart = cycle + Dep.getLatency() -
2518                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2519             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2520             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2521               int End = earliestCycleInChain(Dep) + (II - 1);
2522               *MinEnd = std::min(*MinEnd, End);
2523             }
2524           } else {
2525             int LateStart = cycle - Dep.getLatency() +
2526                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2527             *MinLateStart = std::min(*MinLateStart, LateStart);
2528           }
2529         }
2530         // For instruction that requires multiple iterations, make sure that
2531         // the dependent instruction is not scheduled past the definition.
2532         SUnit *BE = multipleIterations(I, DAG);
2533         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2534             !SU->isPred(I))
2535           *MinLateStart = std::min(*MinLateStart, cycle);
2536       }
2537       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2538         if (SU->Succs[i].getSUnit() == I) {
2539           const SDep &Dep = SU->Succs[i];
2540           if (!DAG->isBackedge(SU, Dep)) {
2541             int LateStart = cycle - Dep.getLatency() +
2542                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2543             *MinLateStart = std::min(*MinLateStart, LateStart);
2544             if (DAG->isLoopCarriedDep(SU, Dep)) {
2545               int Start = latestCycleInChain(Dep) + 1 - II;
2546               *MaxStart = std::max(*MaxStart, Start);
2547             }
2548           } else {
2549             int EarlyStart = cycle + Dep.getLatency() -
2550                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2551             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2552           }
2553         }
2554       }
2555     }
2556   }
2557 }
2558 
2559 /// Order the instructions within a cycle so that the definitions occur
2560 /// before the uses. Returns true if the instruction is added to the start
2561 /// of the list, or false if added to the end.
2562 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2563                                  std::deque<SUnit *> &Insts) {
2564   MachineInstr *MI = SU->getInstr();
2565   bool OrderBeforeUse = false;
2566   bool OrderAfterDef = false;
2567   bool OrderBeforeDef = false;
2568   unsigned MoveDef = 0;
2569   unsigned MoveUse = 0;
2570   int StageInst1 = stageScheduled(SU);
2571 
2572   unsigned Pos = 0;
2573   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2574        ++I, ++Pos) {
2575     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2576       MachineOperand &MO = MI->getOperand(i);
2577       if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2578         continue;
2579 
2580       Register Reg = MO.getReg();
2581       unsigned BasePos, OffsetPos;
2582       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2583         if (MI->getOperand(BasePos).getReg() == Reg)
2584           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2585             Reg = NewReg;
2586       bool Reads, Writes;
2587       std::tie(Reads, Writes) =
2588           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2589       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2590         OrderBeforeUse = true;
2591         if (MoveUse == 0)
2592           MoveUse = Pos;
2593       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2594         // Add the instruction after the scheduled instruction.
2595         OrderAfterDef = true;
2596         MoveDef = Pos;
2597       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2598         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2599           OrderBeforeUse = true;
2600           if (MoveUse == 0)
2601             MoveUse = Pos;
2602         } else {
2603           OrderAfterDef = true;
2604           MoveDef = Pos;
2605         }
2606       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2607         OrderBeforeUse = true;
2608         if (MoveUse == 0)
2609           MoveUse = Pos;
2610         if (MoveUse != 0) {
2611           OrderAfterDef = true;
2612           MoveDef = Pos - 1;
2613         }
2614       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2615         // Add the instruction before the scheduled instruction.
2616         OrderBeforeUse = true;
2617         if (MoveUse == 0)
2618           MoveUse = Pos;
2619       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2620                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2621         if (MoveUse == 0) {
2622           OrderBeforeDef = true;
2623           MoveUse = Pos;
2624         }
2625       }
2626     }
2627     // Check for order dependences between instructions. Make sure the source
2628     // is ordered before the destination.
2629     for (auto &S : SU->Succs) {
2630       if (S.getSUnit() != *I)
2631         continue;
2632       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2633         OrderBeforeUse = true;
2634         if (Pos < MoveUse)
2635           MoveUse = Pos;
2636       }
2637       // We did not handle HW dependences in previous for loop,
2638       // and we normally set Latency = 0 for Anti deps,
2639       // so may have nodes in same cycle with Anti denpendent on HW regs.
2640       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2641         OrderBeforeUse = true;
2642         if ((MoveUse == 0) || (Pos < MoveUse))
2643           MoveUse = Pos;
2644       }
2645     }
2646     for (auto &P : SU->Preds) {
2647       if (P.getSUnit() != *I)
2648         continue;
2649       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2650         OrderAfterDef = true;
2651         MoveDef = Pos;
2652       }
2653     }
2654   }
2655 
2656   // A circular dependence.
2657   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2658     OrderBeforeUse = false;
2659 
2660   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2661   // to a loop-carried dependence.
2662   if (OrderBeforeDef)
2663     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2664 
2665   // The uncommon case when the instruction order needs to be updated because
2666   // there is both a use and def.
2667   if (OrderBeforeUse && OrderAfterDef) {
2668     SUnit *UseSU = Insts.at(MoveUse);
2669     SUnit *DefSU = Insts.at(MoveDef);
2670     if (MoveUse > MoveDef) {
2671       Insts.erase(Insts.begin() + MoveUse);
2672       Insts.erase(Insts.begin() + MoveDef);
2673     } else {
2674       Insts.erase(Insts.begin() + MoveDef);
2675       Insts.erase(Insts.begin() + MoveUse);
2676     }
2677     orderDependence(SSD, UseSU, Insts);
2678     orderDependence(SSD, SU, Insts);
2679     orderDependence(SSD, DefSU, Insts);
2680     return;
2681   }
2682   // Put the new instruction first if there is a use in the list. Otherwise,
2683   // put it at the end of the list.
2684   if (OrderBeforeUse)
2685     Insts.push_front(SU);
2686   else
2687     Insts.push_back(SU);
2688 }
2689 
2690 /// Return true if the scheduled Phi has a loop carried operand.
2691 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2692   if (!Phi.isPHI())
2693     return false;
2694   assert(Phi.isPHI() && "Expecting a Phi.");
2695   SUnit *DefSU = SSD->getSUnit(&Phi);
2696   unsigned DefCycle = cycleScheduled(DefSU);
2697   int DefStage = stageScheduled(DefSU);
2698 
2699   unsigned InitVal = 0;
2700   unsigned LoopVal = 0;
2701   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2702   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2703   if (!UseSU)
2704     return true;
2705   if (UseSU->getInstr()->isPHI())
2706     return true;
2707   unsigned LoopCycle = cycleScheduled(UseSU);
2708   int LoopStage = stageScheduled(UseSU);
2709   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2710 }
2711 
2712 /// Return true if the instruction is a definition that is loop carried
2713 /// and defines the use on the next iteration.
2714 ///        v1 = phi(v2, v3)
2715 ///  (Def) v3 = op v1
2716 ///  (MO)   = v1
2717 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2718 /// register.
2719 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2720                                        MachineInstr *Def, MachineOperand &MO) {
2721   if (!MO.isReg())
2722     return false;
2723   if (Def->isPHI())
2724     return false;
2725   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2726   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2727     return false;
2728   if (!isLoopCarried(SSD, *Phi))
2729     return false;
2730   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2731   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2732     MachineOperand &DMO = Def->getOperand(i);
2733     if (!DMO.isReg() || !DMO.isDef())
2734       continue;
2735     if (DMO.getReg() == LoopReg)
2736       return true;
2737   }
2738   return false;
2739 }
2740 
2741 // Check if the generated schedule is valid. This function checks if
2742 // an instruction that uses a physical register is scheduled in a
2743 // different stage than the definition. The pipeliner does not handle
2744 // physical register values that may cross a basic block boundary.
2745 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2746   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
2747     SUnit &SU = SSD->SUnits[i];
2748     if (!SU.hasPhysRegDefs)
2749       continue;
2750     int StageDef = stageScheduled(&SU);
2751     assert(StageDef != -1 && "Instruction should have been scheduled.");
2752     for (auto &SI : SU.Succs)
2753       if (SI.isAssignedRegDep())
2754         if (Register::isPhysicalRegister(SI.getReg()))
2755           if (stageScheduled(SI.getSUnit()) != StageDef)
2756             return false;
2757   }
2758   return true;
2759 }
2760 
2761 /// A property of the node order in swing-modulo-scheduling is
2762 /// that for nodes outside circuits the following holds:
2763 /// none of them is scheduled after both a successor and a
2764 /// predecessor.
2765 /// The method below checks whether the property is met.
2766 /// If not, debug information is printed and statistics information updated.
2767 /// Note that we do not use an assert statement.
2768 /// The reason is that although an invalid node oder may prevent
2769 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2770 /// it does not lead to the generation of incorrect code.
2771 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2772 
2773   // a sorted vector that maps each SUnit to its index in the NodeOrder
2774   typedef std::pair<SUnit *, unsigned> UnitIndex;
2775   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2776 
2777   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2778     Indices.push_back(std::make_pair(NodeOrder[i], i));
2779 
2780   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2781     return std::get<0>(i1) < std::get<0>(i2);
2782   };
2783 
2784   // sort, so that we can perform a binary search
2785   llvm::sort(Indices, CompareKey);
2786 
2787   bool Valid = true;
2788   (void)Valid;
2789   // for each SUnit in the NodeOrder, check whether
2790   // it appears after both a successor and a predecessor
2791   // of the SUnit. If this is the case, and the SUnit
2792   // is not part of circuit, then the NodeOrder is not
2793   // valid.
2794   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2795     SUnit *SU = NodeOrder[i];
2796     unsigned Index = i;
2797 
2798     bool PredBefore = false;
2799     bool SuccBefore = false;
2800 
2801     SUnit *Succ;
2802     SUnit *Pred;
2803     (void)Succ;
2804     (void)Pred;
2805 
2806     for (SDep &PredEdge : SU->Preds) {
2807       SUnit *PredSU = PredEdge.getSUnit();
2808       unsigned PredIndex = std::get<1>(
2809           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2810       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2811         PredBefore = true;
2812         Pred = PredSU;
2813         break;
2814       }
2815     }
2816 
2817     for (SDep &SuccEdge : SU->Succs) {
2818       SUnit *SuccSU = SuccEdge.getSUnit();
2819       // Do not process a boundary node, it was not included in NodeOrder,
2820       // hence not in Indices either, call to std::lower_bound() below will
2821       // return Indices.end().
2822       if (SuccSU->isBoundaryNode())
2823         continue;
2824       unsigned SuccIndex = std::get<1>(
2825           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2826       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2827         SuccBefore = true;
2828         Succ = SuccSU;
2829         break;
2830       }
2831     }
2832 
2833     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2834       // instructions in circuits are allowed to be scheduled
2835       // after both a successor and predecessor.
2836       bool InCircuit = llvm::any_of(
2837           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2838       if (InCircuit)
2839         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2840       else {
2841         Valid = false;
2842         NumNodeOrderIssues++;
2843         LLVM_DEBUG(dbgs() << "Predecessor ";);
2844       }
2845       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2846                         << " are scheduled before node " << SU->NodeNum
2847                         << "\n";);
2848     }
2849   }
2850 
2851   LLVM_DEBUG({
2852     if (!Valid)
2853       dbgs() << "Invalid node order found!\n";
2854   });
2855 }
2856 
2857 /// Attempt to fix the degenerate cases when the instruction serialization
2858 /// causes the register lifetimes to overlap. For example,
2859 ///   p' = store_pi(p, b)
2860 ///      = load p, offset
2861 /// In this case p and p' overlap, which means that two registers are needed.
2862 /// Instead, this function changes the load to use p' and updates the offset.
2863 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2864   unsigned OverlapReg = 0;
2865   unsigned NewBaseReg = 0;
2866   for (SUnit *SU : Instrs) {
2867     MachineInstr *MI = SU->getInstr();
2868     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2869       const MachineOperand &MO = MI->getOperand(i);
2870       // Look for an instruction that uses p. The instruction occurs in the
2871       // same cycle but occurs later in the serialized order.
2872       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2873         // Check that the instruction appears in the InstrChanges structure,
2874         // which contains instructions that can have the offset updated.
2875         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2876           InstrChanges.find(SU);
2877         if (It != InstrChanges.end()) {
2878           unsigned BasePos, OffsetPos;
2879           // Update the base register and adjust the offset.
2880           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2881             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2882             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2883             int64_t NewOffset =
2884                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2885             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2886             SU->setInstr(NewMI);
2887             MISUnitMap[NewMI] = SU;
2888             NewMIs[MI] = NewMI;
2889           }
2890         }
2891         OverlapReg = 0;
2892         NewBaseReg = 0;
2893         break;
2894       }
2895       // Look for an instruction of the form p' = op(p), which uses and defines
2896       // two virtual registers that get allocated to the same physical register.
2897       unsigned TiedUseIdx = 0;
2898       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2899         // OverlapReg is p in the example above.
2900         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2901         // NewBaseReg is p' in the example above.
2902         NewBaseReg = MI->getOperand(i).getReg();
2903         break;
2904       }
2905     }
2906   }
2907 }
2908 
2909 /// After the schedule has been formed, call this function to combine
2910 /// the instructions from the different stages/cycles.  That is, this
2911 /// function creates a schedule that represents a single iteration.
2912 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2913   // Move all instructions to the first stage from later stages.
2914   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2915     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2916          ++stage) {
2917       std::deque<SUnit *> &cycleInstrs =
2918           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2919       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2920                                                  E = cycleInstrs.rend();
2921            I != E; ++I)
2922         ScheduledInstrs[cycle].push_front(*I);
2923     }
2924   }
2925 
2926   // Erase all the elements in the later stages. Only one iteration should
2927   // remain in the scheduled list, and it contains all the instructions.
2928   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2929     ScheduledInstrs.erase(cycle);
2930 
2931   // Change the registers in instruction as specified in the InstrChanges
2932   // map. We need to use the new registers to create the correct order.
2933   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2934     SUnit *SU = &SSD->SUnits[i];
2935     SSD->applyInstrChange(SU->getInstr(), *this);
2936   }
2937 
2938   // Reorder the instructions in each cycle to fix and improve the
2939   // generated code.
2940   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2941     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2942     std::deque<SUnit *> newOrderPhi;
2943     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2944       SUnit *SU = cycleInstrs[i];
2945       if (SU->getInstr()->isPHI())
2946         newOrderPhi.push_back(SU);
2947     }
2948     std::deque<SUnit *> newOrderI;
2949     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2950       SUnit *SU = cycleInstrs[i];
2951       if (!SU->getInstr()->isPHI())
2952         orderDependence(SSD, SU, newOrderI);
2953     }
2954     // Replace the old order with the new order.
2955     cycleInstrs.swap(newOrderPhi);
2956     cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
2957     SSD->fixupRegisterOverlaps(cycleInstrs);
2958   }
2959 
2960   LLVM_DEBUG(dump(););
2961 }
2962 
2963 void NodeSet::print(raw_ostream &os) const {
2964   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2965      << " depth " << MaxDepth << " col " << Colocate << "\n";
2966   for (const auto &I : Nodes)
2967     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2968   os << "\n";
2969 }
2970 
2971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2972 /// Print the schedule information to the given output.
2973 void SMSchedule::print(raw_ostream &os) const {
2974   // Iterate over each cycle.
2975   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2976     // Iterate over each instruction in the cycle.
2977     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2978     for (SUnit *CI : cycleInstrs->second) {
2979       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2980       os << "(" << CI->NodeNum << ") ";
2981       CI->getInstr()->print(os);
2982       os << "\n";
2983     }
2984   }
2985 }
2986 
2987 /// Utility function used for debugging to print the schedule.
2988 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2989 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2990 
2991 #endif
2992 
2993 void ResourceManager::initProcResourceVectors(
2994     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2995   unsigned ProcResourceID = 0;
2996 
2997   // We currently limit the resource kinds to 64 and below so that we can use
2998   // uint64_t for Masks
2999   assert(SM.getNumProcResourceKinds() < 64 &&
3000          "Too many kinds of resources, unsupported");
3001   // Create a unique bitmask for every processor resource unit.
3002   // Skip resource at index 0, since it always references 'InvalidUnit'.
3003   Masks.resize(SM.getNumProcResourceKinds());
3004   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3005     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3006     if (Desc.SubUnitsIdxBegin)
3007       continue;
3008     Masks[I] = 1ULL << ProcResourceID;
3009     ProcResourceID++;
3010   }
3011   // Create a unique bitmask for every processor resource group.
3012   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3013     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3014     if (!Desc.SubUnitsIdxBegin)
3015       continue;
3016     Masks[I] = 1ULL << ProcResourceID;
3017     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3018       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3019     ProcResourceID++;
3020   }
3021   LLVM_DEBUG({
3022     if (SwpShowResMask) {
3023       dbgs() << "ProcResourceDesc:\n";
3024       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3025         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3026         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3027                          ProcResource->Name, I, Masks[I],
3028                          ProcResource->NumUnits);
3029       }
3030       dbgs() << " -----------------\n";
3031     }
3032   });
3033 }
3034 
3035 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3036 
3037   LLVM_DEBUG({
3038     if (SwpDebugResource)
3039       dbgs() << "canReserveResources:\n";
3040   });
3041   if (UseDFA)
3042     return DFAResources->canReserveResources(MID);
3043 
3044   unsigned InsnClass = MID->getSchedClass();
3045   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3046   if (!SCDesc->isValid()) {
3047     LLVM_DEBUG({
3048       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3049       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3050     });
3051     return true;
3052   }
3053 
3054   const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3055   const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3056   for (; I != E; ++I) {
3057     if (!I->Cycles)
3058       continue;
3059     const MCProcResourceDesc *ProcResource =
3060         SM.getProcResource(I->ProcResourceIdx);
3061     unsigned NumUnits = ProcResource->NumUnits;
3062     LLVM_DEBUG({
3063       if (SwpDebugResource)
3064         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3065                          ProcResource->Name, I->ProcResourceIdx,
3066                          ProcResourceCount[I->ProcResourceIdx], NumUnits,
3067                          I->Cycles);
3068     });
3069     if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3070       return false;
3071   }
3072   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3073   return true;
3074 }
3075 
3076 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3077   LLVM_DEBUG({
3078     if (SwpDebugResource)
3079       dbgs() << "reserveResources:\n";
3080   });
3081   if (UseDFA)
3082     return DFAResources->reserveResources(MID);
3083 
3084   unsigned InsnClass = MID->getSchedClass();
3085   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3086   if (!SCDesc->isValid()) {
3087     LLVM_DEBUG({
3088       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3089       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3090     });
3091     return;
3092   }
3093   for (const MCWriteProcResEntry &PRE :
3094        make_range(STI->getWriteProcResBegin(SCDesc),
3095                   STI->getWriteProcResEnd(SCDesc))) {
3096     if (!PRE.Cycles)
3097       continue;
3098     ++ProcResourceCount[PRE.ProcResourceIdx];
3099     LLVM_DEBUG({
3100       if (SwpDebugResource) {
3101         const MCProcResourceDesc *ProcResource =
3102             SM.getProcResource(PRE.ProcResourceIdx);
3103         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3104                          ProcResource->Name, PRE.ProcResourceIdx,
3105                          ProcResourceCount[PRE.ProcResourceIdx],
3106                          ProcResource->NumUnits, PRE.Cycles);
3107       }
3108     });
3109   }
3110   LLVM_DEBUG({
3111     if (SwpDebugResource)
3112       dbgs() << "reserveResources: done!\n\n";
3113   });
3114 }
3115 
3116 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3117   return canReserveResources(&MI.getDesc());
3118 }
3119 
3120 void ResourceManager::reserveResources(const MachineInstr &MI) {
3121   return reserveResources(&MI.getDesc());
3122 }
3123 
3124 void ResourceManager::clearResources() {
3125   if (UseDFA)
3126     return DFAResources->clearResources();
3127   std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3128 }
3129