1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 TII = MF->getSubtarget().getInstrInfo(); 221 RegClassInfo.runOnMachineFunction(*MF); 222 223 for (auto &L : *MLI) 224 scheduleLoop(*L); 225 226 return false; 227 } 228 229 /// Attempt to perform the SMS algorithm on the specified loop. This function is 230 /// the main entry point for the algorithm. The function identifies candidate 231 /// loops, calculates the minimum initiation interval, and attempts to schedule 232 /// the loop. 233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 234 bool Changed = false; 235 for (auto &InnerLoop : L) 236 Changed |= scheduleLoop(*InnerLoop); 237 238 #ifndef NDEBUG 239 // Stop trying after reaching the limit (if any). 240 int Limit = SwpLoopLimit; 241 if (Limit >= 0) { 242 if (NumTries >= SwpLoopLimit) 243 return Changed; 244 NumTries++; 245 } 246 #endif 247 248 setPragmaPipelineOptions(L); 249 if (!canPipelineLoop(L)) { 250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 251 return Changed; 252 } 253 254 ++NumTrytoPipeline; 255 256 Changed = swingModuloScheduler(L); 257 258 return Changed; 259 } 260 261 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 262 // Reset the pragma for the next loop in iteration. 263 disabledByPragma = false; 264 265 MachineBasicBlock *LBLK = L.getTopBlock(); 266 267 if (LBLK == nullptr) 268 return; 269 270 const BasicBlock *BBLK = LBLK->getBasicBlock(); 271 if (BBLK == nullptr) 272 return; 273 274 const Instruction *TI = BBLK->getTerminator(); 275 if (TI == nullptr) 276 return; 277 278 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 279 if (LoopID == nullptr) 280 return; 281 282 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 283 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 284 285 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 286 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 287 288 if (MD == nullptr) 289 continue; 290 291 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 292 293 if (S == nullptr) 294 continue; 295 296 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 297 assert(MD->getNumOperands() == 2 && 298 "Pipeline initiation interval hint metadata should have two operands."); 299 II_setByPragma = 300 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 301 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 302 } else if (S->getString() == "llvm.loop.pipeline.disable") { 303 disabledByPragma = true; 304 } 305 } 306 } 307 308 /// Return true if the loop can be software pipelined. The algorithm is 309 /// restricted to loops with a single basic block. Make sure that the 310 /// branch in the loop can be analyzed. 311 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 312 if (L.getNumBlocks() != 1) 313 return false; 314 315 if (disabledByPragma) 316 return false; 317 318 // Check if the branch can't be understood because we can't do pipelining 319 // if that's the case. 320 LI.TBB = nullptr; 321 LI.FBB = nullptr; 322 LI.BrCond.clear(); 323 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 324 LLVM_DEBUG( 325 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 326 NumFailBranch++; 327 return false; 328 } 329 330 LI.LoopInductionVar = nullptr; 331 LI.LoopCompare = nullptr; 332 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 333 LLVM_DEBUG( 334 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 335 NumFailLoop++; 336 return false; 337 } 338 339 if (!L.getLoopPreheader()) { 340 LLVM_DEBUG( 341 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 342 NumFailPreheader++; 343 return false; 344 } 345 346 // Remove any subregisters from inputs to phi nodes. 347 preprocessPhiNodes(*L.getHeader()); 348 return true; 349 } 350 351 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 352 MachineRegisterInfo &MRI = MF->getRegInfo(); 353 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 354 355 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 356 MachineOperand &DefOp = PI.getOperand(0); 357 assert(DefOp.getSubReg() == 0); 358 auto *RC = MRI.getRegClass(DefOp.getReg()); 359 360 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 361 MachineOperand &RegOp = PI.getOperand(i); 362 if (RegOp.getSubReg() == 0) 363 continue; 364 365 // If the operand uses a subregister, replace it with a new register 366 // without subregisters, and generate a copy to the new register. 367 Register NewReg = MRI.createVirtualRegister(RC); 368 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 369 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 370 const DebugLoc &DL = PredB.findDebugLoc(At); 371 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 372 .addReg(RegOp.getReg(), getRegState(RegOp), 373 RegOp.getSubReg()); 374 Slots.insertMachineInstrInMaps(*Copy); 375 RegOp.setReg(NewReg); 376 RegOp.setSubReg(0); 377 } 378 } 379 } 380 381 /// The SMS algorithm consists of the following main steps: 382 /// 1. Computation and analysis of the dependence graph. 383 /// 2. Ordering of the nodes (instructions). 384 /// 3. Attempt to Schedule the loop. 385 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 386 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 387 388 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 389 II_setByPragma); 390 391 MachineBasicBlock *MBB = L.getHeader(); 392 // The kernel should not include any terminator instructions. These 393 // will be added back later. 394 SMS.startBlock(MBB); 395 396 // Compute the number of 'real' instructions in the basic block by 397 // ignoring terminators. 398 unsigned size = MBB->size(); 399 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 400 E = MBB->instr_end(); 401 I != E; ++I, --size) 402 ; 403 404 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 405 SMS.schedule(); 406 SMS.exitRegion(); 407 408 SMS.finishBlock(); 409 return SMS.hasNewSchedule(); 410 } 411 412 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 413 if (II_setByPragma > 0) 414 MII = II_setByPragma; 415 else 416 MII = std::max(ResMII, RecMII); 417 } 418 419 void SwingSchedulerDAG::setMAX_II() { 420 if (II_setByPragma > 0) 421 MAX_II = II_setByPragma; 422 else 423 MAX_II = MII + 10; 424 } 425 426 /// We override the schedule function in ScheduleDAGInstrs to implement the 427 /// scheduling part of the Swing Modulo Scheduling algorithm. 428 void SwingSchedulerDAG::schedule() { 429 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 430 buildSchedGraph(AA); 431 addLoopCarriedDependences(AA); 432 updatePhiDependences(); 433 Topo.InitDAGTopologicalSorting(); 434 changeDependences(); 435 postprocessDAG(); 436 LLVM_DEBUG(dump()); 437 438 NodeSetType NodeSets; 439 findCircuits(NodeSets); 440 NodeSetType Circuits = NodeSets; 441 442 // Calculate the MII. 443 unsigned ResMII = calculateResMII(); 444 unsigned RecMII = calculateRecMII(NodeSets); 445 446 fuseRecs(NodeSets); 447 448 // This flag is used for testing and can cause correctness problems. 449 if (SwpIgnoreRecMII) 450 RecMII = 0; 451 452 setMII(ResMII, RecMII); 453 setMAX_II(); 454 455 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 456 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 457 458 // Can't schedule a loop without a valid MII. 459 if (MII == 0) { 460 LLVM_DEBUG( 461 dbgs() 462 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 463 NumFailZeroMII++; 464 return; 465 } 466 467 // Don't pipeline large loops. 468 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 469 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 470 << ", we don't pipleline large loops\n"); 471 NumFailLargeMaxMII++; 472 return; 473 } 474 475 computeNodeFunctions(NodeSets); 476 477 registerPressureFilter(NodeSets); 478 479 colocateNodeSets(NodeSets); 480 481 checkNodeSets(NodeSets); 482 483 LLVM_DEBUG({ 484 for (auto &I : NodeSets) { 485 dbgs() << " Rec NodeSet "; 486 I.dump(); 487 } 488 }); 489 490 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 491 492 groupRemainingNodes(NodeSets); 493 494 removeDuplicateNodes(NodeSets); 495 496 LLVM_DEBUG({ 497 for (auto &I : NodeSets) { 498 dbgs() << " NodeSet "; 499 I.dump(); 500 } 501 }); 502 503 computeNodeOrder(NodeSets); 504 505 // check for node order issues 506 checkValidNodeOrder(Circuits); 507 508 SMSchedule Schedule(Pass.MF); 509 Scheduled = schedulePipeline(Schedule); 510 511 if (!Scheduled){ 512 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 513 NumFailNoSchedule++; 514 return; 515 } 516 517 unsigned numStages = Schedule.getMaxStageCount(); 518 // No need to generate pipeline if there are no overlapped iterations. 519 if (numStages == 0) { 520 LLVM_DEBUG( 521 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 522 NumFailZeroStage++; 523 return; 524 } 525 // Check that the maximum stage count is less than user-defined limit. 526 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 527 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 528 << " : too many stages, abort\n"); 529 NumFailLargeMaxStage++; 530 return; 531 } 532 533 // Generate the schedule as a ModuloSchedule. 534 DenseMap<MachineInstr *, int> Cycles, Stages; 535 std::vector<MachineInstr *> OrderedInsts; 536 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 537 ++Cycle) { 538 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 539 OrderedInsts.push_back(SU->getInstr()); 540 Cycles[SU->getInstr()] = Cycle; 541 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 542 } 543 } 544 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 545 for (auto &KV : NewMIs) { 546 Cycles[KV.first] = Cycles[KV.second]; 547 Stages[KV.first] = Stages[KV.second]; 548 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 549 } 550 551 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 552 std::move(Stages)); 553 if (EmitTestAnnotations) { 554 assert(NewInstrChanges.empty() && 555 "Cannot serialize a schedule with InstrChanges!"); 556 ModuloScheduleTestAnnotater MSTI(MF, MS); 557 MSTI.annotate(); 558 return; 559 } 560 // The experimental code generator can't work if there are InstChanges. 561 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 562 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 563 MSE.expand(); 564 } else { 565 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 566 MSE.expand(); 567 MSE.cleanup(); 568 } 569 ++NumPipelined; 570 } 571 572 /// Clean up after the software pipeliner runs. 573 void SwingSchedulerDAG::finishBlock() { 574 for (auto &KV : NewMIs) 575 MF.DeleteMachineInstr(KV.second); 576 NewMIs.clear(); 577 578 // Call the superclass. 579 ScheduleDAGInstrs::finishBlock(); 580 } 581 582 /// Return the register values for the operands of a Phi instruction. 583 /// This function assume the instruction is a Phi. 584 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 585 unsigned &InitVal, unsigned &LoopVal) { 586 assert(Phi.isPHI() && "Expecting a Phi."); 587 588 InitVal = 0; 589 LoopVal = 0; 590 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 591 if (Phi.getOperand(i + 1).getMBB() != Loop) 592 InitVal = Phi.getOperand(i).getReg(); 593 else 594 LoopVal = Phi.getOperand(i).getReg(); 595 596 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 597 } 598 599 /// Return the Phi register value that comes the loop block. 600 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 601 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 602 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 603 return Phi.getOperand(i).getReg(); 604 return 0; 605 } 606 607 /// Return true if SUb can be reached from SUa following the chain edges. 608 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 609 SmallPtrSet<SUnit *, 8> Visited; 610 SmallVector<SUnit *, 8> Worklist; 611 Worklist.push_back(SUa); 612 while (!Worklist.empty()) { 613 const SUnit *SU = Worklist.pop_back_val(); 614 for (auto &SI : SU->Succs) { 615 SUnit *SuccSU = SI.getSUnit(); 616 if (SI.getKind() == SDep::Order) { 617 if (Visited.count(SuccSU)) 618 continue; 619 if (SuccSU == SUb) 620 return true; 621 Worklist.push_back(SuccSU); 622 Visited.insert(SuccSU); 623 } 624 } 625 } 626 return false; 627 } 628 629 /// Return true if the instruction causes a chain between memory 630 /// references before and after it. 631 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 632 return MI.isCall() || MI.mayRaiseFPException() || 633 MI.hasUnmodeledSideEffects() || 634 (MI.hasOrderedMemoryRef() && 635 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 636 } 637 638 /// Return the underlying objects for the memory references of an instruction. 639 /// This function calls the code in ValueTracking, but first checks that the 640 /// instruction has a memory operand. 641 static void getUnderlyingObjects(const MachineInstr *MI, 642 SmallVectorImpl<const Value *> &Objs, 643 const DataLayout &DL) { 644 if (!MI->hasOneMemOperand()) 645 return; 646 MachineMemOperand *MM = *MI->memoperands_begin(); 647 if (!MM->getValue()) 648 return; 649 GetUnderlyingObjects(MM->getValue(), Objs, DL); 650 for (const Value *V : Objs) { 651 if (!isIdentifiedObject(V)) { 652 Objs.clear(); 653 return; 654 } 655 Objs.push_back(V); 656 } 657 } 658 659 /// Add a chain edge between a load and store if the store can be an 660 /// alias of the load on a subsequent iteration, i.e., a loop carried 661 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 662 /// but that code doesn't create loop carried dependences. 663 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 664 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 665 Value *UnknownValue = 666 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 667 for (auto &SU : SUnits) { 668 MachineInstr &MI = *SU.getInstr(); 669 if (isDependenceBarrier(MI, AA)) 670 PendingLoads.clear(); 671 else if (MI.mayLoad()) { 672 SmallVector<const Value *, 4> Objs; 673 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 674 if (Objs.empty()) 675 Objs.push_back(UnknownValue); 676 for (auto V : Objs) { 677 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 678 SUs.push_back(&SU); 679 } 680 } else if (MI.mayStore()) { 681 SmallVector<const Value *, 4> Objs; 682 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 683 if (Objs.empty()) 684 Objs.push_back(UnknownValue); 685 for (auto V : Objs) { 686 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 687 PendingLoads.find(V); 688 if (I == PendingLoads.end()) 689 continue; 690 for (auto Load : I->second) { 691 if (isSuccOrder(Load, &SU)) 692 continue; 693 MachineInstr &LdMI = *Load->getInstr(); 694 // First, perform the cheaper check that compares the base register. 695 // If they are the same and the load offset is less than the store 696 // offset, then mark the dependence as loop carried potentially. 697 const MachineOperand *BaseOp1, *BaseOp2; 698 int64_t Offset1, Offset2; 699 bool Offset1IsScalable, Offset2IsScalable; 700 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 701 Offset1IsScalable, TRI) && 702 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 703 Offset2IsScalable, TRI)) { 704 if (BaseOp1->isIdenticalTo(*BaseOp2) && 705 Offset1IsScalable == Offset2IsScalable && 706 (int)Offset1 < (int)Offset2) { 707 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 708 "What happened to the chain edge?"); 709 SDep Dep(Load, SDep::Barrier); 710 Dep.setLatency(1); 711 SU.addPred(Dep); 712 continue; 713 } 714 } 715 // Second, the more expensive check that uses alias analysis on the 716 // base registers. If they alias, and the load offset is less than 717 // the store offset, the mark the dependence as loop carried. 718 if (!AA) { 719 SDep Dep(Load, SDep::Barrier); 720 Dep.setLatency(1); 721 SU.addPred(Dep); 722 continue; 723 } 724 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 725 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 726 if (!MMO1->getValue() || !MMO2->getValue()) { 727 SDep Dep(Load, SDep::Barrier); 728 Dep.setLatency(1); 729 SU.addPred(Dep); 730 continue; 731 } 732 if (MMO1->getValue() == MMO2->getValue() && 733 MMO1->getOffset() <= MMO2->getOffset()) { 734 SDep Dep(Load, SDep::Barrier); 735 Dep.setLatency(1); 736 SU.addPred(Dep); 737 continue; 738 } 739 AliasResult AAResult = AA->alias( 740 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 741 MMO1->getAAInfo()), 742 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 743 MMO2->getAAInfo())); 744 745 if (AAResult != NoAlias) { 746 SDep Dep(Load, SDep::Barrier); 747 Dep.setLatency(1); 748 SU.addPred(Dep); 749 } 750 } 751 } 752 } 753 } 754 } 755 756 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 757 /// processes dependences for PHIs. This function adds true dependences 758 /// from a PHI to a use, and a loop carried dependence from the use to the 759 /// PHI. The loop carried dependence is represented as an anti dependence 760 /// edge. This function also removes chain dependences between unrelated 761 /// PHIs. 762 void SwingSchedulerDAG::updatePhiDependences() { 763 SmallVector<SDep, 4> RemoveDeps; 764 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 765 766 // Iterate over each DAG node. 767 for (SUnit &I : SUnits) { 768 RemoveDeps.clear(); 769 // Set to true if the instruction has an operand defined by a Phi. 770 unsigned HasPhiUse = 0; 771 unsigned HasPhiDef = 0; 772 MachineInstr *MI = I.getInstr(); 773 // Iterate over each operand, and we process the definitions. 774 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 775 MOE = MI->operands_end(); 776 MOI != MOE; ++MOI) { 777 if (!MOI->isReg()) 778 continue; 779 Register Reg = MOI->getReg(); 780 if (MOI->isDef()) { 781 // If the register is used by a Phi, then create an anti dependence. 782 for (MachineRegisterInfo::use_instr_iterator 783 UI = MRI.use_instr_begin(Reg), 784 UE = MRI.use_instr_end(); 785 UI != UE; ++UI) { 786 MachineInstr *UseMI = &*UI; 787 SUnit *SU = getSUnit(UseMI); 788 if (SU != nullptr && UseMI->isPHI()) { 789 if (!MI->isPHI()) { 790 SDep Dep(SU, SDep::Anti, Reg); 791 Dep.setLatency(1); 792 I.addPred(Dep); 793 } else { 794 HasPhiDef = Reg; 795 // Add a chain edge to a dependent Phi that isn't an existing 796 // predecessor. 797 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 798 I.addPred(SDep(SU, SDep::Barrier)); 799 } 800 } 801 } 802 } else if (MOI->isUse()) { 803 // If the register is defined by a Phi, then create a true dependence. 804 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 805 if (DefMI == nullptr) 806 continue; 807 SUnit *SU = getSUnit(DefMI); 808 if (SU != nullptr && DefMI->isPHI()) { 809 if (!MI->isPHI()) { 810 SDep Dep(SU, SDep::Data, Reg); 811 Dep.setLatency(0); 812 ST.adjustSchedDependency(SU, &I, Dep); 813 I.addPred(Dep); 814 } else { 815 HasPhiUse = Reg; 816 // Add a chain edge to a dependent Phi that isn't an existing 817 // predecessor. 818 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 819 I.addPred(SDep(SU, SDep::Barrier)); 820 } 821 } 822 } 823 } 824 // Remove order dependences from an unrelated Phi. 825 if (!SwpPruneDeps) 826 continue; 827 for (auto &PI : I.Preds) { 828 MachineInstr *PMI = PI.getSUnit()->getInstr(); 829 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 830 if (I.getInstr()->isPHI()) { 831 if (PMI->getOperand(0).getReg() == HasPhiUse) 832 continue; 833 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 834 continue; 835 } 836 RemoveDeps.push_back(PI); 837 } 838 } 839 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 840 I.removePred(RemoveDeps[i]); 841 } 842 } 843 844 /// Iterate over each DAG node and see if we can change any dependences 845 /// in order to reduce the recurrence MII. 846 void SwingSchedulerDAG::changeDependences() { 847 // See if an instruction can use a value from the previous iteration. 848 // If so, we update the base and offset of the instruction and change 849 // the dependences. 850 for (SUnit &I : SUnits) { 851 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 852 int64_t NewOffset = 0; 853 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 854 NewOffset)) 855 continue; 856 857 // Get the MI and SUnit for the instruction that defines the original base. 858 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 859 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 860 if (!DefMI) 861 continue; 862 SUnit *DefSU = getSUnit(DefMI); 863 if (!DefSU) 864 continue; 865 // Get the MI and SUnit for the instruction that defins the new base. 866 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 867 if (!LastMI) 868 continue; 869 SUnit *LastSU = getSUnit(LastMI); 870 if (!LastSU) 871 continue; 872 873 if (Topo.IsReachable(&I, LastSU)) 874 continue; 875 876 // Remove the dependence. The value now depends on a prior iteration. 877 SmallVector<SDep, 4> Deps; 878 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 879 ++P) 880 if (P->getSUnit() == DefSU) 881 Deps.push_back(*P); 882 for (int i = 0, e = Deps.size(); i != e; i++) { 883 Topo.RemovePred(&I, Deps[i].getSUnit()); 884 I.removePred(Deps[i]); 885 } 886 // Remove the chain dependence between the instructions. 887 Deps.clear(); 888 for (auto &P : LastSU->Preds) 889 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 890 Deps.push_back(P); 891 for (int i = 0, e = Deps.size(); i != e; i++) { 892 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 893 LastSU->removePred(Deps[i]); 894 } 895 896 // Add a dependence between the new instruction and the instruction 897 // that defines the new base. 898 SDep Dep(&I, SDep::Anti, NewBase); 899 Topo.AddPred(LastSU, &I); 900 LastSU->addPred(Dep); 901 902 // Remember the base and offset information so that we can update the 903 // instruction during code generation. 904 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 905 } 906 } 907 908 namespace { 909 910 // FuncUnitSorter - Comparison operator used to sort instructions by 911 // the number of functional unit choices. 912 struct FuncUnitSorter { 913 const InstrItineraryData *InstrItins; 914 const MCSubtargetInfo *STI; 915 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 916 917 FuncUnitSorter(const TargetSubtargetInfo &TSI) 918 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 919 920 // Compute the number of functional unit alternatives needed 921 // at each stage, and take the minimum value. We prioritize the 922 // instructions by the least number of choices first. 923 unsigned minFuncUnits(const MachineInstr *Inst, 924 InstrStage::FuncUnits &F) const { 925 unsigned SchedClass = Inst->getDesc().getSchedClass(); 926 unsigned min = UINT_MAX; 927 if (InstrItins && !InstrItins->isEmpty()) { 928 for (const InstrStage &IS : 929 make_range(InstrItins->beginStage(SchedClass), 930 InstrItins->endStage(SchedClass))) { 931 InstrStage::FuncUnits funcUnits = IS.getUnits(); 932 unsigned numAlternatives = countPopulation(funcUnits); 933 if (numAlternatives < min) { 934 min = numAlternatives; 935 F = funcUnits; 936 } 937 } 938 return min; 939 } 940 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 941 const MCSchedClassDesc *SCDesc = 942 STI->getSchedModel().getSchedClassDesc(SchedClass); 943 if (!SCDesc->isValid()) 944 // No valid Schedule Class Desc for schedClass, should be 945 // Pseudo/PostRAPseudo 946 return min; 947 948 for (const MCWriteProcResEntry &PRE : 949 make_range(STI->getWriteProcResBegin(SCDesc), 950 STI->getWriteProcResEnd(SCDesc))) { 951 if (!PRE.Cycles) 952 continue; 953 const MCProcResourceDesc *ProcResource = 954 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 955 unsigned NumUnits = ProcResource->NumUnits; 956 if (NumUnits < min) { 957 min = NumUnits; 958 F = PRE.ProcResourceIdx; 959 } 960 } 961 return min; 962 } 963 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 964 } 965 966 // Compute the critical resources needed by the instruction. This 967 // function records the functional units needed by instructions that 968 // must use only one functional unit. We use this as a tie breaker 969 // for computing the resource MII. The instrutions that require 970 // the same, highly used, functional unit have high priority. 971 void calcCriticalResources(MachineInstr &MI) { 972 unsigned SchedClass = MI.getDesc().getSchedClass(); 973 if (InstrItins && !InstrItins->isEmpty()) { 974 for (const InstrStage &IS : 975 make_range(InstrItins->beginStage(SchedClass), 976 InstrItins->endStage(SchedClass))) { 977 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 978 if (countPopulation(FuncUnits) == 1) 979 Resources[FuncUnits]++; 980 } 981 return; 982 } 983 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 984 const MCSchedClassDesc *SCDesc = 985 STI->getSchedModel().getSchedClassDesc(SchedClass); 986 if (!SCDesc->isValid()) 987 // No valid Schedule Class Desc for schedClass, should be 988 // Pseudo/PostRAPseudo 989 return; 990 991 for (const MCWriteProcResEntry &PRE : 992 make_range(STI->getWriteProcResBegin(SCDesc), 993 STI->getWriteProcResEnd(SCDesc))) { 994 if (!PRE.Cycles) 995 continue; 996 Resources[PRE.ProcResourceIdx]++; 997 } 998 return; 999 } 1000 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1001 } 1002 1003 /// Return true if IS1 has less priority than IS2. 1004 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1005 InstrStage::FuncUnits F1 = 0, F2 = 0; 1006 unsigned MFUs1 = minFuncUnits(IS1, F1); 1007 unsigned MFUs2 = minFuncUnits(IS2, F2); 1008 if (MFUs1 == MFUs2) 1009 return Resources.lookup(F1) < Resources.lookup(F2); 1010 return MFUs1 > MFUs2; 1011 } 1012 }; 1013 1014 } // end anonymous namespace 1015 1016 /// Calculate the resource constrained minimum initiation interval for the 1017 /// specified loop. We use the DFA to model the resources needed for 1018 /// each instruction, and we ignore dependences. A different DFA is created 1019 /// for each cycle that is required. When adding a new instruction, we attempt 1020 /// to add it to each existing DFA, until a legal space is found. If the 1021 /// instruction cannot be reserved in an existing DFA, we create a new one. 1022 unsigned SwingSchedulerDAG::calculateResMII() { 1023 1024 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1025 SmallVector<ResourceManager*, 8> Resources; 1026 MachineBasicBlock *MBB = Loop.getHeader(); 1027 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1028 1029 // Sort the instructions by the number of available choices for scheduling, 1030 // least to most. Use the number of critical resources as the tie breaker. 1031 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1032 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1033 E = MBB->getFirstTerminator(); 1034 I != E; ++I) 1035 FUS.calcCriticalResources(*I); 1036 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1037 FuncUnitOrder(FUS); 1038 1039 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1040 E = MBB->getFirstTerminator(); 1041 I != E; ++I) 1042 FuncUnitOrder.push(&*I); 1043 1044 while (!FuncUnitOrder.empty()) { 1045 MachineInstr *MI = FuncUnitOrder.top(); 1046 FuncUnitOrder.pop(); 1047 if (TII->isZeroCost(MI->getOpcode())) 1048 continue; 1049 // Attempt to reserve the instruction in an existing DFA. At least one 1050 // DFA is needed for each cycle. 1051 unsigned NumCycles = getSUnit(MI)->Latency; 1052 unsigned ReservedCycles = 0; 1053 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1054 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1055 LLVM_DEBUG({ 1056 dbgs() << "Trying to reserve resource for " << NumCycles 1057 << " cycles for \n"; 1058 MI->dump(); 1059 }); 1060 for (unsigned C = 0; C < NumCycles; ++C) 1061 while (RI != RE) { 1062 if ((*RI)->canReserveResources(*MI)) { 1063 (*RI)->reserveResources(*MI); 1064 ++ReservedCycles; 1065 break; 1066 } 1067 RI++; 1068 } 1069 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1070 << ", NumCycles:" << NumCycles << "\n"); 1071 // Add new DFAs, if needed, to reserve resources. 1072 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1073 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1074 << "NewResource created to reserve resources" 1075 << "\n"); 1076 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1077 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1078 NewResource->reserveResources(*MI); 1079 Resources.push_back(NewResource); 1080 } 1081 } 1082 int Resmii = Resources.size(); 1083 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1084 // Delete the memory for each of the DFAs that were created earlier. 1085 for (ResourceManager *RI : Resources) { 1086 ResourceManager *D = RI; 1087 delete D; 1088 } 1089 Resources.clear(); 1090 return Resmii; 1091 } 1092 1093 /// Calculate the recurrence-constrainted minimum initiation interval. 1094 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1095 /// for each circuit. The II needs to satisfy the inequality 1096 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1097 /// II that satisfies the inequality, and the RecMII is the maximum 1098 /// of those values. 1099 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1100 unsigned RecMII = 0; 1101 1102 for (NodeSet &Nodes : NodeSets) { 1103 if (Nodes.empty()) 1104 continue; 1105 1106 unsigned Delay = Nodes.getLatency(); 1107 unsigned Distance = 1; 1108 1109 // ii = ceil(delay / distance) 1110 unsigned CurMII = (Delay + Distance - 1) / Distance; 1111 Nodes.setRecMII(CurMII); 1112 if (CurMII > RecMII) 1113 RecMII = CurMII; 1114 } 1115 1116 return RecMII; 1117 } 1118 1119 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1120 /// but we do this to find the circuits, and then change them back. 1121 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1122 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1123 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1124 SUnit *SU = &SUnits[i]; 1125 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1126 IP != EP; ++IP) { 1127 if (IP->getKind() != SDep::Anti) 1128 continue; 1129 DepsAdded.push_back(std::make_pair(SU, *IP)); 1130 } 1131 } 1132 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1133 E = DepsAdded.end(); 1134 I != E; ++I) { 1135 // Remove this anti dependency and add one in the reverse direction. 1136 SUnit *SU = I->first; 1137 SDep &D = I->second; 1138 SUnit *TargetSU = D.getSUnit(); 1139 unsigned Reg = D.getReg(); 1140 unsigned Lat = D.getLatency(); 1141 SU->removePred(D); 1142 SDep Dep(SU, SDep::Anti, Reg); 1143 Dep.setLatency(Lat); 1144 TargetSU->addPred(Dep); 1145 } 1146 } 1147 1148 /// Create the adjacency structure of the nodes in the graph. 1149 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1150 SwingSchedulerDAG *DAG) { 1151 BitVector Added(SUnits.size()); 1152 DenseMap<int, int> OutputDeps; 1153 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1154 Added.reset(); 1155 // Add any successor to the adjacency matrix and exclude duplicates. 1156 for (auto &SI : SUnits[i].Succs) { 1157 // Only create a back-edge on the first and last nodes of a dependence 1158 // chain. This records any chains and adds them later. 1159 if (SI.getKind() == SDep::Output) { 1160 int N = SI.getSUnit()->NodeNum; 1161 int BackEdge = i; 1162 auto Dep = OutputDeps.find(BackEdge); 1163 if (Dep != OutputDeps.end()) { 1164 BackEdge = Dep->second; 1165 OutputDeps.erase(Dep); 1166 } 1167 OutputDeps[N] = BackEdge; 1168 } 1169 // Do not process a boundary node, an artificial node. 1170 // A back-edge is processed only if it goes to a Phi. 1171 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1172 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1173 continue; 1174 int N = SI.getSUnit()->NodeNum; 1175 if (!Added.test(N)) { 1176 AdjK[i].push_back(N); 1177 Added.set(N); 1178 } 1179 } 1180 // A chain edge between a store and a load is treated as a back-edge in the 1181 // adjacency matrix. 1182 for (auto &PI : SUnits[i].Preds) { 1183 if (!SUnits[i].getInstr()->mayStore() || 1184 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1185 continue; 1186 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1187 int N = PI.getSUnit()->NodeNum; 1188 if (!Added.test(N)) { 1189 AdjK[i].push_back(N); 1190 Added.set(N); 1191 } 1192 } 1193 } 1194 } 1195 // Add back-edges in the adjacency matrix for the output dependences. 1196 for (auto &OD : OutputDeps) 1197 if (!Added.test(OD.second)) { 1198 AdjK[OD.first].push_back(OD.second); 1199 Added.set(OD.second); 1200 } 1201 } 1202 1203 /// Identify an elementary circuit in the dependence graph starting at the 1204 /// specified node. 1205 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1206 bool HasBackedge) { 1207 SUnit *SV = &SUnits[V]; 1208 bool F = false; 1209 Stack.insert(SV); 1210 Blocked.set(V); 1211 1212 for (auto W : AdjK[V]) { 1213 if (NumPaths > MaxPaths) 1214 break; 1215 if (W < S) 1216 continue; 1217 if (W == S) { 1218 if (!HasBackedge) 1219 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1220 F = true; 1221 ++NumPaths; 1222 break; 1223 } else if (!Blocked.test(W)) { 1224 if (circuit(W, S, NodeSets, 1225 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1226 F = true; 1227 } 1228 } 1229 1230 if (F) 1231 unblock(V); 1232 else { 1233 for (auto W : AdjK[V]) { 1234 if (W < S) 1235 continue; 1236 if (B[W].count(SV) == 0) 1237 B[W].insert(SV); 1238 } 1239 } 1240 Stack.pop_back(); 1241 return F; 1242 } 1243 1244 /// Unblock a node in the circuit finding algorithm. 1245 void SwingSchedulerDAG::Circuits::unblock(int U) { 1246 Blocked.reset(U); 1247 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1248 while (!BU.empty()) { 1249 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1250 assert(SI != BU.end() && "Invalid B set."); 1251 SUnit *W = *SI; 1252 BU.erase(W); 1253 if (Blocked.test(W->NodeNum)) 1254 unblock(W->NodeNum); 1255 } 1256 } 1257 1258 /// Identify all the elementary circuits in the dependence graph using 1259 /// Johnson's circuit algorithm. 1260 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1261 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1262 // but we do this to find the circuits, and then change them back. 1263 swapAntiDependences(SUnits); 1264 1265 Circuits Cir(SUnits, Topo); 1266 // Create the adjacency structure. 1267 Cir.createAdjacencyStructure(this); 1268 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1269 Cir.reset(); 1270 Cir.circuit(i, i, NodeSets); 1271 } 1272 1273 // Change the dependences back so that we've created a DAG again. 1274 swapAntiDependences(SUnits); 1275 } 1276 1277 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1278 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1279 // additional copies that are needed across iterations. An artificial dependence 1280 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1281 1282 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1283 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1284 // PHI-------True-Dep------> USEOfPhi 1285 1286 // The mutation creates 1287 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1288 1289 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1290 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1291 // late to avoid additional copies across iterations. The possible scheduling 1292 // order would be 1293 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1294 1295 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1296 for (SUnit &SU : DAG->SUnits) { 1297 // Find the COPY/REG_SEQUENCE instruction. 1298 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1299 continue; 1300 1301 // Record the loop carried PHIs. 1302 SmallVector<SUnit *, 4> PHISUs; 1303 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1304 SmallVector<SUnit *, 4> SrcSUs; 1305 1306 for (auto &Dep : SU.Preds) { 1307 SUnit *TmpSU = Dep.getSUnit(); 1308 MachineInstr *TmpMI = TmpSU->getInstr(); 1309 SDep::Kind DepKind = Dep.getKind(); 1310 // Save the loop carried PHI. 1311 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1312 PHISUs.push_back(TmpSU); 1313 // Save the source of COPY/REG_SEQUENCE. 1314 // If the source has no pre-decessors, we will end up creating cycles. 1315 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1316 SrcSUs.push_back(TmpSU); 1317 } 1318 1319 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1320 continue; 1321 1322 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1323 // SUnit to the container. 1324 SmallVector<SUnit *, 8> UseSUs; 1325 // Do not use iterator based loop here as we are updating the container. 1326 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1327 for (auto &Dep : PHISUs[Index]->Succs) { 1328 if (Dep.getKind() != SDep::Data) 1329 continue; 1330 1331 SUnit *TmpSU = Dep.getSUnit(); 1332 MachineInstr *TmpMI = TmpSU->getInstr(); 1333 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1334 PHISUs.push_back(TmpSU); 1335 continue; 1336 } 1337 UseSUs.push_back(TmpSU); 1338 } 1339 } 1340 1341 if (UseSUs.size() == 0) 1342 continue; 1343 1344 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1345 // Add the artificial dependencies if it does not form a cycle. 1346 for (auto I : UseSUs) { 1347 for (auto Src : SrcSUs) { 1348 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1349 Src->addPred(SDep(I, SDep::Artificial)); 1350 SDAG->Topo.AddPred(Src, I); 1351 } 1352 } 1353 } 1354 } 1355 } 1356 1357 /// Return true for DAG nodes that we ignore when computing the cost functions. 1358 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1359 /// in the calculation of the ASAP, ALAP, etc functions. 1360 static bool ignoreDependence(const SDep &D, bool isPred) { 1361 if (D.isArtificial()) 1362 return true; 1363 return D.getKind() == SDep::Anti && isPred; 1364 } 1365 1366 /// Compute several functions need to order the nodes for scheduling. 1367 /// ASAP - Earliest time to schedule a node. 1368 /// ALAP - Latest time to schedule a node. 1369 /// MOV - Mobility function, difference between ALAP and ASAP. 1370 /// D - Depth of each node. 1371 /// H - Height of each node. 1372 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1373 ScheduleInfo.resize(SUnits.size()); 1374 1375 LLVM_DEBUG({ 1376 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1377 E = Topo.end(); 1378 I != E; ++I) { 1379 const SUnit &SU = SUnits[*I]; 1380 dumpNode(SU); 1381 } 1382 }); 1383 1384 int maxASAP = 0; 1385 // Compute ASAP and ZeroLatencyDepth. 1386 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1387 E = Topo.end(); 1388 I != E; ++I) { 1389 int asap = 0; 1390 int zeroLatencyDepth = 0; 1391 SUnit *SU = &SUnits[*I]; 1392 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1393 EP = SU->Preds.end(); 1394 IP != EP; ++IP) { 1395 SUnit *pred = IP->getSUnit(); 1396 if (IP->getLatency() == 0) 1397 zeroLatencyDepth = 1398 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1399 if (ignoreDependence(*IP, true)) 1400 continue; 1401 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1402 getDistance(pred, SU, *IP) * MII)); 1403 } 1404 maxASAP = std::max(maxASAP, asap); 1405 ScheduleInfo[*I].ASAP = asap; 1406 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1407 } 1408 1409 // Compute ALAP, ZeroLatencyHeight, and MOV. 1410 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1411 E = Topo.rend(); 1412 I != E; ++I) { 1413 int alap = maxASAP; 1414 int zeroLatencyHeight = 0; 1415 SUnit *SU = &SUnits[*I]; 1416 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1417 ES = SU->Succs.end(); 1418 IS != ES; ++IS) { 1419 SUnit *succ = IS->getSUnit(); 1420 if (IS->getLatency() == 0) 1421 zeroLatencyHeight = 1422 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1423 if (ignoreDependence(*IS, true)) 1424 continue; 1425 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1426 getDistance(SU, succ, *IS) * MII)); 1427 } 1428 1429 ScheduleInfo[*I].ALAP = alap; 1430 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1431 } 1432 1433 // After computing the node functions, compute the summary for each node set. 1434 for (NodeSet &I : NodeSets) 1435 I.computeNodeSetInfo(this); 1436 1437 LLVM_DEBUG({ 1438 for (unsigned i = 0; i < SUnits.size(); i++) { 1439 dbgs() << "\tNode " << i << ":\n"; 1440 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1441 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1442 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1443 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1444 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1445 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1446 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1447 } 1448 }); 1449 } 1450 1451 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1452 /// as the predecessors of the elements of NodeOrder that are not also in 1453 /// NodeOrder. 1454 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1455 SmallSetVector<SUnit *, 8> &Preds, 1456 const NodeSet *S = nullptr) { 1457 Preds.clear(); 1458 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1459 I != E; ++I) { 1460 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1461 PI != PE; ++PI) { 1462 if (S && S->count(PI->getSUnit()) == 0) 1463 continue; 1464 if (ignoreDependence(*PI, true)) 1465 continue; 1466 if (NodeOrder.count(PI->getSUnit()) == 0) 1467 Preds.insert(PI->getSUnit()); 1468 } 1469 // Back-edges are predecessors with an anti-dependence. 1470 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1471 ES = (*I)->Succs.end(); 1472 IS != ES; ++IS) { 1473 if (IS->getKind() != SDep::Anti) 1474 continue; 1475 if (S && S->count(IS->getSUnit()) == 0) 1476 continue; 1477 if (NodeOrder.count(IS->getSUnit()) == 0) 1478 Preds.insert(IS->getSUnit()); 1479 } 1480 } 1481 return !Preds.empty(); 1482 } 1483 1484 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1485 /// as the successors of the elements of NodeOrder that are not also in 1486 /// NodeOrder. 1487 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1488 SmallSetVector<SUnit *, 8> &Succs, 1489 const NodeSet *S = nullptr) { 1490 Succs.clear(); 1491 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1492 I != E; ++I) { 1493 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1494 SI != SE; ++SI) { 1495 if (S && S->count(SI->getSUnit()) == 0) 1496 continue; 1497 if (ignoreDependence(*SI, false)) 1498 continue; 1499 if (NodeOrder.count(SI->getSUnit()) == 0) 1500 Succs.insert(SI->getSUnit()); 1501 } 1502 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1503 PE = (*I)->Preds.end(); 1504 PI != PE; ++PI) { 1505 if (PI->getKind() != SDep::Anti) 1506 continue; 1507 if (S && S->count(PI->getSUnit()) == 0) 1508 continue; 1509 if (NodeOrder.count(PI->getSUnit()) == 0) 1510 Succs.insert(PI->getSUnit()); 1511 } 1512 } 1513 return !Succs.empty(); 1514 } 1515 1516 /// Return true if there is a path from the specified node to any of the nodes 1517 /// in DestNodes. Keep track and return the nodes in any path. 1518 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1519 SetVector<SUnit *> &DestNodes, 1520 SetVector<SUnit *> &Exclude, 1521 SmallPtrSet<SUnit *, 8> &Visited) { 1522 if (Cur->isBoundaryNode()) 1523 return false; 1524 if (Exclude.count(Cur) != 0) 1525 return false; 1526 if (DestNodes.count(Cur) != 0) 1527 return true; 1528 if (!Visited.insert(Cur).second) 1529 return Path.count(Cur) != 0; 1530 bool FoundPath = false; 1531 for (auto &SI : Cur->Succs) 1532 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1533 for (auto &PI : Cur->Preds) 1534 if (PI.getKind() == SDep::Anti) 1535 FoundPath |= 1536 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1537 if (FoundPath) 1538 Path.insert(Cur); 1539 return FoundPath; 1540 } 1541 1542 /// Return true if Set1 is a subset of Set2. 1543 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1544 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1545 if (Set2.count(*I) == 0) 1546 return false; 1547 return true; 1548 } 1549 1550 /// Compute the live-out registers for the instructions in a node-set. 1551 /// The live-out registers are those that are defined in the node-set, 1552 /// but not used. Except for use operands of Phis. 1553 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1554 NodeSet &NS) { 1555 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1556 MachineRegisterInfo &MRI = MF.getRegInfo(); 1557 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1558 SmallSet<unsigned, 4> Uses; 1559 for (SUnit *SU : NS) { 1560 const MachineInstr *MI = SU->getInstr(); 1561 if (MI->isPHI()) 1562 continue; 1563 for (const MachineOperand &MO : MI->operands()) 1564 if (MO.isReg() && MO.isUse()) { 1565 Register Reg = MO.getReg(); 1566 if (Register::isVirtualRegister(Reg)) 1567 Uses.insert(Reg); 1568 else if (MRI.isAllocatable(Reg)) 1569 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1570 Uses.insert(*Units); 1571 } 1572 } 1573 for (SUnit *SU : NS) 1574 for (const MachineOperand &MO : SU->getInstr()->operands()) 1575 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1576 Register Reg = MO.getReg(); 1577 if (Register::isVirtualRegister(Reg)) { 1578 if (!Uses.count(Reg)) 1579 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1580 LaneBitmask::getNone())); 1581 } else if (MRI.isAllocatable(Reg)) { 1582 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1583 if (!Uses.count(*Units)) 1584 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1585 LaneBitmask::getNone())); 1586 } 1587 } 1588 RPTracker.addLiveRegs(LiveOutRegs); 1589 } 1590 1591 /// A heuristic to filter nodes in recurrent node-sets if the register 1592 /// pressure of a set is too high. 1593 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1594 for (auto &NS : NodeSets) { 1595 // Skip small node-sets since they won't cause register pressure problems. 1596 if (NS.size() <= 2) 1597 continue; 1598 IntervalPressure RecRegPressure; 1599 RegPressureTracker RecRPTracker(RecRegPressure); 1600 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1601 computeLiveOuts(MF, RecRPTracker, NS); 1602 RecRPTracker.closeBottom(); 1603 1604 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1605 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1606 return A->NodeNum > B->NodeNum; 1607 }); 1608 1609 for (auto &SU : SUnits) { 1610 // Since we're computing the register pressure for a subset of the 1611 // instructions in a block, we need to set the tracker for each 1612 // instruction in the node-set. The tracker is set to the instruction 1613 // just after the one we're interested in. 1614 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1615 RecRPTracker.setPos(std::next(CurInstI)); 1616 1617 RegPressureDelta RPDelta; 1618 ArrayRef<PressureChange> CriticalPSets; 1619 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1620 CriticalPSets, 1621 RecRegPressure.MaxSetPressure); 1622 if (RPDelta.Excess.isValid()) { 1623 LLVM_DEBUG( 1624 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1625 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1626 << ":" << RPDelta.Excess.getUnitInc()); 1627 NS.setExceedPressure(SU); 1628 break; 1629 } 1630 RecRPTracker.recede(); 1631 } 1632 } 1633 } 1634 1635 /// A heuristic to colocate node sets that have the same set of 1636 /// successors. 1637 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1638 unsigned Colocate = 0; 1639 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1640 NodeSet &N1 = NodeSets[i]; 1641 SmallSetVector<SUnit *, 8> S1; 1642 if (N1.empty() || !succ_L(N1, S1)) 1643 continue; 1644 for (int j = i + 1; j < e; ++j) { 1645 NodeSet &N2 = NodeSets[j]; 1646 if (N1.compareRecMII(N2) != 0) 1647 continue; 1648 SmallSetVector<SUnit *, 8> S2; 1649 if (N2.empty() || !succ_L(N2, S2)) 1650 continue; 1651 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1652 N1.setColocate(++Colocate); 1653 N2.setColocate(Colocate); 1654 break; 1655 } 1656 } 1657 } 1658 } 1659 1660 /// Check if the existing node-sets are profitable. If not, then ignore the 1661 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1662 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1663 /// then it's best to try to schedule all instructions together instead of 1664 /// starting with the recurrent node-sets. 1665 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1666 // Look for loops with a large MII. 1667 if (MII < 17) 1668 return; 1669 // Check if the node-set contains only a simple add recurrence. 1670 for (auto &NS : NodeSets) { 1671 if (NS.getRecMII() > 2) 1672 return; 1673 if (NS.getMaxDepth() > MII) 1674 return; 1675 } 1676 NodeSets.clear(); 1677 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1678 return; 1679 } 1680 1681 /// Add the nodes that do not belong to a recurrence set into groups 1682 /// based upon connected componenets. 1683 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1684 SetVector<SUnit *> NodesAdded; 1685 SmallPtrSet<SUnit *, 8> Visited; 1686 // Add the nodes that are on a path between the previous node sets and 1687 // the current node set. 1688 for (NodeSet &I : NodeSets) { 1689 SmallSetVector<SUnit *, 8> N; 1690 // Add the nodes from the current node set to the previous node set. 1691 if (succ_L(I, N)) { 1692 SetVector<SUnit *> Path; 1693 for (SUnit *NI : N) { 1694 Visited.clear(); 1695 computePath(NI, Path, NodesAdded, I, Visited); 1696 } 1697 if (!Path.empty()) 1698 I.insert(Path.begin(), Path.end()); 1699 } 1700 // Add the nodes from the previous node set to the current node set. 1701 N.clear(); 1702 if (succ_L(NodesAdded, N)) { 1703 SetVector<SUnit *> Path; 1704 for (SUnit *NI : N) { 1705 Visited.clear(); 1706 computePath(NI, Path, I, NodesAdded, Visited); 1707 } 1708 if (!Path.empty()) 1709 I.insert(Path.begin(), Path.end()); 1710 } 1711 NodesAdded.insert(I.begin(), I.end()); 1712 } 1713 1714 // Create a new node set with the connected nodes of any successor of a node 1715 // in a recurrent set. 1716 NodeSet NewSet; 1717 SmallSetVector<SUnit *, 8> N; 1718 if (succ_L(NodesAdded, N)) 1719 for (SUnit *I : N) 1720 addConnectedNodes(I, NewSet, NodesAdded); 1721 if (!NewSet.empty()) 1722 NodeSets.push_back(NewSet); 1723 1724 // Create a new node set with the connected nodes of any predecessor of a node 1725 // in a recurrent set. 1726 NewSet.clear(); 1727 if (pred_L(NodesAdded, N)) 1728 for (SUnit *I : N) 1729 addConnectedNodes(I, NewSet, NodesAdded); 1730 if (!NewSet.empty()) 1731 NodeSets.push_back(NewSet); 1732 1733 // Create new nodes sets with the connected nodes any remaining node that 1734 // has no predecessor. 1735 for (unsigned i = 0; i < SUnits.size(); ++i) { 1736 SUnit *SU = &SUnits[i]; 1737 if (NodesAdded.count(SU) == 0) { 1738 NewSet.clear(); 1739 addConnectedNodes(SU, NewSet, NodesAdded); 1740 if (!NewSet.empty()) 1741 NodeSets.push_back(NewSet); 1742 } 1743 } 1744 } 1745 1746 /// Add the node to the set, and add all of its connected nodes to the set. 1747 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1748 SetVector<SUnit *> &NodesAdded) { 1749 NewSet.insert(SU); 1750 NodesAdded.insert(SU); 1751 for (auto &SI : SU->Succs) { 1752 SUnit *Successor = SI.getSUnit(); 1753 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1754 addConnectedNodes(Successor, NewSet, NodesAdded); 1755 } 1756 for (auto &PI : SU->Preds) { 1757 SUnit *Predecessor = PI.getSUnit(); 1758 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1759 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1760 } 1761 } 1762 1763 /// Return true if Set1 contains elements in Set2. The elements in common 1764 /// are returned in a different container. 1765 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1766 SmallSetVector<SUnit *, 8> &Result) { 1767 Result.clear(); 1768 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1769 SUnit *SU = Set1[i]; 1770 if (Set2.count(SU) != 0) 1771 Result.insert(SU); 1772 } 1773 return !Result.empty(); 1774 } 1775 1776 /// Merge the recurrence node sets that have the same initial node. 1777 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1778 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1779 ++I) { 1780 NodeSet &NI = *I; 1781 for (NodeSetType::iterator J = I + 1; J != E;) { 1782 NodeSet &NJ = *J; 1783 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1784 if (NJ.compareRecMII(NI) > 0) 1785 NI.setRecMII(NJ.getRecMII()); 1786 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1787 ++NII) 1788 I->insert(*NII); 1789 NodeSets.erase(J); 1790 E = NodeSets.end(); 1791 } else { 1792 ++J; 1793 } 1794 } 1795 } 1796 } 1797 1798 /// Remove nodes that have been scheduled in previous NodeSets. 1799 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1800 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1801 ++I) 1802 for (NodeSetType::iterator J = I + 1; J != E;) { 1803 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1804 1805 if (J->empty()) { 1806 NodeSets.erase(J); 1807 E = NodeSets.end(); 1808 } else { 1809 ++J; 1810 } 1811 } 1812 } 1813 1814 /// Compute an ordered list of the dependence graph nodes, which 1815 /// indicates the order that the nodes will be scheduled. This is a 1816 /// two-level algorithm. First, a partial order is created, which 1817 /// consists of a list of sets ordered from highest to lowest priority. 1818 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1819 SmallSetVector<SUnit *, 8> R; 1820 NodeOrder.clear(); 1821 1822 for (auto &Nodes : NodeSets) { 1823 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1824 OrderKind Order; 1825 SmallSetVector<SUnit *, 8> N; 1826 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1827 R.insert(N.begin(), N.end()); 1828 Order = BottomUp; 1829 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1830 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1831 R.insert(N.begin(), N.end()); 1832 Order = TopDown; 1833 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1834 } else if (isIntersect(N, Nodes, R)) { 1835 // If some of the successors are in the existing node-set, then use the 1836 // top-down ordering. 1837 Order = TopDown; 1838 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1839 } else if (NodeSets.size() == 1) { 1840 for (auto &N : Nodes) 1841 if (N->Succs.size() == 0) 1842 R.insert(N); 1843 Order = BottomUp; 1844 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1845 } else { 1846 // Find the node with the highest ASAP. 1847 SUnit *maxASAP = nullptr; 1848 for (SUnit *SU : Nodes) { 1849 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1850 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1851 maxASAP = SU; 1852 } 1853 R.insert(maxASAP); 1854 Order = BottomUp; 1855 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1856 } 1857 1858 while (!R.empty()) { 1859 if (Order == TopDown) { 1860 // Choose the node with the maximum height. If more than one, choose 1861 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1862 // choose the node with the lowest MOV. 1863 while (!R.empty()) { 1864 SUnit *maxHeight = nullptr; 1865 for (SUnit *I : R) { 1866 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1867 maxHeight = I; 1868 else if (getHeight(I) == getHeight(maxHeight) && 1869 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1870 maxHeight = I; 1871 else if (getHeight(I) == getHeight(maxHeight) && 1872 getZeroLatencyHeight(I) == 1873 getZeroLatencyHeight(maxHeight) && 1874 getMOV(I) < getMOV(maxHeight)) 1875 maxHeight = I; 1876 } 1877 NodeOrder.insert(maxHeight); 1878 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1879 R.remove(maxHeight); 1880 for (const auto &I : maxHeight->Succs) { 1881 if (Nodes.count(I.getSUnit()) == 0) 1882 continue; 1883 if (NodeOrder.count(I.getSUnit()) != 0) 1884 continue; 1885 if (ignoreDependence(I, false)) 1886 continue; 1887 R.insert(I.getSUnit()); 1888 } 1889 // Back-edges are predecessors with an anti-dependence. 1890 for (const auto &I : maxHeight->Preds) { 1891 if (I.getKind() != SDep::Anti) 1892 continue; 1893 if (Nodes.count(I.getSUnit()) == 0) 1894 continue; 1895 if (NodeOrder.count(I.getSUnit()) != 0) 1896 continue; 1897 R.insert(I.getSUnit()); 1898 } 1899 } 1900 Order = BottomUp; 1901 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1902 SmallSetVector<SUnit *, 8> N; 1903 if (pred_L(NodeOrder, N, &Nodes)) 1904 R.insert(N.begin(), N.end()); 1905 } else { 1906 // Choose the node with the maximum depth. If more than one, choose 1907 // the node with the maximum ZeroLatencyDepth. If still more than one, 1908 // choose the node with the lowest MOV. 1909 while (!R.empty()) { 1910 SUnit *maxDepth = nullptr; 1911 for (SUnit *I : R) { 1912 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1913 maxDepth = I; 1914 else if (getDepth(I) == getDepth(maxDepth) && 1915 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1916 maxDepth = I; 1917 else if (getDepth(I) == getDepth(maxDepth) && 1918 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1919 getMOV(I) < getMOV(maxDepth)) 1920 maxDepth = I; 1921 } 1922 NodeOrder.insert(maxDepth); 1923 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1924 R.remove(maxDepth); 1925 if (Nodes.isExceedSU(maxDepth)) { 1926 Order = TopDown; 1927 R.clear(); 1928 R.insert(Nodes.getNode(0)); 1929 break; 1930 } 1931 for (const auto &I : maxDepth->Preds) { 1932 if (Nodes.count(I.getSUnit()) == 0) 1933 continue; 1934 if (NodeOrder.count(I.getSUnit()) != 0) 1935 continue; 1936 R.insert(I.getSUnit()); 1937 } 1938 // Back-edges are predecessors with an anti-dependence. 1939 for (const auto &I : maxDepth->Succs) { 1940 if (I.getKind() != SDep::Anti) 1941 continue; 1942 if (Nodes.count(I.getSUnit()) == 0) 1943 continue; 1944 if (NodeOrder.count(I.getSUnit()) != 0) 1945 continue; 1946 R.insert(I.getSUnit()); 1947 } 1948 } 1949 Order = TopDown; 1950 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1951 SmallSetVector<SUnit *, 8> N; 1952 if (succ_L(NodeOrder, N, &Nodes)) 1953 R.insert(N.begin(), N.end()); 1954 } 1955 } 1956 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1957 } 1958 1959 LLVM_DEBUG({ 1960 dbgs() << "Node order: "; 1961 for (SUnit *I : NodeOrder) 1962 dbgs() << " " << I->NodeNum << " "; 1963 dbgs() << "\n"; 1964 }); 1965 } 1966 1967 /// Process the nodes in the computed order and create the pipelined schedule 1968 /// of the instructions, if possible. Return true if a schedule is found. 1969 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1970 1971 if (NodeOrder.empty()){ 1972 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1973 return false; 1974 } 1975 1976 bool scheduleFound = false; 1977 unsigned II = 0; 1978 // Keep increasing II until a valid schedule is found. 1979 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1980 Schedule.reset(); 1981 Schedule.setInitiationInterval(II); 1982 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1983 1984 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1985 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1986 do { 1987 SUnit *SU = *NI; 1988 1989 // Compute the schedule time for the instruction, which is based 1990 // upon the scheduled time for any predecessors/successors. 1991 int EarlyStart = INT_MIN; 1992 int LateStart = INT_MAX; 1993 // These values are set when the size of the schedule window is limited 1994 // due to chain dependences. 1995 int SchedEnd = INT_MAX; 1996 int SchedStart = INT_MIN; 1997 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1998 II, this); 1999 LLVM_DEBUG({ 2000 dbgs() << "\n"; 2001 dbgs() << "Inst (" << SU->NodeNum << ") "; 2002 SU->getInstr()->dump(); 2003 dbgs() << "\n"; 2004 }); 2005 LLVM_DEBUG({ 2006 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2007 LateStart, SchedEnd, SchedStart); 2008 }); 2009 2010 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2011 SchedStart > LateStart) 2012 scheduleFound = false; 2013 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2014 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2015 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2016 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2017 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2018 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2019 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2020 SchedEnd = 2021 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2022 // When scheduling a Phi it is better to start at the late cycle and go 2023 // backwards. The default order may insert the Phi too far away from 2024 // its first dependence. 2025 if (SU->getInstr()->isPHI()) 2026 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2027 else 2028 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2029 } else { 2030 int FirstCycle = Schedule.getFirstCycle(); 2031 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2032 FirstCycle + getASAP(SU) + II - 1, II); 2033 } 2034 // Even if we find a schedule, make sure the schedule doesn't exceed the 2035 // allowable number of stages. We keep trying if this happens. 2036 if (scheduleFound) 2037 if (SwpMaxStages > -1 && 2038 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2039 scheduleFound = false; 2040 2041 LLVM_DEBUG({ 2042 if (!scheduleFound) 2043 dbgs() << "\tCan't schedule\n"; 2044 }); 2045 } while (++NI != NE && scheduleFound); 2046 2047 // If a schedule is found, check if it is a valid schedule too. 2048 if (scheduleFound) 2049 scheduleFound = Schedule.isValidSchedule(this); 2050 } 2051 2052 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2053 << ")\n"); 2054 2055 if (scheduleFound) 2056 Schedule.finalizeSchedule(this); 2057 else 2058 Schedule.reset(); 2059 2060 return scheduleFound && Schedule.getMaxStageCount() > 0; 2061 } 2062 2063 /// Return true if we can compute the amount the instruction changes 2064 /// during each iteration. Set Delta to the amount of the change. 2065 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2066 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2067 const MachineOperand *BaseOp; 2068 int64_t Offset; 2069 bool OffsetIsScalable; 2070 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2071 return false; 2072 2073 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2074 if (OffsetIsScalable) 2075 return false; 2076 2077 if (!BaseOp->isReg()) 2078 return false; 2079 2080 Register BaseReg = BaseOp->getReg(); 2081 2082 MachineRegisterInfo &MRI = MF.getRegInfo(); 2083 // Check if there is a Phi. If so, get the definition in the loop. 2084 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2085 if (BaseDef && BaseDef->isPHI()) { 2086 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2087 BaseDef = MRI.getVRegDef(BaseReg); 2088 } 2089 if (!BaseDef) 2090 return false; 2091 2092 int D = 0; 2093 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2094 return false; 2095 2096 Delta = D; 2097 return true; 2098 } 2099 2100 /// Check if we can change the instruction to use an offset value from the 2101 /// previous iteration. If so, return true and set the base and offset values 2102 /// so that we can rewrite the load, if necessary. 2103 /// v1 = Phi(v0, v3) 2104 /// v2 = load v1, 0 2105 /// v3 = post_store v1, 4, x 2106 /// This function enables the load to be rewritten as v2 = load v3, 4. 2107 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2108 unsigned &BasePos, 2109 unsigned &OffsetPos, 2110 unsigned &NewBase, 2111 int64_t &Offset) { 2112 // Get the load instruction. 2113 if (TII->isPostIncrement(*MI)) 2114 return false; 2115 unsigned BasePosLd, OffsetPosLd; 2116 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2117 return false; 2118 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2119 2120 // Look for the Phi instruction. 2121 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2122 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2123 if (!Phi || !Phi->isPHI()) 2124 return false; 2125 // Get the register defined in the loop block. 2126 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2127 if (!PrevReg) 2128 return false; 2129 2130 // Check for the post-increment load/store instruction. 2131 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2132 if (!PrevDef || PrevDef == MI) 2133 return false; 2134 2135 if (!TII->isPostIncrement(*PrevDef)) 2136 return false; 2137 2138 unsigned BasePos1 = 0, OffsetPos1 = 0; 2139 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2140 return false; 2141 2142 // Make sure that the instructions do not access the same memory location in 2143 // the next iteration. 2144 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2145 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2146 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2147 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2148 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2149 MF.DeleteMachineInstr(NewMI); 2150 if (!Disjoint) 2151 return false; 2152 2153 // Set the return value once we determine that we return true. 2154 BasePos = BasePosLd; 2155 OffsetPos = OffsetPosLd; 2156 NewBase = PrevReg; 2157 Offset = StoreOffset; 2158 return true; 2159 } 2160 2161 /// Apply changes to the instruction if needed. The changes are need 2162 /// to improve the scheduling and depend up on the final schedule. 2163 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2164 SMSchedule &Schedule) { 2165 SUnit *SU = getSUnit(MI); 2166 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2167 InstrChanges.find(SU); 2168 if (It != InstrChanges.end()) { 2169 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2170 unsigned BasePos, OffsetPos; 2171 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2172 return; 2173 Register BaseReg = MI->getOperand(BasePos).getReg(); 2174 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2175 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2176 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2177 int BaseStageNum = Schedule.stageScheduled(SU); 2178 int BaseCycleNum = Schedule.cycleScheduled(SU); 2179 if (BaseStageNum < DefStageNum) { 2180 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2181 int OffsetDiff = DefStageNum - BaseStageNum; 2182 if (DefCycleNum < BaseCycleNum) { 2183 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2184 if (OffsetDiff > 0) 2185 --OffsetDiff; 2186 } 2187 int64_t NewOffset = 2188 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2189 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2190 SU->setInstr(NewMI); 2191 MISUnitMap[NewMI] = SU; 2192 NewMIs[MI] = NewMI; 2193 } 2194 } 2195 } 2196 2197 /// Return the instruction in the loop that defines the register. 2198 /// If the definition is a Phi, then follow the Phi operand to 2199 /// the instruction in the loop. 2200 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2201 SmallPtrSet<MachineInstr *, 8> Visited; 2202 MachineInstr *Def = MRI.getVRegDef(Reg); 2203 while (Def->isPHI()) { 2204 if (!Visited.insert(Def).second) 2205 break; 2206 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2207 if (Def->getOperand(i + 1).getMBB() == BB) { 2208 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2209 break; 2210 } 2211 } 2212 return Def; 2213 } 2214 2215 /// Return true for an order or output dependence that is loop carried 2216 /// potentially. A dependence is loop carried if the destination defines a valu 2217 /// that may be used or defined by the source in a subsequent iteration. 2218 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2219 bool isSucc) { 2220 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2221 Dep.isArtificial()) 2222 return false; 2223 2224 if (!SwpPruneLoopCarried) 2225 return true; 2226 2227 if (Dep.getKind() == SDep::Output) 2228 return true; 2229 2230 MachineInstr *SI = Source->getInstr(); 2231 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2232 if (!isSucc) 2233 std::swap(SI, DI); 2234 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2235 2236 // Assume ordered loads and stores may have a loop carried dependence. 2237 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2238 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2239 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2240 return true; 2241 2242 // Only chain dependences between a load and store can be loop carried. 2243 if (!DI->mayStore() || !SI->mayLoad()) 2244 return false; 2245 2246 unsigned DeltaS, DeltaD; 2247 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2248 return true; 2249 2250 const MachineOperand *BaseOpS, *BaseOpD; 2251 int64_t OffsetS, OffsetD; 2252 bool OffsetSIsScalable, OffsetDIsScalable; 2253 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2254 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2255 TRI) || 2256 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2257 TRI)) 2258 return true; 2259 2260 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2261 "Expected offsets to be byte offsets"); 2262 2263 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2264 return true; 2265 2266 // Check that the base register is incremented by a constant value for each 2267 // iteration. 2268 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2269 if (!Def || !Def->isPHI()) 2270 return true; 2271 unsigned InitVal = 0; 2272 unsigned LoopVal = 0; 2273 getPhiRegs(*Def, BB, InitVal, LoopVal); 2274 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2275 int D = 0; 2276 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2277 return true; 2278 2279 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2280 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2281 2282 // This is the main test, which checks the offset values and the loop 2283 // increment value to determine if the accesses may be loop carried. 2284 if (AccessSizeS == MemoryLocation::UnknownSize || 2285 AccessSizeD == MemoryLocation::UnknownSize) 2286 return true; 2287 2288 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2289 return true; 2290 2291 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2292 } 2293 2294 void SwingSchedulerDAG::postprocessDAG() { 2295 for (auto &M : Mutations) 2296 M->apply(this); 2297 } 2298 2299 /// Try to schedule the node at the specified StartCycle and continue 2300 /// until the node is schedule or the EndCycle is reached. This function 2301 /// returns true if the node is scheduled. This routine may search either 2302 /// forward or backward for a place to insert the instruction based upon 2303 /// the relative values of StartCycle and EndCycle. 2304 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2305 bool forward = true; 2306 LLVM_DEBUG({ 2307 dbgs() << "Trying to insert node between " << StartCycle << " and " 2308 << EndCycle << " II: " << II << "\n"; 2309 }); 2310 if (StartCycle > EndCycle) 2311 forward = false; 2312 2313 // The terminating condition depends on the direction. 2314 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2315 for (int curCycle = StartCycle; curCycle != termCycle; 2316 forward ? ++curCycle : --curCycle) { 2317 2318 // Add the already scheduled instructions at the specified cycle to the 2319 // DFA. 2320 ProcItinResources.clearResources(); 2321 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2322 checkCycle <= LastCycle; checkCycle += II) { 2323 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2324 2325 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 2326 E = cycleInstrs.end(); 2327 I != E; ++I) { 2328 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 2329 continue; 2330 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 2331 "These instructions have already been scheduled."); 2332 ProcItinResources.reserveResources(*(*I)->getInstr()); 2333 } 2334 } 2335 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2336 ProcItinResources.canReserveResources(*SU->getInstr())) { 2337 LLVM_DEBUG({ 2338 dbgs() << "\tinsert at cycle " << curCycle << " "; 2339 SU->getInstr()->dump(); 2340 }); 2341 2342 ScheduledInstrs[curCycle].push_back(SU); 2343 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2344 if (curCycle > LastCycle) 2345 LastCycle = curCycle; 2346 if (curCycle < FirstCycle) 2347 FirstCycle = curCycle; 2348 return true; 2349 } 2350 LLVM_DEBUG({ 2351 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2352 SU->getInstr()->dump(); 2353 }); 2354 } 2355 return false; 2356 } 2357 2358 // Return the cycle of the earliest scheduled instruction in the chain. 2359 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2360 SmallPtrSet<SUnit *, 8> Visited; 2361 SmallVector<SDep, 8> Worklist; 2362 Worklist.push_back(Dep); 2363 int EarlyCycle = INT_MAX; 2364 while (!Worklist.empty()) { 2365 const SDep &Cur = Worklist.pop_back_val(); 2366 SUnit *PrevSU = Cur.getSUnit(); 2367 if (Visited.count(PrevSU)) 2368 continue; 2369 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2370 if (it == InstrToCycle.end()) 2371 continue; 2372 EarlyCycle = std::min(EarlyCycle, it->second); 2373 for (const auto &PI : PrevSU->Preds) 2374 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2375 Worklist.push_back(PI); 2376 Visited.insert(PrevSU); 2377 } 2378 return EarlyCycle; 2379 } 2380 2381 // Return the cycle of the latest scheduled instruction in the chain. 2382 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2383 SmallPtrSet<SUnit *, 8> Visited; 2384 SmallVector<SDep, 8> Worklist; 2385 Worklist.push_back(Dep); 2386 int LateCycle = INT_MIN; 2387 while (!Worklist.empty()) { 2388 const SDep &Cur = Worklist.pop_back_val(); 2389 SUnit *SuccSU = Cur.getSUnit(); 2390 if (Visited.count(SuccSU)) 2391 continue; 2392 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2393 if (it == InstrToCycle.end()) 2394 continue; 2395 LateCycle = std::max(LateCycle, it->second); 2396 for (const auto &SI : SuccSU->Succs) 2397 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2398 Worklist.push_back(SI); 2399 Visited.insert(SuccSU); 2400 } 2401 return LateCycle; 2402 } 2403 2404 /// If an instruction has a use that spans multiple iterations, then 2405 /// return true. These instructions are characterized by having a back-ege 2406 /// to a Phi, which contains a reference to another Phi. 2407 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2408 for (auto &P : SU->Preds) 2409 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2410 for (auto &S : P.getSUnit()->Succs) 2411 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2412 return P.getSUnit(); 2413 return nullptr; 2414 } 2415 2416 /// Compute the scheduling start slot for the instruction. The start slot 2417 /// depends on any predecessor or successor nodes scheduled already. 2418 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2419 int *MinEnd, int *MaxStart, int II, 2420 SwingSchedulerDAG *DAG) { 2421 // Iterate over each instruction that has been scheduled already. The start 2422 // slot computation depends on whether the previously scheduled instruction 2423 // is a predecessor or successor of the specified instruction. 2424 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2425 2426 // Iterate over each instruction in the current cycle. 2427 for (SUnit *I : getInstructions(cycle)) { 2428 // Because we're processing a DAG for the dependences, we recognize 2429 // the back-edge in recurrences by anti dependences. 2430 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2431 const SDep &Dep = SU->Preds[i]; 2432 if (Dep.getSUnit() == I) { 2433 if (!DAG->isBackedge(SU, Dep)) { 2434 int EarlyStart = cycle + Dep.getLatency() - 2435 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2436 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2437 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2438 int End = earliestCycleInChain(Dep) + (II - 1); 2439 *MinEnd = std::min(*MinEnd, End); 2440 } 2441 } else { 2442 int LateStart = cycle - Dep.getLatency() + 2443 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2444 *MinLateStart = std::min(*MinLateStart, LateStart); 2445 } 2446 } 2447 // For instruction that requires multiple iterations, make sure that 2448 // the dependent instruction is not scheduled past the definition. 2449 SUnit *BE = multipleIterations(I, DAG); 2450 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2451 !SU->isPred(I)) 2452 *MinLateStart = std::min(*MinLateStart, cycle); 2453 } 2454 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2455 if (SU->Succs[i].getSUnit() == I) { 2456 const SDep &Dep = SU->Succs[i]; 2457 if (!DAG->isBackedge(SU, Dep)) { 2458 int LateStart = cycle - Dep.getLatency() + 2459 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2460 *MinLateStart = std::min(*MinLateStart, LateStart); 2461 if (DAG->isLoopCarriedDep(SU, Dep)) { 2462 int Start = latestCycleInChain(Dep) + 1 - II; 2463 *MaxStart = std::max(*MaxStart, Start); 2464 } 2465 } else { 2466 int EarlyStart = cycle + Dep.getLatency() - 2467 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2468 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2469 } 2470 } 2471 } 2472 } 2473 } 2474 } 2475 2476 /// Order the instructions within a cycle so that the definitions occur 2477 /// before the uses. Returns true if the instruction is added to the start 2478 /// of the list, or false if added to the end. 2479 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2480 std::deque<SUnit *> &Insts) { 2481 MachineInstr *MI = SU->getInstr(); 2482 bool OrderBeforeUse = false; 2483 bool OrderAfterDef = false; 2484 bool OrderBeforeDef = false; 2485 unsigned MoveDef = 0; 2486 unsigned MoveUse = 0; 2487 int StageInst1 = stageScheduled(SU); 2488 2489 unsigned Pos = 0; 2490 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2491 ++I, ++Pos) { 2492 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2493 MachineOperand &MO = MI->getOperand(i); 2494 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2495 continue; 2496 2497 Register Reg = MO.getReg(); 2498 unsigned BasePos, OffsetPos; 2499 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2500 if (MI->getOperand(BasePos).getReg() == Reg) 2501 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2502 Reg = NewReg; 2503 bool Reads, Writes; 2504 std::tie(Reads, Writes) = 2505 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2506 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2507 OrderBeforeUse = true; 2508 if (MoveUse == 0) 2509 MoveUse = Pos; 2510 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2511 // Add the instruction after the scheduled instruction. 2512 OrderAfterDef = true; 2513 MoveDef = Pos; 2514 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2515 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2516 OrderBeforeUse = true; 2517 if (MoveUse == 0) 2518 MoveUse = Pos; 2519 } else { 2520 OrderAfterDef = true; 2521 MoveDef = Pos; 2522 } 2523 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2524 OrderBeforeUse = true; 2525 if (MoveUse == 0) 2526 MoveUse = Pos; 2527 if (MoveUse != 0) { 2528 OrderAfterDef = true; 2529 MoveDef = Pos - 1; 2530 } 2531 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2532 // Add the instruction before the scheduled instruction. 2533 OrderBeforeUse = true; 2534 if (MoveUse == 0) 2535 MoveUse = Pos; 2536 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2537 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2538 if (MoveUse == 0) { 2539 OrderBeforeDef = true; 2540 MoveUse = Pos; 2541 } 2542 } 2543 } 2544 // Check for order dependences between instructions. Make sure the source 2545 // is ordered before the destination. 2546 for (auto &S : SU->Succs) { 2547 if (S.getSUnit() != *I) 2548 continue; 2549 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2550 OrderBeforeUse = true; 2551 if (Pos < MoveUse) 2552 MoveUse = Pos; 2553 } 2554 // We did not handle HW dependences in previous for loop, 2555 // and we normally set Latency = 0 for Anti deps, 2556 // so may have nodes in same cycle with Anti denpendent on HW regs. 2557 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2558 OrderBeforeUse = true; 2559 if ((MoveUse == 0) || (Pos < MoveUse)) 2560 MoveUse = Pos; 2561 } 2562 } 2563 for (auto &P : SU->Preds) { 2564 if (P.getSUnit() != *I) 2565 continue; 2566 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2567 OrderAfterDef = true; 2568 MoveDef = Pos; 2569 } 2570 } 2571 } 2572 2573 // A circular dependence. 2574 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2575 OrderBeforeUse = false; 2576 2577 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2578 // to a loop-carried dependence. 2579 if (OrderBeforeDef) 2580 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2581 2582 // The uncommon case when the instruction order needs to be updated because 2583 // there is both a use and def. 2584 if (OrderBeforeUse && OrderAfterDef) { 2585 SUnit *UseSU = Insts.at(MoveUse); 2586 SUnit *DefSU = Insts.at(MoveDef); 2587 if (MoveUse > MoveDef) { 2588 Insts.erase(Insts.begin() + MoveUse); 2589 Insts.erase(Insts.begin() + MoveDef); 2590 } else { 2591 Insts.erase(Insts.begin() + MoveDef); 2592 Insts.erase(Insts.begin() + MoveUse); 2593 } 2594 orderDependence(SSD, UseSU, Insts); 2595 orderDependence(SSD, SU, Insts); 2596 orderDependence(SSD, DefSU, Insts); 2597 return; 2598 } 2599 // Put the new instruction first if there is a use in the list. Otherwise, 2600 // put it at the end of the list. 2601 if (OrderBeforeUse) 2602 Insts.push_front(SU); 2603 else 2604 Insts.push_back(SU); 2605 } 2606 2607 /// Return true if the scheduled Phi has a loop carried operand. 2608 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2609 if (!Phi.isPHI()) 2610 return false; 2611 assert(Phi.isPHI() && "Expecting a Phi."); 2612 SUnit *DefSU = SSD->getSUnit(&Phi); 2613 unsigned DefCycle = cycleScheduled(DefSU); 2614 int DefStage = stageScheduled(DefSU); 2615 2616 unsigned InitVal = 0; 2617 unsigned LoopVal = 0; 2618 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2619 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2620 if (!UseSU) 2621 return true; 2622 if (UseSU->getInstr()->isPHI()) 2623 return true; 2624 unsigned LoopCycle = cycleScheduled(UseSU); 2625 int LoopStage = stageScheduled(UseSU); 2626 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2627 } 2628 2629 /// Return true if the instruction is a definition that is loop carried 2630 /// and defines the use on the next iteration. 2631 /// v1 = phi(v2, v3) 2632 /// (Def) v3 = op v1 2633 /// (MO) = v1 2634 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2635 /// register. 2636 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2637 MachineInstr *Def, MachineOperand &MO) { 2638 if (!MO.isReg()) 2639 return false; 2640 if (Def->isPHI()) 2641 return false; 2642 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2643 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2644 return false; 2645 if (!isLoopCarried(SSD, *Phi)) 2646 return false; 2647 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2648 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2649 MachineOperand &DMO = Def->getOperand(i); 2650 if (!DMO.isReg() || !DMO.isDef()) 2651 continue; 2652 if (DMO.getReg() == LoopReg) 2653 return true; 2654 } 2655 return false; 2656 } 2657 2658 // Check if the generated schedule is valid. This function checks if 2659 // an instruction that uses a physical register is scheduled in a 2660 // different stage than the definition. The pipeliner does not handle 2661 // physical register values that may cross a basic block boundary. 2662 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2663 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 2664 SUnit &SU = SSD->SUnits[i]; 2665 if (!SU.hasPhysRegDefs) 2666 continue; 2667 int StageDef = stageScheduled(&SU); 2668 assert(StageDef != -1 && "Instruction should have been scheduled."); 2669 for (auto &SI : SU.Succs) 2670 if (SI.isAssignedRegDep()) 2671 if (Register::isPhysicalRegister(SI.getReg())) 2672 if (stageScheduled(SI.getSUnit()) != StageDef) 2673 return false; 2674 } 2675 return true; 2676 } 2677 2678 /// A property of the node order in swing-modulo-scheduling is 2679 /// that for nodes outside circuits the following holds: 2680 /// none of them is scheduled after both a successor and a 2681 /// predecessor. 2682 /// The method below checks whether the property is met. 2683 /// If not, debug information is printed and statistics information updated. 2684 /// Note that we do not use an assert statement. 2685 /// The reason is that although an invalid node oder may prevent 2686 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2687 /// it does not lead to the generation of incorrect code. 2688 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2689 2690 // a sorted vector that maps each SUnit to its index in the NodeOrder 2691 typedef std::pair<SUnit *, unsigned> UnitIndex; 2692 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2693 2694 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2695 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2696 2697 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2698 return std::get<0>(i1) < std::get<0>(i2); 2699 }; 2700 2701 // sort, so that we can perform a binary search 2702 llvm::sort(Indices, CompareKey); 2703 2704 bool Valid = true; 2705 (void)Valid; 2706 // for each SUnit in the NodeOrder, check whether 2707 // it appears after both a successor and a predecessor 2708 // of the SUnit. If this is the case, and the SUnit 2709 // is not part of circuit, then the NodeOrder is not 2710 // valid. 2711 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2712 SUnit *SU = NodeOrder[i]; 2713 unsigned Index = i; 2714 2715 bool PredBefore = false; 2716 bool SuccBefore = false; 2717 2718 SUnit *Succ; 2719 SUnit *Pred; 2720 (void)Succ; 2721 (void)Pred; 2722 2723 for (SDep &PredEdge : SU->Preds) { 2724 SUnit *PredSU = PredEdge.getSUnit(); 2725 unsigned PredIndex = std::get<1>( 2726 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2727 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2728 PredBefore = true; 2729 Pred = PredSU; 2730 break; 2731 } 2732 } 2733 2734 for (SDep &SuccEdge : SU->Succs) { 2735 SUnit *SuccSU = SuccEdge.getSUnit(); 2736 // Do not process a boundary node, it was not included in NodeOrder, 2737 // hence not in Indices either, call to std::lower_bound() below will 2738 // return Indices.end(). 2739 if (SuccSU->isBoundaryNode()) 2740 continue; 2741 unsigned SuccIndex = std::get<1>( 2742 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2743 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2744 SuccBefore = true; 2745 Succ = SuccSU; 2746 break; 2747 } 2748 } 2749 2750 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2751 // instructions in circuits are allowed to be scheduled 2752 // after both a successor and predecessor. 2753 bool InCircuit = llvm::any_of( 2754 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2755 if (InCircuit) 2756 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2757 else { 2758 Valid = false; 2759 NumNodeOrderIssues++; 2760 LLVM_DEBUG(dbgs() << "Predecessor ";); 2761 } 2762 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2763 << " are scheduled before node " << SU->NodeNum 2764 << "\n";); 2765 } 2766 } 2767 2768 LLVM_DEBUG({ 2769 if (!Valid) 2770 dbgs() << "Invalid node order found!\n"; 2771 }); 2772 } 2773 2774 /// Attempt to fix the degenerate cases when the instruction serialization 2775 /// causes the register lifetimes to overlap. For example, 2776 /// p' = store_pi(p, b) 2777 /// = load p, offset 2778 /// In this case p and p' overlap, which means that two registers are needed. 2779 /// Instead, this function changes the load to use p' and updates the offset. 2780 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2781 unsigned OverlapReg = 0; 2782 unsigned NewBaseReg = 0; 2783 for (SUnit *SU : Instrs) { 2784 MachineInstr *MI = SU->getInstr(); 2785 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2786 const MachineOperand &MO = MI->getOperand(i); 2787 // Look for an instruction that uses p. The instruction occurs in the 2788 // same cycle but occurs later in the serialized order. 2789 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2790 // Check that the instruction appears in the InstrChanges structure, 2791 // which contains instructions that can have the offset updated. 2792 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2793 InstrChanges.find(SU); 2794 if (It != InstrChanges.end()) { 2795 unsigned BasePos, OffsetPos; 2796 // Update the base register and adjust the offset. 2797 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2798 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2799 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2800 int64_t NewOffset = 2801 MI->getOperand(OffsetPos).getImm() - It->second.second; 2802 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2803 SU->setInstr(NewMI); 2804 MISUnitMap[NewMI] = SU; 2805 NewMIs[MI] = NewMI; 2806 } 2807 } 2808 OverlapReg = 0; 2809 NewBaseReg = 0; 2810 break; 2811 } 2812 // Look for an instruction of the form p' = op(p), which uses and defines 2813 // two virtual registers that get allocated to the same physical register. 2814 unsigned TiedUseIdx = 0; 2815 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2816 // OverlapReg is p in the example above. 2817 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2818 // NewBaseReg is p' in the example above. 2819 NewBaseReg = MI->getOperand(i).getReg(); 2820 break; 2821 } 2822 } 2823 } 2824 } 2825 2826 /// After the schedule has been formed, call this function to combine 2827 /// the instructions from the different stages/cycles. That is, this 2828 /// function creates a schedule that represents a single iteration. 2829 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2830 // Move all instructions to the first stage from later stages. 2831 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2832 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2833 ++stage) { 2834 std::deque<SUnit *> &cycleInstrs = 2835 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2836 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2837 E = cycleInstrs.rend(); 2838 I != E; ++I) 2839 ScheduledInstrs[cycle].push_front(*I); 2840 } 2841 } 2842 2843 // Erase all the elements in the later stages. Only one iteration should 2844 // remain in the scheduled list, and it contains all the instructions. 2845 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2846 ScheduledInstrs.erase(cycle); 2847 2848 // Change the registers in instruction as specified in the InstrChanges 2849 // map. We need to use the new registers to create the correct order. 2850 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2851 SUnit *SU = &SSD->SUnits[i]; 2852 SSD->applyInstrChange(SU->getInstr(), *this); 2853 } 2854 2855 // Reorder the instructions in each cycle to fix and improve the 2856 // generated code. 2857 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2858 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2859 std::deque<SUnit *> newOrderPhi; 2860 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2861 SUnit *SU = cycleInstrs[i]; 2862 if (SU->getInstr()->isPHI()) 2863 newOrderPhi.push_back(SU); 2864 } 2865 std::deque<SUnit *> newOrderI; 2866 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2867 SUnit *SU = cycleInstrs[i]; 2868 if (!SU->getInstr()->isPHI()) 2869 orderDependence(SSD, SU, newOrderI); 2870 } 2871 // Replace the old order with the new order. 2872 cycleInstrs.swap(newOrderPhi); 2873 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 2874 SSD->fixupRegisterOverlaps(cycleInstrs); 2875 } 2876 2877 LLVM_DEBUG(dump();); 2878 } 2879 2880 void NodeSet::print(raw_ostream &os) const { 2881 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2882 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2883 for (const auto &I : Nodes) 2884 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2885 os << "\n"; 2886 } 2887 2888 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2889 /// Print the schedule information to the given output. 2890 void SMSchedule::print(raw_ostream &os) const { 2891 // Iterate over each cycle. 2892 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2893 // Iterate over each instruction in the cycle. 2894 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2895 for (SUnit *CI : cycleInstrs->second) { 2896 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2897 os << "(" << CI->NodeNum << ") "; 2898 CI->getInstr()->print(os); 2899 os << "\n"; 2900 } 2901 } 2902 } 2903 2904 /// Utility function used for debugging to print the schedule. 2905 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2906 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2907 2908 #endif 2909 2910 void ResourceManager::initProcResourceVectors( 2911 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2912 unsigned ProcResourceID = 0; 2913 2914 // We currently limit the resource kinds to 64 and below so that we can use 2915 // uint64_t for Masks 2916 assert(SM.getNumProcResourceKinds() < 64 && 2917 "Too many kinds of resources, unsupported"); 2918 // Create a unique bitmask for every processor resource unit. 2919 // Skip resource at index 0, since it always references 'InvalidUnit'. 2920 Masks.resize(SM.getNumProcResourceKinds()); 2921 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2922 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2923 if (Desc.SubUnitsIdxBegin) 2924 continue; 2925 Masks[I] = 1ULL << ProcResourceID; 2926 ProcResourceID++; 2927 } 2928 // Create a unique bitmask for every processor resource group. 2929 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2930 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2931 if (!Desc.SubUnitsIdxBegin) 2932 continue; 2933 Masks[I] = 1ULL << ProcResourceID; 2934 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2935 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2936 ProcResourceID++; 2937 } 2938 LLVM_DEBUG({ 2939 if (SwpShowResMask) { 2940 dbgs() << "ProcResourceDesc:\n"; 2941 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2942 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2943 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 2944 ProcResource->Name, I, Masks[I], 2945 ProcResource->NumUnits); 2946 } 2947 dbgs() << " -----------------\n"; 2948 } 2949 }); 2950 } 2951 2952 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 2953 2954 LLVM_DEBUG({ 2955 if (SwpDebugResource) 2956 dbgs() << "canReserveResources:\n"; 2957 }); 2958 if (UseDFA) 2959 return DFAResources->canReserveResources(MID); 2960 2961 unsigned InsnClass = MID->getSchedClass(); 2962 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 2963 if (!SCDesc->isValid()) { 2964 LLVM_DEBUG({ 2965 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 2966 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 2967 }); 2968 return true; 2969 } 2970 2971 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 2972 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 2973 for (; I != E; ++I) { 2974 if (!I->Cycles) 2975 continue; 2976 const MCProcResourceDesc *ProcResource = 2977 SM.getProcResource(I->ProcResourceIdx); 2978 unsigned NumUnits = ProcResource->NumUnits; 2979 LLVM_DEBUG({ 2980 if (SwpDebugResource) 2981 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 2982 ProcResource->Name, I->ProcResourceIdx, 2983 ProcResourceCount[I->ProcResourceIdx], NumUnits, 2984 I->Cycles); 2985 }); 2986 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 2987 return false; 2988 } 2989 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 2990 return true; 2991 } 2992 2993 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 2994 LLVM_DEBUG({ 2995 if (SwpDebugResource) 2996 dbgs() << "reserveResources:\n"; 2997 }); 2998 if (UseDFA) 2999 return DFAResources->reserveResources(MID); 3000 3001 unsigned InsnClass = MID->getSchedClass(); 3002 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3003 if (!SCDesc->isValid()) { 3004 LLVM_DEBUG({ 3005 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3006 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3007 }); 3008 return; 3009 } 3010 for (const MCWriteProcResEntry &PRE : 3011 make_range(STI->getWriteProcResBegin(SCDesc), 3012 STI->getWriteProcResEnd(SCDesc))) { 3013 if (!PRE.Cycles) 3014 continue; 3015 ++ProcResourceCount[PRE.ProcResourceIdx]; 3016 LLVM_DEBUG({ 3017 if (SwpDebugResource) { 3018 const MCProcResourceDesc *ProcResource = 3019 SM.getProcResource(PRE.ProcResourceIdx); 3020 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3021 ProcResource->Name, PRE.ProcResourceIdx, 3022 ProcResourceCount[PRE.ProcResourceIdx], 3023 ProcResource->NumUnits, PRE.Cycles); 3024 } 3025 }); 3026 } 3027 LLVM_DEBUG({ 3028 if (SwpDebugResource) 3029 dbgs() << "reserveResources: done!\n\n"; 3030 }); 3031 } 3032 3033 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3034 return canReserveResources(&MI.getDesc()); 3035 } 3036 3037 void ResourceManager::reserveResources(const MachineInstr &MI) { 3038 return reserveResources(&MI.getDesc()); 3039 } 3040 3041 void ResourceManager::clearResources() { 3042 if (UseDFA) 3043 return DFAResources->clearResources(); 3044 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3045 } 3046