1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/DebugLoc.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/MC/LaneBitmask.h" 100 #include "llvm/MC/MCInstrDesc.h" 101 #include "llvm/MC/MCInstrItineraries.h" 102 #include "llvm/MC/MCRegisterInfo.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 129 130 /// A command line option to turn software pipelining on or off. 131 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 132 cl::ZeroOrMore, 133 cl::desc("Enable Software Pipelining")); 134 135 /// A command line option to enable SWP at -Os. 136 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 137 cl::desc("Enable SWP at Os."), cl::Hidden, 138 cl::init(false)); 139 140 /// A command line argument to limit minimum initial interval for pipelining. 141 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 142 cl::desc("Size limit for the MII."), 143 cl::Hidden, cl::init(27)); 144 145 /// A command line argument to limit the number of stages in the pipeline. 146 static cl::opt<int> 147 SwpMaxStages("pipeliner-max-stages", 148 cl::desc("Maximum stages allowed in the generated scheduled."), 149 cl::Hidden, cl::init(3)); 150 151 /// A command line option to disable the pruning of chain dependences due to 152 /// an unrelated Phi. 153 static cl::opt<bool> 154 SwpPruneDeps("pipeliner-prune-deps", 155 cl::desc("Prune dependences between unrelated Phi nodes."), 156 cl::Hidden, cl::init(true)); 157 158 /// A command line option to disable the pruning of loop carried order 159 /// dependences. 160 static cl::opt<bool> 161 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 162 cl::desc("Prune loop carried order dependences."), 163 cl::Hidden, cl::init(true)); 164 165 #ifndef NDEBUG 166 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 167 #endif 168 169 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 170 cl::ReallyHidden, cl::init(false), 171 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 172 173 namespace { 174 175 class NodeSet; 176 class SMSchedule; 177 178 /// The main class in the implementation of the target independent 179 /// software pipeliner pass. 180 class MachinePipeliner : public MachineFunctionPass { 181 public: 182 MachineFunction *MF = nullptr; 183 const MachineLoopInfo *MLI = nullptr; 184 const MachineDominatorTree *MDT = nullptr; 185 const InstrItineraryData *InstrItins; 186 const TargetInstrInfo *TII = nullptr; 187 RegisterClassInfo RegClassInfo; 188 189 #ifndef NDEBUG 190 static int NumTries; 191 #endif 192 193 /// Cache the target analysis information about the loop. 194 struct LoopInfo { 195 MachineBasicBlock *TBB = nullptr; 196 MachineBasicBlock *FBB = nullptr; 197 SmallVector<MachineOperand, 4> BrCond; 198 MachineInstr *LoopInductionVar = nullptr; 199 MachineInstr *LoopCompare = nullptr; 200 }; 201 LoopInfo LI; 202 203 static char ID; 204 205 MachinePipeliner() : MachineFunctionPass(ID) { 206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnMachineFunction(MachineFunction &MF) override; 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addPreserved<AAResultsWrapperPass>(); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 private: 221 void preprocessPhiNodes(MachineBasicBlock &B); 222 bool canPipelineLoop(MachineLoop &L); 223 bool scheduleLoop(MachineLoop &L); 224 bool swingModuloScheduler(MachineLoop &L); 225 }; 226 227 /// This class builds the dependence graph for the instructions in a loop, 228 /// and attempts to schedule the instructions using the SMS algorithm. 229 class SwingSchedulerDAG : public ScheduleDAGInstrs { 230 MachinePipeliner &Pass; 231 /// The minimum initiation interval between iterations for this schedule. 232 unsigned MII = 0; 233 /// Set to true if a valid pipelined schedule is found for the loop. 234 bool Scheduled = false; 235 MachineLoop &Loop; 236 LiveIntervals &LIS; 237 const RegisterClassInfo &RegClassInfo; 238 239 /// A toplogical ordering of the SUnits, which is needed for changing 240 /// dependences and iterating over the SUnits. 241 ScheduleDAGTopologicalSort Topo; 242 243 struct NodeInfo { 244 int ASAP = 0; 245 int ALAP = 0; 246 int ZeroLatencyDepth = 0; 247 int ZeroLatencyHeight = 0; 248 249 NodeInfo() = default; 250 }; 251 /// Computed properties for each node in the graph. 252 std::vector<NodeInfo> ScheduleInfo; 253 254 enum OrderKind { BottomUp = 0, TopDown = 1 }; 255 /// Computed node ordering for scheduling. 256 SetVector<SUnit *> NodeOrder; 257 258 using NodeSetType = SmallVector<NodeSet, 8>; 259 using ValueMapTy = DenseMap<unsigned, unsigned>; 260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 262 263 /// Instructions to change when emitting the final schedule. 264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 265 266 /// We may create a new instruction, so remember it because it 267 /// must be deleted when the pass is finished. 268 SmallPtrSet<MachineInstr *, 4> NewMIs; 269 270 /// Ordered list of DAG postprocessing steps. 271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 272 273 /// Helper class to implement Johnson's circuit finding algorithm. 274 class Circuits { 275 std::vector<SUnit> &SUnits; 276 SetVector<SUnit *> Stack; 277 BitVector Blocked; 278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 279 SmallVector<SmallVector<int, 4>, 16> AdjK; 280 unsigned NumPaths; 281 static unsigned MaxPaths; 282 283 public: 284 Circuits(std::vector<SUnit> &SUs) 285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 286 287 /// Reset the data structures used in the circuit algorithm. 288 void reset() { 289 Stack.clear(); 290 Blocked.reset(); 291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 292 NumPaths = 0; 293 } 294 295 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 297 void unblock(int U); 298 }; 299 300 public: 301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 302 const RegisterClassInfo &rci) 303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 304 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 305 P.MF->getSubtarget().getSMSMutations(Mutations); 306 } 307 308 void schedule() override; 309 void finishBlock() override; 310 311 /// Return true if the loop kernel has been scheduled. 312 bool hasNewSchedule() { return Scheduled; } 313 314 /// Return the earliest time an instruction may be scheduled. 315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 316 317 /// Return the latest time an instruction my be scheduled. 318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 319 320 /// The mobility function, which the number of slots in which 321 /// an instruction may be scheduled. 322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 323 324 /// The depth, in the dependence graph, for a node. 325 unsigned getDepth(SUnit *Node) { return Node->getDepth(); } 326 327 /// The maximum unweighted length of a path from an arbitrary node to the 328 /// given node in which each edge has latency 0 329 int getZeroLatencyDepth(SUnit *Node) { 330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 331 } 332 333 /// The height, in the dependence graph, for a node. 334 unsigned getHeight(SUnit *Node) { return Node->getHeight(); } 335 336 /// The maximum unweighted length of a path from the given node to an 337 /// arbitrary node in which each edge has latency 0 338 int getZeroLatencyHeight(SUnit *Node) { 339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 340 } 341 342 /// Return true if the dependence is a back-edge in the data dependence graph. 343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 344 /// using an anti dependence from a Phi to an instruction. 345 bool isBackedge(SUnit *Source, const SDep &Dep) { 346 if (Dep.getKind() != SDep::Anti) 347 return false; 348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 349 } 350 351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); 352 353 /// The distance function, which indicates that operation V of iteration I 354 /// depends on operations U of iteration I-distance. 355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 356 // Instructions that feed a Phi have a distance of 1. Computing larger 357 // values for arrays requires data dependence information. 358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 359 return 1; 360 return 0; 361 } 362 363 /// Set the Minimum Initiation Interval for this schedule attempt. 364 void setMII(unsigned mii) { MII = mii; } 365 366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 367 368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 369 370 /// Return the new base register that was stored away for the changed 371 /// instruction. 372 unsigned getInstrBaseReg(SUnit *SU) { 373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 374 InstrChanges.find(SU); 375 if (It != InstrChanges.end()) 376 return It->second.first; 377 return 0; 378 } 379 380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 381 Mutations.push_back(std::move(Mutation)); 382 } 383 384 private: 385 void addLoopCarriedDependences(AliasAnalysis *AA); 386 void updatePhiDependences(); 387 void changeDependences(); 388 unsigned calculateResMII(); 389 unsigned calculateRecMII(NodeSetType &RecNodeSets); 390 void findCircuits(NodeSetType &NodeSets); 391 void fuseRecs(NodeSetType &NodeSets); 392 void removeDuplicateNodes(NodeSetType &NodeSets); 393 void computeNodeFunctions(NodeSetType &NodeSets); 394 void registerPressureFilter(NodeSetType &NodeSets); 395 void colocateNodeSets(NodeSetType &NodeSets); 396 void checkNodeSets(NodeSetType &NodeSets); 397 void groupRemainingNodes(NodeSetType &NodeSets); 398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 399 SetVector<SUnit *> &NodesAdded); 400 void computeNodeOrder(NodeSetType &NodeSets); 401 void checkValidNodeOrder(const NodeSetType &Circuits) const; 402 bool schedulePipeline(SMSchedule &Schedule); 403 void generatePipelinedLoop(SMSchedule &Schedule); 404 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 406 MBBVectorTy &PrologBBs); 407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 412 SMSchedule &Schedule, ValueMapTy *VRMap, 413 InstrMapTy &InstrMap, unsigned LastStageNum, 414 unsigned CurStageNum, bool IsLast); 415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 417 SMSchedule &Schedule, ValueMapTy *VRMap, 418 InstrMapTy &InstrMap, unsigned LastStageNum, 419 unsigned CurStageNum, bool IsLast); 420 void removeDeadInstructions(MachineBasicBlock *KernelBB, 421 MBBVectorTy &EpilogBBs); 422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 423 SMSchedule &Schedule); 424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 426 ValueMapTy *VRMap); 427 bool computeDelta(MachineInstr &MI, unsigned &Delta); 428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 429 unsigned Num); 430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 431 unsigned InstStageNum); 432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 433 unsigned InstStageNum, 434 SMSchedule &Schedule); 435 void updateInstruction(MachineInstr *NewMI, bool LastDef, 436 unsigned CurStageNum, unsigned InstStageNum, 437 SMSchedule &Schedule, ValueMapTy *VRMap); 438 MachineInstr *findDefInLoop(unsigned Reg); 439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 440 unsigned LoopStage, ValueMapTy *VRMap, 441 MachineBasicBlock *BB); 442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 443 SMSchedule &Schedule, ValueMapTy *VRMap, 444 InstrMapTy &InstrMap); 445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 446 InstrMapTy &InstrMap, unsigned CurStageNum, 447 unsigned PhiNum, MachineInstr *Phi, 448 unsigned OldReg, unsigned NewReg, 449 unsigned PrevReg = 0); 450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 451 unsigned &OffsetPos, unsigned &NewBase, 452 int64_t &NewOffset); 453 void postprocessDAG(); 454 }; 455 456 /// A NodeSet contains a set of SUnit DAG nodes with additional information 457 /// that assigns a priority to the set. 458 class NodeSet { 459 SetVector<SUnit *> Nodes; 460 bool HasRecurrence = false; 461 unsigned RecMII = 0; 462 int MaxMOV = 0; 463 unsigned MaxDepth = 0; 464 unsigned Colocate = 0; 465 SUnit *ExceedPressure = nullptr; 466 unsigned Latency = 0; 467 468 public: 469 using iterator = SetVector<SUnit *>::const_iterator; 470 471 NodeSet() = default; 472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { 473 Latency = 0; 474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i) 475 for (const SDep &Succ : Nodes[i]->Succs) 476 if (Nodes.count(Succ.getSUnit())) 477 Latency += Succ.getLatency(); 478 } 479 480 bool insert(SUnit *SU) { return Nodes.insert(SU); } 481 482 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 483 484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 485 return Nodes.remove_if(P); 486 } 487 488 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 489 490 bool hasRecurrence() { return HasRecurrence; }; 491 492 unsigned size() const { return Nodes.size(); } 493 494 bool empty() const { return Nodes.empty(); } 495 496 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 497 498 void setRecMII(unsigned mii) { RecMII = mii; }; 499 500 void setColocate(unsigned c) { Colocate = c; }; 501 502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 503 504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 505 506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 507 508 int getRecMII() { return RecMII; } 509 510 /// Summarize node functions for the entire node set. 511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 512 for (SUnit *SU : *this) { 513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 515 } 516 } 517 518 unsigned getLatency() { return Latency; } 519 520 unsigned getMaxDepth() { return MaxDepth; } 521 522 void clear() { 523 Nodes.clear(); 524 RecMII = 0; 525 HasRecurrence = false; 526 MaxMOV = 0; 527 MaxDepth = 0; 528 Colocate = 0; 529 ExceedPressure = nullptr; 530 } 531 532 operator SetVector<SUnit *> &() { return Nodes; } 533 534 /// Sort the node sets by importance. First, rank them by recurrence MII, 535 /// then by mobility (least mobile done first), and finally by depth. 536 /// Each node set may contain a colocate value which is used as the first 537 /// tie breaker, if it's set. 538 bool operator>(const NodeSet &RHS) const { 539 if (RecMII == RHS.RecMII) { 540 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 541 return Colocate < RHS.Colocate; 542 if (MaxMOV == RHS.MaxMOV) 543 return MaxDepth > RHS.MaxDepth; 544 return MaxMOV < RHS.MaxMOV; 545 } 546 return RecMII > RHS.RecMII; 547 } 548 549 bool operator==(const NodeSet &RHS) const { 550 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 551 MaxDepth == RHS.MaxDepth; 552 } 553 554 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 555 556 iterator begin() { return Nodes.begin(); } 557 iterator end() { return Nodes.end(); } 558 559 void print(raw_ostream &os) const { 560 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 561 << " depth " << MaxDepth << " col " << Colocate << "\n"; 562 for (const auto &I : Nodes) 563 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 564 os << "\n"; 565 } 566 567 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 568 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 569 #endif 570 }; 571 572 /// This class repesents the scheduled code. The main data structure is a 573 /// map from scheduled cycle to instructions. During scheduling, the 574 /// data structure explicitly represents all stages/iterations. When 575 /// the algorithm finshes, the schedule is collapsed into a single stage, 576 /// which represents instructions from different loop iterations. 577 /// 578 /// The SMS algorithm allows negative values for cycles, so the first cycle 579 /// in the schedule is the smallest cycle value. 580 class SMSchedule { 581 private: 582 /// Map from execution cycle to instructions. 583 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 584 585 /// Map from instruction to execution cycle. 586 std::map<SUnit *, int> InstrToCycle; 587 588 /// Map for each register and the max difference between its uses and def. 589 /// The first element in the pair is the max difference in stages. The 590 /// second is true if the register defines a Phi value and loop value is 591 /// scheduled before the Phi. 592 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 593 594 /// Keep track of the first cycle value in the schedule. It starts 595 /// as zero, but the algorithm allows negative values. 596 int FirstCycle = 0; 597 598 /// Keep track of the last cycle value in the schedule. 599 int LastCycle = 0; 600 601 /// The initiation interval (II) for the schedule. 602 int InitiationInterval = 0; 603 604 /// Target machine information. 605 const TargetSubtargetInfo &ST; 606 607 /// Virtual register information. 608 MachineRegisterInfo &MRI; 609 610 std::unique_ptr<DFAPacketizer> Resources; 611 612 public: 613 SMSchedule(MachineFunction *mf) 614 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 615 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 616 617 void reset() { 618 ScheduledInstrs.clear(); 619 InstrToCycle.clear(); 620 RegToStageDiff.clear(); 621 FirstCycle = 0; 622 LastCycle = 0; 623 InitiationInterval = 0; 624 } 625 626 /// Set the initiation interval for this schedule. 627 void setInitiationInterval(int ii) { InitiationInterval = ii; } 628 629 /// Return the first cycle in the completed schedule. This 630 /// can be a negative value. 631 int getFirstCycle() const { return FirstCycle; } 632 633 /// Return the last cycle in the finalized schedule. 634 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 635 636 /// Return the cycle of the earliest scheduled instruction in the dependence 637 /// chain. 638 int earliestCycleInChain(const SDep &Dep); 639 640 /// Return the cycle of the latest scheduled instruction in the dependence 641 /// chain. 642 int latestCycleInChain(const SDep &Dep); 643 644 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 645 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 646 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 647 648 /// Iterators for the cycle to instruction map. 649 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 650 using const_sched_iterator = 651 DenseMap<int, std::deque<SUnit *>>::const_iterator; 652 653 /// Return true if the instruction is scheduled at the specified stage. 654 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 655 return (stageScheduled(SU) == (int)StageNum); 656 } 657 658 /// Return the stage for a scheduled instruction. Return -1 if 659 /// the instruction has not been scheduled. 660 int stageScheduled(SUnit *SU) const { 661 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 662 if (it == InstrToCycle.end()) 663 return -1; 664 return (it->second - FirstCycle) / InitiationInterval; 665 } 666 667 /// Return the cycle for a scheduled instruction. This function normalizes 668 /// the first cycle to be 0. 669 unsigned cycleScheduled(SUnit *SU) const { 670 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 671 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 672 return (it->second - FirstCycle) % InitiationInterval; 673 } 674 675 /// Return the maximum stage count needed for this schedule. 676 unsigned getMaxStageCount() { 677 return (LastCycle - FirstCycle) / InitiationInterval; 678 } 679 680 /// Return the max. number of stages/iterations that can occur between a 681 /// register definition and its uses. 682 unsigned getStagesForReg(int Reg, unsigned CurStage) { 683 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 684 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 685 return 1; 686 return Stages.first; 687 } 688 689 /// The number of stages for a Phi is a little different than other 690 /// instructions. The minimum value computed in RegToStageDiff is 1 691 /// because we assume the Phi is needed for at least 1 iteration. 692 /// This is not the case if the loop value is scheduled prior to the 693 /// Phi in the same stage. This function returns the number of stages 694 /// or iterations needed between the Phi definition and any uses. 695 unsigned getStagesForPhi(int Reg) { 696 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 697 if (Stages.second) 698 return Stages.first; 699 return Stages.first - 1; 700 } 701 702 /// Return the instructions that are scheduled at the specified cycle. 703 std::deque<SUnit *> &getInstructions(int cycle) { 704 return ScheduledInstrs[cycle]; 705 } 706 707 bool isValidSchedule(SwingSchedulerDAG *SSD); 708 void finalizeSchedule(SwingSchedulerDAG *SSD); 709 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 710 std::deque<SUnit *> &Insts); 711 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 712 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 713 MachineOperand &MO); 714 void print(raw_ostream &os) const; 715 void dump() const; 716 }; 717 718 } // end anonymous namespace 719 720 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 721 char MachinePipeliner::ID = 0; 722 #ifndef NDEBUG 723 int MachinePipeliner::NumTries = 0; 724 #endif 725 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 726 727 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 728 "Modulo Software Pipelining", false, false) 729 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 730 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 731 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 732 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 733 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 734 "Modulo Software Pipelining", false, false) 735 736 /// The "main" function for implementing Swing Modulo Scheduling. 737 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 738 if (skipFunction(mf.getFunction())) 739 return false; 740 741 if (!EnableSWP) 742 return false; 743 744 if (mf.getFunction().getAttributes().hasAttribute( 745 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 746 !EnableSWPOptSize.getPosition()) 747 return false; 748 749 MF = &mf; 750 MLI = &getAnalysis<MachineLoopInfo>(); 751 MDT = &getAnalysis<MachineDominatorTree>(); 752 TII = MF->getSubtarget().getInstrInfo(); 753 RegClassInfo.runOnMachineFunction(*MF); 754 755 for (auto &L : *MLI) 756 scheduleLoop(*L); 757 758 return false; 759 } 760 761 /// Attempt to perform the SMS algorithm on the specified loop. This function is 762 /// the main entry point for the algorithm. The function identifies candidate 763 /// loops, calculates the minimum initiation interval, and attempts to schedule 764 /// the loop. 765 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 766 bool Changed = false; 767 for (auto &InnerLoop : L) 768 Changed |= scheduleLoop(*InnerLoop); 769 770 #ifndef NDEBUG 771 // Stop trying after reaching the limit (if any). 772 int Limit = SwpLoopLimit; 773 if (Limit >= 0) { 774 if (NumTries >= SwpLoopLimit) 775 return Changed; 776 NumTries++; 777 } 778 #endif 779 780 if (!canPipelineLoop(L)) 781 return Changed; 782 783 ++NumTrytoPipeline; 784 785 Changed = swingModuloScheduler(L); 786 787 return Changed; 788 } 789 790 /// Return true if the loop can be software pipelined. The algorithm is 791 /// restricted to loops with a single basic block. Make sure that the 792 /// branch in the loop can be analyzed. 793 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 794 if (L.getNumBlocks() != 1) 795 return false; 796 797 // Check if the branch can't be understood because we can't do pipelining 798 // if that's the case. 799 LI.TBB = nullptr; 800 LI.FBB = nullptr; 801 LI.BrCond.clear(); 802 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 803 return false; 804 805 LI.LoopInductionVar = nullptr; 806 LI.LoopCompare = nullptr; 807 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 808 return false; 809 810 if (!L.getLoopPreheader()) 811 return false; 812 813 // Remove any subregisters from inputs to phi nodes. 814 preprocessPhiNodes(*L.getHeader()); 815 return true; 816 } 817 818 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 819 MachineRegisterInfo &MRI = MF->getRegInfo(); 820 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 821 822 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 823 MachineOperand &DefOp = PI.getOperand(0); 824 assert(DefOp.getSubReg() == 0); 825 auto *RC = MRI.getRegClass(DefOp.getReg()); 826 827 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 828 MachineOperand &RegOp = PI.getOperand(i); 829 if (RegOp.getSubReg() == 0) 830 continue; 831 832 // If the operand uses a subregister, replace it with a new register 833 // without subregisters, and generate a copy to the new register. 834 unsigned NewReg = MRI.createVirtualRegister(RC); 835 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 836 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 837 const DebugLoc &DL = PredB.findDebugLoc(At); 838 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 839 .addReg(RegOp.getReg(), getRegState(RegOp), 840 RegOp.getSubReg()); 841 Slots.insertMachineInstrInMaps(*Copy); 842 RegOp.setReg(NewReg); 843 RegOp.setSubReg(0); 844 } 845 } 846 } 847 848 /// The SMS algorithm consists of the following main steps: 849 /// 1. Computation and analysis of the dependence graph. 850 /// 2. Ordering of the nodes (instructions). 851 /// 3. Attempt to Schedule the loop. 852 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 853 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 854 855 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 856 857 MachineBasicBlock *MBB = L.getHeader(); 858 // The kernel should not include any terminator instructions. These 859 // will be added back later. 860 SMS.startBlock(MBB); 861 862 // Compute the number of 'real' instructions in the basic block by 863 // ignoring terminators. 864 unsigned size = MBB->size(); 865 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 866 E = MBB->instr_end(); 867 I != E; ++I, --size) 868 ; 869 870 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 871 SMS.schedule(); 872 SMS.exitRegion(); 873 874 SMS.finishBlock(); 875 return SMS.hasNewSchedule(); 876 } 877 878 /// We override the schedule function in ScheduleDAGInstrs to implement the 879 /// scheduling part of the Swing Modulo Scheduling algorithm. 880 void SwingSchedulerDAG::schedule() { 881 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 882 buildSchedGraph(AA); 883 addLoopCarriedDependences(AA); 884 updatePhiDependences(); 885 Topo.InitDAGTopologicalSorting(); 886 postprocessDAG(); 887 changeDependences(); 888 DEBUG({ 889 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 890 SUnits[su].dumpAll(this); 891 }); 892 893 NodeSetType NodeSets; 894 findCircuits(NodeSets); 895 NodeSetType Circuits = NodeSets; 896 897 // Calculate the MII. 898 unsigned ResMII = calculateResMII(); 899 unsigned RecMII = calculateRecMII(NodeSets); 900 901 fuseRecs(NodeSets); 902 903 // This flag is used for testing and can cause correctness problems. 904 if (SwpIgnoreRecMII) 905 RecMII = 0; 906 907 MII = std::max(ResMII, RecMII); 908 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 909 << ")\n"); 910 911 // Can't schedule a loop without a valid MII. 912 if (MII == 0) 913 return; 914 915 // Don't pipeline large loops. 916 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 917 return; 918 919 computeNodeFunctions(NodeSets); 920 921 registerPressureFilter(NodeSets); 922 923 colocateNodeSets(NodeSets); 924 925 checkNodeSets(NodeSets); 926 927 DEBUG({ 928 for (auto &I : NodeSets) { 929 dbgs() << " Rec NodeSet "; 930 I.dump(); 931 } 932 }); 933 934 llvm::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 935 936 groupRemainingNodes(NodeSets); 937 938 removeDuplicateNodes(NodeSets); 939 940 DEBUG({ 941 for (auto &I : NodeSets) { 942 dbgs() << " NodeSet "; 943 I.dump(); 944 } 945 }); 946 947 computeNodeOrder(NodeSets); 948 949 // check for node order issues 950 checkValidNodeOrder(Circuits); 951 952 SMSchedule Schedule(Pass.MF); 953 Scheduled = schedulePipeline(Schedule); 954 955 if (!Scheduled) 956 return; 957 958 unsigned numStages = Schedule.getMaxStageCount(); 959 // No need to generate pipeline if there are no overlapped iterations. 960 if (numStages == 0) 961 return; 962 963 // Check that the maximum stage count is less than user-defined limit. 964 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 965 return; 966 967 generatePipelinedLoop(Schedule); 968 ++NumPipelined; 969 } 970 971 /// Clean up after the software pipeliner runs. 972 void SwingSchedulerDAG::finishBlock() { 973 for (MachineInstr *I : NewMIs) 974 MF.DeleteMachineInstr(I); 975 NewMIs.clear(); 976 977 // Call the superclass. 978 ScheduleDAGInstrs::finishBlock(); 979 } 980 981 /// Return the register values for the operands of a Phi instruction. 982 /// This function assume the instruction is a Phi. 983 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 984 unsigned &InitVal, unsigned &LoopVal) { 985 assert(Phi.isPHI() && "Expecting a Phi."); 986 987 InitVal = 0; 988 LoopVal = 0; 989 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 990 if (Phi.getOperand(i + 1).getMBB() != Loop) 991 InitVal = Phi.getOperand(i).getReg(); 992 else 993 LoopVal = Phi.getOperand(i).getReg(); 994 995 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 996 } 997 998 /// Return the Phi register value that comes from the incoming block. 999 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1000 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1001 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 1002 return Phi.getOperand(i).getReg(); 1003 return 0; 1004 } 1005 1006 /// Return the Phi register value that comes the loop block. 1007 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1008 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1009 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 1010 return Phi.getOperand(i).getReg(); 1011 return 0; 1012 } 1013 1014 /// Return true if SUb can be reached from SUa following the chain edges. 1015 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1016 SmallPtrSet<SUnit *, 8> Visited; 1017 SmallVector<SUnit *, 8> Worklist; 1018 Worklist.push_back(SUa); 1019 while (!Worklist.empty()) { 1020 const SUnit *SU = Worklist.pop_back_val(); 1021 for (auto &SI : SU->Succs) { 1022 SUnit *SuccSU = SI.getSUnit(); 1023 if (SI.getKind() == SDep::Order) { 1024 if (Visited.count(SuccSU)) 1025 continue; 1026 if (SuccSU == SUb) 1027 return true; 1028 Worklist.push_back(SuccSU); 1029 Visited.insert(SuccSU); 1030 } 1031 } 1032 } 1033 return false; 1034 } 1035 1036 /// Return true if the instruction causes a chain between memory 1037 /// references before and after it. 1038 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1039 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1040 (MI.hasOrderedMemoryRef() && 1041 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1042 } 1043 1044 /// Return the underlying objects for the memory references of an instruction. 1045 /// This function calls the code in ValueTracking, but first checks that the 1046 /// instruction has a memory operand. 1047 static void getUnderlyingObjects(MachineInstr *MI, 1048 SmallVectorImpl<Value *> &Objs, 1049 const DataLayout &DL) { 1050 if (!MI->hasOneMemOperand()) 1051 return; 1052 MachineMemOperand *MM = *MI->memoperands_begin(); 1053 if (!MM->getValue()) 1054 return; 1055 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1056 for (Value *V : Objs) { 1057 if (!isIdentifiedObject(V)) { 1058 Objs.clear(); 1059 return; 1060 } 1061 Objs.push_back(V); 1062 } 1063 } 1064 1065 /// Add a chain edge between a load and store if the store can be an 1066 /// alias of the load on a subsequent iteration, i.e., a loop carried 1067 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1068 /// but that code doesn't create loop carried dependences. 1069 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1070 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1071 Value *UnknownValue = 1072 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 1073 for (auto &SU : SUnits) { 1074 MachineInstr &MI = *SU.getInstr(); 1075 if (isDependenceBarrier(MI, AA)) 1076 PendingLoads.clear(); 1077 else if (MI.mayLoad()) { 1078 SmallVector<Value *, 4> Objs; 1079 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1080 if (Objs.empty()) 1081 Objs.push_back(UnknownValue); 1082 for (auto V : Objs) { 1083 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1084 SUs.push_back(&SU); 1085 } 1086 } else if (MI.mayStore()) { 1087 SmallVector<Value *, 4> Objs; 1088 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1089 if (Objs.empty()) 1090 Objs.push_back(UnknownValue); 1091 for (auto V : Objs) { 1092 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1093 PendingLoads.find(V); 1094 if (I == PendingLoads.end()) 1095 continue; 1096 for (auto Load : I->second) { 1097 if (isSuccOrder(Load, &SU)) 1098 continue; 1099 MachineInstr &LdMI = *Load->getInstr(); 1100 // First, perform the cheaper check that compares the base register. 1101 // If they are the same and the load offset is less than the store 1102 // offset, then mark the dependence as loop carried potentially. 1103 unsigned BaseReg1, BaseReg2; 1104 int64_t Offset1, Offset2; 1105 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && 1106 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1107 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1108 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1109 "What happened to the chain edge?"); 1110 SDep Dep(Load, SDep::Barrier); 1111 Dep.setLatency(1); 1112 SU.addPred(Dep); 1113 continue; 1114 } 1115 } 1116 // Second, the more expensive check that uses alias analysis on the 1117 // base registers. If they alias, and the load offset is less than 1118 // the store offset, the mark the dependence as loop carried. 1119 if (!AA) { 1120 SDep Dep(Load, SDep::Barrier); 1121 Dep.setLatency(1); 1122 SU.addPred(Dep); 1123 continue; 1124 } 1125 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1126 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1127 if (!MMO1->getValue() || !MMO2->getValue()) { 1128 SDep Dep(Load, SDep::Barrier); 1129 Dep.setLatency(1); 1130 SU.addPred(Dep); 1131 continue; 1132 } 1133 if (MMO1->getValue() == MMO2->getValue() && 1134 MMO1->getOffset() <= MMO2->getOffset()) { 1135 SDep Dep(Load, SDep::Barrier); 1136 Dep.setLatency(1); 1137 SU.addPred(Dep); 1138 continue; 1139 } 1140 AliasResult AAResult = AA->alias( 1141 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1142 MMO1->getAAInfo()), 1143 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1144 MMO2->getAAInfo())); 1145 1146 if (AAResult != NoAlias) { 1147 SDep Dep(Load, SDep::Barrier); 1148 Dep.setLatency(1); 1149 SU.addPred(Dep); 1150 } 1151 } 1152 } 1153 } 1154 } 1155 } 1156 1157 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1158 /// processes dependences for PHIs. This function adds true dependences 1159 /// from a PHI to a use, and a loop carried dependence from the use to the 1160 /// PHI. The loop carried dependence is represented as an anti dependence 1161 /// edge. This function also removes chain dependences between unrelated 1162 /// PHIs. 1163 void SwingSchedulerDAG::updatePhiDependences() { 1164 SmallVector<SDep, 4> RemoveDeps; 1165 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1166 1167 // Iterate over each DAG node. 1168 for (SUnit &I : SUnits) { 1169 RemoveDeps.clear(); 1170 // Set to true if the instruction has an operand defined by a Phi. 1171 unsigned HasPhiUse = 0; 1172 unsigned HasPhiDef = 0; 1173 MachineInstr *MI = I.getInstr(); 1174 // Iterate over each operand, and we process the definitions. 1175 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1176 MOE = MI->operands_end(); 1177 MOI != MOE; ++MOI) { 1178 if (!MOI->isReg()) 1179 continue; 1180 unsigned Reg = MOI->getReg(); 1181 if (MOI->isDef()) { 1182 // If the register is used by a Phi, then create an anti dependence. 1183 for (MachineRegisterInfo::use_instr_iterator 1184 UI = MRI.use_instr_begin(Reg), 1185 UE = MRI.use_instr_end(); 1186 UI != UE; ++UI) { 1187 MachineInstr *UseMI = &*UI; 1188 SUnit *SU = getSUnit(UseMI); 1189 if (SU != nullptr && UseMI->isPHI()) { 1190 if (!MI->isPHI()) { 1191 SDep Dep(SU, SDep::Anti, Reg); 1192 Dep.setLatency(1); 1193 I.addPred(Dep); 1194 } else { 1195 HasPhiDef = Reg; 1196 // Add a chain edge to a dependent Phi that isn't an existing 1197 // predecessor. 1198 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1199 I.addPred(SDep(SU, SDep::Barrier)); 1200 } 1201 } 1202 } 1203 } else if (MOI->isUse()) { 1204 // If the register is defined by a Phi, then create a true dependence. 1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1206 if (DefMI == nullptr) 1207 continue; 1208 SUnit *SU = getSUnit(DefMI); 1209 if (SU != nullptr && DefMI->isPHI()) { 1210 if (!MI->isPHI()) { 1211 SDep Dep(SU, SDep::Data, Reg); 1212 Dep.setLatency(0); 1213 ST.adjustSchedDependency(SU, &I, Dep); 1214 I.addPred(Dep); 1215 } else { 1216 HasPhiUse = Reg; 1217 // Add a chain edge to a dependent Phi that isn't an existing 1218 // predecessor. 1219 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1220 I.addPred(SDep(SU, SDep::Barrier)); 1221 } 1222 } 1223 } 1224 } 1225 // Remove order dependences from an unrelated Phi. 1226 if (!SwpPruneDeps) 1227 continue; 1228 for (auto &PI : I.Preds) { 1229 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1230 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1231 if (I.getInstr()->isPHI()) { 1232 if (PMI->getOperand(0).getReg() == HasPhiUse) 1233 continue; 1234 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1235 continue; 1236 } 1237 RemoveDeps.push_back(PI); 1238 } 1239 } 1240 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1241 I.removePred(RemoveDeps[i]); 1242 } 1243 } 1244 1245 /// Iterate over each DAG node and see if we can change any dependences 1246 /// in order to reduce the recurrence MII. 1247 void SwingSchedulerDAG::changeDependences() { 1248 // See if an instruction can use a value from the previous iteration. 1249 // If so, we update the base and offset of the instruction and change 1250 // the dependences. 1251 for (SUnit &I : SUnits) { 1252 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1253 int64_t NewOffset = 0; 1254 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1255 NewOffset)) 1256 continue; 1257 1258 // Get the MI and SUnit for the instruction that defines the original base. 1259 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1260 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1261 if (!DefMI) 1262 continue; 1263 SUnit *DefSU = getSUnit(DefMI); 1264 if (!DefSU) 1265 continue; 1266 // Get the MI and SUnit for the instruction that defins the new base. 1267 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1268 if (!LastMI) 1269 continue; 1270 SUnit *LastSU = getSUnit(LastMI); 1271 if (!LastSU) 1272 continue; 1273 1274 if (Topo.IsReachable(&I, LastSU)) 1275 continue; 1276 1277 // Remove the dependence. The value now depends on a prior iteration. 1278 SmallVector<SDep, 4> Deps; 1279 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1280 ++P) 1281 if (P->getSUnit() == DefSU) 1282 Deps.push_back(*P); 1283 for (int i = 0, e = Deps.size(); i != e; i++) { 1284 Topo.RemovePred(&I, Deps[i].getSUnit()); 1285 I.removePred(Deps[i]); 1286 } 1287 // Remove the chain dependence between the instructions. 1288 Deps.clear(); 1289 for (auto &P : LastSU->Preds) 1290 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1291 Deps.push_back(P); 1292 for (int i = 0, e = Deps.size(); i != e; i++) { 1293 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1294 LastSU->removePred(Deps[i]); 1295 } 1296 1297 // Add a dependence between the new instruction and the instruction 1298 // that defines the new base. 1299 SDep Dep(&I, SDep::Anti, NewBase); 1300 LastSU->addPred(Dep); 1301 1302 // Remember the base and offset information so that we can update the 1303 // instruction during code generation. 1304 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1305 } 1306 } 1307 1308 namespace { 1309 1310 // FuncUnitSorter - Comparison operator used to sort instructions by 1311 // the number of functional unit choices. 1312 struct FuncUnitSorter { 1313 const InstrItineraryData *InstrItins; 1314 DenseMap<unsigned, unsigned> Resources; 1315 1316 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1317 1318 // Compute the number of functional unit alternatives needed 1319 // at each stage, and take the minimum value. We prioritize the 1320 // instructions by the least number of choices first. 1321 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1322 unsigned schedClass = Inst->getDesc().getSchedClass(); 1323 unsigned min = UINT_MAX; 1324 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1325 *IE = InstrItins->endStage(schedClass); 1326 IS != IE; ++IS) { 1327 unsigned funcUnits = IS->getUnits(); 1328 unsigned numAlternatives = countPopulation(funcUnits); 1329 if (numAlternatives < min) { 1330 min = numAlternatives; 1331 F = funcUnits; 1332 } 1333 } 1334 return min; 1335 } 1336 1337 // Compute the critical resources needed by the instruction. This 1338 // function records the functional units needed by instructions that 1339 // must use only one functional unit. We use this as a tie breaker 1340 // for computing the resource MII. The instrutions that require 1341 // the same, highly used, functional unit have high priority. 1342 void calcCriticalResources(MachineInstr &MI) { 1343 unsigned SchedClass = MI.getDesc().getSchedClass(); 1344 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1345 *IE = InstrItins->endStage(SchedClass); 1346 IS != IE; ++IS) { 1347 unsigned FuncUnits = IS->getUnits(); 1348 if (countPopulation(FuncUnits) == 1) 1349 Resources[FuncUnits]++; 1350 } 1351 } 1352 1353 /// Return true if IS1 has less priority than IS2. 1354 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1355 unsigned F1 = 0, F2 = 0; 1356 unsigned MFUs1 = minFuncUnits(IS1, F1); 1357 unsigned MFUs2 = minFuncUnits(IS2, F2); 1358 if (MFUs1 == 1 && MFUs2 == 1) 1359 return Resources.lookup(F1) < Resources.lookup(F2); 1360 return MFUs1 > MFUs2; 1361 } 1362 }; 1363 1364 } // end anonymous namespace 1365 1366 /// Calculate the resource constrained minimum initiation interval for the 1367 /// specified loop. We use the DFA to model the resources needed for 1368 /// each instruction, and we ignore dependences. A different DFA is created 1369 /// for each cycle that is required. When adding a new instruction, we attempt 1370 /// to add it to each existing DFA, until a legal space is found. If the 1371 /// instruction cannot be reserved in an existing DFA, we create a new one. 1372 unsigned SwingSchedulerDAG::calculateResMII() { 1373 SmallVector<DFAPacketizer *, 8> Resources; 1374 MachineBasicBlock *MBB = Loop.getHeader(); 1375 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1376 1377 // Sort the instructions by the number of available choices for scheduling, 1378 // least to most. Use the number of critical resources as the tie breaker. 1379 FuncUnitSorter FUS = 1380 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1381 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1382 E = MBB->getFirstTerminator(); 1383 I != E; ++I) 1384 FUS.calcCriticalResources(*I); 1385 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1386 FuncUnitOrder(FUS); 1387 1388 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1389 E = MBB->getFirstTerminator(); 1390 I != E; ++I) 1391 FuncUnitOrder.push(&*I); 1392 1393 while (!FuncUnitOrder.empty()) { 1394 MachineInstr *MI = FuncUnitOrder.top(); 1395 FuncUnitOrder.pop(); 1396 if (TII->isZeroCost(MI->getOpcode())) 1397 continue; 1398 // Attempt to reserve the instruction in an existing DFA. At least one 1399 // DFA is needed for each cycle. 1400 unsigned NumCycles = getSUnit(MI)->Latency; 1401 unsigned ReservedCycles = 0; 1402 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1403 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1404 for (unsigned C = 0; C < NumCycles; ++C) 1405 while (RI != RE) { 1406 if ((*RI++)->canReserveResources(*MI)) { 1407 ++ReservedCycles; 1408 break; 1409 } 1410 } 1411 // Start reserving resources using existing DFAs. 1412 for (unsigned C = 0; C < ReservedCycles; ++C) { 1413 --RI; 1414 (*RI)->reserveResources(*MI); 1415 } 1416 // Add new DFAs, if needed, to reserve resources. 1417 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1418 DFAPacketizer *NewResource = 1419 TII->CreateTargetScheduleState(MF.getSubtarget()); 1420 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1421 NewResource->reserveResources(*MI); 1422 Resources.push_back(NewResource); 1423 } 1424 } 1425 int Resmii = Resources.size(); 1426 // Delete the memory for each of the DFAs that were created earlier. 1427 for (DFAPacketizer *RI : Resources) { 1428 DFAPacketizer *D = RI; 1429 delete D; 1430 } 1431 Resources.clear(); 1432 return Resmii; 1433 } 1434 1435 /// Calculate the recurrence-constrainted minimum initiation interval. 1436 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1437 /// for each circuit. The II needs to satisfy the inequality 1438 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1439 /// II that satistifies the inequality, and the RecMII is the maximum 1440 /// of those values. 1441 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1442 unsigned RecMII = 0; 1443 1444 for (NodeSet &Nodes : NodeSets) { 1445 if (Nodes.empty()) 1446 continue; 1447 1448 unsigned Delay = Nodes.getLatency(); 1449 unsigned Distance = 1; 1450 1451 // ii = ceil(delay / distance) 1452 unsigned CurMII = (Delay + Distance - 1) / Distance; 1453 Nodes.setRecMII(CurMII); 1454 if (CurMII > RecMII) 1455 RecMII = CurMII; 1456 } 1457 1458 return RecMII; 1459 } 1460 1461 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1462 /// but we do this to find the circuits, and then change them back. 1463 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1464 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1465 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1466 SUnit *SU = &SUnits[i]; 1467 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1468 IP != EP; ++IP) { 1469 if (IP->getKind() != SDep::Anti) 1470 continue; 1471 DepsAdded.push_back(std::make_pair(SU, *IP)); 1472 } 1473 } 1474 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1475 E = DepsAdded.end(); 1476 I != E; ++I) { 1477 // Remove this anti dependency and add one in the reverse direction. 1478 SUnit *SU = I->first; 1479 SDep &D = I->second; 1480 SUnit *TargetSU = D.getSUnit(); 1481 unsigned Reg = D.getReg(); 1482 unsigned Lat = D.getLatency(); 1483 SU->removePred(D); 1484 SDep Dep(SU, SDep::Anti, Reg); 1485 Dep.setLatency(Lat); 1486 TargetSU->addPred(Dep); 1487 } 1488 } 1489 1490 /// Create the adjacency structure of the nodes in the graph. 1491 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1492 SwingSchedulerDAG *DAG) { 1493 BitVector Added(SUnits.size()); 1494 DenseMap<int, int> OutputDeps; 1495 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1496 Added.reset(); 1497 // Add any successor to the adjacency matrix and exclude duplicates. 1498 for (auto &SI : SUnits[i].Succs) { 1499 // Only create a back-edge on the first and last nodes of a dependence 1500 // chain. This records any chains and adds them later. 1501 if (SI.getKind() == SDep::Output) { 1502 int N = SI.getSUnit()->NodeNum; 1503 int BackEdge = i; 1504 auto Dep = OutputDeps.find(BackEdge); 1505 if (Dep != OutputDeps.end()) { 1506 BackEdge = Dep->second; 1507 OutputDeps.erase(Dep); 1508 } 1509 OutputDeps[N] = BackEdge; 1510 } 1511 // Do not process a boundary node and a back-edge is processed only 1512 // if it goes to a Phi. 1513 if (SI.getSUnit()->isBoundaryNode() || 1514 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1515 continue; 1516 int N = SI.getSUnit()->NodeNum; 1517 if (!Added.test(N)) { 1518 AdjK[i].push_back(N); 1519 Added.set(N); 1520 } 1521 } 1522 // A chain edge between a store and a load is treated as a back-edge in the 1523 // adjacency matrix. 1524 for (auto &PI : SUnits[i].Preds) { 1525 if (!SUnits[i].getInstr()->mayStore() || 1526 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1527 continue; 1528 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1529 int N = PI.getSUnit()->NodeNum; 1530 if (!Added.test(N)) { 1531 AdjK[i].push_back(N); 1532 Added.set(N); 1533 } 1534 } 1535 } 1536 } 1537 // Add back-eges in the adjacency matrix for the output dependences. 1538 for (auto &OD : OutputDeps) 1539 if (!Added.test(OD.second)) { 1540 AdjK[OD.first].push_back(OD.second); 1541 Added.set(OD.second); 1542 } 1543 } 1544 1545 /// Identify an elementary circuit in the dependence graph starting at the 1546 /// specified node. 1547 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1548 bool HasBackedge) { 1549 SUnit *SV = &SUnits[V]; 1550 bool F = false; 1551 Stack.insert(SV); 1552 Blocked.set(V); 1553 1554 for (auto W : AdjK[V]) { 1555 if (NumPaths > MaxPaths) 1556 break; 1557 if (W < S) 1558 continue; 1559 if (W == S) { 1560 if (!HasBackedge) 1561 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1562 F = true; 1563 ++NumPaths; 1564 break; 1565 } else if (!Blocked.test(W)) { 1566 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1567 F = true; 1568 } 1569 } 1570 1571 if (F) 1572 unblock(V); 1573 else { 1574 for (auto W : AdjK[V]) { 1575 if (W < S) 1576 continue; 1577 if (B[W].count(SV) == 0) 1578 B[W].insert(SV); 1579 } 1580 } 1581 Stack.pop_back(); 1582 return F; 1583 } 1584 1585 /// Unblock a node in the circuit finding algorithm. 1586 void SwingSchedulerDAG::Circuits::unblock(int U) { 1587 Blocked.reset(U); 1588 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1589 while (!BU.empty()) { 1590 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1591 assert(SI != BU.end() && "Invalid B set."); 1592 SUnit *W = *SI; 1593 BU.erase(W); 1594 if (Blocked.test(W->NodeNum)) 1595 unblock(W->NodeNum); 1596 } 1597 } 1598 1599 /// Identify all the elementary circuits in the dependence graph using 1600 /// Johnson's circuit algorithm. 1601 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1602 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1603 // but we do this to find the circuits, and then change them back. 1604 swapAntiDependences(SUnits); 1605 1606 Circuits Cir(SUnits); 1607 // Create the adjacency structure. 1608 Cir.createAdjacencyStructure(this); 1609 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1610 Cir.reset(); 1611 Cir.circuit(i, i, NodeSets); 1612 } 1613 1614 // Change the dependences back so that we've created a DAG again. 1615 swapAntiDependences(SUnits); 1616 } 1617 1618 /// Return true for DAG nodes that we ignore when computing the cost functions. 1619 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1620 /// in the calculation of the ASAP, ALAP, etc functions. 1621 static bool ignoreDependence(const SDep &D, bool isPred) { 1622 if (D.isArtificial()) 1623 return true; 1624 return D.getKind() == SDep::Anti && isPred; 1625 } 1626 1627 /// Compute several functions need to order the nodes for scheduling. 1628 /// ASAP - Earliest time to schedule a node. 1629 /// ALAP - Latest time to schedule a node. 1630 /// MOV - Mobility function, difference between ALAP and ASAP. 1631 /// D - Depth of each node. 1632 /// H - Height of each node. 1633 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1634 ScheduleInfo.resize(SUnits.size()); 1635 1636 DEBUG({ 1637 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1638 E = Topo.end(); 1639 I != E; ++I) { 1640 SUnit *SU = &SUnits[*I]; 1641 SU->dump(this); 1642 } 1643 }); 1644 1645 int maxASAP = 0; 1646 // Compute ASAP and ZeroLatencyDepth. 1647 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1648 E = Topo.end(); 1649 I != E; ++I) { 1650 int asap = 0; 1651 int zeroLatencyDepth = 0; 1652 SUnit *SU = &SUnits[*I]; 1653 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1654 EP = SU->Preds.end(); 1655 IP != EP; ++IP) { 1656 SUnit *pred = IP->getSUnit(); 1657 if (IP->getLatency() == 0) 1658 zeroLatencyDepth = 1659 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1660 if (ignoreDependence(*IP, true)) 1661 continue; 1662 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1663 getDistance(pred, SU, *IP) * MII)); 1664 } 1665 maxASAP = std::max(maxASAP, asap); 1666 ScheduleInfo[*I].ASAP = asap; 1667 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1668 } 1669 1670 // Compute ALAP, ZeroLatencyHeight, and MOV. 1671 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1672 E = Topo.rend(); 1673 I != E; ++I) { 1674 int alap = maxASAP; 1675 int zeroLatencyHeight = 0; 1676 SUnit *SU = &SUnits[*I]; 1677 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1678 ES = SU->Succs.end(); 1679 IS != ES; ++IS) { 1680 SUnit *succ = IS->getSUnit(); 1681 if (IS->getLatency() == 0) 1682 zeroLatencyHeight = 1683 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1684 if (ignoreDependence(*IS, true)) 1685 continue; 1686 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1687 getDistance(SU, succ, *IS) * MII)); 1688 } 1689 1690 ScheduleInfo[*I].ALAP = alap; 1691 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1692 } 1693 1694 // After computing the node functions, compute the summary for each node set. 1695 for (NodeSet &I : NodeSets) 1696 I.computeNodeSetInfo(this); 1697 1698 DEBUG({ 1699 for (unsigned i = 0; i < SUnits.size(); i++) { 1700 dbgs() << "\tNode " << i << ":\n"; 1701 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1702 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1703 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1704 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1705 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1706 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1707 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1708 } 1709 }); 1710 } 1711 1712 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1713 /// as the predecessors of the elements of NodeOrder that are not also in 1714 /// NodeOrder. 1715 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1716 SmallSetVector<SUnit *, 8> &Preds, 1717 const NodeSet *S = nullptr) { 1718 Preds.clear(); 1719 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1720 I != E; ++I) { 1721 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1722 PI != PE; ++PI) { 1723 if (S && S->count(PI->getSUnit()) == 0) 1724 continue; 1725 if (ignoreDependence(*PI, true)) 1726 continue; 1727 if (NodeOrder.count(PI->getSUnit()) == 0) 1728 Preds.insert(PI->getSUnit()); 1729 } 1730 // Back-edges are predecessors with an anti-dependence. 1731 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1732 ES = (*I)->Succs.end(); 1733 IS != ES; ++IS) { 1734 if (IS->getKind() != SDep::Anti) 1735 continue; 1736 if (S && S->count(IS->getSUnit()) == 0) 1737 continue; 1738 if (NodeOrder.count(IS->getSUnit()) == 0) 1739 Preds.insert(IS->getSUnit()); 1740 } 1741 } 1742 return !Preds.empty(); 1743 } 1744 1745 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1746 /// as the successors of the elements of NodeOrder that are not also in 1747 /// NodeOrder. 1748 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1749 SmallSetVector<SUnit *, 8> &Succs, 1750 const NodeSet *S = nullptr) { 1751 Succs.clear(); 1752 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1753 I != E; ++I) { 1754 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1755 SI != SE; ++SI) { 1756 if (S && S->count(SI->getSUnit()) == 0) 1757 continue; 1758 if (ignoreDependence(*SI, false)) 1759 continue; 1760 if (NodeOrder.count(SI->getSUnit()) == 0) 1761 Succs.insert(SI->getSUnit()); 1762 } 1763 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1764 PE = (*I)->Preds.end(); 1765 PI != PE; ++PI) { 1766 if (PI->getKind() != SDep::Anti) 1767 continue; 1768 if (S && S->count(PI->getSUnit()) == 0) 1769 continue; 1770 if (NodeOrder.count(PI->getSUnit()) == 0) 1771 Succs.insert(PI->getSUnit()); 1772 } 1773 } 1774 return !Succs.empty(); 1775 } 1776 1777 /// Return true if there is a path from the specified node to any of the nodes 1778 /// in DestNodes. Keep track and return the nodes in any path. 1779 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1780 SetVector<SUnit *> &DestNodes, 1781 SetVector<SUnit *> &Exclude, 1782 SmallPtrSet<SUnit *, 8> &Visited) { 1783 if (Cur->isBoundaryNode()) 1784 return false; 1785 if (Exclude.count(Cur) != 0) 1786 return false; 1787 if (DestNodes.count(Cur) != 0) 1788 return true; 1789 if (!Visited.insert(Cur).second) 1790 return Path.count(Cur) != 0; 1791 bool FoundPath = false; 1792 for (auto &SI : Cur->Succs) 1793 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1794 for (auto &PI : Cur->Preds) 1795 if (PI.getKind() == SDep::Anti) 1796 FoundPath |= 1797 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1798 if (FoundPath) 1799 Path.insert(Cur); 1800 return FoundPath; 1801 } 1802 1803 /// Return true if Set1 is a subset of Set2. 1804 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1805 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1806 if (Set2.count(*I) == 0) 1807 return false; 1808 return true; 1809 } 1810 1811 /// Compute the live-out registers for the instructions in a node-set. 1812 /// The live-out registers are those that are defined in the node-set, 1813 /// but not used. Except for use operands of Phis. 1814 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1815 NodeSet &NS) { 1816 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1817 MachineRegisterInfo &MRI = MF.getRegInfo(); 1818 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1819 SmallSet<unsigned, 4> Uses; 1820 for (SUnit *SU : NS) { 1821 const MachineInstr *MI = SU->getInstr(); 1822 if (MI->isPHI()) 1823 continue; 1824 for (const MachineOperand &MO : MI->operands()) 1825 if (MO.isReg() && MO.isUse()) { 1826 unsigned Reg = MO.getReg(); 1827 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1828 Uses.insert(Reg); 1829 else if (MRI.isAllocatable(Reg)) 1830 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1831 Uses.insert(*Units); 1832 } 1833 } 1834 for (SUnit *SU : NS) 1835 for (const MachineOperand &MO : SU->getInstr()->operands()) 1836 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1837 unsigned Reg = MO.getReg(); 1838 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1839 if (!Uses.count(Reg)) 1840 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1841 LaneBitmask::getNone())); 1842 } else if (MRI.isAllocatable(Reg)) { 1843 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1844 if (!Uses.count(*Units)) 1845 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1846 LaneBitmask::getNone())); 1847 } 1848 } 1849 RPTracker.addLiveRegs(LiveOutRegs); 1850 } 1851 1852 /// A heuristic to filter nodes in recurrent node-sets if the register 1853 /// pressure of a set is too high. 1854 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1855 for (auto &NS : NodeSets) { 1856 // Skip small node-sets since they won't cause register pressure problems. 1857 if (NS.size() <= 2) 1858 continue; 1859 IntervalPressure RecRegPressure; 1860 RegPressureTracker RecRPTracker(RecRegPressure); 1861 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1862 computeLiveOuts(MF, RecRPTracker, NS); 1863 RecRPTracker.closeBottom(); 1864 1865 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1866 llvm::sort(SUnits.begin(), SUnits.end(), 1867 [](const SUnit *A, const SUnit *B) { 1868 return A->NodeNum > B->NodeNum; 1869 }); 1870 1871 for (auto &SU : SUnits) { 1872 // Since we're computing the register pressure for a subset of the 1873 // instructions in a block, we need to set the tracker for each 1874 // instruction in the node-set. The tracker is set to the instruction 1875 // just after the one we're interested in. 1876 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1877 RecRPTracker.setPos(std::next(CurInstI)); 1878 1879 RegPressureDelta RPDelta; 1880 ArrayRef<PressureChange> CriticalPSets; 1881 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1882 CriticalPSets, 1883 RecRegPressure.MaxSetPressure); 1884 if (RPDelta.Excess.isValid()) { 1885 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1886 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1887 << ":" << RPDelta.Excess.getUnitInc()); 1888 NS.setExceedPressure(SU); 1889 break; 1890 } 1891 RecRPTracker.recede(); 1892 } 1893 } 1894 } 1895 1896 /// A heuristic to colocate node sets that have the same set of 1897 /// successors. 1898 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1899 unsigned Colocate = 0; 1900 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1901 NodeSet &N1 = NodeSets[i]; 1902 SmallSetVector<SUnit *, 8> S1; 1903 if (N1.empty() || !succ_L(N1, S1)) 1904 continue; 1905 for (int j = i + 1; j < e; ++j) { 1906 NodeSet &N2 = NodeSets[j]; 1907 if (N1.compareRecMII(N2) != 0) 1908 continue; 1909 SmallSetVector<SUnit *, 8> S2; 1910 if (N2.empty() || !succ_L(N2, S2)) 1911 continue; 1912 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1913 N1.setColocate(++Colocate); 1914 N2.setColocate(Colocate); 1915 break; 1916 } 1917 } 1918 } 1919 } 1920 1921 /// Check if the existing node-sets are profitable. If not, then ignore the 1922 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1923 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1924 /// then it's best to try to schedule all instructions together instead of 1925 /// starting with the recurrent node-sets. 1926 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1927 // Look for loops with a large MII. 1928 if (MII < 17) 1929 return; 1930 // Check if the node-set contains only a simple add recurrence. 1931 for (auto &NS : NodeSets) { 1932 if (NS.getRecMII() > 2) 1933 return; 1934 if (NS.getMaxDepth() > MII) 1935 return; 1936 } 1937 NodeSets.clear(); 1938 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1939 return; 1940 } 1941 1942 /// Add the nodes that do not belong to a recurrence set into groups 1943 /// based upon connected componenets. 1944 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1945 SetVector<SUnit *> NodesAdded; 1946 SmallPtrSet<SUnit *, 8> Visited; 1947 // Add the nodes that are on a path between the previous node sets and 1948 // the current node set. 1949 for (NodeSet &I : NodeSets) { 1950 SmallSetVector<SUnit *, 8> N; 1951 // Add the nodes from the current node set to the previous node set. 1952 if (succ_L(I, N)) { 1953 SetVector<SUnit *> Path; 1954 for (SUnit *NI : N) { 1955 Visited.clear(); 1956 computePath(NI, Path, NodesAdded, I, Visited); 1957 } 1958 if (!Path.empty()) 1959 I.insert(Path.begin(), Path.end()); 1960 } 1961 // Add the nodes from the previous node set to the current node set. 1962 N.clear(); 1963 if (succ_L(NodesAdded, N)) { 1964 SetVector<SUnit *> Path; 1965 for (SUnit *NI : N) { 1966 Visited.clear(); 1967 computePath(NI, Path, I, NodesAdded, Visited); 1968 } 1969 if (!Path.empty()) 1970 I.insert(Path.begin(), Path.end()); 1971 } 1972 NodesAdded.insert(I.begin(), I.end()); 1973 } 1974 1975 // Create a new node set with the connected nodes of any successor of a node 1976 // in a recurrent set. 1977 NodeSet NewSet; 1978 SmallSetVector<SUnit *, 8> N; 1979 if (succ_L(NodesAdded, N)) 1980 for (SUnit *I : N) 1981 addConnectedNodes(I, NewSet, NodesAdded); 1982 if (!NewSet.empty()) 1983 NodeSets.push_back(NewSet); 1984 1985 // Create a new node set with the connected nodes of any predecessor of a node 1986 // in a recurrent set. 1987 NewSet.clear(); 1988 if (pred_L(NodesAdded, N)) 1989 for (SUnit *I : N) 1990 addConnectedNodes(I, NewSet, NodesAdded); 1991 if (!NewSet.empty()) 1992 NodeSets.push_back(NewSet); 1993 1994 // Create new nodes sets with the connected nodes any any remaining node that 1995 // has no predecessor. 1996 for (unsigned i = 0; i < SUnits.size(); ++i) { 1997 SUnit *SU = &SUnits[i]; 1998 if (NodesAdded.count(SU) == 0) { 1999 NewSet.clear(); 2000 addConnectedNodes(SU, NewSet, NodesAdded); 2001 if (!NewSet.empty()) 2002 NodeSets.push_back(NewSet); 2003 } 2004 } 2005 } 2006 2007 /// Add the node to the set, and add all is its connected nodes to the set. 2008 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2009 SetVector<SUnit *> &NodesAdded) { 2010 NewSet.insert(SU); 2011 NodesAdded.insert(SU); 2012 for (auto &SI : SU->Succs) { 2013 SUnit *Successor = SI.getSUnit(); 2014 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 2015 addConnectedNodes(Successor, NewSet, NodesAdded); 2016 } 2017 for (auto &PI : SU->Preds) { 2018 SUnit *Predecessor = PI.getSUnit(); 2019 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2020 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2021 } 2022 } 2023 2024 /// Return true if Set1 contains elements in Set2. The elements in common 2025 /// are returned in a different container. 2026 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2027 SmallSetVector<SUnit *, 8> &Result) { 2028 Result.clear(); 2029 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 2030 SUnit *SU = Set1[i]; 2031 if (Set2.count(SU) != 0) 2032 Result.insert(SU); 2033 } 2034 return !Result.empty(); 2035 } 2036 2037 /// Merge the recurrence node sets that have the same initial node. 2038 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2039 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2040 ++I) { 2041 NodeSet &NI = *I; 2042 for (NodeSetType::iterator J = I + 1; J != E;) { 2043 NodeSet &NJ = *J; 2044 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2045 if (NJ.compareRecMII(NI) > 0) 2046 NI.setRecMII(NJ.getRecMII()); 2047 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 2048 ++NII) 2049 I->insert(*NII); 2050 NodeSets.erase(J); 2051 E = NodeSets.end(); 2052 } else { 2053 ++J; 2054 } 2055 } 2056 } 2057 } 2058 2059 /// Remove nodes that have been scheduled in previous NodeSets. 2060 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2061 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2062 ++I) 2063 for (NodeSetType::iterator J = I + 1; J != E;) { 2064 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2065 2066 if (J->empty()) { 2067 NodeSets.erase(J); 2068 E = NodeSets.end(); 2069 } else { 2070 ++J; 2071 } 2072 } 2073 } 2074 2075 /// Compute an ordered list of the dependence graph nodes, which 2076 /// indicates the order that the nodes will be scheduled. This is a 2077 /// two-level algorithm. First, a partial order is created, which 2078 /// consists of a list of sets ordered from highest to lowest priority. 2079 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2080 SmallSetVector<SUnit *, 8> R; 2081 NodeOrder.clear(); 2082 2083 for (auto &Nodes : NodeSets) { 2084 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2085 OrderKind Order; 2086 SmallSetVector<SUnit *, 8> N; 2087 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2088 R.insert(N.begin(), N.end()); 2089 Order = BottomUp; 2090 DEBUG(dbgs() << " Bottom up (preds) "); 2091 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2092 R.insert(N.begin(), N.end()); 2093 Order = TopDown; 2094 DEBUG(dbgs() << " Top down (succs) "); 2095 } else if (isIntersect(N, Nodes, R)) { 2096 // If some of the successors are in the existing node-set, then use the 2097 // top-down ordering. 2098 Order = TopDown; 2099 DEBUG(dbgs() << " Top down (intersect) "); 2100 } else if (NodeSets.size() == 1) { 2101 for (auto &N : Nodes) 2102 if (N->Succs.size() == 0) 2103 R.insert(N); 2104 Order = BottomUp; 2105 DEBUG(dbgs() << " Bottom up (all) "); 2106 } else { 2107 // Find the node with the highest ASAP. 2108 SUnit *maxASAP = nullptr; 2109 for (SUnit *SU : Nodes) { 2110 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2111 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2112 maxASAP = SU; 2113 } 2114 R.insert(maxASAP); 2115 Order = BottomUp; 2116 DEBUG(dbgs() << " Bottom up (default) "); 2117 } 2118 2119 while (!R.empty()) { 2120 if (Order == TopDown) { 2121 // Choose the node with the maximum height. If more than one, choose 2122 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2123 // choose the node with the lowest MOV. 2124 while (!R.empty()) { 2125 SUnit *maxHeight = nullptr; 2126 for (SUnit *I : R) { 2127 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2128 maxHeight = I; 2129 else if (getHeight(I) == getHeight(maxHeight) && 2130 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2131 maxHeight = I; 2132 else if (getHeight(I) == getHeight(maxHeight) && 2133 getZeroLatencyHeight(I) == 2134 getZeroLatencyHeight(maxHeight) && 2135 getMOV(I) < getMOV(maxHeight)) 2136 maxHeight = I; 2137 } 2138 NodeOrder.insert(maxHeight); 2139 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2140 R.remove(maxHeight); 2141 for (const auto &I : maxHeight->Succs) { 2142 if (Nodes.count(I.getSUnit()) == 0) 2143 continue; 2144 if (NodeOrder.count(I.getSUnit()) != 0) 2145 continue; 2146 if (ignoreDependence(I, false)) 2147 continue; 2148 R.insert(I.getSUnit()); 2149 } 2150 // Back-edges are predecessors with an anti-dependence. 2151 for (const auto &I : maxHeight->Preds) { 2152 if (I.getKind() != SDep::Anti) 2153 continue; 2154 if (Nodes.count(I.getSUnit()) == 0) 2155 continue; 2156 if (NodeOrder.count(I.getSUnit()) != 0) 2157 continue; 2158 R.insert(I.getSUnit()); 2159 } 2160 } 2161 Order = BottomUp; 2162 DEBUG(dbgs() << "\n Switching order to bottom up "); 2163 SmallSetVector<SUnit *, 8> N; 2164 if (pred_L(NodeOrder, N, &Nodes)) 2165 R.insert(N.begin(), N.end()); 2166 } else { 2167 // Choose the node with the maximum depth. If more than one, choose 2168 // the node with the maximum ZeroLatencyDepth. If still more than one, 2169 // choose the node with the lowest MOV. 2170 while (!R.empty()) { 2171 SUnit *maxDepth = nullptr; 2172 for (SUnit *I : R) { 2173 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2174 maxDepth = I; 2175 else if (getDepth(I) == getDepth(maxDepth) && 2176 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2177 maxDepth = I; 2178 else if (getDepth(I) == getDepth(maxDepth) && 2179 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2180 getMOV(I) < getMOV(maxDepth)) 2181 maxDepth = I; 2182 } 2183 NodeOrder.insert(maxDepth); 2184 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2185 R.remove(maxDepth); 2186 if (Nodes.isExceedSU(maxDepth)) { 2187 Order = TopDown; 2188 R.clear(); 2189 R.insert(Nodes.getNode(0)); 2190 break; 2191 } 2192 for (const auto &I : maxDepth->Preds) { 2193 if (Nodes.count(I.getSUnit()) == 0) 2194 continue; 2195 if (NodeOrder.count(I.getSUnit()) != 0) 2196 continue; 2197 R.insert(I.getSUnit()); 2198 } 2199 // Back-edges are predecessors with an anti-dependence. 2200 for (const auto &I : maxDepth->Succs) { 2201 if (I.getKind() != SDep::Anti) 2202 continue; 2203 if (Nodes.count(I.getSUnit()) == 0) 2204 continue; 2205 if (NodeOrder.count(I.getSUnit()) != 0) 2206 continue; 2207 R.insert(I.getSUnit()); 2208 } 2209 } 2210 Order = TopDown; 2211 DEBUG(dbgs() << "\n Switching order to top down "); 2212 SmallSetVector<SUnit *, 8> N; 2213 if (succ_L(NodeOrder, N, &Nodes)) 2214 R.insert(N.begin(), N.end()); 2215 } 2216 } 2217 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2218 } 2219 2220 DEBUG({ 2221 dbgs() << "Node order: "; 2222 for (SUnit *I : NodeOrder) 2223 dbgs() << " " << I->NodeNum << " "; 2224 dbgs() << "\n"; 2225 }); 2226 } 2227 2228 /// Process the nodes in the computed order and create the pipelined schedule 2229 /// of the instructions, if possible. Return true if a schedule is found. 2230 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2231 if (NodeOrder.empty()) 2232 return false; 2233 2234 bool scheduleFound = false; 2235 // Keep increasing II until a valid schedule is found. 2236 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2237 Schedule.reset(); 2238 Schedule.setInitiationInterval(II); 2239 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2240 2241 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2242 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2243 do { 2244 SUnit *SU = *NI; 2245 2246 // Compute the schedule time for the instruction, which is based 2247 // upon the scheduled time for any predecessors/successors. 2248 int EarlyStart = INT_MIN; 2249 int LateStart = INT_MAX; 2250 // These values are set when the size of the schedule window is limited 2251 // due to chain dependences. 2252 int SchedEnd = INT_MAX; 2253 int SchedStart = INT_MIN; 2254 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2255 II, this); 2256 DEBUG({ 2257 dbgs() << "Inst (" << SU->NodeNum << ") "; 2258 SU->getInstr()->dump(); 2259 dbgs() << "\n"; 2260 }); 2261 DEBUG({ 2262 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2263 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2264 }); 2265 2266 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2267 SchedStart > LateStart) 2268 scheduleFound = false; 2269 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2270 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2271 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2272 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2273 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2274 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2275 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2276 SchedEnd = 2277 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2278 // When scheduling a Phi it is better to start at the late cycle and go 2279 // backwards. The default order may insert the Phi too far away from 2280 // its first dependence. 2281 if (SU->getInstr()->isPHI()) 2282 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2283 else 2284 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2285 } else { 2286 int FirstCycle = Schedule.getFirstCycle(); 2287 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2288 FirstCycle + getASAP(SU) + II - 1, II); 2289 } 2290 // Even if we find a schedule, make sure the schedule doesn't exceed the 2291 // allowable number of stages. We keep trying if this happens. 2292 if (scheduleFound) 2293 if (SwpMaxStages > -1 && 2294 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2295 scheduleFound = false; 2296 2297 DEBUG({ 2298 if (!scheduleFound) 2299 dbgs() << "\tCan't schedule\n"; 2300 }); 2301 } while (++NI != NE && scheduleFound); 2302 2303 // If a schedule is found, check if it is a valid schedule too. 2304 if (scheduleFound) 2305 scheduleFound = Schedule.isValidSchedule(this); 2306 } 2307 2308 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2309 2310 if (scheduleFound) 2311 Schedule.finalizeSchedule(this); 2312 else 2313 Schedule.reset(); 2314 2315 return scheduleFound && Schedule.getMaxStageCount() > 0; 2316 } 2317 2318 /// Given a schedule for the loop, generate a new version of the loop, 2319 /// and replace the old version. This function generates a prolog 2320 /// that contains the initial iterations in the pipeline, and kernel 2321 /// loop, and the epilogue that contains the code for the final 2322 /// iterations. 2323 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2324 // Create a new basic block for the kernel and add it to the CFG. 2325 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2326 2327 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2328 2329 // Remember the registers that are used in different stages. The index is 2330 // the iteration, or stage, that the instruction is scheduled in. This is 2331 // a map between register names in the orignal block and the names created 2332 // in each stage of the pipelined loop. 2333 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2334 InstrMapTy InstrMap; 2335 2336 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2337 // Generate the prolog instructions that set up the pipeline. 2338 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2339 MF.insert(BB->getIterator(), KernelBB); 2340 2341 // Rearrange the instructions to generate the new, pipelined loop, 2342 // and update register names as needed. 2343 for (int Cycle = Schedule.getFirstCycle(), 2344 LastCycle = Schedule.getFinalCycle(); 2345 Cycle <= LastCycle; ++Cycle) { 2346 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2347 // This inner loop schedules each instruction in the cycle. 2348 for (SUnit *CI : CycleInstrs) { 2349 if (CI->getInstr()->isPHI()) 2350 continue; 2351 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2352 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2353 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2354 KernelBB->push_back(NewMI); 2355 InstrMap[NewMI] = CI->getInstr(); 2356 } 2357 } 2358 2359 // Copy any terminator instructions to the new kernel, and update 2360 // names as needed. 2361 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2362 E = BB->instr_end(); 2363 I != E; ++I) { 2364 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2365 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2366 KernelBB->push_back(NewMI); 2367 InstrMap[NewMI] = &*I; 2368 } 2369 2370 KernelBB->transferSuccessors(BB); 2371 KernelBB->replaceSuccessor(BB, KernelBB); 2372 2373 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2374 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2375 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2376 InstrMap, MaxStageCount, MaxStageCount, false); 2377 2378 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2379 2380 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2381 // Generate the epilog instructions to complete the pipeline. 2382 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2383 PrologBBs); 2384 2385 // We need this step because the register allocation doesn't handle some 2386 // situations well, so we insert copies to help out. 2387 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2388 2389 // Remove dead instructions due to loop induction variables. 2390 removeDeadInstructions(KernelBB, EpilogBBs); 2391 2392 // Add branches between prolog and epilog blocks. 2393 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2394 2395 // Remove the original loop since it's no longer referenced. 2396 for (auto &I : *BB) 2397 LIS.RemoveMachineInstrFromMaps(I); 2398 BB->clear(); 2399 BB->eraseFromParent(); 2400 2401 delete[] VRMap; 2402 } 2403 2404 /// Generate the pipeline prolog code. 2405 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2406 MachineBasicBlock *KernelBB, 2407 ValueMapTy *VRMap, 2408 MBBVectorTy &PrologBBs) { 2409 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2410 assert(PreheaderBB != nullptr && 2411 "Need to add code to handle loops w/o preheader"); 2412 MachineBasicBlock *PredBB = PreheaderBB; 2413 InstrMapTy InstrMap; 2414 2415 // Generate a basic block for each stage, not including the last stage, 2416 // which will be generated in the kernel. Each basic block may contain 2417 // instructions from multiple stages/iterations. 2418 for (unsigned i = 0; i < LastStage; ++i) { 2419 // Create and insert the prolog basic block prior to the original loop 2420 // basic block. The original loop is removed later. 2421 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2422 PrologBBs.push_back(NewBB); 2423 MF.insert(BB->getIterator(), NewBB); 2424 NewBB->transferSuccessors(PredBB); 2425 PredBB->addSuccessor(NewBB); 2426 PredBB = NewBB; 2427 2428 // Generate instructions for each appropriate stage. Process instructions 2429 // in original program order. 2430 for (int StageNum = i; StageNum >= 0; --StageNum) { 2431 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2432 BBE = BB->getFirstTerminator(); 2433 BBI != BBE; ++BBI) { 2434 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2435 if (BBI->isPHI()) 2436 continue; 2437 MachineInstr *NewMI = 2438 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2439 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2440 VRMap); 2441 NewBB->push_back(NewMI); 2442 InstrMap[NewMI] = &*BBI; 2443 } 2444 } 2445 } 2446 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2447 DEBUG({ 2448 dbgs() << "prolog:\n"; 2449 NewBB->dump(); 2450 }); 2451 } 2452 2453 PredBB->replaceSuccessor(BB, KernelBB); 2454 2455 // Check if we need to remove the branch from the preheader to the original 2456 // loop, and replace it with a branch to the new loop. 2457 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2458 if (numBranches) { 2459 SmallVector<MachineOperand, 0> Cond; 2460 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2461 } 2462 } 2463 2464 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2465 /// that were started in either the prolog or the kernel. We create a basic 2466 /// block for each stage that needs to complete. 2467 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2468 MachineBasicBlock *KernelBB, 2469 ValueMapTy *VRMap, 2470 MBBVectorTy &EpilogBBs, 2471 MBBVectorTy &PrologBBs) { 2472 // We need to change the branch from the kernel to the first epilog block, so 2473 // this call to analyze branch uses the kernel rather than the original BB. 2474 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2475 SmallVector<MachineOperand, 4> Cond; 2476 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2477 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2478 if (checkBranch) 2479 return; 2480 2481 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2482 if (*LoopExitI == KernelBB) 2483 ++LoopExitI; 2484 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2485 MachineBasicBlock *LoopExitBB = *LoopExitI; 2486 2487 MachineBasicBlock *PredBB = KernelBB; 2488 MachineBasicBlock *EpilogStart = LoopExitBB; 2489 InstrMapTy InstrMap; 2490 2491 // Generate a basic block for each stage, not including the last stage, 2492 // which was generated for the kernel. Each basic block may contain 2493 // instructions from multiple stages/iterations. 2494 int EpilogStage = LastStage + 1; 2495 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2496 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2497 EpilogBBs.push_back(NewBB); 2498 MF.insert(BB->getIterator(), NewBB); 2499 2500 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2501 NewBB->addSuccessor(LoopExitBB); 2502 2503 if (EpilogStart == LoopExitBB) 2504 EpilogStart = NewBB; 2505 2506 // Add instructions to the epilog depending on the current block. 2507 // Process instructions in original program order. 2508 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2509 for (auto &BBI : *BB) { 2510 if (BBI.isPHI()) 2511 continue; 2512 MachineInstr *In = &BBI; 2513 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2514 // Instructions with memoperands in the epilog are updated with 2515 // conservative values. 2516 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2517 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2518 NewBB->push_back(NewMI); 2519 InstrMap[NewMI] = In; 2520 } 2521 } 2522 } 2523 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2524 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2525 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2526 InstrMap, LastStage, EpilogStage, i == 1); 2527 PredBB = NewBB; 2528 2529 DEBUG({ 2530 dbgs() << "epilog:\n"; 2531 NewBB->dump(); 2532 }); 2533 } 2534 2535 // Fix any Phi nodes in the loop exit block. 2536 for (MachineInstr &MI : *LoopExitBB) { 2537 if (!MI.isPHI()) 2538 break; 2539 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2540 MachineOperand &MO = MI.getOperand(i); 2541 if (MO.getMBB() == BB) 2542 MO.setMBB(PredBB); 2543 } 2544 } 2545 2546 // Create a branch to the new epilog from the kernel. 2547 // Remove the original branch and add a new branch to the epilog. 2548 TII->removeBranch(*KernelBB); 2549 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2550 // Add a branch to the loop exit. 2551 if (EpilogBBs.size() > 0) { 2552 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2553 SmallVector<MachineOperand, 4> Cond1; 2554 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2555 } 2556 } 2557 2558 /// Replace all uses of FromReg that appear outside the specified 2559 /// basic block with ToReg. 2560 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2561 MachineBasicBlock *MBB, 2562 MachineRegisterInfo &MRI, 2563 LiveIntervals &LIS) { 2564 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2565 E = MRI.use_end(); 2566 I != E;) { 2567 MachineOperand &O = *I; 2568 ++I; 2569 if (O.getParent()->getParent() != MBB) 2570 O.setReg(ToReg); 2571 } 2572 if (!LIS.hasInterval(ToReg)) 2573 LIS.createEmptyInterval(ToReg); 2574 } 2575 2576 /// Return true if the register has a use that occurs outside the 2577 /// specified loop. 2578 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2579 MachineRegisterInfo &MRI) { 2580 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2581 E = MRI.use_end(); 2582 I != E; ++I) 2583 if (I->getParent()->getParent() != BB) 2584 return true; 2585 return false; 2586 } 2587 2588 /// Generate Phis for the specific block in the generated pipelined code. 2589 /// This function looks at the Phis from the original code to guide the 2590 /// creation of new Phis. 2591 void SwingSchedulerDAG::generateExistingPhis( 2592 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2593 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2594 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2595 bool IsLast) { 2596 // Compute the stage number for the initial value of the Phi, which 2597 // comes from the prolog. The prolog to use depends on to which kernel/ 2598 // epilog that we're adding the Phi. 2599 unsigned PrologStage = 0; 2600 unsigned PrevStage = 0; 2601 bool InKernel = (LastStageNum == CurStageNum); 2602 if (InKernel) { 2603 PrologStage = LastStageNum - 1; 2604 PrevStage = CurStageNum; 2605 } else { 2606 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2607 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2608 } 2609 2610 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2611 BBE = BB->getFirstNonPHI(); 2612 BBI != BBE; ++BBI) { 2613 unsigned Def = BBI->getOperand(0).getReg(); 2614 2615 unsigned InitVal = 0; 2616 unsigned LoopVal = 0; 2617 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2618 2619 unsigned PhiOp1 = 0; 2620 // The Phi value from the loop body typically is defined in the loop, but 2621 // not always. So, we need to check if the value is defined in the loop. 2622 unsigned PhiOp2 = LoopVal; 2623 if (VRMap[LastStageNum].count(LoopVal)) 2624 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2625 2626 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2627 int LoopValStage = 2628 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2629 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2630 if (NumStages == 0) { 2631 // We don't need to generate a Phi anymore, but we need to rename any uses 2632 // of the Phi value. 2633 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2634 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2635 Def, InitVal, NewReg); 2636 if (VRMap[CurStageNum].count(LoopVal)) 2637 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2638 } 2639 // Adjust the number of Phis needed depending on the number of prologs left, 2640 // and the distance from where the Phi is first scheduled. The number of 2641 // Phis cannot exceed the number of prolog stages. Each stage can 2642 // potentially define two values. 2643 unsigned MaxPhis = PrologStage + 2; 2644 if (!InKernel && (int)PrologStage <= LoopValStage) 2645 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2646 unsigned NumPhis = std::min(NumStages, MaxPhis); 2647 2648 unsigned NewReg = 0; 2649 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2650 // In the epilog, we may need to look back one stage to get the correct 2651 // Phi name because the epilog and prolog blocks execute the same stage. 2652 // The correct name is from the previous block only when the Phi has 2653 // been completely scheduled prior to the epilog, and Phi value is not 2654 // needed in multiple stages. 2655 int StageDiff = 0; 2656 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2657 NumPhis == 1) 2658 StageDiff = 1; 2659 // Adjust the computations below when the phi and the loop definition 2660 // are scheduled in different stages. 2661 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2662 StageDiff = StageScheduled - LoopValStage; 2663 for (unsigned np = 0; np < NumPhis; ++np) { 2664 // If the Phi hasn't been scheduled, then use the initial Phi operand 2665 // value. Otherwise, use the scheduled version of the instruction. This 2666 // is a little complicated when a Phi references another Phi. 2667 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2668 PhiOp1 = InitVal; 2669 // Check if the Phi has already been scheduled in a prolog stage. 2670 else if (PrologStage >= AccessStage + StageDiff + np && 2671 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2672 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2673 // Check if the Phi has already been scheduled, but the loop intruction 2674 // is either another Phi, or doesn't occur in the loop. 2675 else if (PrologStage >= AccessStage + StageDiff + np) { 2676 // If the Phi references another Phi, we need to examine the other 2677 // Phi to get the correct value. 2678 PhiOp1 = LoopVal; 2679 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2680 int Indirects = 1; 2681 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2682 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2683 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2684 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2685 else 2686 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2687 InstOp1 = MRI.getVRegDef(PhiOp1); 2688 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2689 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2690 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2691 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2692 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2693 break; 2694 } 2695 ++Indirects; 2696 } 2697 } else 2698 PhiOp1 = InitVal; 2699 // If this references a generated Phi in the kernel, get the Phi operand 2700 // from the incoming block. 2701 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2702 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2703 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2704 2705 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2706 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2707 // In the epilog, a map lookup is needed to get the value from the kernel, 2708 // or previous epilog block. How is does this depends on if the 2709 // instruction is scheduled in the previous block. 2710 if (!InKernel) { 2711 int StageDiffAdj = 0; 2712 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2713 StageDiffAdj = StageScheduled - LoopValStage; 2714 // Use the loop value defined in the kernel, unless the kernel 2715 // contains the last definition of the Phi. 2716 if (np == 0 && PrevStage == LastStageNum && 2717 (StageScheduled != 0 || LoopValStage != 0) && 2718 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2719 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2720 // Use the value defined by the Phi. We add one because we switch 2721 // from looking at the loop value to the Phi definition. 2722 else if (np > 0 && PrevStage == LastStageNum && 2723 VRMap[PrevStage - np + 1].count(Def)) 2724 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2725 // Use the loop value defined in the kernel. 2726 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2727 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2728 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2729 // Use the value defined by the Phi, unless we're generating the first 2730 // epilog and the Phi refers to a Phi in a different stage. 2731 else if (VRMap[PrevStage - np].count(Def) && 2732 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2733 PhiOp2 = VRMap[PrevStage - np][Def]; 2734 } 2735 2736 // Check if we can reuse an existing Phi. This occurs when a Phi 2737 // references another Phi, and the other Phi is scheduled in an 2738 // earlier stage. We can try to reuse an existing Phi up until the last 2739 // stage of the current Phi. 2740 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) { 2741 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2742 int StageDiff = (StageScheduled - LoopValStage); 2743 LVNumStages -= StageDiff; 2744 // Make sure the loop value Phi has been processed already. 2745 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2746 NewReg = PhiOp2; 2747 unsigned ReuseStage = CurStageNum; 2748 if (Schedule.isLoopCarried(this, *PhiInst)) 2749 ReuseStage -= LVNumStages; 2750 // Check if the Phi to reuse has been generated yet. If not, then 2751 // there is nothing to reuse. 2752 if (VRMap[ReuseStage - np].count(LoopVal)) { 2753 NewReg = VRMap[ReuseStage - np][LoopVal]; 2754 2755 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2756 &*BBI, Def, NewReg); 2757 // Update the map with the new Phi name. 2758 VRMap[CurStageNum - np][Def] = NewReg; 2759 PhiOp2 = NewReg; 2760 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2761 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2762 2763 if (IsLast && np == NumPhis - 1) 2764 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2765 continue; 2766 } 2767 } else if (InKernel && StageDiff > 0 && 2768 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2769 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2770 } 2771 2772 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2773 NewReg = MRI.createVirtualRegister(RC); 2774 2775 MachineInstrBuilder NewPhi = 2776 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2777 TII->get(TargetOpcode::PHI), NewReg); 2778 NewPhi.addReg(PhiOp1).addMBB(BB1); 2779 NewPhi.addReg(PhiOp2).addMBB(BB2); 2780 if (np == 0) 2781 InstrMap[NewPhi] = &*BBI; 2782 2783 // We define the Phis after creating the new pipelined code, so 2784 // we need to rename the Phi values in scheduled instructions. 2785 2786 unsigned PrevReg = 0; 2787 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2788 PrevReg = VRMap[PrevStage - np][LoopVal]; 2789 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2790 Def, NewReg, PrevReg); 2791 // If the Phi has been scheduled, use the new name for rewriting. 2792 if (VRMap[CurStageNum - np].count(Def)) { 2793 unsigned R = VRMap[CurStageNum - np][Def]; 2794 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2795 R, NewReg); 2796 } 2797 2798 // Check if we need to rename any uses that occurs after the loop. The 2799 // register to replace depends on whether the Phi is scheduled in the 2800 // epilog. 2801 if (IsLast && np == NumPhis - 1) 2802 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2803 2804 // In the kernel, a dependent Phi uses the value from this Phi. 2805 if (InKernel) 2806 PhiOp2 = NewReg; 2807 2808 // Update the map with the new Phi name. 2809 VRMap[CurStageNum - np][Def] = NewReg; 2810 } 2811 2812 while (NumPhis++ < NumStages) { 2813 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2814 &*BBI, Def, NewReg, 0); 2815 } 2816 2817 // Check if we need to rename a Phi that has been eliminated due to 2818 // scheduling. 2819 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2820 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2821 } 2822 } 2823 2824 /// Generate Phis for the specified block in the generated pipelined code. 2825 /// These are new Phis needed because the definition is scheduled after the 2826 /// use in the pipelened sequence. 2827 void SwingSchedulerDAG::generatePhis( 2828 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2829 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2830 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2831 bool IsLast) { 2832 // Compute the stage number that contains the initial Phi value, and 2833 // the Phi from the previous stage. 2834 unsigned PrologStage = 0; 2835 unsigned PrevStage = 0; 2836 unsigned StageDiff = CurStageNum - LastStageNum; 2837 bool InKernel = (StageDiff == 0); 2838 if (InKernel) { 2839 PrologStage = LastStageNum - 1; 2840 PrevStage = CurStageNum; 2841 } else { 2842 PrologStage = LastStageNum - StageDiff; 2843 PrevStage = LastStageNum + StageDiff - 1; 2844 } 2845 2846 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2847 BBE = BB->instr_end(); 2848 BBI != BBE; ++BBI) { 2849 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2850 MachineOperand &MO = BBI->getOperand(i); 2851 if (!MO.isReg() || !MO.isDef() || 2852 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2853 continue; 2854 2855 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2856 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2857 unsigned Def = MO.getReg(); 2858 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2859 // An instruction scheduled in stage 0 and is used after the loop 2860 // requires a phi in the epilog for the last definition from either 2861 // the kernel or prolog. 2862 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2863 hasUseAfterLoop(Def, BB, MRI)) 2864 NumPhis = 1; 2865 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2866 continue; 2867 2868 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2869 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2870 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2871 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2872 // The number of Phis can't exceed the number of prolog stages. The 2873 // prolog stage number is zero based. 2874 if (NumPhis > PrologStage + 1 - StageScheduled) 2875 NumPhis = PrologStage + 1 - StageScheduled; 2876 for (unsigned np = 0; np < NumPhis; ++np) { 2877 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2878 if (np <= PrologStage) 2879 PhiOp1 = VRMap[PrologStage - np][Def]; 2880 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2881 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2882 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2883 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2884 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2885 } 2886 if (!InKernel) 2887 PhiOp2 = VRMap[PrevStage - np][Def]; 2888 2889 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2890 unsigned NewReg = MRI.createVirtualRegister(RC); 2891 2892 MachineInstrBuilder NewPhi = 2893 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2894 TII->get(TargetOpcode::PHI), NewReg); 2895 NewPhi.addReg(PhiOp1).addMBB(BB1); 2896 NewPhi.addReg(PhiOp2).addMBB(BB2); 2897 if (np == 0) 2898 InstrMap[NewPhi] = &*BBI; 2899 2900 // Rewrite uses and update the map. The actions depend upon whether 2901 // we generating code for the kernel or epilog blocks. 2902 if (InKernel) { 2903 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2904 &*BBI, PhiOp1, NewReg); 2905 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2906 &*BBI, PhiOp2, NewReg); 2907 2908 PhiOp2 = NewReg; 2909 VRMap[PrevStage - np - 1][Def] = NewReg; 2910 } else { 2911 VRMap[CurStageNum - np][Def] = NewReg; 2912 if (np == NumPhis - 1) 2913 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2914 &*BBI, Def, NewReg); 2915 } 2916 if (IsLast && np == NumPhis - 1) 2917 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2918 } 2919 } 2920 } 2921 } 2922 2923 /// Remove instructions that generate values with no uses. 2924 /// Typically, these are induction variable operations that generate values 2925 /// used in the loop itself. A dead instruction has a definition with 2926 /// no uses, or uses that occur in the original loop only. 2927 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2928 MBBVectorTy &EpilogBBs) { 2929 // For each epilog block, check that the value defined by each instruction 2930 // is used. If not, delete it. 2931 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2932 MBE = EpilogBBs.rend(); 2933 MBB != MBE; ++MBB) 2934 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2935 ME = (*MBB)->instr_rend(); 2936 MI != ME;) { 2937 // From DeadMachineInstructionElem. Don't delete inline assembly. 2938 if (MI->isInlineAsm()) { 2939 ++MI; 2940 continue; 2941 } 2942 bool SawStore = false; 2943 // Check if it's safe to remove the instruction due to side effects. 2944 // We can, and want to, remove Phis here. 2945 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2946 ++MI; 2947 continue; 2948 } 2949 bool used = true; 2950 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2951 MOE = MI->operands_end(); 2952 MOI != MOE; ++MOI) { 2953 if (!MOI->isReg() || !MOI->isDef()) 2954 continue; 2955 unsigned reg = MOI->getReg(); 2956 // Assume physical registers are used, unless they are marked dead. 2957 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2958 used = !MOI->isDead(); 2959 if (used) 2960 break; 2961 continue; 2962 } 2963 unsigned realUses = 0; 2964 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2965 EI = MRI.use_end(); 2966 UI != EI; ++UI) { 2967 // Check if there are any uses that occur only in the original 2968 // loop. If so, that's not a real use. 2969 if (UI->getParent()->getParent() != BB) { 2970 realUses++; 2971 used = true; 2972 break; 2973 } 2974 } 2975 if (realUses > 0) 2976 break; 2977 used = false; 2978 } 2979 if (!used) { 2980 LIS.RemoveMachineInstrFromMaps(*MI); 2981 MI++->eraseFromParent(); 2982 continue; 2983 } 2984 ++MI; 2985 } 2986 // In the kernel block, check if we can remove a Phi that generates a value 2987 // used in an instruction removed in the epilog block. 2988 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2989 BBE = KernelBB->getFirstNonPHI(); 2990 BBI != BBE;) { 2991 MachineInstr *MI = &*BBI; 2992 ++BBI; 2993 unsigned reg = MI->getOperand(0).getReg(); 2994 if (MRI.use_begin(reg) == MRI.use_end()) { 2995 LIS.RemoveMachineInstrFromMaps(*MI); 2996 MI->eraseFromParent(); 2997 } 2998 } 2999 } 3000 3001 /// For loop carried definitions, we split the lifetime of a virtual register 3002 /// that has uses past the definition in the next iteration. A copy with a new 3003 /// virtual register is inserted before the definition, which helps with 3004 /// generating a better register assignment. 3005 /// 3006 /// v1 = phi(a, v2) v1 = phi(a, v2) 3007 /// v2 = phi(b, v3) v2 = phi(b, v3) 3008 /// v3 = .. v4 = copy v1 3009 /// .. = V1 v3 = .. 3010 /// .. = v4 3011 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 3012 MBBVectorTy &EpilogBBs, 3013 SMSchedule &Schedule) { 3014 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3015 for (auto &PHI : KernelBB->phis()) { 3016 unsigned Def = PHI.getOperand(0).getReg(); 3017 // Check for any Phi definition that used as an operand of another Phi 3018 // in the same block. 3019 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 3020 E = MRI.use_instr_end(); 3021 I != E; ++I) { 3022 if (I->isPHI() && I->getParent() == KernelBB) { 3023 // Get the loop carried definition. 3024 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 3025 if (!LCDef) 3026 continue; 3027 MachineInstr *MI = MRI.getVRegDef(LCDef); 3028 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 3029 continue; 3030 // Search through the rest of the block looking for uses of the Phi 3031 // definition. If one occurs, then split the lifetime. 3032 unsigned SplitReg = 0; 3033 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 3034 KernelBB->instr_end())) 3035 if (BBJ.readsRegister(Def)) { 3036 // We split the lifetime when we find the first use. 3037 if (SplitReg == 0) { 3038 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 3039 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 3040 TII->get(TargetOpcode::COPY), SplitReg) 3041 .addReg(Def); 3042 } 3043 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 3044 } 3045 if (!SplitReg) 3046 continue; 3047 // Search through each of the epilog blocks for any uses to be renamed. 3048 for (auto &Epilog : EpilogBBs) 3049 for (auto &I : *Epilog) 3050 if (I.readsRegister(Def)) 3051 I.substituteRegister(Def, SplitReg, 0, *TRI); 3052 break; 3053 } 3054 } 3055 } 3056 } 3057 3058 /// Remove the incoming block from the Phis in a basic block. 3059 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 3060 for (MachineInstr &MI : *BB) { 3061 if (!MI.isPHI()) 3062 break; 3063 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3064 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3065 MI.RemoveOperand(i + 1); 3066 MI.RemoveOperand(i); 3067 break; 3068 } 3069 } 3070 } 3071 3072 /// Create branches from each prolog basic block to the appropriate epilog 3073 /// block. These edges are needed if the loop ends before reaching the 3074 /// kernel. 3075 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3076 MachineBasicBlock *KernelBB, 3077 MBBVectorTy &EpilogBBs, 3078 SMSchedule &Schedule, ValueMapTy *VRMap) { 3079 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3080 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3081 MachineInstr *Cmp = Pass.LI.LoopCompare; 3082 MachineBasicBlock *LastPro = KernelBB; 3083 MachineBasicBlock *LastEpi = KernelBB; 3084 3085 // Start from the blocks connected to the kernel and work "out" 3086 // to the first prolog and the last epilog blocks. 3087 SmallVector<MachineInstr *, 4> PrevInsts; 3088 unsigned MaxIter = PrologBBs.size() - 1; 3089 unsigned LC = UINT_MAX; 3090 unsigned LCMin = UINT_MAX; 3091 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3092 // Add branches to the prolog that go to the corresponding 3093 // epilog, and the fall-thru prolog/kernel block. 3094 MachineBasicBlock *Prolog = PrologBBs[j]; 3095 MachineBasicBlock *Epilog = EpilogBBs[i]; 3096 // We've executed one iteration, so decrement the loop count and check for 3097 // the loop end. 3098 SmallVector<MachineOperand, 4> Cond; 3099 // Check if the LOOP0 has already been removed. If so, then there is no need 3100 // to reduce the trip count. 3101 if (LC != 0) 3102 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3103 MaxIter); 3104 3105 // Record the value of the first trip count, which is used to determine if 3106 // branches and blocks can be removed for constant trip counts. 3107 if (LCMin == UINT_MAX) 3108 LCMin = LC; 3109 3110 unsigned numAdded = 0; 3111 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3112 Prolog->addSuccessor(Epilog); 3113 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3114 } else if (j >= LCMin) { 3115 Prolog->addSuccessor(Epilog); 3116 Prolog->removeSuccessor(LastPro); 3117 LastEpi->removeSuccessor(Epilog); 3118 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3119 removePhis(Epilog, LastEpi); 3120 // Remove the blocks that are no longer referenced. 3121 if (LastPro != LastEpi) { 3122 LastEpi->clear(); 3123 LastEpi->eraseFromParent(); 3124 } 3125 LastPro->clear(); 3126 LastPro->eraseFromParent(); 3127 } else { 3128 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3129 removePhis(Epilog, Prolog); 3130 } 3131 LastPro = Prolog; 3132 LastEpi = Epilog; 3133 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3134 E = Prolog->instr_rend(); 3135 I != E && numAdded > 0; ++I, --numAdded) 3136 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3137 } 3138 } 3139 3140 /// Return true if we can compute the amount the instruction changes 3141 /// during each iteration. Set Delta to the amount of the change. 3142 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3143 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3144 unsigned BaseReg; 3145 int64_t Offset; 3146 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3147 return false; 3148 3149 MachineRegisterInfo &MRI = MF.getRegInfo(); 3150 // Check if there is a Phi. If so, get the definition in the loop. 3151 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3152 if (BaseDef && BaseDef->isPHI()) { 3153 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3154 BaseDef = MRI.getVRegDef(BaseReg); 3155 } 3156 if (!BaseDef) 3157 return false; 3158 3159 int D = 0; 3160 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3161 return false; 3162 3163 Delta = D; 3164 return true; 3165 } 3166 3167 /// Update the memory operand with a new offset when the pipeliner 3168 /// generates a new copy of the instruction that refers to a 3169 /// different memory location. 3170 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3171 MachineInstr &OldMI, unsigned Num) { 3172 if (Num == 0) 3173 return; 3174 // If the instruction has memory operands, then adjust the offset 3175 // when the instruction appears in different stages. 3176 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3177 if (NumRefs == 0) 3178 return; 3179 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3180 unsigned Refs = 0; 3181 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3182 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3183 (!MMO->getValue())) { 3184 NewMemRefs[Refs++] = MMO; 3185 continue; 3186 } 3187 unsigned Delta; 3188 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 3189 int64_t AdjOffset = Delta * Num; 3190 NewMemRefs[Refs++] = 3191 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3192 } else { 3193 NewMI.dropMemRefs(); 3194 return; 3195 } 3196 } 3197 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3198 } 3199 3200 /// Clone the instruction for the new pipelined loop and update the 3201 /// memory operands, if needed. 3202 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3203 unsigned CurStageNum, 3204 unsigned InstStageNum) { 3205 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3206 // Check for tied operands in inline asm instructions. This should be handled 3207 // elsewhere, but I'm not sure of the best solution. 3208 if (OldMI->isInlineAsm()) 3209 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3210 const auto &MO = OldMI->getOperand(i); 3211 if (MO.isReg() && MO.isUse()) 3212 break; 3213 unsigned UseIdx; 3214 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3215 NewMI->tieOperands(i, UseIdx); 3216 } 3217 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3218 return NewMI; 3219 } 3220 3221 /// Clone the instruction for the new pipelined loop. If needed, this 3222 /// function updates the instruction using the values saved in the 3223 /// InstrChanges structure. 3224 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3225 unsigned CurStageNum, 3226 unsigned InstStageNum, 3227 SMSchedule &Schedule) { 3228 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3229 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3230 InstrChanges.find(getSUnit(OldMI)); 3231 if (It != InstrChanges.end()) { 3232 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3233 unsigned BasePos, OffsetPos; 3234 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3235 return nullptr; 3236 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3237 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3238 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3239 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3240 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3241 } 3242 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3243 return NewMI; 3244 } 3245 3246 /// Update the machine instruction with new virtual registers. This 3247 /// function may change the defintions and/or uses. 3248 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3249 unsigned CurStageNum, 3250 unsigned InstrStageNum, 3251 SMSchedule &Schedule, 3252 ValueMapTy *VRMap) { 3253 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3254 MachineOperand &MO = NewMI->getOperand(i); 3255 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3256 continue; 3257 unsigned reg = MO.getReg(); 3258 if (MO.isDef()) { 3259 // Create a new virtual register for the definition. 3260 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3261 unsigned NewReg = MRI.createVirtualRegister(RC); 3262 MO.setReg(NewReg); 3263 VRMap[CurStageNum][reg] = NewReg; 3264 if (LastDef) 3265 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3266 } else if (MO.isUse()) { 3267 MachineInstr *Def = MRI.getVRegDef(reg); 3268 // Compute the stage that contains the last definition for instruction. 3269 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3270 unsigned StageNum = CurStageNum; 3271 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3272 // Compute the difference in stages between the defintion and the use. 3273 unsigned StageDiff = (InstrStageNum - DefStageNum); 3274 // Make an adjustment to get the last definition. 3275 StageNum -= StageDiff; 3276 } 3277 if (VRMap[StageNum].count(reg)) 3278 MO.setReg(VRMap[StageNum][reg]); 3279 } 3280 } 3281 } 3282 3283 /// Return the instruction in the loop that defines the register. 3284 /// If the definition is a Phi, then follow the Phi operand to 3285 /// the instruction in the loop. 3286 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3287 SmallPtrSet<MachineInstr *, 8> Visited; 3288 MachineInstr *Def = MRI.getVRegDef(Reg); 3289 while (Def->isPHI()) { 3290 if (!Visited.insert(Def).second) 3291 break; 3292 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3293 if (Def->getOperand(i + 1).getMBB() == BB) { 3294 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3295 break; 3296 } 3297 } 3298 return Def; 3299 } 3300 3301 /// Return the new name for the value from the previous stage. 3302 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3303 unsigned LoopVal, unsigned LoopStage, 3304 ValueMapTy *VRMap, 3305 MachineBasicBlock *BB) { 3306 unsigned PrevVal = 0; 3307 if (StageNum > PhiStage) { 3308 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3309 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3310 // The name is defined in the previous stage. 3311 PrevVal = VRMap[StageNum - 1][LoopVal]; 3312 else if (VRMap[StageNum].count(LoopVal)) 3313 // The previous name is defined in the current stage when the instruction 3314 // order is swapped. 3315 PrevVal = VRMap[StageNum][LoopVal]; 3316 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3317 // The loop value hasn't yet been scheduled. 3318 PrevVal = LoopVal; 3319 else if (StageNum == PhiStage + 1) 3320 // The loop value is another phi, which has not been scheduled. 3321 PrevVal = getInitPhiReg(*LoopInst, BB); 3322 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3323 // The loop value is another phi, which has been scheduled. 3324 PrevVal = 3325 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3326 LoopStage, VRMap, BB); 3327 } 3328 return PrevVal; 3329 } 3330 3331 /// Rewrite the Phi values in the specified block to use the mappings 3332 /// from the initial operand. Once the Phi is scheduled, we switch 3333 /// to using the loop value instead of the Phi value, so those names 3334 /// do not need to be rewritten. 3335 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3336 unsigned StageNum, 3337 SMSchedule &Schedule, 3338 ValueMapTy *VRMap, 3339 InstrMapTy &InstrMap) { 3340 for (auto &PHI : BB->phis()) { 3341 unsigned InitVal = 0; 3342 unsigned LoopVal = 0; 3343 getPhiRegs(PHI, BB, InitVal, LoopVal); 3344 unsigned PhiDef = PHI.getOperand(0).getReg(); 3345 3346 unsigned PhiStage = 3347 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3348 unsigned LoopStage = 3349 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3350 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3351 if (NumPhis > StageNum) 3352 NumPhis = StageNum; 3353 for (unsigned np = 0; np <= NumPhis; ++np) { 3354 unsigned NewVal = 3355 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3356 if (!NewVal) 3357 NewVal = InitVal; 3358 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3359 PhiDef, NewVal); 3360 } 3361 } 3362 } 3363 3364 /// Rewrite a previously scheduled instruction to use the register value 3365 /// from the new instruction. Make sure the instruction occurs in the 3366 /// basic block, and we don't change the uses in the new instruction. 3367 void SwingSchedulerDAG::rewriteScheduledInstr( 3368 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3369 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3370 unsigned NewReg, unsigned PrevReg) { 3371 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3372 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3373 // Rewrite uses that have been scheduled already to use the new 3374 // Phi register. 3375 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3376 EI = MRI.use_end(); 3377 UI != EI;) { 3378 MachineOperand &UseOp = *UI; 3379 MachineInstr *UseMI = UseOp.getParent(); 3380 ++UI; 3381 if (UseMI->getParent() != BB) 3382 continue; 3383 if (UseMI->isPHI()) { 3384 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3385 continue; 3386 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3387 continue; 3388 } 3389 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3390 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3391 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3392 int StageSched = Schedule.stageScheduled(OrigMISU); 3393 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3394 unsigned ReplaceReg = 0; 3395 // This is the stage for the scheduled instruction. 3396 if (StagePhi == StageSched && Phi->isPHI()) { 3397 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3398 if (PrevReg && InProlog) 3399 ReplaceReg = PrevReg; 3400 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3401 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3402 ReplaceReg = PrevReg; 3403 else 3404 ReplaceReg = NewReg; 3405 } 3406 // The scheduled instruction occurs before the scheduled Phi, and the 3407 // Phi is not loop carried. 3408 if (!InProlog && StagePhi + 1 == StageSched && 3409 !Schedule.isLoopCarried(this, *Phi)) 3410 ReplaceReg = NewReg; 3411 if (StagePhi > StageSched && Phi->isPHI()) 3412 ReplaceReg = NewReg; 3413 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3414 ReplaceReg = NewReg; 3415 if (ReplaceReg) { 3416 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3417 UseOp.setReg(ReplaceReg); 3418 } 3419 } 3420 } 3421 3422 /// Check if we can change the instruction to use an offset value from the 3423 /// previous iteration. If so, return true and set the base and offset values 3424 /// so that we can rewrite the load, if necessary. 3425 /// v1 = Phi(v0, v3) 3426 /// v2 = load v1, 0 3427 /// v3 = post_store v1, 4, x 3428 /// This function enables the load to be rewritten as v2 = load v3, 4. 3429 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3430 unsigned &BasePos, 3431 unsigned &OffsetPos, 3432 unsigned &NewBase, 3433 int64_t &Offset) { 3434 // Get the load instruction. 3435 if (TII->isPostIncrement(*MI)) 3436 return false; 3437 unsigned BasePosLd, OffsetPosLd; 3438 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3439 return false; 3440 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3441 3442 // Look for the Phi instruction. 3443 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3444 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3445 if (!Phi || !Phi->isPHI()) 3446 return false; 3447 // Get the register defined in the loop block. 3448 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3449 if (!PrevReg) 3450 return false; 3451 3452 // Check for the post-increment load/store instruction. 3453 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3454 if (!PrevDef || PrevDef == MI) 3455 return false; 3456 3457 if (!TII->isPostIncrement(*PrevDef)) 3458 return false; 3459 3460 unsigned BasePos1 = 0, OffsetPos1 = 0; 3461 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3462 return false; 3463 3464 // Make sure that the instructions do not access the same memory location in 3465 // the next iteration. 3466 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3467 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3468 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3469 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3470 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3471 MF.DeleteMachineInstr(NewMI); 3472 if (!Disjoint) 3473 return false; 3474 3475 // Set the return value once we determine that we return true. 3476 BasePos = BasePosLd; 3477 OffsetPos = OffsetPosLd; 3478 NewBase = PrevReg; 3479 Offset = StoreOffset; 3480 return true; 3481 } 3482 3483 /// Apply changes to the instruction if needed. The changes are need 3484 /// to improve the scheduling and depend up on the final schedule. 3485 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3486 SMSchedule &Schedule) { 3487 SUnit *SU = getSUnit(MI); 3488 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3489 InstrChanges.find(SU); 3490 if (It != InstrChanges.end()) { 3491 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3492 unsigned BasePos, OffsetPos; 3493 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3494 return; 3495 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3496 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3497 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3498 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3499 int BaseStageNum = Schedule.stageScheduled(SU); 3500 int BaseCycleNum = Schedule.cycleScheduled(SU); 3501 if (BaseStageNum < DefStageNum) { 3502 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3503 int OffsetDiff = DefStageNum - BaseStageNum; 3504 if (DefCycleNum < BaseCycleNum) { 3505 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3506 if (OffsetDiff > 0) 3507 --OffsetDiff; 3508 } 3509 int64_t NewOffset = 3510 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3511 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3512 SU->setInstr(NewMI); 3513 MISUnitMap[NewMI] = SU; 3514 NewMIs.insert(NewMI); 3515 } 3516 } 3517 } 3518 3519 /// Return true for an order or output dependence that is loop carried 3520 /// potentially. A dependence is loop carried if the destination defines a valu 3521 /// that may be used or defined by the source in a subsequent iteration. 3522 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3523 bool isSucc) { 3524 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3525 Dep.isArtificial()) 3526 return false; 3527 3528 if (!SwpPruneLoopCarried) 3529 return true; 3530 3531 if (Dep.getKind() == SDep::Output) 3532 return true; 3533 3534 MachineInstr *SI = Source->getInstr(); 3535 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3536 if (!isSucc) 3537 std::swap(SI, DI); 3538 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3539 3540 // Assume ordered loads and stores may have a loop carried dependence. 3541 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3542 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3543 return true; 3544 3545 // Only chain dependences between a load and store can be loop carried. 3546 if (!DI->mayStore() || !SI->mayLoad()) 3547 return false; 3548 3549 unsigned DeltaS, DeltaD; 3550 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3551 return true; 3552 3553 unsigned BaseRegS, BaseRegD; 3554 int64_t OffsetS, OffsetD; 3555 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3556 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3557 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3558 return true; 3559 3560 if (BaseRegS != BaseRegD) 3561 return true; 3562 3563 // Check that the base register is incremented by a constant value for each 3564 // iteration. 3565 MachineInstr *Def = MRI.getVRegDef(BaseRegS); 3566 if (!Def || !Def->isPHI()) 3567 return true; 3568 unsigned InitVal = 0; 3569 unsigned LoopVal = 0; 3570 getPhiRegs(*Def, BB, InitVal, LoopVal); 3571 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3572 int D = 0; 3573 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3574 return true; 3575 3576 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3577 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3578 3579 // This is the main test, which checks the offset values and the loop 3580 // increment value to determine if the accesses may be loop carried. 3581 if (OffsetS >= OffsetD) 3582 return OffsetS + AccessSizeS > DeltaS; 3583 else 3584 return OffsetD + AccessSizeD > DeltaD; 3585 3586 return true; 3587 } 3588 3589 void SwingSchedulerDAG::postprocessDAG() { 3590 for (auto &M : Mutations) 3591 M->apply(this); 3592 } 3593 3594 /// Try to schedule the node at the specified StartCycle and continue 3595 /// until the node is schedule or the EndCycle is reached. This function 3596 /// returns true if the node is scheduled. This routine may search either 3597 /// forward or backward for a place to insert the instruction based upon 3598 /// the relative values of StartCycle and EndCycle. 3599 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3600 bool forward = true; 3601 if (StartCycle > EndCycle) 3602 forward = false; 3603 3604 // The terminating condition depends on the direction. 3605 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3606 for (int curCycle = StartCycle; curCycle != termCycle; 3607 forward ? ++curCycle : --curCycle) { 3608 3609 // Add the already scheduled instructions at the specified cycle to the DFA. 3610 Resources->clearResources(); 3611 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3612 checkCycle <= LastCycle; checkCycle += II) { 3613 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3614 3615 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3616 E = cycleInstrs.end(); 3617 I != E; ++I) { 3618 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3619 continue; 3620 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3621 "These instructions have already been scheduled."); 3622 Resources->reserveResources(*(*I)->getInstr()); 3623 } 3624 } 3625 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3626 Resources->canReserveResources(*SU->getInstr())) { 3627 DEBUG({ 3628 dbgs() << "\tinsert at cycle " << curCycle << " "; 3629 SU->getInstr()->dump(); 3630 }); 3631 3632 ScheduledInstrs[curCycle].push_back(SU); 3633 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3634 if (curCycle > LastCycle) 3635 LastCycle = curCycle; 3636 if (curCycle < FirstCycle) 3637 FirstCycle = curCycle; 3638 return true; 3639 } 3640 DEBUG({ 3641 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3642 SU->getInstr()->dump(); 3643 }); 3644 } 3645 return false; 3646 } 3647 3648 // Return the cycle of the earliest scheduled instruction in the chain. 3649 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3650 SmallPtrSet<SUnit *, 8> Visited; 3651 SmallVector<SDep, 8> Worklist; 3652 Worklist.push_back(Dep); 3653 int EarlyCycle = INT_MAX; 3654 while (!Worklist.empty()) { 3655 const SDep &Cur = Worklist.pop_back_val(); 3656 SUnit *PrevSU = Cur.getSUnit(); 3657 if (Visited.count(PrevSU)) 3658 continue; 3659 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3660 if (it == InstrToCycle.end()) 3661 continue; 3662 EarlyCycle = std::min(EarlyCycle, it->second); 3663 for (const auto &PI : PrevSU->Preds) 3664 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3665 Worklist.push_back(PI); 3666 Visited.insert(PrevSU); 3667 } 3668 return EarlyCycle; 3669 } 3670 3671 // Return the cycle of the latest scheduled instruction in the chain. 3672 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3673 SmallPtrSet<SUnit *, 8> Visited; 3674 SmallVector<SDep, 8> Worklist; 3675 Worklist.push_back(Dep); 3676 int LateCycle = INT_MIN; 3677 while (!Worklist.empty()) { 3678 const SDep &Cur = Worklist.pop_back_val(); 3679 SUnit *SuccSU = Cur.getSUnit(); 3680 if (Visited.count(SuccSU)) 3681 continue; 3682 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3683 if (it == InstrToCycle.end()) 3684 continue; 3685 LateCycle = std::max(LateCycle, it->second); 3686 for (const auto &SI : SuccSU->Succs) 3687 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3688 Worklist.push_back(SI); 3689 Visited.insert(SuccSU); 3690 } 3691 return LateCycle; 3692 } 3693 3694 /// If an instruction has a use that spans multiple iterations, then 3695 /// return true. These instructions are characterized by having a back-ege 3696 /// to a Phi, which contains a reference to another Phi. 3697 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3698 for (auto &P : SU->Preds) 3699 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3700 for (auto &S : P.getSUnit()->Succs) 3701 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3702 return P.getSUnit(); 3703 return nullptr; 3704 } 3705 3706 /// Compute the scheduling start slot for the instruction. The start slot 3707 /// depends on any predecessor or successor nodes scheduled already. 3708 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3709 int *MinEnd, int *MaxStart, int II, 3710 SwingSchedulerDAG *DAG) { 3711 // Iterate over each instruction that has been scheduled already. The start 3712 // slot computuation depends on whether the previously scheduled instruction 3713 // is a predecessor or successor of the specified instruction. 3714 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3715 3716 // Iterate over each instruction in the current cycle. 3717 for (SUnit *I : getInstructions(cycle)) { 3718 // Because we're processing a DAG for the dependences, we recognize 3719 // the back-edge in recurrences by anti dependences. 3720 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3721 const SDep &Dep = SU->Preds[i]; 3722 if (Dep.getSUnit() == I) { 3723 if (!DAG->isBackedge(SU, Dep)) { 3724 int EarlyStart = cycle + Dep.getLatency() - 3725 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3726 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3727 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3728 int End = earliestCycleInChain(Dep) + (II - 1); 3729 *MinEnd = std::min(*MinEnd, End); 3730 } 3731 } else { 3732 int LateStart = cycle - Dep.getLatency() + 3733 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3734 *MinLateStart = std::min(*MinLateStart, LateStart); 3735 } 3736 } 3737 // For instruction that requires multiple iterations, make sure that 3738 // the dependent instruction is not scheduled past the definition. 3739 SUnit *BE = multipleIterations(I, DAG); 3740 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3741 !SU->isPred(I)) 3742 *MinLateStart = std::min(*MinLateStart, cycle); 3743 } 3744 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3745 if (SU->Succs[i].getSUnit() == I) { 3746 const SDep &Dep = SU->Succs[i]; 3747 if (!DAG->isBackedge(SU, Dep)) { 3748 int LateStart = cycle - Dep.getLatency() + 3749 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3750 *MinLateStart = std::min(*MinLateStart, LateStart); 3751 if (DAG->isLoopCarriedDep(SU, Dep)) { 3752 int Start = latestCycleInChain(Dep) + 1 - II; 3753 *MaxStart = std::max(*MaxStart, Start); 3754 } 3755 } else { 3756 int EarlyStart = cycle + Dep.getLatency() - 3757 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3758 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 } 3765 3766 /// Order the instructions within a cycle so that the definitions occur 3767 /// before the uses. Returns true if the instruction is added to the start 3768 /// of the list, or false if added to the end. 3769 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3770 std::deque<SUnit *> &Insts) { 3771 MachineInstr *MI = SU->getInstr(); 3772 bool OrderBeforeUse = false; 3773 bool OrderAfterDef = false; 3774 bool OrderBeforeDef = false; 3775 unsigned MoveDef = 0; 3776 unsigned MoveUse = 0; 3777 int StageInst1 = stageScheduled(SU); 3778 3779 unsigned Pos = 0; 3780 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3781 ++I, ++Pos) { 3782 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3783 MachineOperand &MO = MI->getOperand(i); 3784 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3785 continue; 3786 3787 unsigned Reg = MO.getReg(); 3788 unsigned BasePos, OffsetPos; 3789 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3790 if (MI->getOperand(BasePos).getReg() == Reg) 3791 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3792 Reg = NewReg; 3793 bool Reads, Writes; 3794 std::tie(Reads, Writes) = 3795 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3796 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3797 OrderBeforeUse = true; 3798 if (MoveUse == 0) 3799 MoveUse = Pos; 3800 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3801 // Add the instruction after the scheduled instruction. 3802 OrderAfterDef = true; 3803 MoveDef = Pos; 3804 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3805 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3806 OrderBeforeUse = true; 3807 if (MoveUse == 0) 3808 MoveUse = Pos; 3809 } else { 3810 OrderAfterDef = true; 3811 MoveDef = Pos; 3812 } 3813 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3814 OrderBeforeUse = true; 3815 if (MoveUse == 0) 3816 MoveUse = Pos; 3817 if (MoveUse != 0) { 3818 OrderAfterDef = true; 3819 MoveDef = Pos - 1; 3820 } 3821 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3822 // Add the instruction before the scheduled instruction. 3823 OrderBeforeUse = true; 3824 if (MoveUse == 0) 3825 MoveUse = Pos; 3826 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3827 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3828 if (MoveUse == 0) { 3829 OrderBeforeDef = true; 3830 MoveUse = Pos; 3831 } 3832 } 3833 } 3834 // Check for order dependences between instructions. Make sure the source 3835 // is ordered before the destination. 3836 for (auto &S : SU->Succs) { 3837 if (S.getSUnit() != *I) 3838 continue; 3839 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3840 OrderBeforeUse = true; 3841 if (Pos < MoveUse) 3842 MoveUse = Pos; 3843 } 3844 } 3845 for (auto &P : SU->Preds) { 3846 if (P.getSUnit() != *I) 3847 continue; 3848 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3849 OrderAfterDef = true; 3850 MoveDef = Pos; 3851 } 3852 } 3853 } 3854 3855 // A circular dependence. 3856 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3857 OrderBeforeUse = false; 3858 3859 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3860 // to a loop-carried dependence. 3861 if (OrderBeforeDef) 3862 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3863 3864 // The uncommon case when the instruction order needs to be updated because 3865 // there is both a use and def. 3866 if (OrderBeforeUse && OrderAfterDef) { 3867 SUnit *UseSU = Insts.at(MoveUse); 3868 SUnit *DefSU = Insts.at(MoveDef); 3869 if (MoveUse > MoveDef) { 3870 Insts.erase(Insts.begin() + MoveUse); 3871 Insts.erase(Insts.begin() + MoveDef); 3872 } else { 3873 Insts.erase(Insts.begin() + MoveDef); 3874 Insts.erase(Insts.begin() + MoveUse); 3875 } 3876 orderDependence(SSD, UseSU, Insts); 3877 orderDependence(SSD, SU, Insts); 3878 orderDependence(SSD, DefSU, Insts); 3879 return; 3880 } 3881 // Put the new instruction first if there is a use in the list. Otherwise, 3882 // put it at the end of the list. 3883 if (OrderBeforeUse) 3884 Insts.push_front(SU); 3885 else 3886 Insts.push_back(SU); 3887 } 3888 3889 /// Return true if the scheduled Phi has a loop carried operand. 3890 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3891 if (!Phi.isPHI()) 3892 return false; 3893 assert(Phi.isPHI() && "Expecing a Phi."); 3894 SUnit *DefSU = SSD->getSUnit(&Phi); 3895 unsigned DefCycle = cycleScheduled(DefSU); 3896 int DefStage = stageScheduled(DefSU); 3897 3898 unsigned InitVal = 0; 3899 unsigned LoopVal = 0; 3900 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3901 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3902 if (!UseSU) 3903 return true; 3904 if (UseSU->getInstr()->isPHI()) 3905 return true; 3906 unsigned LoopCycle = cycleScheduled(UseSU); 3907 int LoopStage = stageScheduled(UseSU); 3908 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3909 } 3910 3911 /// Return true if the instruction is a definition that is loop carried 3912 /// and defines the use on the next iteration. 3913 /// v1 = phi(v2, v3) 3914 /// (Def) v3 = op v1 3915 /// (MO) = v1 3916 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3917 /// register. 3918 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3919 MachineInstr *Def, MachineOperand &MO) { 3920 if (!MO.isReg()) 3921 return false; 3922 if (Def->isPHI()) 3923 return false; 3924 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3925 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3926 return false; 3927 if (!isLoopCarried(SSD, *Phi)) 3928 return false; 3929 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3930 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3931 MachineOperand &DMO = Def->getOperand(i); 3932 if (!DMO.isReg() || !DMO.isDef()) 3933 continue; 3934 if (DMO.getReg() == LoopReg) 3935 return true; 3936 } 3937 return false; 3938 } 3939 3940 // Check if the generated schedule is valid. This function checks if 3941 // an instruction that uses a physical register is scheduled in a 3942 // different stage than the definition. The pipeliner does not handle 3943 // physical register values that may cross a basic block boundary. 3944 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3945 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3946 SUnit &SU = SSD->SUnits[i]; 3947 if (!SU.hasPhysRegDefs) 3948 continue; 3949 int StageDef = stageScheduled(&SU); 3950 assert(StageDef != -1 && "Instruction should have been scheduled."); 3951 for (auto &SI : SU.Succs) 3952 if (SI.isAssignedRegDep()) 3953 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3954 if (stageScheduled(SI.getSUnit()) != StageDef) 3955 return false; 3956 } 3957 return true; 3958 } 3959 3960 /// A property of the node order in swing-modulo-scheduling is 3961 /// that for nodes outside circuits the following holds: 3962 /// none of them is scheduled after both a successor and a 3963 /// predecessor. 3964 /// The method below checks whether the property is met. 3965 /// If not, debug information is printed and statistics information updated. 3966 /// Note that we do not use an assert statement. 3967 /// The reason is that although an invalid node oder may prevent 3968 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3969 /// it does not lead to the generation of incorrect code. 3970 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3971 3972 // a sorted vector that maps each SUnit to its index in the NodeOrder 3973 typedef std::pair<SUnit *, unsigned> UnitIndex; 3974 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3975 3976 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3977 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3978 3979 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3980 return std::get<0>(i1) < std::get<0>(i2); 3981 }; 3982 3983 // sort, so that we can perform a binary search 3984 llvm::sort(Indices.begin(), Indices.end(), CompareKey); 3985 3986 bool Valid = true; 3987 (void)Valid; 3988 // for each SUnit in the NodeOrder, check whether 3989 // it appears after both a successor and a predecessor 3990 // of the SUnit. If this is the case, and the SUnit 3991 // is not part of circuit, then the NodeOrder is not 3992 // valid. 3993 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3994 SUnit *SU = NodeOrder[i]; 3995 unsigned Index = i; 3996 3997 bool PredBefore = false; 3998 bool SuccBefore = false; 3999 4000 SUnit *Succ; 4001 SUnit *Pred; 4002 (void)Succ; 4003 (void)Pred; 4004 4005 for (SDep &PredEdge : SU->Preds) { 4006 SUnit *PredSU = PredEdge.getSUnit(); 4007 unsigned PredIndex = 4008 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4009 std::make_pair(PredSU, 0), CompareKey)); 4010 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 4011 PredBefore = true; 4012 Pred = PredSU; 4013 break; 4014 } 4015 } 4016 4017 for (SDep &SuccEdge : SU->Succs) { 4018 SUnit *SuccSU = SuccEdge.getSUnit(); 4019 unsigned SuccIndex = 4020 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4021 std::make_pair(SuccSU, 0), CompareKey)); 4022 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 4023 SuccBefore = true; 4024 Succ = SuccSU; 4025 break; 4026 } 4027 } 4028 4029 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 4030 // instructions in circuits are allowed to be scheduled 4031 // after both a successor and predecessor. 4032 bool InCircuit = std::any_of( 4033 Circuits.begin(), Circuits.end(), 4034 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 4035 if (InCircuit) 4036 DEBUG(dbgs() << "In a circuit, predecessor ";); 4037 else { 4038 Valid = false; 4039 NumNodeOrderIssues++; 4040 DEBUG(dbgs() << "Predecessor ";); 4041 } 4042 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 4043 << " are scheduled before node " << SU->NodeNum << "\n";); 4044 } 4045 } 4046 4047 DEBUG({ 4048 if (!Valid) 4049 dbgs() << "Invalid node order found!\n"; 4050 }); 4051 } 4052 4053 /// Attempt to fix the degenerate cases when the instruction serialization 4054 /// causes the register lifetimes to overlap. For example, 4055 /// p' = store_pi(p, b) 4056 /// = load p, offset 4057 /// In this case p and p' overlap, which means that two registers are needed. 4058 /// Instead, this function changes the load to use p' and updates the offset. 4059 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 4060 unsigned OverlapReg = 0; 4061 unsigned NewBaseReg = 0; 4062 for (SUnit *SU : Instrs) { 4063 MachineInstr *MI = SU->getInstr(); 4064 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4065 const MachineOperand &MO = MI->getOperand(i); 4066 // Look for an instruction that uses p. The instruction occurs in the 4067 // same cycle but occurs later in the serialized order. 4068 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4069 // Check that the instruction appears in the InstrChanges structure, 4070 // which contains instructions that can have the offset updated. 4071 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4072 InstrChanges.find(SU); 4073 if (It != InstrChanges.end()) { 4074 unsigned BasePos, OffsetPos; 4075 // Update the base register and adjust the offset. 4076 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4077 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4078 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4079 int64_t NewOffset = 4080 MI->getOperand(OffsetPos).getImm() - It->second.second; 4081 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4082 SU->setInstr(NewMI); 4083 MISUnitMap[NewMI] = SU; 4084 NewMIs.insert(NewMI); 4085 } 4086 } 4087 OverlapReg = 0; 4088 NewBaseReg = 0; 4089 break; 4090 } 4091 // Look for an instruction of the form p' = op(p), which uses and defines 4092 // two virtual registers that get allocated to the same physical register. 4093 unsigned TiedUseIdx = 0; 4094 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4095 // OverlapReg is p in the example above. 4096 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4097 // NewBaseReg is p' in the example above. 4098 NewBaseReg = MI->getOperand(i).getReg(); 4099 break; 4100 } 4101 } 4102 } 4103 } 4104 4105 /// After the schedule has been formed, call this function to combine 4106 /// the instructions from the different stages/cycles. That is, this 4107 /// function creates a schedule that represents a single iteration. 4108 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4109 // Move all instructions to the first stage from later stages. 4110 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4111 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4112 ++stage) { 4113 std::deque<SUnit *> &cycleInstrs = 4114 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4115 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4116 E = cycleInstrs.rend(); 4117 I != E; ++I) 4118 ScheduledInstrs[cycle].push_front(*I); 4119 } 4120 } 4121 // Iterate over the definitions in each instruction, and compute the 4122 // stage difference for each use. Keep the maximum value. 4123 for (auto &I : InstrToCycle) { 4124 int DefStage = stageScheduled(I.first); 4125 MachineInstr *MI = I.first->getInstr(); 4126 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4127 MachineOperand &Op = MI->getOperand(i); 4128 if (!Op.isReg() || !Op.isDef()) 4129 continue; 4130 4131 unsigned Reg = Op.getReg(); 4132 unsigned MaxDiff = 0; 4133 bool PhiIsSwapped = false; 4134 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4135 EI = MRI.use_end(); 4136 UI != EI; ++UI) { 4137 MachineOperand &UseOp = *UI; 4138 MachineInstr *UseMI = UseOp.getParent(); 4139 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4140 int UseStage = stageScheduled(SUnitUse); 4141 unsigned Diff = 0; 4142 if (UseStage != -1 && UseStage >= DefStage) 4143 Diff = UseStage - DefStage; 4144 if (MI->isPHI()) { 4145 if (isLoopCarried(SSD, *MI)) 4146 ++Diff; 4147 else 4148 PhiIsSwapped = true; 4149 } 4150 MaxDiff = std::max(Diff, MaxDiff); 4151 } 4152 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4153 } 4154 } 4155 4156 // Erase all the elements in the later stages. Only one iteration should 4157 // remain in the scheduled list, and it contains all the instructions. 4158 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4159 ScheduledInstrs.erase(cycle); 4160 4161 // Change the registers in instruction as specified in the InstrChanges 4162 // map. We need to use the new registers to create the correct order. 4163 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4164 SUnit *SU = &SSD->SUnits[i]; 4165 SSD->applyInstrChange(SU->getInstr(), *this); 4166 } 4167 4168 // Reorder the instructions in each cycle to fix and improve the 4169 // generated code. 4170 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4171 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4172 std::deque<SUnit *> newOrderPhi; 4173 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4174 SUnit *SU = cycleInstrs[i]; 4175 if (SU->getInstr()->isPHI()) 4176 newOrderPhi.push_back(SU); 4177 } 4178 std::deque<SUnit *> newOrderI; 4179 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4180 SUnit *SU = cycleInstrs[i]; 4181 if (!SU->getInstr()->isPHI()) 4182 orderDependence(SSD, SU, newOrderI); 4183 } 4184 // Replace the old order with the new order. 4185 cycleInstrs.swap(newOrderPhi); 4186 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4187 SSD->fixupRegisterOverlaps(cycleInstrs); 4188 } 4189 4190 DEBUG(dump();); 4191 } 4192 4193 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4194 /// Print the schedule information to the given output. 4195 void SMSchedule::print(raw_ostream &os) const { 4196 // Iterate over each cycle. 4197 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4198 // Iterate over each instruction in the cycle. 4199 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4200 for (SUnit *CI : cycleInstrs->second) { 4201 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4202 os << "(" << CI->NodeNum << ") "; 4203 CI->getInstr()->print(os); 4204 os << "\n"; 4205 } 4206 } 4207 } 4208 4209 /// Utility function used for debugging to print the schedule. 4210 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4211 #endif 4212