1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/RegisterPressure.h" 60 #include "llvm/CodeGen/ScheduleDAG.h" 61 #include "llvm/CodeGen/ScheduleDAGMutation.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/Config/llvm-config.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/MC/LaneBitmask.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCInstrItineraries.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <deque> 84 #include <functional> 85 #include <iterator> 86 #include <map> 87 #include <memory> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "pipeliner" 95 96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 97 STATISTIC(NumPipelined, "Number of loops software pipelined"); 98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 99 100 /// A command line option to turn software pipelining on or off. 101 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 102 cl::ZeroOrMore, 103 cl::desc("Enable Software Pipelining")); 104 105 /// A command line option to enable SWP at -Os. 106 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 107 cl::desc("Enable SWP at Os."), cl::Hidden, 108 cl::init(false)); 109 110 /// A command line argument to limit minimum initial interval for pipelining. 111 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 112 cl::desc("Size limit for the MII."), 113 cl::Hidden, cl::init(27)); 114 115 /// A command line argument to limit the number of stages in the pipeline. 116 static cl::opt<int> 117 SwpMaxStages("pipeliner-max-stages", 118 cl::desc("Maximum stages allowed in the generated scheduled."), 119 cl::Hidden, cl::init(3)); 120 121 /// A command line option to disable the pruning of chain dependences due to 122 /// an unrelated Phi. 123 static cl::opt<bool> 124 SwpPruneDeps("pipeliner-prune-deps", 125 cl::desc("Prune dependences between unrelated Phi nodes."), 126 cl::Hidden, cl::init(true)); 127 128 /// A command line option to disable the pruning of loop carried order 129 /// dependences. 130 static cl::opt<bool> 131 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 132 cl::desc("Prune loop carried order dependences."), 133 cl::Hidden, cl::init(true)); 134 135 #ifndef NDEBUG 136 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 137 #endif 138 139 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 140 cl::ReallyHidden, cl::init(false), 141 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 142 143 namespace llvm { 144 145 // A command line option to enable the CopyToPhi DAG mutation. 146 cl::opt<bool> 147 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 148 cl::init(true), cl::ZeroOrMore, 149 cl::desc("Enable CopyToPhi DAG Mutation")); 150 151 } // end namespace llvm 152 153 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 154 char MachinePipeliner::ID = 0; 155 #ifndef NDEBUG 156 int MachinePipeliner::NumTries = 0; 157 #endif 158 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 159 160 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 161 "Modulo Software Pipelining", false, false) 162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 164 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 165 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 166 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 167 "Modulo Software Pipelining", false, false) 168 169 /// The "main" function for implementing Swing Modulo Scheduling. 170 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 171 if (skipFunction(mf.getFunction())) 172 return false; 173 174 if (!EnableSWP) 175 return false; 176 177 if (mf.getFunction().getAttributes().hasAttribute( 178 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 179 !EnableSWPOptSize.getPosition()) 180 return false; 181 182 MF = &mf; 183 MLI = &getAnalysis<MachineLoopInfo>(); 184 MDT = &getAnalysis<MachineDominatorTree>(); 185 TII = MF->getSubtarget().getInstrInfo(); 186 RegClassInfo.runOnMachineFunction(*MF); 187 188 for (auto &L : *MLI) 189 scheduleLoop(*L); 190 191 return false; 192 } 193 194 /// Attempt to perform the SMS algorithm on the specified loop. This function is 195 /// the main entry point for the algorithm. The function identifies candidate 196 /// loops, calculates the minimum initiation interval, and attempts to schedule 197 /// the loop. 198 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 199 bool Changed = false; 200 for (auto &InnerLoop : L) 201 Changed |= scheduleLoop(*InnerLoop); 202 203 #ifndef NDEBUG 204 // Stop trying after reaching the limit (if any). 205 int Limit = SwpLoopLimit; 206 if (Limit >= 0) { 207 if (NumTries >= SwpLoopLimit) 208 return Changed; 209 NumTries++; 210 } 211 #endif 212 213 setPragmaPipelineOptions(L); 214 if (!canPipelineLoop(L)) { 215 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 216 return Changed; 217 } 218 219 ++NumTrytoPipeline; 220 221 Changed = swingModuloScheduler(L); 222 223 return Changed; 224 } 225 226 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 227 MachineBasicBlock *LBLK = L.getTopBlock(); 228 229 if (LBLK == nullptr) 230 return; 231 232 const BasicBlock *BBLK = LBLK->getBasicBlock(); 233 if (BBLK == nullptr) 234 return; 235 236 const Instruction *TI = BBLK->getTerminator(); 237 if (TI == nullptr) 238 return; 239 240 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 241 if (LoopID == nullptr) 242 return; 243 244 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 245 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 246 247 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 248 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 249 250 if (MD == nullptr) 251 continue; 252 253 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 254 255 if (S == nullptr) 256 continue; 257 258 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 259 assert(MD->getNumOperands() == 2 && 260 "Pipeline initiation interval hint metadata should have two operands."); 261 II_setByPragma = 262 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 263 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 264 } else if (S->getString() == "llvm.loop.pipeline.disable") { 265 disabledByPragma = true; 266 } 267 } 268 } 269 270 /// Return true if the loop can be software pipelined. The algorithm is 271 /// restricted to loops with a single basic block. Make sure that the 272 /// branch in the loop can be analyzed. 273 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 274 if (L.getNumBlocks() != 1) 275 return false; 276 277 if (disabledByPragma) 278 return false; 279 280 // Check if the branch can't be understood because we can't do pipelining 281 // if that's the case. 282 LI.TBB = nullptr; 283 LI.FBB = nullptr; 284 LI.BrCond.clear(); 285 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 286 return false; 287 288 LI.LoopInductionVar = nullptr; 289 LI.LoopCompare = nullptr; 290 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 291 return false; 292 293 if (!L.getLoopPreheader()) 294 return false; 295 296 // Remove any subregisters from inputs to phi nodes. 297 preprocessPhiNodes(*L.getHeader()); 298 return true; 299 } 300 301 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 302 MachineRegisterInfo &MRI = MF->getRegInfo(); 303 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 304 305 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 306 MachineOperand &DefOp = PI.getOperand(0); 307 assert(DefOp.getSubReg() == 0); 308 auto *RC = MRI.getRegClass(DefOp.getReg()); 309 310 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 311 MachineOperand &RegOp = PI.getOperand(i); 312 if (RegOp.getSubReg() == 0) 313 continue; 314 315 // If the operand uses a subregister, replace it with a new register 316 // without subregisters, and generate a copy to the new register. 317 unsigned NewReg = MRI.createVirtualRegister(RC); 318 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 319 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 320 const DebugLoc &DL = PredB.findDebugLoc(At); 321 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 322 .addReg(RegOp.getReg(), getRegState(RegOp), 323 RegOp.getSubReg()); 324 Slots.insertMachineInstrInMaps(*Copy); 325 RegOp.setReg(NewReg); 326 RegOp.setSubReg(0); 327 } 328 } 329 } 330 331 /// The SMS algorithm consists of the following main steps: 332 /// 1. Computation and analysis of the dependence graph. 333 /// 2. Ordering of the nodes (instructions). 334 /// 3. Attempt to Schedule the loop. 335 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 336 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 337 338 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 339 II_setByPragma); 340 341 MachineBasicBlock *MBB = L.getHeader(); 342 // The kernel should not include any terminator instructions. These 343 // will be added back later. 344 SMS.startBlock(MBB); 345 346 // Compute the number of 'real' instructions in the basic block by 347 // ignoring terminators. 348 unsigned size = MBB->size(); 349 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 350 E = MBB->instr_end(); 351 I != E; ++I, --size) 352 ; 353 354 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 355 SMS.schedule(); 356 SMS.exitRegion(); 357 358 SMS.finishBlock(); 359 return SMS.hasNewSchedule(); 360 } 361 362 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 363 if (II_setByPragma > 0) 364 MII = II_setByPragma; 365 else 366 MII = std::max(ResMII, RecMII); 367 } 368 369 void SwingSchedulerDAG::setMAX_II() { 370 if (II_setByPragma > 0) 371 MAX_II = II_setByPragma; 372 else 373 MAX_II = MII + 10; 374 } 375 376 /// We override the schedule function in ScheduleDAGInstrs to implement the 377 /// scheduling part of the Swing Modulo Scheduling algorithm. 378 void SwingSchedulerDAG::schedule() { 379 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 buildSchedGraph(AA); 381 addLoopCarriedDependences(AA); 382 updatePhiDependences(); 383 Topo.InitDAGTopologicalSorting(); 384 changeDependences(); 385 postprocessDAG(); 386 LLVM_DEBUG(dump()); 387 388 NodeSetType NodeSets; 389 findCircuits(NodeSets); 390 NodeSetType Circuits = NodeSets; 391 392 // Calculate the MII. 393 unsigned ResMII = calculateResMII(); 394 unsigned RecMII = calculateRecMII(NodeSets); 395 396 fuseRecs(NodeSets); 397 398 // This flag is used for testing and can cause correctness problems. 399 if (SwpIgnoreRecMII) 400 RecMII = 0; 401 402 setMII(ResMII, RecMII); 403 setMAX_II(); 404 405 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 406 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 407 408 // Can't schedule a loop without a valid MII. 409 if (MII == 0) 410 return; 411 412 // Don't pipeline large loops. 413 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 414 return; 415 416 computeNodeFunctions(NodeSets); 417 418 registerPressureFilter(NodeSets); 419 420 colocateNodeSets(NodeSets); 421 422 checkNodeSets(NodeSets); 423 424 LLVM_DEBUG({ 425 for (auto &I : NodeSets) { 426 dbgs() << " Rec NodeSet "; 427 I.dump(); 428 } 429 }); 430 431 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 432 433 groupRemainingNodes(NodeSets); 434 435 removeDuplicateNodes(NodeSets); 436 437 LLVM_DEBUG({ 438 for (auto &I : NodeSets) { 439 dbgs() << " NodeSet "; 440 I.dump(); 441 } 442 }); 443 444 computeNodeOrder(NodeSets); 445 446 // check for node order issues 447 checkValidNodeOrder(Circuits); 448 449 SMSchedule Schedule(Pass.MF); 450 Scheduled = schedulePipeline(Schedule); 451 452 if (!Scheduled) 453 return; 454 455 unsigned numStages = Schedule.getMaxStageCount(); 456 // No need to generate pipeline if there are no overlapped iterations. 457 if (numStages == 0) 458 return; 459 460 // Check that the maximum stage count is less than user-defined limit. 461 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 462 return; 463 464 generatePipelinedLoop(Schedule); 465 ++NumPipelined; 466 } 467 468 /// Clean up after the software pipeliner runs. 469 void SwingSchedulerDAG::finishBlock() { 470 for (MachineInstr *I : NewMIs) 471 MF.DeleteMachineInstr(I); 472 NewMIs.clear(); 473 474 // Call the superclass. 475 ScheduleDAGInstrs::finishBlock(); 476 } 477 478 /// Return the register values for the operands of a Phi instruction. 479 /// This function assume the instruction is a Phi. 480 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 481 unsigned &InitVal, unsigned &LoopVal) { 482 assert(Phi.isPHI() && "Expecting a Phi."); 483 484 InitVal = 0; 485 LoopVal = 0; 486 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 487 if (Phi.getOperand(i + 1).getMBB() != Loop) 488 InitVal = Phi.getOperand(i).getReg(); 489 else 490 LoopVal = Phi.getOperand(i).getReg(); 491 492 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 493 } 494 495 /// Return the Phi register value that comes from the incoming block. 496 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 497 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 498 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 499 return Phi.getOperand(i).getReg(); 500 return 0; 501 } 502 503 /// Return the Phi register value that comes the loop block. 504 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 505 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 506 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 507 return Phi.getOperand(i).getReg(); 508 return 0; 509 } 510 511 /// Return true if SUb can be reached from SUa following the chain edges. 512 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 513 SmallPtrSet<SUnit *, 8> Visited; 514 SmallVector<SUnit *, 8> Worklist; 515 Worklist.push_back(SUa); 516 while (!Worklist.empty()) { 517 const SUnit *SU = Worklist.pop_back_val(); 518 for (auto &SI : SU->Succs) { 519 SUnit *SuccSU = SI.getSUnit(); 520 if (SI.getKind() == SDep::Order) { 521 if (Visited.count(SuccSU)) 522 continue; 523 if (SuccSU == SUb) 524 return true; 525 Worklist.push_back(SuccSU); 526 Visited.insert(SuccSU); 527 } 528 } 529 } 530 return false; 531 } 532 533 /// Return true if the instruction causes a chain between memory 534 /// references before and after it. 535 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 536 return MI.isCall() || MI.hasUnmodeledSideEffects() || 537 (MI.hasOrderedMemoryRef() && 538 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 539 } 540 541 /// Return the underlying objects for the memory references of an instruction. 542 /// This function calls the code in ValueTracking, but first checks that the 543 /// instruction has a memory operand. 544 static void getUnderlyingObjects(MachineInstr *MI, 545 SmallVectorImpl<Value *> &Objs, 546 const DataLayout &DL) { 547 if (!MI->hasOneMemOperand()) 548 return; 549 MachineMemOperand *MM = *MI->memoperands_begin(); 550 if (!MM->getValue()) 551 return; 552 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 553 for (Value *V : Objs) { 554 if (!isIdentifiedObject(V)) { 555 Objs.clear(); 556 return; 557 } 558 Objs.push_back(V); 559 } 560 } 561 562 /// Add a chain edge between a load and store if the store can be an 563 /// alias of the load on a subsequent iteration, i.e., a loop carried 564 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 565 /// but that code doesn't create loop carried dependences. 566 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 567 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 568 Value *UnknownValue = 569 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 570 for (auto &SU : SUnits) { 571 MachineInstr &MI = *SU.getInstr(); 572 if (isDependenceBarrier(MI, AA)) 573 PendingLoads.clear(); 574 else if (MI.mayLoad()) { 575 SmallVector<Value *, 4> Objs; 576 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 577 if (Objs.empty()) 578 Objs.push_back(UnknownValue); 579 for (auto V : Objs) { 580 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 581 SUs.push_back(&SU); 582 } 583 } else if (MI.mayStore()) { 584 SmallVector<Value *, 4> Objs; 585 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 586 if (Objs.empty()) 587 Objs.push_back(UnknownValue); 588 for (auto V : Objs) { 589 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 590 PendingLoads.find(V); 591 if (I == PendingLoads.end()) 592 continue; 593 for (auto Load : I->second) { 594 if (isSuccOrder(Load, &SU)) 595 continue; 596 MachineInstr &LdMI = *Load->getInstr(); 597 // First, perform the cheaper check that compares the base register. 598 // If they are the same and the load offset is less than the store 599 // offset, then mark the dependence as loop carried potentially. 600 MachineOperand *BaseOp1, *BaseOp2; 601 int64_t Offset1, Offset2; 602 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 603 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 604 if (BaseOp1->isIdenticalTo(*BaseOp2) && 605 (int)Offset1 < (int)Offset2) { 606 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 607 "What happened to the chain edge?"); 608 SDep Dep(Load, SDep::Barrier); 609 Dep.setLatency(1); 610 SU.addPred(Dep); 611 continue; 612 } 613 } 614 // Second, the more expensive check that uses alias analysis on the 615 // base registers. If they alias, and the load offset is less than 616 // the store offset, the mark the dependence as loop carried. 617 if (!AA) { 618 SDep Dep(Load, SDep::Barrier); 619 Dep.setLatency(1); 620 SU.addPred(Dep); 621 continue; 622 } 623 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 624 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 625 if (!MMO1->getValue() || !MMO2->getValue()) { 626 SDep Dep(Load, SDep::Barrier); 627 Dep.setLatency(1); 628 SU.addPred(Dep); 629 continue; 630 } 631 if (MMO1->getValue() == MMO2->getValue() && 632 MMO1->getOffset() <= MMO2->getOffset()) { 633 SDep Dep(Load, SDep::Barrier); 634 Dep.setLatency(1); 635 SU.addPred(Dep); 636 continue; 637 } 638 AliasResult AAResult = AA->alias( 639 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 640 MMO1->getAAInfo()), 641 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 642 MMO2->getAAInfo())); 643 644 if (AAResult != NoAlias) { 645 SDep Dep(Load, SDep::Barrier); 646 Dep.setLatency(1); 647 SU.addPred(Dep); 648 } 649 } 650 } 651 } 652 } 653 } 654 655 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 656 /// processes dependences for PHIs. This function adds true dependences 657 /// from a PHI to a use, and a loop carried dependence from the use to the 658 /// PHI. The loop carried dependence is represented as an anti dependence 659 /// edge. This function also removes chain dependences between unrelated 660 /// PHIs. 661 void SwingSchedulerDAG::updatePhiDependences() { 662 SmallVector<SDep, 4> RemoveDeps; 663 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 664 665 // Iterate over each DAG node. 666 for (SUnit &I : SUnits) { 667 RemoveDeps.clear(); 668 // Set to true if the instruction has an operand defined by a Phi. 669 unsigned HasPhiUse = 0; 670 unsigned HasPhiDef = 0; 671 MachineInstr *MI = I.getInstr(); 672 // Iterate over each operand, and we process the definitions. 673 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 674 MOE = MI->operands_end(); 675 MOI != MOE; ++MOI) { 676 if (!MOI->isReg()) 677 continue; 678 unsigned Reg = MOI->getReg(); 679 if (MOI->isDef()) { 680 // If the register is used by a Phi, then create an anti dependence. 681 for (MachineRegisterInfo::use_instr_iterator 682 UI = MRI.use_instr_begin(Reg), 683 UE = MRI.use_instr_end(); 684 UI != UE; ++UI) { 685 MachineInstr *UseMI = &*UI; 686 SUnit *SU = getSUnit(UseMI); 687 if (SU != nullptr && UseMI->isPHI()) { 688 if (!MI->isPHI()) { 689 SDep Dep(SU, SDep::Anti, Reg); 690 Dep.setLatency(1); 691 I.addPred(Dep); 692 } else { 693 HasPhiDef = Reg; 694 // Add a chain edge to a dependent Phi that isn't an existing 695 // predecessor. 696 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 697 I.addPred(SDep(SU, SDep::Barrier)); 698 } 699 } 700 } 701 } else if (MOI->isUse()) { 702 // If the register is defined by a Phi, then create a true dependence. 703 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 704 if (DefMI == nullptr) 705 continue; 706 SUnit *SU = getSUnit(DefMI); 707 if (SU != nullptr && DefMI->isPHI()) { 708 if (!MI->isPHI()) { 709 SDep Dep(SU, SDep::Data, Reg); 710 Dep.setLatency(0); 711 ST.adjustSchedDependency(SU, &I, Dep); 712 I.addPred(Dep); 713 } else { 714 HasPhiUse = Reg; 715 // Add a chain edge to a dependent Phi that isn't an existing 716 // predecessor. 717 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 718 I.addPred(SDep(SU, SDep::Barrier)); 719 } 720 } 721 } 722 } 723 // Remove order dependences from an unrelated Phi. 724 if (!SwpPruneDeps) 725 continue; 726 for (auto &PI : I.Preds) { 727 MachineInstr *PMI = PI.getSUnit()->getInstr(); 728 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 729 if (I.getInstr()->isPHI()) { 730 if (PMI->getOperand(0).getReg() == HasPhiUse) 731 continue; 732 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 733 continue; 734 } 735 RemoveDeps.push_back(PI); 736 } 737 } 738 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 739 I.removePred(RemoveDeps[i]); 740 } 741 } 742 743 /// Iterate over each DAG node and see if we can change any dependences 744 /// in order to reduce the recurrence MII. 745 void SwingSchedulerDAG::changeDependences() { 746 // See if an instruction can use a value from the previous iteration. 747 // If so, we update the base and offset of the instruction and change 748 // the dependences. 749 for (SUnit &I : SUnits) { 750 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 751 int64_t NewOffset = 0; 752 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 753 NewOffset)) 754 continue; 755 756 // Get the MI and SUnit for the instruction that defines the original base. 757 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 758 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 759 if (!DefMI) 760 continue; 761 SUnit *DefSU = getSUnit(DefMI); 762 if (!DefSU) 763 continue; 764 // Get the MI and SUnit for the instruction that defins the new base. 765 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 766 if (!LastMI) 767 continue; 768 SUnit *LastSU = getSUnit(LastMI); 769 if (!LastSU) 770 continue; 771 772 if (Topo.IsReachable(&I, LastSU)) 773 continue; 774 775 // Remove the dependence. The value now depends on a prior iteration. 776 SmallVector<SDep, 4> Deps; 777 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 778 ++P) 779 if (P->getSUnit() == DefSU) 780 Deps.push_back(*P); 781 for (int i = 0, e = Deps.size(); i != e; i++) { 782 Topo.RemovePred(&I, Deps[i].getSUnit()); 783 I.removePred(Deps[i]); 784 } 785 // Remove the chain dependence between the instructions. 786 Deps.clear(); 787 for (auto &P : LastSU->Preds) 788 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 789 Deps.push_back(P); 790 for (int i = 0, e = Deps.size(); i != e; i++) { 791 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 792 LastSU->removePred(Deps[i]); 793 } 794 795 // Add a dependence between the new instruction and the instruction 796 // that defines the new base. 797 SDep Dep(&I, SDep::Anti, NewBase); 798 Topo.AddPred(LastSU, &I); 799 LastSU->addPred(Dep); 800 801 // Remember the base and offset information so that we can update the 802 // instruction during code generation. 803 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 804 } 805 } 806 807 namespace { 808 809 // FuncUnitSorter - Comparison operator used to sort instructions by 810 // the number of functional unit choices. 811 struct FuncUnitSorter { 812 const InstrItineraryData *InstrItins; 813 DenseMap<unsigned, unsigned> Resources; 814 815 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 816 817 // Compute the number of functional unit alternatives needed 818 // at each stage, and take the minimum value. We prioritize the 819 // instructions by the least number of choices first. 820 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 821 unsigned schedClass = Inst->getDesc().getSchedClass(); 822 unsigned min = UINT_MAX; 823 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 824 *IE = InstrItins->endStage(schedClass); 825 IS != IE; ++IS) { 826 unsigned funcUnits = IS->getUnits(); 827 unsigned numAlternatives = countPopulation(funcUnits); 828 if (numAlternatives < min) { 829 min = numAlternatives; 830 F = funcUnits; 831 } 832 } 833 return min; 834 } 835 836 // Compute the critical resources needed by the instruction. This 837 // function records the functional units needed by instructions that 838 // must use only one functional unit. We use this as a tie breaker 839 // for computing the resource MII. The instrutions that require 840 // the same, highly used, functional unit have high priority. 841 void calcCriticalResources(MachineInstr &MI) { 842 unsigned SchedClass = MI.getDesc().getSchedClass(); 843 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 844 *IE = InstrItins->endStage(SchedClass); 845 IS != IE; ++IS) { 846 unsigned FuncUnits = IS->getUnits(); 847 if (countPopulation(FuncUnits) == 1) 848 Resources[FuncUnits]++; 849 } 850 } 851 852 /// Return true if IS1 has less priority than IS2. 853 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 854 unsigned F1 = 0, F2 = 0; 855 unsigned MFUs1 = minFuncUnits(IS1, F1); 856 unsigned MFUs2 = minFuncUnits(IS2, F2); 857 if (MFUs1 == 1 && MFUs2 == 1) 858 return Resources.lookup(F1) < Resources.lookup(F2); 859 return MFUs1 > MFUs2; 860 } 861 }; 862 863 } // end anonymous namespace 864 865 /// Calculate the resource constrained minimum initiation interval for the 866 /// specified loop. We use the DFA to model the resources needed for 867 /// each instruction, and we ignore dependences. A different DFA is created 868 /// for each cycle that is required. When adding a new instruction, we attempt 869 /// to add it to each existing DFA, until a legal space is found. If the 870 /// instruction cannot be reserved in an existing DFA, we create a new one. 871 unsigned SwingSchedulerDAG::calculateResMII() { 872 SmallVector<DFAPacketizer *, 8> Resources; 873 MachineBasicBlock *MBB = Loop.getHeader(); 874 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 875 876 // Sort the instructions by the number of available choices for scheduling, 877 // least to most. Use the number of critical resources as the tie breaker. 878 FuncUnitSorter FUS = 879 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 880 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 881 E = MBB->getFirstTerminator(); 882 I != E; ++I) 883 FUS.calcCriticalResources(*I); 884 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 885 FuncUnitOrder(FUS); 886 887 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 888 E = MBB->getFirstTerminator(); 889 I != E; ++I) 890 FuncUnitOrder.push(&*I); 891 892 while (!FuncUnitOrder.empty()) { 893 MachineInstr *MI = FuncUnitOrder.top(); 894 FuncUnitOrder.pop(); 895 if (TII->isZeroCost(MI->getOpcode())) 896 continue; 897 // Attempt to reserve the instruction in an existing DFA. At least one 898 // DFA is needed for each cycle. 899 unsigned NumCycles = getSUnit(MI)->Latency; 900 unsigned ReservedCycles = 0; 901 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 902 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 903 for (unsigned C = 0; C < NumCycles; ++C) 904 while (RI != RE) { 905 if ((*RI++)->canReserveResources(*MI)) { 906 ++ReservedCycles; 907 break; 908 } 909 } 910 // Start reserving resources using existing DFAs. 911 for (unsigned C = 0; C < ReservedCycles; ++C) { 912 --RI; 913 (*RI)->reserveResources(*MI); 914 } 915 // Add new DFAs, if needed, to reserve resources. 916 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 917 DFAPacketizer *NewResource = 918 TII->CreateTargetScheduleState(MF.getSubtarget()); 919 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 920 NewResource->reserveResources(*MI); 921 Resources.push_back(NewResource); 922 } 923 } 924 int Resmii = Resources.size(); 925 // Delete the memory for each of the DFAs that were created earlier. 926 for (DFAPacketizer *RI : Resources) { 927 DFAPacketizer *D = RI; 928 delete D; 929 } 930 Resources.clear(); 931 return Resmii; 932 } 933 934 /// Calculate the recurrence-constrainted minimum initiation interval. 935 /// Iterate over each circuit. Compute the delay(c) and distance(c) 936 /// for each circuit. The II needs to satisfy the inequality 937 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 938 /// II that satisfies the inequality, and the RecMII is the maximum 939 /// of those values. 940 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 941 unsigned RecMII = 0; 942 943 for (NodeSet &Nodes : NodeSets) { 944 if (Nodes.empty()) 945 continue; 946 947 unsigned Delay = Nodes.getLatency(); 948 unsigned Distance = 1; 949 950 // ii = ceil(delay / distance) 951 unsigned CurMII = (Delay + Distance - 1) / Distance; 952 Nodes.setRecMII(CurMII); 953 if (CurMII > RecMII) 954 RecMII = CurMII; 955 } 956 957 return RecMII; 958 } 959 960 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 961 /// but we do this to find the circuits, and then change them back. 962 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 963 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 964 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 965 SUnit *SU = &SUnits[i]; 966 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 967 IP != EP; ++IP) { 968 if (IP->getKind() != SDep::Anti) 969 continue; 970 DepsAdded.push_back(std::make_pair(SU, *IP)); 971 } 972 } 973 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 974 E = DepsAdded.end(); 975 I != E; ++I) { 976 // Remove this anti dependency and add one in the reverse direction. 977 SUnit *SU = I->first; 978 SDep &D = I->second; 979 SUnit *TargetSU = D.getSUnit(); 980 unsigned Reg = D.getReg(); 981 unsigned Lat = D.getLatency(); 982 SU->removePred(D); 983 SDep Dep(SU, SDep::Anti, Reg); 984 Dep.setLatency(Lat); 985 TargetSU->addPred(Dep); 986 } 987 } 988 989 /// Create the adjacency structure of the nodes in the graph. 990 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 991 SwingSchedulerDAG *DAG) { 992 BitVector Added(SUnits.size()); 993 DenseMap<int, int> OutputDeps; 994 for (int i = 0, e = SUnits.size(); i != e; ++i) { 995 Added.reset(); 996 // Add any successor to the adjacency matrix and exclude duplicates. 997 for (auto &SI : SUnits[i].Succs) { 998 // Only create a back-edge on the first and last nodes of a dependence 999 // chain. This records any chains and adds them later. 1000 if (SI.getKind() == SDep::Output) { 1001 int N = SI.getSUnit()->NodeNum; 1002 int BackEdge = i; 1003 auto Dep = OutputDeps.find(BackEdge); 1004 if (Dep != OutputDeps.end()) { 1005 BackEdge = Dep->second; 1006 OutputDeps.erase(Dep); 1007 } 1008 OutputDeps[N] = BackEdge; 1009 } 1010 // Do not process a boundary node, an artificial node. 1011 // A back-edge is processed only if it goes to a Phi. 1012 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1013 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1014 continue; 1015 int N = SI.getSUnit()->NodeNum; 1016 if (!Added.test(N)) { 1017 AdjK[i].push_back(N); 1018 Added.set(N); 1019 } 1020 } 1021 // A chain edge between a store and a load is treated as a back-edge in the 1022 // adjacency matrix. 1023 for (auto &PI : SUnits[i].Preds) { 1024 if (!SUnits[i].getInstr()->mayStore() || 1025 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1026 continue; 1027 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1028 int N = PI.getSUnit()->NodeNum; 1029 if (!Added.test(N)) { 1030 AdjK[i].push_back(N); 1031 Added.set(N); 1032 } 1033 } 1034 } 1035 } 1036 // Add back-edges in the adjacency matrix for the output dependences. 1037 for (auto &OD : OutputDeps) 1038 if (!Added.test(OD.second)) { 1039 AdjK[OD.first].push_back(OD.second); 1040 Added.set(OD.second); 1041 } 1042 } 1043 1044 /// Identify an elementary circuit in the dependence graph starting at the 1045 /// specified node. 1046 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1047 bool HasBackedge) { 1048 SUnit *SV = &SUnits[V]; 1049 bool F = false; 1050 Stack.insert(SV); 1051 Blocked.set(V); 1052 1053 for (auto W : AdjK[V]) { 1054 if (NumPaths > MaxPaths) 1055 break; 1056 if (W < S) 1057 continue; 1058 if (W == S) { 1059 if (!HasBackedge) 1060 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1061 F = true; 1062 ++NumPaths; 1063 break; 1064 } else if (!Blocked.test(W)) { 1065 if (circuit(W, S, NodeSets, 1066 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1067 F = true; 1068 } 1069 } 1070 1071 if (F) 1072 unblock(V); 1073 else { 1074 for (auto W : AdjK[V]) { 1075 if (W < S) 1076 continue; 1077 if (B[W].count(SV) == 0) 1078 B[W].insert(SV); 1079 } 1080 } 1081 Stack.pop_back(); 1082 return F; 1083 } 1084 1085 /// Unblock a node in the circuit finding algorithm. 1086 void SwingSchedulerDAG::Circuits::unblock(int U) { 1087 Blocked.reset(U); 1088 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1089 while (!BU.empty()) { 1090 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1091 assert(SI != BU.end() && "Invalid B set."); 1092 SUnit *W = *SI; 1093 BU.erase(W); 1094 if (Blocked.test(W->NodeNum)) 1095 unblock(W->NodeNum); 1096 } 1097 } 1098 1099 /// Identify all the elementary circuits in the dependence graph using 1100 /// Johnson's circuit algorithm. 1101 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1102 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1103 // but we do this to find the circuits, and then change them back. 1104 swapAntiDependences(SUnits); 1105 1106 Circuits Cir(SUnits, Topo); 1107 // Create the adjacency structure. 1108 Cir.createAdjacencyStructure(this); 1109 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1110 Cir.reset(); 1111 Cir.circuit(i, i, NodeSets); 1112 } 1113 1114 // Change the dependences back so that we've created a DAG again. 1115 swapAntiDependences(SUnits); 1116 } 1117 1118 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1119 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1120 // additional copies that are needed across iterations. An artificial dependence 1121 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1122 1123 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1124 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1125 // PHI-------True-Dep------> USEOfPhi 1126 1127 // The mutation creates 1128 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1129 1130 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1131 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1132 // late to avoid additional copies across iterations. The possible scheduling 1133 // order would be 1134 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1135 1136 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1137 for (SUnit &SU : DAG->SUnits) { 1138 // Find the COPY/REG_SEQUENCE instruction. 1139 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1140 continue; 1141 1142 // Record the loop carried PHIs. 1143 SmallVector<SUnit *, 4> PHISUs; 1144 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1145 SmallVector<SUnit *, 4> SrcSUs; 1146 1147 for (auto &Dep : SU.Preds) { 1148 SUnit *TmpSU = Dep.getSUnit(); 1149 MachineInstr *TmpMI = TmpSU->getInstr(); 1150 SDep::Kind DepKind = Dep.getKind(); 1151 // Save the loop carried PHI. 1152 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1153 PHISUs.push_back(TmpSU); 1154 // Save the source of COPY/REG_SEQUENCE. 1155 // If the source has no pre-decessors, we will end up creating cycles. 1156 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1157 SrcSUs.push_back(TmpSU); 1158 } 1159 1160 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1161 continue; 1162 1163 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1164 // SUnit to the container. 1165 SmallVector<SUnit *, 8> UseSUs; 1166 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1167 for (auto &Dep : (*I)->Succs) { 1168 if (Dep.getKind() != SDep::Data) 1169 continue; 1170 1171 SUnit *TmpSU = Dep.getSUnit(); 1172 MachineInstr *TmpMI = TmpSU->getInstr(); 1173 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1174 PHISUs.push_back(TmpSU); 1175 continue; 1176 } 1177 UseSUs.push_back(TmpSU); 1178 } 1179 } 1180 1181 if (UseSUs.size() == 0) 1182 continue; 1183 1184 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1185 // Add the artificial dependencies if it does not form a cycle. 1186 for (auto I : UseSUs) { 1187 for (auto Src : SrcSUs) { 1188 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1189 Src->addPred(SDep(I, SDep::Artificial)); 1190 SDAG->Topo.AddPred(Src, I); 1191 } 1192 } 1193 } 1194 } 1195 } 1196 1197 /// Return true for DAG nodes that we ignore when computing the cost functions. 1198 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1199 /// in the calculation of the ASAP, ALAP, etc functions. 1200 static bool ignoreDependence(const SDep &D, bool isPred) { 1201 if (D.isArtificial()) 1202 return true; 1203 return D.getKind() == SDep::Anti && isPred; 1204 } 1205 1206 /// Compute several functions need to order the nodes for scheduling. 1207 /// ASAP - Earliest time to schedule a node. 1208 /// ALAP - Latest time to schedule a node. 1209 /// MOV - Mobility function, difference between ALAP and ASAP. 1210 /// D - Depth of each node. 1211 /// H - Height of each node. 1212 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1213 ScheduleInfo.resize(SUnits.size()); 1214 1215 LLVM_DEBUG({ 1216 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1217 E = Topo.end(); 1218 I != E; ++I) { 1219 const SUnit &SU = SUnits[*I]; 1220 dumpNode(SU); 1221 } 1222 }); 1223 1224 int maxASAP = 0; 1225 // Compute ASAP and ZeroLatencyDepth. 1226 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1227 E = Topo.end(); 1228 I != E; ++I) { 1229 int asap = 0; 1230 int zeroLatencyDepth = 0; 1231 SUnit *SU = &SUnits[*I]; 1232 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1233 EP = SU->Preds.end(); 1234 IP != EP; ++IP) { 1235 SUnit *pred = IP->getSUnit(); 1236 if (IP->getLatency() == 0) 1237 zeroLatencyDepth = 1238 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1239 if (ignoreDependence(*IP, true)) 1240 continue; 1241 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1242 getDistance(pred, SU, *IP) * MII)); 1243 } 1244 maxASAP = std::max(maxASAP, asap); 1245 ScheduleInfo[*I].ASAP = asap; 1246 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1247 } 1248 1249 // Compute ALAP, ZeroLatencyHeight, and MOV. 1250 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1251 E = Topo.rend(); 1252 I != E; ++I) { 1253 int alap = maxASAP; 1254 int zeroLatencyHeight = 0; 1255 SUnit *SU = &SUnits[*I]; 1256 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1257 ES = SU->Succs.end(); 1258 IS != ES; ++IS) { 1259 SUnit *succ = IS->getSUnit(); 1260 if (IS->getLatency() == 0) 1261 zeroLatencyHeight = 1262 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1263 if (ignoreDependence(*IS, true)) 1264 continue; 1265 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1266 getDistance(SU, succ, *IS) * MII)); 1267 } 1268 1269 ScheduleInfo[*I].ALAP = alap; 1270 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1271 } 1272 1273 // After computing the node functions, compute the summary for each node set. 1274 for (NodeSet &I : NodeSets) 1275 I.computeNodeSetInfo(this); 1276 1277 LLVM_DEBUG({ 1278 for (unsigned i = 0; i < SUnits.size(); i++) { 1279 dbgs() << "\tNode " << i << ":\n"; 1280 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1281 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1282 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1283 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1284 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1285 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1286 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1287 } 1288 }); 1289 } 1290 1291 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1292 /// as the predecessors of the elements of NodeOrder that are not also in 1293 /// NodeOrder. 1294 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1295 SmallSetVector<SUnit *, 8> &Preds, 1296 const NodeSet *S = nullptr) { 1297 Preds.clear(); 1298 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1299 I != E; ++I) { 1300 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1301 PI != PE; ++PI) { 1302 if (S && S->count(PI->getSUnit()) == 0) 1303 continue; 1304 if (ignoreDependence(*PI, true)) 1305 continue; 1306 if (NodeOrder.count(PI->getSUnit()) == 0) 1307 Preds.insert(PI->getSUnit()); 1308 } 1309 // Back-edges are predecessors with an anti-dependence. 1310 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1311 ES = (*I)->Succs.end(); 1312 IS != ES; ++IS) { 1313 if (IS->getKind() != SDep::Anti) 1314 continue; 1315 if (S && S->count(IS->getSUnit()) == 0) 1316 continue; 1317 if (NodeOrder.count(IS->getSUnit()) == 0) 1318 Preds.insert(IS->getSUnit()); 1319 } 1320 } 1321 return !Preds.empty(); 1322 } 1323 1324 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1325 /// as the successors of the elements of NodeOrder that are not also in 1326 /// NodeOrder. 1327 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1328 SmallSetVector<SUnit *, 8> &Succs, 1329 const NodeSet *S = nullptr) { 1330 Succs.clear(); 1331 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1332 I != E; ++I) { 1333 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1334 SI != SE; ++SI) { 1335 if (S && S->count(SI->getSUnit()) == 0) 1336 continue; 1337 if (ignoreDependence(*SI, false)) 1338 continue; 1339 if (NodeOrder.count(SI->getSUnit()) == 0) 1340 Succs.insert(SI->getSUnit()); 1341 } 1342 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1343 PE = (*I)->Preds.end(); 1344 PI != PE; ++PI) { 1345 if (PI->getKind() != SDep::Anti) 1346 continue; 1347 if (S && S->count(PI->getSUnit()) == 0) 1348 continue; 1349 if (NodeOrder.count(PI->getSUnit()) == 0) 1350 Succs.insert(PI->getSUnit()); 1351 } 1352 } 1353 return !Succs.empty(); 1354 } 1355 1356 /// Return true if there is a path from the specified node to any of the nodes 1357 /// in DestNodes. Keep track and return the nodes in any path. 1358 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1359 SetVector<SUnit *> &DestNodes, 1360 SetVector<SUnit *> &Exclude, 1361 SmallPtrSet<SUnit *, 8> &Visited) { 1362 if (Cur->isBoundaryNode()) 1363 return false; 1364 if (Exclude.count(Cur) != 0) 1365 return false; 1366 if (DestNodes.count(Cur) != 0) 1367 return true; 1368 if (!Visited.insert(Cur).second) 1369 return Path.count(Cur) != 0; 1370 bool FoundPath = false; 1371 for (auto &SI : Cur->Succs) 1372 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1373 for (auto &PI : Cur->Preds) 1374 if (PI.getKind() == SDep::Anti) 1375 FoundPath |= 1376 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1377 if (FoundPath) 1378 Path.insert(Cur); 1379 return FoundPath; 1380 } 1381 1382 /// Return true if Set1 is a subset of Set2. 1383 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1384 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1385 if (Set2.count(*I) == 0) 1386 return false; 1387 return true; 1388 } 1389 1390 /// Compute the live-out registers for the instructions in a node-set. 1391 /// The live-out registers are those that are defined in the node-set, 1392 /// but not used. Except for use operands of Phis. 1393 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1394 NodeSet &NS) { 1395 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1396 MachineRegisterInfo &MRI = MF.getRegInfo(); 1397 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1398 SmallSet<unsigned, 4> Uses; 1399 for (SUnit *SU : NS) { 1400 const MachineInstr *MI = SU->getInstr(); 1401 if (MI->isPHI()) 1402 continue; 1403 for (const MachineOperand &MO : MI->operands()) 1404 if (MO.isReg() && MO.isUse()) { 1405 unsigned Reg = MO.getReg(); 1406 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1407 Uses.insert(Reg); 1408 else if (MRI.isAllocatable(Reg)) 1409 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1410 Uses.insert(*Units); 1411 } 1412 } 1413 for (SUnit *SU : NS) 1414 for (const MachineOperand &MO : SU->getInstr()->operands()) 1415 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1416 unsigned Reg = MO.getReg(); 1417 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1418 if (!Uses.count(Reg)) 1419 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1420 LaneBitmask::getNone())); 1421 } else if (MRI.isAllocatable(Reg)) { 1422 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1423 if (!Uses.count(*Units)) 1424 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1425 LaneBitmask::getNone())); 1426 } 1427 } 1428 RPTracker.addLiveRegs(LiveOutRegs); 1429 } 1430 1431 /// A heuristic to filter nodes in recurrent node-sets if the register 1432 /// pressure of a set is too high. 1433 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1434 for (auto &NS : NodeSets) { 1435 // Skip small node-sets since they won't cause register pressure problems. 1436 if (NS.size() <= 2) 1437 continue; 1438 IntervalPressure RecRegPressure; 1439 RegPressureTracker RecRPTracker(RecRegPressure); 1440 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1441 computeLiveOuts(MF, RecRPTracker, NS); 1442 RecRPTracker.closeBottom(); 1443 1444 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1445 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1446 return A->NodeNum > B->NodeNum; 1447 }); 1448 1449 for (auto &SU : SUnits) { 1450 // Since we're computing the register pressure for a subset of the 1451 // instructions in a block, we need to set the tracker for each 1452 // instruction in the node-set. The tracker is set to the instruction 1453 // just after the one we're interested in. 1454 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1455 RecRPTracker.setPos(std::next(CurInstI)); 1456 1457 RegPressureDelta RPDelta; 1458 ArrayRef<PressureChange> CriticalPSets; 1459 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1460 CriticalPSets, 1461 RecRegPressure.MaxSetPressure); 1462 if (RPDelta.Excess.isValid()) { 1463 LLVM_DEBUG( 1464 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1465 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1466 << ":" << RPDelta.Excess.getUnitInc()); 1467 NS.setExceedPressure(SU); 1468 break; 1469 } 1470 RecRPTracker.recede(); 1471 } 1472 } 1473 } 1474 1475 /// A heuristic to colocate node sets that have the same set of 1476 /// successors. 1477 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1478 unsigned Colocate = 0; 1479 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1480 NodeSet &N1 = NodeSets[i]; 1481 SmallSetVector<SUnit *, 8> S1; 1482 if (N1.empty() || !succ_L(N1, S1)) 1483 continue; 1484 for (int j = i + 1; j < e; ++j) { 1485 NodeSet &N2 = NodeSets[j]; 1486 if (N1.compareRecMII(N2) != 0) 1487 continue; 1488 SmallSetVector<SUnit *, 8> S2; 1489 if (N2.empty() || !succ_L(N2, S2)) 1490 continue; 1491 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1492 N1.setColocate(++Colocate); 1493 N2.setColocate(Colocate); 1494 break; 1495 } 1496 } 1497 } 1498 } 1499 1500 /// Check if the existing node-sets are profitable. If not, then ignore the 1501 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1502 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1503 /// then it's best to try to schedule all instructions together instead of 1504 /// starting with the recurrent node-sets. 1505 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1506 // Look for loops with a large MII. 1507 if (MII < 17) 1508 return; 1509 // Check if the node-set contains only a simple add recurrence. 1510 for (auto &NS : NodeSets) { 1511 if (NS.getRecMII() > 2) 1512 return; 1513 if (NS.getMaxDepth() > MII) 1514 return; 1515 } 1516 NodeSets.clear(); 1517 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1518 return; 1519 } 1520 1521 /// Add the nodes that do not belong to a recurrence set into groups 1522 /// based upon connected componenets. 1523 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1524 SetVector<SUnit *> NodesAdded; 1525 SmallPtrSet<SUnit *, 8> Visited; 1526 // Add the nodes that are on a path between the previous node sets and 1527 // the current node set. 1528 for (NodeSet &I : NodeSets) { 1529 SmallSetVector<SUnit *, 8> N; 1530 // Add the nodes from the current node set to the previous node set. 1531 if (succ_L(I, N)) { 1532 SetVector<SUnit *> Path; 1533 for (SUnit *NI : N) { 1534 Visited.clear(); 1535 computePath(NI, Path, NodesAdded, I, Visited); 1536 } 1537 if (!Path.empty()) 1538 I.insert(Path.begin(), Path.end()); 1539 } 1540 // Add the nodes from the previous node set to the current node set. 1541 N.clear(); 1542 if (succ_L(NodesAdded, N)) { 1543 SetVector<SUnit *> Path; 1544 for (SUnit *NI : N) { 1545 Visited.clear(); 1546 computePath(NI, Path, I, NodesAdded, Visited); 1547 } 1548 if (!Path.empty()) 1549 I.insert(Path.begin(), Path.end()); 1550 } 1551 NodesAdded.insert(I.begin(), I.end()); 1552 } 1553 1554 // Create a new node set with the connected nodes of any successor of a node 1555 // in a recurrent set. 1556 NodeSet NewSet; 1557 SmallSetVector<SUnit *, 8> N; 1558 if (succ_L(NodesAdded, N)) 1559 for (SUnit *I : N) 1560 addConnectedNodes(I, NewSet, NodesAdded); 1561 if (!NewSet.empty()) 1562 NodeSets.push_back(NewSet); 1563 1564 // Create a new node set with the connected nodes of any predecessor of a node 1565 // in a recurrent set. 1566 NewSet.clear(); 1567 if (pred_L(NodesAdded, N)) 1568 for (SUnit *I : N) 1569 addConnectedNodes(I, NewSet, NodesAdded); 1570 if (!NewSet.empty()) 1571 NodeSets.push_back(NewSet); 1572 1573 // Create new nodes sets with the connected nodes any remaining node that 1574 // has no predecessor. 1575 for (unsigned i = 0; i < SUnits.size(); ++i) { 1576 SUnit *SU = &SUnits[i]; 1577 if (NodesAdded.count(SU) == 0) { 1578 NewSet.clear(); 1579 addConnectedNodes(SU, NewSet, NodesAdded); 1580 if (!NewSet.empty()) 1581 NodeSets.push_back(NewSet); 1582 } 1583 } 1584 } 1585 1586 /// Add the node to the set, and add all of its connected nodes to the set. 1587 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1588 SetVector<SUnit *> &NodesAdded) { 1589 NewSet.insert(SU); 1590 NodesAdded.insert(SU); 1591 for (auto &SI : SU->Succs) { 1592 SUnit *Successor = SI.getSUnit(); 1593 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1594 addConnectedNodes(Successor, NewSet, NodesAdded); 1595 } 1596 for (auto &PI : SU->Preds) { 1597 SUnit *Predecessor = PI.getSUnit(); 1598 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1599 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1600 } 1601 } 1602 1603 /// Return true if Set1 contains elements in Set2. The elements in common 1604 /// are returned in a different container. 1605 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1606 SmallSetVector<SUnit *, 8> &Result) { 1607 Result.clear(); 1608 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1609 SUnit *SU = Set1[i]; 1610 if (Set2.count(SU) != 0) 1611 Result.insert(SU); 1612 } 1613 return !Result.empty(); 1614 } 1615 1616 /// Merge the recurrence node sets that have the same initial node. 1617 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1618 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1619 ++I) { 1620 NodeSet &NI = *I; 1621 for (NodeSetType::iterator J = I + 1; J != E;) { 1622 NodeSet &NJ = *J; 1623 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1624 if (NJ.compareRecMII(NI) > 0) 1625 NI.setRecMII(NJ.getRecMII()); 1626 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1627 ++NII) 1628 I->insert(*NII); 1629 NodeSets.erase(J); 1630 E = NodeSets.end(); 1631 } else { 1632 ++J; 1633 } 1634 } 1635 } 1636 } 1637 1638 /// Remove nodes that have been scheduled in previous NodeSets. 1639 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1640 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1641 ++I) 1642 for (NodeSetType::iterator J = I + 1; J != E;) { 1643 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1644 1645 if (J->empty()) { 1646 NodeSets.erase(J); 1647 E = NodeSets.end(); 1648 } else { 1649 ++J; 1650 } 1651 } 1652 } 1653 1654 /// Compute an ordered list of the dependence graph nodes, which 1655 /// indicates the order that the nodes will be scheduled. This is a 1656 /// two-level algorithm. First, a partial order is created, which 1657 /// consists of a list of sets ordered from highest to lowest priority. 1658 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1659 SmallSetVector<SUnit *, 8> R; 1660 NodeOrder.clear(); 1661 1662 for (auto &Nodes : NodeSets) { 1663 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1664 OrderKind Order; 1665 SmallSetVector<SUnit *, 8> N; 1666 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1667 R.insert(N.begin(), N.end()); 1668 Order = BottomUp; 1669 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1670 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1671 R.insert(N.begin(), N.end()); 1672 Order = TopDown; 1673 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1674 } else if (isIntersect(N, Nodes, R)) { 1675 // If some of the successors are in the existing node-set, then use the 1676 // top-down ordering. 1677 Order = TopDown; 1678 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1679 } else if (NodeSets.size() == 1) { 1680 for (auto &N : Nodes) 1681 if (N->Succs.size() == 0) 1682 R.insert(N); 1683 Order = BottomUp; 1684 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1685 } else { 1686 // Find the node with the highest ASAP. 1687 SUnit *maxASAP = nullptr; 1688 for (SUnit *SU : Nodes) { 1689 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1690 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1691 maxASAP = SU; 1692 } 1693 R.insert(maxASAP); 1694 Order = BottomUp; 1695 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1696 } 1697 1698 while (!R.empty()) { 1699 if (Order == TopDown) { 1700 // Choose the node with the maximum height. If more than one, choose 1701 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1702 // choose the node with the lowest MOV. 1703 while (!R.empty()) { 1704 SUnit *maxHeight = nullptr; 1705 for (SUnit *I : R) { 1706 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1707 maxHeight = I; 1708 else if (getHeight(I) == getHeight(maxHeight) && 1709 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1710 maxHeight = I; 1711 else if (getHeight(I) == getHeight(maxHeight) && 1712 getZeroLatencyHeight(I) == 1713 getZeroLatencyHeight(maxHeight) && 1714 getMOV(I) < getMOV(maxHeight)) 1715 maxHeight = I; 1716 } 1717 NodeOrder.insert(maxHeight); 1718 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1719 R.remove(maxHeight); 1720 for (const auto &I : maxHeight->Succs) { 1721 if (Nodes.count(I.getSUnit()) == 0) 1722 continue; 1723 if (NodeOrder.count(I.getSUnit()) != 0) 1724 continue; 1725 if (ignoreDependence(I, false)) 1726 continue; 1727 R.insert(I.getSUnit()); 1728 } 1729 // Back-edges are predecessors with an anti-dependence. 1730 for (const auto &I : maxHeight->Preds) { 1731 if (I.getKind() != SDep::Anti) 1732 continue; 1733 if (Nodes.count(I.getSUnit()) == 0) 1734 continue; 1735 if (NodeOrder.count(I.getSUnit()) != 0) 1736 continue; 1737 R.insert(I.getSUnit()); 1738 } 1739 } 1740 Order = BottomUp; 1741 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1742 SmallSetVector<SUnit *, 8> N; 1743 if (pred_L(NodeOrder, N, &Nodes)) 1744 R.insert(N.begin(), N.end()); 1745 } else { 1746 // Choose the node with the maximum depth. If more than one, choose 1747 // the node with the maximum ZeroLatencyDepth. If still more than one, 1748 // choose the node with the lowest MOV. 1749 while (!R.empty()) { 1750 SUnit *maxDepth = nullptr; 1751 for (SUnit *I : R) { 1752 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1753 maxDepth = I; 1754 else if (getDepth(I) == getDepth(maxDepth) && 1755 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1756 maxDepth = I; 1757 else if (getDepth(I) == getDepth(maxDepth) && 1758 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1759 getMOV(I) < getMOV(maxDepth)) 1760 maxDepth = I; 1761 } 1762 NodeOrder.insert(maxDepth); 1763 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1764 R.remove(maxDepth); 1765 if (Nodes.isExceedSU(maxDepth)) { 1766 Order = TopDown; 1767 R.clear(); 1768 R.insert(Nodes.getNode(0)); 1769 break; 1770 } 1771 for (const auto &I : maxDepth->Preds) { 1772 if (Nodes.count(I.getSUnit()) == 0) 1773 continue; 1774 if (NodeOrder.count(I.getSUnit()) != 0) 1775 continue; 1776 R.insert(I.getSUnit()); 1777 } 1778 // Back-edges are predecessors with an anti-dependence. 1779 for (const auto &I : maxDepth->Succs) { 1780 if (I.getKind() != SDep::Anti) 1781 continue; 1782 if (Nodes.count(I.getSUnit()) == 0) 1783 continue; 1784 if (NodeOrder.count(I.getSUnit()) != 0) 1785 continue; 1786 R.insert(I.getSUnit()); 1787 } 1788 } 1789 Order = TopDown; 1790 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1791 SmallSetVector<SUnit *, 8> N; 1792 if (succ_L(NodeOrder, N, &Nodes)) 1793 R.insert(N.begin(), N.end()); 1794 } 1795 } 1796 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1797 } 1798 1799 LLVM_DEBUG({ 1800 dbgs() << "Node order: "; 1801 for (SUnit *I : NodeOrder) 1802 dbgs() << " " << I->NodeNum << " "; 1803 dbgs() << "\n"; 1804 }); 1805 } 1806 1807 /// Process the nodes in the computed order and create the pipelined schedule 1808 /// of the instructions, if possible. Return true if a schedule is found. 1809 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1810 if (NodeOrder.empty()) 1811 return false; 1812 1813 bool scheduleFound = false; 1814 unsigned II = 0; 1815 // Keep increasing II until a valid schedule is found. 1816 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1817 Schedule.reset(); 1818 Schedule.setInitiationInterval(II); 1819 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1820 1821 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1822 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1823 do { 1824 SUnit *SU = *NI; 1825 1826 // Compute the schedule time for the instruction, which is based 1827 // upon the scheduled time for any predecessors/successors. 1828 int EarlyStart = INT_MIN; 1829 int LateStart = INT_MAX; 1830 // These values are set when the size of the schedule window is limited 1831 // due to chain dependences. 1832 int SchedEnd = INT_MAX; 1833 int SchedStart = INT_MIN; 1834 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1835 II, this); 1836 LLVM_DEBUG({ 1837 dbgs() << "Inst (" << SU->NodeNum << ") "; 1838 SU->getInstr()->dump(); 1839 dbgs() << "\n"; 1840 }); 1841 LLVM_DEBUG({ 1842 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 1843 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 1844 }); 1845 1846 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1847 SchedStart > LateStart) 1848 scheduleFound = false; 1849 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1850 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1851 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1852 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1853 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1854 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1855 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1856 SchedEnd = 1857 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1858 // When scheduling a Phi it is better to start at the late cycle and go 1859 // backwards. The default order may insert the Phi too far away from 1860 // its first dependence. 1861 if (SU->getInstr()->isPHI()) 1862 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1863 else 1864 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1865 } else { 1866 int FirstCycle = Schedule.getFirstCycle(); 1867 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1868 FirstCycle + getASAP(SU) + II - 1, II); 1869 } 1870 // Even if we find a schedule, make sure the schedule doesn't exceed the 1871 // allowable number of stages. We keep trying if this happens. 1872 if (scheduleFound) 1873 if (SwpMaxStages > -1 && 1874 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1875 scheduleFound = false; 1876 1877 LLVM_DEBUG({ 1878 if (!scheduleFound) 1879 dbgs() << "\tCan't schedule\n"; 1880 }); 1881 } while (++NI != NE && scheduleFound); 1882 1883 // If a schedule is found, check if it is a valid schedule too. 1884 if (scheduleFound) 1885 scheduleFound = Schedule.isValidSchedule(this); 1886 } 1887 1888 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 1889 << ")\n"); 1890 1891 if (scheduleFound) 1892 Schedule.finalizeSchedule(this); 1893 else 1894 Schedule.reset(); 1895 1896 return scheduleFound && Schedule.getMaxStageCount() > 0; 1897 } 1898 1899 /// Given a schedule for the loop, generate a new version of the loop, 1900 /// and replace the old version. This function generates a prolog 1901 /// that contains the initial iterations in the pipeline, and kernel 1902 /// loop, and the epilogue that contains the code for the final 1903 /// iterations. 1904 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 1905 // Create a new basic block for the kernel and add it to the CFG. 1906 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1907 1908 unsigned MaxStageCount = Schedule.getMaxStageCount(); 1909 1910 // Remember the registers that are used in different stages. The index is 1911 // the iteration, or stage, that the instruction is scheduled in. This is 1912 // a map between register names in the original block and the names created 1913 // in each stage of the pipelined loop. 1914 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 1915 InstrMapTy InstrMap; 1916 1917 SmallVector<MachineBasicBlock *, 4> PrologBBs; 1918 // Generate the prolog instructions that set up the pipeline. 1919 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 1920 MF.insert(BB->getIterator(), KernelBB); 1921 1922 // Rearrange the instructions to generate the new, pipelined loop, 1923 // and update register names as needed. 1924 for (int Cycle = Schedule.getFirstCycle(), 1925 LastCycle = Schedule.getFinalCycle(); 1926 Cycle <= LastCycle; ++Cycle) { 1927 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 1928 // This inner loop schedules each instruction in the cycle. 1929 for (SUnit *CI : CycleInstrs) { 1930 if (CI->getInstr()->isPHI()) 1931 continue; 1932 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 1933 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 1934 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 1935 KernelBB->push_back(NewMI); 1936 InstrMap[NewMI] = CI->getInstr(); 1937 } 1938 } 1939 1940 // Copy any terminator instructions to the new kernel, and update 1941 // names as needed. 1942 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 1943 E = BB->instr_end(); 1944 I != E; ++I) { 1945 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1946 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 1947 KernelBB->push_back(NewMI); 1948 InstrMap[NewMI] = &*I; 1949 } 1950 1951 KernelBB->transferSuccessors(BB); 1952 KernelBB->replaceSuccessor(BB, KernelBB); 1953 1954 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 1955 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 1956 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 1957 InstrMap, MaxStageCount, MaxStageCount, false); 1958 1959 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 1960 1961 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 1962 // Generate the epilog instructions to complete the pipeline. 1963 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 1964 PrologBBs); 1965 1966 // We need this step because the register allocation doesn't handle some 1967 // situations well, so we insert copies to help out. 1968 splitLifetimes(KernelBB, EpilogBBs, Schedule); 1969 1970 // Remove dead instructions due to loop induction variables. 1971 removeDeadInstructions(KernelBB, EpilogBBs); 1972 1973 // Add branches between prolog and epilog blocks. 1974 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 1975 1976 // Remove the original loop since it's no longer referenced. 1977 for (auto &I : *BB) 1978 LIS.RemoveMachineInstrFromMaps(I); 1979 BB->clear(); 1980 BB->eraseFromParent(); 1981 1982 delete[] VRMap; 1983 } 1984 1985 /// Generate the pipeline prolog code. 1986 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 1987 MachineBasicBlock *KernelBB, 1988 ValueMapTy *VRMap, 1989 MBBVectorTy &PrologBBs) { 1990 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 1991 assert(PreheaderBB != nullptr && 1992 "Need to add code to handle loops w/o preheader"); 1993 MachineBasicBlock *PredBB = PreheaderBB; 1994 InstrMapTy InstrMap; 1995 1996 // Generate a basic block for each stage, not including the last stage, 1997 // which will be generated in the kernel. Each basic block may contain 1998 // instructions from multiple stages/iterations. 1999 for (unsigned i = 0; i < LastStage; ++i) { 2000 // Create and insert the prolog basic block prior to the original loop 2001 // basic block. The original loop is removed later. 2002 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2003 PrologBBs.push_back(NewBB); 2004 MF.insert(BB->getIterator(), NewBB); 2005 NewBB->transferSuccessors(PredBB); 2006 PredBB->addSuccessor(NewBB); 2007 PredBB = NewBB; 2008 2009 // Generate instructions for each appropriate stage. Process instructions 2010 // in original program order. 2011 for (int StageNum = i; StageNum >= 0; --StageNum) { 2012 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2013 BBE = BB->getFirstTerminator(); 2014 BBI != BBE; ++BBI) { 2015 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2016 if (BBI->isPHI()) 2017 continue; 2018 MachineInstr *NewMI = 2019 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2020 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2021 VRMap); 2022 NewBB->push_back(NewMI); 2023 InstrMap[NewMI] = &*BBI; 2024 } 2025 } 2026 } 2027 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2028 LLVM_DEBUG({ 2029 dbgs() << "prolog:\n"; 2030 NewBB->dump(); 2031 }); 2032 } 2033 2034 PredBB->replaceSuccessor(BB, KernelBB); 2035 2036 // Check if we need to remove the branch from the preheader to the original 2037 // loop, and replace it with a branch to the new loop. 2038 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2039 if (numBranches) { 2040 SmallVector<MachineOperand, 0> Cond; 2041 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2042 } 2043 } 2044 2045 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2046 /// that were started in either the prolog or the kernel. We create a basic 2047 /// block for each stage that needs to complete. 2048 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2049 MachineBasicBlock *KernelBB, 2050 ValueMapTy *VRMap, 2051 MBBVectorTy &EpilogBBs, 2052 MBBVectorTy &PrologBBs) { 2053 // We need to change the branch from the kernel to the first epilog block, so 2054 // this call to analyze branch uses the kernel rather than the original BB. 2055 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2056 SmallVector<MachineOperand, 4> Cond; 2057 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2058 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2059 if (checkBranch) 2060 return; 2061 2062 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2063 if (*LoopExitI == KernelBB) 2064 ++LoopExitI; 2065 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2066 MachineBasicBlock *LoopExitBB = *LoopExitI; 2067 2068 MachineBasicBlock *PredBB = KernelBB; 2069 MachineBasicBlock *EpilogStart = LoopExitBB; 2070 InstrMapTy InstrMap; 2071 2072 // Generate a basic block for each stage, not including the last stage, 2073 // which was generated for the kernel. Each basic block may contain 2074 // instructions from multiple stages/iterations. 2075 int EpilogStage = LastStage + 1; 2076 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2077 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2078 EpilogBBs.push_back(NewBB); 2079 MF.insert(BB->getIterator(), NewBB); 2080 2081 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2082 NewBB->addSuccessor(LoopExitBB); 2083 2084 if (EpilogStart == LoopExitBB) 2085 EpilogStart = NewBB; 2086 2087 // Add instructions to the epilog depending on the current block. 2088 // Process instructions in original program order. 2089 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2090 for (auto &BBI : *BB) { 2091 if (BBI.isPHI()) 2092 continue; 2093 MachineInstr *In = &BBI; 2094 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2095 // Instructions with memoperands in the epilog are updated with 2096 // conservative values. 2097 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2098 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2099 NewBB->push_back(NewMI); 2100 InstrMap[NewMI] = In; 2101 } 2102 } 2103 } 2104 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2105 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2106 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2107 InstrMap, LastStage, EpilogStage, i == 1); 2108 PredBB = NewBB; 2109 2110 LLVM_DEBUG({ 2111 dbgs() << "epilog:\n"; 2112 NewBB->dump(); 2113 }); 2114 } 2115 2116 // Fix any Phi nodes in the loop exit block. 2117 for (MachineInstr &MI : *LoopExitBB) { 2118 if (!MI.isPHI()) 2119 break; 2120 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2121 MachineOperand &MO = MI.getOperand(i); 2122 if (MO.getMBB() == BB) 2123 MO.setMBB(PredBB); 2124 } 2125 } 2126 2127 // Create a branch to the new epilog from the kernel. 2128 // Remove the original branch and add a new branch to the epilog. 2129 TII->removeBranch(*KernelBB); 2130 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2131 // Add a branch to the loop exit. 2132 if (EpilogBBs.size() > 0) { 2133 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2134 SmallVector<MachineOperand, 4> Cond1; 2135 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2136 } 2137 } 2138 2139 /// Replace all uses of FromReg that appear outside the specified 2140 /// basic block with ToReg. 2141 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2142 MachineBasicBlock *MBB, 2143 MachineRegisterInfo &MRI, 2144 LiveIntervals &LIS) { 2145 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2146 E = MRI.use_end(); 2147 I != E;) { 2148 MachineOperand &O = *I; 2149 ++I; 2150 if (O.getParent()->getParent() != MBB) 2151 O.setReg(ToReg); 2152 } 2153 if (!LIS.hasInterval(ToReg)) 2154 LIS.createEmptyInterval(ToReg); 2155 } 2156 2157 /// Return true if the register has a use that occurs outside the 2158 /// specified loop. 2159 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2160 MachineRegisterInfo &MRI) { 2161 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2162 E = MRI.use_end(); 2163 I != E; ++I) 2164 if (I->getParent()->getParent() != BB) 2165 return true; 2166 return false; 2167 } 2168 2169 /// Generate Phis for the specific block in the generated pipelined code. 2170 /// This function looks at the Phis from the original code to guide the 2171 /// creation of new Phis. 2172 void SwingSchedulerDAG::generateExistingPhis( 2173 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2174 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2175 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2176 bool IsLast) { 2177 // Compute the stage number for the initial value of the Phi, which 2178 // comes from the prolog. The prolog to use depends on to which kernel/ 2179 // epilog that we're adding the Phi. 2180 unsigned PrologStage = 0; 2181 unsigned PrevStage = 0; 2182 bool InKernel = (LastStageNum == CurStageNum); 2183 if (InKernel) { 2184 PrologStage = LastStageNum - 1; 2185 PrevStage = CurStageNum; 2186 } else { 2187 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2188 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2189 } 2190 2191 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2192 BBE = BB->getFirstNonPHI(); 2193 BBI != BBE; ++BBI) { 2194 unsigned Def = BBI->getOperand(0).getReg(); 2195 2196 unsigned InitVal = 0; 2197 unsigned LoopVal = 0; 2198 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2199 2200 unsigned PhiOp1 = 0; 2201 // The Phi value from the loop body typically is defined in the loop, but 2202 // not always. So, we need to check if the value is defined in the loop. 2203 unsigned PhiOp2 = LoopVal; 2204 if (VRMap[LastStageNum].count(LoopVal)) 2205 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2206 2207 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2208 int LoopValStage = 2209 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2210 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2211 if (NumStages == 0) { 2212 // We don't need to generate a Phi anymore, but we need to rename any uses 2213 // of the Phi value. 2214 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2215 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2216 Def, InitVal, NewReg); 2217 if (VRMap[CurStageNum].count(LoopVal)) 2218 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2219 } 2220 // Adjust the number of Phis needed depending on the number of prologs left, 2221 // and the distance from where the Phi is first scheduled. The number of 2222 // Phis cannot exceed the number of prolog stages. Each stage can 2223 // potentially define two values. 2224 unsigned MaxPhis = PrologStage + 2; 2225 if (!InKernel && (int)PrologStage <= LoopValStage) 2226 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2227 unsigned NumPhis = std::min(NumStages, MaxPhis); 2228 2229 unsigned NewReg = 0; 2230 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2231 // In the epilog, we may need to look back one stage to get the correct 2232 // Phi name because the epilog and prolog blocks execute the same stage. 2233 // The correct name is from the previous block only when the Phi has 2234 // been completely scheduled prior to the epilog, and Phi value is not 2235 // needed in multiple stages. 2236 int StageDiff = 0; 2237 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2238 NumPhis == 1) 2239 StageDiff = 1; 2240 // Adjust the computations below when the phi and the loop definition 2241 // are scheduled in different stages. 2242 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2243 StageDiff = StageScheduled - LoopValStage; 2244 for (unsigned np = 0; np < NumPhis; ++np) { 2245 // If the Phi hasn't been scheduled, then use the initial Phi operand 2246 // value. Otherwise, use the scheduled version of the instruction. This 2247 // is a little complicated when a Phi references another Phi. 2248 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2249 PhiOp1 = InitVal; 2250 // Check if the Phi has already been scheduled in a prolog stage. 2251 else if (PrologStage >= AccessStage + StageDiff + np && 2252 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2253 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2254 // Check if the Phi has already been scheduled, but the loop instruction 2255 // is either another Phi, or doesn't occur in the loop. 2256 else if (PrologStage >= AccessStage + StageDiff + np) { 2257 // If the Phi references another Phi, we need to examine the other 2258 // Phi to get the correct value. 2259 PhiOp1 = LoopVal; 2260 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2261 int Indirects = 1; 2262 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2263 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2264 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2265 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2266 else 2267 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2268 InstOp1 = MRI.getVRegDef(PhiOp1); 2269 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2270 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2271 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2272 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2273 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2274 break; 2275 } 2276 ++Indirects; 2277 } 2278 } else 2279 PhiOp1 = InitVal; 2280 // If this references a generated Phi in the kernel, get the Phi operand 2281 // from the incoming block. 2282 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2283 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2284 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2285 2286 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2287 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2288 // In the epilog, a map lookup is needed to get the value from the kernel, 2289 // or previous epilog block. How is does this depends on if the 2290 // instruction is scheduled in the previous block. 2291 if (!InKernel) { 2292 int StageDiffAdj = 0; 2293 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2294 StageDiffAdj = StageScheduled - LoopValStage; 2295 // Use the loop value defined in the kernel, unless the kernel 2296 // contains the last definition of the Phi. 2297 if (np == 0 && PrevStage == LastStageNum && 2298 (StageScheduled != 0 || LoopValStage != 0) && 2299 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2300 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2301 // Use the value defined by the Phi. We add one because we switch 2302 // from looking at the loop value to the Phi definition. 2303 else if (np > 0 && PrevStage == LastStageNum && 2304 VRMap[PrevStage - np + 1].count(Def)) 2305 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2306 // Use the loop value defined in the kernel. 2307 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2308 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2309 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2310 // Use the value defined by the Phi, unless we're generating the first 2311 // epilog and the Phi refers to a Phi in a different stage. 2312 else if (VRMap[PrevStage - np].count(Def) && 2313 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2314 PhiOp2 = VRMap[PrevStage - np][Def]; 2315 } 2316 2317 // Check if we can reuse an existing Phi. This occurs when a Phi 2318 // references another Phi, and the other Phi is scheduled in an 2319 // earlier stage. We can try to reuse an existing Phi up until the last 2320 // stage of the current Phi. 2321 if (LoopDefIsPhi) { 2322 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2323 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2324 int StageDiff = (StageScheduled - LoopValStage); 2325 LVNumStages -= StageDiff; 2326 // Make sure the loop value Phi has been processed already. 2327 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2328 NewReg = PhiOp2; 2329 unsigned ReuseStage = CurStageNum; 2330 if (Schedule.isLoopCarried(this, *PhiInst)) 2331 ReuseStage -= LVNumStages; 2332 // Check if the Phi to reuse has been generated yet. If not, then 2333 // there is nothing to reuse. 2334 if (VRMap[ReuseStage - np].count(LoopVal)) { 2335 NewReg = VRMap[ReuseStage - np][LoopVal]; 2336 2337 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2338 &*BBI, Def, NewReg); 2339 // Update the map with the new Phi name. 2340 VRMap[CurStageNum - np][Def] = NewReg; 2341 PhiOp2 = NewReg; 2342 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2343 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2344 2345 if (IsLast && np == NumPhis - 1) 2346 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2347 continue; 2348 } 2349 } 2350 } 2351 if (InKernel && StageDiff > 0 && 2352 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2353 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2354 } 2355 2356 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2357 NewReg = MRI.createVirtualRegister(RC); 2358 2359 MachineInstrBuilder NewPhi = 2360 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2361 TII->get(TargetOpcode::PHI), NewReg); 2362 NewPhi.addReg(PhiOp1).addMBB(BB1); 2363 NewPhi.addReg(PhiOp2).addMBB(BB2); 2364 if (np == 0) 2365 InstrMap[NewPhi] = &*BBI; 2366 2367 // We define the Phis after creating the new pipelined code, so 2368 // we need to rename the Phi values in scheduled instructions. 2369 2370 unsigned PrevReg = 0; 2371 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2372 PrevReg = VRMap[PrevStage - np][LoopVal]; 2373 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2374 Def, NewReg, PrevReg); 2375 // If the Phi has been scheduled, use the new name for rewriting. 2376 if (VRMap[CurStageNum - np].count(Def)) { 2377 unsigned R = VRMap[CurStageNum - np][Def]; 2378 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2379 R, NewReg); 2380 } 2381 2382 // Check if we need to rename any uses that occurs after the loop. The 2383 // register to replace depends on whether the Phi is scheduled in the 2384 // epilog. 2385 if (IsLast && np == NumPhis - 1) 2386 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2387 2388 // In the kernel, a dependent Phi uses the value from this Phi. 2389 if (InKernel) 2390 PhiOp2 = NewReg; 2391 2392 // Update the map with the new Phi name. 2393 VRMap[CurStageNum - np][Def] = NewReg; 2394 } 2395 2396 while (NumPhis++ < NumStages) { 2397 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2398 &*BBI, Def, NewReg, 0); 2399 } 2400 2401 // Check if we need to rename a Phi that has been eliminated due to 2402 // scheduling. 2403 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2404 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2405 } 2406 } 2407 2408 /// Generate Phis for the specified block in the generated pipelined code. 2409 /// These are new Phis needed because the definition is scheduled after the 2410 /// use in the pipelined sequence. 2411 void SwingSchedulerDAG::generatePhis( 2412 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2413 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2414 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2415 bool IsLast) { 2416 // Compute the stage number that contains the initial Phi value, and 2417 // the Phi from the previous stage. 2418 unsigned PrologStage = 0; 2419 unsigned PrevStage = 0; 2420 unsigned StageDiff = CurStageNum - LastStageNum; 2421 bool InKernel = (StageDiff == 0); 2422 if (InKernel) { 2423 PrologStage = LastStageNum - 1; 2424 PrevStage = CurStageNum; 2425 } else { 2426 PrologStage = LastStageNum - StageDiff; 2427 PrevStage = LastStageNum + StageDiff - 1; 2428 } 2429 2430 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2431 BBE = BB->instr_end(); 2432 BBI != BBE; ++BBI) { 2433 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2434 MachineOperand &MO = BBI->getOperand(i); 2435 if (!MO.isReg() || !MO.isDef() || 2436 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2437 continue; 2438 2439 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2440 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2441 unsigned Def = MO.getReg(); 2442 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2443 // An instruction scheduled in stage 0 and is used after the loop 2444 // requires a phi in the epilog for the last definition from either 2445 // the kernel or prolog. 2446 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2447 hasUseAfterLoop(Def, BB, MRI)) 2448 NumPhis = 1; 2449 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2450 continue; 2451 2452 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2453 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2454 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2455 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2456 // The number of Phis can't exceed the number of prolog stages. The 2457 // prolog stage number is zero based. 2458 if (NumPhis > PrologStage + 1 - StageScheduled) 2459 NumPhis = PrologStage + 1 - StageScheduled; 2460 for (unsigned np = 0; np < NumPhis; ++np) { 2461 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2462 if (np <= PrologStage) 2463 PhiOp1 = VRMap[PrologStage - np][Def]; 2464 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2465 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2466 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2467 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2468 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2469 } 2470 if (!InKernel) 2471 PhiOp2 = VRMap[PrevStage - np][Def]; 2472 2473 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2474 unsigned NewReg = MRI.createVirtualRegister(RC); 2475 2476 MachineInstrBuilder NewPhi = 2477 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2478 TII->get(TargetOpcode::PHI), NewReg); 2479 NewPhi.addReg(PhiOp1).addMBB(BB1); 2480 NewPhi.addReg(PhiOp2).addMBB(BB2); 2481 if (np == 0) 2482 InstrMap[NewPhi] = &*BBI; 2483 2484 // Rewrite uses and update the map. The actions depend upon whether 2485 // we generating code for the kernel or epilog blocks. 2486 if (InKernel) { 2487 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2488 &*BBI, PhiOp1, NewReg); 2489 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2490 &*BBI, PhiOp2, NewReg); 2491 2492 PhiOp2 = NewReg; 2493 VRMap[PrevStage - np - 1][Def] = NewReg; 2494 } else { 2495 VRMap[CurStageNum - np][Def] = NewReg; 2496 if (np == NumPhis - 1) 2497 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2498 &*BBI, Def, NewReg); 2499 } 2500 if (IsLast && np == NumPhis - 1) 2501 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2502 } 2503 } 2504 } 2505 } 2506 2507 /// Remove instructions that generate values with no uses. 2508 /// Typically, these are induction variable operations that generate values 2509 /// used in the loop itself. A dead instruction has a definition with 2510 /// no uses, or uses that occur in the original loop only. 2511 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2512 MBBVectorTy &EpilogBBs) { 2513 // For each epilog block, check that the value defined by each instruction 2514 // is used. If not, delete it. 2515 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2516 MBE = EpilogBBs.rend(); 2517 MBB != MBE; ++MBB) 2518 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2519 ME = (*MBB)->instr_rend(); 2520 MI != ME;) { 2521 // From DeadMachineInstructionElem. Don't delete inline assembly. 2522 if (MI->isInlineAsm()) { 2523 ++MI; 2524 continue; 2525 } 2526 bool SawStore = false; 2527 // Check if it's safe to remove the instruction due to side effects. 2528 // We can, and want to, remove Phis here. 2529 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2530 ++MI; 2531 continue; 2532 } 2533 bool used = true; 2534 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2535 MOE = MI->operands_end(); 2536 MOI != MOE; ++MOI) { 2537 if (!MOI->isReg() || !MOI->isDef()) 2538 continue; 2539 unsigned reg = MOI->getReg(); 2540 // Assume physical registers are used, unless they are marked dead. 2541 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2542 used = !MOI->isDead(); 2543 if (used) 2544 break; 2545 continue; 2546 } 2547 unsigned realUses = 0; 2548 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2549 EI = MRI.use_end(); 2550 UI != EI; ++UI) { 2551 // Check if there are any uses that occur only in the original 2552 // loop. If so, that's not a real use. 2553 if (UI->getParent()->getParent() != BB) { 2554 realUses++; 2555 used = true; 2556 break; 2557 } 2558 } 2559 if (realUses > 0) 2560 break; 2561 used = false; 2562 } 2563 if (!used) { 2564 LIS.RemoveMachineInstrFromMaps(*MI); 2565 MI++->eraseFromParent(); 2566 continue; 2567 } 2568 ++MI; 2569 } 2570 // In the kernel block, check if we can remove a Phi that generates a value 2571 // used in an instruction removed in the epilog block. 2572 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2573 BBE = KernelBB->getFirstNonPHI(); 2574 BBI != BBE;) { 2575 MachineInstr *MI = &*BBI; 2576 ++BBI; 2577 unsigned reg = MI->getOperand(0).getReg(); 2578 if (MRI.use_begin(reg) == MRI.use_end()) { 2579 LIS.RemoveMachineInstrFromMaps(*MI); 2580 MI->eraseFromParent(); 2581 } 2582 } 2583 } 2584 2585 /// For loop carried definitions, we split the lifetime of a virtual register 2586 /// that has uses past the definition in the next iteration. A copy with a new 2587 /// virtual register is inserted before the definition, which helps with 2588 /// generating a better register assignment. 2589 /// 2590 /// v1 = phi(a, v2) v1 = phi(a, v2) 2591 /// v2 = phi(b, v3) v2 = phi(b, v3) 2592 /// v3 = .. v4 = copy v1 2593 /// .. = V1 v3 = .. 2594 /// .. = v4 2595 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2596 MBBVectorTy &EpilogBBs, 2597 SMSchedule &Schedule) { 2598 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2599 for (auto &PHI : KernelBB->phis()) { 2600 unsigned Def = PHI.getOperand(0).getReg(); 2601 // Check for any Phi definition that used as an operand of another Phi 2602 // in the same block. 2603 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2604 E = MRI.use_instr_end(); 2605 I != E; ++I) { 2606 if (I->isPHI() && I->getParent() == KernelBB) { 2607 // Get the loop carried definition. 2608 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2609 if (!LCDef) 2610 continue; 2611 MachineInstr *MI = MRI.getVRegDef(LCDef); 2612 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2613 continue; 2614 // Search through the rest of the block looking for uses of the Phi 2615 // definition. If one occurs, then split the lifetime. 2616 unsigned SplitReg = 0; 2617 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2618 KernelBB->instr_end())) 2619 if (BBJ.readsRegister(Def)) { 2620 // We split the lifetime when we find the first use. 2621 if (SplitReg == 0) { 2622 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2623 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2624 TII->get(TargetOpcode::COPY), SplitReg) 2625 .addReg(Def); 2626 } 2627 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2628 } 2629 if (!SplitReg) 2630 continue; 2631 // Search through each of the epilog blocks for any uses to be renamed. 2632 for (auto &Epilog : EpilogBBs) 2633 for (auto &I : *Epilog) 2634 if (I.readsRegister(Def)) 2635 I.substituteRegister(Def, SplitReg, 0, *TRI); 2636 break; 2637 } 2638 } 2639 } 2640 } 2641 2642 /// Remove the incoming block from the Phis in a basic block. 2643 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2644 for (MachineInstr &MI : *BB) { 2645 if (!MI.isPHI()) 2646 break; 2647 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2648 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2649 MI.RemoveOperand(i + 1); 2650 MI.RemoveOperand(i); 2651 break; 2652 } 2653 } 2654 } 2655 2656 /// Create branches from each prolog basic block to the appropriate epilog 2657 /// block. These edges are needed if the loop ends before reaching the 2658 /// kernel. 2659 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2660 MachineBasicBlock *KernelBB, 2661 MBBVectorTy &EpilogBBs, 2662 SMSchedule &Schedule, ValueMapTy *VRMap) { 2663 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2664 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2665 MachineInstr *Cmp = Pass.LI.LoopCompare; 2666 MachineBasicBlock *LastPro = KernelBB; 2667 MachineBasicBlock *LastEpi = KernelBB; 2668 2669 // Start from the blocks connected to the kernel and work "out" 2670 // to the first prolog and the last epilog blocks. 2671 SmallVector<MachineInstr *, 4> PrevInsts; 2672 unsigned MaxIter = PrologBBs.size() - 1; 2673 unsigned LC = UINT_MAX; 2674 unsigned LCMin = UINT_MAX; 2675 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2676 // Add branches to the prolog that go to the corresponding 2677 // epilog, and the fall-thru prolog/kernel block. 2678 MachineBasicBlock *Prolog = PrologBBs[j]; 2679 MachineBasicBlock *Epilog = EpilogBBs[i]; 2680 // We've executed one iteration, so decrement the loop count and check for 2681 // the loop end. 2682 SmallVector<MachineOperand, 4> Cond; 2683 // Check if the LOOP0 has already been removed. If so, then there is no need 2684 // to reduce the trip count. 2685 if (LC != 0) 2686 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 2687 MaxIter); 2688 2689 // Record the value of the first trip count, which is used to determine if 2690 // branches and blocks can be removed for constant trip counts. 2691 if (LCMin == UINT_MAX) 2692 LCMin = LC; 2693 2694 unsigned numAdded = 0; 2695 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2696 Prolog->addSuccessor(Epilog); 2697 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2698 } else if (j >= LCMin) { 2699 Prolog->addSuccessor(Epilog); 2700 Prolog->removeSuccessor(LastPro); 2701 LastEpi->removeSuccessor(Epilog); 2702 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2703 removePhis(Epilog, LastEpi); 2704 // Remove the blocks that are no longer referenced. 2705 if (LastPro != LastEpi) { 2706 LastEpi->clear(); 2707 LastEpi->eraseFromParent(); 2708 } 2709 LastPro->clear(); 2710 LastPro->eraseFromParent(); 2711 } else { 2712 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2713 removePhis(Epilog, Prolog); 2714 } 2715 LastPro = Prolog; 2716 LastEpi = Epilog; 2717 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2718 E = Prolog->instr_rend(); 2719 I != E && numAdded > 0; ++I, --numAdded) 2720 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2721 } 2722 } 2723 2724 /// Return true if we can compute the amount the instruction changes 2725 /// during each iteration. Set Delta to the amount of the change. 2726 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2727 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2728 MachineOperand *BaseOp; 2729 int64_t Offset; 2730 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2731 return false; 2732 2733 if (!BaseOp->isReg()) 2734 return false; 2735 2736 unsigned BaseReg = BaseOp->getReg(); 2737 2738 MachineRegisterInfo &MRI = MF.getRegInfo(); 2739 // Check if there is a Phi. If so, get the definition in the loop. 2740 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2741 if (BaseDef && BaseDef->isPHI()) { 2742 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2743 BaseDef = MRI.getVRegDef(BaseReg); 2744 } 2745 if (!BaseDef) 2746 return false; 2747 2748 int D = 0; 2749 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2750 return false; 2751 2752 Delta = D; 2753 return true; 2754 } 2755 2756 /// Update the memory operand with a new offset when the pipeliner 2757 /// generates a new copy of the instruction that refers to a 2758 /// different memory location. 2759 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2760 MachineInstr &OldMI, unsigned Num) { 2761 if (Num == 0) 2762 return; 2763 // If the instruction has memory operands, then adjust the offset 2764 // when the instruction appears in different stages. 2765 if (NewMI.memoperands_empty()) 2766 return; 2767 SmallVector<MachineMemOperand *, 2> NewMMOs; 2768 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2769 // TODO: Figure out whether isAtomic is really necessary (see D57601). 2770 if (MMO->isVolatile() || MMO->isAtomic() || 2771 (MMO->isInvariant() && MMO->isDereferenceable()) || 2772 (!MMO->getValue())) { 2773 NewMMOs.push_back(MMO); 2774 continue; 2775 } 2776 unsigned Delta; 2777 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2778 int64_t AdjOffset = Delta * Num; 2779 NewMMOs.push_back( 2780 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2781 } else { 2782 NewMMOs.push_back( 2783 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2784 } 2785 } 2786 NewMI.setMemRefs(MF, NewMMOs); 2787 } 2788 2789 /// Clone the instruction for the new pipelined loop and update the 2790 /// memory operands, if needed. 2791 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2792 unsigned CurStageNum, 2793 unsigned InstStageNum) { 2794 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2795 // Check for tied operands in inline asm instructions. This should be handled 2796 // elsewhere, but I'm not sure of the best solution. 2797 if (OldMI->isInlineAsm()) 2798 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2799 const auto &MO = OldMI->getOperand(i); 2800 if (MO.isReg() && MO.isUse()) 2801 break; 2802 unsigned UseIdx; 2803 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2804 NewMI->tieOperands(i, UseIdx); 2805 } 2806 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2807 return NewMI; 2808 } 2809 2810 /// Clone the instruction for the new pipelined loop. If needed, this 2811 /// function updates the instruction using the values saved in the 2812 /// InstrChanges structure. 2813 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2814 unsigned CurStageNum, 2815 unsigned InstStageNum, 2816 SMSchedule &Schedule) { 2817 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2818 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2819 InstrChanges.find(getSUnit(OldMI)); 2820 if (It != InstrChanges.end()) { 2821 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2822 unsigned BasePos, OffsetPos; 2823 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2824 return nullptr; 2825 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2826 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2827 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2828 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2829 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2830 } 2831 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2832 return NewMI; 2833 } 2834 2835 /// Update the machine instruction with new virtual registers. This 2836 /// function may change the defintions and/or uses. 2837 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2838 unsigned CurStageNum, 2839 unsigned InstrStageNum, 2840 SMSchedule &Schedule, 2841 ValueMapTy *VRMap) { 2842 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2843 MachineOperand &MO = NewMI->getOperand(i); 2844 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2845 continue; 2846 unsigned reg = MO.getReg(); 2847 if (MO.isDef()) { 2848 // Create a new virtual register for the definition. 2849 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2850 unsigned NewReg = MRI.createVirtualRegister(RC); 2851 MO.setReg(NewReg); 2852 VRMap[CurStageNum][reg] = NewReg; 2853 if (LastDef) 2854 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2855 } else if (MO.isUse()) { 2856 MachineInstr *Def = MRI.getVRegDef(reg); 2857 // Compute the stage that contains the last definition for instruction. 2858 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2859 unsigned StageNum = CurStageNum; 2860 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2861 // Compute the difference in stages between the defintion and the use. 2862 unsigned StageDiff = (InstrStageNum - DefStageNum); 2863 // Make an adjustment to get the last definition. 2864 StageNum -= StageDiff; 2865 } 2866 if (VRMap[StageNum].count(reg)) 2867 MO.setReg(VRMap[StageNum][reg]); 2868 } 2869 } 2870 } 2871 2872 /// Return the instruction in the loop that defines the register. 2873 /// If the definition is a Phi, then follow the Phi operand to 2874 /// the instruction in the loop. 2875 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2876 SmallPtrSet<MachineInstr *, 8> Visited; 2877 MachineInstr *Def = MRI.getVRegDef(Reg); 2878 while (Def->isPHI()) { 2879 if (!Visited.insert(Def).second) 2880 break; 2881 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2882 if (Def->getOperand(i + 1).getMBB() == BB) { 2883 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2884 break; 2885 } 2886 } 2887 return Def; 2888 } 2889 2890 /// Return the new name for the value from the previous stage. 2891 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 2892 unsigned LoopVal, unsigned LoopStage, 2893 ValueMapTy *VRMap, 2894 MachineBasicBlock *BB) { 2895 unsigned PrevVal = 0; 2896 if (StageNum > PhiStage) { 2897 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 2898 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 2899 // The name is defined in the previous stage. 2900 PrevVal = VRMap[StageNum - 1][LoopVal]; 2901 else if (VRMap[StageNum].count(LoopVal)) 2902 // The previous name is defined in the current stage when the instruction 2903 // order is swapped. 2904 PrevVal = VRMap[StageNum][LoopVal]; 2905 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 2906 // The loop value hasn't yet been scheduled. 2907 PrevVal = LoopVal; 2908 else if (StageNum == PhiStage + 1) 2909 // The loop value is another phi, which has not been scheduled. 2910 PrevVal = getInitPhiReg(*LoopInst, BB); 2911 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 2912 // The loop value is another phi, which has been scheduled. 2913 PrevVal = 2914 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 2915 LoopStage, VRMap, BB); 2916 } 2917 return PrevVal; 2918 } 2919 2920 /// Rewrite the Phi values in the specified block to use the mappings 2921 /// from the initial operand. Once the Phi is scheduled, we switch 2922 /// to using the loop value instead of the Phi value, so those names 2923 /// do not need to be rewritten. 2924 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 2925 unsigned StageNum, 2926 SMSchedule &Schedule, 2927 ValueMapTy *VRMap, 2928 InstrMapTy &InstrMap) { 2929 for (auto &PHI : BB->phis()) { 2930 unsigned InitVal = 0; 2931 unsigned LoopVal = 0; 2932 getPhiRegs(PHI, BB, InitVal, LoopVal); 2933 unsigned PhiDef = PHI.getOperand(0).getReg(); 2934 2935 unsigned PhiStage = 2936 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 2937 unsigned LoopStage = 2938 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2939 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 2940 if (NumPhis > StageNum) 2941 NumPhis = StageNum; 2942 for (unsigned np = 0; np <= NumPhis; ++np) { 2943 unsigned NewVal = 2944 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 2945 if (!NewVal) 2946 NewVal = InitVal; 2947 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 2948 PhiDef, NewVal); 2949 } 2950 } 2951 } 2952 2953 /// Rewrite a previously scheduled instruction to use the register value 2954 /// from the new instruction. Make sure the instruction occurs in the 2955 /// basic block, and we don't change the uses in the new instruction. 2956 void SwingSchedulerDAG::rewriteScheduledInstr( 2957 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 2958 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 2959 unsigned NewReg, unsigned PrevReg) { 2960 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 2961 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 2962 // Rewrite uses that have been scheduled already to use the new 2963 // Phi register. 2964 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 2965 EI = MRI.use_end(); 2966 UI != EI;) { 2967 MachineOperand &UseOp = *UI; 2968 MachineInstr *UseMI = UseOp.getParent(); 2969 ++UI; 2970 if (UseMI->getParent() != BB) 2971 continue; 2972 if (UseMI->isPHI()) { 2973 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 2974 continue; 2975 if (getLoopPhiReg(*UseMI, BB) != OldReg) 2976 continue; 2977 } 2978 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 2979 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 2980 SUnit *OrigMISU = getSUnit(OrigInstr->second); 2981 int StageSched = Schedule.stageScheduled(OrigMISU); 2982 int CycleSched = Schedule.cycleScheduled(OrigMISU); 2983 unsigned ReplaceReg = 0; 2984 // This is the stage for the scheduled instruction. 2985 if (StagePhi == StageSched && Phi->isPHI()) { 2986 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 2987 if (PrevReg && InProlog) 2988 ReplaceReg = PrevReg; 2989 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 2990 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 2991 ReplaceReg = PrevReg; 2992 else 2993 ReplaceReg = NewReg; 2994 } 2995 // The scheduled instruction occurs before the scheduled Phi, and the 2996 // Phi is not loop carried. 2997 if (!InProlog && StagePhi + 1 == StageSched && 2998 !Schedule.isLoopCarried(this, *Phi)) 2999 ReplaceReg = NewReg; 3000 if (StagePhi > StageSched && Phi->isPHI()) 3001 ReplaceReg = NewReg; 3002 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3003 ReplaceReg = NewReg; 3004 if (ReplaceReg) { 3005 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3006 UseOp.setReg(ReplaceReg); 3007 } 3008 } 3009 } 3010 3011 /// Check if we can change the instruction to use an offset value from the 3012 /// previous iteration. If so, return true and set the base and offset values 3013 /// so that we can rewrite the load, if necessary. 3014 /// v1 = Phi(v0, v3) 3015 /// v2 = load v1, 0 3016 /// v3 = post_store v1, 4, x 3017 /// This function enables the load to be rewritten as v2 = load v3, 4. 3018 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3019 unsigned &BasePos, 3020 unsigned &OffsetPos, 3021 unsigned &NewBase, 3022 int64_t &Offset) { 3023 // Get the load instruction. 3024 if (TII->isPostIncrement(*MI)) 3025 return false; 3026 unsigned BasePosLd, OffsetPosLd; 3027 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3028 return false; 3029 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3030 3031 // Look for the Phi instruction. 3032 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3033 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3034 if (!Phi || !Phi->isPHI()) 3035 return false; 3036 // Get the register defined in the loop block. 3037 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3038 if (!PrevReg) 3039 return false; 3040 3041 // Check for the post-increment load/store instruction. 3042 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3043 if (!PrevDef || PrevDef == MI) 3044 return false; 3045 3046 if (!TII->isPostIncrement(*PrevDef)) 3047 return false; 3048 3049 unsigned BasePos1 = 0, OffsetPos1 = 0; 3050 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3051 return false; 3052 3053 // Make sure that the instructions do not access the same memory location in 3054 // the next iteration. 3055 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3056 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3057 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3058 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3059 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3060 MF.DeleteMachineInstr(NewMI); 3061 if (!Disjoint) 3062 return false; 3063 3064 // Set the return value once we determine that we return true. 3065 BasePos = BasePosLd; 3066 OffsetPos = OffsetPosLd; 3067 NewBase = PrevReg; 3068 Offset = StoreOffset; 3069 return true; 3070 } 3071 3072 /// Apply changes to the instruction if needed. The changes are need 3073 /// to improve the scheduling and depend up on the final schedule. 3074 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3075 SMSchedule &Schedule) { 3076 SUnit *SU = getSUnit(MI); 3077 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3078 InstrChanges.find(SU); 3079 if (It != InstrChanges.end()) { 3080 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3081 unsigned BasePos, OffsetPos; 3082 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3083 return; 3084 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3085 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3086 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3087 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3088 int BaseStageNum = Schedule.stageScheduled(SU); 3089 int BaseCycleNum = Schedule.cycleScheduled(SU); 3090 if (BaseStageNum < DefStageNum) { 3091 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3092 int OffsetDiff = DefStageNum - BaseStageNum; 3093 if (DefCycleNum < BaseCycleNum) { 3094 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3095 if (OffsetDiff > 0) 3096 --OffsetDiff; 3097 } 3098 int64_t NewOffset = 3099 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3100 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3101 SU->setInstr(NewMI); 3102 MISUnitMap[NewMI] = SU; 3103 NewMIs.insert(NewMI); 3104 } 3105 } 3106 } 3107 3108 /// Return true for an order or output dependence that is loop carried 3109 /// potentially. A dependence is loop carried if the destination defines a valu 3110 /// that may be used or defined by the source in a subsequent iteration. 3111 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3112 bool isSucc) { 3113 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3114 Dep.isArtificial()) 3115 return false; 3116 3117 if (!SwpPruneLoopCarried) 3118 return true; 3119 3120 if (Dep.getKind() == SDep::Output) 3121 return true; 3122 3123 MachineInstr *SI = Source->getInstr(); 3124 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3125 if (!isSucc) 3126 std::swap(SI, DI); 3127 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3128 3129 // Assume ordered loads and stores may have a loop carried dependence. 3130 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3131 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3132 return true; 3133 3134 // Only chain dependences between a load and store can be loop carried. 3135 if (!DI->mayStore() || !SI->mayLoad()) 3136 return false; 3137 3138 unsigned DeltaS, DeltaD; 3139 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3140 return true; 3141 3142 MachineOperand *BaseOpS, *BaseOpD; 3143 int64_t OffsetS, OffsetD; 3144 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3145 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3146 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3147 return true; 3148 3149 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3150 return true; 3151 3152 // Check that the base register is incremented by a constant value for each 3153 // iteration. 3154 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3155 if (!Def || !Def->isPHI()) 3156 return true; 3157 unsigned InitVal = 0; 3158 unsigned LoopVal = 0; 3159 getPhiRegs(*Def, BB, InitVal, LoopVal); 3160 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3161 int D = 0; 3162 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3163 return true; 3164 3165 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3166 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3167 3168 // This is the main test, which checks the offset values and the loop 3169 // increment value to determine if the accesses may be loop carried. 3170 if (OffsetS >= OffsetD) 3171 return OffsetS + AccessSizeS > DeltaS; 3172 else 3173 return OffsetD + AccessSizeD > DeltaD; 3174 3175 return true; 3176 } 3177 3178 void SwingSchedulerDAG::postprocessDAG() { 3179 for (auto &M : Mutations) 3180 M->apply(this); 3181 } 3182 3183 /// Try to schedule the node at the specified StartCycle and continue 3184 /// until the node is schedule or the EndCycle is reached. This function 3185 /// returns true if the node is scheduled. This routine may search either 3186 /// forward or backward for a place to insert the instruction based upon 3187 /// the relative values of StartCycle and EndCycle. 3188 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3189 bool forward = true; 3190 if (StartCycle > EndCycle) 3191 forward = false; 3192 3193 // The terminating condition depends on the direction. 3194 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3195 for (int curCycle = StartCycle; curCycle != termCycle; 3196 forward ? ++curCycle : --curCycle) { 3197 3198 // Add the already scheduled instructions at the specified cycle to the DFA. 3199 Resources->clearResources(); 3200 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3201 checkCycle <= LastCycle; checkCycle += II) { 3202 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3203 3204 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3205 E = cycleInstrs.end(); 3206 I != E; ++I) { 3207 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3208 continue; 3209 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3210 "These instructions have already been scheduled."); 3211 Resources->reserveResources(*(*I)->getInstr()); 3212 } 3213 } 3214 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3215 Resources->canReserveResources(*SU->getInstr())) { 3216 LLVM_DEBUG({ 3217 dbgs() << "\tinsert at cycle " << curCycle << " "; 3218 SU->getInstr()->dump(); 3219 }); 3220 3221 ScheduledInstrs[curCycle].push_back(SU); 3222 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3223 if (curCycle > LastCycle) 3224 LastCycle = curCycle; 3225 if (curCycle < FirstCycle) 3226 FirstCycle = curCycle; 3227 return true; 3228 } 3229 LLVM_DEBUG({ 3230 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3231 SU->getInstr()->dump(); 3232 }); 3233 } 3234 return false; 3235 } 3236 3237 // Return the cycle of the earliest scheduled instruction in the chain. 3238 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3239 SmallPtrSet<SUnit *, 8> Visited; 3240 SmallVector<SDep, 8> Worklist; 3241 Worklist.push_back(Dep); 3242 int EarlyCycle = INT_MAX; 3243 while (!Worklist.empty()) { 3244 const SDep &Cur = Worklist.pop_back_val(); 3245 SUnit *PrevSU = Cur.getSUnit(); 3246 if (Visited.count(PrevSU)) 3247 continue; 3248 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3249 if (it == InstrToCycle.end()) 3250 continue; 3251 EarlyCycle = std::min(EarlyCycle, it->second); 3252 for (const auto &PI : PrevSU->Preds) 3253 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3254 Worklist.push_back(PI); 3255 Visited.insert(PrevSU); 3256 } 3257 return EarlyCycle; 3258 } 3259 3260 // Return the cycle of the latest scheduled instruction in the chain. 3261 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3262 SmallPtrSet<SUnit *, 8> Visited; 3263 SmallVector<SDep, 8> Worklist; 3264 Worklist.push_back(Dep); 3265 int LateCycle = INT_MIN; 3266 while (!Worklist.empty()) { 3267 const SDep &Cur = Worklist.pop_back_val(); 3268 SUnit *SuccSU = Cur.getSUnit(); 3269 if (Visited.count(SuccSU)) 3270 continue; 3271 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3272 if (it == InstrToCycle.end()) 3273 continue; 3274 LateCycle = std::max(LateCycle, it->second); 3275 for (const auto &SI : SuccSU->Succs) 3276 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3277 Worklist.push_back(SI); 3278 Visited.insert(SuccSU); 3279 } 3280 return LateCycle; 3281 } 3282 3283 /// If an instruction has a use that spans multiple iterations, then 3284 /// return true. These instructions are characterized by having a back-ege 3285 /// to a Phi, which contains a reference to another Phi. 3286 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3287 for (auto &P : SU->Preds) 3288 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3289 for (auto &S : P.getSUnit()->Succs) 3290 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3291 return P.getSUnit(); 3292 return nullptr; 3293 } 3294 3295 /// Compute the scheduling start slot for the instruction. The start slot 3296 /// depends on any predecessor or successor nodes scheduled already. 3297 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3298 int *MinEnd, int *MaxStart, int II, 3299 SwingSchedulerDAG *DAG) { 3300 // Iterate over each instruction that has been scheduled already. The start 3301 // slot computation depends on whether the previously scheduled instruction 3302 // is a predecessor or successor of the specified instruction. 3303 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3304 3305 // Iterate over each instruction in the current cycle. 3306 for (SUnit *I : getInstructions(cycle)) { 3307 // Because we're processing a DAG for the dependences, we recognize 3308 // the back-edge in recurrences by anti dependences. 3309 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3310 const SDep &Dep = SU->Preds[i]; 3311 if (Dep.getSUnit() == I) { 3312 if (!DAG->isBackedge(SU, Dep)) { 3313 int EarlyStart = cycle + Dep.getLatency() - 3314 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3315 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3316 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3317 int End = earliestCycleInChain(Dep) + (II - 1); 3318 *MinEnd = std::min(*MinEnd, End); 3319 } 3320 } else { 3321 int LateStart = cycle - Dep.getLatency() + 3322 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3323 *MinLateStart = std::min(*MinLateStart, LateStart); 3324 } 3325 } 3326 // For instruction that requires multiple iterations, make sure that 3327 // the dependent instruction is not scheduled past the definition. 3328 SUnit *BE = multipleIterations(I, DAG); 3329 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3330 !SU->isPred(I)) 3331 *MinLateStart = std::min(*MinLateStart, cycle); 3332 } 3333 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3334 if (SU->Succs[i].getSUnit() == I) { 3335 const SDep &Dep = SU->Succs[i]; 3336 if (!DAG->isBackedge(SU, Dep)) { 3337 int LateStart = cycle - Dep.getLatency() + 3338 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3339 *MinLateStart = std::min(*MinLateStart, LateStart); 3340 if (DAG->isLoopCarriedDep(SU, Dep)) { 3341 int Start = latestCycleInChain(Dep) + 1 - II; 3342 *MaxStart = std::max(*MaxStart, Start); 3343 } 3344 } else { 3345 int EarlyStart = cycle + Dep.getLatency() - 3346 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3347 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3348 } 3349 } 3350 } 3351 } 3352 } 3353 } 3354 3355 /// Order the instructions within a cycle so that the definitions occur 3356 /// before the uses. Returns true if the instruction is added to the start 3357 /// of the list, or false if added to the end. 3358 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3359 std::deque<SUnit *> &Insts) { 3360 MachineInstr *MI = SU->getInstr(); 3361 bool OrderBeforeUse = false; 3362 bool OrderAfterDef = false; 3363 bool OrderBeforeDef = false; 3364 unsigned MoveDef = 0; 3365 unsigned MoveUse = 0; 3366 int StageInst1 = stageScheduled(SU); 3367 3368 unsigned Pos = 0; 3369 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3370 ++I, ++Pos) { 3371 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3372 MachineOperand &MO = MI->getOperand(i); 3373 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3374 continue; 3375 3376 unsigned Reg = MO.getReg(); 3377 unsigned BasePos, OffsetPos; 3378 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3379 if (MI->getOperand(BasePos).getReg() == Reg) 3380 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3381 Reg = NewReg; 3382 bool Reads, Writes; 3383 std::tie(Reads, Writes) = 3384 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3385 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3386 OrderBeforeUse = true; 3387 if (MoveUse == 0) 3388 MoveUse = Pos; 3389 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3390 // Add the instruction after the scheduled instruction. 3391 OrderAfterDef = true; 3392 MoveDef = Pos; 3393 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3394 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3395 OrderBeforeUse = true; 3396 if (MoveUse == 0) 3397 MoveUse = Pos; 3398 } else { 3399 OrderAfterDef = true; 3400 MoveDef = Pos; 3401 } 3402 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3403 OrderBeforeUse = true; 3404 if (MoveUse == 0) 3405 MoveUse = Pos; 3406 if (MoveUse != 0) { 3407 OrderAfterDef = true; 3408 MoveDef = Pos - 1; 3409 } 3410 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3411 // Add the instruction before the scheduled instruction. 3412 OrderBeforeUse = true; 3413 if (MoveUse == 0) 3414 MoveUse = Pos; 3415 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3416 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3417 if (MoveUse == 0) { 3418 OrderBeforeDef = true; 3419 MoveUse = Pos; 3420 } 3421 } 3422 } 3423 // Check for order dependences between instructions. Make sure the source 3424 // is ordered before the destination. 3425 for (auto &S : SU->Succs) { 3426 if (S.getSUnit() != *I) 3427 continue; 3428 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3429 OrderBeforeUse = true; 3430 if (Pos < MoveUse) 3431 MoveUse = Pos; 3432 } 3433 } 3434 for (auto &P : SU->Preds) { 3435 if (P.getSUnit() != *I) 3436 continue; 3437 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3438 OrderAfterDef = true; 3439 MoveDef = Pos; 3440 } 3441 } 3442 } 3443 3444 // A circular dependence. 3445 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3446 OrderBeforeUse = false; 3447 3448 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3449 // to a loop-carried dependence. 3450 if (OrderBeforeDef) 3451 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3452 3453 // The uncommon case when the instruction order needs to be updated because 3454 // there is both a use and def. 3455 if (OrderBeforeUse && OrderAfterDef) { 3456 SUnit *UseSU = Insts.at(MoveUse); 3457 SUnit *DefSU = Insts.at(MoveDef); 3458 if (MoveUse > MoveDef) { 3459 Insts.erase(Insts.begin() + MoveUse); 3460 Insts.erase(Insts.begin() + MoveDef); 3461 } else { 3462 Insts.erase(Insts.begin() + MoveDef); 3463 Insts.erase(Insts.begin() + MoveUse); 3464 } 3465 orderDependence(SSD, UseSU, Insts); 3466 orderDependence(SSD, SU, Insts); 3467 orderDependence(SSD, DefSU, Insts); 3468 return; 3469 } 3470 // Put the new instruction first if there is a use in the list. Otherwise, 3471 // put it at the end of the list. 3472 if (OrderBeforeUse) 3473 Insts.push_front(SU); 3474 else 3475 Insts.push_back(SU); 3476 } 3477 3478 /// Return true if the scheduled Phi has a loop carried operand. 3479 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3480 if (!Phi.isPHI()) 3481 return false; 3482 assert(Phi.isPHI() && "Expecting a Phi."); 3483 SUnit *DefSU = SSD->getSUnit(&Phi); 3484 unsigned DefCycle = cycleScheduled(DefSU); 3485 int DefStage = stageScheduled(DefSU); 3486 3487 unsigned InitVal = 0; 3488 unsigned LoopVal = 0; 3489 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3490 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3491 if (!UseSU) 3492 return true; 3493 if (UseSU->getInstr()->isPHI()) 3494 return true; 3495 unsigned LoopCycle = cycleScheduled(UseSU); 3496 int LoopStage = stageScheduled(UseSU); 3497 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3498 } 3499 3500 /// Return true if the instruction is a definition that is loop carried 3501 /// and defines the use on the next iteration. 3502 /// v1 = phi(v2, v3) 3503 /// (Def) v3 = op v1 3504 /// (MO) = v1 3505 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3506 /// register. 3507 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3508 MachineInstr *Def, MachineOperand &MO) { 3509 if (!MO.isReg()) 3510 return false; 3511 if (Def->isPHI()) 3512 return false; 3513 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3514 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3515 return false; 3516 if (!isLoopCarried(SSD, *Phi)) 3517 return false; 3518 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3519 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3520 MachineOperand &DMO = Def->getOperand(i); 3521 if (!DMO.isReg() || !DMO.isDef()) 3522 continue; 3523 if (DMO.getReg() == LoopReg) 3524 return true; 3525 } 3526 return false; 3527 } 3528 3529 // Check if the generated schedule is valid. This function checks if 3530 // an instruction that uses a physical register is scheduled in a 3531 // different stage than the definition. The pipeliner does not handle 3532 // physical register values that may cross a basic block boundary. 3533 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3534 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3535 SUnit &SU = SSD->SUnits[i]; 3536 if (!SU.hasPhysRegDefs) 3537 continue; 3538 int StageDef = stageScheduled(&SU); 3539 assert(StageDef != -1 && "Instruction should have been scheduled."); 3540 for (auto &SI : SU.Succs) 3541 if (SI.isAssignedRegDep()) 3542 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3543 if (stageScheduled(SI.getSUnit()) != StageDef) 3544 return false; 3545 } 3546 return true; 3547 } 3548 3549 /// A property of the node order in swing-modulo-scheduling is 3550 /// that for nodes outside circuits the following holds: 3551 /// none of them is scheduled after both a successor and a 3552 /// predecessor. 3553 /// The method below checks whether the property is met. 3554 /// If not, debug information is printed and statistics information updated. 3555 /// Note that we do not use an assert statement. 3556 /// The reason is that although an invalid node oder may prevent 3557 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3558 /// it does not lead to the generation of incorrect code. 3559 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3560 3561 // a sorted vector that maps each SUnit to its index in the NodeOrder 3562 typedef std::pair<SUnit *, unsigned> UnitIndex; 3563 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3564 3565 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3566 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3567 3568 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3569 return std::get<0>(i1) < std::get<0>(i2); 3570 }; 3571 3572 // sort, so that we can perform a binary search 3573 llvm::sort(Indices, CompareKey); 3574 3575 bool Valid = true; 3576 (void)Valid; 3577 // for each SUnit in the NodeOrder, check whether 3578 // it appears after both a successor and a predecessor 3579 // of the SUnit. If this is the case, and the SUnit 3580 // is not part of circuit, then the NodeOrder is not 3581 // valid. 3582 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3583 SUnit *SU = NodeOrder[i]; 3584 unsigned Index = i; 3585 3586 bool PredBefore = false; 3587 bool SuccBefore = false; 3588 3589 SUnit *Succ; 3590 SUnit *Pred; 3591 (void)Succ; 3592 (void)Pred; 3593 3594 for (SDep &PredEdge : SU->Preds) { 3595 SUnit *PredSU = PredEdge.getSUnit(); 3596 unsigned PredIndex = 3597 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3598 std::make_pair(PredSU, 0), CompareKey)); 3599 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3600 PredBefore = true; 3601 Pred = PredSU; 3602 break; 3603 } 3604 } 3605 3606 for (SDep &SuccEdge : SU->Succs) { 3607 SUnit *SuccSU = SuccEdge.getSUnit(); 3608 unsigned SuccIndex = 3609 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3610 std::make_pair(SuccSU, 0), CompareKey)); 3611 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3612 SuccBefore = true; 3613 Succ = SuccSU; 3614 break; 3615 } 3616 } 3617 3618 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3619 // instructions in circuits are allowed to be scheduled 3620 // after both a successor and predecessor. 3621 bool InCircuit = std::any_of( 3622 Circuits.begin(), Circuits.end(), 3623 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3624 if (InCircuit) 3625 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3626 else { 3627 Valid = false; 3628 NumNodeOrderIssues++; 3629 LLVM_DEBUG(dbgs() << "Predecessor ";); 3630 } 3631 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3632 << " are scheduled before node " << SU->NodeNum 3633 << "\n";); 3634 } 3635 } 3636 3637 LLVM_DEBUG({ 3638 if (!Valid) 3639 dbgs() << "Invalid node order found!\n"; 3640 }); 3641 } 3642 3643 /// Attempt to fix the degenerate cases when the instruction serialization 3644 /// causes the register lifetimes to overlap. For example, 3645 /// p' = store_pi(p, b) 3646 /// = load p, offset 3647 /// In this case p and p' overlap, which means that two registers are needed. 3648 /// Instead, this function changes the load to use p' and updates the offset. 3649 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3650 unsigned OverlapReg = 0; 3651 unsigned NewBaseReg = 0; 3652 for (SUnit *SU : Instrs) { 3653 MachineInstr *MI = SU->getInstr(); 3654 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3655 const MachineOperand &MO = MI->getOperand(i); 3656 // Look for an instruction that uses p. The instruction occurs in the 3657 // same cycle but occurs later in the serialized order. 3658 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3659 // Check that the instruction appears in the InstrChanges structure, 3660 // which contains instructions that can have the offset updated. 3661 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3662 InstrChanges.find(SU); 3663 if (It != InstrChanges.end()) { 3664 unsigned BasePos, OffsetPos; 3665 // Update the base register and adjust the offset. 3666 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3667 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3668 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3669 int64_t NewOffset = 3670 MI->getOperand(OffsetPos).getImm() - It->second.second; 3671 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3672 SU->setInstr(NewMI); 3673 MISUnitMap[NewMI] = SU; 3674 NewMIs.insert(NewMI); 3675 } 3676 } 3677 OverlapReg = 0; 3678 NewBaseReg = 0; 3679 break; 3680 } 3681 // Look for an instruction of the form p' = op(p), which uses and defines 3682 // two virtual registers that get allocated to the same physical register. 3683 unsigned TiedUseIdx = 0; 3684 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3685 // OverlapReg is p in the example above. 3686 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3687 // NewBaseReg is p' in the example above. 3688 NewBaseReg = MI->getOperand(i).getReg(); 3689 break; 3690 } 3691 } 3692 } 3693 } 3694 3695 /// After the schedule has been formed, call this function to combine 3696 /// the instructions from the different stages/cycles. That is, this 3697 /// function creates a schedule that represents a single iteration. 3698 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3699 // Move all instructions to the first stage from later stages. 3700 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3701 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3702 ++stage) { 3703 std::deque<SUnit *> &cycleInstrs = 3704 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3705 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3706 E = cycleInstrs.rend(); 3707 I != E; ++I) 3708 ScheduledInstrs[cycle].push_front(*I); 3709 } 3710 } 3711 // Iterate over the definitions in each instruction, and compute the 3712 // stage difference for each use. Keep the maximum value. 3713 for (auto &I : InstrToCycle) { 3714 int DefStage = stageScheduled(I.first); 3715 MachineInstr *MI = I.first->getInstr(); 3716 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3717 MachineOperand &Op = MI->getOperand(i); 3718 if (!Op.isReg() || !Op.isDef()) 3719 continue; 3720 3721 unsigned Reg = Op.getReg(); 3722 unsigned MaxDiff = 0; 3723 bool PhiIsSwapped = false; 3724 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3725 EI = MRI.use_end(); 3726 UI != EI; ++UI) { 3727 MachineOperand &UseOp = *UI; 3728 MachineInstr *UseMI = UseOp.getParent(); 3729 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3730 int UseStage = stageScheduled(SUnitUse); 3731 unsigned Diff = 0; 3732 if (UseStage != -1 && UseStage >= DefStage) 3733 Diff = UseStage - DefStage; 3734 if (MI->isPHI()) { 3735 if (isLoopCarried(SSD, *MI)) 3736 ++Diff; 3737 else 3738 PhiIsSwapped = true; 3739 } 3740 MaxDiff = std::max(Diff, MaxDiff); 3741 } 3742 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3743 } 3744 } 3745 3746 // Erase all the elements in the later stages. Only one iteration should 3747 // remain in the scheduled list, and it contains all the instructions. 3748 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3749 ScheduledInstrs.erase(cycle); 3750 3751 // Change the registers in instruction as specified in the InstrChanges 3752 // map. We need to use the new registers to create the correct order. 3753 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3754 SUnit *SU = &SSD->SUnits[i]; 3755 SSD->applyInstrChange(SU->getInstr(), *this); 3756 } 3757 3758 // Reorder the instructions in each cycle to fix and improve the 3759 // generated code. 3760 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3761 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3762 std::deque<SUnit *> newOrderPhi; 3763 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3764 SUnit *SU = cycleInstrs[i]; 3765 if (SU->getInstr()->isPHI()) 3766 newOrderPhi.push_back(SU); 3767 } 3768 std::deque<SUnit *> newOrderI; 3769 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3770 SUnit *SU = cycleInstrs[i]; 3771 if (!SU->getInstr()->isPHI()) 3772 orderDependence(SSD, SU, newOrderI); 3773 } 3774 // Replace the old order with the new order. 3775 cycleInstrs.swap(newOrderPhi); 3776 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3777 SSD->fixupRegisterOverlaps(cycleInstrs); 3778 } 3779 3780 LLVM_DEBUG(dump();); 3781 } 3782 3783 void NodeSet::print(raw_ostream &os) const { 3784 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3785 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3786 for (const auto &I : Nodes) 3787 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3788 os << "\n"; 3789 } 3790 3791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3792 /// Print the schedule information to the given output. 3793 void SMSchedule::print(raw_ostream &os) const { 3794 // Iterate over each cycle. 3795 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3796 // Iterate over each instruction in the cycle. 3797 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3798 for (SUnit *CI : cycleInstrs->second) { 3799 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3800 os << "(" << CI->NodeNum << ") "; 3801 CI->getInstr()->print(os); 3802 os << "\n"; 3803 } 3804 } 3805 } 3806 3807 /// Utility function used for debugging to print the schedule. 3808 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3809 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3810 3811 #endif 3812 3813 3814 3815