1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/iterator_range.h" 65 #include "llvm/ADT/MapVector.h" 66 #include "llvm/ADT/PriorityQueue.h" 67 #include "llvm/ADT/SetVector.h" 68 #include "llvm/ADT/SmallPtrSet.h" 69 #include "llvm/ADT/SmallSet.h" 70 #include "llvm/ADT/SmallVector.h" 71 #include "llvm/ADT/Statistic.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineInstrBundle.h" 84 #include "llvm/CodeGen/MachineLoopInfo.h" 85 #include "llvm/CodeGen/MachineMemOperand.h" 86 #include "llvm/CodeGen/MachineOperand.h" 87 #include "llvm/CodeGen/MachineRegisterInfo.h" 88 #include "llvm/CodeGen/RegisterClassInfo.h" 89 #include "llvm/CodeGen/RegisterPressure.h" 90 #include "llvm/CodeGen/ScheduleDAG.h" 91 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 92 #include "llvm/IR/Attributes.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/MC/MCInstrItineraries.h" 95 #include "llvm/PassAnalysisSupport.h" 96 #include "llvm/PassRegistry.h" 97 #include "llvm/PassSupport.h" 98 #include "llvm/Support/CommandLine.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/MathExtras.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Target/TargetInstrInfo.h" 103 #include "llvm/Target/TargetRegisterInfo.h" 104 #include "llvm/Target/TargetSubtargetInfo.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <climits> 108 #include <cstdint> 109 #include <deque> 110 #include <functional> 111 #include <iterator> 112 #include <map> 113 #include <tuple> 114 #include <utility> 115 #include <vector> 116 117 using namespace llvm; 118 119 #define DEBUG_TYPE "pipeliner" 120 121 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 122 STATISTIC(NumPipelined, "Number of loops software pipelined"); 123 124 /// A command line option to turn software pipelining on or off. 125 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 126 cl::ZeroOrMore, 127 cl::desc("Enable Software Pipelining")); 128 129 /// A command line option to enable SWP at -Os. 130 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 131 cl::desc("Enable SWP at Os."), cl::Hidden, 132 cl::init(false)); 133 134 /// A command line argument to limit minimum initial interval for pipelining. 135 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 136 cl::desc("Size limit for the the MII."), 137 cl::Hidden, cl::init(27)); 138 139 /// A command line argument to limit the number of stages in the pipeline. 140 static cl::opt<int> 141 SwpMaxStages("pipeliner-max-stages", 142 cl::desc("Maximum stages allowed in the generated scheduled."), 143 cl::Hidden, cl::init(3)); 144 145 /// A command line option to disable the pruning of chain dependences due to 146 /// an unrelated Phi. 147 static cl::opt<bool> 148 SwpPruneDeps("pipeliner-prune-deps", 149 cl::desc("Prune dependences between unrelated Phi nodes."), 150 cl::Hidden, cl::init(true)); 151 152 /// A command line option to disable the pruning of loop carried order 153 /// dependences. 154 static cl::opt<bool> 155 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 156 cl::desc("Prune loop carried order dependences."), 157 cl::Hidden, cl::init(true)); 158 159 #ifndef NDEBUG 160 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 161 #endif 162 163 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 164 cl::ReallyHidden, cl::init(false), 165 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 166 167 namespace { 168 169 class NodeSet; 170 class SMSchedule; 171 class SwingSchedulerDAG; 172 173 /// The main class in the implementation of the target independent 174 /// software pipeliner pass. 175 class MachinePipeliner : public MachineFunctionPass { 176 public: 177 MachineFunction *MF = nullptr; 178 const MachineLoopInfo *MLI = nullptr; 179 const MachineDominatorTree *MDT = nullptr; 180 const InstrItineraryData *InstrItins; 181 const TargetInstrInfo *TII = nullptr; 182 RegisterClassInfo RegClassInfo; 183 184 #ifndef NDEBUG 185 static int NumTries; 186 #endif 187 /// Cache the target analysis information about the loop. 188 struct LoopInfo { 189 MachineBasicBlock *TBB = nullptr; 190 MachineBasicBlock *FBB = nullptr; 191 SmallVector<MachineOperand, 4> BrCond; 192 MachineInstr *LoopInductionVar = nullptr; 193 MachineInstr *LoopCompare = nullptr; 194 }; 195 LoopInfo LI; 196 197 static char ID; 198 MachinePipeliner() : MachineFunctionPass(ID) { 199 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 AU.addRequired<AAResultsWrapperPass>(); 206 AU.addPreserved<AAResultsWrapperPass>(); 207 AU.addRequired<MachineLoopInfo>(); 208 AU.addRequired<MachineDominatorTree>(); 209 AU.addRequired<LiveIntervals>(); 210 MachineFunctionPass::getAnalysisUsage(AU); 211 } 212 213 private: 214 bool canPipelineLoop(MachineLoop &L); 215 bool scheduleLoop(MachineLoop &L); 216 bool swingModuloScheduler(MachineLoop &L); 217 }; 218 219 /// This class builds the dependence graph for the instructions in a loop, 220 /// and attempts to schedule the instructions using the SMS algorithm. 221 class SwingSchedulerDAG : public ScheduleDAGInstrs { 222 MachinePipeliner &Pass; 223 /// The minimum initiation interval between iterations for this schedule. 224 unsigned MII; 225 /// Set to true if a valid pipelined schedule is found for the loop. 226 bool Scheduled; 227 MachineLoop &Loop; 228 LiveIntervals &LIS; 229 const RegisterClassInfo &RegClassInfo; 230 231 /// A toplogical ordering of the SUnits, which is needed for changing 232 /// dependences and iterating over the SUnits. 233 ScheduleDAGTopologicalSort Topo; 234 235 struct NodeInfo { 236 int ASAP; 237 int ALAP; 238 NodeInfo() : ASAP(0), ALAP(0) {} 239 }; 240 /// Computed properties for each node in the graph. 241 std::vector<NodeInfo> ScheduleInfo; 242 243 enum OrderKind { BottomUp = 0, TopDown = 1 }; 244 /// Computed node ordering for scheduling. 245 SetVector<SUnit *> NodeOrder; 246 247 typedef SmallVector<NodeSet, 8> NodeSetType; 248 typedef DenseMap<unsigned, unsigned> ValueMapTy; 249 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy; 250 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy; 251 252 /// Instructions to change when emitting the final schedule. 253 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 254 255 /// We may create a new instruction, so remember it because it 256 /// must be deleted when the pass is finished. 257 SmallPtrSet<MachineInstr *, 4> NewMIs; 258 259 /// Helper class to implement Johnson's circuit finding algorithm. 260 class Circuits { 261 std::vector<SUnit> &SUnits; 262 SetVector<SUnit *> Stack; 263 BitVector Blocked; 264 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 265 SmallVector<SmallVector<int, 4>, 16> AdjK; 266 unsigned NumPaths; 267 static unsigned MaxPaths; 268 269 public: 270 Circuits(std::vector<SUnit> &SUs) 271 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()), 272 AdjK(SUs.size()) {} 273 /// Reset the data structures used in the circuit algorithm. 274 void reset() { 275 Stack.clear(); 276 Blocked.reset(); 277 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 278 NumPaths = 0; 279 } 280 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 281 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 282 void unblock(int U); 283 }; 284 285 public: 286 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 287 const RegisterClassInfo &rci) 288 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0), 289 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci), 290 Topo(SUnits, &ExitSU) {} 291 292 void schedule() override; 293 void finishBlock() override; 294 295 /// Return true if the loop kernel has been scheduled. 296 bool hasNewSchedule() { return Scheduled; } 297 298 /// Return the earliest time an instruction may be scheduled. 299 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 300 301 /// Return the latest time an instruction my be scheduled. 302 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 303 304 /// The mobility function, which the the number of slots in which 305 /// an instruction may be scheduled. 306 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 307 308 /// The depth, in the dependence graph, for a node. 309 int getDepth(SUnit *Node) { return Node->getDepth(); } 310 311 /// The height, in the dependence graph, for a node. 312 int getHeight(SUnit *Node) { return Node->getHeight(); } 313 314 /// Return true if the dependence is a back-edge in the data dependence graph. 315 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 316 /// using an anti dependence from a Phi to an instruction. 317 bool isBackedge(SUnit *Source, const SDep &Dep) { 318 if (Dep.getKind() != SDep::Anti) 319 return false; 320 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 321 } 322 323 /// Return true if the dependence is an order dependence between non-Phis. 324 static bool isOrder(SUnit *Source, const SDep &Dep) { 325 if (Dep.getKind() != SDep::Order) 326 return false; 327 return (!Source->getInstr()->isPHI() && 328 !Dep.getSUnit()->getInstr()->isPHI()); 329 } 330 331 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 332 333 /// The latency of the dependence. 334 unsigned getLatency(SUnit *Source, const SDep &Dep) { 335 // Anti dependences represent recurrences, so use the latency of the 336 // instruction on the back-edge. 337 if (Dep.getKind() == SDep::Anti) { 338 if (Source->getInstr()->isPHI()) 339 return Dep.getSUnit()->Latency; 340 if (Dep.getSUnit()->getInstr()->isPHI()) 341 return Source->Latency; 342 return Dep.getLatency(); 343 } 344 return Dep.getLatency(); 345 } 346 347 /// The distance function, which indicates that operation V of iteration I 348 /// depends on operations U of iteration I-distance. 349 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 350 // Instructions that feed a Phi have a distance of 1. Computing larger 351 // values for arrays requires data dependence information. 352 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 353 return 1; 354 return 0; 355 } 356 357 /// Set the Minimum Initiation Interval for this schedule attempt. 358 void setMII(unsigned mii) { MII = mii; } 359 360 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, 361 bool UpdateDAG = false); 362 363 /// Return the new base register that was stored away for the changed 364 /// instruction. 365 unsigned getInstrBaseReg(SUnit *SU) { 366 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 367 InstrChanges.find(SU); 368 if (It != InstrChanges.end()) 369 return It->second.first; 370 return 0; 371 } 372 373 private: 374 void addLoopCarriedDependences(AliasAnalysis *AA); 375 void updatePhiDependences(); 376 void changeDependences(); 377 unsigned calculateResMII(); 378 unsigned calculateRecMII(NodeSetType &RecNodeSets); 379 void findCircuits(NodeSetType &NodeSets); 380 void fuseRecs(NodeSetType &NodeSets); 381 void removeDuplicateNodes(NodeSetType &NodeSets); 382 void computeNodeFunctions(NodeSetType &NodeSets); 383 void registerPressureFilter(NodeSetType &NodeSets); 384 void colocateNodeSets(NodeSetType &NodeSets); 385 void checkNodeSets(NodeSetType &NodeSets); 386 void groupRemainingNodes(NodeSetType &NodeSets); 387 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 388 SetVector<SUnit *> &NodesAdded); 389 void computeNodeOrder(NodeSetType &NodeSets); 390 bool schedulePipeline(SMSchedule &Schedule); 391 void generatePipelinedLoop(SMSchedule &Schedule); 392 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 393 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 394 MBBVectorTy &PrologBBs); 395 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 396 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 397 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 398 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 399 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 400 SMSchedule &Schedule, ValueMapTy *VRMap, 401 InstrMapTy &InstrMap, unsigned LastStageNum, 402 unsigned CurStageNum, bool IsLast); 403 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 404 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 405 SMSchedule &Schedule, ValueMapTy *VRMap, 406 InstrMapTy &InstrMap, unsigned LastStageNum, 407 unsigned CurStageNum, bool IsLast); 408 void removeDeadInstructions(MachineBasicBlock *KernelBB, 409 MBBVectorTy &EpilogBBs); 410 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 411 SMSchedule &Schedule); 412 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 413 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 414 ValueMapTy *VRMap); 415 bool computeDelta(MachineInstr &MI, unsigned &Delta); 416 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 417 unsigned Num); 418 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 419 unsigned InstStageNum); 420 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 421 unsigned InstStageNum, 422 SMSchedule &Schedule); 423 void updateInstruction(MachineInstr *NewMI, bool LastDef, 424 unsigned CurStageNum, unsigned InstStageNum, 425 SMSchedule &Schedule, ValueMapTy *VRMap); 426 MachineInstr *findDefInLoop(unsigned Reg); 427 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 428 unsigned LoopStage, ValueMapTy *VRMap, 429 MachineBasicBlock *BB); 430 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 431 SMSchedule &Schedule, ValueMapTy *VRMap, 432 InstrMapTy &InstrMap); 433 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 434 InstrMapTy &InstrMap, unsigned CurStageNum, 435 unsigned PhiNum, MachineInstr *Phi, 436 unsigned OldReg, unsigned NewReg, 437 unsigned PrevReg = 0); 438 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 439 unsigned &OffsetPos, unsigned &NewBase, 440 int64_t &NewOffset); 441 }; 442 443 /// A NodeSet contains a set of SUnit DAG nodes with additional information 444 /// that assigns a priority to the set. 445 class NodeSet { 446 SetVector<SUnit *> Nodes; 447 bool HasRecurrence; 448 unsigned RecMII = 0; 449 int MaxMOV = 0; 450 int MaxDepth = 0; 451 unsigned Colocate = 0; 452 SUnit *ExceedPressure = nullptr; 453 454 public: 455 typedef SetVector<SUnit *>::const_iterator iterator; 456 457 NodeSet() : Nodes(), HasRecurrence(false) {} 458 459 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 460 461 bool insert(SUnit *SU) { return Nodes.insert(SU); } 462 463 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 464 465 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 466 return Nodes.remove_if(P); 467 } 468 469 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 470 471 bool hasRecurrence() { return HasRecurrence; }; 472 473 unsigned size() const { return Nodes.size(); } 474 475 bool empty() const { return Nodes.empty(); } 476 477 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 478 479 void setRecMII(unsigned mii) { RecMII = mii; }; 480 481 void setColocate(unsigned c) { Colocate = c; }; 482 483 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 484 485 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 486 487 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 488 489 int getRecMII() { return RecMII; } 490 491 /// Summarize node functions for the entire node set. 492 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 493 for (SUnit *SU : *this) { 494 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 495 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 496 } 497 } 498 499 void clear() { 500 Nodes.clear(); 501 RecMII = 0; 502 HasRecurrence = false; 503 MaxMOV = 0; 504 MaxDepth = 0; 505 Colocate = 0; 506 ExceedPressure = nullptr; 507 } 508 509 operator SetVector<SUnit *> &() { return Nodes; } 510 511 /// Sort the node sets by importance. First, rank them by recurrence MII, 512 /// then by mobility (least mobile done first), and finally by depth. 513 /// Each node set may contain a colocate value which is used as the first 514 /// tie breaker, if it's set. 515 bool operator>(const NodeSet &RHS) const { 516 if (RecMII == RHS.RecMII) { 517 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 518 return Colocate < RHS.Colocate; 519 if (MaxMOV == RHS.MaxMOV) 520 return MaxDepth > RHS.MaxDepth; 521 return MaxMOV < RHS.MaxMOV; 522 } 523 return RecMII > RHS.RecMII; 524 } 525 526 bool operator==(const NodeSet &RHS) const { 527 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 528 MaxDepth == RHS.MaxDepth; 529 } 530 531 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 532 533 iterator begin() { return Nodes.begin(); } 534 iterator end() { return Nodes.end(); } 535 536 void print(raw_ostream &os) const { 537 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 538 << " depth " << MaxDepth << " col " << Colocate << "\n"; 539 for (const auto &I : Nodes) 540 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 541 os << "\n"; 542 } 543 544 void dump() const { print(dbgs()); } 545 }; 546 547 /// This class repesents the scheduled code. The main data structure is a 548 /// map from scheduled cycle to instructions. During scheduling, the 549 /// data structure explicitly represents all stages/iterations. When 550 /// the algorithm finshes, the schedule is collapsed into a single stage, 551 /// which represents instructions from different loop iterations. 552 /// 553 /// The SMS algorithm allows negative values for cycles, so the first cycle 554 /// in the schedule is the smallest cycle value. 555 class SMSchedule { 556 private: 557 /// Map from execution cycle to instructions. 558 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 559 560 /// Map from instruction to execution cycle. 561 std::map<SUnit *, int> InstrToCycle; 562 563 /// Map for each register and the max difference between its uses and def. 564 /// The first element in the pair is the max difference in stages. The 565 /// second is true if the register defines a Phi value and loop value is 566 /// scheduled before the Phi. 567 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 568 569 /// Keep track of the first cycle value in the schedule. It starts 570 /// as zero, but the algorithm allows negative values. 571 int FirstCycle; 572 573 /// Keep track of the last cycle value in the schedule. 574 int LastCycle; 575 576 /// The initiation interval (II) for the schedule. 577 int InitiationInterval; 578 579 /// Target machine information. 580 const TargetSubtargetInfo &ST; 581 582 /// Virtual register information. 583 MachineRegisterInfo &MRI; 584 585 DFAPacketizer *Resources; 586 587 public: 588 SMSchedule(MachineFunction *mf) 589 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 590 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) { 591 FirstCycle = 0; 592 LastCycle = 0; 593 InitiationInterval = 0; 594 } 595 596 ~SMSchedule() { 597 ScheduledInstrs.clear(); 598 InstrToCycle.clear(); 599 RegToStageDiff.clear(); 600 delete Resources; 601 } 602 603 void reset() { 604 ScheduledInstrs.clear(); 605 InstrToCycle.clear(); 606 RegToStageDiff.clear(); 607 FirstCycle = 0; 608 LastCycle = 0; 609 InitiationInterval = 0; 610 } 611 612 /// Set the initiation interval for this schedule. 613 void setInitiationInterval(int ii) { InitiationInterval = ii; } 614 615 /// Return the first cycle in the completed schedule. This 616 /// can be a negative value. 617 int getFirstCycle() const { return FirstCycle; } 618 619 /// Return the last cycle in the finalized schedule. 620 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 621 622 /// Return the cycle of the earliest scheduled instruction in the dependence 623 /// chain. 624 int earliestCycleInChain(const SDep &Dep); 625 626 /// Return the cycle of the latest scheduled instruction in the dependence 627 /// chain. 628 int latestCycleInChain(const SDep &Dep); 629 630 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 631 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 632 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 633 634 /// Iterators for the cycle to instruction map. 635 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator; 636 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator 637 const_sched_iterator; 638 639 /// Return true if the instruction is scheduled at the specified stage. 640 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 641 return (stageScheduled(SU) == (int)StageNum); 642 } 643 644 /// Return the stage for a scheduled instruction. Return -1 if 645 /// the instruction has not been scheduled. 646 int stageScheduled(SUnit *SU) const { 647 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 648 if (it == InstrToCycle.end()) 649 return -1; 650 return (it->second - FirstCycle) / InitiationInterval; 651 } 652 653 /// Return the cycle for a scheduled instruction. This function normalizes 654 /// the first cycle to be 0. 655 unsigned cycleScheduled(SUnit *SU) const { 656 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 657 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 658 return (it->second - FirstCycle) % InitiationInterval; 659 } 660 661 /// Return the maximum stage count needed for this schedule. 662 unsigned getMaxStageCount() { 663 return (LastCycle - FirstCycle) / InitiationInterval; 664 } 665 666 /// Return the max. number of stages/iterations that can occur between a 667 /// register definition and its uses. 668 unsigned getStagesForReg(int Reg, unsigned CurStage) { 669 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 670 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 671 return 1; 672 return Stages.first; 673 } 674 675 /// The number of stages for a Phi is a little different than other 676 /// instructions. The minimum value computed in RegToStageDiff is 1 677 /// because we assume the Phi is needed for at least 1 iteration. 678 /// This is not the case if the loop value is scheduled prior to the 679 /// Phi in the same stage. This function returns the number of stages 680 /// or iterations needed between the Phi definition and any uses. 681 unsigned getStagesForPhi(int Reg) { 682 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 683 if (Stages.second) 684 return Stages.first; 685 return Stages.first - 1; 686 } 687 688 /// Return the instructions that are scheduled at the specified cycle. 689 std::deque<SUnit *> &getInstructions(int cycle) { 690 return ScheduledInstrs[cycle]; 691 } 692 693 bool isValidSchedule(SwingSchedulerDAG *SSD); 694 void finalizeSchedule(SwingSchedulerDAG *SSD); 695 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 696 std::deque<SUnit *> &Insts); 697 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 698 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 699 MachineOperand &MO); 700 void print(raw_ostream &os) const; 701 void dump() const; 702 }; 703 704 } // end anonymous namespace 705 706 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 707 char MachinePipeliner::ID = 0; 708 #ifndef NDEBUG 709 int MachinePipeliner::NumTries = 0; 710 #endif 711 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 712 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner", 713 "Modulo Software Pipelining", false, false) 714 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 715 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 716 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 717 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 718 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner", 719 "Modulo Software Pipelining", false, false) 720 721 /// The "main" function for implementing Swing Modulo Scheduling. 722 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 723 if (skipFunction(*mf.getFunction())) 724 return false; 725 726 if (!EnableSWP) 727 return false; 728 729 if (mf.getFunction()->getAttributes().hasAttribute( 730 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && 731 !EnableSWPOptSize.getPosition()) 732 return false; 733 734 MF = &mf; 735 MLI = &getAnalysis<MachineLoopInfo>(); 736 MDT = &getAnalysis<MachineDominatorTree>(); 737 TII = MF->getSubtarget().getInstrInfo(); 738 RegClassInfo.runOnMachineFunction(*MF); 739 740 for (auto &L : *MLI) 741 scheduleLoop(*L); 742 743 return false; 744 } 745 746 /// Attempt to perform the SMS algorithm on the specified loop. This function is 747 /// the main entry point for the algorithm. The function identifies candidate 748 /// loops, calculates the minimum initiation interval, and attempts to schedule 749 /// the loop. 750 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 751 bool Changed = false; 752 for (auto &InnerLoop : L) 753 Changed |= scheduleLoop(*InnerLoop); 754 755 #ifndef NDEBUG 756 // Stop trying after reaching the limit (if any). 757 int Limit = SwpLoopLimit; 758 if (Limit >= 0) { 759 if (NumTries >= SwpLoopLimit) 760 return Changed; 761 NumTries++; 762 } 763 #endif 764 765 if (!canPipelineLoop(L)) 766 return Changed; 767 768 ++NumTrytoPipeline; 769 770 Changed = swingModuloScheduler(L); 771 772 return Changed; 773 } 774 775 /// Return true if the loop can be software pipelined. The algorithm is 776 /// restricted to loops with a single basic block. Make sure that the 777 /// branch in the loop can be analyzed. 778 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 779 if (L.getNumBlocks() != 1) 780 return false; 781 782 // Check if the branch can't be understood because we can't do pipelining 783 // if that's the case. 784 LI.TBB = nullptr; 785 LI.FBB = nullptr; 786 LI.BrCond.clear(); 787 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 788 return false; 789 790 LI.LoopInductionVar = nullptr; 791 LI.LoopCompare = nullptr; 792 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 793 return false; 794 795 if (!L.getLoopPreheader()) 796 return false; 797 798 // If any of the Phis contain subregs, then we can't pipeline 799 // because we don't know how to maintain subreg information in the 800 // VMap structure. 801 MachineBasicBlock *MBB = L.getHeader(); 802 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 803 BBE = MBB->getFirstNonPHI(); 804 BBI != BBE; ++BBI) 805 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 806 if (BBI->getOperand(i).getSubReg() != 0) 807 return false; 808 809 return true; 810 } 811 812 /// The SMS algorithm consists of the following main steps: 813 /// 1. Computation and analysis of the dependence graph. 814 /// 2. Ordering of the nodes (instructions). 815 /// 3. Attempt to Schedule the loop. 816 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 817 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 818 819 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 820 821 MachineBasicBlock *MBB = L.getHeader(); 822 // The kernel should not include any terminator instructions. These 823 // will be added back later. 824 SMS.startBlock(MBB); 825 826 // Compute the number of 'real' instructions in the basic block by 827 // ignoring terminators. 828 unsigned size = MBB->size(); 829 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 830 E = MBB->instr_end(); 831 I != E; ++I, --size) 832 ; 833 834 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 835 SMS.schedule(); 836 SMS.exitRegion(); 837 838 SMS.finishBlock(); 839 return SMS.hasNewSchedule(); 840 } 841 842 /// We override the schedule function in ScheduleDAGInstrs to implement the 843 /// scheduling part of the Swing Modulo Scheduling algorithm. 844 void SwingSchedulerDAG::schedule() { 845 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 846 buildSchedGraph(AA); 847 addLoopCarriedDependences(AA); 848 updatePhiDependences(); 849 Topo.InitDAGTopologicalSorting(); 850 changeDependences(); 851 DEBUG({ 852 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 853 SUnits[su].dumpAll(this); 854 }); 855 856 NodeSetType NodeSets; 857 findCircuits(NodeSets); 858 859 // Calculate the MII. 860 unsigned ResMII = calculateResMII(); 861 unsigned RecMII = calculateRecMII(NodeSets); 862 863 fuseRecs(NodeSets); 864 865 // This flag is used for testing and can cause correctness problems. 866 if (SwpIgnoreRecMII) 867 RecMII = 0; 868 869 MII = std::max(ResMII, RecMII); 870 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 871 << ")\n"); 872 873 // Can't schedule a loop without a valid MII. 874 if (MII == 0) 875 return; 876 877 // Don't pipeline large loops. 878 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 879 return; 880 881 computeNodeFunctions(NodeSets); 882 883 registerPressureFilter(NodeSets); 884 885 colocateNodeSets(NodeSets); 886 887 checkNodeSets(NodeSets); 888 889 DEBUG({ 890 for (auto &I : NodeSets) { 891 dbgs() << " Rec NodeSet "; 892 I.dump(); 893 } 894 }); 895 896 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 897 898 groupRemainingNodes(NodeSets); 899 900 removeDuplicateNodes(NodeSets); 901 902 DEBUG({ 903 for (auto &I : NodeSets) { 904 dbgs() << " NodeSet "; 905 I.dump(); 906 } 907 }); 908 909 computeNodeOrder(NodeSets); 910 911 SMSchedule Schedule(Pass.MF); 912 Scheduled = schedulePipeline(Schedule); 913 914 if (!Scheduled) 915 return; 916 917 unsigned numStages = Schedule.getMaxStageCount(); 918 // No need to generate pipeline if there are no overlapped iterations. 919 if (numStages == 0) 920 return; 921 922 // Check that the maximum stage count is less than user-defined limit. 923 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 924 return; 925 926 generatePipelinedLoop(Schedule); 927 ++NumPipelined; 928 } 929 930 /// Clean up after the software pipeliner runs. 931 void SwingSchedulerDAG::finishBlock() { 932 for (MachineInstr *I : NewMIs) 933 MF.DeleteMachineInstr(I); 934 NewMIs.clear(); 935 936 // Call the superclass. 937 ScheduleDAGInstrs::finishBlock(); 938 } 939 940 /// Return the register values for the operands of a Phi instruction. 941 /// This function assume the instruction is a Phi. 942 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 943 unsigned &InitVal, unsigned &LoopVal) { 944 assert(Phi.isPHI() && "Expecting a Phi."); 945 946 InitVal = 0; 947 LoopVal = 0; 948 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 949 if (Phi.getOperand(i + 1).getMBB() != Loop) 950 InitVal = Phi.getOperand(i).getReg(); 951 else if (Phi.getOperand(i + 1).getMBB() == Loop) 952 LoopVal = Phi.getOperand(i).getReg(); 953 954 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 955 } 956 957 /// Return the Phi register value that comes from the incoming block. 958 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 959 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 960 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 961 return Phi.getOperand(i).getReg(); 962 return 0; 963 } 964 965 /// Return the Phi register value that comes the the loop block. 966 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 967 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 968 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 969 return Phi.getOperand(i).getReg(); 970 return 0; 971 } 972 973 /// Return true if SUb can be reached from SUa following the chain edges. 974 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 975 SmallPtrSet<SUnit *, 8> Visited; 976 SmallVector<SUnit *, 8> Worklist; 977 Worklist.push_back(SUa); 978 while (!Worklist.empty()) { 979 const SUnit *SU = Worklist.pop_back_val(); 980 for (auto &SI : SU->Succs) { 981 SUnit *SuccSU = SI.getSUnit(); 982 if (SI.getKind() == SDep::Order) { 983 if (Visited.count(SuccSU)) 984 continue; 985 if (SuccSU == SUb) 986 return true; 987 Worklist.push_back(SuccSU); 988 Visited.insert(SuccSU); 989 } 990 } 991 } 992 return false; 993 } 994 995 /// Return true if the instruction causes a chain between memory 996 /// references before and after it. 997 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 998 return MI.isCall() || MI.hasUnmodeledSideEffects() || 999 (MI.hasOrderedMemoryRef() && 1000 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1001 } 1002 1003 /// Return the underlying objects for the memory references of an instruction. 1004 /// This function calls the code in ValueTracking, but first checks that the 1005 /// instruction has a memory operand. 1006 static void getUnderlyingObjects(MachineInstr *MI, 1007 SmallVectorImpl<Value *> &Objs, 1008 const DataLayout &DL) { 1009 if (!MI->hasOneMemOperand()) 1010 return; 1011 MachineMemOperand *MM = *MI->memoperands_begin(); 1012 if (!MM->getValue()) 1013 return; 1014 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1015 } 1016 1017 /// Add a chain edge between a load and store if the store can be an 1018 /// alias of the load on a subsequent iteration, i.e., a loop carried 1019 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1020 /// but that code doesn't create loop carried dependences. 1021 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1022 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1023 for (auto &SU : SUnits) { 1024 MachineInstr &MI = *SU.getInstr(); 1025 if (isDependenceBarrier(MI, AA)) 1026 PendingLoads.clear(); 1027 else if (MI.mayLoad()) { 1028 SmallVector<Value *, 4> Objs; 1029 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1030 for (auto V : Objs) { 1031 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1032 SUs.push_back(&SU); 1033 } 1034 } else if (MI.mayStore()) { 1035 SmallVector<Value *, 4> Objs; 1036 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1037 for (auto V : Objs) { 1038 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1039 PendingLoads.find(V); 1040 if (I == PendingLoads.end()) 1041 continue; 1042 for (auto Load : I->second) { 1043 if (isSuccOrder(Load, &SU)) 1044 continue; 1045 MachineInstr &LdMI = *Load->getInstr(); 1046 // First, perform the cheaper check that compares the base register. 1047 // If they are the same and the load offset is less than the store 1048 // offset, then mark the dependence as loop carried potentially. 1049 unsigned BaseReg1, BaseReg2; 1050 int64_t Offset1, Offset2; 1051 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1052 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1053 SU.addPred(SDep(Load, SDep::Barrier)); 1054 continue; 1055 } 1056 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1057 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1058 "What happened to the chain edge?"); 1059 SU.addPred(SDep(Load, SDep::Barrier)); 1060 continue; 1061 } 1062 // Second, the more expensive check that uses alias analysis on the 1063 // base registers. If they alias, and the load offset is less than 1064 // the store offset, the mark the dependence as loop carried. 1065 if (!AA) { 1066 SU.addPred(SDep(Load, SDep::Barrier)); 1067 continue; 1068 } 1069 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1070 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1071 if (!MMO1->getValue() || !MMO2->getValue()) { 1072 SU.addPred(SDep(Load, SDep::Barrier)); 1073 continue; 1074 } 1075 if (MMO1->getValue() == MMO2->getValue() && 1076 MMO1->getOffset() <= MMO2->getOffset()) { 1077 SU.addPred(SDep(Load, SDep::Barrier)); 1078 continue; 1079 } 1080 AliasResult AAResult = AA->alias( 1081 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1082 MMO1->getAAInfo()), 1083 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1084 MMO2->getAAInfo())); 1085 1086 if (AAResult != NoAlias) 1087 SU.addPred(SDep(Load, SDep::Barrier)); 1088 } 1089 } 1090 } 1091 } 1092 } 1093 1094 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1095 /// processes dependences for PHIs. This function adds true dependences 1096 /// from a PHI to a use, and a loop carried dependence from the use to the 1097 /// PHI. The loop carried dependence is represented as an anti dependence 1098 /// edge. This function also removes chain dependences between unrelated 1099 /// PHIs. 1100 void SwingSchedulerDAG::updatePhiDependences() { 1101 SmallVector<SDep, 4> RemoveDeps; 1102 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1103 1104 // Iterate over each DAG node. 1105 for (SUnit &I : SUnits) { 1106 RemoveDeps.clear(); 1107 // Set to true if the instruction has an operand defined by a Phi. 1108 unsigned HasPhiUse = 0; 1109 unsigned HasPhiDef = 0; 1110 MachineInstr *MI = I.getInstr(); 1111 // Iterate over each operand, and we process the definitions. 1112 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1113 MOE = MI->operands_end(); 1114 MOI != MOE; ++MOI) { 1115 if (!MOI->isReg()) 1116 continue; 1117 unsigned Reg = MOI->getReg(); 1118 if (MOI->isDef()) { 1119 // If the register is used by a Phi, then create an anti dependence. 1120 for (MachineRegisterInfo::use_instr_iterator 1121 UI = MRI.use_instr_begin(Reg), 1122 UE = MRI.use_instr_end(); 1123 UI != UE; ++UI) { 1124 MachineInstr *UseMI = &*UI; 1125 SUnit *SU = getSUnit(UseMI); 1126 if (SU != nullptr && UseMI->isPHI()) { 1127 if (!MI->isPHI()) { 1128 SDep Dep(SU, SDep::Anti, Reg); 1129 I.addPred(Dep); 1130 } else { 1131 HasPhiDef = Reg; 1132 // Add a chain edge to a dependent Phi that isn't an existing 1133 // predecessor. 1134 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1135 I.addPred(SDep(SU, SDep::Barrier)); 1136 } 1137 } 1138 } 1139 } else if (MOI->isUse()) { 1140 // If the register is defined by a Phi, then create a true dependence. 1141 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1142 if (DefMI == nullptr) 1143 continue; 1144 SUnit *SU = getSUnit(DefMI); 1145 if (SU != nullptr && DefMI->isPHI()) { 1146 if (!MI->isPHI()) { 1147 SDep Dep(SU, SDep::Data, Reg); 1148 Dep.setLatency(0); 1149 ST.adjustSchedDependency(SU, &I, Dep); 1150 I.addPred(Dep); 1151 } else { 1152 HasPhiUse = Reg; 1153 // Add a chain edge to a dependent Phi that isn't an existing 1154 // predecessor. 1155 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1156 I.addPred(SDep(SU, SDep::Barrier)); 1157 } 1158 } 1159 } 1160 } 1161 // Remove order dependences from an unrelated Phi. 1162 if (!SwpPruneDeps) 1163 continue; 1164 for (auto &PI : I.Preds) { 1165 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1166 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1167 if (I.getInstr()->isPHI()) { 1168 if (PMI->getOperand(0).getReg() == HasPhiUse) 1169 continue; 1170 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1171 continue; 1172 } 1173 RemoveDeps.push_back(PI); 1174 } 1175 } 1176 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1177 I.removePred(RemoveDeps[i]); 1178 } 1179 } 1180 1181 /// Iterate over each DAG node and see if we can change any dependences 1182 /// in order to reduce the recurrence MII. 1183 void SwingSchedulerDAG::changeDependences() { 1184 // See if an instruction can use a value from the previous iteration. 1185 // If so, we update the base and offset of the instruction and change 1186 // the dependences. 1187 for (SUnit &I : SUnits) { 1188 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1189 int64_t NewOffset = 0; 1190 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1191 NewOffset)) 1192 continue; 1193 1194 // Get the MI and SUnit for the instruction that defines the original base. 1195 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1196 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1197 if (!DefMI) 1198 continue; 1199 SUnit *DefSU = getSUnit(DefMI); 1200 if (!DefSU) 1201 continue; 1202 // Get the MI and SUnit for the instruction that defins the new base. 1203 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1204 if (!LastMI) 1205 continue; 1206 SUnit *LastSU = getSUnit(LastMI); 1207 if (!LastSU) 1208 continue; 1209 1210 if (Topo.IsReachable(&I, LastSU)) 1211 continue; 1212 1213 // Remove the dependence. The value now depends on a prior iteration. 1214 SmallVector<SDep, 4> Deps; 1215 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1216 ++P) 1217 if (P->getSUnit() == DefSU) 1218 Deps.push_back(*P); 1219 for (int i = 0, e = Deps.size(); i != e; i++) { 1220 Topo.RemovePred(&I, Deps[i].getSUnit()); 1221 I.removePred(Deps[i]); 1222 } 1223 // Remove the chain dependence between the instructions. 1224 Deps.clear(); 1225 for (auto &P : LastSU->Preds) 1226 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1227 Deps.push_back(P); 1228 for (int i = 0, e = Deps.size(); i != e; i++) { 1229 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1230 LastSU->removePred(Deps[i]); 1231 } 1232 1233 // Add a dependence between the new instruction and the instruction 1234 // that defines the new base. 1235 SDep Dep(&I, SDep::Anti, NewBase); 1236 LastSU->addPred(Dep); 1237 1238 // Remember the base and offset information so that we can update the 1239 // instruction during code generation. 1240 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1241 } 1242 } 1243 1244 namespace { 1245 1246 // FuncUnitSorter - Comparison operator used to sort instructions by 1247 // the number of functional unit choices. 1248 struct FuncUnitSorter { 1249 const InstrItineraryData *InstrItins; 1250 DenseMap<unsigned, unsigned> Resources; 1251 1252 // Compute the number of functional unit alternatives needed 1253 // at each stage, and take the minimum value. We prioritize the 1254 // instructions by the least number of choices first. 1255 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1256 unsigned schedClass = Inst->getDesc().getSchedClass(); 1257 unsigned min = UINT_MAX; 1258 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1259 *IE = InstrItins->endStage(schedClass); 1260 IS != IE; ++IS) { 1261 unsigned funcUnits = IS->getUnits(); 1262 unsigned numAlternatives = countPopulation(funcUnits); 1263 if (numAlternatives < min) { 1264 min = numAlternatives; 1265 F = funcUnits; 1266 } 1267 } 1268 return min; 1269 } 1270 1271 // Compute the critical resources needed by the instruction. This 1272 // function records the functional units needed by instructions that 1273 // must use only one functional unit. We use this as a tie breaker 1274 // for computing the resource MII. The instrutions that require 1275 // the same, highly used, functional unit have high priority. 1276 void calcCriticalResources(MachineInstr &MI) { 1277 unsigned SchedClass = MI.getDesc().getSchedClass(); 1278 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1279 *IE = InstrItins->endStage(SchedClass); 1280 IS != IE; ++IS) { 1281 unsigned FuncUnits = IS->getUnits(); 1282 if (countPopulation(FuncUnits) == 1) 1283 Resources[FuncUnits]++; 1284 } 1285 } 1286 1287 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1288 /// Return true if IS1 has less priority than IS2. 1289 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1290 unsigned F1 = 0, F2 = 0; 1291 unsigned MFUs1 = minFuncUnits(IS1, F1); 1292 unsigned MFUs2 = minFuncUnits(IS2, F2); 1293 if (MFUs1 == 1 && MFUs2 == 1) 1294 return Resources.lookup(F1) < Resources.lookup(F2); 1295 return MFUs1 > MFUs2; 1296 } 1297 }; 1298 1299 } // end anonymous namespace 1300 1301 /// Calculate the resource constrained minimum initiation interval for the 1302 /// specified loop. We use the DFA to model the resources needed for 1303 /// each instruction, and we ignore dependences. A different DFA is created 1304 /// for each cycle that is required. When adding a new instruction, we attempt 1305 /// to add it to each existing DFA, until a legal space is found. If the 1306 /// instruction cannot be reserved in an existing DFA, we create a new one. 1307 unsigned SwingSchedulerDAG::calculateResMII() { 1308 SmallVector<DFAPacketizer *, 8> Resources; 1309 MachineBasicBlock *MBB = Loop.getHeader(); 1310 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1311 1312 // Sort the instructions by the number of available choices for scheduling, 1313 // least to most. Use the number of critical resources as the tie breaker. 1314 FuncUnitSorter FUS = 1315 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1316 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1317 E = MBB->getFirstTerminator(); 1318 I != E; ++I) 1319 FUS.calcCriticalResources(*I); 1320 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1321 FuncUnitOrder(FUS); 1322 1323 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1324 E = MBB->getFirstTerminator(); 1325 I != E; ++I) 1326 FuncUnitOrder.push(&*I); 1327 1328 while (!FuncUnitOrder.empty()) { 1329 MachineInstr *MI = FuncUnitOrder.top(); 1330 FuncUnitOrder.pop(); 1331 if (TII->isZeroCost(MI->getOpcode())) 1332 continue; 1333 // Attempt to reserve the instruction in an existing DFA. At least one 1334 // DFA is needed for each cycle. 1335 unsigned NumCycles = getSUnit(MI)->Latency; 1336 unsigned ReservedCycles = 0; 1337 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1338 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1339 for (unsigned C = 0; C < NumCycles; ++C) 1340 while (RI != RE) { 1341 if ((*RI++)->canReserveResources(*MI)) { 1342 ++ReservedCycles; 1343 break; 1344 } 1345 } 1346 // Start reserving resources using existing DFAs. 1347 for (unsigned C = 0; C < ReservedCycles; ++C) { 1348 --RI; 1349 (*RI)->reserveResources(*MI); 1350 } 1351 // Add new DFAs, if needed, to reserve resources. 1352 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1353 DFAPacketizer *NewResource = 1354 TII->CreateTargetScheduleState(MF.getSubtarget()); 1355 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1356 NewResource->reserveResources(*MI); 1357 Resources.push_back(NewResource); 1358 } 1359 } 1360 int Resmii = Resources.size(); 1361 // Delete the memory for each of the DFAs that were created earlier. 1362 for (DFAPacketizer *RI : Resources) { 1363 DFAPacketizer *D = RI; 1364 delete D; 1365 } 1366 Resources.clear(); 1367 return Resmii; 1368 } 1369 1370 /// Calculate the recurrence-constrainted minimum initiation interval. 1371 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1372 /// for each circuit. The II needs to satisfy the inequality 1373 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1374 /// II that satistifies the inequality, and the RecMII is the maximum 1375 /// of those values. 1376 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1377 unsigned RecMII = 0; 1378 1379 for (NodeSet &Nodes : NodeSets) { 1380 if (Nodes.size() == 0) 1381 continue; 1382 1383 unsigned Delay = Nodes.size() - 1; 1384 unsigned Distance = 1; 1385 1386 // ii = ceil(delay / distance) 1387 unsigned CurMII = (Delay + Distance - 1) / Distance; 1388 Nodes.setRecMII(CurMII); 1389 if (CurMII > RecMII) 1390 RecMII = CurMII; 1391 } 1392 1393 return RecMII; 1394 } 1395 1396 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1397 /// but we do this to find the circuits, and then change them back. 1398 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1399 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1400 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1401 SUnit *SU = &SUnits[i]; 1402 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1403 IP != EP; ++IP) { 1404 if (IP->getKind() != SDep::Anti) 1405 continue; 1406 DepsAdded.push_back(std::make_pair(SU, *IP)); 1407 } 1408 } 1409 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1410 E = DepsAdded.end(); 1411 I != E; ++I) { 1412 // Remove this anti dependency and add one in the reverse direction. 1413 SUnit *SU = I->first; 1414 SDep &D = I->second; 1415 SUnit *TargetSU = D.getSUnit(); 1416 unsigned Reg = D.getReg(); 1417 unsigned Lat = D.getLatency(); 1418 SU->removePred(D); 1419 SDep Dep(SU, SDep::Anti, Reg); 1420 Dep.setLatency(Lat); 1421 TargetSU->addPred(Dep); 1422 } 1423 } 1424 1425 /// Create the adjacency structure of the nodes in the graph. 1426 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1427 SwingSchedulerDAG *DAG) { 1428 BitVector Added(SUnits.size()); 1429 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1430 Added.reset(); 1431 // Add any successor to the adjacency matrix and exclude duplicates. 1432 for (auto &SI : SUnits[i].Succs) { 1433 // Do not process a boundary node and a back-edge is processed only 1434 // if it goes to a Phi. 1435 if (SI.getSUnit()->isBoundaryNode() || 1436 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1437 continue; 1438 int N = SI.getSUnit()->NodeNum; 1439 if (!Added.test(N)) { 1440 AdjK[i].push_back(N); 1441 Added.set(N); 1442 } 1443 } 1444 // A chain edge between a store and a load is treated as a back-edge in the 1445 // adjacency matrix. 1446 for (auto &PI : SUnits[i].Preds) { 1447 if (!SUnits[i].getInstr()->mayStore() || 1448 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1449 continue; 1450 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1451 int N = PI.getSUnit()->NodeNum; 1452 if (!Added.test(N)) { 1453 AdjK[i].push_back(N); 1454 Added.set(N); 1455 } 1456 } 1457 } 1458 } 1459 } 1460 1461 /// Identify an elementary circuit in the dependence graph starting at the 1462 /// specified node. 1463 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1464 bool HasBackedge) { 1465 SUnit *SV = &SUnits[V]; 1466 bool F = false; 1467 Stack.insert(SV); 1468 Blocked.set(V); 1469 1470 for (auto W : AdjK[V]) { 1471 if (NumPaths > MaxPaths) 1472 break; 1473 if (W < S) 1474 continue; 1475 if (W == S) { 1476 if (!HasBackedge) 1477 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1478 F = true; 1479 ++NumPaths; 1480 break; 1481 } else if (!Blocked.test(W)) { 1482 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1483 F = true; 1484 } 1485 } 1486 1487 if (F) 1488 unblock(V); 1489 else { 1490 for (auto W : AdjK[V]) { 1491 if (W < S) 1492 continue; 1493 if (B[W].count(SV) == 0) 1494 B[W].insert(SV); 1495 } 1496 } 1497 Stack.pop_back(); 1498 return F; 1499 } 1500 1501 /// Unblock a node in the circuit finding algorithm. 1502 void SwingSchedulerDAG::Circuits::unblock(int U) { 1503 Blocked.reset(U); 1504 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1505 while (!BU.empty()) { 1506 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1507 assert(SI != BU.end() && "Invalid B set."); 1508 SUnit *W = *SI; 1509 BU.erase(W); 1510 if (Blocked.test(W->NodeNum)) 1511 unblock(W->NodeNum); 1512 } 1513 } 1514 1515 /// Identify all the elementary circuits in the dependence graph using 1516 /// Johnson's circuit algorithm. 1517 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1518 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1519 // but we do this to find the circuits, and then change them back. 1520 swapAntiDependences(SUnits); 1521 1522 Circuits Cir(SUnits); 1523 // Create the adjacency structure. 1524 Cir.createAdjacencyStructure(this); 1525 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1526 Cir.reset(); 1527 Cir.circuit(i, i, NodeSets); 1528 } 1529 1530 // Change the dependences back so that we've created a DAG again. 1531 swapAntiDependences(SUnits); 1532 } 1533 1534 /// Return true for DAG nodes that we ignore when computing the cost functions. 1535 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1536 /// in the calculation of the ASAP, ALAP, etc functions. 1537 static bool ignoreDependence(const SDep &D, bool isPred) { 1538 if (D.isArtificial()) 1539 return true; 1540 return D.getKind() == SDep::Anti && isPred; 1541 } 1542 1543 /// Compute several functions need to order the nodes for scheduling. 1544 /// ASAP - Earliest time to schedule a node. 1545 /// ALAP - Latest time to schedule a node. 1546 /// MOV - Mobility function, difference between ALAP and ASAP. 1547 /// D - Depth of each node. 1548 /// H - Height of each node. 1549 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1550 1551 ScheduleInfo.resize(SUnits.size()); 1552 1553 DEBUG({ 1554 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1555 E = Topo.end(); 1556 I != E; ++I) { 1557 SUnit *SU = &SUnits[*I]; 1558 SU->dump(this); 1559 } 1560 }); 1561 1562 int maxASAP = 0; 1563 // Compute ASAP. 1564 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1565 E = Topo.end(); 1566 I != E; ++I) { 1567 int asap = 0; 1568 SUnit *SU = &SUnits[*I]; 1569 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1570 EP = SU->Preds.end(); 1571 IP != EP; ++IP) { 1572 if (ignoreDependence(*IP, true)) 1573 continue; 1574 SUnit *pred = IP->getSUnit(); 1575 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1576 getDistance(pred, SU, *IP) * MII)); 1577 } 1578 maxASAP = std::max(maxASAP, asap); 1579 ScheduleInfo[*I].ASAP = asap; 1580 } 1581 1582 // Compute ALAP and MOV. 1583 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1584 E = Topo.rend(); 1585 I != E; ++I) { 1586 int alap = maxASAP; 1587 SUnit *SU = &SUnits[*I]; 1588 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1589 ES = SU->Succs.end(); 1590 IS != ES; ++IS) { 1591 if (ignoreDependence(*IS, true)) 1592 continue; 1593 SUnit *succ = IS->getSUnit(); 1594 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1595 getDistance(SU, succ, *IS) * MII)); 1596 } 1597 1598 ScheduleInfo[*I].ALAP = alap; 1599 } 1600 1601 // After computing the node functions, compute the summary for each node set. 1602 for (NodeSet &I : NodeSets) 1603 I.computeNodeSetInfo(this); 1604 1605 DEBUG({ 1606 for (unsigned i = 0; i < SUnits.size(); i++) { 1607 dbgs() << "\tNode " << i << ":\n"; 1608 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1609 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1610 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1611 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1612 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1613 } 1614 }); 1615 } 1616 1617 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1618 /// as the predecessors of the elements of NodeOrder that are not also in 1619 /// NodeOrder. 1620 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1621 SmallSetVector<SUnit *, 8> &Preds, 1622 const NodeSet *S = nullptr) { 1623 Preds.clear(); 1624 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1625 I != E; ++I) { 1626 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1627 PI != PE; ++PI) { 1628 if (S && S->count(PI->getSUnit()) == 0) 1629 continue; 1630 if (ignoreDependence(*PI, true)) 1631 continue; 1632 if (NodeOrder.count(PI->getSUnit()) == 0) 1633 Preds.insert(PI->getSUnit()); 1634 } 1635 // Back-edges are predecessors with an anti-dependence. 1636 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1637 ES = (*I)->Succs.end(); 1638 IS != ES; ++IS) { 1639 if (IS->getKind() != SDep::Anti) 1640 continue; 1641 if (S && S->count(IS->getSUnit()) == 0) 1642 continue; 1643 if (NodeOrder.count(IS->getSUnit()) == 0) 1644 Preds.insert(IS->getSUnit()); 1645 } 1646 } 1647 return Preds.size() > 0; 1648 } 1649 1650 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1651 /// as the successors of the elements of NodeOrder that are not also in 1652 /// NodeOrder. 1653 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1654 SmallSetVector<SUnit *, 8> &Succs, 1655 const NodeSet *S = nullptr) { 1656 Succs.clear(); 1657 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1658 I != E; ++I) { 1659 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1660 SI != SE; ++SI) { 1661 if (S && S->count(SI->getSUnit()) == 0) 1662 continue; 1663 if (ignoreDependence(*SI, false)) 1664 continue; 1665 if (NodeOrder.count(SI->getSUnit()) == 0) 1666 Succs.insert(SI->getSUnit()); 1667 } 1668 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1669 PE = (*I)->Preds.end(); 1670 PI != PE; ++PI) { 1671 if (PI->getKind() != SDep::Anti) 1672 continue; 1673 if (S && S->count(PI->getSUnit()) == 0) 1674 continue; 1675 if (NodeOrder.count(PI->getSUnit()) == 0) 1676 Succs.insert(PI->getSUnit()); 1677 } 1678 } 1679 return Succs.size() > 0; 1680 } 1681 1682 /// Return true if there is a path from the specified node to any of the nodes 1683 /// in DestNodes. Keep track and return the nodes in any path. 1684 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1685 SetVector<SUnit *> &DestNodes, 1686 SetVector<SUnit *> &Exclude, 1687 SmallPtrSet<SUnit *, 8> &Visited) { 1688 if (Cur->isBoundaryNode()) 1689 return false; 1690 if (Exclude.count(Cur) != 0) 1691 return false; 1692 if (DestNodes.count(Cur) != 0) 1693 return true; 1694 if (!Visited.insert(Cur).second) 1695 return Path.count(Cur) != 0; 1696 bool FoundPath = false; 1697 for (auto &SI : Cur->Succs) 1698 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1699 for (auto &PI : Cur->Preds) 1700 if (PI.getKind() == SDep::Anti) 1701 FoundPath |= 1702 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1703 if (FoundPath) 1704 Path.insert(Cur); 1705 return FoundPath; 1706 } 1707 1708 /// Return true if Set1 is a subset of Set2. 1709 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1710 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1711 if (Set2.count(*I) == 0) 1712 return false; 1713 return true; 1714 } 1715 1716 /// Compute the live-out registers for the instructions in a node-set. 1717 /// The live-out registers are those that are defined in the node-set, 1718 /// but not used. Except for use operands of Phis. 1719 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1720 NodeSet &NS) { 1721 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1722 MachineRegisterInfo &MRI = MF.getRegInfo(); 1723 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1724 SmallSet<unsigned, 4> Uses; 1725 for (SUnit *SU : NS) { 1726 const MachineInstr *MI = SU->getInstr(); 1727 if (MI->isPHI()) 1728 continue; 1729 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO) 1730 if (MO->isReg() && MO->isUse()) { 1731 unsigned Reg = MO->getReg(); 1732 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1733 Uses.insert(Reg); 1734 else if (MRI.isAllocatable(Reg)) 1735 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1736 Uses.insert(*Units); 1737 } 1738 } 1739 for (SUnit *SU : NS) 1740 for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO) 1741 if (MO->isReg() && MO->isDef() && !MO->isDead()) { 1742 unsigned Reg = MO->getReg(); 1743 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1744 if (!Uses.count(Reg)) 1745 LiveOutRegs.push_back(RegisterMaskPair(Reg, 0)); 1746 } else if (MRI.isAllocatable(Reg)) { 1747 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1748 if (!Uses.count(*Units)) 1749 LiveOutRegs.push_back(RegisterMaskPair(*Units, 0)); 1750 } 1751 } 1752 RPTracker.addLiveRegs(LiveOutRegs); 1753 } 1754 1755 /// A heuristic to filter nodes in recurrent node-sets if the register 1756 /// pressure of a set is too high. 1757 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1758 for (auto &NS : NodeSets) { 1759 // Skip small node-sets since they won't cause register pressure problems. 1760 if (NS.size() <= 2) 1761 continue; 1762 IntervalPressure RecRegPressure; 1763 RegPressureTracker RecRPTracker(RecRegPressure); 1764 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1765 computeLiveOuts(MF, RecRPTracker, NS); 1766 RecRPTracker.closeBottom(); 1767 1768 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1769 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1770 return A->NodeNum > B->NodeNum; 1771 }); 1772 1773 for (auto &SU : SUnits) { 1774 // Since we're computing the register pressure for a subset of the 1775 // instructions in a block, we need to set the tracker for each 1776 // instruction in the node-set. The tracker is set to the instruction 1777 // just after the one we're interested in. 1778 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1779 RecRPTracker.setPos(std::next(CurInstI)); 1780 1781 RegPressureDelta RPDelta; 1782 ArrayRef<PressureChange> CriticalPSets; 1783 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1784 CriticalPSets, 1785 RecRegPressure.MaxSetPressure); 1786 if (RPDelta.Excess.isValid()) { 1787 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1788 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1789 << ":" << RPDelta.Excess.getUnitInc()); 1790 NS.setExceedPressure(SU); 1791 break; 1792 } 1793 RecRPTracker.recede(); 1794 } 1795 } 1796 } 1797 1798 /// A heuristic to colocate node sets that have the same set of 1799 /// successors. 1800 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1801 unsigned Colocate = 0; 1802 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1803 NodeSet &N1 = NodeSets[i]; 1804 SmallSetVector<SUnit *, 8> S1; 1805 if (N1.empty() || !succ_L(N1, S1)) 1806 continue; 1807 for (int j = i + 1; j < e; ++j) { 1808 NodeSet &N2 = NodeSets[j]; 1809 if (N1.compareRecMII(N2) != 0) 1810 continue; 1811 SmallSetVector<SUnit *, 8> S2; 1812 if (N2.empty() || !succ_L(N2, S2)) 1813 continue; 1814 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1815 N1.setColocate(++Colocate); 1816 N2.setColocate(Colocate); 1817 break; 1818 } 1819 } 1820 } 1821 } 1822 1823 /// Check if the existing node-sets are profitable. If not, then ignore the 1824 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1825 /// a heuristic. If the MII is large and there is a non-recurrent node with 1826 /// a large depth compared to the MII, then it's best to try and schedule 1827 /// all instruction together instead of starting with the recurrent node-sets. 1828 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1829 // Look for loops with a large MII. 1830 if (MII <= 20) 1831 return; 1832 // Check if the node-set contains only a simple add recurrence. 1833 for (auto &NS : NodeSets) 1834 if (NS.size() > 2) 1835 return; 1836 // If the depth of any instruction is significantly larger than the MII, then 1837 // ignore the recurrent node-sets and treat all instructions equally. 1838 for (auto &SU : SUnits) 1839 if (SU.getDepth() > MII * 1.5) { 1840 NodeSets.clear(); 1841 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1842 return; 1843 } 1844 } 1845 1846 /// Add the nodes that do not belong to a recurrence set into groups 1847 /// based upon connected componenets. 1848 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1849 SetVector<SUnit *> NodesAdded; 1850 SmallPtrSet<SUnit *, 8> Visited; 1851 // Add the nodes that are on a path between the previous node sets and 1852 // the current node set. 1853 for (NodeSet &I : NodeSets) { 1854 SmallSetVector<SUnit *, 8> N; 1855 // Add the nodes from the current node set to the previous node set. 1856 if (succ_L(I, N)) { 1857 SetVector<SUnit *> Path; 1858 for (SUnit *NI : N) { 1859 Visited.clear(); 1860 computePath(NI, Path, NodesAdded, I, Visited); 1861 } 1862 if (Path.size() > 0) 1863 I.insert(Path.begin(), Path.end()); 1864 } 1865 // Add the nodes from the previous node set to the current node set. 1866 N.clear(); 1867 if (succ_L(NodesAdded, N)) { 1868 SetVector<SUnit *> Path; 1869 for (SUnit *NI : N) { 1870 Visited.clear(); 1871 computePath(NI, Path, I, NodesAdded, Visited); 1872 } 1873 if (Path.size() > 0) 1874 I.insert(Path.begin(), Path.end()); 1875 } 1876 NodesAdded.insert(I.begin(), I.end()); 1877 } 1878 1879 // Create a new node set with the connected nodes of any successor of a node 1880 // in a recurrent set. 1881 NodeSet NewSet; 1882 SmallSetVector<SUnit *, 8> N; 1883 if (succ_L(NodesAdded, N)) 1884 for (SUnit *I : N) 1885 addConnectedNodes(I, NewSet, NodesAdded); 1886 if (NewSet.size() > 0) 1887 NodeSets.push_back(NewSet); 1888 1889 // Create a new node set with the connected nodes of any predecessor of a node 1890 // in a recurrent set. 1891 NewSet.clear(); 1892 if (pred_L(NodesAdded, N)) 1893 for (SUnit *I : N) 1894 addConnectedNodes(I, NewSet, NodesAdded); 1895 if (NewSet.size() > 0) 1896 NodeSets.push_back(NewSet); 1897 1898 // Create new nodes sets with the connected nodes any any remaining node that 1899 // has no predecessor. 1900 for (unsigned i = 0; i < SUnits.size(); ++i) { 1901 SUnit *SU = &SUnits[i]; 1902 if (NodesAdded.count(SU) == 0) { 1903 NewSet.clear(); 1904 addConnectedNodes(SU, NewSet, NodesAdded); 1905 if (NewSet.size() > 0) 1906 NodeSets.push_back(NewSet); 1907 } 1908 } 1909 } 1910 1911 /// Add the node to the set, and add all is its connected nodes to the set. 1912 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1913 SetVector<SUnit *> &NodesAdded) { 1914 NewSet.insert(SU); 1915 NodesAdded.insert(SU); 1916 for (auto &SI : SU->Succs) { 1917 SUnit *Successor = SI.getSUnit(); 1918 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1919 addConnectedNodes(Successor, NewSet, NodesAdded); 1920 } 1921 for (auto &PI : SU->Preds) { 1922 SUnit *Predecessor = PI.getSUnit(); 1923 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1924 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1925 } 1926 } 1927 1928 /// Return true if Set1 contains elements in Set2. The elements in common 1929 /// are returned in a different container. 1930 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1931 SmallSetVector<SUnit *, 8> &Result) { 1932 Result.clear(); 1933 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1934 SUnit *SU = Set1[i]; 1935 if (Set2.count(SU) != 0) 1936 Result.insert(SU); 1937 } 1938 return !Result.empty(); 1939 } 1940 1941 /// Merge the recurrence node sets that have the same initial node. 1942 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1943 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1944 ++I) { 1945 NodeSet &NI = *I; 1946 for (NodeSetType::iterator J = I + 1; J != E;) { 1947 NodeSet &NJ = *J; 1948 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1949 if (NJ.compareRecMII(NI) > 0) 1950 NI.setRecMII(NJ.getRecMII()); 1951 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1952 ++NII) 1953 I->insert(*NII); 1954 NodeSets.erase(J); 1955 E = NodeSets.end(); 1956 } else { 1957 ++J; 1958 } 1959 } 1960 } 1961 } 1962 1963 /// Remove nodes that have been scheduled in previous NodeSets. 1964 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1965 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1966 ++I) 1967 for (NodeSetType::iterator J = I + 1; J != E;) { 1968 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1969 1970 if (J->size() == 0) { 1971 NodeSets.erase(J); 1972 E = NodeSets.end(); 1973 } else { 1974 ++J; 1975 } 1976 } 1977 } 1978 1979 /// Return true if Inst1 defines a value that is used in Inst2. 1980 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1981 for (auto &SI : Inst1->Succs) 1982 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1983 return true; 1984 return false; 1985 } 1986 1987 /// Compute an ordered list of the dependence graph nodes, which 1988 /// indicates the order that the nodes will be scheduled. This is a 1989 /// two-level algorithm. First, a partial order is created, which 1990 /// consists of a list of sets ordered from highest to lowest priority. 1991 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1992 SmallSetVector<SUnit *, 8> R; 1993 NodeOrder.clear(); 1994 1995 for (auto &Nodes : NodeSets) { 1996 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1997 OrderKind Order; 1998 SmallSetVector<SUnit *, 8> N; 1999 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2000 R.insert(N.begin(), N.end()); 2001 Order = BottomUp; 2002 DEBUG(dbgs() << " Bottom up (preds) "); 2003 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2004 R.insert(N.begin(), N.end()); 2005 Order = TopDown; 2006 DEBUG(dbgs() << " Top down (succs) "); 2007 } else if (isIntersect(N, Nodes, R)) { 2008 // If some of the successors are in the existing node-set, then use the 2009 // top-down ordering. 2010 Order = TopDown; 2011 DEBUG(dbgs() << " Top down (intersect) "); 2012 } else if (NodeSets.size() == 1) { 2013 for (auto &N : Nodes) 2014 if (N->Succs.size() == 0) 2015 R.insert(N); 2016 Order = BottomUp; 2017 DEBUG(dbgs() << " Bottom up (all) "); 2018 } else { 2019 // Find the node with the highest ASAP. 2020 SUnit *maxASAP = nullptr; 2021 for (SUnit *SU : Nodes) { 2022 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2023 maxASAP = SU; 2024 } 2025 R.insert(maxASAP); 2026 Order = BottomUp; 2027 DEBUG(dbgs() << " Bottom up (default) "); 2028 } 2029 2030 while (!R.empty()) { 2031 if (Order == TopDown) { 2032 // Choose the node with the maximum height. If more than one, choose 2033 // the node with the lowest MOV. If still more than one, check if there 2034 // is a dependence between the instructions. 2035 while (!R.empty()) { 2036 SUnit *maxHeight = nullptr; 2037 for (SUnit *I : R) { 2038 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2039 maxHeight = I; 2040 else if (getHeight(I) == getHeight(maxHeight) && 2041 getMOV(I) < getMOV(maxHeight) && 2042 !hasDataDependence(maxHeight, I)) 2043 maxHeight = I; 2044 else if (hasDataDependence(I, maxHeight)) 2045 maxHeight = I; 2046 } 2047 NodeOrder.insert(maxHeight); 2048 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2049 R.remove(maxHeight); 2050 for (const auto &I : maxHeight->Succs) { 2051 if (Nodes.count(I.getSUnit()) == 0) 2052 continue; 2053 if (NodeOrder.count(I.getSUnit()) != 0) 2054 continue; 2055 if (ignoreDependence(I, false)) 2056 continue; 2057 R.insert(I.getSUnit()); 2058 } 2059 // Back-edges are predecessors with an anti-dependence. 2060 for (const auto &I : maxHeight->Preds) { 2061 if (I.getKind() != SDep::Anti) 2062 continue; 2063 if (Nodes.count(I.getSUnit()) == 0) 2064 continue; 2065 if (NodeOrder.count(I.getSUnit()) != 0) 2066 continue; 2067 R.insert(I.getSUnit()); 2068 } 2069 } 2070 Order = BottomUp; 2071 DEBUG(dbgs() << "\n Switching order to bottom up "); 2072 SmallSetVector<SUnit *, 8> N; 2073 if (pred_L(NodeOrder, N, &Nodes)) 2074 R.insert(N.begin(), N.end()); 2075 } else { 2076 // Choose the node with the maximum depth. If more than one, choose 2077 // the node with the lowest MOV. If there is still more than one, check 2078 // for a dependence between the instructions. 2079 while (!R.empty()) { 2080 SUnit *maxDepth = nullptr; 2081 for (SUnit *I : R) { 2082 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2083 maxDepth = I; 2084 else if (getDepth(I) == getDepth(maxDepth) && 2085 getMOV(I) < getMOV(maxDepth) && 2086 !hasDataDependence(I, maxDepth)) 2087 maxDepth = I; 2088 else if (hasDataDependence(maxDepth, I)) 2089 maxDepth = I; 2090 } 2091 NodeOrder.insert(maxDepth); 2092 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2093 R.remove(maxDepth); 2094 if (Nodes.isExceedSU(maxDepth)) { 2095 Order = TopDown; 2096 R.clear(); 2097 R.insert(Nodes.getNode(0)); 2098 break; 2099 } 2100 for (const auto &I : maxDepth->Preds) { 2101 if (Nodes.count(I.getSUnit()) == 0) 2102 continue; 2103 if (NodeOrder.count(I.getSUnit()) != 0) 2104 continue; 2105 if (I.getKind() == SDep::Anti) 2106 continue; 2107 R.insert(I.getSUnit()); 2108 } 2109 // Back-edges are predecessors with an anti-dependence. 2110 for (const auto &I : maxDepth->Succs) { 2111 if (I.getKind() != SDep::Anti) 2112 continue; 2113 if (Nodes.count(I.getSUnit()) == 0) 2114 continue; 2115 if (NodeOrder.count(I.getSUnit()) != 0) 2116 continue; 2117 R.insert(I.getSUnit()); 2118 } 2119 } 2120 Order = TopDown; 2121 DEBUG(dbgs() << "\n Switching order to top down "); 2122 SmallSetVector<SUnit *, 8> N; 2123 if (succ_L(NodeOrder, N, &Nodes)) 2124 R.insert(N.begin(), N.end()); 2125 } 2126 } 2127 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2128 } 2129 2130 DEBUG({ 2131 dbgs() << "Node order: "; 2132 for (SUnit *I : NodeOrder) 2133 dbgs() << " " << I->NodeNum << " "; 2134 dbgs() << "\n"; 2135 }); 2136 } 2137 2138 /// Process the nodes in the computed order and create the pipelined schedule 2139 /// of the instructions, if possible. Return true if a schedule is found. 2140 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2141 2142 if (NodeOrder.size() == 0) 2143 return false; 2144 2145 bool scheduleFound = false; 2146 // Keep increasing II until a valid schedule is found. 2147 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2148 Schedule.reset(); 2149 Schedule.setInitiationInterval(II); 2150 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2151 2152 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2153 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2154 do { 2155 SUnit *SU = *NI; 2156 2157 // Compute the schedule time for the instruction, which is based 2158 // upon the scheduled time for any predecessors/successors. 2159 int EarlyStart = INT_MIN; 2160 int LateStart = INT_MAX; 2161 // These values are set when the size of the schedule window is limited 2162 // due to chain dependences. 2163 int SchedEnd = INT_MAX; 2164 int SchedStart = INT_MIN; 2165 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2166 II, this); 2167 DEBUG({ 2168 dbgs() << "Inst (" << SU->NodeNum << ") "; 2169 SU->getInstr()->dump(); 2170 dbgs() << "\n"; 2171 }); 2172 DEBUG({ 2173 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2174 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2175 }); 2176 2177 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2178 SchedStart > LateStart) 2179 scheduleFound = false; 2180 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2181 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2182 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2183 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2184 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2185 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2186 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2187 SchedEnd = 2188 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2189 // When scheduling a Phi it is better to start at the late cycle and go 2190 // backwards. The default order may insert the Phi too far away from 2191 // its first dependence. 2192 if (SU->getInstr()->isPHI()) 2193 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2194 else 2195 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2196 } else { 2197 int FirstCycle = Schedule.getFirstCycle(); 2198 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2199 FirstCycle + getASAP(SU) + II - 1, II); 2200 } 2201 // Even if we find a schedule, make sure the schedule doesn't exceed the 2202 // allowable number of stages. We keep trying if this happens. 2203 if (scheduleFound) 2204 if (SwpMaxStages > -1 && 2205 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2206 scheduleFound = false; 2207 2208 DEBUG({ 2209 if (!scheduleFound) 2210 dbgs() << "\tCan't schedule\n"; 2211 }); 2212 } while (++NI != NE && scheduleFound); 2213 2214 // If a schedule is found, check if it is a valid schedule too. 2215 if (scheduleFound) 2216 scheduleFound = Schedule.isValidSchedule(this); 2217 } 2218 2219 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2220 2221 if (scheduleFound) 2222 Schedule.finalizeSchedule(this); 2223 else 2224 Schedule.reset(); 2225 2226 return scheduleFound && Schedule.getMaxStageCount() > 0; 2227 } 2228 2229 /// Given a schedule for the loop, generate a new version of the loop, 2230 /// and replace the old version. This function generates a prolog 2231 /// that contains the initial iterations in the pipeline, and kernel 2232 /// loop, and the epilogue that contains the code for the final 2233 /// iterations. 2234 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2235 // Create a new basic block for the kernel and add it to the CFG. 2236 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2237 2238 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2239 2240 // Remember the registers that are used in different stages. The index is 2241 // the iteration, or stage, that the instruction is scheduled in. This is 2242 // a map between register names in the orignal block and the names created 2243 // in each stage of the pipelined loop. 2244 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2245 InstrMapTy InstrMap; 2246 2247 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2248 // Generate the prolog instructions that set up the pipeline. 2249 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2250 MF.insert(BB->getIterator(), KernelBB); 2251 2252 // Rearrange the instructions to generate the new, pipelined loop, 2253 // and update register names as needed. 2254 for (int Cycle = Schedule.getFirstCycle(), 2255 LastCycle = Schedule.getFinalCycle(); 2256 Cycle <= LastCycle; ++Cycle) { 2257 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2258 // This inner loop schedules each instruction in the cycle. 2259 for (SUnit *CI : CycleInstrs) { 2260 if (CI->getInstr()->isPHI()) 2261 continue; 2262 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2263 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2264 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2265 KernelBB->push_back(NewMI); 2266 InstrMap[NewMI] = CI->getInstr(); 2267 } 2268 } 2269 2270 // Copy any terminator instructions to the new kernel, and update 2271 // names as needed. 2272 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2273 E = BB->instr_end(); 2274 I != E; ++I) { 2275 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2276 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2277 KernelBB->push_back(NewMI); 2278 InstrMap[NewMI] = &*I; 2279 } 2280 2281 KernelBB->transferSuccessors(BB); 2282 KernelBB->replaceSuccessor(BB, KernelBB); 2283 2284 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2285 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2286 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2287 InstrMap, MaxStageCount, MaxStageCount, false); 2288 2289 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2290 2291 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2292 // Generate the epilog instructions to complete the pipeline. 2293 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2294 PrologBBs); 2295 2296 // We need this step because the register allocation doesn't handle some 2297 // situations well, so we insert copies to help out. 2298 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2299 2300 // Remove dead instructions due to loop induction variables. 2301 removeDeadInstructions(KernelBB, EpilogBBs); 2302 2303 // Add branches between prolog and epilog blocks. 2304 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2305 2306 // Remove the original loop since it's no longer referenced. 2307 BB->clear(); 2308 BB->eraseFromParent(); 2309 2310 delete[] VRMap; 2311 } 2312 2313 /// Generate the pipeline prolog code. 2314 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2315 MachineBasicBlock *KernelBB, 2316 ValueMapTy *VRMap, 2317 MBBVectorTy &PrologBBs) { 2318 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2319 assert(PreheaderBB != NULL && 2320 "Need to add code to handle loops w/o preheader"); 2321 MachineBasicBlock *PredBB = PreheaderBB; 2322 InstrMapTy InstrMap; 2323 2324 // Generate a basic block for each stage, not including the last stage, 2325 // which will be generated in the kernel. Each basic block may contain 2326 // instructions from multiple stages/iterations. 2327 for (unsigned i = 0; i < LastStage; ++i) { 2328 // Create and insert the prolog basic block prior to the original loop 2329 // basic block. The original loop is removed later. 2330 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2331 PrologBBs.push_back(NewBB); 2332 MF.insert(BB->getIterator(), NewBB); 2333 NewBB->transferSuccessors(PredBB); 2334 PredBB->addSuccessor(NewBB); 2335 PredBB = NewBB; 2336 2337 // Generate instructions for each appropriate stage. Process instructions 2338 // in original program order. 2339 for (int StageNum = i; StageNum >= 0; --StageNum) { 2340 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2341 BBE = BB->getFirstTerminator(); 2342 BBI != BBE; ++BBI) { 2343 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2344 if (BBI->isPHI()) 2345 continue; 2346 MachineInstr *NewMI = 2347 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2348 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2349 VRMap); 2350 NewBB->push_back(NewMI); 2351 InstrMap[NewMI] = &*BBI; 2352 } 2353 } 2354 } 2355 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2356 DEBUG({ 2357 dbgs() << "prolog:\n"; 2358 NewBB->dump(); 2359 }); 2360 } 2361 2362 PredBB->replaceSuccessor(BB, KernelBB); 2363 2364 // Check if we need to remove the branch from the preheader to the original 2365 // loop, and replace it with a branch to the new loop. 2366 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2367 if (numBranches) { 2368 SmallVector<MachineOperand, 0> Cond; 2369 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2370 } 2371 } 2372 2373 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2374 /// that were started in either the prolog or the kernel. We create a basic 2375 /// block for each stage that needs to complete. 2376 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2377 MachineBasicBlock *KernelBB, 2378 ValueMapTy *VRMap, 2379 MBBVectorTy &EpilogBBs, 2380 MBBVectorTy &PrologBBs) { 2381 // We need to change the branch from the kernel to the first epilog block, so 2382 // this call to analyze branch uses the kernel rather than the original BB. 2383 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2384 SmallVector<MachineOperand, 4> Cond; 2385 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2386 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2387 if (checkBranch) 2388 return; 2389 2390 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2391 if (*LoopExitI == KernelBB) 2392 ++LoopExitI; 2393 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2394 MachineBasicBlock *LoopExitBB = *LoopExitI; 2395 2396 MachineBasicBlock *PredBB = KernelBB; 2397 MachineBasicBlock *EpilogStart = LoopExitBB; 2398 InstrMapTy InstrMap; 2399 2400 // Generate a basic block for each stage, not including the last stage, 2401 // which was generated for the kernel. Each basic block may contain 2402 // instructions from multiple stages/iterations. 2403 int EpilogStage = LastStage + 1; 2404 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2405 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2406 EpilogBBs.push_back(NewBB); 2407 MF.insert(BB->getIterator(), NewBB); 2408 2409 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2410 NewBB->addSuccessor(LoopExitBB); 2411 2412 if (EpilogStart == LoopExitBB) 2413 EpilogStart = NewBB; 2414 2415 // Add instructions to the epilog depending on the current block. 2416 // Process instructions in original program order. 2417 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2418 for (auto &BBI : *BB) { 2419 if (BBI.isPHI()) 2420 continue; 2421 MachineInstr *In = &BBI; 2422 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2423 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2424 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2425 NewBB->push_back(NewMI); 2426 InstrMap[NewMI] = In; 2427 } 2428 } 2429 } 2430 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2431 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2432 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2433 InstrMap, LastStage, EpilogStage, i == 1); 2434 PredBB = NewBB; 2435 2436 DEBUG({ 2437 dbgs() << "epilog:\n"; 2438 NewBB->dump(); 2439 }); 2440 } 2441 2442 // Fix any Phi nodes in the loop exit block. 2443 for (MachineInstr &MI : *LoopExitBB) { 2444 if (!MI.isPHI()) 2445 break; 2446 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2447 MachineOperand &MO = MI.getOperand(i); 2448 if (MO.getMBB() == BB) 2449 MO.setMBB(PredBB); 2450 } 2451 } 2452 2453 // Create a branch to the new epilog from the kernel. 2454 // Remove the original branch and add a new branch to the epilog. 2455 TII->removeBranch(*KernelBB); 2456 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2457 // Add a branch to the loop exit. 2458 if (EpilogBBs.size() > 0) { 2459 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2460 SmallVector<MachineOperand, 4> Cond1; 2461 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2462 } 2463 } 2464 2465 /// Replace all uses of FromReg that appear outside the specified 2466 /// basic block with ToReg. 2467 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2468 MachineBasicBlock *MBB, 2469 MachineRegisterInfo &MRI, 2470 LiveIntervals &LIS) { 2471 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2472 E = MRI.use_end(); 2473 I != E;) { 2474 MachineOperand &O = *I; 2475 ++I; 2476 if (O.getParent()->getParent() != MBB) 2477 O.setReg(ToReg); 2478 } 2479 if (!LIS.hasInterval(ToReg)) 2480 LIS.createEmptyInterval(ToReg); 2481 } 2482 2483 /// Return true if the register has a use that occurs outside the 2484 /// specified loop. 2485 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2486 MachineRegisterInfo &MRI) { 2487 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2488 E = MRI.use_end(); 2489 I != E; ++I) 2490 if (I->getParent()->getParent() != BB) 2491 return true; 2492 return false; 2493 } 2494 2495 /// Generate Phis for the specific block in the generated pipelined code. 2496 /// This function looks at the Phis from the original code to guide the 2497 /// creation of new Phis. 2498 void SwingSchedulerDAG::generateExistingPhis( 2499 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2500 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2501 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2502 bool IsLast) { 2503 // Compute the stage number for the inital value of the Phi, which 2504 // comes from the prolog. The prolog to use depends on to which kernel/ 2505 // epilog that we're adding the Phi. 2506 unsigned PrologStage = 0; 2507 unsigned PrevStage = 0; 2508 bool InKernel = (LastStageNum == CurStageNum); 2509 if (InKernel) { 2510 PrologStage = LastStageNum - 1; 2511 PrevStage = CurStageNum; 2512 } else { 2513 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2514 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2515 } 2516 2517 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2518 BBE = BB->getFirstNonPHI(); 2519 BBI != BBE; ++BBI) { 2520 unsigned Def = BBI->getOperand(0).getReg(); 2521 2522 unsigned InitVal = 0; 2523 unsigned LoopVal = 0; 2524 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2525 2526 unsigned PhiOp1 = 0; 2527 // The Phi value from the loop body typically is defined in the loop, but 2528 // not always. So, we need to check if the value is defined in the loop. 2529 unsigned PhiOp2 = LoopVal; 2530 if (VRMap[LastStageNum].count(LoopVal)) 2531 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2532 2533 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2534 int LoopValStage = 2535 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2536 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2537 if (NumStages == 0) { 2538 // We don't need to generate a Phi anymore, but we need to rename any uses 2539 // of the Phi value. 2540 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2541 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2542 Def, NewReg); 2543 if (VRMap[CurStageNum].count(LoopVal)) 2544 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2545 } 2546 // Adjust the number of Phis needed depending on the number of prologs left, 2547 // and the distance from where the Phi is first scheduled. 2548 unsigned NumPhis = NumStages; 2549 if (!InKernel && (int)PrologStage < LoopValStage) 2550 // The NumPhis is the maximum number of new Phis needed during the steady 2551 // state. If the Phi has not been scheduled in current prolog, then we 2552 // need to generate less Phis. 2553 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2554 // The number of Phis cannot exceed the number of prolog stages. Each 2555 // stage can potentially define two values. 2556 NumPhis = std::min(NumPhis, PrologStage + 2); 2557 2558 unsigned NewReg = 0; 2559 2560 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2561 // In the epilog, we may need to look back one stage to get the correct 2562 // Phi name because the epilog and prolog blocks execute the same stage. 2563 // The correct name is from the previous block only when the Phi has 2564 // been completely scheduled prior to the epilog, and Phi value is not 2565 // needed in multiple stages. 2566 int StageDiff = 0; 2567 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2568 NumPhis == 1) 2569 StageDiff = 1; 2570 // Adjust the computations below when the phi and the loop definition 2571 // are scheduled in different stages. 2572 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2573 StageDiff = StageScheduled - LoopValStage; 2574 for (unsigned np = 0; np < NumPhis; ++np) { 2575 // If the Phi hasn't been scheduled, then use the initial Phi operand 2576 // value. Otherwise, use the scheduled version of the instruction. This 2577 // is a little complicated when a Phi references another Phi. 2578 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2579 PhiOp1 = InitVal; 2580 // Check if the Phi has already been scheduled in a prolog stage. 2581 else if (PrologStage >= AccessStage + StageDiff + np && 2582 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2583 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2584 // Check if the Phi has already been scheduled, but the loop intruction 2585 // is either another Phi, or doesn't occur in the loop. 2586 else if (PrologStage >= AccessStage + StageDiff + np) { 2587 // If the Phi references another Phi, we need to examine the other 2588 // Phi to get the correct value. 2589 PhiOp1 = LoopVal; 2590 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2591 int Indirects = 1; 2592 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2593 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2594 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2595 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2596 else 2597 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2598 InstOp1 = MRI.getVRegDef(PhiOp1); 2599 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2600 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2601 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2602 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2603 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2604 break; 2605 } 2606 ++Indirects; 2607 } 2608 } else 2609 PhiOp1 = InitVal; 2610 // If this references a generated Phi in the kernel, get the Phi operand 2611 // from the incoming block. 2612 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2613 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2614 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2615 2616 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2617 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2618 // In the epilog, a map lookup is needed to get the value from the kernel, 2619 // or previous epilog block. How is does this depends on if the 2620 // instruction is scheduled in the previous block. 2621 if (!InKernel) { 2622 int StageDiffAdj = 0; 2623 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2624 StageDiffAdj = StageScheduled - LoopValStage; 2625 // Use the loop value defined in the kernel, unless the kernel 2626 // contains the last definition of the Phi. 2627 if (np == 0 && PrevStage == LastStageNum && 2628 (StageScheduled != 0 || LoopValStage != 0) && 2629 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2630 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2631 // Use the value defined by the Phi. We add one because we switch 2632 // from looking at the loop value to the Phi definition. 2633 else if (np > 0 && PrevStage == LastStageNum && 2634 VRMap[PrevStage - np + 1].count(Def)) 2635 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2636 // Use the loop value defined in the kernel. 2637 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2638 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2639 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2640 // Use the value defined by the Phi, unless we're generating the first 2641 // epilog and the Phi refers to a Phi in a different stage. 2642 else if (VRMap[PrevStage - np].count(Def) && 2643 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2644 PhiOp2 = VRMap[PrevStage - np][Def]; 2645 } 2646 2647 // Check if we can reuse an existing Phi. This occurs when a Phi 2648 // references another Phi, and the other Phi is scheduled in an 2649 // earlier stage. We can try to reuse an existing Phi up until the last 2650 // stage of the current Phi. 2651 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2652 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2653 int StageDiff = (StageScheduled - LoopValStage); 2654 LVNumStages -= StageDiff; 2655 if (LVNumStages > (int)np) { 2656 NewReg = PhiOp2; 2657 unsigned ReuseStage = CurStageNum; 2658 if (Schedule.isLoopCarried(this, *PhiInst)) 2659 ReuseStage -= LVNumStages; 2660 // Check if the Phi to reuse has been generated yet. If not, then 2661 // there is nothing to reuse. 2662 if (VRMap[ReuseStage].count(LoopVal)) { 2663 NewReg = VRMap[ReuseStage][LoopVal]; 2664 2665 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2666 &*BBI, Def, NewReg); 2667 // Update the map with the new Phi name. 2668 VRMap[CurStageNum - np][Def] = NewReg; 2669 PhiOp2 = NewReg; 2670 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2671 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2672 2673 if (IsLast && np == NumPhis - 1) 2674 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2675 continue; 2676 } 2677 } else if (StageDiff > 0 && 2678 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2679 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2680 } 2681 2682 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2683 NewReg = MRI.createVirtualRegister(RC); 2684 2685 MachineInstrBuilder NewPhi = 2686 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2687 TII->get(TargetOpcode::PHI), NewReg); 2688 NewPhi.addReg(PhiOp1).addMBB(BB1); 2689 NewPhi.addReg(PhiOp2).addMBB(BB2); 2690 if (np == 0) 2691 InstrMap[NewPhi] = &*BBI; 2692 2693 // We define the Phis after creating the new pipelined code, so 2694 // we need to rename the Phi values in scheduled instructions. 2695 2696 unsigned PrevReg = 0; 2697 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2698 PrevReg = VRMap[PrevStage - np][LoopVal]; 2699 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2700 Def, NewReg, PrevReg); 2701 // If the Phi has been scheduled, use the new name for rewriting. 2702 if (VRMap[CurStageNum - np].count(Def)) { 2703 unsigned R = VRMap[CurStageNum - np][Def]; 2704 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2705 R, NewReg); 2706 } 2707 2708 // Check if we need to rename any uses that occurs after the loop. The 2709 // register to replace depends on whether the Phi is scheduled in the 2710 // epilog. 2711 if (IsLast && np == NumPhis - 1) 2712 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2713 2714 // In the kernel, a dependent Phi uses the value from this Phi. 2715 if (InKernel) 2716 PhiOp2 = NewReg; 2717 2718 // Update the map with the new Phi name. 2719 VRMap[CurStageNum - np][Def] = NewReg; 2720 } 2721 2722 while (NumPhis++ < NumStages) { 2723 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2724 &*BBI, Def, NewReg, 0); 2725 } 2726 2727 // Check if we need to rename a Phi that has been eliminated due to 2728 // scheduling. 2729 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2730 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2731 } 2732 } 2733 2734 /// Generate Phis for the specified block in the generated pipelined code. 2735 /// These are new Phis needed because the definition is scheduled after the 2736 /// use in the pipelened sequence. 2737 void SwingSchedulerDAG::generatePhis( 2738 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2739 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2740 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2741 bool IsLast) { 2742 // Compute the stage number that contains the initial Phi value, and 2743 // the Phi from the previous stage. 2744 unsigned PrologStage = 0; 2745 unsigned PrevStage = 0; 2746 unsigned StageDiff = CurStageNum - LastStageNum; 2747 bool InKernel = (StageDiff == 0); 2748 if (InKernel) { 2749 PrologStage = LastStageNum - 1; 2750 PrevStage = CurStageNum; 2751 } else { 2752 PrologStage = LastStageNum - StageDiff; 2753 PrevStage = LastStageNum + StageDiff - 1; 2754 } 2755 2756 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2757 BBE = BB->instr_end(); 2758 BBI != BBE; ++BBI) { 2759 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2760 MachineOperand &MO = BBI->getOperand(i); 2761 if (!MO.isReg() || !MO.isDef() || 2762 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2763 continue; 2764 2765 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2766 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2767 unsigned Def = MO.getReg(); 2768 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2769 // An instruction scheduled in stage 0 and is used after the loop 2770 // requires a phi in the epilog for the last definition from either 2771 // the kernel or prolog. 2772 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2773 hasUseAfterLoop(Def, BB, MRI)) 2774 NumPhis = 1; 2775 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2776 continue; 2777 2778 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2779 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2780 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2781 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2782 // The number of Phis can't exceed the number of prolog stages. The 2783 // prolog stage number is zero based. 2784 if (NumPhis > PrologStage + 1 - StageScheduled) 2785 NumPhis = PrologStage + 1 - StageScheduled; 2786 for (unsigned np = 0; np < NumPhis; ++np) { 2787 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2788 if (np <= PrologStage) 2789 PhiOp1 = VRMap[PrologStage - np][Def]; 2790 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2791 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2792 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2793 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2794 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2795 } 2796 if (!InKernel) 2797 PhiOp2 = VRMap[PrevStage - np][Def]; 2798 2799 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2800 unsigned NewReg = MRI.createVirtualRegister(RC); 2801 2802 MachineInstrBuilder NewPhi = 2803 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2804 TII->get(TargetOpcode::PHI), NewReg); 2805 NewPhi.addReg(PhiOp1).addMBB(BB1); 2806 NewPhi.addReg(PhiOp2).addMBB(BB2); 2807 if (np == 0) 2808 InstrMap[NewPhi] = &*BBI; 2809 2810 // Rewrite uses and update the map. The actions depend upon whether 2811 // we generating code for the kernel or epilog blocks. 2812 if (InKernel) { 2813 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2814 &*BBI, PhiOp1, NewReg); 2815 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2816 &*BBI, PhiOp2, NewReg); 2817 2818 PhiOp2 = NewReg; 2819 VRMap[PrevStage - np - 1][Def] = NewReg; 2820 } else { 2821 VRMap[CurStageNum - np][Def] = NewReg; 2822 if (np == NumPhis - 1) 2823 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2824 &*BBI, Def, NewReg); 2825 } 2826 if (IsLast && np == NumPhis - 1) 2827 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2828 } 2829 } 2830 } 2831 } 2832 2833 /// Remove instructions that generate values with no uses. 2834 /// Typically, these are induction variable operations that generate values 2835 /// used in the loop itself. A dead instruction has a definition with 2836 /// no uses, or uses that occur in the original loop only. 2837 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2838 MBBVectorTy &EpilogBBs) { 2839 // For each epilog block, check that the value defined by each instruction 2840 // is used. If not, delete it. 2841 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2842 MBE = EpilogBBs.rend(); 2843 MBB != MBE; ++MBB) 2844 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2845 ME = (*MBB)->instr_rend(); 2846 MI != ME;) { 2847 // From DeadMachineInstructionElem. Don't delete inline assembly. 2848 if (MI->isInlineAsm()) { 2849 ++MI; 2850 continue; 2851 } 2852 bool SawStore = false; 2853 // Check if it's safe to remove the instruction due to side effects. 2854 // We can, and want to, remove Phis here. 2855 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2856 ++MI; 2857 continue; 2858 } 2859 bool used = true; 2860 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2861 MOE = MI->operands_end(); 2862 MOI != MOE; ++MOI) { 2863 if (!MOI->isReg() || !MOI->isDef()) 2864 continue; 2865 unsigned reg = MOI->getReg(); 2866 unsigned realUses = 0; 2867 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2868 EI = MRI.use_end(); 2869 UI != EI; ++UI) { 2870 // Check if there are any uses that occur only in the original 2871 // loop. If so, that's not a real use. 2872 if (UI->getParent()->getParent() != BB) { 2873 realUses++; 2874 used = true; 2875 break; 2876 } 2877 } 2878 if (realUses > 0) 2879 break; 2880 used = false; 2881 } 2882 if (!used) { 2883 MI++->eraseFromParent(); 2884 continue; 2885 } 2886 ++MI; 2887 } 2888 // In the kernel block, check if we can remove a Phi that generates a value 2889 // used in an instruction removed in the epilog block. 2890 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2891 BBE = KernelBB->getFirstNonPHI(); 2892 BBI != BBE;) { 2893 MachineInstr *MI = &*BBI; 2894 ++BBI; 2895 unsigned reg = MI->getOperand(0).getReg(); 2896 if (MRI.use_begin(reg) == MRI.use_end()) { 2897 MI->eraseFromParent(); 2898 } 2899 } 2900 } 2901 2902 /// For loop carried definitions, we split the lifetime of a virtual register 2903 /// that has uses past the definition in the next iteration. A copy with a new 2904 /// virtual register is inserted before the definition, which helps with 2905 /// generating a better register assignment. 2906 /// 2907 /// v1 = phi(a, v2) v1 = phi(a, v2) 2908 /// v2 = phi(b, v3) v2 = phi(b, v3) 2909 /// v3 = .. v4 = copy v1 2910 /// .. = V1 v3 = .. 2911 /// .. = v4 2912 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2913 MBBVectorTy &EpilogBBs, 2914 SMSchedule &Schedule) { 2915 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2916 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2917 BBF = KernelBB->getFirstNonPHI(); 2918 BBI != BBF; ++BBI) { 2919 unsigned Def = BBI->getOperand(0).getReg(); 2920 // Check for any Phi definition that used as an operand of another Phi 2921 // in the same block. 2922 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2923 E = MRI.use_instr_end(); 2924 I != E; ++I) { 2925 if (I->isPHI() && I->getParent() == KernelBB) { 2926 // Get the loop carried definition. 2927 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2928 if (!LCDef) 2929 continue; 2930 MachineInstr *MI = MRI.getVRegDef(LCDef); 2931 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2932 continue; 2933 // Search through the rest of the block looking for uses of the Phi 2934 // definition. If one occurs, then split the lifetime. 2935 unsigned SplitReg = 0; 2936 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2937 KernelBB->instr_end())) 2938 if (BBJ.readsRegister(Def)) { 2939 // We split the lifetime when we find the first use. 2940 if (SplitReg == 0) { 2941 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2942 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2943 TII->get(TargetOpcode::COPY), SplitReg) 2944 .addReg(Def); 2945 } 2946 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2947 } 2948 if (!SplitReg) 2949 continue; 2950 // Search through each of the epilog blocks for any uses to be renamed. 2951 for (auto &Epilog : EpilogBBs) 2952 for (auto &I : *Epilog) 2953 if (I.readsRegister(Def)) 2954 I.substituteRegister(Def, SplitReg, 0, *TRI); 2955 break; 2956 } 2957 } 2958 } 2959 } 2960 2961 /// Remove the incoming block from the Phis in a basic block. 2962 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2963 for (MachineInstr &MI : *BB) { 2964 if (!MI.isPHI()) 2965 break; 2966 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2967 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2968 MI.RemoveOperand(i + 1); 2969 MI.RemoveOperand(i); 2970 break; 2971 } 2972 } 2973 } 2974 2975 /// Create branches from each prolog basic block to the appropriate epilog 2976 /// block. These edges are needed if the loop ends before reaching the 2977 /// kernel. 2978 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2979 MachineBasicBlock *KernelBB, 2980 MBBVectorTy &EpilogBBs, 2981 SMSchedule &Schedule, ValueMapTy *VRMap) { 2982 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2983 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2984 MachineInstr *Cmp = Pass.LI.LoopCompare; 2985 MachineBasicBlock *LastPro = KernelBB; 2986 MachineBasicBlock *LastEpi = KernelBB; 2987 2988 // Start from the blocks connected to the kernel and work "out" 2989 // to the first prolog and the last epilog blocks. 2990 SmallVector<MachineInstr *, 4> PrevInsts; 2991 unsigned MaxIter = PrologBBs.size() - 1; 2992 unsigned LC = UINT_MAX; 2993 unsigned LCMin = UINT_MAX; 2994 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2995 // Add branches to the prolog that go to the corresponding 2996 // epilog, and the fall-thru prolog/kernel block. 2997 MachineBasicBlock *Prolog = PrologBBs[j]; 2998 MachineBasicBlock *Epilog = EpilogBBs[i]; 2999 // We've executed one iteration, so decrement the loop count and check for 3000 // the loop end. 3001 SmallVector<MachineOperand, 4> Cond; 3002 // Check if the LOOP0 has already been removed. If so, then there is no need 3003 // to reduce the trip count. 3004 if (LC != 0) 3005 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3006 MaxIter); 3007 3008 // Record the value of the first trip count, which is used to determine if 3009 // branches and blocks can be removed for constant trip counts. 3010 if (LCMin == UINT_MAX) 3011 LCMin = LC; 3012 3013 unsigned numAdded = 0; 3014 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3015 Prolog->addSuccessor(Epilog); 3016 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3017 } else if (j >= LCMin) { 3018 Prolog->addSuccessor(Epilog); 3019 Prolog->removeSuccessor(LastPro); 3020 LastEpi->removeSuccessor(Epilog); 3021 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3022 removePhis(Epilog, LastEpi); 3023 // Remove the blocks that are no longer referenced. 3024 if (LastPro != LastEpi) { 3025 LastEpi->clear(); 3026 LastEpi->eraseFromParent(); 3027 } 3028 LastPro->clear(); 3029 LastPro->eraseFromParent(); 3030 } else { 3031 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3032 removePhis(Epilog, Prolog); 3033 } 3034 LastPro = Prolog; 3035 LastEpi = Epilog; 3036 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3037 E = Prolog->instr_rend(); 3038 I != E && numAdded > 0; ++I, --numAdded) 3039 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3040 } 3041 } 3042 3043 /// Return true if we can compute the amount the instruction changes 3044 /// during each iteration. Set Delta to the amount of the change. 3045 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3046 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3047 unsigned BaseReg; 3048 int64_t Offset; 3049 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3050 return false; 3051 3052 MachineRegisterInfo &MRI = MF.getRegInfo(); 3053 // Check if there is a Phi. If so, get the definition in the loop. 3054 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3055 if (BaseDef && BaseDef->isPHI()) { 3056 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3057 BaseDef = MRI.getVRegDef(BaseReg); 3058 } 3059 if (!BaseDef) 3060 return false; 3061 3062 int D = 0; 3063 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3064 return false; 3065 3066 Delta = D; 3067 return true; 3068 } 3069 3070 /// Update the memory operand with a new offset when the pipeliner 3071 /// generates a new copy of the instruction that refers to a 3072 /// different memory location. 3073 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3074 MachineInstr &OldMI, unsigned Num) { 3075 if (Num == 0) 3076 return; 3077 // If the instruction has memory operands, then adjust the offset 3078 // when the instruction appears in different stages. 3079 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3080 if (NumRefs == 0) 3081 return; 3082 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3083 unsigned Refs = 0; 3084 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3085 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3086 (!MMO->getValue())) { 3087 NewMemRefs[Refs++] = MMO; 3088 continue; 3089 } 3090 unsigned Delta; 3091 if (computeDelta(OldMI, Delta)) { 3092 int64_t AdjOffset = Delta * Num; 3093 NewMemRefs[Refs++] = 3094 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3095 } else 3096 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3097 } 3098 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3099 } 3100 3101 /// Clone the instruction for the new pipelined loop and update the 3102 /// memory operands, if needed. 3103 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3104 unsigned CurStageNum, 3105 unsigned InstStageNum) { 3106 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3107 // Check for tied operands in inline asm instructions. This should be handled 3108 // elsewhere, but I'm not sure of the best solution. 3109 if (OldMI->isInlineAsm()) 3110 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3111 const auto &MO = OldMI->getOperand(i); 3112 if (MO.isReg() && MO.isUse()) 3113 break; 3114 unsigned UseIdx; 3115 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3116 NewMI->tieOperands(i, UseIdx); 3117 } 3118 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3119 return NewMI; 3120 } 3121 3122 /// Clone the instruction for the new pipelined loop. If needed, this 3123 /// function updates the instruction using the values saved in the 3124 /// InstrChanges structure. 3125 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3126 unsigned CurStageNum, 3127 unsigned InstStageNum, 3128 SMSchedule &Schedule) { 3129 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3130 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3131 InstrChanges.find(getSUnit(OldMI)); 3132 if (It != InstrChanges.end()) { 3133 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3134 unsigned BasePos, OffsetPos; 3135 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3136 return nullptr; 3137 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3138 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3139 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3140 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3141 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3142 } 3143 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3144 return NewMI; 3145 } 3146 3147 /// Update the machine instruction with new virtual registers. This 3148 /// function may change the defintions and/or uses. 3149 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3150 unsigned CurStageNum, 3151 unsigned InstrStageNum, 3152 SMSchedule &Schedule, 3153 ValueMapTy *VRMap) { 3154 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3155 MachineOperand &MO = NewMI->getOperand(i); 3156 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3157 continue; 3158 unsigned reg = MO.getReg(); 3159 if (MO.isDef()) { 3160 // Create a new virtual register for the definition. 3161 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3162 unsigned NewReg = MRI.createVirtualRegister(RC); 3163 MO.setReg(NewReg); 3164 VRMap[CurStageNum][reg] = NewReg; 3165 if (LastDef) 3166 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3167 } else if (MO.isUse()) { 3168 MachineInstr *Def = MRI.getVRegDef(reg); 3169 // Compute the stage that contains the last definition for instruction. 3170 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3171 unsigned StageNum = CurStageNum; 3172 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3173 // Compute the difference in stages between the defintion and the use. 3174 unsigned StageDiff = (InstrStageNum - DefStageNum); 3175 // Make an adjustment to get the last definition. 3176 StageNum -= StageDiff; 3177 } 3178 if (VRMap[StageNum].count(reg)) 3179 MO.setReg(VRMap[StageNum][reg]); 3180 } 3181 } 3182 } 3183 3184 /// Return the instruction in the loop that defines the register. 3185 /// If the definition is a Phi, then follow the Phi operand to 3186 /// the instruction in the loop. 3187 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3188 SmallPtrSet<MachineInstr *, 8> Visited; 3189 MachineInstr *Def = MRI.getVRegDef(Reg); 3190 while (Def->isPHI()) { 3191 if (!Visited.insert(Def).second) 3192 break; 3193 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3194 if (Def->getOperand(i + 1).getMBB() == BB) { 3195 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3196 break; 3197 } 3198 } 3199 return Def; 3200 } 3201 3202 /// Return the new name for the value from the previous stage. 3203 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3204 unsigned LoopVal, unsigned LoopStage, 3205 ValueMapTy *VRMap, 3206 MachineBasicBlock *BB) { 3207 unsigned PrevVal = 0; 3208 if (StageNum > PhiStage) { 3209 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3210 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3211 // The name is defined in the previous stage. 3212 PrevVal = VRMap[StageNum - 1][LoopVal]; 3213 else if (VRMap[StageNum].count(LoopVal)) 3214 // The previous name is defined in the current stage when the instruction 3215 // order is swapped. 3216 PrevVal = VRMap[StageNum][LoopVal]; 3217 else if (!LoopInst->isPHI()) 3218 // The loop value hasn't yet been scheduled. 3219 PrevVal = LoopVal; 3220 else if (StageNum == PhiStage + 1) 3221 // The loop value is another phi, which has not been scheduled. 3222 PrevVal = getInitPhiReg(*LoopInst, BB); 3223 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3224 // The loop value is another phi, which has been scheduled. 3225 PrevVal = 3226 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3227 LoopStage, VRMap, BB); 3228 } 3229 return PrevVal; 3230 } 3231 3232 /// Rewrite the Phi values in the specified block to use the mappings 3233 /// from the initial operand. Once the Phi is scheduled, we switch 3234 /// to using the loop value instead of the Phi value, so those names 3235 /// do not need to be rewritten. 3236 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3237 unsigned StageNum, 3238 SMSchedule &Schedule, 3239 ValueMapTy *VRMap, 3240 InstrMapTy &InstrMap) { 3241 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3242 BBE = BB->getFirstNonPHI(); 3243 BBI != BBE; ++BBI) { 3244 unsigned InitVal = 0; 3245 unsigned LoopVal = 0; 3246 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3247 unsigned PhiDef = BBI->getOperand(0).getReg(); 3248 3249 unsigned PhiStage = 3250 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3251 unsigned LoopStage = 3252 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3253 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3254 if (NumPhis > StageNum) 3255 NumPhis = StageNum; 3256 for (unsigned np = 0; np <= NumPhis; ++np) { 3257 unsigned NewVal = 3258 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3259 if (!NewVal) 3260 NewVal = InitVal; 3261 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3262 PhiDef, NewVal); 3263 } 3264 } 3265 } 3266 3267 /// Rewrite a previously scheduled instruction to use the register value 3268 /// from the new instruction. Make sure the instruction occurs in the 3269 /// basic block, and we don't change the uses in the new instruction. 3270 void SwingSchedulerDAG::rewriteScheduledInstr( 3271 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3272 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3273 unsigned NewReg, unsigned PrevReg) { 3274 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3275 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3276 // Rewrite uses that have been scheduled already to use the new 3277 // Phi register. 3278 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3279 EI = MRI.use_end(); 3280 UI != EI;) { 3281 MachineOperand &UseOp = *UI; 3282 MachineInstr *UseMI = UseOp.getParent(); 3283 ++UI; 3284 if (UseMI->getParent() != BB) 3285 continue; 3286 if (UseMI->isPHI()) { 3287 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3288 continue; 3289 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3290 continue; 3291 } 3292 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3293 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3294 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3295 int StageSched = Schedule.stageScheduled(OrigMISU); 3296 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3297 unsigned ReplaceReg = 0; 3298 // This is the stage for the scheduled instruction. 3299 if (StagePhi == StageSched && Phi->isPHI()) { 3300 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3301 if (PrevReg && InProlog) 3302 ReplaceReg = PrevReg; 3303 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3304 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3305 ReplaceReg = PrevReg; 3306 else 3307 ReplaceReg = NewReg; 3308 } 3309 // The scheduled instruction occurs before the scheduled Phi, and the 3310 // Phi is not loop carried. 3311 if (!InProlog && StagePhi + 1 == StageSched && 3312 !Schedule.isLoopCarried(this, *Phi)) 3313 ReplaceReg = NewReg; 3314 if (StagePhi > StageSched && Phi->isPHI()) 3315 ReplaceReg = NewReg; 3316 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3317 ReplaceReg = NewReg; 3318 if (ReplaceReg) { 3319 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3320 UseOp.setReg(ReplaceReg); 3321 } 3322 } 3323 } 3324 3325 /// Check if we can change the instruction to use an offset value from the 3326 /// previous iteration. If so, return true and set the base and offset values 3327 /// so that we can rewrite the load, if necessary. 3328 /// v1 = Phi(v0, v3) 3329 /// v2 = load v1, 0 3330 /// v3 = post_store v1, 4, x 3331 /// This function enables the load to be rewritten as v2 = load v3, 4. 3332 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3333 unsigned &BasePos, 3334 unsigned &OffsetPos, 3335 unsigned &NewBase, 3336 int64_t &Offset) { 3337 // Get the load instruction. 3338 if (TII->isPostIncrement(*MI)) 3339 return false; 3340 unsigned BasePosLd, OffsetPosLd; 3341 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3342 return false; 3343 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3344 3345 // Look for the Phi instruction. 3346 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 3347 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3348 if (!Phi || !Phi->isPHI()) 3349 return false; 3350 // Get the register defined in the loop block. 3351 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3352 if (!PrevReg) 3353 return false; 3354 3355 // Check for the post-increment load/store instruction. 3356 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3357 if (!PrevDef || PrevDef == MI) 3358 return false; 3359 3360 if (!TII->isPostIncrement(*PrevDef)) 3361 return false; 3362 3363 unsigned BasePos1 = 0, OffsetPos1 = 0; 3364 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3365 return false; 3366 3367 // Make sure offset values are both positive or both negative. 3368 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3369 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3370 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3371 return false; 3372 3373 // Set the return value once we determine that we return true. 3374 BasePos = BasePosLd; 3375 OffsetPos = OffsetPosLd; 3376 NewBase = PrevReg; 3377 Offset = StoreOffset; 3378 return true; 3379 } 3380 3381 /// Apply changes to the instruction if needed. The changes are need 3382 /// to improve the scheduling and depend up on the final schedule. 3383 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3384 SMSchedule &Schedule, 3385 bool UpdateDAG) { 3386 SUnit *SU = getSUnit(MI); 3387 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3388 InstrChanges.find(SU); 3389 if (It != InstrChanges.end()) { 3390 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3391 unsigned BasePos, OffsetPos; 3392 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3393 return nullptr; 3394 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3395 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3396 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3397 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3398 int BaseStageNum = Schedule.stageScheduled(SU); 3399 int BaseCycleNum = Schedule.cycleScheduled(SU); 3400 if (BaseStageNum < DefStageNum) { 3401 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3402 int OffsetDiff = DefStageNum - BaseStageNum; 3403 if (DefCycleNum < BaseCycleNum) { 3404 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3405 if (OffsetDiff > 0) 3406 --OffsetDiff; 3407 } 3408 int64_t NewOffset = 3409 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3410 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3411 if (UpdateDAG) { 3412 SU->setInstr(NewMI); 3413 MISUnitMap[NewMI] = SU; 3414 } 3415 NewMIs.insert(NewMI); 3416 return NewMI; 3417 } 3418 } 3419 return nullptr; 3420 } 3421 3422 /// Return true for an order dependence that is loop carried potentially. 3423 /// An order dependence is loop carried if the destination defines a value 3424 /// that may be used by the source in a subsequent iteration. 3425 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3426 bool isSucc) { 3427 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3428 return false; 3429 3430 if (!SwpPruneLoopCarried) 3431 return true; 3432 3433 MachineInstr *SI = Source->getInstr(); 3434 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3435 if (!isSucc) 3436 std::swap(SI, DI); 3437 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3438 3439 // Assume ordered loads and stores may have a loop carried dependence. 3440 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3441 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3442 return true; 3443 3444 // Only chain dependences between a load and store can be loop carried. 3445 if (!DI->mayStore() || !SI->mayLoad()) 3446 return false; 3447 3448 unsigned DeltaS, DeltaD; 3449 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3450 return true; 3451 3452 unsigned BaseRegS, BaseRegD; 3453 int64_t OffsetS, OffsetD; 3454 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3455 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3456 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3457 return true; 3458 3459 if (BaseRegS != BaseRegD) 3460 return true; 3461 3462 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3463 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3464 3465 // This is the main test, which checks the offset values and the loop 3466 // increment value to determine if the accesses may be loop carried. 3467 if (OffsetS >= OffsetD) 3468 return OffsetS + AccessSizeS > DeltaS; 3469 else if (OffsetS < OffsetD) 3470 return OffsetD + AccessSizeD > DeltaD; 3471 3472 return true; 3473 } 3474 3475 /// Try to schedule the node at the specified StartCycle and continue 3476 /// until the node is schedule or the EndCycle is reached. This function 3477 /// returns true if the node is scheduled. This routine may search either 3478 /// forward or backward for a place to insert the instruction based upon 3479 /// the relative values of StartCycle and EndCycle. 3480 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3481 bool forward = true; 3482 if (StartCycle > EndCycle) 3483 forward = false; 3484 3485 // The terminating condition depends on the direction. 3486 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3487 for (int curCycle = StartCycle; curCycle != termCycle; 3488 forward ? ++curCycle : --curCycle) { 3489 3490 // Add the already scheduled instructions at the specified cycle to the DFA. 3491 Resources->clearResources(); 3492 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3493 checkCycle <= LastCycle; checkCycle += II) { 3494 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3495 3496 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3497 E = cycleInstrs.end(); 3498 I != E; ++I) { 3499 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3500 continue; 3501 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3502 "These instructions have already been scheduled."); 3503 Resources->reserveResources(*(*I)->getInstr()); 3504 } 3505 } 3506 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3507 Resources->canReserveResources(*SU->getInstr())) { 3508 DEBUG({ 3509 dbgs() << "\tinsert at cycle " << curCycle << " "; 3510 SU->getInstr()->dump(); 3511 }); 3512 3513 ScheduledInstrs[curCycle].push_back(SU); 3514 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3515 if (curCycle > LastCycle) 3516 LastCycle = curCycle; 3517 if (curCycle < FirstCycle) 3518 FirstCycle = curCycle; 3519 return true; 3520 } 3521 DEBUG({ 3522 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3523 SU->getInstr()->dump(); 3524 }); 3525 } 3526 return false; 3527 } 3528 3529 // Return the cycle of the earliest scheduled instruction in the chain. 3530 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3531 SmallPtrSet<SUnit *, 8> Visited; 3532 SmallVector<SDep, 8> Worklist; 3533 Worklist.push_back(Dep); 3534 int EarlyCycle = INT_MAX; 3535 while (!Worklist.empty()) { 3536 const SDep &Cur = Worklist.pop_back_val(); 3537 SUnit *PrevSU = Cur.getSUnit(); 3538 if (Visited.count(PrevSU)) 3539 continue; 3540 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3541 if (it == InstrToCycle.end()) 3542 continue; 3543 EarlyCycle = std::min(EarlyCycle, it->second); 3544 for (const auto &PI : PrevSU->Preds) 3545 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3546 Worklist.push_back(PI); 3547 Visited.insert(PrevSU); 3548 } 3549 return EarlyCycle; 3550 } 3551 3552 // Return the cycle of the latest scheduled instruction in the chain. 3553 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3554 SmallPtrSet<SUnit *, 8> Visited; 3555 SmallVector<SDep, 8> Worklist; 3556 Worklist.push_back(Dep); 3557 int LateCycle = INT_MIN; 3558 while (!Worklist.empty()) { 3559 const SDep &Cur = Worklist.pop_back_val(); 3560 SUnit *SuccSU = Cur.getSUnit(); 3561 if (Visited.count(SuccSU)) 3562 continue; 3563 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3564 if (it == InstrToCycle.end()) 3565 continue; 3566 LateCycle = std::max(LateCycle, it->second); 3567 for (const auto &SI : SuccSU->Succs) 3568 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3569 Worklist.push_back(SI); 3570 Visited.insert(SuccSU); 3571 } 3572 return LateCycle; 3573 } 3574 3575 /// If an instruction has a use that spans multiple iterations, then 3576 /// return true. These instructions are characterized by having a back-ege 3577 /// to a Phi, which contains a reference to another Phi. 3578 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3579 for (auto &P : SU->Preds) 3580 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3581 for (auto &S : P.getSUnit()->Succs) 3582 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3583 return P.getSUnit(); 3584 return nullptr; 3585 } 3586 3587 /// Compute the scheduling start slot for the instruction. The start slot 3588 /// depends on any predecessor or successor nodes scheduled already. 3589 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3590 int *MinEnd, int *MaxStart, int II, 3591 SwingSchedulerDAG *DAG) { 3592 // Iterate over each instruction that has been scheduled already. The start 3593 // slot computuation depends on whether the previously scheduled instruction 3594 // is a predecessor or successor of the specified instruction. 3595 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3596 3597 // Iterate over each instruction in the current cycle. 3598 for (SUnit *I : getInstructions(cycle)) { 3599 // Because we're processing a DAG for the dependences, we recognize 3600 // the back-edge in recurrences by anti dependences. 3601 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3602 const SDep &Dep = SU->Preds[i]; 3603 if (Dep.getSUnit() == I) { 3604 if (!DAG->isBackedge(SU, Dep)) { 3605 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3606 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3607 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3608 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3609 int End = earliestCycleInChain(Dep) + (II - 1); 3610 *MinEnd = std::min(*MinEnd, End); 3611 } 3612 } else { 3613 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3614 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3615 *MinLateStart = std::min(*MinLateStart, LateStart); 3616 } 3617 } 3618 // For instruction that requires multiple iterations, make sure that 3619 // the dependent instruction is not scheduled past the definition. 3620 SUnit *BE = multipleIterations(I, DAG); 3621 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3622 !SU->isPred(I)) 3623 *MinLateStart = std::min(*MinLateStart, cycle); 3624 } 3625 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3626 if (SU->Succs[i].getSUnit() == I) { 3627 const SDep &Dep = SU->Succs[i]; 3628 if (!DAG->isBackedge(SU, Dep)) { 3629 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3630 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3631 *MinLateStart = std::min(*MinLateStart, LateStart); 3632 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3633 int Start = latestCycleInChain(Dep) + 1 - II; 3634 *MaxStart = std::max(*MaxStart, Start); 3635 } 3636 } else { 3637 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3638 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3639 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3640 } 3641 } 3642 } 3643 } 3644 } 3645 3646 /// Order the instructions within a cycle so that the definitions occur 3647 /// before the uses. Returns true if the instruction is added to the start 3648 /// of the list, or false if added to the end. 3649 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3650 std::deque<SUnit *> &Insts) { 3651 MachineInstr *MI = SU->getInstr(); 3652 bool OrderBeforeUse = false; 3653 bool OrderAfterDef = false; 3654 bool OrderBeforeDef = false; 3655 unsigned MoveDef = 0; 3656 unsigned MoveUse = 0; 3657 int StageInst1 = stageScheduled(SU); 3658 3659 unsigned Pos = 0; 3660 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3661 ++I, ++Pos) { 3662 // Relative order of Phis does not matter. 3663 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3664 continue; 3665 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3666 MachineOperand &MO = MI->getOperand(i); 3667 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3668 continue; 3669 unsigned Reg = MO.getReg(); 3670 unsigned BasePos, OffsetPos; 3671 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3672 if (MI->getOperand(BasePos).getReg() == Reg) 3673 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3674 Reg = NewReg; 3675 bool Reads, Writes; 3676 std::tie(Reads, Writes) = 3677 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3678 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3679 OrderBeforeUse = true; 3680 MoveUse = Pos; 3681 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3682 // Add the instruction after the scheduled instruction. 3683 OrderAfterDef = true; 3684 MoveDef = Pos; 3685 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3686 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3687 OrderBeforeUse = true; 3688 MoveUse = Pos; 3689 } else { 3690 OrderAfterDef = true; 3691 MoveDef = Pos; 3692 } 3693 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3694 OrderBeforeUse = true; 3695 MoveUse = Pos; 3696 if (MoveUse != 0) { 3697 OrderAfterDef = true; 3698 MoveDef = Pos - 1; 3699 } 3700 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3701 // Add the instruction before the scheduled instruction. 3702 OrderBeforeUse = true; 3703 MoveUse = Pos; 3704 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3705 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3706 OrderBeforeDef = true; 3707 MoveUse = Pos; 3708 } 3709 } 3710 // Check for order dependences between instructions. Make sure the source 3711 // is ordered before the destination. 3712 for (auto &S : SU->Succs) 3713 if (S.getKind() == SDep::Order) { 3714 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3715 OrderBeforeUse = true; 3716 MoveUse = Pos; 3717 } 3718 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3719 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3720 if (S.isAssignedRegDep()) { 3721 OrderAfterDef = true; 3722 MoveDef = Pos; 3723 } 3724 } else { 3725 OrderBeforeUse = true; 3726 MoveUse = Pos; 3727 } 3728 } 3729 for (auto &P : SU->Preds) 3730 if (P.getKind() == SDep::Order) { 3731 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3732 OrderAfterDef = true; 3733 MoveDef = Pos; 3734 } 3735 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3736 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3737 if (P.isAssignedRegDep()) { 3738 OrderBeforeUse = true; 3739 MoveUse = Pos; 3740 } 3741 } else { 3742 OrderAfterDef = true; 3743 MoveDef = Pos; 3744 } 3745 } 3746 } 3747 3748 // A circular dependence. 3749 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3750 OrderBeforeUse = false; 3751 3752 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3753 // to a loop-carried dependence. 3754 if (OrderBeforeDef) 3755 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3756 3757 // The uncommon case when the instruction order needs to be updated because 3758 // there is both a use and def. 3759 if (OrderBeforeUse && OrderAfterDef) { 3760 SUnit *UseSU = Insts.at(MoveUse); 3761 SUnit *DefSU = Insts.at(MoveDef); 3762 if (MoveUse > MoveDef) { 3763 Insts.erase(Insts.begin() + MoveUse); 3764 Insts.erase(Insts.begin() + MoveDef); 3765 } else { 3766 Insts.erase(Insts.begin() + MoveDef); 3767 Insts.erase(Insts.begin() + MoveUse); 3768 } 3769 if (orderDependence(SSD, UseSU, Insts)) { 3770 Insts.push_front(SU); 3771 orderDependence(SSD, DefSU, Insts); 3772 return true; 3773 } 3774 Insts.pop_back(); 3775 Insts.push_back(SU); 3776 Insts.push_back(UseSU); 3777 orderDependence(SSD, DefSU, Insts); 3778 return false; 3779 } 3780 // Put the new instruction first if there is a use in the list. Otherwise, 3781 // put it at the end of the list. 3782 if (OrderBeforeUse) 3783 Insts.push_front(SU); 3784 else 3785 Insts.push_back(SU); 3786 return OrderBeforeUse; 3787 } 3788 3789 /// Return true if the scheduled Phi has a loop carried operand. 3790 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3791 if (!Phi.isPHI()) 3792 return false; 3793 assert(Phi.isPHI() && "Expecing a Phi."); 3794 SUnit *DefSU = SSD->getSUnit(&Phi); 3795 unsigned DefCycle = cycleScheduled(DefSU); 3796 int DefStage = stageScheduled(DefSU); 3797 3798 unsigned InitVal = 0; 3799 unsigned LoopVal = 0; 3800 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3801 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3802 if (!UseSU) 3803 return true; 3804 if (UseSU->getInstr()->isPHI()) 3805 return true; 3806 unsigned LoopCycle = cycleScheduled(UseSU); 3807 int LoopStage = stageScheduled(UseSU); 3808 return LoopCycle > DefCycle || 3809 (LoopCycle <= DefCycle && LoopStage <= DefStage); 3810 } 3811 3812 /// Return true if the instruction is a definition that is loop carried 3813 /// and defines the use on the next iteration. 3814 /// v1 = phi(v2, v3) 3815 /// (Def) v3 = op v1 3816 /// (MO) = v1 3817 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3818 /// register. 3819 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3820 MachineInstr *Def, MachineOperand &MO) { 3821 if (!MO.isReg()) 3822 return false; 3823 if (Def->isPHI()) 3824 return false; 3825 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3826 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3827 return false; 3828 if (!isLoopCarried(SSD, *Phi)) 3829 return false; 3830 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3831 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3832 MachineOperand &DMO = Def->getOperand(i); 3833 if (!DMO.isReg() || !DMO.isDef()) 3834 continue; 3835 if (DMO.getReg() == LoopReg) 3836 return true; 3837 } 3838 return false; 3839 } 3840 3841 // Check if the generated schedule is valid. This function checks if 3842 // an instruction that uses a physical register is scheduled in a 3843 // different stage than the definition. The pipeliner does not handle 3844 // physical register values that may cross a basic block boundary. 3845 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3846 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3847 SUnit &SU = SSD->SUnits[i]; 3848 if (!SU.hasPhysRegDefs) 3849 continue; 3850 int StageDef = stageScheduled(&SU); 3851 assert(StageDef != -1 && "Instruction should have been scheduled."); 3852 for (auto &SI : SU.Succs) 3853 if (SI.isAssignedRegDep()) 3854 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3855 if (stageScheduled(SI.getSUnit()) != StageDef) 3856 return false; 3857 } 3858 return true; 3859 } 3860 3861 /// After the schedule has been formed, call this function to combine 3862 /// the instructions from the different stages/cycles. That is, this 3863 /// function creates a schedule that represents a single iteration. 3864 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3865 // Move all instructions to the first stage from later stages. 3866 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3867 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3868 ++stage) { 3869 std::deque<SUnit *> &cycleInstrs = 3870 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3871 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3872 E = cycleInstrs.rend(); 3873 I != E; ++I) 3874 ScheduledInstrs[cycle].push_front(*I); 3875 } 3876 } 3877 // Iterate over the definitions in each instruction, and compute the 3878 // stage difference for each use. Keep the maximum value. 3879 for (auto &I : InstrToCycle) { 3880 int DefStage = stageScheduled(I.first); 3881 MachineInstr *MI = I.first->getInstr(); 3882 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3883 MachineOperand &Op = MI->getOperand(i); 3884 if (!Op.isReg() || !Op.isDef()) 3885 continue; 3886 3887 unsigned Reg = Op.getReg(); 3888 unsigned MaxDiff = 0; 3889 bool PhiIsSwapped = false; 3890 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3891 EI = MRI.use_end(); 3892 UI != EI; ++UI) { 3893 MachineOperand &UseOp = *UI; 3894 MachineInstr *UseMI = UseOp.getParent(); 3895 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3896 int UseStage = stageScheduled(SUnitUse); 3897 unsigned Diff = 0; 3898 if (UseStage != -1 && UseStage >= DefStage) 3899 Diff = UseStage - DefStage; 3900 if (MI->isPHI()) { 3901 if (isLoopCarried(SSD, *MI)) 3902 ++Diff; 3903 else 3904 PhiIsSwapped = true; 3905 } 3906 MaxDiff = std::max(Diff, MaxDiff); 3907 } 3908 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3909 } 3910 } 3911 3912 // Erase all the elements in the later stages. Only one iteration should 3913 // remain in the scheduled list, and it contains all the instructions. 3914 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3915 ScheduledInstrs.erase(cycle); 3916 3917 // Change the registers in instruction as specified in the InstrChanges 3918 // map. We need to use the new registers to create the correct order. 3919 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3920 SUnit *SU = &SSD->SUnits[i]; 3921 SSD->applyInstrChange(SU->getInstr(), *this, true); 3922 } 3923 3924 // Reorder the instructions in each cycle to fix and improve the 3925 // generated code. 3926 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3927 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3928 std::deque<SUnit *> newOrderZC; 3929 // Put the zero-cost, pseudo instructions at the start of the cycle. 3930 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3931 SUnit *SU = cycleInstrs[i]; 3932 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3933 orderDependence(SSD, SU, newOrderZC); 3934 } 3935 std::deque<SUnit *> newOrderI; 3936 // Then, add the regular instructions back. 3937 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3938 SUnit *SU = cycleInstrs[i]; 3939 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3940 orderDependence(SSD, SU, newOrderI); 3941 } 3942 // Replace the old order with the new order. 3943 cycleInstrs.swap(newOrderZC); 3944 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3945 } 3946 3947 DEBUG(dump();); 3948 } 3949 3950 /// Print the schedule information to the given output. 3951 void SMSchedule::print(raw_ostream &os) const { 3952 // Iterate over each cycle. 3953 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3954 // Iterate over each instruction in the cycle. 3955 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3956 for (SUnit *CI : cycleInstrs->second) { 3957 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3958 os << "(" << CI->NodeNum << ") "; 3959 CI->getInstr()->print(os); 3960 os << "\n"; 3961 } 3962 } 3963 } 3964 3965 /// Utility function used for debugging to print the schedule. 3966 void SMSchedule::dump() const { print(dbgs()); } 3967