1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/RegisterPressure.h" 60 #include "llvm/CodeGen/ScheduleDAG.h" 61 #include "llvm/CodeGen/ScheduleDAGMutation.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/Config/llvm-config.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/MC/LaneBitmask.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCInstrItineraries.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <deque> 84 #include <functional> 85 #include <iterator> 86 #include <map> 87 #include <memory> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "pipeliner" 95 96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 97 STATISTIC(NumPipelined, "Number of loops software pipelined"); 98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 99 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 100 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 101 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 102 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 103 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 104 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 105 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 106 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 107 108 /// A command line option to turn software pipelining on or off. 109 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 110 cl::ZeroOrMore, 111 cl::desc("Enable Software Pipelining")); 112 113 /// A command line option to enable SWP at -Os. 114 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 115 cl::desc("Enable SWP at Os."), cl::Hidden, 116 cl::init(false)); 117 118 /// A command line argument to limit minimum initial interval for pipelining. 119 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 120 cl::desc("Size limit for the MII."), 121 cl::Hidden, cl::init(27)); 122 123 /// A command line argument to limit the number of stages in the pipeline. 124 static cl::opt<int> 125 SwpMaxStages("pipeliner-max-stages", 126 cl::desc("Maximum stages allowed in the generated scheduled."), 127 cl::Hidden, cl::init(3)); 128 129 /// A command line option to disable the pruning of chain dependences due to 130 /// an unrelated Phi. 131 static cl::opt<bool> 132 SwpPruneDeps("pipeliner-prune-deps", 133 cl::desc("Prune dependences between unrelated Phi nodes."), 134 cl::Hidden, cl::init(true)); 135 136 /// A command line option to disable the pruning of loop carried order 137 /// dependences. 138 static cl::opt<bool> 139 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 140 cl::desc("Prune loop carried order dependences."), 141 cl::Hidden, cl::init(true)); 142 143 #ifndef NDEBUG 144 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 145 #endif 146 147 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 148 cl::ReallyHidden, cl::init(false), 149 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 150 151 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 152 cl::init(false)); 153 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 154 cl::init(false)); 155 156 namespace llvm { 157 158 // A command line option to enable the CopyToPhi DAG mutation. 159 cl::opt<bool> 160 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 161 cl::init(true), cl::ZeroOrMore, 162 cl::desc("Enable CopyToPhi DAG Mutation")); 163 164 } // end namespace llvm 165 166 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 167 char MachinePipeliner::ID = 0; 168 #ifndef NDEBUG 169 int MachinePipeliner::NumTries = 0; 170 #endif 171 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 172 173 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 174 "Modulo Software Pipelining", false, false) 175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 176 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 177 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 178 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 179 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 180 "Modulo Software Pipelining", false, false) 181 182 /// The "main" function for implementing Swing Modulo Scheduling. 183 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 184 if (skipFunction(mf.getFunction())) 185 return false; 186 187 if (!EnableSWP) 188 return false; 189 190 if (mf.getFunction().getAttributes().hasAttribute( 191 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 192 !EnableSWPOptSize.getPosition()) 193 return false; 194 195 if (!mf.getSubtarget().enableMachinePipeliner()) 196 return false; 197 198 // Cannot pipeline loops without instruction itineraries if we are using 199 // DFA for the pipeliner. 200 if (mf.getSubtarget().useDFAforSMS() && 201 (!mf.getSubtarget().getInstrItineraryData() || 202 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 203 return false; 204 205 MF = &mf; 206 MLI = &getAnalysis<MachineLoopInfo>(); 207 MDT = &getAnalysis<MachineDominatorTree>(); 208 TII = MF->getSubtarget().getInstrInfo(); 209 RegClassInfo.runOnMachineFunction(*MF); 210 211 for (auto &L : *MLI) 212 scheduleLoop(*L); 213 214 return false; 215 } 216 217 /// Attempt to perform the SMS algorithm on the specified loop. This function is 218 /// the main entry point for the algorithm. The function identifies candidate 219 /// loops, calculates the minimum initiation interval, and attempts to schedule 220 /// the loop. 221 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 222 bool Changed = false; 223 for (auto &InnerLoop : L) 224 Changed |= scheduleLoop(*InnerLoop); 225 226 #ifndef NDEBUG 227 // Stop trying after reaching the limit (if any). 228 int Limit = SwpLoopLimit; 229 if (Limit >= 0) { 230 if (NumTries >= SwpLoopLimit) 231 return Changed; 232 NumTries++; 233 } 234 #endif 235 236 setPragmaPipelineOptions(L); 237 if (!canPipelineLoop(L)) { 238 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 239 return Changed; 240 } 241 242 ++NumTrytoPipeline; 243 244 Changed = swingModuloScheduler(L); 245 246 return Changed; 247 } 248 249 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 250 MachineBasicBlock *LBLK = L.getTopBlock(); 251 252 if (LBLK == nullptr) 253 return; 254 255 const BasicBlock *BBLK = LBLK->getBasicBlock(); 256 if (BBLK == nullptr) 257 return; 258 259 const Instruction *TI = BBLK->getTerminator(); 260 if (TI == nullptr) 261 return; 262 263 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 264 if (LoopID == nullptr) 265 return; 266 267 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 268 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 269 270 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 271 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 272 273 if (MD == nullptr) 274 continue; 275 276 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 277 278 if (S == nullptr) 279 continue; 280 281 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 282 assert(MD->getNumOperands() == 2 && 283 "Pipeline initiation interval hint metadata should have two operands."); 284 II_setByPragma = 285 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 286 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 287 } else if (S->getString() == "llvm.loop.pipeline.disable") { 288 disabledByPragma = true; 289 } 290 } 291 } 292 293 /// Return true if the loop can be software pipelined. The algorithm is 294 /// restricted to loops with a single basic block. Make sure that the 295 /// branch in the loop can be analyzed. 296 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 297 if (L.getNumBlocks() != 1) 298 return false; 299 300 if (disabledByPragma) 301 return false; 302 303 // Check if the branch can't be understood because we can't do pipelining 304 // if that's the case. 305 LI.TBB = nullptr; 306 LI.FBB = nullptr; 307 LI.BrCond.clear(); 308 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 309 LLVM_DEBUG( 310 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 311 NumFailBranch++; 312 return false; 313 } 314 315 LI.LoopInductionVar = nullptr; 316 LI.LoopCompare = nullptr; 317 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) { 318 LLVM_DEBUG( 319 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 320 NumFailLoop++; 321 return false; 322 } 323 324 if (!L.getLoopPreheader()) { 325 LLVM_DEBUG( 326 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 327 NumFailPreheader++; 328 return false; 329 } 330 331 // Remove any subregisters from inputs to phi nodes. 332 preprocessPhiNodes(*L.getHeader()); 333 return true; 334 } 335 336 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 337 MachineRegisterInfo &MRI = MF->getRegInfo(); 338 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 339 340 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 341 MachineOperand &DefOp = PI.getOperand(0); 342 assert(DefOp.getSubReg() == 0); 343 auto *RC = MRI.getRegClass(DefOp.getReg()); 344 345 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 346 MachineOperand &RegOp = PI.getOperand(i); 347 if (RegOp.getSubReg() == 0) 348 continue; 349 350 // If the operand uses a subregister, replace it with a new register 351 // without subregisters, and generate a copy to the new register. 352 unsigned NewReg = MRI.createVirtualRegister(RC); 353 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 354 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 355 const DebugLoc &DL = PredB.findDebugLoc(At); 356 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 357 .addReg(RegOp.getReg(), getRegState(RegOp), 358 RegOp.getSubReg()); 359 Slots.insertMachineInstrInMaps(*Copy); 360 RegOp.setReg(NewReg); 361 RegOp.setSubReg(0); 362 } 363 } 364 } 365 366 /// The SMS algorithm consists of the following main steps: 367 /// 1. Computation and analysis of the dependence graph. 368 /// 2. Ordering of the nodes (instructions). 369 /// 3. Attempt to Schedule the loop. 370 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 371 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 372 373 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 374 II_setByPragma); 375 376 MachineBasicBlock *MBB = L.getHeader(); 377 // The kernel should not include any terminator instructions. These 378 // will be added back later. 379 SMS.startBlock(MBB); 380 381 // Compute the number of 'real' instructions in the basic block by 382 // ignoring terminators. 383 unsigned size = MBB->size(); 384 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 385 E = MBB->instr_end(); 386 I != E; ++I, --size) 387 ; 388 389 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 390 SMS.schedule(); 391 SMS.exitRegion(); 392 393 SMS.finishBlock(); 394 return SMS.hasNewSchedule(); 395 } 396 397 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 398 if (II_setByPragma > 0) 399 MII = II_setByPragma; 400 else 401 MII = std::max(ResMII, RecMII); 402 } 403 404 void SwingSchedulerDAG::setMAX_II() { 405 if (II_setByPragma > 0) 406 MAX_II = II_setByPragma; 407 else 408 MAX_II = MII + 10; 409 } 410 411 /// We override the schedule function in ScheduleDAGInstrs to implement the 412 /// scheduling part of the Swing Modulo Scheduling algorithm. 413 void SwingSchedulerDAG::schedule() { 414 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 415 buildSchedGraph(AA); 416 addLoopCarriedDependences(AA); 417 updatePhiDependences(); 418 Topo.InitDAGTopologicalSorting(); 419 changeDependences(); 420 postprocessDAG(); 421 LLVM_DEBUG(dump()); 422 423 NodeSetType NodeSets; 424 findCircuits(NodeSets); 425 NodeSetType Circuits = NodeSets; 426 427 // Calculate the MII. 428 unsigned ResMII = calculateResMII(); 429 unsigned RecMII = calculateRecMII(NodeSets); 430 431 fuseRecs(NodeSets); 432 433 // This flag is used for testing and can cause correctness problems. 434 if (SwpIgnoreRecMII) 435 RecMII = 0; 436 437 setMII(ResMII, RecMII); 438 setMAX_II(); 439 440 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 441 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 442 443 // Can't schedule a loop without a valid MII. 444 if (MII == 0) { 445 LLVM_DEBUG( 446 dbgs() 447 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 448 NumFailZeroMII++; 449 return; 450 } 451 452 // Don't pipeline large loops. 453 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 454 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 455 << ", we don't pipleline large loops\n"); 456 NumFailLargeMaxMII++; 457 return; 458 } 459 460 computeNodeFunctions(NodeSets); 461 462 registerPressureFilter(NodeSets); 463 464 colocateNodeSets(NodeSets); 465 466 checkNodeSets(NodeSets); 467 468 LLVM_DEBUG({ 469 for (auto &I : NodeSets) { 470 dbgs() << " Rec NodeSet "; 471 I.dump(); 472 } 473 }); 474 475 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 476 477 groupRemainingNodes(NodeSets); 478 479 removeDuplicateNodes(NodeSets); 480 481 LLVM_DEBUG({ 482 for (auto &I : NodeSets) { 483 dbgs() << " NodeSet "; 484 I.dump(); 485 } 486 }); 487 488 computeNodeOrder(NodeSets); 489 490 // check for node order issues 491 checkValidNodeOrder(Circuits); 492 493 SMSchedule Schedule(Pass.MF); 494 Scheduled = schedulePipeline(Schedule); 495 496 if (!Scheduled){ 497 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 498 NumFailNoSchedule++; 499 return; 500 } 501 502 unsigned numStages = Schedule.getMaxStageCount(); 503 // No need to generate pipeline if there are no overlapped iterations. 504 if (numStages == 0) { 505 LLVM_DEBUG( 506 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 507 NumFailZeroStage++; 508 return; 509 } 510 // Check that the maximum stage count is less than user-defined limit. 511 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 512 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 513 << " : too many stages, abort\n"); 514 NumFailLargeMaxStage++; 515 return; 516 } 517 518 generatePipelinedLoop(Schedule); 519 ++NumPipelined; 520 } 521 522 /// Clean up after the software pipeliner runs. 523 void SwingSchedulerDAG::finishBlock() { 524 for (MachineInstr *I : NewMIs) 525 MF.DeleteMachineInstr(I); 526 NewMIs.clear(); 527 528 // Call the superclass. 529 ScheduleDAGInstrs::finishBlock(); 530 } 531 532 /// Return the register values for the operands of a Phi instruction. 533 /// This function assume the instruction is a Phi. 534 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 535 unsigned &InitVal, unsigned &LoopVal) { 536 assert(Phi.isPHI() && "Expecting a Phi."); 537 538 InitVal = 0; 539 LoopVal = 0; 540 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 541 if (Phi.getOperand(i + 1).getMBB() != Loop) 542 InitVal = Phi.getOperand(i).getReg(); 543 else 544 LoopVal = Phi.getOperand(i).getReg(); 545 546 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 547 } 548 549 /// Return the Phi register value that comes from the incoming block. 550 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 551 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 552 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 553 return Phi.getOperand(i).getReg(); 554 return 0; 555 } 556 557 /// Return the Phi register value that comes the loop block. 558 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 559 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 560 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 561 return Phi.getOperand(i).getReg(); 562 return 0; 563 } 564 565 /// Return true if SUb can be reached from SUa following the chain edges. 566 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 567 SmallPtrSet<SUnit *, 8> Visited; 568 SmallVector<SUnit *, 8> Worklist; 569 Worklist.push_back(SUa); 570 while (!Worklist.empty()) { 571 const SUnit *SU = Worklist.pop_back_val(); 572 for (auto &SI : SU->Succs) { 573 SUnit *SuccSU = SI.getSUnit(); 574 if (SI.getKind() == SDep::Order) { 575 if (Visited.count(SuccSU)) 576 continue; 577 if (SuccSU == SUb) 578 return true; 579 Worklist.push_back(SuccSU); 580 Visited.insert(SuccSU); 581 } 582 } 583 } 584 return false; 585 } 586 587 /// Return true if the instruction causes a chain between memory 588 /// references before and after it. 589 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 590 return MI.isCall() || MI.mayRaiseFPException() || 591 MI.hasUnmodeledSideEffects() || 592 (MI.hasOrderedMemoryRef() && 593 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 594 } 595 596 /// Return the underlying objects for the memory references of an instruction. 597 /// This function calls the code in ValueTracking, but first checks that the 598 /// instruction has a memory operand. 599 static void getUnderlyingObjects(const MachineInstr *MI, 600 SmallVectorImpl<const Value *> &Objs, 601 const DataLayout &DL) { 602 if (!MI->hasOneMemOperand()) 603 return; 604 MachineMemOperand *MM = *MI->memoperands_begin(); 605 if (!MM->getValue()) 606 return; 607 GetUnderlyingObjects(MM->getValue(), Objs, DL); 608 for (const Value *V : Objs) { 609 if (!isIdentifiedObject(V)) { 610 Objs.clear(); 611 return; 612 } 613 Objs.push_back(V); 614 } 615 } 616 617 /// Add a chain edge between a load and store if the store can be an 618 /// alias of the load on a subsequent iteration, i.e., a loop carried 619 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 620 /// but that code doesn't create loop carried dependences. 621 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 622 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 623 Value *UnknownValue = 624 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 625 for (auto &SU : SUnits) { 626 MachineInstr &MI = *SU.getInstr(); 627 if (isDependenceBarrier(MI, AA)) 628 PendingLoads.clear(); 629 else if (MI.mayLoad()) { 630 SmallVector<const Value *, 4> Objs; 631 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 632 if (Objs.empty()) 633 Objs.push_back(UnknownValue); 634 for (auto V : Objs) { 635 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 636 SUs.push_back(&SU); 637 } 638 } else if (MI.mayStore()) { 639 SmallVector<const Value *, 4> Objs; 640 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 641 if (Objs.empty()) 642 Objs.push_back(UnknownValue); 643 for (auto V : Objs) { 644 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 645 PendingLoads.find(V); 646 if (I == PendingLoads.end()) 647 continue; 648 for (auto Load : I->second) { 649 if (isSuccOrder(Load, &SU)) 650 continue; 651 MachineInstr &LdMI = *Load->getInstr(); 652 // First, perform the cheaper check that compares the base register. 653 // If they are the same and the load offset is less than the store 654 // offset, then mark the dependence as loop carried potentially. 655 const MachineOperand *BaseOp1, *BaseOp2; 656 int64_t Offset1, Offset2; 657 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 658 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 659 if (BaseOp1->isIdenticalTo(*BaseOp2) && 660 (int)Offset1 < (int)Offset2) { 661 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 662 "What happened to the chain edge?"); 663 SDep Dep(Load, SDep::Barrier); 664 Dep.setLatency(1); 665 SU.addPred(Dep); 666 continue; 667 } 668 } 669 // Second, the more expensive check that uses alias analysis on the 670 // base registers. If they alias, and the load offset is less than 671 // the store offset, the mark the dependence as loop carried. 672 if (!AA) { 673 SDep Dep(Load, SDep::Barrier); 674 Dep.setLatency(1); 675 SU.addPred(Dep); 676 continue; 677 } 678 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 679 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 680 if (!MMO1->getValue() || !MMO2->getValue()) { 681 SDep Dep(Load, SDep::Barrier); 682 Dep.setLatency(1); 683 SU.addPred(Dep); 684 continue; 685 } 686 if (MMO1->getValue() == MMO2->getValue() && 687 MMO1->getOffset() <= MMO2->getOffset()) { 688 SDep Dep(Load, SDep::Barrier); 689 Dep.setLatency(1); 690 SU.addPred(Dep); 691 continue; 692 } 693 AliasResult AAResult = AA->alias( 694 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 695 MMO1->getAAInfo()), 696 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 697 MMO2->getAAInfo())); 698 699 if (AAResult != NoAlias) { 700 SDep Dep(Load, SDep::Barrier); 701 Dep.setLatency(1); 702 SU.addPred(Dep); 703 } 704 } 705 } 706 } 707 } 708 } 709 710 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 711 /// processes dependences for PHIs. This function adds true dependences 712 /// from a PHI to a use, and a loop carried dependence from the use to the 713 /// PHI. The loop carried dependence is represented as an anti dependence 714 /// edge. This function also removes chain dependences between unrelated 715 /// PHIs. 716 void SwingSchedulerDAG::updatePhiDependences() { 717 SmallVector<SDep, 4> RemoveDeps; 718 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 719 720 // Iterate over each DAG node. 721 for (SUnit &I : SUnits) { 722 RemoveDeps.clear(); 723 // Set to true if the instruction has an operand defined by a Phi. 724 unsigned HasPhiUse = 0; 725 unsigned HasPhiDef = 0; 726 MachineInstr *MI = I.getInstr(); 727 // Iterate over each operand, and we process the definitions. 728 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 729 MOE = MI->operands_end(); 730 MOI != MOE; ++MOI) { 731 if (!MOI->isReg()) 732 continue; 733 unsigned Reg = MOI->getReg(); 734 if (MOI->isDef()) { 735 // If the register is used by a Phi, then create an anti dependence. 736 for (MachineRegisterInfo::use_instr_iterator 737 UI = MRI.use_instr_begin(Reg), 738 UE = MRI.use_instr_end(); 739 UI != UE; ++UI) { 740 MachineInstr *UseMI = &*UI; 741 SUnit *SU = getSUnit(UseMI); 742 if (SU != nullptr && UseMI->isPHI()) { 743 if (!MI->isPHI()) { 744 SDep Dep(SU, SDep::Anti, Reg); 745 Dep.setLatency(1); 746 I.addPred(Dep); 747 } else { 748 HasPhiDef = Reg; 749 // Add a chain edge to a dependent Phi that isn't an existing 750 // predecessor. 751 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 752 I.addPred(SDep(SU, SDep::Barrier)); 753 } 754 } 755 } 756 } else if (MOI->isUse()) { 757 // If the register is defined by a Phi, then create a true dependence. 758 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 759 if (DefMI == nullptr) 760 continue; 761 SUnit *SU = getSUnit(DefMI); 762 if (SU != nullptr && DefMI->isPHI()) { 763 if (!MI->isPHI()) { 764 SDep Dep(SU, SDep::Data, Reg); 765 Dep.setLatency(0); 766 ST.adjustSchedDependency(SU, &I, Dep); 767 I.addPred(Dep); 768 } else { 769 HasPhiUse = Reg; 770 // Add a chain edge to a dependent Phi that isn't an existing 771 // predecessor. 772 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 773 I.addPred(SDep(SU, SDep::Barrier)); 774 } 775 } 776 } 777 } 778 // Remove order dependences from an unrelated Phi. 779 if (!SwpPruneDeps) 780 continue; 781 for (auto &PI : I.Preds) { 782 MachineInstr *PMI = PI.getSUnit()->getInstr(); 783 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 784 if (I.getInstr()->isPHI()) { 785 if (PMI->getOperand(0).getReg() == HasPhiUse) 786 continue; 787 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 788 continue; 789 } 790 RemoveDeps.push_back(PI); 791 } 792 } 793 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 794 I.removePred(RemoveDeps[i]); 795 } 796 } 797 798 /// Iterate over each DAG node and see if we can change any dependences 799 /// in order to reduce the recurrence MII. 800 void SwingSchedulerDAG::changeDependences() { 801 // See if an instruction can use a value from the previous iteration. 802 // If so, we update the base and offset of the instruction and change 803 // the dependences. 804 for (SUnit &I : SUnits) { 805 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 806 int64_t NewOffset = 0; 807 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 808 NewOffset)) 809 continue; 810 811 // Get the MI and SUnit for the instruction that defines the original base. 812 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 813 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 814 if (!DefMI) 815 continue; 816 SUnit *DefSU = getSUnit(DefMI); 817 if (!DefSU) 818 continue; 819 // Get the MI and SUnit for the instruction that defins the new base. 820 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 821 if (!LastMI) 822 continue; 823 SUnit *LastSU = getSUnit(LastMI); 824 if (!LastSU) 825 continue; 826 827 if (Topo.IsReachable(&I, LastSU)) 828 continue; 829 830 // Remove the dependence. The value now depends on a prior iteration. 831 SmallVector<SDep, 4> Deps; 832 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 833 ++P) 834 if (P->getSUnit() == DefSU) 835 Deps.push_back(*P); 836 for (int i = 0, e = Deps.size(); i != e; i++) { 837 Topo.RemovePred(&I, Deps[i].getSUnit()); 838 I.removePred(Deps[i]); 839 } 840 // Remove the chain dependence between the instructions. 841 Deps.clear(); 842 for (auto &P : LastSU->Preds) 843 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 844 Deps.push_back(P); 845 for (int i = 0, e = Deps.size(); i != e; i++) { 846 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 847 LastSU->removePred(Deps[i]); 848 } 849 850 // Add a dependence between the new instruction and the instruction 851 // that defines the new base. 852 SDep Dep(&I, SDep::Anti, NewBase); 853 Topo.AddPred(LastSU, &I); 854 LastSU->addPred(Dep); 855 856 // Remember the base and offset information so that we can update the 857 // instruction during code generation. 858 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 859 } 860 } 861 862 namespace { 863 864 // FuncUnitSorter - Comparison operator used to sort instructions by 865 // the number of functional unit choices. 866 struct FuncUnitSorter { 867 const InstrItineraryData *InstrItins; 868 const MCSubtargetInfo *STI; 869 DenseMap<unsigned, unsigned> Resources; 870 871 FuncUnitSorter(const TargetSubtargetInfo &TSI) 872 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 873 874 // Compute the number of functional unit alternatives needed 875 // at each stage, and take the minimum value. We prioritize the 876 // instructions by the least number of choices first. 877 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 878 unsigned SchedClass = Inst->getDesc().getSchedClass(); 879 unsigned min = UINT_MAX; 880 if (InstrItins && !InstrItins->isEmpty()) { 881 for (const InstrStage &IS : 882 make_range(InstrItins->beginStage(SchedClass), 883 InstrItins->endStage(SchedClass))) { 884 unsigned funcUnits = IS.getUnits(); 885 unsigned numAlternatives = countPopulation(funcUnits); 886 if (numAlternatives < min) { 887 min = numAlternatives; 888 F = funcUnits; 889 } 890 } 891 return min; 892 } 893 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 894 const MCSchedClassDesc *SCDesc = 895 STI->getSchedModel().getSchedClassDesc(SchedClass); 896 if (!SCDesc->isValid()) 897 // No valid Schedule Class Desc for schedClass, should be 898 // Pseudo/PostRAPseudo 899 return min; 900 901 for (const MCWriteProcResEntry &PRE : 902 make_range(STI->getWriteProcResBegin(SCDesc), 903 STI->getWriteProcResEnd(SCDesc))) { 904 if (!PRE.Cycles) 905 continue; 906 const MCProcResourceDesc *ProcResource = 907 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 908 unsigned NumUnits = ProcResource->NumUnits; 909 if (NumUnits < min) { 910 min = NumUnits; 911 F = PRE.ProcResourceIdx; 912 } 913 } 914 return min; 915 } 916 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 917 } 918 919 // Compute the critical resources needed by the instruction. This 920 // function records the functional units needed by instructions that 921 // must use only one functional unit. We use this as a tie breaker 922 // for computing the resource MII. The instrutions that require 923 // the same, highly used, functional unit have high priority. 924 void calcCriticalResources(MachineInstr &MI) { 925 unsigned SchedClass = MI.getDesc().getSchedClass(); 926 if (InstrItins && !InstrItins->isEmpty()) { 927 for (const InstrStage &IS : 928 make_range(InstrItins->beginStage(SchedClass), 929 InstrItins->endStage(SchedClass))) { 930 unsigned FuncUnits = IS.getUnits(); 931 if (countPopulation(FuncUnits) == 1) 932 Resources[FuncUnits]++; 933 } 934 return; 935 } 936 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 937 const MCSchedClassDesc *SCDesc = 938 STI->getSchedModel().getSchedClassDesc(SchedClass); 939 if (!SCDesc->isValid()) 940 // No valid Schedule Class Desc for schedClass, should be 941 // Pseudo/PostRAPseudo 942 return; 943 944 for (const MCWriteProcResEntry &PRE : 945 make_range(STI->getWriteProcResBegin(SCDesc), 946 STI->getWriteProcResEnd(SCDesc))) { 947 if (!PRE.Cycles) 948 continue; 949 Resources[PRE.ProcResourceIdx]++; 950 } 951 return; 952 } 953 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 954 } 955 956 /// Return true if IS1 has less priority than IS2. 957 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 958 unsigned F1 = 0, F2 = 0; 959 unsigned MFUs1 = minFuncUnits(IS1, F1); 960 unsigned MFUs2 = minFuncUnits(IS2, F2); 961 if (MFUs1 == 1 && MFUs2 == 1) 962 return Resources.lookup(F1) < Resources.lookup(F2); 963 return MFUs1 > MFUs2; 964 } 965 }; 966 967 } // end anonymous namespace 968 969 /// Calculate the resource constrained minimum initiation interval for the 970 /// specified loop. We use the DFA to model the resources needed for 971 /// each instruction, and we ignore dependences. A different DFA is created 972 /// for each cycle that is required. When adding a new instruction, we attempt 973 /// to add it to each existing DFA, until a legal space is found. If the 974 /// instruction cannot be reserved in an existing DFA, we create a new one. 975 unsigned SwingSchedulerDAG::calculateResMII() { 976 977 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 978 SmallVector<ResourceManager*, 8> Resources; 979 MachineBasicBlock *MBB = Loop.getHeader(); 980 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 981 982 // Sort the instructions by the number of available choices for scheduling, 983 // least to most. Use the number of critical resources as the tie breaker. 984 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 985 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 986 E = MBB->getFirstTerminator(); 987 I != E; ++I) 988 FUS.calcCriticalResources(*I); 989 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 990 FuncUnitOrder(FUS); 991 992 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 993 E = MBB->getFirstTerminator(); 994 I != E; ++I) 995 FuncUnitOrder.push(&*I); 996 997 while (!FuncUnitOrder.empty()) { 998 MachineInstr *MI = FuncUnitOrder.top(); 999 FuncUnitOrder.pop(); 1000 if (TII->isZeroCost(MI->getOpcode())) 1001 continue; 1002 // Attempt to reserve the instruction in an existing DFA. At least one 1003 // DFA is needed for each cycle. 1004 unsigned NumCycles = getSUnit(MI)->Latency; 1005 unsigned ReservedCycles = 0; 1006 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1007 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1008 LLVM_DEBUG({ 1009 dbgs() << "Trying to reserve resource for " << NumCycles 1010 << " cycles for \n"; 1011 MI->dump(); 1012 }); 1013 for (unsigned C = 0; C < NumCycles; ++C) 1014 while (RI != RE) { 1015 if ((*RI++)->canReserveResources(*MI)) { 1016 ++ReservedCycles; 1017 break; 1018 } 1019 } 1020 // Start reserving resources using existing DFAs. 1021 for (unsigned C = 0; C < ReservedCycles; ++C) { 1022 --RI; 1023 (*RI)->reserveResources(*MI); 1024 } 1025 1026 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1027 << ", NumCycles:" << NumCycles << "\n"); 1028 // Add new DFAs, if needed, to reserve resources. 1029 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1030 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1031 << "NewResource created to reserve resources" 1032 << "\n"); 1033 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1034 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1035 NewResource->reserveResources(*MI); 1036 Resources.push_back(NewResource); 1037 } 1038 } 1039 int Resmii = Resources.size(); 1040 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1041 // Delete the memory for each of the DFAs that were created earlier. 1042 for (ResourceManager *RI : Resources) { 1043 ResourceManager *D = RI; 1044 delete D; 1045 } 1046 Resources.clear(); 1047 return Resmii; 1048 } 1049 1050 /// Calculate the recurrence-constrainted minimum initiation interval. 1051 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1052 /// for each circuit. The II needs to satisfy the inequality 1053 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1054 /// II that satisfies the inequality, and the RecMII is the maximum 1055 /// of those values. 1056 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1057 unsigned RecMII = 0; 1058 1059 for (NodeSet &Nodes : NodeSets) { 1060 if (Nodes.empty()) 1061 continue; 1062 1063 unsigned Delay = Nodes.getLatency(); 1064 unsigned Distance = 1; 1065 1066 // ii = ceil(delay / distance) 1067 unsigned CurMII = (Delay + Distance - 1) / Distance; 1068 Nodes.setRecMII(CurMII); 1069 if (CurMII > RecMII) 1070 RecMII = CurMII; 1071 } 1072 1073 return RecMII; 1074 } 1075 1076 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1077 /// but we do this to find the circuits, and then change them back. 1078 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1079 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1080 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1081 SUnit *SU = &SUnits[i]; 1082 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1083 IP != EP; ++IP) { 1084 if (IP->getKind() != SDep::Anti) 1085 continue; 1086 DepsAdded.push_back(std::make_pair(SU, *IP)); 1087 } 1088 } 1089 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1090 E = DepsAdded.end(); 1091 I != E; ++I) { 1092 // Remove this anti dependency and add one in the reverse direction. 1093 SUnit *SU = I->first; 1094 SDep &D = I->second; 1095 SUnit *TargetSU = D.getSUnit(); 1096 unsigned Reg = D.getReg(); 1097 unsigned Lat = D.getLatency(); 1098 SU->removePred(D); 1099 SDep Dep(SU, SDep::Anti, Reg); 1100 Dep.setLatency(Lat); 1101 TargetSU->addPred(Dep); 1102 } 1103 } 1104 1105 /// Create the adjacency structure of the nodes in the graph. 1106 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1107 SwingSchedulerDAG *DAG) { 1108 BitVector Added(SUnits.size()); 1109 DenseMap<int, int> OutputDeps; 1110 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1111 Added.reset(); 1112 // Add any successor to the adjacency matrix and exclude duplicates. 1113 for (auto &SI : SUnits[i].Succs) { 1114 // Only create a back-edge on the first and last nodes of a dependence 1115 // chain. This records any chains and adds them later. 1116 if (SI.getKind() == SDep::Output) { 1117 int N = SI.getSUnit()->NodeNum; 1118 int BackEdge = i; 1119 auto Dep = OutputDeps.find(BackEdge); 1120 if (Dep != OutputDeps.end()) { 1121 BackEdge = Dep->second; 1122 OutputDeps.erase(Dep); 1123 } 1124 OutputDeps[N] = BackEdge; 1125 } 1126 // Do not process a boundary node, an artificial node. 1127 // A back-edge is processed only if it goes to a Phi. 1128 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1129 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1130 continue; 1131 int N = SI.getSUnit()->NodeNum; 1132 if (!Added.test(N)) { 1133 AdjK[i].push_back(N); 1134 Added.set(N); 1135 } 1136 } 1137 // A chain edge between a store and a load is treated as a back-edge in the 1138 // adjacency matrix. 1139 for (auto &PI : SUnits[i].Preds) { 1140 if (!SUnits[i].getInstr()->mayStore() || 1141 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1142 continue; 1143 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1144 int N = PI.getSUnit()->NodeNum; 1145 if (!Added.test(N)) { 1146 AdjK[i].push_back(N); 1147 Added.set(N); 1148 } 1149 } 1150 } 1151 } 1152 // Add back-edges in the adjacency matrix for the output dependences. 1153 for (auto &OD : OutputDeps) 1154 if (!Added.test(OD.second)) { 1155 AdjK[OD.first].push_back(OD.second); 1156 Added.set(OD.second); 1157 } 1158 } 1159 1160 /// Identify an elementary circuit in the dependence graph starting at the 1161 /// specified node. 1162 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1163 bool HasBackedge) { 1164 SUnit *SV = &SUnits[V]; 1165 bool F = false; 1166 Stack.insert(SV); 1167 Blocked.set(V); 1168 1169 for (auto W : AdjK[V]) { 1170 if (NumPaths > MaxPaths) 1171 break; 1172 if (W < S) 1173 continue; 1174 if (W == S) { 1175 if (!HasBackedge) 1176 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1177 F = true; 1178 ++NumPaths; 1179 break; 1180 } else if (!Blocked.test(W)) { 1181 if (circuit(W, S, NodeSets, 1182 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1183 F = true; 1184 } 1185 } 1186 1187 if (F) 1188 unblock(V); 1189 else { 1190 for (auto W : AdjK[V]) { 1191 if (W < S) 1192 continue; 1193 if (B[W].count(SV) == 0) 1194 B[W].insert(SV); 1195 } 1196 } 1197 Stack.pop_back(); 1198 return F; 1199 } 1200 1201 /// Unblock a node in the circuit finding algorithm. 1202 void SwingSchedulerDAG::Circuits::unblock(int U) { 1203 Blocked.reset(U); 1204 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1205 while (!BU.empty()) { 1206 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1207 assert(SI != BU.end() && "Invalid B set."); 1208 SUnit *W = *SI; 1209 BU.erase(W); 1210 if (Blocked.test(W->NodeNum)) 1211 unblock(W->NodeNum); 1212 } 1213 } 1214 1215 /// Identify all the elementary circuits in the dependence graph using 1216 /// Johnson's circuit algorithm. 1217 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1218 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1219 // but we do this to find the circuits, and then change them back. 1220 swapAntiDependences(SUnits); 1221 1222 Circuits Cir(SUnits, Topo); 1223 // Create the adjacency structure. 1224 Cir.createAdjacencyStructure(this); 1225 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1226 Cir.reset(); 1227 Cir.circuit(i, i, NodeSets); 1228 } 1229 1230 // Change the dependences back so that we've created a DAG again. 1231 swapAntiDependences(SUnits); 1232 } 1233 1234 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1235 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1236 // additional copies that are needed across iterations. An artificial dependence 1237 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1238 1239 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1240 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1241 // PHI-------True-Dep------> USEOfPhi 1242 1243 // The mutation creates 1244 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1245 1246 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1247 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1248 // late to avoid additional copies across iterations. The possible scheduling 1249 // order would be 1250 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1251 1252 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1253 for (SUnit &SU : DAG->SUnits) { 1254 // Find the COPY/REG_SEQUENCE instruction. 1255 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1256 continue; 1257 1258 // Record the loop carried PHIs. 1259 SmallVector<SUnit *, 4> PHISUs; 1260 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1261 SmallVector<SUnit *, 4> SrcSUs; 1262 1263 for (auto &Dep : SU.Preds) { 1264 SUnit *TmpSU = Dep.getSUnit(); 1265 MachineInstr *TmpMI = TmpSU->getInstr(); 1266 SDep::Kind DepKind = Dep.getKind(); 1267 // Save the loop carried PHI. 1268 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1269 PHISUs.push_back(TmpSU); 1270 // Save the source of COPY/REG_SEQUENCE. 1271 // If the source has no pre-decessors, we will end up creating cycles. 1272 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1273 SrcSUs.push_back(TmpSU); 1274 } 1275 1276 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1277 continue; 1278 1279 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1280 // SUnit to the container. 1281 SmallVector<SUnit *, 8> UseSUs; 1282 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1283 for (auto &Dep : (*I)->Succs) { 1284 if (Dep.getKind() != SDep::Data) 1285 continue; 1286 1287 SUnit *TmpSU = Dep.getSUnit(); 1288 MachineInstr *TmpMI = TmpSU->getInstr(); 1289 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1290 PHISUs.push_back(TmpSU); 1291 continue; 1292 } 1293 UseSUs.push_back(TmpSU); 1294 } 1295 } 1296 1297 if (UseSUs.size() == 0) 1298 continue; 1299 1300 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1301 // Add the artificial dependencies if it does not form a cycle. 1302 for (auto I : UseSUs) { 1303 for (auto Src : SrcSUs) { 1304 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1305 Src->addPred(SDep(I, SDep::Artificial)); 1306 SDAG->Topo.AddPred(Src, I); 1307 } 1308 } 1309 } 1310 } 1311 } 1312 1313 /// Return true for DAG nodes that we ignore when computing the cost functions. 1314 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1315 /// in the calculation of the ASAP, ALAP, etc functions. 1316 static bool ignoreDependence(const SDep &D, bool isPred) { 1317 if (D.isArtificial()) 1318 return true; 1319 return D.getKind() == SDep::Anti && isPred; 1320 } 1321 1322 /// Compute several functions need to order the nodes for scheduling. 1323 /// ASAP - Earliest time to schedule a node. 1324 /// ALAP - Latest time to schedule a node. 1325 /// MOV - Mobility function, difference between ALAP and ASAP. 1326 /// D - Depth of each node. 1327 /// H - Height of each node. 1328 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1329 ScheduleInfo.resize(SUnits.size()); 1330 1331 LLVM_DEBUG({ 1332 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1333 E = Topo.end(); 1334 I != E; ++I) { 1335 const SUnit &SU = SUnits[*I]; 1336 dumpNode(SU); 1337 } 1338 }); 1339 1340 int maxASAP = 0; 1341 // Compute ASAP and ZeroLatencyDepth. 1342 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1343 E = Topo.end(); 1344 I != E; ++I) { 1345 int asap = 0; 1346 int zeroLatencyDepth = 0; 1347 SUnit *SU = &SUnits[*I]; 1348 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1349 EP = SU->Preds.end(); 1350 IP != EP; ++IP) { 1351 SUnit *pred = IP->getSUnit(); 1352 if (IP->getLatency() == 0) 1353 zeroLatencyDepth = 1354 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1355 if (ignoreDependence(*IP, true)) 1356 continue; 1357 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1358 getDistance(pred, SU, *IP) * MII)); 1359 } 1360 maxASAP = std::max(maxASAP, asap); 1361 ScheduleInfo[*I].ASAP = asap; 1362 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1363 } 1364 1365 // Compute ALAP, ZeroLatencyHeight, and MOV. 1366 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1367 E = Topo.rend(); 1368 I != E; ++I) { 1369 int alap = maxASAP; 1370 int zeroLatencyHeight = 0; 1371 SUnit *SU = &SUnits[*I]; 1372 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1373 ES = SU->Succs.end(); 1374 IS != ES; ++IS) { 1375 SUnit *succ = IS->getSUnit(); 1376 if (IS->getLatency() == 0) 1377 zeroLatencyHeight = 1378 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1379 if (ignoreDependence(*IS, true)) 1380 continue; 1381 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1382 getDistance(SU, succ, *IS) * MII)); 1383 } 1384 1385 ScheduleInfo[*I].ALAP = alap; 1386 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1387 } 1388 1389 // After computing the node functions, compute the summary for each node set. 1390 for (NodeSet &I : NodeSets) 1391 I.computeNodeSetInfo(this); 1392 1393 LLVM_DEBUG({ 1394 for (unsigned i = 0; i < SUnits.size(); i++) { 1395 dbgs() << "\tNode " << i << ":\n"; 1396 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1397 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1398 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1399 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1400 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1401 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1402 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1403 } 1404 }); 1405 } 1406 1407 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1408 /// as the predecessors of the elements of NodeOrder that are not also in 1409 /// NodeOrder. 1410 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1411 SmallSetVector<SUnit *, 8> &Preds, 1412 const NodeSet *S = nullptr) { 1413 Preds.clear(); 1414 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1415 I != E; ++I) { 1416 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1417 PI != PE; ++PI) { 1418 if (S && S->count(PI->getSUnit()) == 0) 1419 continue; 1420 if (ignoreDependence(*PI, true)) 1421 continue; 1422 if (NodeOrder.count(PI->getSUnit()) == 0) 1423 Preds.insert(PI->getSUnit()); 1424 } 1425 // Back-edges are predecessors with an anti-dependence. 1426 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1427 ES = (*I)->Succs.end(); 1428 IS != ES; ++IS) { 1429 if (IS->getKind() != SDep::Anti) 1430 continue; 1431 if (S && S->count(IS->getSUnit()) == 0) 1432 continue; 1433 if (NodeOrder.count(IS->getSUnit()) == 0) 1434 Preds.insert(IS->getSUnit()); 1435 } 1436 } 1437 return !Preds.empty(); 1438 } 1439 1440 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1441 /// as the successors of the elements of NodeOrder that are not also in 1442 /// NodeOrder. 1443 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1444 SmallSetVector<SUnit *, 8> &Succs, 1445 const NodeSet *S = nullptr) { 1446 Succs.clear(); 1447 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1448 I != E; ++I) { 1449 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1450 SI != SE; ++SI) { 1451 if (S && S->count(SI->getSUnit()) == 0) 1452 continue; 1453 if (ignoreDependence(*SI, false)) 1454 continue; 1455 if (NodeOrder.count(SI->getSUnit()) == 0) 1456 Succs.insert(SI->getSUnit()); 1457 } 1458 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1459 PE = (*I)->Preds.end(); 1460 PI != PE; ++PI) { 1461 if (PI->getKind() != SDep::Anti) 1462 continue; 1463 if (S && S->count(PI->getSUnit()) == 0) 1464 continue; 1465 if (NodeOrder.count(PI->getSUnit()) == 0) 1466 Succs.insert(PI->getSUnit()); 1467 } 1468 } 1469 return !Succs.empty(); 1470 } 1471 1472 /// Return true if there is a path from the specified node to any of the nodes 1473 /// in DestNodes. Keep track and return the nodes in any path. 1474 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1475 SetVector<SUnit *> &DestNodes, 1476 SetVector<SUnit *> &Exclude, 1477 SmallPtrSet<SUnit *, 8> &Visited) { 1478 if (Cur->isBoundaryNode()) 1479 return false; 1480 if (Exclude.count(Cur) != 0) 1481 return false; 1482 if (DestNodes.count(Cur) != 0) 1483 return true; 1484 if (!Visited.insert(Cur).second) 1485 return Path.count(Cur) != 0; 1486 bool FoundPath = false; 1487 for (auto &SI : Cur->Succs) 1488 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1489 for (auto &PI : Cur->Preds) 1490 if (PI.getKind() == SDep::Anti) 1491 FoundPath |= 1492 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1493 if (FoundPath) 1494 Path.insert(Cur); 1495 return FoundPath; 1496 } 1497 1498 /// Return true if Set1 is a subset of Set2. 1499 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1500 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1501 if (Set2.count(*I) == 0) 1502 return false; 1503 return true; 1504 } 1505 1506 /// Compute the live-out registers for the instructions in a node-set. 1507 /// The live-out registers are those that are defined in the node-set, 1508 /// but not used. Except for use operands of Phis. 1509 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1510 NodeSet &NS) { 1511 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1512 MachineRegisterInfo &MRI = MF.getRegInfo(); 1513 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1514 SmallSet<unsigned, 4> Uses; 1515 for (SUnit *SU : NS) { 1516 const MachineInstr *MI = SU->getInstr(); 1517 if (MI->isPHI()) 1518 continue; 1519 for (const MachineOperand &MO : MI->operands()) 1520 if (MO.isReg() && MO.isUse()) { 1521 unsigned Reg = MO.getReg(); 1522 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1523 Uses.insert(Reg); 1524 else if (MRI.isAllocatable(Reg)) 1525 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1526 Uses.insert(*Units); 1527 } 1528 } 1529 for (SUnit *SU : NS) 1530 for (const MachineOperand &MO : SU->getInstr()->operands()) 1531 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1532 unsigned Reg = MO.getReg(); 1533 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1534 if (!Uses.count(Reg)) 1535 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1536 LaneBitmask::getNone())); 1537 } else if (MRI.isAllocatable(Reg)) { 1538 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1539 if (!Uses.count(*Units)) 1540 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1541 LaneBitmask::getNone())); 1542 } 1543 } 1544 RPTracker.addLiveRegs(LiveOutRegs); 1545 } 1546 1547 /// A heuristic to filter nodes in recurrent node-sets if the register 1548 /// pressure of a set is too high. 1549 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1550 for (auto &NS : NodeSets) { 1551 // Skip small node-sets since they won't cause register pressure problems. 1552 if (NS.size() <= 2) 1553 continue; 1554 IntervalPressure RecRegPressure; 1555 RegPressureTracker RecRPTracker(RecRegPressure); 1556 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1557 computeLiveOuts(MF, RecRPTracker, NS); 1558 RecRPTracker.closeBottom(); 1559 1560 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1561 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1562 return A->NodeNum > B->NodeNum; 1563 }); 1564 1565 for (auto &SU : SUnits) { 1566 // Since we're computing the register pressure for a subset of the 1567 // instructions in a block, we need to set the tracker for each 1568 // instruction in the node-set. The tracker is set to the instruction 1569 // just after the one we're interested in. 1570 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1571 RecRPTracker.setPos(std::next(CurInstI)); 1572 1573 RegPressureDelta RPDelta; 1574 ArrayRef<PressureChange> CriticalPSets; 1575 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1576 CriticalPSets, 1577 RecRegPressure.MaxSetPressure); 1578 if (RPDelta.Excess.isValid()) { 1579 LLVM_DEBUG( 1580 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1581 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1582 << ":" << RPDelta.Excess.getUnitInc()); 1583 NS.setExceedPressure(SU); 1584 break; 1585 } 1586 RecRPTracker.recede(); 1587 } 1588 } 1589 } 1590 1591 /// A heuristic to colocate node sets that have the same set of 1592 /// successors. 1593 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1594 unsigned Colocate = 0; 1595 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1596 NodeSet &N1 = NodeSets[i]; 1597 SmallSetVector<SUnit *, 8> S1; 1598 if (N1.empty() || !succ_L(N1, S1)) 1599 continue; 1600 for (int j = i + 1; j < e; ++j) { 1601 NodeSet &N2 = NodeSets[j]; 1602 if (N1.compareRecMII(N2) != 0) 1603 continue; 1604 SmallSetVector<SUnit *, 8> S2; 1605 if (N2.empty() || !succ_L(N2, S2)) 1606 continue; 1607 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1608 N1.setColocate(++Colocate); 1609 N2.setColocate(Colocate); 1610 break; 1611 } 1612 } 1613 } 1614 } 1615 1616 /// Check if the existing node-sets are profitable. If not, then ignore the 1617 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1618 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1619 /// then it's best to try to schedule all instructions together instead of 1620 /// starting with the recurrent node-sets. 1621 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1622 // Look for loops with a large MII. 1623 if (MII < 17) 1624 return; 1625 // Check if the node-set contains only a simple add recurrence. 1626 for (auto &NS : NodeSets) { 1627 if (NS.getRecMII() > 2) 1628 return; 1629 if (NS.getMaxDepth() > MII) 1630 return; 1631 } 1632 NodeSets.clear(); 1633 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1634 return; 1635 } 1636 1637 /// Add the nodes that do not belong to a recurrence set into groups 1638 /// based upon connected componenets. 1639 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1640 SetVector<SUnit *> NodesAdded; 1641 SmallPtrSet<SUnit *, 8> Visited; 1642 // Add the nodes that are on a path between the previous node sets and 1643 // the current node set. 1644 for (NodeSet &I : NodeSets) { 1645 SmallSetVector<SUnit *, 8> N; 1646 // Add the nodes from the current node set to the previous node set. 1647 if (succ_L(I, N)) { 1648 SetVector<SUnit *> Path; 1649 for (SUnit *NI : N) { 1650 Visited.clear(); 1651 computePath(NI, Path, NodesAdded, I, Visited); 1652 } 1653 if (!Path.empty()) 1654 I.insert(Path.begin(), Path.end()); 1655 } 1656 // Add the nodes from the previous node set to the current node set. 1657 N.clear(); 1658 if (succ_L(NodesAdded, N)) { 1659 SetVector<SUnit *> Path; 1660 for (SUnit *NI : N) { 1661 Visited.clear(); 1662 computePath(NI, Path, I, NodesAdded, Visited); 1663 } 1664 if (!Path.empty()) 1665 I.insert(Path.begin(), Path.end()); 1666 } 1667 NodesAdded.insert(I.begin(), I.end()); 1668 } 1669 1670 // Create a new node set with the connected nodes of any successor of a node 1671 // in a recurrent set. 1672 NodeSet NewSet; 1673 SmallSetVector<SUnit *, 8> N; 1674 if (succ_L(NodesAdded, N)) 1675 for (SUnit *I : N) 1676 addConnectedNodes(I, NewSet, NodesAdded); 1677 if (!NewSet.empty()) 1678 NodeSets.push_back(NewSet); 1679 1680 // Create a new node set with the connected nodes of any predecessor of a node 1681 // in a recurrent set. 1682 NewSet.clear(); 1683 if (pred_L(NodesAdded, N)) 1684 for (SUnit *I : N) 1685 addConnectedNodes(I, NewSet, NodesAdded); 1686 if (!NewSet.empty()) 1687 NodeSets.push_back(NewSet); 1688 1689 // Create new nodes sets with the connected nodes any remaining node that 1690 // has no predecessor. 1691 for (unsigned i = 0; i < SUnits.size(); ++i) { 1692 SUnit *SU = &SUnits[i]; 1693 if (NodesAdded.count(SU) == 0) { 1694 NewSet.clear(); 1695 addConnectedNodes(SU, NewSet, NodesAdded); 1696 if (!NewSet.empty()) 1697 NodeSets.push_back(NewSet); 1698 } 1699 } 1700 } 1701 1702 /// Add the node to the set, and add all of its connected nodes to the set. 1703 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1704 SetVector<SUnit *> &NodesAdded) { 1705 NewSet.insert(SU); 1706 NodesAdded.insert(SU); 1707 for (auto &SI : SU->Succs) { 1708 SUnit *Successor = SI.getSUnit(); 1709 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1710 addConnectedNodes(Successor, NewSet, NodesAdded); 1711 } 1712 for (auto &PI : SU->Preds) { 1713 SUnit *Predecessor = PI.getSUnit(); 1714 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1715 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1716 } 1717 } 1718 1719 /// Return true if Set1 contains elements in Set2. The elements in common 1720 /// are returned in a different container. 1721 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1722 SmallSetVector<SUnit *, 8> &Result) { 1723 Result.clear(); 1724 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1725 SUnit *SU = Set1[i]; 1726 if (Set2.count(SU) != 0) 1727 Result.insert(SU); 1728 } 1729 return !Result.empty(); 1730 } 1731 1732 /// Merge the recurrence node sets that have the same initial node. 1733 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1734 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1735 ++I) { 1736 NodeSet &NI = *I; 1737 for (NodeSetType::iterator J = I + 1; J != E;) { 1738 NodeSet &NJ = *J; 1739 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1740 if (NJ.compareRecMII(NI) > 0) 1741 NI.setRecMII(NJ.getRecMII()); 1742 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1743 ++NII) 1744 I->insert(*NII); 1745 NodeSets.erase(J); 1746 E = NodeSets.end(); 1747 } else { 1748 ++J; 1749 } 1750 } 1751 } 1752 } 1753 1754 /// Remove nodes that have been scheduled in previous NodeSets. 1755 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1756 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1757 ++I) 1758 for (NodeSetType::iterator J = I + 1; J != E;) { 1759 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1760 1761 if (J->empty()) { 1762 NodeSets.erase(J); 1763 E = NodeSets.end(); 1764 } else { 1765 ++J; 1766 } 1767 } 1768 } 1769 1770 /// Compute an ordered list of the dependence graph nodes, which 1771 /// indicates the order that the nodes will be scheduled. This is a 1772 /// two-level algorithm. First, a partial order is created, which 1773 /// consists of a list of sets ordered from highest to lowest priority. 1774 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1775 SmallSetVector<SUnit *, 8> R; 1776 NodeOrder.clear(); 1777 1778 for (auto &Nodes : NodeSets) { 1779 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1780 OrderKind Order; 1781 SmallSetVector<SUnit *, 8> N; 1782 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1783 R.insert(N.begin(), N.end()); 1784 Order = BottomUp; 1785 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1786 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1787 R.insert(N.begin(), N.end()); 1788 Order = TopDown; 1789 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1790 } else if (isIntersect(N, Nodes, R)) { 1791 // If some of the successors are in the existing node-set, then use the 1792 // top-down ordering. 1793 Order = TopDown; 1794 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1795 } else if (NodeSets.size() == 1) { 1796 for (auto &N : Nodes) 1797 if (N->Succs.size() == 0) 1798 R.insert(N); 1799 Order = BottomUp; 1800 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1801 } else { 1802 // Find the node with the highest ASAP. 1803 SUnit *maxASAP = nullptr; 1804 for (SUnit *SU : Nodes) { 1805 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1806 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1807 maxASAP = SU; 1808 } 1809 R.insert(maxASAP); 1810 Order = BottomUp; 1811 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1812 } 1813 1814 while (!R.empty()) { 1815 if (Order == TopDown) { 1816 // Choose the node with the maximum height. If more than one, choose 1817 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1818 // choose the node with the lowest MOV. 1819 while (!R.empty()) { 1820 SUnit *maxHeight = nullptr; 1821 for (SUnit *I : R) { 1822 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1823 maxHeight = I; 1824 else if (getHeight(I) == getHeight(maxHeight) && 1825 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1826 maxHeight = I; 1827 else if (getHeight(I) == getHeight(maxHeight) && 1828 getZeroLatencyHeight(I) == 1829 getZeroLatencyHeight(maxHeight) && 1830 getMOV(I) < getMOV(maxHeight)) 1831 maxHeight = I; 1832 } 1833 NodeOrder.insert(maxHeight); 1834 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1835 R.remove(maxHeight); 1836 for (const auto &I : maxHeight->Succs) { 1837 if (Nodes.count(I.getSUnit()) == 0) 1838 continue; 1839 if (NodeOrder.count(I.getSUnit()) != 0) 1840 continue; 1841 if (ignoreDependence(I, false)) 1842 continue; 1843 R.insert(I.getSUnit()); 1844 } 1845 // Back-edges are predecessors with an anti-dependence. 1846 for (const auto &I : maxHeight->Preds) { 1847 if (I.getKind() != SDep::Anti) 1848 continue; 1849 if (Nodes.count(I.getSUnit()) == 0) 1850 continue; 1851 if (NodeOrder.count(I.getSUnit()) != 0) 1852 continue; 1853 R.insert(I.getSUnit()); 1854 } 1855 } 1856 Order = BottomUp; 1857 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1858 SmallSetVector<SUnit *, 8> N; 1859 if (pred_L(NodeOrder, N, &Nodes)) 1860 R.insert(N.begin(), N.end()); 1861 } else { 1862 // Choose the node with the maximum depth. If more than one, choose 1863 // the node with the maximum ZeroLatencyDepth. If still more than one, 1864 // choose the node with the lowest MOV. 1865 while (!R.empty()) { 1866 SUnit *maxDepth = nullptr; 1867 for (SUnit *I : R) { 1868 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1869 maxDepth = I; 1870 else if (getDepth(I) == getDepth(maxDepth) && 1871 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1872 maxDepth = I; 1873 else if (getDepth(I) == getDepth(maxDepth) && 1874 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1875 getMOV(I) < getMOV(maxDepth)) 1876 maxDepth = I; 1877 } 1878 NodeOrder.insert(maxDepth); 1879 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1880 R.remove(maxDepth); 1881 if (Nodes.isExceedSU(maxDepth)) { 1882 Order = TopDown; 1883 R.clear(); 1884 R.insert(Nodes.getNode(0)); 1885 break; 1886 } 1887 for (const auto &I : maxDepth->Preds) { 1888 if (Nodes.count(I.getSUnit()) == 0) 1889 continue; 1890 if (NodeOrder.count(I.getSUnit()) != 0) 1891 continue; 1892 R.insert(I.getSUnit()); 1893 } 1894 // Back-edges are predecessors with an anti-dependence. 1895 for (const auto &I : maxDepth->Succs) { 1896 if (I.getKind() != SDep::Anti) 1897 continue; 1898 if (Nodes.count(I.getSUnit()) == 0) 1899 continue; 1900 if (NodeOrder.count(I.getSUnit()) != 0) 1901 continue; 1902 R.insert(I.getSUnit()); 1903 } 1904 } 1905 Order = TopDown; 1906 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1907 SmallSetVector<SUnit *, 8> N; 1908 if (succ_L(NodeOrder, N, &Nodes)) 1909 R.insert(N.begin(), N.end()); 1910 } 1911 } 1912 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1913 } 1914 1915 LLVM_DEBUG({ 1916 dbgs() << "Node order: "; 1917 for (SUnit *I : NodeOrder) 1918 dbgs() << " " << I->NodeNum << " "; 1919 dbgs() << "\n"; 1920 }); 1921 } 1922 1923 /// Process the nodes in the computed order and create the pipelined schedule 1924 /// of the instructions, if possible. Return true if a schedule is found. 1925 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1926 1927 if (NodeOrder.empty()){ 1928 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1929 return false; 1930 } 1931 1932 bool scheduleFound = false; 1933 unsigned II = 0; 1934 // Keep increasing II until a valid schedule is found. 1935 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1936 Schedule.reset(); 1937 Schedule.setInitiationInterval(II); 1938 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1939 1940 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1941 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1942 do { 1943 SUnit *SU = *NI; 1944 1945 // Compute the schedule time for the instruction, which is based 1946 // upon the scheduled time for any predecessors/successors. 1947 int EarlyStart = INT_MIN; 1948 int LateStart = INT_MAX; 1949 // These values are set when the size of the schedule window is limited 1950 // due to chain dependences. 1951 int SchedEnd = INT_MAX; 1952 int SchedStart = INT_MIN; 1953 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1954 II, this); 1955 LLVM_DEBUG({ 1956 dbgs() << "\n"; 1957 dbgs() << "Inst (" << SU->NodeNum << ") "; 1958 SU->getInstr()->dump(); 1959 dbgs() << "\n"; 1960 }); 1961 LLVM_DEBUG({ 1962 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 1963 LateStart, SchedEnd, SchedStart); 1964 }); 1965 1966 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1967 SchedStart > LateStart) 1968 scheduleFound = false; 1969 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1970 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1971 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1972 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1973 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1974 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1975 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1976 SchedEnd = 1977 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1978 // When scheduling a Phi it is better to start at the late cycle and go 1979 // backwards. The default order may insert the Phi too far away from 1980 // its first dependence. 1981 if (SU->getInstr()->isPHI()) 1982 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1983 else 1984 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1985 } else { 1986 int FirstCycle = Schedule.getFirstCycle(); 1987 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1988 FirstCycle + getASAP(SU) + II - 1, II); 1989 } 1990 // Even if we find a schedule, make sure the schedule doesn't exceed the 1991 // allowable number of stages. We keep trying if this happens. 1992 if (scheduleFound) 1993 if (SwpMaxStages > -1 && 1994 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1995 scheduleFound = false; 1996 1997 LLVM_DEBUG({ 1998 if (!scheduleFound) 1999 dbgs() << "\tCan't schedule\n"; 2000 }); 2001 } while (++NI != NE && scheduleFound); 2002 2003 // If a schedule is found, check if it is a valid schedule too. 2004 if (scheduleFound) 2005 scheduleFound = Schedule.isValidSchedule(this); 2006 } 2007 2008 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2009 << ")\n"); 2010 2011 if (scheduleFound) 2012 Schedule.finalizeSchedule(this); 2013 else 2014 Schedule.reset(); 2015 2016 return scheduleFound && Schedule.getMaxStageCount() > 0; 2017 } 2018 2019 /// Given a schedule for the loop, generate a new version of the loop, 2020 /// and replace the old version. This function generates a prolog 2021 /// that contains the initial iterations in the pipeline, and kernel 2022 /// loop, and the epilogue that contains the code for the final 2023 /// iterations. 2024 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2025 // Create a new basic block for the kernel and add it to the CFG. 2026 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2027 2028 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2029 2030 // Remember the registers that are used in different stages. The index is 2031 // the iteration, or stage, that the instruction is scheduled in. This is 2032 // a map between register names in the original block and the names created 2033 // in each stage of the pipelined loop. 2034 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2035 InstrMapTy InstrMap; 2036 2037 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2038 2039 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2040 assert(PreheaderBB != nullptr && 2041 "Need to add code to handle loops w/o preheader"); 2042 // Generate the prolog instructions that set up the pipeline. 2043 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2044 MF.insert(BB->getIterator(), KernelBB); 2045 2046 // Rearrange the instructions to generate the new, pipelined loop, 2047 // and update register names as needed. 2048 for (int Cycle = Schedule.getFirstCycle(), 2049 LastCycle = Schedule.getFinalCycle(); 2050 Cycle <= LastCycle; ++Cycle) { 2051 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2052 // This inner loop schedules each instruction in the cycle. 2053 for (SUnit *CI : CycleInstrs) { 2054 if (CI->getInstr()->isPHI()) 2055 continue; 2056 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2057 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2058 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2059 KernelBB->push_back(NewMI); 2060 InstrMap[NewMI] = CI->getInstr(); 2061 } 2062 } 2063 2064 // Copy any terminator instructions to the new kernel, and update 2065 // names as needed. 2066 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2067 E = BB->instr_end(); 2068 I != E; ++I) { 2069 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2070 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2071 KernelBB->push_back(NewMI); 2072 InstrMap[NewMI] = &*I; 2073 } 2074 2075 KernelBB->transferSuccessors(BB); 2076 KernelBB->replaceSuccessor(BB, KernelBB); 2077 2078 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2079 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2080 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2081 InstrMap, MaxStageCount, MaxStageCount, false); 2082 2083 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2084 2085 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2086 // Generate the epilog instructions to complete the pipeline. 2087 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2088 PrologBBs); 2089 2090 // We need this step because the register allocation doesn't handle some 2091 // situations well, so we insert copies to help out. 2092 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2093 2094 // Remove dead instructions due to loop induction variables. 2095 removeDeadInstructions(KernelBB, EpilogBBs); 2096 2097 // Add branches between prolog and epilog blocks. 2098 addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2099 2100 // Remove the original loop since it's no longer referenced. 2101 for (auto &I : *BB) 2102 LIS.RemoveMachineInstrFromMaps(I); 2103 BB->clear(); 2104 BB->eraseFromParent(); 2105 2106 delete[] VRMap; 2107 } 2108 2109 /// Generate the pipeline prolog code. 2110 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2111 MachineBasicBlock *KernelBB, 2112 ValueMapTy *VRMap, 2113 MBBVectorTy &PrologBBs) { 2114 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2115 assert(PreheaderBB != nullptr && 2116 "Need to add code to handle loops w/o preheader"); 2117 MachineBasicBlock *PredBB = PreheaderBB; 2118 InstrMapTy InstrMap; 2119 2120 // Generate a basic block for each stage, not including the last stage, 2121 // which will be generated in the kernel. Each basic block may contain 2122 // instructions from multiple stages/iterations. 2123 for (unsigned i = 0; i < LastStage; ++i) { 2124 // Create and insert the prolog basic block prior to the original loop 2125 // basic block. The original loop is removed later. 2126 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2127 PrologBBs.push_back(NewBB); 2128 MF.insert(BB->getIterator(), NewBB); 2129 NewBB->transferSuccessors(PredBB); 2130 PredBB->addSuccessor(NewBB); 2131 PredBB = NewBB; 2132 2133 // Generate instructions for each appropriate stage. Process instructions 2134 // in original program order. 2135 for (int StageNum = i; StageNum >= 0; --StageNum) { 2136 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2137 BBE = BB->getFirstTerminator(); 2138 BBI != BBE; ++BBI) { 2139 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2140 if (BBI->isPHI()) 2141 continue; 2142 MachineInstr *NewMI = 2143 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2144 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2145 VRMap); 2146 NewBB->push_back(NewMI); 2147 InstrMap[NewMI] = &*BBI; 2148 } 2149 } 2150 } 2151 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2152 LLVM_DEBUG({ 2153 dbgs() << "prolog:\n"; 2154 NewBB->dump(); 2155 }); 2156 } 2157 2158 PredBB->replaceSuccessor(BB, KernelBB); 2159 2160 // Check if we need to remove the branch from the preheader to the original 2161 // loop, and replace it with a branch to the new loop. 2162 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2163 if (numBranches) { 2164 SmallVector<MachineOperand, 0> Cond; 2165 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2166 } 2167 } 2168 2169 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2170 /// that were started in either the prolog or the kernel. We create a basic 2171 /// block for each stage that needs to complete. 2172 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2173 MachineBasicBlock *KernelBB, 2174 ValueMapTy *VRMap, 2175 MBBVectorTy &EpilogBBs, 2176 MBBVectorTy &PrologBBs) { 2177 // We need to change the branch from the kernel to the first epilog block, so 2178 // this call to analyze branch uses the kernel rather than the original BB. 2179 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2180 SmallVector<MachineOperand, 4> Cond; 2181 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2182 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2183 if (checkBranch) 2184 return; 2185 2186 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2187 if (*LoopExitI == KernelBB) 2188 ++LoopExitI; 2189 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2190 MachineBasicBlock *LoopExitBB = *LoopExitI; 2191 2192 MachineBasicBlock *PredBB = KernelBB; 2193 MachineBasicBlock *EpilogStart = LoopExitBB; 2194 InstrMapTy InstrMap; 2195 2196 // Generate a basic block for each stage, not including the last stage, 2197 // which was generated for the kernel. Each basic block may contain 2198 // instructions from multiple stages/iterations. 2199 int EpilogStage = LastStage + 1; 2200 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2201 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2202 EpilogBBs.push_back(NewBB); 2203 MF.insert(BB->getIterator(), NewBB); 2204 2205 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2206 NewBB->addSuccessor(LoopExitBB); 2207 2208 if (EpilogStart == LoopExitBB) 2209 EpilogStart = NewBB; 2210 2211 // Add instructions to the epilog depending on the current block. 2212 // Process instructions in original program order. 2213 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2214 for (auto &BBI : *BB) { 2215 if (BBI.isPHI()) 2216 continue; 2217 MachineInstr *In = &BBI; 2218 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2219 // Instructions with memoperands in the epilog are updated with 2220 // conservative values. 2221 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2222 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2223 NewBB->push_back(NewMI); 2224 InstrMap[NewMI] = In; 2225 } 2226 } 2227 } 2228 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2229 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2230 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2231 InstrMap, LastStage, EpilogStage, i == 1); 2232 PredBB = NewBB; 2233 2234 LLVM_DEBUG({ 2235 dbgs() << "epilog:\n"; 2236 NewBB->dump(); 2237 }); 2238 } 2239 2240 // Fix any Phi nodes in the loop exit block. 2241 for (MachineInstr &MI : *LoopExitBB) { 2242 if (!MI.isPHI()) 2243 break; 2244 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2245 MachineOperand &MO = MI.getOperand(i); 2246 if (MO.getMBB() == BB) 2247 MO.setMBB(PredBB); 2248 } 2249 } 2250 2251 // Create a branch to the new epilog from the kernel. 2252 // Remove the original branch and add a new branch to the epilog. 2253 TII->removeBranch(*KernelBB); 2254 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2255 // Add a branch to the loop exit. 2256 if (EpilogBBs.size() > 0) { 2257 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2258 SmallVector<MachineOperand, 4> Cond1; 2259 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2260 } 2261 } 2262 2263 /// Replace all uses of FromReg that appear outside the specified 2264 /// basic block with ToReg. 2265 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2266 MachineBasicBlock *MBB, 2267 MachineRegisterInfo &MRI, 2268 LiveIntervals &LIS) { 2269 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2270 E = MRI.use_end(); 2271 I != E;) { 2272 MachineOperand &O = *I; 2273 ++I; 2274 if (O.getParent()->getParent() != MBB) 2275 O.setReg(ToReg); 2276 } 2277 if (!LIS.hasInterval(ToReg)) 2278 LIS.createEmptyInterval(ToReg); 2279 } 2280 2281 /// Return true if the register has a use that occurs outside the 2282 /// specified loop. 2283 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2284 MachineRegisterInfo &MRI) { 2285 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2286 E = MRI.use_end(); 2287 I != E; ++I) 2288 if (I->getParent()->getParent() != BB) 2289 return true; 2290 return false; 2291 } 2292 2293 /// Generate Phis for the specific block in the generated pipelined code. 2294 /// This function looks at the Phis from the original code to guide the 2295 /// creation of new Phis. 2296 void SwingSchedulerDAG::generateExistingPhis( 2297 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2298 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2299 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2300 bool IsLast) { 2301 // Compute the stage number for the initial value of the Phi, which 2302 // comes from the prolog. The prolog to use depends on to which kernel/ 2303 // epilog that we're adding the Phi. 2304 unsigned PrologStage = 0; 2305 unsigned PrevStage = 0; 2306 bool InKernel = (LastStageNum == CurStageNum); 2307 if (InKernel) { 2308 PrologStage = LastStageNum - 1; 2309 PrevStage = CurStageNum; 2310 } else { 2311 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2312 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2313 } 2314 2315 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2316 BBE = BB->getFirstNonPHI(); 2317 BBI != BBE; ++BBI) { 2318 unsigned Def = BBI->getOperand(0).getReg(); 2319 2320 unsigned InitVal = 0; 2321 unsigned LoopVal = 0; 2322 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2323 2324 unsigned PhiOp1 = 0; 2325 // The Phi value from the loop body typically is defined in the loop, but 2326 // not always. So, we need to check if the value is defined in the loop. 2327 unsigned PhiOp2 = LoopVal; 2328 if (VRMap[LastStageNum].count(LoopVal)) 2329 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2330 2331 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2332 int LoopValStage = 2333 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2334 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2335 if (NumStages == 0) { 2336 // We don't need to generate a Phi anymore, but we need to rename any uses 2337 // of the Phi value. 2338 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2339 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2340 Def, InitVal, NewReg); 2341 if (VRMap[CurStageNum].count(LoopVal)) 2342 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2343 } 2344 // Adjust the number of Phis needed depending on the number of prologs left, 2345 // and the distance from where the Phi is first scheduled. The number of 2346 // Phis cannot exceed the number of prolog stages. Each stage can 2347 // potentially define two values. 2348 unsigned MaxPhis = PrologStage + 2; 2349 if (!InKernel && (int)PrologStage <= LoopValStage) 2350 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2351 unsigned NumPhis = std::min(NumStages, MaxPhis); 2352 2353 unsigned NewReg = 0; 2354 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2355 // In the epilog, we may need to look back one stage to get the correct 2356 // Phi name because the epilog and prolog blocks execute the same stage. 2357 // The correct name is from the previous block only when the Phi has 2358 // been completely scheduled prior to the epilog, and Phi value is not 2359 // needed in multiple stages. 2360 int StageDiff = 0; 2361 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2362 NumPhis == 1) 2363 StageDiff = 1; 2364 // Adjust the computations below when the phi and the loop definition 2365 // are scheduled in different stages. 2366 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2367 StageDiff = StageScheduled - LoopValStage; 2368 for (unsigned np = 0; np < NumPhis; ++np) { 2369 // If the Phi hasn't been scheduled, then use the initial Phi operand 2370 // value. Otherwise, use the scheduled version of the instruction. This 2371 // is a little complicated when a Phi references another Phi. 2372 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2373 PhiOp1 = InitVal; 2374 // Check if the Phi has already been scheduled in a prolog stage. 2375 else if (PrologStage >= AccessStage + StageDiff + np && 2376 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2377 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2378 // Check if the Phi has already been scheduled, but the loop instruction 2379 // is either another Phi, or doesn't occur in the loop. 2380 else if (PrologStage >= AccessStage + StageDiff + np) { 2381 // If the Phi references another Phi, we need to examine the other 2382 // Phi to get the correct value. 2383 PhiOp1 = LoopVal; 2384 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2385 int Indirects = 1; 2386 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2387 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2388 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2389 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2390 else 2391 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2392 InstOp1 = MRI.getVRegDef(PhiOp1); 2393 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2394 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2395 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2396 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2397 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2398 break; 2399 } 2400 ++Indirects; 2401 } 2402 } else 2403 PhiOp1 = InitVal; 2404 // If this references a generated Phi in the kernel, get the Phi operand 2405 // from the incoming block. 2406 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2407 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2408 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2409 2410 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2411 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2412 // In the epilog, a map lookup is needed to get the value from the kernel, 2413 // or previous epilog block. How is does this depends on if the 2414 // instruction is scheduled in the previous block. 2415 if (!InKernel) { 2416 int StageDiffAdj = 0; 2417 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2418 StageDiffAdj = StageScheduled - LoopValStage; 2419 // Use the loop value defined in the kernel, unless the kernel 2420 // contains the last definition of the Phi. 2421 if (np == 0 && PrevStage == LastStageNum && 2422 (StageScheduled != 0 || LoopValStage != 0) && 2423 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2424 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2425 // Use the value defined by the Phi. We add one because we switch 2426 // from looking at the loop value to the Phi definition. 2427 else if (np > 0 && PrevStage == LastStageNum && 2428 VRMap[PrevStage - np + 1].count(Def)) 2429 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2430 // Use the loop value defined in the kernel. 2431 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2432 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2433 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2434 // Use the value defined by the Phi, unless we're generating the first 2435 // epilog and the Phi refers to a Phi in a different stage. 2436 else if (VRMap[PrevStage - np].count(Def) && 2437 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2438 PhiOp2 = VRMap[PrevStage - np][Def]; 2439 } 2440 2441 // Check if we can reuse an existing Phi. This occurs when a Phi 2442 // references another Phi, and the other Phi is scheduled in an 2443 // earlier stage. We can try to reuse an existing Phi up until the last 2444 // stage of the current Phi. 2445 if (LoopDefIsPhi) { 2446 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2447 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2448 int StageDiff = (StageScheduled - LoopValStage); 2449 LVNumStages -= StageDiff; 2450 // Make sure the loop value Phi has been processed already. 2451 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2452 NewReg = PhiOp2; 2453 unsigned ReuseStage = CurStageNum; 2454 if (Schedule.isLoopCarried(this, *PhiInst)) 2455 ReuseStage -= LVNumStages; 2456 // Check if the Phi to reuse has been generated yet. If not, then 2457 // there is nothing to reuse. 2458 if (VRMap[ReuseStage - np].count(LoopVal)) { 2459 NewReg = VRMap[ReuseStage - np][LoopVal]; 2460 2461 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2462 &*BBI, Def, NewReg); 2463 // Update the map with the new Phi name. 2464 VRMap[CurStageNum - np][Def] = NewReg; 2465 PhiOp2 = NewReg; 2466 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2467 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2468 2469 if (IsLast && np == NumPhis - 1) 2470 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2471 continue; 2472 } 2473 } 2474 } 2475 if (InKernel && StageDiff > 0 && 2476 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2477 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2478 } 2479 2480 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2481 NewReg = MRI.createVirtualRegister(RC); 2482 2483 MachineInstrBuilder NewPhi = 2484 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2485 TII->get(TargetOpcode::PHI), NewReg); 2486 NewPhi.addReg(PhiOp1).addMBB(BB1); 2487 NewPhi.addReg(PhiOp2).addMBB(BB2); 2488 if (np == 0) 2489 InstrMap[NewPhi] = &*BBI; 2490 2491 // We define the Phis after creating the new pipelined code, so 2492 // we need to rename the Phi values in scheduled instructions. 2493 2494 unsigned PrevReg = 0; 2495 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2496 PrevReg = VRMap[PrevStage - np][LoopVal]; 2497 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2498 Def, NewReg, PrevReg); 2499 // If the Phi has been scheduled, use the new name for rewriting. 2500 if (VRMap[CurStageNum - np].count(Def)) { 2501 unsigned R = VRMap[CurStageNum - np][Def]; 2502 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2503 R, NewReg); 2504 } 2505 2506 // Check if we need to rename any uses that occurs after the loop. The 2507 // register to replace depends on whether the Phi is scheduled in the 2508 // epilog. 2509 if (IsLast && np == NumPhis - 1) 2510 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2511 2512 // In the kernel, a dependent Phi uses the value from this Phi. 2513 if (InKernel) 2514 PhiOp2 = NewReg; 2515 2516 // Update the map with the new Phi name. 2517 VRMap[CurStageNum - np][Def] = NewReg; 2518 } 2519 2520 while (NumPhis++ < NumStages) { 2521 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2522 &*BBI, Def, NewReg, 0); 2523 } 2524 2525 // Check if we need to rename a Phi that has been eliminated due to 2526 // scheduling. 2527 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2528 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2529 } 2530 } 2531 2532 /// Generate Phis for the specified block in the generated pipelined code. 2533 /// These are new Phis needed because the definition is scheduled after the 2534 /// use in the pipelined sequence. 2535 void SwingSchedulerDAG::generatePhis( 2536 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2537 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2538 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2539 bool IsLast) { 2540 // Compute the stage number that contains the initial Phi value, and 2541 // the Phi from the previous stage. 2542 unsigned PrologStage = 0; 2543 unsigned PrevStage = 0; 2544 unsigned StageDiff = CurStageNum - LastStageNum; 2545 bool InKernel = (StageDiff == 0); 2546 if (InKernel) { 2547 PrologStage = LastStageNum - 1; 2548 PrevStage = CurStageNum; 2549 } else { 2550 PrologStage = LastStageNum - StageDiff; 2551 PrevStage = LastStageNum + StageDiff - 1; 2552 } 2553 2554 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2555 BBE = BB->instr_end(); 2556 BBI != BBE; ++BBI) { 2557 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2558 MachineOperand &MO = BBI->getOperand(i); 2559 if (!MO.isReg() || !MO.isDef() || 2560 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2561 continue; 2562 2563 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2564 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2565 unsigned Def = MO.getReg(); 2566 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2567 // An instruction scheduled in stage 0 and is used after the loop 2568 // requires a phi in the epilog for the last definition from either 2569 // the kernel or prolog. 2570 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2571 hasUseAfterLoop(Def, BB, MRI)) 2572 NumPhis = 1; 2573 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2574 continue; 2575 2576 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2577 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2578 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2579 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2580 // The number of Phis can't exceed the number of prolog stages. The 2581 // prolog stage number is zero based. 2582 if (NumPhis > PrologStage + 1 - StageScheduled) 2583 NumPhis = PrologStage + 1 - StageScheduled; 2584 for (unsigned np = 0; np < NumPhis; ++np) { 2585 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2586 if (np <= PrologStage) 2587 PhiOp1 = VRMap[PrologStage - np][Def]; 2588 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2589 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2590 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2591 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2592 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2593 } 2594 if (!InKernel) 2595 PhiOp2 = VRMap[PrevStage - np][Def]; 2596 2597 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2598 unsigned NewReg = MRI.createVirtualRegister(RC); 2599 2600 MachineInstrBuilder NewPhi = 2601 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2602 TII->get(TargetOpcode::PHI), NewReg); 2603 NewPhi.addReg(PhiOp1).addMBB(BB1); 2604 NewPhi.addReg(PhiOp2).addMBB(BB2); 2605 if (np == 0) 2606 InstrMap[NewPhi] = &*BBI; 2607 2608 // Rewrite uses and update the map. The actions depend upon whether 2609 // we generating code for the kernel or epilog blocks. 2610 if (InKernel) { 2611 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2612 &*BBI, PhiOp1, NewReg); 2613 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2614 &*BBI, PhiOp2, NewReg); 2615 2616 PhiOp2 = NewReg; 2617 VRMap[PrevStage - np - 1][Def] = NewReg; 2618 } else { 2619 VRMap[CurStageNum - np][Def] = NewReg; 2620 if (np == NumPhis - 1) 2621 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2622 &*BBI, Def, NewReg); 2623 } 2624 if (IsLast && np == NumPhis - 1) 2625 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2626 } 2627 } 2628 } 2629 } 2630 2631 /// Remove instructions that generate values with no uses. 2632 /// Typically, these are induction variable operations that generate values 2633 /// used in the loop itself. A dead instruction has a definition with 2634 /// no uses, or uses that occur in the original loop only. 2635 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2636 MBBVectorTy &EpilogBBs) { 2637 // For each epilog block, check that the value defined by each instruction 2638 // is used. If not, delete it. 2639 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2640 MBE = EpilogBBs.rend(); 2641 MBB != MBE; ++MBB) 2642 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2643 ME = (*MBB)->instr_rend(); 2644 MI != ME;) { 2645 // From DeadMachineInstructionElem. Don't delete inline assembly. 2646 if (MI->isInlineAsm()) { 2647 ++MI; 2648 continue; 2649 } 2650 bool SawStore = false; 2651 // Check if it's safe to remove the instruction due to side effects. 2652 // We can, and want to, remove Phis here. 2653 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2654 ++MI; 2655 continue; 2656 } 2657 bool used = true; 2658 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2659 MOE = MI->operands_end(); 2660 MOI != MOE; ++MOI) { 2661 if (!MOI->isReg() || !MOI->isDef()) 2662 continue; 2663 unsigned reg = MOI->getReg(); 2664 // Assume physical registers are used, unless they are marked dead. 2665 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2666 used = !MOI->isDead(); 2667 if (used) 2668 break; 2669 continue; 2670 } 2671 unsigned realUses = 0; 2672 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2673 EI = MRI.use_end(); 2674 UI != EI; ++UI) { 2675 // Check if there are any uses that occur only in the original 2676 // loop. If so, that's not a real use. 2677 if (UI->getParent()->getParent() != BB) { 2678 realUses++; 2679 used = true; 2680 break; 2681 } 2682 } 2683 if (realUses > 0) 2684 break; 2685 used = false; 2686 } 2687 if (!used) { 2688 LIS.RemoveMachineInstrFromMaps(*MI); 2689 MI++->eraseFromParent(); 2690 continue; 2691 } 2692 ++MI; 2693 } 2694 // In the kernel block, check if we can remove a Phi that generates a value 2695 // used in an instruction removed in the epilog block. 2696 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2697 BBE = KernelBB->getFirstNonPHI(); 2698 BBI != BBE;) { 2699 MachineInstr *MI = &*BBI; 2700 ++BBI; 2701 unsigned reg = MI->getOperand(0).getReg(); 2702 if (MRI.use_begin(reg) == MRI.use_end()) { 2703 LIS.RemoveMachineInstrFromMaps(*MI); 2704 MI->eraseFromParent(); 2705 } 2706 } 2707 } 2708 2709 /// For loop carried definitions, we split the lifetime of a virtual register 2710 /// that has uses past the definition in the next iteration. A copy with a new 2711 /// virtual register is inserted before the definition, which helps with 2712 /// generating a better register assignment. 2713 /// 2714 /// v1 = phi(a, v2) v1 = phi(a, v2) 2715 /// v2 = phi(b, v3) v2 = phi(b, v3) 2716 /// v3 = .. v4 = copy v1 2717 /// .. = V1 v3 = .. 2718 /// .. = v4 2719 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2720 MBBVectorTy &EpilogBBs, 2721 SMSchedule &Schedule) { 2722 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2723 for (auto &PHI : KernelBB->phis()) { 2724 unsigned Def = PHI.getOperand(0).getReg(); 2725 // Check for any Phi definition that used as an operand of another Phi 2726 // in the same block. 2727 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2728 E = MRI.use_instr_end(); 2729 I != E; ++I) { 2730 if (I->isPHI() && I->getParent() == KernelBB) { 2731 // Get the loop carried definition. 2732 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2733 if (!LCDef) 2734 continue; 2735 MachineInstr *MI = MRI.getVRegDef(LCDef); 2736 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2737 continue; 2738 // Search through the rest of the block looking for uses of the Phi 2739 // definition. If one occurs, then split the lifetime. 2740 unsigned SplitReg = 0; 2741 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2742 KernelBB->instr_end())) 2743 if (BBJ.readsRegister(Def)) { 2744 // We split the lifetime when we find the first use. 2745 if (SplitReg == 0) { 2746 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2747 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2748 TII->get(TargetOpcode::COPY), SplitReg) 2749 .addReg(Def); 2750 } 2751 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2752 } 2753 if (!SplitReg) 2754 continue; 2755 // Search through each of the epilog blocks for any uses to be renamed. 2756 for (auto &Epilog : EpilogBBs) 2757 for (auto &I : *Epilog) 2758 if (I.readsRegister(Def)) 2759 I.substituteRegister(Def, SplitReg, 0, *TRI); 2760 break; 2761 } 2762 } 2763 } 2764 } 2765 2766 /// Remove the incoming block from the Phis in a basic block. 2767 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2768 for (MachineInstr &MI : *BB) { 2769 if (!MI.isPHI()) 2770 break; 2771 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2772 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2773 MI.RemoveOperand(i + 1); 2774 MI.RemoveOperand(i); 2775 break; 2776 } 2777 } 2778 } 2779 2780 /// Create branches from each prolog basic block to the appropriate epilog 2781 /// block. These edges are needed if the loop ends before reaching the 2782 /// kernel. 2783 void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB, 2784 MBBVectorTy &PrologBBs, 2785 MachineBasicBlock *KernelBB, 2786 MBBVectorTy &EpilogBBs, 2787 SMSchedule &Schedule, ValueMapTy *VRMap) { 2788 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2789 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2790 MachineInstr *Cmp = Pass.LI.LoopCompare; 2791 MachineBasicBlock *LastPro = KernelBB; 2792 MachineBasicBlock *LastEpi = KernelBB; 2793 2794 // Start from the blocks connected to the kernel and work "out" 2795 // to the first prolog and the last epilog blocks. 2796 SmallVector<MachineInstr *, 4> PrevInsts; 2797 unsigned MaxIter = PrologBBs.size() - 1; 2798 unsigned LC = UINT_MAX; 2799 unsigned LCMin = UINT_MAX; 2800 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2801 // Add branches to the prolog that go to the corresponding 2802 // epilog, and the fall-thru prolog/kernel block. 2803 MachineBasicBlock *Prolog = PrologBBs[j]; 2804 MachineBasicBlock *Epilog = EpilogBBs[i]; 2805 // We've executed one iteration, so decrement the loop count and check for 2806 // the loop end. 2807 SmallVector<MachineOperand, 4> Cond; 2808 // Check if the LOOP0 has already been removed. If so, then there is no need 2809 // to reduce the trip count. 2810 if (LC != 0) 2811 LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, 2812 PrevInsts, j, MaxIter); 2813 2814 // Record the value of the first trip count, which is used to determine if 2815 // branches and blocks can be removed for constant trip counts. 2816 if (LCMin == UINT_MAX) 2817 LCMin = LC; 2818 2819 unsigned numAdded = 0; 2820 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2821 Prolog->addSuccessor(Epilog); 2822 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2823 } else if (j >= LCMin) { 2824 Prolog->addSuccessor(Epilog); 2825 Prolog->removeSuccessor(LastPro); 2826 LastEpi->removeSuccessor(Epilog); 2827 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2828 removePhis(Epilog, LastEpi); 2829 // Remove the blocks that are no longer referenced. 2830 if (LastPro != LastEpi) { 2831 LastEpi->clear(); 2832 LastEpi->eraseFromParent(); 2833 } 2834 LastPro->clear(); 2835 LastPro->eraseFromParent(); 2836 } else { 2837 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2838 removePhis(Epilog, Prolog); 2839 } 2840 LastPro = Prolog; 2841 LastEpi = Epilog; 2842 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2843 E = Prolog->instr_rend(); 2844 I != E && numAdded > 0; ++I, --numAdded) 2845 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2846 } 2847 } 2848 2849 /// Return true if we can compute the amount the instruction changes 2850 /// during each iteration. Set Delta to the amount of the change. 2851 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2852 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2853 const MachineOperand *BaseOp; 2854 int64_t Offset; 2855 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2856 return false; 2857 2858 if (!BaseOp->isReg()) 2859 return false; 2860 2861 unsigned BaseReg = BaseOp->getReg(); 2862 2863 MachineRegisterInfo &MRI = MF.getRegInfo(); 2864 // Check if there is a Phi. If so, get the definition in the loop. 2865 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2866 if (BaseDef && BaseDef->isPHI()) { 2867 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2868 BaseDef = MRI.getVRegDef(BaseReg); 2869 } 2870 if (!BaseDef) 2871 return false; 2872 2873 int D = 0; 2874 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2875 return false; 2876 2877 Delta = D; 2878 return true; 2879 } 2880 2881 /// Update the memory operand with a new offset when the pipeliner 2882 /// generates a new copy of the instruction that refers to a 2883 /// different memory location. 2884 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2885 MachineInstr &OldMI, unsigned Num) { 2886 if (Num == 0) 2887 return; 2888 // If the instruction has memory operands, then adjust the offset 2889 // when the instruction appears in different stages. 2890 if (NewMI.memoperands_empty()) 2891 return; 2892 SmallVector<MachineMemOperand *, 2> NewMMOs; 2893 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2894 // TODO: Figure out whether isAtomic is really necessary (see D57601). 2895 if (MMO->isVolatile() || MMO->isAtomic() || 2896 (MMO->isInvariant() && MMO->isDereferenceable()) || 2897 (!MMO->getValue())) { 2898 NewMMOs.push_back(MMO); 2899 continue; 2900 } 2901 unsigned Delta; 2902 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2903 int64_t AdjOffset = Delta * Num; 2904 NewMMOs.push_back( 2905 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2906 } else { 2907 NewMMOs.push_back( 2908 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2909 } 2910 } 2911 NewMI.setMemRefs(MF, NewMMOs); 2912 } 2913 2914 /// Clone the instruction for the new pipelined loop and update the 2915 /// memory operands, if needed. 2916 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2917 unsigned CurStageNum, 2918 unsigned InstStageNum) { 2919 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2920 // Check for tied operands in inline asm instructions. This should be handled 2921 // elsewhere, but I'm not sure of the best solution. 2922 if (OldMI->isInlineAsm()) 2923 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2924 const auto &MO = OldMI->getOperand(i); 2925 if (MO.isReg() && MO.isUse()) 2926 break; 2927 unsigned UseIdx; 2928 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2929 NewMI->tieOperands(i, UseIdx); 2930 } 2931 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2932 return NewMI; 2933 } 2934 2935 /// Clone the instruction for the new pipelined loop. If needed, this 2936 /// function updates the instruction using the values saved in the 2937 /// InstrChanges structure. 2938 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2939 unsigned CurStageNum, 2940 unsigned InstStageNum, 2941 SMSchedule &Schedule) { 2942 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2943 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2944 InstrChanges.find(getSUnit(OldMI)); 2945 if (It != InstrChanges.end()) { 2946 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2947 unsigned BasePos, OffsetPos; 2948 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2949 return nullptr; 2950 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2951 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2952 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2953 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2954 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2955 } 2956 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2957 return NewMI; 2958 } 2959 2960 /// Update the machine instruction with new virtual registers. This 2961 /// function may change the defintions and/or uses. 2962 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2963 unsigned CurStageNum, 2964 unsigned InstrStageNum, 2965 SMSchedule &Schedule, 2966 ValueMapTy *VRMap) { 2967 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2968 MachineOperand &MO = NewMI->getOperand(i); 2969 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2970 continue; 2971 unsigned reg = MO.getReg(); 2972 if (MO.isDef()) { 2973 // Create a new virtual register for the definition. 2974 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2975 unsigned NewReg = MRI.createVirtualRegister(RC); 2976 MO.setReg(NewReg); 2977 VRMap[CurStageNum][reg] = NewReg; 2978 if (LastDef) 2979 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2980 } else if (MO.isUse()) { 2981 MachineInstr *Def = MRI.getVRegDef(reg); 2982 // Compute the stage that contains the last definition for instruction. 2983 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2984 unsigned StageNum = CurStageNum; 2985 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2986 // Compute the difference in stages between the defintion and the use. 2987 unsigned StageDiff = (InstrStageNum - DefStageNum); 2988 // Make an adjustment to get the last definition. 2989 StageNum -= StageDiff; 2990 } 2991 if (VRMap[StageNum].count(reg)) 2992 MO.setReg(VRMap[StageNum][reg]); 2993 } 2994 } 2995 } 2996 2997 /// Return the instruction in the loop that defines the register. 2998 /// If the definition is a Phi, then follow the Phi operand to 2999 /// the instruction in the loop. 3000 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3001 SmallPtrSet<MachineInstr *, 8> Visited; 3002 MachineInstr *Def = MRI.getVRegDef(Reg); 3003 while (Def->isPHI()) { 3004 if (!Visited.insert(Def).second) 3005 break; 3006 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3007 if (Def->getOperand(i + 1).getMBB() == BB) { 3008 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3009 break; 3010 } 3011 } 3012 return Def; 3013 } 3014 3015 /// Return the new name for the value from the previous stage. 3016 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3017 unsigned LoopVal, unsigned LoopStage, 3018 ValueMapTy *VRMap, 3019 MachineBasicBlock *BB) { 3020 unsigned PrevVal = 0; 3021 if (StageNum > PhiStage) { 3022 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3023 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3024 // The name is defined in the previous stage. 3025 PrevVal = VRMap[StageNum - 1][LoopVal]; 3026 else if (VRMap[StageNum].count(LoopVal)) 3027 // The previous name is defined in the current stage when the instruction 3028 // order is swapped. 3029 PrevVal = VRMap[StageNum][LoopVal]; 3030 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3031 // The loop value hasn't yet been scheduled. 3032 PrevVal = LoopVal; 3033 else if (StageNum == PhiStage + 1) 3034 // The loop value is another phi, which has not been scheduled. 3035 PrevVal = getInitPhiReg(*LoopInst, BB); 3036 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3037 // The loop value is another phi, which has been scheduled. 3038 PrevVal = 3039 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3040 LoopStage, VRMap, BB); 3041 } 3042 return PrevVal; 3043 } 3044 3045 /// Rewrite the Phi values in the specified block to use the mappings 3046 /// from the initial operand. Once the Phi is scheduled, we switch 3047 /// to using the loop value instead of the Phi value, so those names 3048 /// do not need to be rewritten. 3049 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3050 unsigned StageNum, 3051 SMSchedule &Schedule, 3052 ValueMapTy *VRMap, 3053 InstrMapTy &InstrMap) { 3054 for (auto &PHI : BB->phis()) { 3055 unsigned InitVal = 0; 3056 unsigned LoopVal = 0; 3057 getPhiRegs(PHI, BB, InitVal, LoopVal); 3058 unsigned PhiDef = PHI.getOperand(0).getReg(); 3059 3060 unsigned PhiStage = 3061 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3062 unsigned LoopStage = 3063 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3064 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3065 if (NumPhis > StageNum) 3066 NumPhis = StageNum; 3067 for (unsigned np = 0; np <= NumPhis; ++np) { 3068 unsigned NewVal = 3069 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3070 if (!NewVal) 3071 NewVal = InitVal; 3072 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3073 PhiDef, NewVal); 3074 } 3075 } 3076 } 3077 3078 /// Rewrite a previously scheduled instruction to use the register value 3079 /// from the new instruction. Make sure the instruction occurs in the 3080 /// basic block, and we don't change the uses in the new instruction. 3081 void SwingSchedulerDAG::rewriteScheduledInstr( 3082 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3083 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3084 unsigned NewReg, unsigned PrevReg) { 3085 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3086 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3087 // Rewrite uses that have been scheduled already to use the new 3088 // Phi register. 3089 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3090 EI = MRI.use_end(); 3091 UI != EI;) { 3092 MachineOperand &UseOp = *UI; 3093 MachineInstr *UseMI = UseOp.getParent(); 3094 ++UI; 3095 if (UseMI->getParent() != BB) 3096 continue; 3097 if (UseMI->isPHI()) { 3098 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3099 continue; 3100 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3101 continue; 3102 } 3103 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3104 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3105 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3106 int StageSched = Schedule.stageScheduled(OrigMISU); 3107 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3108 unsigned ReplaceReg = 0; 3109 // This is the stage for the scheduled instruction. 3110 if (StagePhi == StageSched && Phi->isPHI()) { 3111 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3112 if (PrevReg && InProlog) 3113 ReplaceReg = PrevReg; 3114 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3115 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3116 ReplaceReg = PrevReg; 3117 else 3118 ReplaceReg = NewReg; 3119 } 3120 // The scheduled instruction occurs before the scheduled Phi, and the 3121 // Phi is not loop carried. 3122 if (!InProlog && StagePhi + 1 == StageSched && 3123 !Schedule.isLoopCarried(this, *Phi)) 3124 ReplaceReg = NewReg; 3125 if (StagePhi > StageSched && Phi->isPHI()) 3126 ReplaceReg = NewReg; 3127 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3128 ReplaceReg = NewReg; 3129 if (ReplaceReg) { 3130 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3131 UseOp.setReg(ReplaceReg); 3132 } 3133 } 3134 } 3135 3136 /// Check if we can change the instruction to use an offset value from the 3137 /// previous iteration. If so, return true and set the base and offset values 3138 /// so that we can rewrite the load, if necessary. 3139 /// v1 = Phi(v0, v3) 3140 /// v2 = load v1, 0 3141 /// v3 = post_store v1, 4, x 3142 /// This function enables the load to be rewritten as v2 = load v3, 4. 3143 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3144 unsigned &BasePos, 3145 unsigned &OffsetPos, 3146 unsigned &NewBase, 3147 int64_t &Offset) { 3148 // Get the load instruction. 3149 if (TII->isPostIncrement(*MI)) 3150 return false; 3151 unsigned BasePosLd, OffsetPosLd; 3152 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3153 return false; 3154 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3155 3156 // Look for the Phi instruction. 3157 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3158 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3159 if (!Phi || !Phi->isPHI()) 3160 return false; 3161 // Get the register defined in the loop block. 3162 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3163 if (!PrevReg) 3164 return false; 3165 3166 // Check for the post-increment load/store instruction. 3167 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3168 if (!PrevDef || PrevDef == MI) 3169 return false; 3170 3171 if (!TII->isPostIncrement(*PrevDef)) 3172 return false; 3173 3174 unsigned BasePos1 = 0, OffsetPos1 = 0; 3175 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3176 return false; 3177 3178 // Make sure that the instructions do not access the same memory location in 3179 // the next iteration. 3180 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3181 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3182 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3183 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3184 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3185 MF.DeleteMachineInstr(NewMI); 3186 if (!Disjoint) 3187 return false; 3188 3189 // Set the return value once we determine that we return true. 3190 BasePos = BasePosLd; 3191 OffsetPos = OffsetPosLd; 3192 NewBase = PrevReg; 3193 Offset = StoreOffset; 3194 return true; 3195 } 3196 3197 /// Apply changes to the instruction if needed. The changes are need 3198 /// to improve the scheduling and depend up on the final schedule. 3199 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3200 SMSchedule &Schedule) { 3201 SUnit *SU = getSUnit(MI); 3202 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3203 InstrChanges.find(SU); 3204 if (It != InstrChanges.end()) { 3205 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3206 unsigned BasePos, OffsetPos; 3207 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3208 return; 3209 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3210 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3211 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3212 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3213 int BaseStageNum = Schedule.stageScheduled(SU); 3214 int BaseCycleNum = Schedule.cycleScheduled(SU); 3215 if (BaseStageNum < DefStageNum) { 3216 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3217 int OffsetDiff = DefStageNum - BaseStageNum; 3218 if (DefCycleNum < BaseCycleNum) { 3219 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3220 if (OffsetDiff > 0) 3221 --OffsetDiff; 3222 } 3223 int64_t NewOffset = 3224 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3225 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3226 SU->setInstr(NewMI); 3227 MISUnitMap[NewMI] = SU; 3228 NewMIs.insert(NewMI); 3229 } 3230 } 3231 } 3232 3233 /// Return true for an order or output dependence that is loop carried 3234 /// potentially. A dependence is loop carried if the destination defines a valu 3235 /// that may be used or defined by the source in a subsequent iteration. 3236 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3237 bool isSucc) { 3238 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3239 Dep.isArtificial()) 3240 return false; 3241 3242 if (!SwpPruneLoopCarried) 3243 return true; 3244 3245 if (Dep.getKind() == SDep::Output) 3246 return true; 3247 3248 MachineInstr *SI = Source->getInstr(); 3249 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3250 if (!isSucc) 3251 std::swap(SI, DI); 3252 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3253 3254 // Assume ordered loads and stores may have a loop carried dependence. 3255 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3256 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 3257 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3258 return true; 3259 3260 // Only chain dependences between a load and store can be loop carried. 3261 if (!DI->mayStore() || !SI->mayLoad()) 3262 return false; 3263 3264 unsigned DeltaS, DeltaD; 3265 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3266 return true; 3267 3268 const MachineOperand *BaseOpS, *BaseOpD; 3269 int64_t OffsetS, OffsetD; 3270 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3271 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3272 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3273 return true; 3274 3275 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3276 return true; 3277 3278 // Check that the base register is incremented by a constant value for each 3279 // iteration. 3280 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3281 if (!Def || !Def->isPHI()) 3282 return true; 3283 unsigned InitVal = 0; 3284 unsigned LoopVal = 0; 3285 getPhiRegs(*Def, BB, InitVal, LoopVal); 3286 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3287 int D = 0; 3288 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3289 return true; 3290 3291 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3292 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3293 3294 // This is the main test, which checks the offset values and the loop 3295 // increment value to determine if the accesses may be loop carried. 3296 if (AccessSizeS == MemoryLocation::UnknownSize || 3297 AccessSizeD == MemoryLocation::UnknownSize) 3298 return true; 3299 3300 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 3301 return true; 3302 3303 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 3304 } 3305 3306 void SwingSchedulerDAG::postprocessDAG() { 3307 for (auto &M : Mutations) 3308 M->apply(this); 3309 } 3310 3311 /// Try to schedule the node at the specified StartCycle and continue 3312 /// until the node is schedule or the EndCycle is reached. This function 3313 /// returns true if the node is scheduled. This routine may search either 3314 /// forward or backward for a place to insert the instruction based upon 3315 /// the relative values of StartCycle and EndCycle. 3316 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3317 bool forward = true; 3318 LLVM_DEBUG({ 3319 dbgs() << "Trying to insert node between " << StartCycle << " and " 3320 << EndCycle << " II: " << II << "\n"; 3321 }); 3322 if (StartCycle > EndCycle) 3323 forward = false; 3324 3325 // The terminating condition depends on the direction. 3326 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3327 for (int curCycle = StartCycle; curCycle != termCycle; 3328 forward ? ++curCycle : --curCycle) { 3329 3330 // Add the already scheduled instructions at the specified cycle to the 3331 // DFA. 3332 ProcItinResources.clearResources(); 3333 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3334 checkCycle <= LastCycle; checkCycle += II) { 3335 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3336 3337 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3338 E = cycleInstrs.end(); 3339 I != E; ++I) { 3340 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3341 continue; 3342 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 3343 "These instructions have already been scheduled."); 3344 ProcItinResources.reserveResources(*(*I)->getInstr()); 3345 } 3346 } 3347 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3348 ProcItinResources.canReserveResources(*SU->getInstr())) { 3349 LLVM_DEBUG({ 3350 dbgs() << "\tinsert at cycle " << curCycle << " "; 3351 SU->getInstr()->dump(); 3352 }); 3353 3354 ScheduledInstrs[curCycle].push_back(SU); 3355 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3356 if (curCycle > LastCycle) 3357 LastCycle = curCycle; 3358 if (curCycle < FirstCycle) 3359 FirstCycle = curCycle; 3360 return true; 3361 } 3362 LLVM_DEBUG({ 3363 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3364 SU->getInstr()->dump(); 3365 }); 3366 } 3367 return false; 3368 } 3369 3370 // Return the cycle of the earliest scheduled instruction in the chain. 3371 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3372 SmallPtrSet<SUnit *, 8> Visited; 3373 SmallVector<SDep, 8> Worklist; 3374 Worklist.push_back(Dep); 3375 int EarlyCycle = INT_MAX; 3376 while (!Worklist.empty()) { 3377 const SDep &Cur = Worklist.pop_back_val(); 3378 SUnit *PrevSU = Cur.getSUnit(); 3379 if (Visited.count(PrevSU)) 3380 continue; 3381 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3382 if (it == InstrToCycle.end()) 3383 continue; 3384 EarlyCycle = std::min(EarlyCycle, it->second); 3385 for (const auto &PI : PrevSU->Preds) 3386 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3387 Worklist.push_back(PI); 3388 Visited.insert(PrevSU); 3389 } 3390 return EarlyCycle; 3391 } 3392 3393 // Return the cycle of the latest scheduled instruction in the chain. 3394 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3395 SmallPtrSet<SUnit *, 8> Visited; 3396 SmallVector<SDep, 8> Worklist; 3397 Worklist.push_back(Dep); 3398 int LateCycle = INT_MIN; 3399 while (!Worklist.empty()) { 3400 const SDep &Cur = Worklist.pop_back_val(); 3401 SUnit *SuccSU = Cur.getSUnit(); 3402 if (Visited.count(SuccSU)) 3403 continue; 3404 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3405 if (it == InstrToCycle.end()) 3406 continue; 3407 LateCycle = std::max(LateCycle, it->second); 3408 for (const auto &SI : SuccSU->Succs) 3409 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3410 Worklist.push_back(SI); 3411 Visited.insert(SuccSU); 3412 } 3413 return LateCycle; 3414 } 3415 3416 /// If an instruction has a use that spans multiple iterations, then 3417 /// return true. These instructions are characterized by having a back-ege 3418 /// to a Phi, which contains a reference to another Phi. 3419 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3420 for (auto &P : SU->Preds) 3421 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3422 for (auto &S : P.getSUnit()->Succs) 3423 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3424 return P.getSUnit(); 3425 return nullptr; 3426 } 3427 3428 /// Compute the scheduling start slot for the instruction. The start slot 3429 /// depends on any predecessor or successor nodes scheduled already. 3430 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3431 int *MinEnd, int *MaxStart, int II, 3432 SwingSchedulerDAG *DAG) { 3433 // Iterate over each instruction that has been scheduled already. The start 3434 // slot computation depends on whether the previously scheduled instruction 3435 // is a predecessor or successor of the specified instruction. 3436 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3437 3438 // Iterate over each instruction in the current cycle. 3439 for (SUnit *I : getInstructions(cycle)) { 3440 // Because we're processing a DAG for the dependences, we recognize 3441 // the back-edge in recurrences by anti dependences. 3442 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3443 const SDep &Dep = SU->Preds[i]; 3444 if (Dep.getSUnit() == I) { 3445 if (!DAG->isBackedge(SU, Dep)) { 3446 int EarlyStart = cycle + Dep.getLatency() - 3447 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3448 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3449 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3450 int End = earliestCycleInChain(Dep) + (II - 1); 3451 *MinEnd = std::min(*MinEnd, End); 3452 } 3453 } else { 3454 int LateStart = cycle - Dep.getLatency() + 3455 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3456 *MinLateStart = std::min(*MinLateStart, LateStart); 3457 } 3458 } 3459 // For instruction that requires multiple iterations, make sure that 3460 // the dependent instruction is not scheduled past the definition. 3461 SUnit *BE = multipleIterations(I, DAG); 3462 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3463 !SU->isPred(I)) 3464 *MinLateStart = std::min(*MinLateStart, cycle); 3465 } 3466 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3467 if (SU->Succs[i].getSUnit() == I) { 3468 const SDep &Dep = SU->Succs[i]; 3469 if (!DAG->isBackedge(SU, Dep)) { 3470 int LateStart = cycle - Dep.getLatency() + 3471 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3472 *MinLateStart = std::min(*MinLateStart, LateStart); 3473 if (DAG->isLoopCarriedDep(SU, Dep)) { 3474 int Start = latestCycleInChain(Dep) + 1 - II; 3475 *MaxStart = std::max(*MaxStart, Start); 3476 } 3477 } else { 3478 int EarlyStart = cycle + Dep.getLatency() - 3479 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3480 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3481 } 3482 } 3483 } 3484 } 3485 } 3486 } 3487 3488 /// Order the instructions within a cycle so that the definitions occur 3489 /// before the uses. Returns true if the instruction is added to the start 3490 /// of the list, or false if added to the end. 3491 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3492 std::deque<SUnit *> &Insts) { 3493 MachineInstr *MI = SU->getInstr(); 3494 bool OrderBeforeUse = false; 3495 bool OrderAfterDef = false; 3496 bool OrderBeforeDef = false; 3497 unsigned MoveDef = 0; 3498 unsigned MoveUse = 0; 3499 int StageInst1 = stageScheduled(SU); 3500 3501 unsigned Pos = 0; 3502 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3503 ++I, ++Pos) { 3504 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3505 MachineOperand &MO = MI->getOperand(i); 3506 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3507 continue; 3508 3509 unsigned Reg = MO.getReg(); 3510 unsigned BasePos, OffsetPos; 3511 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3512 if (MI->getOperand(BasePos).getReg() == Reg) 3513 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3514 Reg = NewReg; 3515 bool Reads, Writes; 3516 std::tie(Reads, Writes) = 3517 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3518 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3519 OrderBeforeUse = true; 3520 if (MoveUse == 0) 3521 MoveUse = Pos; 3522 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3523 // Add the instruction after the scheduled instruction. 3524 OrderAfterDef = true; 3525 MoveDef = Pos; 3526 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3527 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3528 OrderBeforeUse = true; 3529 if (MoveUse == 0) 3530 MoveUse = Pos; 3531 } else { 3532 OrderAfterDef = true; 3533 MoveDef = Pos; 3534 } 3535 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3536 OrderBeforeUse = true; 3537 if (MoveUse == 0) 3538 MoveUse = Pos; 3539 if (MoveUse != 0) { 3540 OrderAfterDef = true; 3541 MoveDef = Pos - 1; 3542 } 3543 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3544 // Add the instruction before the scheduled instruction. 3545 OrderBeforeUse = true; 3546 if (MoveUse == 0) 3547 MoveUse = Pos; 3548 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3549 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3550 if (MoveUse == 0) { 3551 OrderBeforeDef = true; 3552 MoveUse = Pos; 3553 } 3554 } 3555 } 3556 // Check for order dependences between instructions. Make sure the source 3557 // is ordered before the destination. 3558 for (auto &S : SU->Succs) { 3559 if (S.getSUnit() != *I) 3560 continue; 3561 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3562 OrderBeforeUse = true; 3563 if (Pos < MoveUse) 3564 MoveUse = Pos; 3565 } 3566 } 3567 for (auto &P : SU->Preds) { 3568 if (P.getSUnit() != *I) 3569 continue; 3570 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3571 OrderAfterDef = true; 3572 MoveDef = Pos; 3573 } 3574 } 3575 } 3576 3577 // A circular dependence. 3578 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3579 OrderBeforeUse = false; 3580 3581 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3582 // to a loop-carried dependence. 3583 if (OrderBeforeDef) 3584 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3585 3586 // The uncommon case when the instruction order needs to be updated because 3587 // there is both a use and def. 3588 if (OrderBeforeUse && OrderAfterDef) { 3589 SUnit *UseSU = Insts.at(MoveUse); 3590 SUnit *DefSU = Insts.at(MoveDef); 3591 if (MoveUse > MoveDef) { 3592 Insts.erase(Insts.begin() + MoveUse); 3593 Insts.erase(Insts.begin() + MoveDef); 3594 } else { 3595 Insts.erase(Insts.begin() + MoveDef); 3596 Insts.erase(Insts.begin() + MoveUse); 3597 } 3598 orderDependence(SSD, UseSU, Insts); 3599 orderDependence(SSD, SU, Insts); 3600 orderDependence(SSD, DefSU, Insts); 3601 return; 3602 } 3603 // Put the new instruction first if there is a use in the list. Otherwise, 3604 // put it at the end of the list. 3605 if (OrderBeforeUse) 3606 Insts.push_front(SU); 3607 else 3608 Insts.push_back(SU); 3609 } 3610 3611 /// Return true if the scheduled Phi has a loop carried operand. 3612 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3613 if (!Phi.isPHI()) 3614 return false; 3615 assert(Phi.isPHI() && "Expecting a Phi."); 3616 SUnit *DefSU = SSD->getSUnit(&Phi); 3617 unsigned DefCycle = cycleScheduled(DefSU); 3618 int DefStage = stageScheduled(DefSU); 3619 3620 unsigned InitVal = 0; 3621 unsigned LoopVal = 0; 3622 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3623 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3624 if (!UseSU) 3625 return true; 3626 if (UseSU->getInstr()->isPHI()) 3627 return true; 3628 unsigned LoopCycle = cycleScheduled(UseSU); 3629 int LoopStage = stageScheduled(UseSU); 3630 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3631 } 3632 3633 /// Return true if the instruction is a definition that is loop carried 3634 /// and defines the use on the next iteration. 3635 /// v1 = phi(v2, v3) 3636 /// (Def) v3 = op v1 3637 /// (MO) = v1 3638 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3639 /// register. 3640 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3641 MachineInstr *Def, MachineOperand &MO) { 3642 if (!MO.isReg()) 3643 return false; 3644 if (Def->isPHI()) 3645 return false; 3646 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3647 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3648 return false; 3649 if (!isLoopCarried(SSD, *Phi)) 3650 return false; 3651 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3652 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3653 MachineOperand &DMO = Def->getOperand(i); 3654 if (!DMO.isReg() || !DMO.isDef()) 3655 continue; 3656 if (DMO.getReg() == LoopReg) 3657 return true; 3658 } 3659 return false; 3660 } 3661 3662 // Check if the generated schedule is valid. This function checks if 3663 // an instruction that uses a physical register is scheduled in a 3664 // different stage than the definition. The pipeliner does not handle 3665 // physical register values that may cross a basic block boundary. 3666 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3667 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3668 SUnit &SU = SSD->SUnits[i]; 3669 if (!SU.hasPhysRegDefs) 3670 continue; 3671 int StageDef = stageScheduled(&SU); 3672 assert(StageDef != -1 && "Instruction should have been scheduled."); 3673 for (auto &SI : SU.Succs) 3674 if (SI.isAssignedRegDep()) 3675 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3676 if (stageScheduled(SI.getSUnit()) != StageDef) 3677 return false; 3678 } 3679 return true; 3680 } 3681 3682 /// A property of the node order in swing-modulo-scheduling is 3683 /// that for nodes outside circuits the following holds: 3684 /// none of them is scheduled after both a successor and a 3685 /// predecessor. 3686 /// The method below checks whether the property is met. 3687 /// If not, debug information is printed and statistics information updated. 3688 /// Note that we do not use an assert statement. 3689 /// The reason is that although an invalid node oder may prevent 3690 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3691 /// it does not lead to the generation of incorrect code. 3692 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3693 3694 // a sorted vector that maps each SUnit to its index in the NodeOrder 3695 typedef std::pair<SUnit *, unsigned> UnitIndex; 3696 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3697 3698 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3699 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3700 3701 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3702 return std::get<0>(i1) < std::get<0>(i2); 3703 }; 3704 3705 // sort, so that we can perform a binary search 3706 llvm::sort(Indices, CompareKey); 3707 3708 bool Valid = true; 3709 (void)Valid; 3710 // for each SUnit in the NodeOrder, check whether 3711 // it appears after both a successor and a predecessor 3712 // of the SUnit. If this is the case, and the SUnit 3713 // is not part of circuit, then the NodeOrder is not 3714 // valid. 3715 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3716 SUnit *SU = NodeOrder[i]; 3717 unsigned Index = i; 3718 3719 bool PredBefore = false; 3720 bool SuccBefore = false; 3721 3722 SUnit *Succ; 3723 SUnit *Pred; 3724 (void)Succ; 3725 (void)Pred; 3726 3727 for (SDep &PredEdge : SU->Preds) { 3728 SUnit *PredSU = PredEdge.getSUnit(); 3729 unsigned PredIndex = 3730 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3731 std::make_pair(PredSU, 0), CompareKey)); 3732 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3733 PredBefore = true; 3734 Pred = PredSU; 3735 break; 3736 } 3737 } 3738 3739 for (SDep &SuccEdge : SU->Succs) { 3740 SUnit *SuccSU = SuccEdge.getSUnit(); 3741 // Do not process a boundary node, it was not included in NodeOrder, 3742 // hence not in Indices either, call to std::lower_bound() below will 3743 // return Indices.end(). 3744 if (SuccSU->isBoundaryNode()) 3745 continue; 3746 unsigned SuccIndex = 3747 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3748 std::make_pair(SuccSU, 0), CompareKey)); 3749 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3750 SuccBefore = true; 3751 Succ = SuccSU; 3752 break; 3753 } 3754 } 3755 3756 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3757 // instructions in circuits are allowed to be scheduled 3758 // after both a successor and predecessor. 3759 bool InCircuit = std::any_of( 3760 Circuits.begin(), Circuits.end(), 3761 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3762 if (InCircuit) 3763 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3764 else { 3765 Valid = false; 3766 NumNodeOrderIssues++; 3767 LLVM_DEBUG(dbgs() << "Predecessor ";); 3768 } 3769 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3770 << " are scheduled before node " << SU->NodeNum 3771 << "\n";); 3772 } 3773 } 3774 3775 LLVM_DEBUG({ 3776 if (!Valid) 3777 dbgs() << "Invalid node order found!\n"; 3778 }); 3779 } 3780 3781 /// Attempt to fix the degenerate cases when the instruction serialization 3782 /// causes the register lifetimes to overlap. For example, 3783 /// p' = store_pi(p, b) 3784 /// = load p, offset 3785 /// In this case p and p' overlap, which means that two registers are needed. 3786 /// Instead, this function changes the load to use p' and updates the offset. 3787 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3788 unsigned OverlapReg = 0; 3789 unsigned NewBaseReg = 0; 3790 for (SUnit *SU : Instrs) { 3791 MachineInstr *MI = SU->getInstr(); 3792 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3793 const MachineOperand &MO = MI->getOperand(i); 3794 // Look for an instruction that uses p. The instruction occurs in the 3795 // same cycle but occurs later in the serialized order. 3796 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3797 // Check that the instruction appears in the InstrChanges structure, 3798 // which contains instructions that can have the offset updated. 3799 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3800 InstrChanges.find(SU); 3801 if (It != InstrChanges.end()) { 3802 unsigned BasePos, OffsetPos; 3803 // Update the base register and adjust the offset. 3804 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3805 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3806 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3807 int64_t NewOffset = 3808 MI->getOperand(OffsetPos).getImm() - It->second.second; 3809 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3810 SU->setInstr(NewMI); 3811 MISUnitMap[NewMI] = SU; 3812 NewMIs.insert(NewMI); 3813 } 3814 } 3815 OverlapReg = 0; 3816 NewBaseReg = 0; 3817 break; 3818 } 3819 // Look for an instruction of the form p' = op(p), which uses and defines 3820 // two virtual registers that get allocated to the same physical register. 3821 unsigned TiedUseIdx = 0; 3822 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3823 // OverlapReg is p in the example above. 3824 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3825 // NewBaseReg is p' in the example above. 3826 NewBaseReg = MI->getOperand(i).getReg(); 3827 break; 3828 } 3829 } 3830 } 3831 } 3832 3833 /// After the schedule has been formed, call this function to combine 3834 /// the instructions from the different stages/cycles. That is, this 3835 /// function creates a schedule that represents a single iteration. 3836 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3837 // Move all instructions to the first stage from later stages. 3838 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3839 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3840 ++stage) { 3841 std::deque<SUnit *> &cycleInstrs = 3842 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3843 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3844 E = cycleInstrs.rend(); 3845 I != E; ++I) 3846 ScheduledInstrs[cycle].push_front(*I); 3847 } 3848 } 3849 // Iterate over the definitions in each instruction, and compute the 3850 // stage difference for each use. Keep the maximum value. 3851 for (auto &I : InstrToCycle) { 3852 int DefStage = stageScheduled(I.first); 3853 MachineInstr *MI = I.first->getInstr(); 3854 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3855 MachineOperand &Op = MI->getOperand(i); 3856 if (!Op.isReg() || !Op.isDef()) 3857 continue; 3858 3859 unsigned Reg = Op.getReg(); 3860 unsigned MaxDiff = 0; 3861 bool PhiIsSwapped = false; 3862 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3863 EI = MRI.use_end(); 3864 UI != EI; ++UI) { 3865 MachineOperand &UseOp = *UI; 3866 MachineInstr *UseMI = UseOp.getParent(); 3867 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3868 int UseStage = stageScheduled(SUnitUse); 3869 unsigned Diff = 0; 3870 if (UseStage != -1 && UseStage >= DefStage) 3871 Diff = UseStage - DefStage; 3872 if (MI->isPHI()) { 3873 if (isLoopCarried(SSD, *MI)) 3874 ++Diff; 3875 else 3876 PhiIsSwapped = true; 3877 } 3878 MaxDiff = std::max(Diff, MaxDiff); 3879 } 3880 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3881 } 3882 } 3883 3884 // Erase all the elements in the later stages. Only one iteration should 3885 // remain in the scheduled list, and it contains all the instructions. 3886 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3887 ScheduledInstrs.erase(cycle); 3888 3889 // Change the registers in instruction as specified in the InstrChanges 3890 // map. We need to use the new registers to create the correct order. 3891 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3892 SUnit *SU = &SSD->SUnits[i]; 3893 SSD->applyInstrChange(SU->getInstr(), *this); 3894 } 3895 3896 // Reorder the instructions in each cycle to fix and improve the 3897 // generated code. 3898 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3899 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3900 std::deque<SUnit *> newOrderPhi; 3901 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3902 SUnit *SU = cycleInstrs[i]; 3903 if (SU->getInstr()->isPHI()) 3904 newOrderPhi.push_back(SU); 3905 } 3906 std::deque<SUnit *> newOrderI; 3907 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3908 SUnit *SU = cycleInstrs[i]; 3909 if (!SU->getInstr()->isPHI()) 3910 orderDependence(SSD, SU, newOrderI); 3911 } 3912 // Replace the old order with the new order. 3913 cycleInstrs.swap(newOrderPhi); 3914 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3915 SSD->fixupRegisterOverlaps(cycleInstrs); 3916 } 3917 3918 LLVM_DEBUG(dump();); 3919 } 3920 3921 void NodeSet::print(raw_ostream &os) const { 3922 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3923 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3924 for (const auto &I : Nodes) 3925 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3926 os << "\n"; 3927 } 3928 3929 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3930 /// Print the schedule information to the given output. 3931 void SMSchedule::print(raw_ostream &os) const { 3932 // Iterate over each cycle. 3933 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3934 // Iterate over each instruction in the cycle. 3935 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3936 for (SUnit *CI : cycleInstrs->second) { 3937 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3938 os << "(" << CI->NodeNum << ") "; 3939 CI->getInstr()->print(os); 3940 os << "\n"; 3941 } 3942 } 3943 } 3944 3945 /// Utility function used for debugging to print the schedule. 3946 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3947 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3948 3949 #endif 3950 3951 void ResourceManager::initProcResourceVectors( 3952 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3953 unsigned ProcResourceID = 0; 3954 3955 // We currently limit the resource kinds to 64 and below so that we can use 3956 // uint64_t for Masks 3957 assert(SM.getNumProcResourceKinds() < 64 && 3958 "Too many kinds of resources, unsupported"); 3959 // Create a unique bitmask for every processor resource unit. 3960 // Skip resource at index 0, since it always references 'InvalidUnit'. 3961 Masks.resize(SM.getNumProcResourceKinds()); 3962 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3963 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3964 if (Desc.SubUnitsIdxBegin) 3965 continue; 3966 Masks[I] = 1ULL << ProcResourceID; 3967 ProcResourceID++; 3968 } 3969 // Create a unique bitmask for every processor resource group. 3970 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3971 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3972 if (!Desc.SubUnitsIdxBegin) 3973 continue; 3974 Masks[I] = 1ULL << ProcResourceID; 3975 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3976 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3977 ProcResourceID++; 3978 } 3979 LLVM_DEBUG({ 3980 if (SwpShowResMask) { 3981 dbgs() << "ProcResourceDesc:\n"; 3982 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3983 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3984 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3985 ProcResource->Name, I, Masks[I], 3986 ProcResource->NumUnits); 3987 } 3988 dbgs() << " -----------------\n"; 3989 } 3990 }); 3991 } 3992 3993 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3994 3995 LLVM_DEBUG({ 3996 if (SwpDebugResource) 3997 dbgs() << "canReserveResources:\n"; 3998 }); 3999 if (UseDFA) 4000 return DFAResources->canReserveResources(MID); 4001 4002 unsigned InsnClass = MID->getSchedClass(); 4003 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 4004 if (!SCDesc->isValid()) { 4005 LLVM_DEBUG({ 4006 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 4007 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 4008 }); 4009 return true; 4010 } 4011 4012 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 4013 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 4014 for (; I != E; ++I) { 4015 if (!I->Cycles) 4016 continue; 4017 const MCProcResourceDesc *ProcResource = 4018 SM.getProcResource(I->ProcResourceIdx); 4019 unsigned NumUnits = ProcResource->NumUnits; 4020 LLVM_DEBUG({ 4021 if (SwpDebugResource) 4022 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 4023 ProcResource->Name, I->ProcResourceIdx, 4024 ProcResourceCount[I->ProcResourceIdx], NumUnits, 4025 I->Cycles); 4026 }); 4027 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 4028 return false; 4029 } 4030 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 4031 return true; 4032 } 4033 4034 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 4035 LLVM_DEBUG({ 4036 if (SwpDebugResource) 4037 dbgs() << "reserveResources:\n"; 4038 }); 4039 if (UseDFA) 4040 return DFAResources->reserveResources(MID); 4041 4042 unsigned InsnClass = MID->getSchedClass(); 4043 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 4044 if (!SCDesc->isValid()) { 4045 LLVM_DEBUG({ 4046 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 4047 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 4048 }); 4049 return; 4050 } 4051 for (const MCWriteProcResEntry &PRE : 4052 make_range(STI->getWriteProcResBegin(SCDesc), 4053 STI->getWriteProcResEnd(SCDesc))) { 4054 if (!PRE.Cycles) 4055 continue; 4056 ++ProcResourceCount[PRE.ProcResourceIdx]; 4057 LLVM_DEBUG({ 4058 if (SwpDebugResource) { 4059 const MCProcResourceDesc *ProcResource = 4060 SM.getProcResource(PRE.ProcResourceIdx); 4061 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 4062 ProcResource->Name, PRE.ProcResourceIdx, 4063 ProcResourceCount[PRE.ProcResourceIdx], 4064 ProcResource->NumUnits, PRE.Cycles); 4065 } 4066 }); 4067 } 4068 LLVM_DEBUG({ 4069 if (SwpDebugResource) 4070 dbgs() << "reserveResources: done!\n\n"; 4071 }); 4072 } 4073 4074 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 4075 return canReserveResources(&MI.getDesc()); 4076 } 4077 4078 void ResourceManager::reserveResources(const MachineInstr &MI) { 4079 return reserveResources(&MI.getDesc()); 4080 } 4081 4082 void ResourceManager::clearResources() { 4083 if (UseDFA) 4084 return DFAResources->clearResources(); 4085 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 4086 } 4087 4088