1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/iterator_range.h" 65 #include "llvm/ADT/MapVector.h" 66 #include "llvm/ADT/PriorityQueue.h" 67 #include "llvm/ADT/SetVector.h" 68 #include "llvm/ADT/SmallPtrSet.h" 69 #include "llvm/ADT/SmallSet.h" 70 #include "llvm/ADT/SmallVector.h" 71 #include "llvm/ADT/Statistic.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineInstrBundle.h" 84 #include "llvm/CodeGen/MachineLoopInfo.h" 85 #include "llvm/CodeGen/MachineMemOperand.h" 86 #include "llvm/CodeGen/MachineOperand.h" 87 #include "llvm/CodeGen/MachineRegisterInfo.h" 88 #include "llvm/CodeGen/RegisterClassInfo.h" 89 #include "llvm/CodeGen/RegisterPressure.h" 90 #include "llvm/CodeGen/ScheduleDAG.h" 91 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 92 #include "llvm/CodeGen/ScheduleDAGMutation.h" 93 #include "llvm/IR/Attributes.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/MC/MCInstrItineraries.h" 96 #include "llvm/PassAnalysisSupport.h" 97 #include "llvm/PassRegistry.h" 98 #include "llvm/PassSupport.h" 99 #include "llvm/Support/CommandLine.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetInstrInfo.h" 104 #include "llvm/Target/TargetRegisterInfo.h" 105 #include "llvm/Target/TargetSubtargetInfo.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <climits> 109 #include <cstdint> 110 #include <deque> 111 #include <functional> 112 #include <iterator> 113 #include <map> 114 #include <tuple> 115 #include <utility> 116 #include <vector> 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "pipeliner" 121 122 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 123 STATISTIC(NumPipelined, "Number of loops software pipelined"); 124 125 /// A command line option to turn software pipelining on or off. 126 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Enable Software Pipelining")); 129 130 /// A command line option to enable SWP at -Os. 131 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 132 cl::desc("Enable SWP at Os."), cl::Hidden, 133 cl::init(false)); 134 135 /// A command line argument to limit minimum initial interval for pipelining. 136 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 137 cl::desc("Size limit for the the MII."), 138 cl::Hidden, cl::init(27)); 139 140 /// A command line argument to limit the number of stages in the pipeline. 141 static cl::opt<int> 142 SwpMaxStages("pipeliner-max-stages", 143 cl::desc("Maximum stages allowed in the generated scheduled."), 144 cl::Hidden, cl::init(3)); 145 146 /// A command line option to disable the pruning of chain dependences due to 147 /// an unrelated Phi. 148 static cl::opt<bool> 149 SwpPruneDeps("pipeliner-prune-deps", 150 cl::desc("Prune dependences between unrelated Phi nodes."), 151 cl::Hidden, cl::init(true)); 152 153 /// A command line option to disable the pruning of loop carried order 154 /// dependences. 155 static cl::opt<bool> 156 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 157 cl::desc("Prune loop carried order dependences."), 158 cl::Hidden, cl::init(true)); 159 160 #ifndef NDEBUG 161 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 162 #endif 163 164 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 165 cl::ReallyHidden, cl::init(false), 166 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 167 168 namespace { 169 170 class NodeSet; 171 class SMSchedule; 172 class SwingSchedulerDAG; 173 174 /// The main class in the implementation of the target independent 175 /// software pipeliner pass. 176 class MachinePipeliner : public MachineFunctionPass { 177 public: 178 MachineFunction *MF = nullptr; 179 const MachineLoopInfo *MLI = nullptr; 180 const MachineDominatorTree *MDT = nullptr; 181 const InstrItineraryData *InstrItins; 182 const TargetInstrInfo *TII = nullptr; 183 RegisterClassInfo RegClassInfo; 184 185 #ifndef NDEBUG 186 static int NumTries; 187 #endif 188 /// Cache the target analysis information about the loop. 189 struct LoopInfo { 190 MachineBasicBlock *TBB = nullptr; 191 MachineBasicBlock *FBB = nullptr; 192 SmallVector<MachineOperand, 4> BrCond; 193 MachineInstr *LoopInductionVar = nullptr; 194 MachineInstr *LoopCompare = nullptr; 195 }; 196 LoopInfo LI; 197 198 static char ID; 199 MachinePipeliner() : MachineFunctionPass(ID) { 200 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 201 } 202 203 bool runOnMachineFunction(MachineFunction &MF) override; 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 AU.addRequired<AAResultsWrapperPass>(); 207 AU.addPreserved<AAResultsWrapperPass>(); 208 AU.addRequired<MachineLoopInfo>(); 209 AU.addRequired<MachineDominatorTree>(); 210 AU.addRequired<LiveIntervals>(); 211 MachineFunctionPass::getAnalysisUsage(AU); 212 } 213 214 private: 215 bool canPipelineLoop(MachineLoop &L); 216 bool scheduleLoop(MachineLoop &L); 217 bool swingModuloScheduler(MachineLoop &L); 218 }; 219 220 /// This class builds the dependence graph for the instructions in a loop, 221 /// and attempts to schedule the instructions using the SMS algorithm. 222 class SwingSchedulerDAG : public ScheduleDAGInstrs { 223 MachinePipeliner &Pass; 224 /// The minimum initiation interval between iterations for this schedule. 225 unsigned MII; 226 /// Set to true if a valid pipelined schedule is found for the loop. 227 bool Scheduled; 228 MachineLoop &Loop; 229 LiveIntervals &LIS; 230 const RegisterClassInfo &RegClassInfo; 231 232 /// A toplogical ordering of the SUnits, which is needed for changing 233 /// dependences and iterating over the SUnits. 234 ScheduleDAGTopologicalSort Topo; 235 236 struct NodeInfo { 237 int ASAP; 238 int ALAP; 239 NodeInfo() : ASAP(0), ALAP(0) {} 240 }; 241 /// Computed properties for each node in the graph. 242 std::vector<NodeInfo> ScheduleInfo; 243 244 enum OrderKind { BottomUp = 0, TopDown = 1 }; 245 /// Computed node ordering for scheduling. 246 SetVector<SUnit *> NodeOrder; 247 248 typedef SmallVector<NodeSet, 8> NodeSetType; 249 typedef DenseMap<unsigned, unsigned> ValueMapTy; 250 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy; 251 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy; 252 253 /// Instructions to change when emitting the final schedule. 254 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 255 256 /// We may create a new instruction, so remember it because it 257 /// must be deleted when the pass is finished. 258 SmallPtrSet<MachineInstr *, 4> NewMIs; 259 260 /// Ordered list of DAG postprocessing steps. 261 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 262 263 /// Helper class to implement Johnson's circuit finding algorithm. 264 class Circuits { 265 std::vector<SUnit> &SUnits; 266 SetVector<SUnit *> Stack; 267 BitVector Blocked; 268 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 269 SmallVector<SmallVector<int, 4>, 16> AdjK; 270 unsigned NumPaths; 271 static unsigned MaxPaths; 272 273 public: 274 Circuits(std::vector<SUnit> &SUs) 275 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()), 276 AdjK(SUs.size()) {} 277 /// Reset the data structures used in the circuit algorithm. 278 void reset() { 279 Stack.clear(); 280 Blocked.reset(); 281 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 282 NumPaths = 0; 283 } 284 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 285 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 286 void unblock(int U); 287 }; 288 289 public: 290 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 291 const RegisterClassInfo &rci) 292 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0), 293 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci), 294 Topo(SUnits, &ExitSU) { 295 P.MF->getSubtarget().getSMSMutations(Mutations); 296 } 297 298 void schedule() override; 299 void finishBlock() override; 300 301 /// Return true if the loop kernel has been scheduled. 302 bool hasNewSchedule() { return Scheduled; } 303 304 /// Return the earliest time an instruction may be scheduled. 305 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 306 307 /// Return the latest time an instruction my be scheduled. 308 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 309 310 /// The mobility function, which the the number of slots in which 311 /// an instruction may be scheduled. 312 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 313 314 /// The depth, in the dependence graph, for a node. 315 int getDepth(SUnit *Node) { return Node->getDepth(); } 316 317 /// The height, in the dependence graph, for a node. 318 int getHeight(SUnit *Node) { return Node->getHeight(); } 319 320 /// Return true if the dependence is a back-edge in the data dependence graph. 321 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 322 /// using an anti dependence from a Phi to an instruction. 323 bool isBackedge(SUnit *Source, const SDep &Dep) { 324 if (Dep.getKind() != SDep::Anti) 325 return false; 326 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 327 } 328 329 /// Return true if the dependence is an order dependence between non-Phis. 330 static bool isOrder(SUnit *Source, const SDep &Dep) { 331 if (Dep.getKind() != SDep::Order) 332 return false; 333 return (!Source->getInstr()->isPHI() && 334 !Dep.getSUnit()->getInstr()->isPHI()); 335 } 336 337 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 338 339 /// The latency of the dependence. 340 unsigned getLatency(SUnit *Source, const SDep &Dep) { 341 // Anti dependences represent recurrences, so use the latency of the 342 // instruction on the back-edge. 343 if (Dep.getKind() == SDep::Anti) { 344 if (Source->getInstr()->isPHI()) 345 return Dep.getSUnit()->Latency; 346 if (Dep.getSUnit()->getInstr()->isPHI()) 347 return Source->Latency; 348 return Dep.getLatency(); 349 } 350 return Dep.getLatency(); 351 } 352 353 /// The distance function, which indicates that operation V of iteration I 354 /// depends on operations U of iteration I-distance. 355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 356 // Instructions that feed a Phi have a distance of 1. Computing larger 357 // values for arrays requires data dependence information. 358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 359 return 1; 360 return 0; 361 } 362 363 /// Set the Minimum Initiation Interval for this schedule attempt. 364 void setMII(unsigned mii) { MII = mii; } 365 366 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, 367 bool UpdateDAG = false); 368 369 /// Return the new base register that was stored away for the changed 370 /// instruction. 371 unsigned getInstrBaseReg(SUnit *SU) { 372 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 373 InstrChanges.find(SU); 374 if (It != InstrChanges.end()) 375 return It->second.first; 376 return 0; 377 } 378 379 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 380 Mutations.push_back(std::move(Mutation)); 381 } 382 383 private: 384 void addLoopCarriedDependences(AliasAnalysis *AA); 385 void updatePhiDependences(); 386 void changeDependences(); 387 unsigned calculateResMII(); 388 unsigned calculateRecMII(NodeSetType &RecNodeSets); 389 void findCircuits(NodeSetType &NodeSets); 390 void fuseRecs(NodeSetType &NodeSets); 391 void removeDuplicateNodes(NodeSetType &NodeSets); 392 void computeNodeFunctions(NodeSetType &NodeSets); 393 void registerPressureFilter(NodeSetType &NodeSets); 394 void colocateNodeSets(NodeSetType &NodeSets); 395 void checkNodeSets(NodeSetType &NodeSets); 396 void groupRemainingNodes(NodeSetType &NodeSets); 397 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 398 SetVector<SUnit *> &NodesAdded); 399 void computeNodeOrder(NodeSetType &NodeSets); 400 bool schedulePipeline(SMSchedule &Schedule); 401 void generatePipelinedLoop(SMSchedule &Schedule); 402 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 403 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 404 MBBVectorTy &PrologBBs); 405 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 406 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 407 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 408 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 409 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 410 SMSchedule &Schedule, ValueMapTy *VRMap, 411 InstrMapTy &InstrMap, unsigned LastStageNum, 412 unsigned CurStageNum, bool IsLast); 413 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 414 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 415 SMSchedule &Schedule, ValueMapTy *VRMap, 416 InstrMapTy &InstrMap, unsigned LastStageNum, 417 unsigned CurStageNum, bool IsLast); 418 void removeDeadInstructions(MachineBasicBlock *KernelBB, 419 MBBVectorTy &EpilogBBs); 420 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 421 SMSchedule &Schedule); 422 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 423 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 424 ValueMapTy *VRMap); 425 bool computeDelta(MachineInstr &MI, unsigned &Delta); 426 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 427 unsigned Num); 428 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 429 unsigned InstStageNum); 430 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 431 unsigned InstStageNum, 432 SMSchedule &Schedule); 433 void updateInstruction(MachineInstr *NewMI, bool LastDef, 434 unsigned CurStageNum, unsigned InstStageNum, 435 SMSchedule &Schedule, ValueMapTy *VRMap); 436 MachineInstr *findDefInLoop(unsigned Reg); 437 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 438 unsigned LoopStage, ValueMapTy *VRMap, 439 MachineBasicBlock *BB); 440 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 441 SMSchedule &Schedule, ValueMapTy *VRMap, 442 InstrMapTy &InstrMap); 443 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 444 InstrMapTy &InstrMap, unsigned CurStageNum, 445 unsigned PhiNum, MachineInstr *Phi, 446 unsigned OldReg, unsigned NewReg, 447 unsigned PrevReg = 0); 448 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 449 unsigned &OffsetPos, unsigned &NewBase, 450 int64_t &NewOffset); 451 void postprocessDAG(); 452 }; 453 454 /// A NodeSet contains a set of SUnit DAG nodes with additional information 455 /// that assigns a priority to the set. 456 class NodeSet { 457 SetVector<SUnit *> Nodes; 458 bool HasRecurrence; 459 unsigned RecMII = 0; 460 int MaxMOV = 0; 461 int MaxDepth = 0; 462 unsigned Colocate = 0; 463 SUnit *ExceedPressure = nullptr; 464 465 public: 466 typedef SetVector<SUnit *>::const_iterator iterator; 467 468 NodeSet() : Nodes(), HasRecurrence(false) {} 469 470 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 471 472 bool insert(SUnit *SU) { return Nodes.insert(SU); } 473 474 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 475 476 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 477 return Nodes.remove_if(P); 478 } 479 480 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 481 482 bool hasRecurrence() { return HasRecurrence; }; 483 484 unsigned size() const { return Nodes.size(); } 485 486 bool empty() const { return Nodes.empty(); } 487 488 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 489 490 void setRecMII(unsigned mii) { RecMII = mii; }; 491 492 void setColocate(unsigned c) { Colocate = c; }; 493 494 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 495 496 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 497 498 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 499 500 int getRecMII() { return RecMII; } 501 502 /// Summarize node functions for the entire node set. 503 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 504 for (SUnit *SU : *this) { 505 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 506 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 507 } 508 } 509 510 void clear() { 511 Nodes.clear(); 512 RecMII = 0; 513 HasRecurrence = false; 514 MaxMOV = 0; 515 MaxDepth = 0; 516 Colocate = 0; 517 ExceedPressure = nullptr; 518 } 519 520 operator SetVector<SUnit *> &() { return Nodes; } 521 522 /// Sort the node sets by importance. First, rank them by recurrence MII, 523 /// then by mobility (least mobile done first), and finally by depth. 524 /// Each node set may contain a colocate value which is used as the first 525 /// tie breaker, if it's set. 526 bool operator>(const NodeSet &RHS) const { 527 if (RecMII == RHS.RecMII) { 528 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 529 return Colocate < RHS.Colocate; 530 if (MaxMOV == RHS.MaxMOV) 531 return MaxDepth > RHS.MaxDepth; 532 return MaxMOV < RHS.MaxMOV; 533 } 534 return RecMII > RHS.RecMII; 535 } 536 537 bool operator==(const NodeSet &RHS) const { 538 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 539 MaxDepth == RHS.MaxDepth; 540 } 541 542 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 543 544 iterator begin() { return Nodes.begin(); } 545 iterator end() { return Nodes.end(); } 546 547 void print(raw_ostream &os) const { 548 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 549 << " depth " << MaxDepth << " col " << Colocate << "\n"; 550 for (const auto &I : Nodes) 551 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 552 os << "\n"; 553 } 554 555 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 556 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 557 #endif 558 }; 559 560 /// This class repesents the scheduled code. The main data structure is a 561 /// map from scheduled cycle to instructions. During scheduling, the 562 /// data structure explicitly represents all stages/iterations. When 563 /// the algorithm finshes, the schedule is collapsed into a single stage, 564 /// which represents instructions from different loop iterations. 565 /// 566 /// The SMS algorithm allows negative values for cycles, so the first cycle 567 /// in the schedule is the smallest cycle value. 568 class SMSchedule { 569 private: 570 /// Map from execution cycle to instructions. 571 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 572 573 /// Map from instruction to execution cycle. 574 std::map<SUnit *, int> InstrToCycle; 575 576 /// Map for each register and the max difference between its uses and def. 577 /// The first element in the pair is the max difference in stages. The 578 /// second is true if the register defines a Phi value and loop value is 579 /// scheduled before the Phi. 580 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 581 582 /// Keep track of the first cycle value in the schedule. It starts 583 /// as zero, but the algorithm allows negative values. 584 int FirstCycle; 585 586 /// Keep track of the last cycle value in the schedule. 587 int LastCycle; 588 589 /// The initiation interval (II) for the schedule. 590 int InitiationInterval; 591 592 /// Target machine information. 593 const TargetSubtargetInfo &ST; 594 595 /// Virtual register information. 596 MachineRegisterInfo &MRI; 597 598 std::unique_ptr<DFAPacketizer> Resources; 599 600 public: 601 SMSchedule(MachineFunction *mf) 602 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 603 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) { 604 FirstCycle = 0; 605 LastCycle = 0; 606 InitiationInterval = 0; 607 } 608 609 void reset() { 610 ScheduledInstrs.clear(); 611 InstrToCycle.clear(); 612 RegToStageDiff.clear(); 613 FirstCycle = 0; 614 LastCycle = 0; 615 InitiationInterval = 0; 616 } 617 618 /// Set the initiation interval for this schedule. 619 void setInitiationInterval(int ii) { InitiationInterval = ii; } 620 621 /// Return the first cycle in the completed schedule. This 622 /// can be a negative value. 623 int getFirstCycle() const { return FirstCycle; } 624 625 /// Return the last cycle in the finalized schedule. 626 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 627 628 /// Return the cycle of the earliest scheduled instruction in the dependence 629 /// chain. 630 int earliestCycleInChain(const SDep &Dep); 631 632 /// Return the cycle of the latest scheduled instruction in the dependence 633 /// chain. 634 int latestCycleInChain(const SDep &Dep); 635 636 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 637 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 638 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 639 640 /// Iterators for the cycle to instruction map. 641 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator; 642 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator 643 const_sched_iterator; 644 645 /// Return true if the instruction is scheduled at the specified stage. 646 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 647 return (stageScheduled(SU) == (int)StageNum); 648 } 649 650 /// Return the stage for a scheduled instruction. Return -1 if 651 /// the instruction has not been scheduled. 652 int stageScheduled(SUnit *SU) const { 653 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 654 if (it == InstrToCycle.end()) 655 return -1; 656 return (it->second - FirstCycle) / InitiationInterval; 657 } 658 659 /// Return the cycle for a scheduled instruction. This function normalizes 660 /// the first cycle to be 0. 661 unsigned cycleScheduled(SUnit *SU) const { 662 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 663 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 664 return (it->second - FirstCycle) % InitiationInterval; 665 } 666 667 /// Return the maximum stage count needed for this schedule. 668 unsigned getMaxStageCount() { 669 return (LastCycle - FirstCycle) / InitiationInterval; 670 } 671 672 /// Return the max. number of stages/iterations that can occur between a 673 /// register definition and its uses. 674 unsigned getStagesForReg(int Reg, unsigned CurStage) { 675 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 676 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 677 return 1; 678 return Stages.first; 679 } 680 681 /// The number of stages for a Phi is a little different than other 682 /// instructions. The minimum value computed in RegToStageDiff is 1 683 /// because we assume the Phi is needed for at least 1 iteration. 684 /// This is not the case if the loop value is scheduled prior to the 685 /// Phi in the same stage. This function returns the number of stages 686 /// or iterations needed between the Phi definition and any uses. 687 unsigned getStagesForPhi(int Reg) { 688 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 689 if (Stages.second) 690 return Stages.first; 691 return Stages.first - 1; 692 } 693 694 /// Return the instructions that are scheduled at the specified cycle. 695 std::deque<SUnit *> &getInstructions(int cycle) { 696 return ScheduledInstrs[cycle]; 697 } 698 699 bool isValidSchedule(SwingSchedulerDAG *SSD); 700 void finalizeSchedule(SwingSchedulerDAG *SSD); 701 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 702 std::deque<SUnit *> &Insts); 703 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 704 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 705 MachineOperand &MO); 706 void print(raw_ostream &os) const; 707 void dump() const; 708 }; 709 710 } // end anonymous namespace 711 712 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 713 char MachinePipeliner::ID = 0; 714 #ifndef NDEBUG 715 int MachinePipeliner::NumTries = 0; 716 #endif 717 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 718 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner", 719 "Modulo Software Pipelining", false, false) 720 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 721 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 722 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 723 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 724 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner", 725 "Modulo Software Pipelining", false, false) 726 727 /// The "main" function for implementing Swing Modulo Scheduling. 728 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 729 if (skipFunction(*mf.getFunction())) 730 return false; 731 732 if (!EnableSWP) 733 return false; 734 735 if (mf.getFunction()->getAttributes().hasAttribute( 736 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 737 !EnableSWPOptSize.getPosition()) 738 return false; 739 740 MF = &mf; 741 MLI = &getAnalysis<MachineLoopInfo>(); 742 MDT = &getAnalysis<MachineDominatorTree>(); 743 TII = MF->getSubtarget().getInstrInfo(); 744 RegClassInfo.runOnMachineFunction(*MF); 745 746 for (auto &L : *MLI) 747 scheduleLoop(*L); 748 749 return false; 750 } 751 752 /// Attempt to perform the SMS algorithm on the specified loop. This function is 753 /// the main entry point for the algorithm. The function identifies candidate 754 /// loops, calculates the minimum initiation interval, and attempts to schedule 755 /// the loop. 756 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 757 bool Changed = false; 758 for (auto &InnerLoop : L) 759 Changed |= scheduleLoop(*InnerLoop); 760 761 #ifndef NDEBUG 762 // Stop trying after reaching the limit (if any). 763 int Limit = SwpLoopLimit; 764 if (Limit >= 0) { 765 if (NumTries >= SwpLoopLimit) 766 return Changed; 767 NumTries++; 768 } 769 #endif 770 771 if (!canPipelineLoop(L)) 772 return Changed; 773 774 ++NumTrytoPipeline; 775 776 Changed = swingModuloScheduler(L); 777 778 return Changed; 779 } 780 781 /// Return true if the loop can be software pipelined. The algorithm is 782 /// restricted to loops with a single basic block. Make sure that the 783 /// branch in the loop can be analyzed. 784 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 785 if (L.getNumBlocks() != 1) 786 return false; 787 788 // Check if the branch can't be understood because we can't do pipelining 789 // if that's the case. 790 LI.TBB = nullptr; 791 LI.FBB = nullptr; 792 LI.BrCond.clear(); 793 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 794 return false; 795 796 LI.LoopInductionVar = nullptr; 797 LI.LoopCompare = nullptr; 798 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 799 return false; 800 801 if (!L.getLoopPreheader()) 802 return false; 803 804 // If any of the Phis contain subregs, then we can't pipeline 805 // because we don't know how to maintain subreg information in the 806 // VMap structure. 807 MachineBasicBlock *MBB = L.getHeader(); 808 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 809 BBE = MBB->getFirstNonPHI(); 810 BBI != BBE; ++BBI) 811 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 812 if (BBI->getOperand(i).getSubReg() != 0) 813 return false; 814 815 return true; 816 } 817 818 /// The SMS algorithm consists of the following main steps: 819 /// 1. Computation and analysis of the dependence graph. 820 /// 2. Ordering of the nodes (instructions). 821 /// 3. Attempt to Schedule the loop. 822 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 823 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 824 825 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 826 827 MachineBasicBlock *MBB = L.getHeader(); 828 // The kernel should not include any terminator instructions. These 829 // will be added back later. 830 SMS.startBlock(MBB); 831 832 // Compute the number of 'real' instructions in the basic block by 833 // ignoring terminators. 834 unsigned size = MBB->size(); 835 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 836 E = MBB->instr_end(); 837 I != E; ++I, --size) 838 ; 839 840 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 841 SMS.schedule(); 842 SMS.exitRegion(); 843 844 SMS.finishBlock(); 845 return SMS.hasNewSchedule(); 846 } 847 848 /// We override the schedule function in ScheduleDAGInstrs to implement the 849 /// scheduling part of the Swing Modulo Scheduling algorithm. 850 void SwingSchedulerDAG::schedule() { 851 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 852 buildSchedGraph(AA); 853 addLoopCarriedDependences(AA); 854 updatePhiDependences(); 855 Topo.InitDAGTopologicalSorting(); 856 postprocessDAG(); 857 changeDependences(); 858 DEBUG({ 859 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 860 SUnits[su].dumpAll(this); 861 }); 862 863 NodeSetType NodeSets; 864 findCircuits(NodeSets); 865 866 // Calculate the MII. 867 unsigned ResMII = calculateResMII(); 868 unsigned RecMII = calculateRecMII(NodeSets); 869 870 fuseRecs(NodeSets); 871 872 // This flag is used for testing and can cause correctness problems. 873 if (SwpIgnoreRecMII) 874 RecMII = 0; 875 876 MII = std::max(ResMII, RecMII); 877 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 878 << ")\n"); 879 880 // Can't schedule a loop without a valid MII. 881 if (MII == 0) 882 return; 883 884 // Don't pipeline large loops. 885 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 886 return; 887 888 computeNodeFunctions(NodeSets); 889 890 registerPressureFilter(NodeSets); 891 892 colocateNodeSets(NodeSets); 893 894 checkNodeSets(NodeSets); 895 896 DEBUG({ 897 for (auto &I : NodeSets) { 898 dbgs() << " Rec NodeSet "; 899 I.dump(); 900 } 901 }); 902 903 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 904 905 groupRemainingNodes(NodeSets); 906 907 removeDuplicateNodes(NodeSets); 908 909 DEBUG({ 910 for (auto &I : NodeSets) { 911 dbgs() << " NodeSet "; 912 I.dump(); 913 } 914 }); 915 916 computeNodeOrder(NodeSets); 917 918 SMSchedule Schedule(Pass.MF); 919 Scheduled = schedulePipeline(Schedule); 920 921 if (!Scheduled) 922 return; 923 924 unsigned numStages = Schedule.getMaxStageCount(); 925 // No need to generate pipeline if there are no overlapped iterations. 926 if (numStages == 0) 927 return; 928 929 // Check that the maximum stage count is less than user-defined limit. 930 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 931 return; 932 933 generatePipelinedLoop(Schedule); 934 ++NumPipelined; 935 } 936 937 /// Clean up after the software pipeliner runs. 938 void SwingSchedulerDAG::finishBlock() { 939 for (MachineInstr *I : NewMIs) 940 MF.DeleteMachineInstr(I); 941 NewMIs.clear(); 942 943 // Call the superclass. 944 ScheduleDAGInstrs::finishBlock(); 945 } 946 947 /// Return the register values for the operands of a Phi instruction. 948 /// This function assume the instruction is a Phi. 949 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 950 unsigned &InitVal, unsigned &LoopVal) { 951 assert(Phi.isPHI() && "Expecting a Phi."); 952 953 InitVal = 0; 954 LoopVal = 0; 955 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 956 if (Phi.getOperand(i + 1).getMBB() != Loop) 957 InitVal = Phi.getOperand(i).getReg(); 958 else 959 LoopVal = Phi.getOperand(i).getReg(); 960 961 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 962 } 963 964 /// Return the Phi register value that comes from the incoming block. 965 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 966 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 967 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 968 return Phi.getOperand(i).getReg(); 969 return 0; 970 } 971 972 /// Return the Phi register value that comes the the loop block. 973 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 974 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 975 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 976 return Phi.getOperand(i).getReg(); 977 return 0; 978 } 979 980 /// Return true if SUb can be reached from SUa following the chain edges. 981 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 982 SmallPtrSet<SUnit *, 8> Visited; 983 SmallVector<SUnit *, 8> Worklist; 984 Worklist.push_back(SUa); 985 while (!Worklist.empty()) { 986 const SUnit *SU = Worklist.pop_back_val(); 987 for (auto &SI : SU->Succs) { 988 SUnit *SuccSU = SI.getSUnit(); 989 if (SI.getKind() == SDep::Order) { 990 if (Visited.count(SuccSU)) 991 continue; 992 if (SuccSU == SUb) 993 return true; 994 Worklist.push_back(SuccSU); 995 Visited.insert(SuccSU); 996 } 997 } 998 } 999 return false; 1000 } 1001 1002 /// Return true if the instruction causes a chain between memory 1003 /// references before and after it. 1004 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1005 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1006 (MI.hasOrderedMemoryRef() && 1007 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1008 } 1009 1010 /// Return the underlying objects for the memory references of an instruction. 1011 /// This function calls the code in ValueTracking, but first checks that the 1012 /// instruction has a memory operand. 1013 static void getUnderlyingObjects(MachineInstr *MI, 1014 SmallVectorImpl<Value *> &Objs, 1015 const DataLayout &DL) { 1016 if (!MI->hasOneMemOperand()) 1017 return; 1018 MachineMemOperand *MM = *MI->memoperands_begin(); 1019 if (!MM->getValue()) 1020 return; 1021 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1022 } 1023 1024 /// Add a chain edge between a load and store if the store can be an 1025 /// alias of the load on a subsequent iteration, i.e., a loop carried 1026 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1027 /// but that code doesn't create loop carried dependences. 1028 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1029 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1030 for (auto &SU : SUnits) { 1031 MachineInstr &MI = *SU.getInstr(); 1032 if (isDependenceBarrier(MI, AA)) 1033 PendingLoads.clear(); 1034 else if (MI.mayLoad()) { 1035 SmallVector<Value *, 4> Objs; 1036 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1037 for (auto V : Objs) { 1038 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1039 SUs.push_back(&SU); 1040 } 1041 } else if (MI.mayStore()) { 1042 SmallVector<Value *, 4> Objs; 1043 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1044 for (auto V : Objs) { 1045 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1046 PendingLoads.find(V); 1047 if (I == PendingLoads.end()) 1048 continue; 1049 for (auto Load : I->second) { 1050 if (isSuccOrder(Load, &SU)) 1051 continue; 1052 MachineInstr &LdMI = *Load->getInstr(); 1053 // First, perform the cheaper check that compares the base register. 1054 // If they are the same and the load offset is less than the store 1055 // offset, then mark the dependence as loop carried potentially. 1056 unsigned BaseReg1, BaseReg2; 1057 int64_t Offset1, Offset2; 1058 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1059 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1060 SU.addPred(SDep(Load, SDep::Barrier)); 1061 continue; 1062 } 1063 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1064 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1065 "What happened to the chain edge?"); 1066 SU.addPred(SDep(Load, SDep::Barrier)); 1067 continue; 1068 } 1069 // Second, the more expensive check that uses alias analysis on the 1070 // base registers. If they alias, and the load offset is less than 1071 // the store offset, the mark the dependence as loop carried. 1072 if (!AA) { 1073 SU.addPred(SDep(Load, SDep::Barrier)); 1074 continue; 1075 } 1076 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1077 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1078 if (!MMO1->getValue() || !MMO2->getValue()) { 1079 SU.addPred(SDep(Load, SDep::Barrier)); 1080 continue; 1081 } 1082 if (MMO1->getValue() == MMO2->getValue() && 1083 MMO1->getOffset() <= MMO2->getOffset()) { 1084 SU.addPred(SDep(Load, SDep::Barrier)); 1085 continue; 1086 } 1087 AliasResult AAResult = AA->alias( 1088 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1089 MMO1->getAAInfo()), 1090 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1091 MMO2->getAAInfo())); 1092 1093 if (AAResult != NoAlias) 1094 SU.addPred(SDep(Load, SDep::Barrier)); 1095 } 1096 } 1097 } 1098 } 1099 } 1100 1101 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1102 /// processes dependences for PHIs. This function adds true dependences 1103 /// from a PHI to a use, and a loop carried dependence from the use to the 1104 /// PHI. The loop carried dependence is represented as an anti dependence 1105 /// edge. This function also removes chain dependences between unrelated 1106 /// PHIs. 1107 void SwingSchedulerDAG::updatePhiDependences() { 1108 SmallVector<SDep, 4> RemoveDeps; 1109 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1110 1111 // Iterate over each DAG node. 1112 for (SUnit &I : SUnits) { 1113 RemoveDeps.clear(); 1114 // Set to true if the instruction has an operand defined by a Phi. 1115 unsigned HasPhiUse = 0; 1116 unsigned HasPhiDef = 0; 1117 MachineInstr *MI = I.getInstr(); 1118 // Iterate over each operand, and we process the definitions. 1119 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1120 MOE = MI->operands_end(); 1121 MOI != MOE; ++MOI) { 1122 if (!MOI->isReg()) 1123 continue; 1124 unsigned Reg = MOI->getReg(); 1125 if (MOI->isDef()) { 1126 // If the register is used by a Phi, then create an anti dependence. 1127 for (MachineRegisterInfo::use_instr_iterator 1128 UI = MRI.use_instr_begin(Reg), 1129 UE = MRI.use_instr_end(); 1130 UI != UE; ++UI) { 1131 MachineInstr *UseMI = &*UI; 1132 SUnit *SU = getSUnit(UseMI); 1133 if (SU != nullptr && UseMI->isPHI()) { 1134 if (!MI->isPHI()) { 1135 SDep Dep(SU, SDep::Anti, Reg); 1136 I.addPred(Dep); 1137 } else { 1138 HasPhiDef = Reg; 1139 // Add a chain edge to a dependent Phi that isn't an existing 1140 // predecessor. 1141 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1142 I.addPred(SDep(SU, SDep::Barrier)); 1143 } 1144 } 1145 } 1146 } else if (MOI->isUse()) { 1147 // If the register is defined by a Phi, then create a true dependence. 1148 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1149 if (DefMI == nullptr) 1150 continue; 1151 SUnit *SU = getSUnit(DefMI); 1152 if (SU != nullptr && DefMI->isPHI()) { 1153 if (!MI->isPHI()) { 1154 SDep Dep(SU, SDep::Data, Reg); 1155 Dep.setLatency(0); 1156 ST.adjustSchedDependency(SU, &I, Dep); 1157 I.addPred(Dep); 1158 } else { 1159 HasPhiUse = Reg; 1160 // Add a chain edge to a dependent Phi that isn't an existing 1161 // predecessor. 1162 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1163 I.addPred(SDep(SU, SDep::Barrier)); 1164 } 1165 } 1166 } 1167 } 1168 // Remove order dependences from an unrelated Phi. 1169 if (!SwpPruneDeps) 1170 continue; 1171 for (auto &PI : I.Preds) { 1172 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1173 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1174 if (I.getInstr()->isPHI()) { 1175 if (PMI->getOperand(0).getReg() == HasPhiUse) 1176 continue; 1177 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1178 continue; 1179 } 1180 RemoveDeps.push_back(PI); 1181 } 1182 } 1183 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1184 I.removePred(RemoveDeps[i]); 1185 } 1186 } 1187 1188 /// Iterate over each DAG node and see if we can change any dependences 1189 /// in order to reduce the recurrence MII. 1190 void SwingSchedulerDAG::changeDependences() { 1191 // See if an instruction can use a value from the previous iteration. 1192 // If so, we update the base and offset of the instruction and change 1193 // the dependences. 1194 for (SUnit &I : SUnits) { 1195 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1196 int64_t NewOffset = 0; 1197 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1198 NewOffset)) 1199 continue; 1200 1201 // Get the MI and SUnit for the instruction that defines the original base. 1202 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1203 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1204 if (!DefMI) 1205 continue; 1206 SUnit *DefSU = getSUnit(DefMI); 1207 if (!DefSU) 1208 continue; 1209 // Get the MI and SUnit for the instruction that defins the new base. 1210 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1211 if (!LastMI) 1212 continue; 1213 SUnit *LastSU = getSUnit(LastMI); 1214 if (!LastSU) 1215 continue; 1216 1217 if (Topo.IsReachable(&I, LastSU)) 1218 continue; 1219 1220 // Remove the dependence. The value now depends on a prior iteration. 1221 SmallVector<SDep, 4> Deps; 1222 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1223 ++P) 1224 if (P->getSUnit() == DefSU) 1225 Deps.push_back(*P); 1226 for (int i = 0, e = Deps.size(); i != e; i++) { 1227 Topo.RemovePred(&I, Deps[i].getSUnit()); 1228 I.removePred(Deps[i]); 1229 } 1230 // Remove the chain dependence between the instructions. 1231 Deps.clear(); 1232 for (auto &P : LastSU->Preds) 1233 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1234 Deps.push_back(P); 1235 for (int i = 0, e = Deps.size(); i != e; i++) { 1236 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1237 LastSU->removePred(Deps[i]); 1238 } 1239 1240 // Add a dependence between the new instruction and the instruction 1241 // that defines the new base. 1242 SDep Dep(&I, SDep::Anti, NewBase); 1243 LastSU->addPred(Dep); 1244 1245 // Remember the base and offset information so that we can update the 1246 // instruction during code generation. 1247 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1248 } 1249 } 1250 1251 namespace { 1252 1253 // FuncUnitSorter - Comparison operator used to sort instructions by 1254 // the number of functional unit choices. 1255 struct FuncUnitSorter { 1256 const InstrItineraryData *InstrItins; 1257 DenseMap<unsigned, unsigned> Resources; 1258 1259 // Compute the number of functional unit alternatives needed 1260 // at each stage, and take the minimum value. We prioritize the 1261 // instructions by the least number of choices first. 1262 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1263 unsigned schedClass = Inst->getDesc().getSchedClass(); 1264 unsigned min = UINT_MAX; 1265 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1266 *IE = InstrItins->endStage(schedClass); 1267 IS != IE; ++IS) { 1268 unsigned funcUnits = IS->getUnits(); 1269 unsigned numAlternatives = countPopulation(funcUnits); 1270 if (numAlternatives < min) { 1271 min = numAlternatives; 1272 F = funcUnits; 1273 } 1274 } 1275 return min; 1276 } 1277 1278 // Compute the critical resources needed by the instruction. This 1279 // function records the functional units needed by instructions that 1280 // must use only one functional unit. We use this as a tie breaker 1281 // for computing the resource MII. The instrutions that require 1282 // the same, highly used, functional unit have high priority. 1283 void calcCriticalResources(MachineInstr &MI) { 1284 unsigned SchedClass = MI.getDesc().getSchedClass(); 1285 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1286 *IE = InstrItins->endStage(SchedClass); 1287 IS != IE; ++IS) { 1288 unsigned FuncUnits = IS->getUnits(); 1289 if (countPopulation(FuncUnits) == 1) 1290 Resources[FuncUnits]++; 1291 } 1292 } 1293 1294 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1295 /// Return true if IS1 has less priority than IS2. 1296 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1297 unsigned F1 = 0, F2 = 0; 1298 unsigned MFUs1 = minFuncUnits(IS1, F1); 1299 unsigned MFUs2 = minFuncUnits(IS2, F2); 1300 if (MFUs1 == 1 && MFUs2 == 1) 1301 return Resources.lookup(F1) < Resources.lookup(F2); 1302 return MFUs1 > MFUs2; 1303 } 1304 }; 1305 1306 } // end anonymous namespace 1307 1308 /// Calculate the resource constrained minimum initiation interval for the 1309 /// specified loop. We use the DFA to model the resources needed for 1310 /// each instruction, and we ignore dependences. A different DFA is created 1311 /// for each cycle that is required. When adding a new instruction, we attempt 1312 /// to add it to each existing DFA, until a legal space is found. If the 1313 /// instruction cannot be reserved in an existing DFA, we create a new one. 1314 unsigned SwingSchedulerDAG::calculateResMII() { 1315 SmallVector<DFAPacketizer *, 8> Resources; 1316 MachineBasicBlock *MBB = Loop.getHeader(); 1317 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1318 1319 // Sort the instructions by the number of available choices for scheduling, 1320 // least to most. Use the number of critical resources as the tie breaker. 1321 FuncUnitSorter FUS = 1322 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1323 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1324 E = MBB->getFirstTerminator(); 1325 I != E; ++I) 1326 FUS.calcCriticalResources(*I); 1327 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1328 FuncUnitOrder(FUS); 1329 1330 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1331 E = MBB->getFirstTerminator(); 1332 I != E; ++I) 1333 FuncUnitOrder.push(&*I); 1334 1335 while (!FuncUnitOrder.empty()) { 1336 MachineInstr *MI = FuncUnitOrder.top(); 1337 FuncUnitOrder.pop(); 1338 if (TII->isZeroCost(MI->getOpcode())) 1339 continue; 1340 // Attempt to reserve the instruction in an existing DFA. At least one 1341 // DFA is needed for each cycle. 1342 unsigned NumCycles = getSUnit(MI)->Latency; 1343 unsigned ReservedCycles = 0; 1344 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1345 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1346 for (unsigned C = 0; C < NumCycles; ++C) 1347 while (RI != RE) { 1348 if ((*RI++)->canReserveResources(*MI)) { 1349 ++ReservedCycles; 1350 break; 1351 } 1352 } 1353 // Start reserving resources using existing DFAs. 1354 for (unsigned C = 0; C < ReservedCycles; ++C) { 1355 --RI; 1356 (*RI)->reserveResources(*MI); 1357 } 1358 // Add new DFAs, if needed, to reserve resources. 1359 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1360 DFAPacketizer *NewResource = 1361 TII->CreateTargetScheduleState(MF.getSubtarget()); 1362 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1363 NewResource->reserveResources(*MI); 1364 Resources.push_back(NewResource); 1365 } 1366 } 1367 int Resmii = Resources.size(); 1368 // Delete the memory for each of the DFAs that were created earlier. 1369 for (DFAPacketizer *RI : Resources) { 1370 DFAPacketizer *D = RI; 1371 delete D; 1372 } 1373 Resources.clear(); 1374 return Resmii; 1375 } 1376 1377 /// Calculate the recurrence-constrainted minimum initiation interval. 1378 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1379 /// for each circuit. The II needs to satisfy the inequality 1380 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1381 /// II that satistifies the inequality, and the RecMII is the maximum 1382 /// of those values. 1383 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1384 unsigned RecMII = 0; 1385 1386 for (NodeSet &Nodes : NodeSets) { 1387 if (Nodes.size() == 0) 1388 continue; 1389 1390 unsigned Delay = Nodes.size() - 1; 1391 unsigned Distance = 1; 1392 1393 // ii = ceil(delay / distance) 1394 unsigned CurMII = (Delay + Distance - 1) / Distance; 1395 Nodes.setRecMII(CurMII); 1396 if (CurMII > RecMII) 1397 RecMII = CurMII; 1398 } 1399 1400 return RecMII; 1401 } 1402 1403 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1404 /// but we do this to find the circuits, and then change them back. 1405 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1406 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1407 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1408 SUnit *SU = &SUnits[i]; 1409 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1410 IP != EP; ++IP) { 1411 if (IP->getKind() != SDep::Anti) 1412 continue; 1413 DepsAdded.push_back(std::make_pair(SU, *IP)); 1414 } 1415 } 1416 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1417 E = DepsAdded.end(); 1418 I != E; ++I) { 1419 // Remove this anti dependency and add one in the reverse direction. 1420 SUnit *SU = I->first; 1421 SDep &D = I->second; 1422 SUnit *TargetSU = D.getSUnit(); 1423 unsigned Reg = D.getReg(); 1424 unsigned Lat = D.getLatency(); 1425 SU->removePred(D); 1426 SDep Dep(SU, SDep::Anti, Reg); 1427 Dep.setLatency(Lat); 1428 TargetSU->addPred(Dep); 1429 } 1430 } 1431 1432 /// Create the adjacency structure of the nodes in the graph. 1433 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1434 SwingSchedulerDAG *DAG) { 1435 BitVector Added(SUnits.size()); 1436 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1437 Added.reset(); 1438 // Add any successor to the adjacency matrix and exclude duplicates. 1439 for (auto &SI : SUnits[i].Succs) { 1440 // Do not process a boundary node and a back-edge is processed only 1441 // if it goes to a Phi. 1442 if (SI.getSUnit()->isBoundaryNode() || 1443 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1444 continue; 1445 int N = SI.getSUnit()->NodeNum; 1446 if (!Added.test(N)) { 1447 AdjK[i].push_back(N); 1448 Added.set(N); 1449 } 1450 } 1451 // A chain edge between a store and a load is treated as a back-edge in the 1452 // adjacency matrix. 1453 for (auto &PI : SUnits[i].Preds) { 1454 if (!SUnits[i].getInstr()->mayStore() || 1455 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1456 continue; 1457 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1458 int N = PI.getSUnit()->NodeNum; 1459 if (!Added.test(N)) { 1460 AdjK[i].push_back(N); 1461 Added.set(N); 1462 } 1463 } 1464 } 1465 } 1466 } 1467 1468 /// Identify an elementary circuit in the dependence graph starting at the 1469 /// specified node. 1470 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1471 bool HasBackedge) { 1472 SUnit *SV = &SUnits[V]; 1473 bool F = false; 1474 Stack.insert(SV); 1475 Blocked.set(V); 1476 1477 for (auto W : AdjK[V]) { 1478 if (NumPaths > MaxPaths) 1479 break; 1480 if (W < S) 1481 continue; 1482 if (W == S) { 1483 if (!HasBackedge) 1484 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1485 F = true; 1486 ++NumPaths; 1487 break; 1488 } else if (!Blocked.test(W)) { 1489 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1490 F = true; 1491 } 1492 } 1493 1494 if (F) 1495 unblock(V); 1496 else { 1497 for (auto W : AdjK[V]) { 1498 if (W < S) 1499 continue; 1500 if (B[W].count(SV) == 0) 1501 B[W].insert(SV); 1502 } 1503 } 1504 Stack.pop_back(); 1505 return F; 1506 } 1507 1508 /// Unblock a node in the circuit finding algorithm. 1509 void SwingSchedulerDAG::Circuits::unblock(int U) { 1510 Blocked.reset(U); 1511 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1512 while (!BU.empty()) { 1513 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1514 assert(SI != BU.end() && "Invalid B set."); 1515 SUnit *W = *SI; 1516 BU.erase(W); 1517 if (Blocked.test(W->NodeNum)) 1518 unblock(W->NodeNum); 1519 } 1520 } 1521 1522 /// Identify all the elementary circuits in the dependence graph using 1523 /// Johnson's circuit algorithm. 1524 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1525 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1526 // but we do this to find the circuits, and then change them back. 1527 swapAntiDependences(SUnits); 1528 1529 Circuits Cir(SUnits); 1530 // Create the adjacency structure. 1531 Cir.createAdjacencyStructure(this); 1532 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1533 Cir.reset(); 1534 Cir.circuit(i, i, NodeSets); 1535 } 1536 1537 // Change the dependences back so that we've created a DAG again. 1538 swapAntiDependences(SUnits); 1539 } 1540 1541 /// Return true for DAG nodes that we ignore when computing the cost functions. 1542 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1543 /// in the calculation of the ASAP, ALAP, etc functions. 1544 static bool ignoreDependence(const SDep &D, bool isPred) { 1545 if (D.isArtificial()) 1546 return true; 1547 return D.getKind() == SDep::Anti && isPred; 1548 } 1549 1550 /// Compute several functions need to order the nodes for scheduling. 1551 /// ASAP - Earliest time to schedule a node. 1552 /// ALAP - Latest time to schedule a node. 1553 /// MOV - Mobility function, difference between ALAP and ASAP. 1554 /// D - Depth of each node. 1555 /// H - Height of each node. 1556 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1557 1558 ScheduleInfo.resize(SUnits.size()); 1559 1560 DEBUG({ 1561 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1562 E = Topo.end(); 1563 I != E; ++I) { 1564 SUnit *SU = &SUnits[*I]; 1565 SU->dump(this); 1566 } 1567 }); 1568 1569 int maxASAP = 0; 1570 // Compute ASAP. 1571 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1572 E = Topo.end(); 1573 I != E; ++I) { 1574 int asap = 0; 1575 SUnit *SU = &SUnits[*I]; 1576 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1577 EP = SU->Preds.end(); 1578 IP != EP; ++IP) { 1579 if (ignoreDependence(*IP, true)) 1580 continue; 1581 SUnit *pred = IP->getSUnit(); 1582 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1583 getDistance(pred, SU, *IP) * MII)); 1584 } 1585 maxASAP = std::max(maxASAP, asap); 1586 ScheduleInfo[*I].ASAP = asap; 1587 } 1588 1589 // Compute ALAP and MOV. 1590 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1591 E = Topo.rend(); 1592 I != E; ++I) { 1593 int alap = maxASAP; 1594 SUnit *SU = &SUnits[*I]; 1595 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1596 ES = SU->Succs.end(); 1597 IS != ES; ++IS) { 1598 if (ignoreDependence(*IS, true)) 1599 continue; 1600 SUnit *succ = IS->getSUnit(); 1601 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1602 getDistance(SU, succ, *IS) * MII)); 1603 } 1604 1605 ScheduleInfo[*I].ALAP = alap; 1606 } 1607 1608 // After computing the node functions, compute the summary for each node set. 1609 for (NodeSet &I : NodeSets) 1610 I.computeNodeSetInfo(this); 1611 1612 DEBUG({ 1613 for (unsigned i = 0; i < SUnits.size(); i++) { 1614 dbgs() << "\tNode " << i << ":\n"; 1615 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1616 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1617 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1618 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1619 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1620 } 1621 }); 1622 } 1623 1624 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1625 /// as the predecessors of the elements of NodeOrder that are not also in 1626 /// NodeOrder. 1627 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1628 SmallSetVector<SUnit *, 8> &Preds, 1629 const NodeSet *S = nullptr) { 1630 Preds.clear(); 1631 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1632 I != E; ++I) { 1633 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1634 PI != PE; ++PI) { 1635 if (S && S->count(PI->getSUnit()) == 0) 1636 continue; 1637 if (ignoreDependence(*PI, true)) 1638 continue; 1639 if (NodeOrder.count(PI->getSUnit()) == 0) 1640 Preds.insert(PI->getSUnit()); 1641 } 1642 // Back-edges are predecessors with an anti-dependence. 1643 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1644 ES = (*I)->Succs.end(); 1645 IS != ES; ++IS) { 1646 if (IS->getKind() != SDep::Anti) 1647 continue; 1648 if (S && S->count(IS->getSUnit()) == 0) 1649 continue; 1650 if (NodeOrder.count(IS->getSUnit()) == 0) 1651 Preds.insert(IS->getSUnit()); 1652 } 1653 } 1654 return Preds.size() > 0; 1655 } 1656 1657 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1658 /// as the successors of the elements of NodeOrder that are not also in 1659 /// NodeOrder. 1660 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1661 SmallSetVector<SUnit *, 8> &Succs, 1662 const NodeSet *S = nullptr) { 1663 Succs.clear(); 1664 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1665 I != E; ++I) { 1666 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1667 SI != SE; ++SI) { 1668 if (S && S->count(SI->getSUnit()) == 0) 1669 continue; 1670 if (ignoreDependence(*SI, false)) 1671 continue; 1672 if (NodeOrder.count(SI->getSUnit()) == 0) 1673 Succs.insert(SI->getSUnit()); 1674 } 1675 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1676 PE = (*I)->Preds.end(); 1677 PI != PE; ++PI) { 1678 if (PI->getKind() != SDep::Anti) 1679 continue; 1680 if (S && S->count(PI->getSUnit()) == 0) 1681 continue; 1682 if (NodeOrder.count(PI->getSUnit()) == 0) 1683 Succs.insert(PI->getSUnit()); 1684 } 1685 } 1686 return Succs.size() > 0; 1687 } 1688 1689 /// Return true if there is a path from the specified node to any of the nodes 1690 /// in DestNodes. Keep track and return the nodes in any path. 1691 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1692 SetVector<SUnit *> &DestNodes, 1693 SetVector<SUnit *> &Exclude, 1694 SmallPtrSet<SUnit *, 8> &Visited) { 1695 if (Cur->isBoundaryNode()) 1696 return false; 1697 if (Exclude.count(Cur) != 0) 1698 return false; 1699 if (DestNodes.count(Cur) != 0) 1700 return true; 1701 if (!Visited.insert(Cur).second) 1702 return Path.count(Cur) != 0; 1703 bool FoundPath = false; 1704 for (auto &SI : Cur->Succs) 1705 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1706 for (auto &PI : Cur->Preds) 1707 if (PI.getKind() == SDep::Anti) 1708 FoundPath |= 1709 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1710 if (FoundPath) 1711 Path.insert(Cur); 1712 return FoundPath; 1713 } 1714 1715 /// Return true if Set1 is a subset of Set2. 1716 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1717 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1718 if (Set2.count(*I) == 0) 1719 return false; 1720 return true; 1721 } 1722 1723 /// Compute the live-out registers for the instructions in a node-set. 1724 /// The live-out registers are those that are defined in the node-set, 1725 /// but not used. Except for use operands of Phis. 1726 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1727 NodeSet &NS) { 1728 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1729 MachineRegisterInfo &MRI = MF.getRegInfo(); 1730 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1731 SmallSet<unsigned, 4> Uses; 1732 for (SUnit *SU : NS) { 1733 const MachineInstr *MI = SU->getInstr(); 1734 if (MI->isPHI()) 1735 continue; 1736 for (const MachineOperand &MO : MI->operands()) 1737 if (MO.isReg() && MO.isUse()) { 1738 unsigned Reg = MO.getReg(); 1739 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1740 Uses.insert(Reg); 1741 else if (MRI.isAllocatable(Reg)) 1742 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1743 Uses.insert(*Units); 1744 } 1745 } 1746 for (SUnit *SU : NS) 1747 for (const MachineOperand &MO : SU->getInstr()->operands()) 1748 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1749 unsigned Reg = MO.getReg(); 1750 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1751 if (!Uses.count(Reg)) 1752 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1753 LaneBitmask::getNone())); 1754 } else if (MRI.isAllocatable(Reg)) { 1755 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1756 if (!Uses.count(*Units)) 1757 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1758 LaneBitmask::getNone())); 1759 } 1760 } 1761 RPTracker.addLiveRegs(LiveOutRegs); 1762 } 1763 1764 /// A heuristic to filter nodes in recurrent node-sets if the register 1765 /// pressure of a set is too high. 1766 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1767 for (auto &NS : NodeSets) { 1768 // Skip small node-sets since they won't cause register pressure problems. 1769 if (NS.size() <= 2) 1770 continue; 1771 IntervalPressure RecRegPressure; 1772 RegPressureTracker RecRPTracker(RecRegPressure); 1773 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1774 computeLiveOuts(MF, RecRPTracker, NS); 1775 RecRPTracker.closeBottom(); 1776 1777 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1778 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1779 return A->NodeNum > B->NodeNum; 1780 }); 1781 1782 for (auto &SU : SUnits) { 1783 // Since we're computing the register pressure for a subset of the 1784 // instructions in a block, we need to set the tracker for each 1785 // instruction in the node-set. The tracker is set to the instruction 1786 // just after the one we're interested in. 1787 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1788 RecRPTracker.setPos(std::next(CurInstI)); 1789 1790 RegPressureDelta RPDelta; 1791 ArrayRef<PressureChange> CriticalPSets; 1792 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1793 CriticalPSets, 1794 RecRegPressure.MaxSetPressure); 1795 if (RPDelta.Excess.isValid()) { 1796 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1797 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1798 << ":" << RPDelta.Excess.getUnitInc()); 1799 NS.setExceedPressure(SU); 1800 break; 1801 } 1802 RecRPTracker.recede(); 1803 } 1804 } 1805 } 1806 1807 /// A heuristic to colocate node sets that have the same set of 1808 /// successors. 1809 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1810 unsigned Colocate = 0; 1811 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1812 NodeSet &N1 = NodeSets[i]; 1813 SmallSetVector<SUnit *, 8> S1; 1814 if (N1.empty() || !succ_L(N1, S1)) 1815 continue; 1816 for (int j = i + 1; j < e; ++j) { 1817 NodeSet &N2 = NodeSets[j]; 1818 if (N1.compareRecMII(N2) != 0) 1819 continue; 1820 SmallSetVector<SUnit *, 8> S2; 1821 if (N2.empty() || !succ_L(N2, S2)) 1822 continue; 1823 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1824 N1.setColocate(++Colocate); 1825 N2.setColocate(Colocate); 1826 break; 1827 } 1828 } 1829 } 1830 } 1831 1832 /// Check if the existing node-sets are profitable. If not, then ignore the 1833 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1834 /// a heuristic. If the MII is large and there is a non-recurrent node with 1835 /// a large depth compared to the MII, then it's best to try and schedule 1836 /// all instruction together instead of starting with the recurrent node-sets. 1837 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1838 // Look for loops with a large MII. 1839 if (MII <= 20) 1840 return; 1841 // Check if the node-set contains only a simple add recurrence. 1842 for (auto &NS : NodeSets) 1843 if (NS.size() > 2) 1844 return; 1845 // If the depth of any instruction is significantly larger than the MII, then 1846 // ignore the recurrent node-sets and treat all instructions equally. 1847 for (auto &SU : SUnits) 1848 if (SU.getDepth() > MII * 1.5) { 1849 NodeSets.clear(); 1850 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1851 return; 1852 } 1853 } 1854 1855 /// Add the nodes that do not belong to a recurrence set into groups 1856 /// based upon connected componenets. 1857 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1858 SetVector<SUnit *> NodesAdded; 1859 SmallPtrSet<SUnit *, 8> Visited; 1860 // Add the nodes that are on a path between the previous node sets and 1861 // the current node set. 1862 for (NodeSet &I : NodeSets) { 1863 SmallSetVector<SUnit *, 8> N; 1864 // Add the nodes from the current node set to the previous node set. 1865 if (succ_L(I, N)) { 1866 SetVector<SUnit *> Path; 1867 for (SUnit *NI : N) { 1868 Visited.clear(); 1869 computePath(NI, Path, NodesAdded, I, Visited); 1870 } 1871 if (Path.size() > 0) 1872 I.insert(Path.begin(), Path.end()); 1873 } 1874 // Add the nodes from the previous node set to the current node set. 1875 N.clear(); 1876 if (succ_L(NodesAdded, N)) { 1877 SetVector<SUnit *> Path; 1878 for (SUnit *NI : N) { 1879 Visited.clear(); 1880 computePath(NI, Path, I, NodesAdded, Visited); 1881 } 1882 if (Path.size() > 0) 1883 I.insert(Path.begin(), Path.end()); 1884 } 1885 NodesAdded.insert(I.begin(), I.end()); 1886 } 1887 1888 // Create a new node set with the connected nodes of any successor of a node 1889 // in a recurrent set. 1890 NodeSet NewSet; 1891 SmallSetVector<SUnit *, 8> N; 1892 if (succ_L(NodesAdded, N)) 1893 for (SUnit *I : N) 1894 addConnectedNodes(I, NewSet, NodesAdded); 1895 if (NewSet.size() > 0) 1896 NodeSets.push_back(NewSet); 1897 1898 // Create a new node set with the connected nodes of any predecessor of a node 1899 // in a recurrent set. 1900 NewSet.clear(); 1901 if (pred_L(NodesAdded, N)) 1902 for (SUnit *I : N) 1903 addConnectedNodes(I, NewSet, NodesAdded); 1904 if (NewSet.size() > 0) 1905 NodeSets.push_back(NewSet); 1906 1907 // Create new nodes sets with the connected nodes any any remaining node that 1908 // has no predecessor. 1909 for (unsigned i = 0; i < SUnits.size(); ++i) { 1910 SUnit *SU = &SUnits[i]; 1911 if (NodesAdded.count(SU) == 0) { 1912 NewSet.clear(); 1913 addConnectedNodes(SU, NewSet, NodesAdded); 1914 if (NewSet.size() > 0) 1915 NodeSets.push_back(NewSet); 1916 } 1917 } 1918 } 1919 1920 /// Add the node to the set, and add all is its connected nodes to the set. 1921 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1922 SetVector<SUnit *> &NodesAdded) { 1923 NewSet.insert(SU); 1924 NodesAdded.insert(SU); 1925 for (auto &SI : SU->Succs) { 1926 SUnit *Successor = SI.getSUnit(); 1927 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1928 addConnectedNodes(Successor, NewSet, NodesAdded); 1929 } 1930 for (auto &PI : SU->Preds) { 1931 SUnit *Predecessor = PI.getSUnit(); 1932 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1933 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1934 } 1935 } 1936 1937 /// Return true if Set1 contains elements in Set2. The elements in common 1938 /// are returned in a different container. 1939 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1940 SmallSetVector<SUnit *, 8> &Result) { 1941 Result.clear(); 1942 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1943 SUnit *SU = Set1[i]; 1944 if (Set2.count(SU) != 0) 1945 Result.insert(SU); 1946 } 1947 return !Result.empty(); 1948 } 1949 1950 /// Merge the recurrence node sets that have the same initial node. 1951 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1952 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1953 ++I) { 1954 NodeSet &NI = *I; 1955 for (NodeSetType::iterator J = I + 1; J != E;) { 1956 NodeSet &NJ = *J; 1957 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1958 if (NJ.compareRecMII(NI) > 0) 1959 NI.setRecMII(NJ.getRecMII()); 1960 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1961 ++NII) 1962 I->insert(*NII); 1963 NodeSets.erase(J); 1964 E = NodeSets.end(); 1965 } else { 1966 ++J; 1967 } 1968 } 1969 } 1970 } 1971 1972 /// Remove nodes that have been scheduled in previous NodeSets. 1973 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1974 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1975 ++I) 1976 for (NodeSetType::iterator J = I + 1; J != E;) { 1977 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1978 1979 if (J->size() == 0) { 1980 NodeSets.erase(J); 1981 E = NodeSets.end(); 1982 } else { 1983 ++J; 1984 } 1985 } 1986 } 1987 1988 /// Return true if Inst1 defines a value that is used in Inst2. 1989 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1990 for (auto &SI : Inst1->Succs) 1991 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1992 return true; 1993 return false; 1994 } 1995 1996 /// Compute an ordered list of the dependence graph nodes, which 1997 /// indicates the order that the nodes will be scheduled. This is a 1998 /// two-level algorithm. First, a partial order is created, which 1999 /// consists of a list of sets ordered from highest to lowest priority. 2000 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2001 SmallSetVector<SUnit *, 8> R; 2002 NodeOrder.clear(); 2003 2004 for (auto &Nodes : NodeSets) { 2005 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2006 OrderKind Order; 2007 SmallSetVector<SUnit *, 8> N; 2008 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2009 R.insert(N.begin(), N.end()); 2010 Order = BottomUp; 2011 DEBUG(dbgs() << " Bottom up (preds) "); 2012 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2013 R.insert(N.begin(), N.end()); 2014 Order = TopDown; 2015 DEBUG(dbgs() << " Top down (succs) "); 2016 } else if (isIntersect(N, Nodes, R)) { 2017 // If some of the successors are in the existing node-set, then use the 2018 // top-down ordering. 2019 Order = TopDown; 2020 DEBUG(dbgs() << " Top down (intersect) "); 2021 } else if (NodeSets.size() == 1) { 2022 for (auto &N : Nodes) 2023 if (N->Succs.size() == 0) 2024 R.insert(N); 2025 Order = BottomUp; 2026 DEBUG(dbgs() << " Bottom up (all) "); 2027 } else { 2028 // Find the node with the highest ASAP. 2029 SUnit *maxASAP = nullptr; 2030 for (SUnit *SU : Nodes) { 2031 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2032 maxASAP = SU; 2033 } 2034 R.insert(maxASAP); 2035 Order = BottomUp; 2036 DEBUG(dbgs() << " Bottom up (default) "); 2037 } 2038 2039 while (!R.empty()) { 2040 if (Order == TopDown) { 2041 // Choose the node with the maximum height. If more than one, choose 2042 // the node with the lowest MOV. If still more than one, check if there 2043 // is a dependence between the instructions. 2044 while (!R.empty()) { 2045 SUnit *maxHeight = nullptr; 2046 for (SUnit *I : R) { 2047 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2048 maxHeight = I; 2049 else if (getHeight(I) == getHeight(maxHeight) && 2050 getMOV(I) < getMOV(maxHeight) && 2051 !hasDataDependence(maxHeight, I)) 2052 maxHeight = I; 2053 else if (hasDataDependence(I, maxHeight)) 2054 maxHeight = I; 2055 } 2056 NodeOrder.insert(maxHeight); 2057 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2058 R.remove(maxHeight); 2059 for (const auto &I : maxHeight->Succs) { 2060 if (Nodes.count(I.getSUnit()) == 0) 2061 continue; 2062 if (NodeOrder.count(I.getSUnit()) != 0) 2063 continue; 2064 if (ignoreDependence(I, false)) 2065 continue; 2066 R.insert(I.getSUnit()); 2067 } 2068 // Back-edges are predecessors with an anti-dependence. 2069 for (const auto &I : maxHeight->Preds) { 2070 if (I.getKind() != SDep::Anti) 2071 continue; 2072 if (Nodes.count(I.getSUnit()) == 0) 2073 continue; 2074 if (NodeOrder.count(I.getSUnit()) != 0) 2075 continue; 2076 R.insert(I.getSUnit()); 2077 } 2078 } 2079 Order = BottomUp; 2080 DEBUG(dbgs() << "\n Switching order to bottom up "); 2081 SmallSetVector<SUnit *, 8> N; 2082 if (pred_L(NodeOrder, N, &Nodes)) 2083 R.insert(N.begin(), N.end()); 2084 } else { 2085 // Choose the node with the maximum depth. If more than one, choose 2086 // the node with the lowest MOV. If there is still more than one, check 2087 // for a dependence between the instructions. 2088 while (!R.empty()) { 2089 SUnit *maxDepth = nullptr; 2090 for (SUnit *I : R) { 2091 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2092 maxDepth = I; 2093 else if (getDepth(I) == getDepth(maxDepth) && 2094 getMOV(I) < getMOV(maxDepth) && 2095 !hasDataDependence(I, maxDepth)) 2096 maxDepth = I; 2097 else if (hasDataDependence(maxDepth, I)) 2098 maxDepth = I; 2099 } 2100 NodeOrder.insert(maxDepth); 2101 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2102 R.remove(maxDepth); 2103 if (Nodes.isExceedSU(maxDepth)) { 2104 Order = TopDown; 2105 R.clear(); 2106 R.insert(Nodes.getNode(0)); 2107 break; 2108 } 2109 for (const auto &I : maxDepth->Preds) { 2110 if (Nodes.count(I.getSUnit()) == 0) 2111 continue; 2112 if (NodeOrder.count(I.getSUnit()) != 0) 2113 continue; 2114 if (I.getKind() == SDep::Anti) 2115 continue; 2116 R.insert(I.getSUnit()); 2117 } 2118 // Back-edges are predecessors with an anti-dependence. 2119 for (const auto &I : maxDepth->Succs) { 2120 if (I.getKind() != SDep::Anti) 2121 continue; 2122 if (Nodes.count(I.getSUnit()) == 0) 2123 continue; 2124 if (NodeOrder.count(I.getSUnit()) != 0) 2125 continue; 2126 R.insert(I.getSUnit()); 2127 } 2128 } 2129 Order = TopDown; 2130 DEBUG(dbgs() << "\n Switching order to top down "); 2131 SmallSetVector<SUnit *, 8> N; 2132 if (succ_L(NodeOrder, N, &Nodes)) 2133 R.insert(N.begin(), N.end()); 2134 } 2135 } 2136 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2137 } 2138 2139 DEBUG({ 2140 dbgs() << "Node order: "; 2141 for (SUnit *I : NodeOrder) 2142 dbgs() << " " << I->NodeNum << " "; 2143 dbgs() << "\n"; 2144 }); 2145 } 2146 2147 /// Process the nodes in the computed order and create the pipelined schedule 2148 /// of the instructions, if possible. Return true if a schedule is found. 2149 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2150 2151 if (NodeOrder.size() == 0) 2152 return false; 2153 2154 bool scheduleFound = false; 2155 // Keep increasing II until a valid schedule is found. 2156 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2157 Schedule.reset(); 2158 Schedule.setInitiationInterval(II); 2159 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2160 2161 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2162 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2163 do { 2164 SUnit *SU = *NI; 2165 2166 // Compute the schedule time for the instruction, which is based 2167 // upon the scheduled time for any predecessors/successors. 2168 int EarlyStart = INT_MIN; 2169 int LateStart = INT_MAX; 2170 // These values are set when the size of the schedule window is limited 2171 // due to chain dependences. 2172 int SchedEnd = INT_MAX; 2173 int SchedStart = INT_MIN; 2174 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2175 II, this); 2176 DEBUG({ 2177 dbgs() << "Inst (" << SU->NodeNum << ") "; 2178 SU->getInstr()->dump(); 2179 dbgs() << "\n"; 2180 }); 2181 DEBUG({ 2182 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2183 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2184 }); 2185 2186 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2187 SchedStart > LateStart) 2188 scheduleFound = false; 2189 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2190 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2191 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2192 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2193 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2194 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2195 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2196 SchedEnd = 2197 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2198 // When scheduling a Phi it is better to start at the late cycle and go 2199 // backwards. The default order may insert the Phi too far away from 2200 // its first dependence. 2201 if (SU->getInstr()->isPHI()) 2202 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2203 else 2204 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2205 } else { 2206 int FirstCycle = Schedule.getFirstCycle(); 2207 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2208 FirstCycle + getASAP(SU) + II - 1, II); 2209 } 2210 // Even if we find a schedule, make sure the schedule doesn't exceed the 2211 // allowable number of stages. We keep trying if this happens. 2212 if (scheduleFound) 2213 if (SwpMaxStages > -1 && 2214 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2215 scheduleFound = false; 2216 2217 DEBUG({ 2218 if (!scheduleFound) 2219 dbgs() << "\tCan't schedule\n"; 2220 }); 2221 } while (++NI != NE && scheduleFound); 2222 2223 // If a schedule is found, check if it is a valid schedule too. 2224 if (scheduleFound) 2225 scheduleFound = Schedule.isValidSchedule(this); 2226 } 2227 2228 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2229 2230 if (scheduleFound) 2231 Schedule.finalizeSchedule(this); 2232 else 2233 Schedule.reset(); 2234 2235 return scheduleFound && Schedule.getMaxStageCount() > 0; 2236 } 2237 2238 /// Given a schedule for the loop, generate a new version of the loop, 2239 /// and replace the old version. This function generates a prolog 2240 /// that contains the initial iterations in the pipeline, and kernel 2241 /// loop, and the epilogue that contains the code for the final 2242 /// iterations. 2243 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2244 // Create a new basic block for the kernel and add it to the CFG. 2245 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2246 2247 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2248 2249 // Remember the registers that are used in different stages. The index is 2250 // the iteration, or stage, that the instruction is scheduled in. This is 2251 // a map between register names in the orignal block and the names created 2252 // in each stage of the pipelined loop. 2253 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2254 InstrMapTy InstrMap; 2255 2256 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2257 // Generate the prolog instructions that set up the pipeline. 2258 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2259 MF.insert(BB->getIterator(), KernelBB); 2260 2261 // Rearrange the instructions to generate the new, pipelined loop, 2262 // and update register names as needed. 2263 for (int Cycle = Schedule.getFirstCycle(), 2264 LastCycle = Schedule.getFinalCycle(); 2265 Cycle <= LastCycle; ++Cycle) { 2266 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2267 // This inner loop schedules each instruction in the cycle. 2268 for (SUnit *CI : CycleInstrs) { 2269 if (CI->getInstr()->isPHI()) 2270 continue; 2271 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2272 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2273 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2274 KernelBB->push_back(NewMI); 2275 InstrMap[NewMI] = CI->getInstr(); 2276 } 2277 } 2278 2279 // Copy any terminator instructions to the new kernel, and update 2280 // names as needed. 2281 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2282 E = BB->instr_end(); 2283 I != E; ++I) { 2284 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2285 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2286 KernelBB->push_back(NewMI); 2287 InstrMap[NewMI] = &*I; 2288 } 2289 2290 KernelBB->transferSuccessors(BB); 2291 KernelBB->replaceSuccessor(BB, KernelBB); 2292 2293 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2294 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2295 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2296 InstrMap, MaxStageCount, MaxStageCount, false); 2297 2298 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2299 2300 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2301 // Generate the epilog instructions to complete the pipeline. 2302 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2303 PrologBBs); 2304 2305 // We need this step because the register allocation doesn't handle some 2306 // situations well, so we insert copies to help out. 2307 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2308 2309 // Remove dead instructions due to loop induction variables. 2310 removeDeadInstructions(KernelBB, EpilogBBs); 2311 2312 // Add branches between prolog and epilog blocks. 2313 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2314 2315 // Remove the original loop since it's no longer referenced. 2316 BB->clear(); 2317 BB->eraseFromParent(); 2318 2319 delete[] VRMap; 2320 } 2321 2322 /// Generate the pipeline prolog code. 2323 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2324 MachineBasicBlock *KernelBB, 2325 ValueMapTy *VRMap, 2326 MBBVectorTy &PrologBBs) { 2327 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2328 assert(PreheaderBB != NULL && 2329 "Need to add code to handle loops w/o preheader"); 2330 MachineBasicBlock *PredBB = PreheaderBB; 2331 InstrMapTy InstrMap; 2332 2333 // Generate a basic block for each stage, not including the last stage, 2334 // which will be generated in the kernel. Each basic block may contain 2335 // instructions from multiple stages/iterations. 2336 for (unsigned i = 0; i < LastStage; ++i) { 2337 // Create and insert the prolog basic block prior to the original loop 2338 // basic block. The original loop is removed later. 2339 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2340 PrologBBs.push_back(NewBB); 2341 MF.insert(BB->getIterator(), NewBB); 2342 NewBB->transferSuccessors(PredBB); 2343 PredBB->addSuccessor(NewBB); 2344 PredBB = NewBB; 2345 2346 // Generate instructions for each appropriate stage. Process instructions 2347 // in original program order. 2348 for (int StageNum = i; StageNum >= 0; --StageNum) { 2349 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2350 BBE = BB->getFirstTerminator(); 2351 BBI != BBE; ++BBI) { 2352 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2353 if (BBI->isPHI()) 2354 continue; 2355 MachineInstr *NewMI = 2356 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2357 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2358 VRMap); 2359 NewBB->push_back(NewMI); 2360 InstrMap[NewMI] = &*BBI; 2361 } 2362 } 2363 } 2364 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2365 DEBUG({ 2366 dbgs() << "prolog:\n"; 2367 NewBB->dump(); 2368 }); 2369 } 2370 2371 PredBB->replaceSuccessor(BB, KernelBB); 2372 2373 // Check if we need to remove the branch from the preheader to the original 2374 // loop, and replace it with a branch to the new loop. 2375 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2376 if (numBranches) { 2377 SmallVector<MachineOperand, 0> Cond; 2378 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2379 } 2380 } 2381 2382 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2383 /// that were started in either the prolog or the kernel. We create a basic 2384 /// block for each stage that needs to complete. 2385 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2386 MachineBasicBlock *KernelBB, 2387 ValueMapTy *VRMap, 2388 MBBVectorTy &EpilogBBs, 2389 MBBVectorTy &PrologBBs) { 2390 // We need to change the branch from the kernel to the first epilog block, so 2391 // this call to analyze branch uses the kernel rather than the original BB. 2392 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2393 SmallVector<MachineOperand, 4> Cond; 2394 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2395 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2396 if (checkBranch) 2397 return; 2398 2399 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2400 if (*LoopExitI == KernelBB) 2401 ++LoopExitI; 2402 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2403 MachineBasicBlock *LoopExitBB = *LoopExitI; 2404 2405 MachineBasicBlock *PredBB = KernelBB; 2406 MachineBasicBlock *EpilogStart = LoopExitBB; 2407 InstrMapTy InstrMap; 2408 2409 // Generate a basic block for each stage, not including the last stage, 2410 // which was generated for the kernel. Each basic block may contain 2411 // instructions from multiple stages/iterations. 2412 int EpilogStage = LastStage + 1; 2413 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2414 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2415 EpilogBBs.push_back(NewBB); 2416 MF.insert(BB->getIterator(), NewBB); 2417 2418 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2419 NewBB->addSuccessor(LoopExitBB); 2420 2421 if (EpilogStart == LoopExitBB) 2422 EpilogStart = NewBB; 2423 2424 // Add instructions to the epilog depending on the current block. 2425 // Process instructions in original program order. 2426 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2427 for (auto &BBI : *BB) { 2428 if (BBI.isPHI()) 2429 continue; 2430 MachineInstr *In = &BBI; 2431 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2432 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2433 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2434 NewBB->push_back(NewMI); 2435 InstrMap[NewMI] = In; 2436 } 2437 } 2438 } 2439 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2440 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2441 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2442 InstrMap, LastStage, EpilogStage, i == 1); 2443 PredBB = NewBB; 2444 2445 DEBUG({ 2446 dbgs() << "epilog:\n"; 2447 NewBB->dump(); 2448 }); 2449 } 2450 2451 // Fix any Phi nodes in the loop exit block. 2452 for (MachineInstr &MI : *LoopExitBB) { 2453 if (!MI.isPHI()) 2454 break; 2455 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2456 MachineOperand &MO = MI.getOperand(i); 2457 if (MO.getMBB() == BB) 2458 MO.setMBB(PredBB); 2459 } 2460 } 2461 2462 // Create a branch to the new epilog from the kernel. 2463 // Remove the original branch and add a new branch to the epilog. 2464 TII->removeBranch(*KernelBB); 2465 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2466 // Add a branch to the loop exit. 2467 if (EpilogBBs.size() > 0) { 2468 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2469 SmallVector<MachineOperand, 4> Cond1; 2470 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2471 } 2472 } 2473 2474 /// Replace all uses of FromReg that appear outside the specified 2475 /// basic block with ToReg. 2476 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2477 MachineBasicBlock *MBB, 2478 MachineRegisterInfo &MRI, 2479 LiveIntervals &LIS) { 2480 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2481 E = MRI.use_end(); 2482 I != E;) { 2483 MachineOperand &O = *I; 2484 ++I; 2485 if (O.getParent()->getParent() != MBB) 2486 O.setReg(ToReg); 2487 } 2488 if (!LIS.hasInterval(ToReg)) 2489 LIS.createEmptyInterval(ToReg); 2490 } 2491 2492 /// Return true if the register has a use that occurs outside the 2493 /// specified loop. 2494 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2495 MachineRegisterInfo &MRI) { 2496 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2497 E = MRI.use_end(); 2498 I != E; ++I) 2499 if (I->getParent()->getParent() != BB) 2500 return true; 2501 return false; 2502 } 2503 2504 /// Generate Phis for the specific block in the generated pipelined code. 2505 /// This function looks at the Phis from the original code to guide the 2506 /// creation of new Phis. 2507 void SwingSchedulerDAG::generateExistingPhis( 2508 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2509 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2510 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2511 bool IsLast) { 2512 // Compute the stage number for the inital value of the Phi, which 2513 // comes from the prolog. The prolog to use depends on to which kernel/ 2514 // epilog that we're adding the Phi. 2515 unsigned PrologStage = 0; 2516 unsigned PrevStage = 0; 2517 bool InKernel = (LastStageNum == CurStageNum); 2518 if (InKernel) { 2519 PrologStage = LastStageNum - 1; 2520 PrevStage = CurStageNum; 2521 } else { 2522 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2523 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2524 } 2525 2526 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2527 BBE = BB->getFirstNonPHI(); 2528 BBI != BBE; ++BBI) { 2529 unsigned Def = BBI->getOperand(0).getReg(); 2530 2531 unsigned InitVal = 0; 2532 unsigned LoopVal = 0; 2533 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2534 2535 unsigned PhiOp1 = 0; 2536 // The Phi value from the loop body typically is defined in the loop, but 2537 // not always. So, we need to check if the value is defined in the loop. 2538 unsigned PhiOp2 = LoopVal; 2539 if (VRMap[LastStageNum].count(LoopVal)) 2540 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2541 2542 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2543 int LoopValStage = 2544 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2545 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2546 if (NumStages == 0) { 2547 // We don't need to generate a Phi anymore, but we need to rename any uses 2548 // of the Phi value. 2549 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2550 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2551 Def, NewReg); 2552 if (VRMap[CurStageNum].count(LoopVal)) 2553 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2554 } 2555 // Adjust the number of Phis needed depending on the number of prologs left, 2556 // and the distance from where the Phi is first scheduled. 2557 unsigned NumPhis = NumStages; 2558 if (!InKernel && (int)PrologStage < LoopValStage) 2559 // The NumPhis is the maximum number of new Phis needed during the steady 2560 // state. If the Phi has not been scheduled in current prolog, then we 2561 // need to generate less Phis. 2562 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2563 // The number of Phis cannot exceed the number of prolog stages. Each 2564 // stage can potentially define two values. 2565 NumPhis = std::min(NumPhis, PrologStage + 2); 2566 2567 unsigned NewReg = 0; 2568 2569 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2570 // In the epilog, we may need to look back one stage to get the correct 2571 // Phi name because the epilog and prolog blocks execute the same stage. 2572 // The correct name is from the previous block only when the Phi has 2573 // been completely scheduled prior to the epilog, and Phi value is not 2574 // needed in multiple stages. 2575 int StageDiff = 0; 2576 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2577 NumPhis == 1) 2578 StageDiff = 1; 2579 // Adjust the computations below when the phi and the loop definition 2580 // are scheduled in different stages. 2581 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2582 StageDiff = StageScheduled - LoopValStage; 2583 for (unsigned np = 0; np < NumPhis; ++np) { 2584 // If the Phi hasn't been scheduled, then use the initial Phi operand 2585 // value. Otherwise, use the scheduled version of the instruction. This 2586 // is a little complicated when a Phi references another Phi. 2587 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2588 PhiOp1 = InitVal; 2589 // Check if the Phi has already been scheduled in a prolog stage. 2590 else if (PrologStage >= AccessStage + StageDiff + np && 2591 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2592 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2593 // Check if the Phi has already been scheduled, but the loop intruction 2594 // is either another Phi, or doesn't occur in the loop. 2595 else if (PrologStage >= AccessStage + StageDiff + np) { 2596 // If the Phi references another Phi, we need to examine the other 2597 // Phi to get the correct value. 2598 PhiOp1 = LoopVal; 2599 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2600 int Indirects = 1; 2601 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2602 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2603 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2604 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2605 else 2606 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2607 InstOp1 = MRI.getVRegDef(PhiOp1); 2608 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2609 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2610 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2611 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2612 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2613 break; 2614 } 2615 ++Indirects; 2616 } 2617 } else 2618 PhiOp1 = InitVal; 2619 // If this references a generated Phi in the kernel, get the Phi operand 2620 // from the incoming block. 2621 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2622 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2623 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2624 2625 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2626 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2627 // In the epilog, a map lookup is needed to get the value from the kernel, 2628 // or previous epilog block. How is does this depends on if the 2629 // instruction is scheduled in the previous block. 2630 if (!InKernel) { 2631 int StageDiffAdj = 0; 2632 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2633 StageDiffAdj = StageScheduled - LoopValStage; 2634 // Use the loop value defined in the kernel, unless the kernel 2635 // contains the last definition of the Phi. 2636 if (np == 0 && PrevStage == LastStageNum && 2637 (StageScheduled != 0 || LoopValStage != 0) && 2638 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2639 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2640 // Use the value defined by the Phi. We add one because we switch 2641 // from looking at the loop value to the Phi definition. 2642 else if (np > 0 && PrevStage == LastStageNum && 2643 VRMap[PrevStage - np + 1].count(Def)) 2644 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2645 // Use the loop value defined in the kernel. 2646 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2647 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2648 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2649 // Use the value defined by the Phi, unless we're generating the first 2650 // epilog and the Phi refers to a Phi in a different stage. 2651 else if (VRMap[PrevStage - np].count(Def) && 2652 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2653 PhiOp2 = VRMap[PrevStage - np][Def]; 2654 } 2655 2656 // Check if we can reuse an existing Phi. This occurs when a Phi 2657 // references another Phi, and the other Phi is scheduled in an 2658 // earlier stage. We can try to reuse an existing Phi up until the last 2659 // stage of the current Phi. 2660 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2661 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2662 int StageDiff = (StageScheduled - LoopValStage); 2663 LVNumStages -= StageDiff; 2664 if (LVNumStages > (int)np) { 2665 NewReg = PhiOp2; 2666 unsigned ReuseStage = CurStageNum; 2667 if (Schedule.isLoopCarried(this, *PhiInst)) 2668 ReuseStage -= LVNumStages; 2669 // Check if the Phi to reuse has been generated yet. If not, then 2670 // there is nothing to reuse. 2671 if (VRMap[ReuseStage].count(LoopVal)) { 2672 NewReg = VRMap[ReuseStage][LoopVal]; 2673 2674 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2675 &*BBI, Def, NewReg); 2676 // Update the map with the new Phi name. 2677 VRMap[CurStageNum - np][Def] = NewReg; 2678 PhiOp2 = NewReg; 2679 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2680 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2681 2682 if (IsLast && np == NumPhis - 1) 2683 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2684 continue; 2685 } 2686 } else if (InKernel && StageDiff > 0 && 2687 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2688 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2689 } 2690 2691 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2692 NewReg = MRI.createVirtualRegister(RC); 2693 2694 MachineInstrBuilder NewPhi = 2695 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2696 TII->get(TargetOpcode::PHI), NewReg); 2697 NewPhi.addReg(PhiOp1).addMBB(BB1); 2698 NewPhi.addReg(PhiOp2).addMBB(BB2); 2699 if (np == 0) 2700 InstrMap[NewPhi] = &*BBI; 2701 2702 // We define the Phis after creating the new pipelined code, so 2703 // we need to rename the Phi values in scheduled instructions. 2704 2705 unsigned PrevReg = 0; 2706 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2707 PrevReg = VRMap[PrevStage - np][LoopVal]; 2708 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2709 Def, NewReg, PrevReg); 2710 // If the Phi has been scheduled, use the new name for rewriting. 2711 if (VRMap[CurStageNum - np].count(Def)) { 2712 unsigned R = VRMap[CurStageNum - np][Def]; 2713 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2714 R, NewReg); 2715 } 2716 2717 // Check if we need to rename any uses that occurs after the loop. The 2718 // register to replace depends on whether the Phi is scheduled in the 2719 // epilog. 2720 if (IsLast && np == NumPhis - 1) 2721 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2722 2723 // In the kernel, a dependent Phi uses the value from this Phi. 2724 if (InKernel) 2725 PhiOp2 = NewReg; 2726 2727 // Update the map with the new Phi name. 2728 VRMap[CurStageNum - np][Def] = NewReg; 2729 } 2730 2731 while (NumPhis++ < NumStages) { 2732 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2733 &*BBI, Def, NewReg, 0); 2734 } 2735 2736 // Check if we need to rename a Phi that has been eliminated due to 2737 // scheduling. 2738 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2739 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2740 } 2741 } 2742 2743 /// Generate Phis for the specified block in the generated pipelined code. 2744 /// These are new Phis needed because the definition is scheduled after the 2745 /// use in the pipelened sequence. 2746 void SwingSchedulerDAG::generatePhis( 2747 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2748 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2749 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2750 bool IsLast) { 2751 // Compute the stage number that contains the initial Phi value, and 2752 // the Phi from the previous stage. 2753 unsigned PrologStage = 0; 2754 unsigned PrevStage = 0; 2755 unsigned StageDiff = CurStageNum - LastStageNum; 2756 bool InKernel = (StageDiff == 0); 2757 if (InKernel) { 2758 PrologStage = LastStageNum - 1; 2759 PrevStage = CurStageNum; 2760 } else { 2761 PrologStage = LastStageNum - StageDiff; 2762 PrevStage = LastStageNum + StageDiff - 1; 2763 } 2764 2765 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2766 BBE = BB->instr_end(); 2767 BBI != BBE; ++BBI) { 2768 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2769 MachineOperand &MO = BBI->getOperand(i); 2770 if (!MO.isReg() || !MO.isDef() || 2771 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2772 continue; 2773 2774 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2775 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2776 unsigned Def = MO.getReg(); 2777 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2778 // An instruction scheduled in stage 0 and is used after the loop 2779 // requires a phi in the epilog for the last definition from either 2780 // the kernel or prolog. 2781 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2782 hasUseAfterLoop(Def, BB, MRI)) 2783 NumPhis = 1; 2784 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2785 continue; 2786 2787 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2788 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2789 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2790 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2791 // The number of Phis can't exceed the number of prolog stages. The 2792 // prolog stage number is zero based. 2793 if (NumPhis > PrologStage + 1 - StageScheduled) 2794 NumPhis = PrologStage + 1 - StageScheduled; 2795 for (unsigned np = 0; np < NumPhis; ++np) { 2796 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2797 if (np <= PrologStage) 2798 PhiOp1 = VRMap[PrologStage - np][Def]; 2799 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2800 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2801 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2802 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2803 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2804 } 2805 if (!InKernel) 2806 PhiOp2 = VRMap[PrevStage - np][Def]; 2807 2808 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2809 unsigned NewReg = MRI.createVirtualRegister(RC); 2810 2811 MachineInstrBuilder NewPhi = 2812 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2813 TII->get(TargetOpcode::PHI), NewReg); 2814 NewPhi.addReg(PhiOp1).addMBB(BB1); 2815 NewPhi.addReg(PhiOp2).addMBB(BB2); 2816 if (np == 0) 2817 InstrMap[NewPhi] = &*BBI; 2818 2819 // Rewrite uses and update the map. The actions depend upon whether 2820 // we generating code for the kernel or epilog blocks. 2821 if (InKernel) { 2822 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2823 &*BBI, PhiOp1, NewReg); 2824 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2825 &*BBI, PhiOp2, NewReg); 2826 2827 PhiOp2 = NewReg; 2828 VRMap[PrevStage - np - 1][Def] = NewReg; 2829 } else { 2830 VRMap[CurStageNum - np][Def] = NewReg; 2831 if (np == NumPhis - 1) 2832 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2833 &*BBI, Def, NewReg); 2834 } 2835 if (IsLast && np == NumPhis - 1) 2836 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2837 } 2838 } 2839 } 2840 } 2841 2842 /// Remove instructions that generate values with no uses. 2843 /// Typically, these are induction variable operations that generate values 2844 /// used in the loop itself. A dead instruction has a definition with 2845 /// no uses, or uses that occur in the original loop only. 2846 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2847 MBBVectorTy &EpilogBBs) { 2848 // For each epilog block, check that the value defined by each instruction 2849 // is used. If not, delete it. 2850 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2851 MBE = EpilogBBs.rend(); 2852 MBB != MBE; ++MBB) 2853 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2854 ME = (*MBB)->instr_rend(); 2855 MI != ME;) { 2856 // From DeadMachineInstructionElem. Don't delete inline assembly. 2857 if (MI->isInlineAsm()) { 2858 ++MI; 2859 continue; 2860 } 2861 bool SawStore = false; 2862 // Check if it's safe to remove the instruction due to side effects. 2863 // We can, and want to, remove Phis here. 2864 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2865 ++MI; 2866 continue; 2867 } 2868 bool used = true; 2869 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2870 MOE = MI->operands_end(); 2871 MOI != MOE; ++MOI) { 2872 if (!MOI->isReg() || !MOI->isDef()) 2873 continue; 2874 unsigned reg = MOI->getReg(); 2875 unsigned realUses = 0; 2876 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2877 EI = MRI.use_end(); 2878 UI != EI; ++UI) { 2879 // Check if there are any uses that occur only in the original 2880 // loop. If so, that's not a real use. 2881 if (UI->getParent()->getParent() != BB) { 2882 realUses++; 2883 used = true; 2884 break; 2885 } 2886 } 2887 if (realUses > 0) 2888 break; 2889 used = false; 2890 } 2891 if (!used) { 2892 MI++->eraseFromParent(); 2893 continue; 2894 } 2895 ++MI; 2896 } 2897 // In the kernel block, check if we can remove a Phi that generates a value 2898 // used in an instruction removed in the epilog block. 2899 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2900 BBE = KernelBB->getFirstNonPHI(); 2901 BBI != BBE;) { 2902 MachineInstr *MI = &*BBI; 2903 ++BBI; 2904 unsigned reg = MI->getOperand(0).getReg(); 2905 if (MRI.use_begin(reg) == MRI.use_end()) { 2906 MI->eraseFromParent(); 2907 } 2908 } 2909 } 2910 2911 /// For loop carried definitions, we split the lifetime of a virtual register 2912 /// that has uses past the definition in the next iteration. A copy with a new 2913 /// virtual register is inserted before the definition, which helps with 2914 /// generating a better register assignment. 2915 /// 2916 /// v1 = phi(a, v2) v1 = phi(a, v2) 2917 /// v2 = phi(b, v3) v2 = phi(b, v3) 2918 /// v3 = .. v4 = copy v1 2919 /// .. = V1 v3 = .. 2920 /// .. = v4 2921 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2922 MBBVectorTy &EpilogBBs, 2923 SMSchedule &Schedule) { 2924 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2925 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2926 BBF = KernelBB->getFirstNonPHI(); 2927 BBI != BBF; ++BBI) { 2928 unsigned Def = BBI->getOperand(0).getReg(); 2929 // Check for any Phi definition that used as an operand of another Phi 2930 // in the same block. 2931 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2932 E = MRI.use_instr_end(); 2933 I != E; ++I) { 2934 if (I->isPHI() && I->getParent() == KernelBB) { 2935 // Get the loop carried definition. 2936 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2937 if (!LCDef) 2938 continue; 2939 MachineInstr *MI = MRI.getVRegDef(LCDef); 2940 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2941 continue; 2942 // Search through the rest of the block looking for uses of the Phi 2943 // definition. If one occurs, then split the lifetime. 2944 unsigned SplitReg = 0; 2945 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2946 KernelBB->instr_end())) 2947 if (BBJ.readsRegister(Def)) { 2948 // We split the lifetime when we find the first use. 2949 if (SplitReg == 0) { 2950 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2951 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2952 TII->get(TargetOpcode::COPY), SplitReg) 2953 .addReg(Def); 2954 } 2955 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2956 } 2957 if (!SplitReg) 2958 continue; 2959 // Search through each of the epilog blocks for any uses to be renamed. 2960 for (auto &Epilog : EpilogBBs) 2961 for (auto &I : *Epilog) 2962 if (I.readsRegister(Def)) 2963 I.substituteRegister(Def, SplitReg, 0, *TRI); 2964 break; 2965 } 2966 } 2967 } 2968 } 2969 2970 /// Remove the incoming block from the Phis in a basic block. 2971 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2972 for (MachineInstr &MI : *BB) { 2973 if (!MI.isPHI()) 2974 break; 2975 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2976 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2977 MI.RemoveOperand(i + 1); 2978 MI.RemoveOperand(i); 2979 break; 2980 } 2981 } 2982 } 2983 2984 /// Create branches from each prolog basic block to the appropriate epilog 2985 /// block. These edges are needed if the loop ends before reaching the 2986 /// kernel. 2987 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2988 MachineBasicBlock *KernelBB, 2989 MBBVectorTy &EpilogBBs, 2990 SMSchedule &Schedule, ValueMapTy *VRMap) { 2991 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2992 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2993 MachineInstr *Cmp = Pass.LI.LoopCompare; 2994 MachineBasicBlock *LastPro = KernelBB; 2995 MachineBasicBlock *LastEpi = KernelBB; 2996 2997 // Start from the blocks connected to the kernel and work "out" 2998 // to the first prolog and the last epilog blocks. 2999 SmallVector<MachineInstr *, 4> PrevInsts; 3000 unsigned MaxIter = PrologBBs.size() - 1; 3001 unsigned LC = UINT_MAX; 3002 unsigned LCMin = UINT_MAX; 3003 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3004 // Add branches to the prolog that go to the corresponding 3005 // epilog, and the fall-thru prolog/kernel block. 3006 MachineBasicBlock *Prolog = PrologBBs[j]; 3007 MachineBasicBlock *Epilog = EpilogBBs[i]; 3008 // We've executed one iteration, so decrement the loop count and check for 3009 // the loop end. 3010 SmallVector<MachineOperand, 4> Cond; 3011 // Check if the LOOP0 has already been removed. If so, then there is no need 3012 // to reduce the trip count. 3013 if (LC != 0) 3014 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3015 MaxIter); 3016 3017 // Record the value of the first trip count, which is used to determine if 3018 // branches and blocks can be removed for constant trip counts. 3019 if (LCMin == UINT_MAX) 3020 LCMin = LC; 3021 3022 unsigned numAdded = 0; 3023 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3024 Prolog->addSuccessor(Epilog); 3025 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3026 } else if (j >= LCMin) { 3027 Prolog->addSuccessor(Epilog); 3028 Prolog->removeSuccessor(LastPro); 3029 LastEpi->removeSuccessor(Epilog); 3030 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3031 removePhis(Epilog, LastEpi); 3032 // Remove the blocks that are no longer referenced. 3033 if (LastPro != LastEpi) { 3034 LastEpi->clear(); 3035 LastEpi->eraseFromParent(); 3036 } 3037 LastPro->clear(); 3038 LastPro->eraseFromParent(); 3039 } else { 3040 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3041 removePhis(Epilog, Prolog); 3042 } 3043 LastPro = Prolog; 3044 LastEpi = Epilog; 3045 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3046 E = Prolog->instr_rend(); 3047 I != E && numAdded > 0; ++I, --numAdded) 3048 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3049 } 3050 } 3051 3052 /// Return true if we can compute the amount the instruction changes 3053 /// during each iteration. Set Delta to the amount of the change. 3054 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3055 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3056 unsigned BaseReg; 3057 int64_t Offset; 3058 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3059 return false; 3060 3061 MachineRegisterInfo &MRI = MF.getRegInfo(); 3062 // Check if there is a Phi. If so, get the definition in the loop. 3063 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3064 if (BaseDef && BaseDef->isPHI()) { 3065 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3066 BaseDef = MRI.getVRegDef(BaseReg); 3067 } 3068 if (!BaseDef) 3069 return false; 3070 3071 int D = 0; 3072 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3073 return false; 3074 3075 Delta = D; 3076 return true; 3077 } 3078 3079 /// Update the memory operand with a new offset when the pipeliner 3080 /// generates a new copy of the instruction that refers to a 3081 /// different memory location. 3082 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3083 MachineInstr &OldMI, unsigned Num) { 3084 if (Num == 0) 3085 return; 3086 // If the instruction has memory operands, then adjust the offset 3087 // when the instruction appears in different stages. 3088 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3089 if (NumRefs == 0) 3090 return; 3091 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3092 unsigned Refs = 0; 3093 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3094 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3095 (!MMO->getValue())) { 3096 NewMemRefs[Refs++] = MMO; 3097 continue; 3098 } 3099 unsigned Delta; 3100 if (computeDelta(OldMI, Delta)) { 3101 int64_t AdjOffset = Delta * Num; 3102 NewMemRefs[Refs++] = 3103 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3104 } else 3105 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); 3106 } 3107 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3108 } 3109 3110 /// Clone the instruction for the new pipelined loop and update the 3111 /// memory operands, if needed. 3112 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3113 unsigned CurStageNum, 3114 unsigned InstStageNum) { 3115 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3116 // Check for tied operands in inline asm instructions. This should be handled 3117 // elsewhere, but I'm not sure of the best solution. 3118 if (OldMI->isInlineAsm()) 3119 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3120 const auto &MO = OldMI->getOperand(i); 3121 if (MO.isReg() && MO.isUse()) 3122 break; 3123 unsigned UseIdx; 3124 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3125 NewMI->tieOperands(i, UseIdx); 3126 } 3127 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3128 return NewMI; 3129 } 3130 3131 /// Clone the instruction for the new pipelined loop. If needed, this 3132 /// function updates the instruction using the values saved in the 3133 /// InstrChanges structure. 3134 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3135 unsigned CurStageNum, 3136 unsigned InstStageNum, 3137 SMSchedule &Schedule) { 3138 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3139 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3140 InstrChanges.find(getSUnit(OldMI)); 3141 if (It != InstrChanges.end()) { 3142 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3143 unsigned BasePos, OffsetPos; 3144 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3145 return nullptr; 3146 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3147 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3148 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3149 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3150 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3151 } 3152 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3153 return NewMI; 3154 } 3155 3156 /// Update the machine instruction with new virtual registers. This 3157 /// function may change the defintions and/or uses. 3158 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3159 unsigned CurStageNum, 3160 unsigned InstrStageNum, 3161 SMSchedule &Schedule, 3162 ValueMapTy *VRMap) { 3163 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3164 MachineOperand &MO = NewMI->getOperand(i); 3165 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3166 continue; 3167 unsigned reg = MO.getReg(); 3168 if (MO.isDef()) { 3169 // Create a new virtual register for the definition. 3170 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3171 unsigned NewReg = MRI.createVirtualRegister(RC); 3172 MO.setReg(NewReg); 3173 VRMap[CurStageNum][reg] = NewReg; 3174 if (LastDef) 3175 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3176 } else if (MO.isUse()) { 3177 MachineInstr *Def = MRI.getVRegDef(reg); 3178 // Compute the stage that contains the last definition for instruction. 3179 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3180 unsigned StageNum = CurStageNum; 3181 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3182 // Compute the difference in stages between the defintion and the use. 3183 unsigned StageDiff = (InstrStageNum - DefStageNum); 3184 // Make an adjustment to get the last definition. 3185 StageNum -= StageDiff; 3186 } 3187 if (VRMap[StageNum].count(reg)) 3188 MO.setReg(VRMap[StageNum][reg]); 3189 } 3190 } 3191 } 3192 3193 /// Return the instruction in the loop that defines the register. 3194 /// If the definition is a Phi, then follow the Phi operand to 3195 /// the instruction in the loop. 3196 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3197 SmallPtrSet<MachineInstr *, 8> Visited; 3198 MachineInstr *Def = MRI.getVRegDef(Reg); 3199 while (Def->isPHI()) { 3200 if (!Visited.insert(Def).second) 3201 break; 3202 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3203 if (Def->getOperand(i + 1).getMBB() == BB) { 3204 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3205 break; 3206 } 3207 } 3208 return Def; 3209 } 3210 3211 /// Return the new name for the value from the previous stage. 3212 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3213 unsigned LoopVal, unsigned LoopStage, 3214 ValueMapTy *VRMap, 3215 MachineBasicBlock *BB) { 3216 unsigned PrevVal = 0; 3217 if (StageNum > PhiStage) { 3218 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3219 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3220 // The name is defined in the previous stage. 3221 PrevVal = VRMap[StageNum - 1][LoopVal]; 3222 else if (VRMap[StageNum].count(LoopVal)) 3223 // The previous name is defined in the current stage when the instruction 3224 // order is swapped. 3225 PrevVal = VRMap[StageNum][LoopVal]; 3226 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3227 // The loop value hasn't yet been scheduled. 3228 PrevVal = LoopVal; 3229 else if (StageNum == PhiStage + 1) 3230 // The loop value is another phi, which has not been scheduled. 3231 PrevVal = getInitPhiReg(*LoopInst, BB); 3232 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3233 // The loop value is another phi, which has been scheduled. 3234 PrevVal = 3235 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3236 LoopStage, VRMap, BB); 3237 } 3238 return PrevVal; 3239 } 3240 3241 /// Rewrite the Phi values in the specified block to use the mappings 3242 /// from the initial operand. Once the Phi is scheduled, we switch 3243 /// to using the loop value instead of the Phi value, so those names 3244 /// do not need to be rewritten. 3245 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3246 unsigned StageNum, 3247 SMSchedule &Schedule, 3248 ValueMapTy *VRMap, 3249 InstrMapTy &InstrMap) { 3250 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3251 BBE = BB->getFirstNonPHI(); 3252 BBI != BBE; ++BBI) { 3253 unsigned InitVal = 0; 3254 unsigned LoopVal = 0; 3255 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3256 unsigned PhiDef = BBI->getOperand(0).getReg(); 3257 3258 unsigned PhiStage = 3259 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3260 unsigned LoopStage = 3261 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3262 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3263 if (NumPhis > StageNum) 3264 NumPhis = StageNum; 3265 for (unsigned np = 0; np <= NumPhis; ++np) { 3266 unsigned NewVal = 3267 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3268 if (!NewVal) 3269 NewVal = InitVal; 3270 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3271 PhiDef, NewVal); 3272 } 3273 } 3274 } 3275 3276 /// Rewrite a previously scheduled instruction to use the register value 3277 /// from the new instruction. Make sure the instruction occurs in the 3278 /// basic block, and we don't change the uses in the new instruction. 3279 void SwingSchedulerDAG::rewriteScheduledInstr( 3280 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3281 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3282 unsigned NewReg, unsigned PrevReg) { 3283 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3284 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3285 // Rewrite uses that have been scheduled already to use the new 3286 // Phi register. 3287 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3288 EI = MRI.use_end(); 3289 UI != EI;) { 3290 MachineOperand &UseOp = *UI; 3291 MachineInstr *UseMI = UseOp.getParent(); 3292 ++UI; 3293 if (UseMI->getParent() != BB) 3294 continue; 3295 if (UseMI->isPHI()) { 3296 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3297 continue; 3298 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3299 continue; 3300 } 3301 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3302 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3303 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3304 int StageSched = Schedule.stageScheduled(OrigMISU); 3305 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3306 unsigned ReplaceReg = 0; 3307 // This is the stage for the scheduled instruction. 3308 if (StagePhi == StageSched && Phi->isPHI()) { 3309 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3310 if (PrevReg && InProlog) 3311 ReplaceReg = PrevReg; 3312 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3313 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3314 ReplaceReg = PrevReg; 3315 else 3316 ReplaceReg = NewReg; 3317 } 3318 // The scheduled instruction occurs before the scheduled Phi, and the 3319 // Phi is not loop carried. 3320 if (!InProlog && StagePhi + 1 == StageSched && 3321 !Schedule.isLoopCarried(this, *Phi)) 3322 ReplaceReg = NewReg; 3323 if (StagePhi > StageSched && Phi->isPHI()) 3324 ReplaceReg = NewReg; 3325 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3326 ReplaceReg = NewReg; 3327 if (ReplaceReg) { 3328 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3329 UseOp.setReg(ReplaceReg); 3330 } 3331 } 3332 } 3333 3334 /// Check if we can change the instruction to use an offset value from the 3335 /// previous iteration. If so, return true and set the base and offset values 3336 /// so that we can rewrite the load, if necessary. 3337 /// v1 = Phi(v0, v3) 3338 /// v2 = load v1, 0 3339 /// v3 = post_store v1, 4, x 3340 /// This function enables the load to be rewritten as v2 = load v3, 4. 3341 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3342 unsigned &BasePos, 3343 unsigned &OffsetPos, 3344 unsigned &NewBase, 3345 int64_t &Offset) { 3346 // Get the load instruction. 3347 if (TII->isPostIncrement(*MI)) 3348 return false; 3349 unsigned BasePosLd, OffsetPosLd; 3350 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3351 return false; 3352 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3353 3354 // Look for the Phi instruction. 3355 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 3356 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3357 if (!Phi || !Phi->isPHI()) 3358 return false; 3359 // Get the register defined in the loop block. 3360 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3361 if (!PrevReg) 3362 return false; 3363 3364 // Check for the post-increment load/store instruction. 3365 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3366 if (!PrevDef || PrevDef == MI) 3367 return false; 3368 3369 if (!TII->isPostIncrement(*PrevDef)) 3370 return false; 3371 3372 unsigned BasePos1 = 0, OffsetPos1 = 0; 3373 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3374 return false; 3375 3376 // Make sure offset values are both positive or both negative. 3377 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3378 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3379 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3380 return false; 3381 3382 // Set the return value once we determine that we return true. 3383 BasePos = BasePosLd; 3384 OffsetPos = OffsetPosLd; 3385 NewBase = PrevReg; 3386 Offset = StoreOffset; 3387 return true; 3388 } 3389 3390 /// Apply changes to the instruction if needed. The changes are need 3391 /// to improve the scheduling and depend up on the final schedule. 3392 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3393 SMSchedule &Schedule, 3394 bool UpdateDAG) { 3395 SUnit *SU = getSUnit(MI); 3396 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3397 InstrChanges.find(SU); 3398 if (It != InstrChanges.end()) { 3399 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3400 unsigned BasePos, OffsetPos; 3401 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3402 return nullptr; 3403 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3404 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3405 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3406 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3407 int BaseStageNum = Schedule.stageScheduled(SU); 3408 int BaseCycleNum = Schedule.cycleScheduled(SU); 3409 if (BaseStageNum < DefStageNum) { 3410 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3411 int OffsetDiff = DefStageNum - BaseStageNum; 3412 if (DefCycleNum < BaseCycleNum) { 3413 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3414 if (OffsetDiff > 0) 3415 --OffsetDiff; 3416 } 3417 int64_t NewOffset = 3418 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3419 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3420 if (UpdateDAG) { 3421 SU->setInstr(NewMI); 3422 MISUnitMap[NewMI] = SU; 3423 } 3424 NewMIs.insert(NewMI); 3425 return NewMI; 3426 } 3427 } 3428 return nullptr; 3429 } 3430 3431 /// Return true for an order dependence that is loop carried potentially. 3432 /// An order dependence is loop carried if the destination defines a value 3433 /// that may be used by the source in a subsequent iteration. 3434 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3435 bool isSucc) { 3436 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3437 return false; 3438 3439 if (!SwpPruneLoopCarried) 3440 return true; 3441 3442 MachineInstr *SI = Source->getInstr(); 3443 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3444 if (!isSucc) 3445 std::swap(SI, DI); 3446 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3447 3448 // Assume ordered loads and stores may have a loop carried dependence. 3449 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3450 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3451 return true; 3452 3453 // Only chain dependences between a load and store can be loop carried. 3454 if (!DI->mayStore() || !SI->mayLoad()) 3455 return false; 3456 3457 unsigned DeltaS, DeltaD; 3458 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3459 return true; 3460 3461 unsigned BaseRegS, BaseRegD; 3462 int64_t OffsetS, OffsetD; 3463 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3464 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3465 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3466 return true; 3467 3468 if (BaseRegS != BaseRegD) 3469 return true; 3470 3471 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3472 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3473 3474 // This is the main test, which checks the offset values and the loop 3475 // increment value to determine if the accesses may be loop carried. 3476 if (OffsetS >= OffsetD) 3477 return OffsetS + AccessSizeS > DeltaS; 3478 else 3479 return OffsetD + AccessSizeD > DeltaD; 3480 3481 return true; 3482 } 3483 3484 void SwingSchedulerDAG::postprocessDAG() { 3485 for (auto &M : Mutations) 3486 M->apply(this); 3487 } 3488 3489 /// Try to schedule the node at the specified StartCycle and continue 3490 /// until the node is schedule or the EndCycle is reached. This function 3491 /// returns true if the node is scheduled. This routine may search either 3492 /// forward or backward for a place to insert the instruction based upon 3493 /// the relative values of StartCycle and EndCycle. 3494 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3495 bool forward = true; 3496 if (StartCycle > EndCycle) 3497 forward = false; 3498 3499 // The terminating condition depends on the direction. 3500 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3501 for (int curCycle = StartCycle; curCycle != termCycle; 3502 forward ? ++curCycle : --curCycle) { 3503 3504 // Add the already scheduled instructions at the specified cycle to the DFA. 3505 Resources->clearResources(); 3506 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3507 checkCycle <= LastCycle; checkCycle += II) { 3508 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3509 3510 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3511 E = cycleInstrs.end(); 3512 I != E; ++I) { 3513 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3514 continue; 3515 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3516 "These instructions have already been scheduled."); 3517 Resources->reserveResources(*(*I)->getInstr()); 3518 } 3519 } 3520 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3521 Resources->canReserveResources(*SU->getInstr())) { 3522 DEBUG({ 3523 dbgs() << "\tinsert at cycle " << curCycle << " "; 3524 SU->getInstr()->dump(); 3525 }); 3526 3527 ScheduledInstrs[curCycle].push_back(SU); 3528 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3529 if (curCycle > LastCycle) 3530 LastCycle = curCycle; 3531 if (curCycle < FirstCycle) 3532 FirstCycle = curCycle; 3533 return true; 3534 } 3535 DEBUG({ 3536 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3537 SU->getInstr()->dump(); 3538 }); 3539 } 3540 return false; 3541 } 3542 3543 // Return the cycle of the earliest scheduled instruction in the chain. 3544 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3545 SmallPtrSet<SUnit *, 8> Visited; 3546 SmallVector<SDep, 8> Worklist; 3547 Worklist.push_back(Dep); 3548 int EarlyCycle = INT_MAX; 3549 while (!Worklist.empty()) { 3550 const SDep &Cur = Worklist.pop_back_val(); 3551 SUnit *PrevSU = Cur.getSUnit(); 3552 if (Visited.count(PrevSU)) 3553 continue; 3554 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3555 if (it == InstrToCycle.end()) 3556 continue; 3557 EarlyCycle = std::min(EarlyCycle, it->second); 3558 for (const auto &PI : PrevSU->Preds) 3559 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3560 Worklist.push_back(PI); 3561 Visited.insert(PrevSU); 3562 } 3563 return EarlyCycle; 3564 } 3565 3566 // Return the cycle of the latest scheduled instruction in the chain. 3567 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3568 SmallPtrSet<SUnit *, 8> Visited; 3569 SmallVector<SDep, 8> Worklist; 3570 Worklist.push_back(Dep); 3571 int LateCycle = INT_MIN; 3572 while (!Worklist.empty()) { 3573 const SDep &Cur = Worklist.pop_back_val(); 3574 SUnit *SuccSU = Cur.getSUnit(); 3575 if (Visited.count(SuccSU)) 3576 continue; 3577 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3578 if (it == InstrToCycle.end()) 3579 continue; 3580 LateCycle = std::max(LateCycle, it->second); 3581 for (const auto &SI : SuccSU->Succs) 3582 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3583 Worklist.push_back(SI); 3584 Visited.insert(SuccSU); 3585 } 3586 return LateCycle; 3587 } 3588 3589 /// If an instruction has a use that spans multiple iterations, then 3590 /// return true. These instructions are characterized by having a back-ege 3591 /// to a Phi, which contains a reference to another Phi. 3592 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3593 for (auto &P : SU->Preds) 3594 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3595 for (auto &S : P.getSUnit()->Succs) 3596 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3597 return P.getSUnit(); 3598 return nullptr; 3599 } 3600 3601 /// Compute the scheduling start slot for the instruction. The start slot 3602 /// depends on any predecessor or successor nodes scheduled already. 3603 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3604 int *MinEnd, int *MaxStart, int II, 3605 SwingSchedulerDAG *DAG) { 3606 // Iterate over each instruction that has been scheduled already. The start 3607 // slot computuation depends on whether the previously scheduled instruction 3608 // is a predecessor or successor of the specified instruction. 3609 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3610 3611 // Iterate over each instruction in the current cycle. 3612 for (SUnit *I : getInstructions(cycle)) { 3613 // Because we're processing a DAG for the dependences, we recognize 3614 // the back-edge in recurrences by anti dependences. 3615 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3616 const SDep &Dep = SU->Preds[i]; 3617 if (Dep.getSUnit() == I) { 3618 if (!DAG->isBackedge(SU, Dep)) { 3619 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3620 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3621 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3622 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3623 int End = earliestCycleInChain(Dep) + (II - 1); 3624 *MinEnd = std::min(*MinEnd, End); 3625 } 3626 } else { 3627 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3628 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3629 *MinLateStart = std::min(*MinLateStart, LateStart); 3630 } 3631 } 3632 // For instruction that requires multiple iterations, make sure that 3633 // the dependent instruction is not scheduled past the definition. 3634 SUnit *BE = multipleIterations(I, DAG); 3635 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3636 !SU->isPred(I)) 3637 *MinLateStart = std::min(*MinLateStart, cycle); 3638 } 3639 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3640 if (SU->Succs[i].getSUnit() == I) { 3641 const SDep &Dep = SU->Succs[i]; 3642 if (!DAG->isBackedge(SU, Dep)) { 3643 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3644 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3645 *MinLateStart = std::min(*MinLateStart, LateStart); 3646 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3647 int Start = latestCycleInChain(Dep) + 1 - II; 3648 *MaxStart = std::max(*MaxStart, Start); 3649 } 3650 } else { 3651 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3652 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3653 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3654 } 3655 } 3656 } 3657 } 3658 } 3659 3660 /// Order the instructions within a cycle so that the definitions occur 3661 /// before the uses. Returns true if the instruction is added to the start 3662 /// of the list, or false if added to the end. 3663 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3664 std::deque<SUnit *> &Insts) { 3665 MachineInstr *MI = SU->getInstr(); 3666 bool OrderBeforeUse = false; 3667 bool OrderAfterDef = false; 3668 bool OrderBeforeDef = false; 3669 unsigned MoveDef = 0; 3670 unsigned MoveUse = 0; 3671 int StageInst1 = stageScheduled(SU); 3672 3673 unsigned Pos = 0; 3674 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3675 ++I, ++Pos) { 3676 // Relative order of Phis does not matter. 3677 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3678 continue; 3679 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3680 MachineOperand &MO = MI->getOperand(i); 3681 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3682 continue; 3683 unsigned Reg = MO.getReg(); 3684 unsigned BasePos, OffsetPos; 3685 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3686 if (MI->getOperand(BasePos).getReg() == Reg) 3687 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3688 Reg = NewReg; 3689 bool Reads, Writes; 3690 std::tie(Reads, Writes) = 3691 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3692 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3693 OrderBeforeUse = true; 3694 MoveUse = Pos; 3695 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3696 // Add the instruction after the scheduled instruction. 3697 OrderAfterDef = true; 3698 MoveDef = Pos; 3699 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3700 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3701 OrderBeforeUse = true; 3702 MoveUse = Pos; 3703 } else { 3704 OrderAfterDef = true; 3705 MoveDef = Pos; 3706 } 3707 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3708 OrderBeforeUse = true; 3709 MoveUse = Pos; 3710 if (MoveUse != 0) { 3711 OrderAfterDef = true; 3712 MoveDef = Pos - 1; 3713 } 3714 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3715 // Add the instruction before the scheduled instruction. 3716 OrderBeforeUse = true; 3717 MoveUse = Pos; 3718 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3719 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3720 OrderBeforeDef = true; 3721 MoveUse = Pos; 3722 } 3723 } 3724 // Check for order dependences between instructions. Make sure the source 3725 // is ordered before the destination. 3726 for (auto &S : SU->Succs) 3727 if (S.getKind() == SDep::Order) { 3728 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3729 OrderBeforeUse = true; 3730 MoveUse = Pos; 3731 } 3732 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3733 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3734 if (S.isAssignedRegDep()) { 3735 OrderAfterDef = true; 3736 MoveDef = Pos; 3737 } 3738 } else { 3739 OrderBeforeUse = true; 3740 MoveUse = Pos; 3741 } 3742 } 3743 for (auto &P : SU->Preds) 3744 if (P.getKind() == SDep::Order) { 3745 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3746 OrderAfterDef = true; 3747 MoveDef = Pos; 3748 } 3749 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3750 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3751 if (P.isAssignedRegDep()) { 3752 OrderBeforeUse = true; 3753 MoveUse = Pos; 3754 } 3755 } else { 3756 OrderAfterDef = true; 3757 MoveDef = Pos; 3758 } 3759 } 3760 } 3761 3762 // A circular dependence. 3763 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3764 OrderBeforeUse = false; 3765 3766 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3767 // to a loop-carried dependence. 3768 if (OrderBeforeDef) 3769 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3770 3771 // The uncommon case when the instruction order needs to be updated because 3772 // there is both a use and def. 3773 if (OrderBeforeUse && OrderAfterDef) { 3774 SUnit *UseSU = Insts.at(MoveUse); 3775 SUnit *DefSU = Insts.at(MoveDef); 3776 if (MoveUse > MoveDef) { 3777 Insts.erase(Insts.begin() + MoveUse); 3778 Insts.erase(Insts.begin() + MoveDef); 3779 } else { 3780 Insts.erase(Insts.begin() + MoveDef); 3781 Insts.erase(Insts.begin() + MoveUse); 3782 } 3783 if (orderDependence(SSD, UseSU, Insts)) { 3784 Insts.push_front(SU); 3785 orderDependence(SSD, DefSU, Insts); 3786 return true; 3787 } 3788 Insts.pop_back(); 3789 Insts.push_back(SU); 3790 Insts.push_back(UseSU); 3791 orderDependence(SSD, DefSU, Insts); 3792 return false; 3793 } 3794 // Put the new instruction first if there is a use in the list. Otherwise, 3795 // put it at the end of the list. 3796 if (OrderBeforeUse) 3797 Insts.push_front(SU); 3798 else 3799 Insts.push_back(SU); 3800 return OrderBeforeUse; 3801 } 3802 3803 /// Return true if the scheduled Phi has a loop carried operand. 3804 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3805 if (!Phi.isPHI()) 3806 return false; 3807 assert(Phi.isPHI() && "Expecing a Phi."); 3808 SUnit *DefSU = SSD->getSUnit(&Phi); 3809 unsigned DefCycle = cycleScheduled(DefSU); 3810 int DefStage = stageScheduled(DefSU); 3811 3812 unsigned InitVal = 0; 3813 unsigned LoopVal = 0; 3814 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3815 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3816 if (!UseSU) 3817 return true; 3818 if (UseSU->getInstr()->isPHI()) 3819 return true; 3820 unsigned LoopCycle = cycleScheduled(UseSU); 3821 int LoopStage = stageScheduled(UseSU); 3822 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3823 } 3824 3825 /// Return true if the instruction is a definition that is loop carried 3826 /// and defines the use on the next iteration. 3827 /// v1 = phi(v2, v3) 3828 /// (Def) v3 = op v1 3829 /// (MO) = v1 3830 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3831 /// register. 3832 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3833 MachineInstr *Def, MachineOperand &MO) { 3834 if (!MO.isReg()) 3835 return false; 3836 if (Def->isPHI()) 3837 return false; 3838 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3839 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3840 return false; 3841 if (!isLoopCarried(SSD, *Phi)) 3842 return false; 3843 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3844 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3845 MachineOperand &DMO = Def->getOperand(i); 3846 if (!DMO.isReg() || !DMO.isDef()) 3847 continue; 3848 if (DMO.getReg() == LoopReg) 3849 return true; 3850 } 3851 return false; 3852 } 3853 3854 // Check if the generated schedule is valid. This function checks if 3855 // an instruction that uses a physical register is scheduled in a 3856 // different stage than the definition. The pipeliner does not handle 3857 // physical register values that may cross a basic block boundary. 3858 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3859 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3860 SUnit &SU = SSD->SUnits[i]; 3861 if (!SU.hasPhysRegDefs) 3862 continue; 3863 int StageDef = stageScheduled(&SU); 3864 assert(StageDef != -1 && "Instruction should have been scheduled."); 3865 for (auto &SI : SU.Succs) 3866 if (SI.isAssignedRegDep()) 3867 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3868 if (stageScheduled(SI.getSUnit()) != StageDef) 3869 return false; 3870 } 3871 return true; 3872 } 3873 3874 /// After the schedule has been formed, call this function to combine 3875 /// the instructions from the different stages/cycles. That is, this 3876 /// function creates a schedule that represents a single iteration. 3877 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3878 // Move all instructions to the first stage from later stages. 3879 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3880 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3881 ++stage) { 3882 std::deque<SUnit *> &cycleInstrs = 3883 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3884 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3885 E = cycleInstrs.rend(); 3886 I != E; ++I) 3887 ScheduledInstrs[cycle].push_front(*I); 3888 } 3889 } 3890 // Iterate over the definitions in each instruction, and compute the 3891 // stage difference for each use. Keep the maximum value. 3892 for (auto &I : InstrToCycle) { 3893 int DefStage = stageScheduled(I.first); 3894 MachineInstr *MI = I.first->getInstr(); 3895 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3896 MachineOperand &Op = MI->getOperand(i); 3897 if (!Op.isReg() || !Op.isDef()) 3898 continue; 3899 3900 unsigned Reg = Op.getReg(); 3901 unsigned MaxDiff = 0; 3902 bool PhiIsSwapped = false; 3903 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3904 EI = MRI.use_end(); 3905 UI != EI; ++UI) { 3906 MachineOperand &UseOp = *UI; 3907 MachineInstr *UseMI = UseOp.getParent(); 3908 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3909 int UseStage = stageScheduled(SUnitUse); 3910 unsigned Diff = 0; 3911 if (UseStage != -1 && UseStage >= DefStage) 3912 Diff = UseStage - DefStage; 3913 if (MI->isPHI()) { 3914 if (isLoopCarried(SSD, *MI)) 3915 ++Diff; 3916 else 3917 PhiIsSwapped = true; 3918 } 3919 MaxDiff = std::max(Diff, MaxDiff); 3920 } 3921 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3922 } 3923 } 3924 3925 // Erase all the elements in the later stages. Only one iteration should 3926 // remain in the scheduled list, and it contains all the instructions. 3927 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3928 ScheduledInstrs.erase(cycle); 3929 3930 // Change the registers in instruction as specified in the InstrChanges 3931 // map. We need to use the new registers to create the correct order. 3932 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3933 SUnit *SU = &SSD->SUnits[i]; 3934 SSD->applyInstrChange(SU->getInstr(), *this, true); 3935 } 3936 3937 // Reorder the instructions in each cycle to fix and improve the 3938 // generated code. 3939 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3940 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3941 std::deque<SUnit *> newOrderZC; 3942 // Put the zero-cost, pseudo instructions at the start of the cycle. 3943 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3944 SUnit *SU = cycleInstrs[i]; 3945 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3946 orderDependence(SSD, SU, newOrderZC); 3947 } 3948 std::deque<SUnit *> newOrderI; 3949 // Then, add the regular instructions back. 3950 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3951 SUnit *SU = cycleInstrs[i]; 3952 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3953 orderDependence(SSD, SU, newOrderI); 3954 } 3955 // Replace the old order with the new order. 3956 cycleInstrs.swap(newOrderZC); 3957 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3958 } 3959 3960 DEBUG(dump();); 3961 } 3962 3963 /// Print the schedule information to the given output. 3964 void SMSchedule::print(raw_ostream &os) const { 3965 // Iterate over each cycle. 3966 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3967 // Iterate over each instruction in the cycle. 3968 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3969 for (SUnit *CI : cycleInstrs->second) { 3970 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3971 os << "(" << CI->NodeNum << ") "; 3972 CI->getInstr()->print(os); 3973 os << "\n"; 3974 } 3975 } 3976 } 3977 3978 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3979 /// Utility function used for debugging to print the schedule. 3980 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3981 #endif 3982