1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 TII = MF->getSubtarget().getInstrInfo(); 221 RegClassInfo.runOnMachineFunction(*MF); 222 223 for (auto &L : *MLI) 224 scheduleLoop(*L); 225 226 return false; 227 } 228 229 /// Attempt to perform the SMS algorithm on the specified loop. This function is 230 /// the main entry point for the algorithm. The function identifies candidate 231 /// loops, calculates the minimum initiation interval, and attempts to schedule 232 /// the loop. 233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 234 bool Changed = false; 235 for (auto &InnerLoop : L) 236 Changed |= scheduleLoop(*InnerLoop); 237 238 #ifndef NDEBUG 239 // Stop trying after reaching the limit (if any). 240 int Limit = SwpLoopLimit; 241 if (Limit >= 0) { 242 if (NumTries >= SwpLoopLimit) 243 return Changed; 244 NumTries++; 245 } 246 #endif 247 248 setPragmaPipelineOptions(L); 249 if (!canPipelineLoop(L)) { 250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 251 return Changed; 252 } 253 254 ++NumTrytoPipeline; 255 256 Changed = swingModuloScheduler(L); 257 258 return Changed; 259 } 260 261 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 262 MachineBasicBlock *LBLK = L.getTopBlock(); 263 264 if (LBLK == nullptr) 265 return; 266 267 const BasicBlock *BBLK = LBLK->getBasicBlock(); 268 if (BBLK == nullptr) 269 return; 270 271 const Instruction *TI = BBLK->getTerminator(); 272 if (TI == nullptr) 273 return; 274 275 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 276 if (LoopID == nullptr) 277 return; 278 279 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 280 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 281 282 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 283 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 284 285 if (MD == nullptr) 286 continue; 287 288 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 289 290 if (S == nullptr) 291 continue; 292 293 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 294 assert(MD->getNumOperands() == 2 && 295 "Pipeline initiation interval hint metadata should have two operands."); 296 II_setByPragma = 297 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 298 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 299 } else if (S->getString() == "llvm.loop.pipeline.disable") { 300 disabledByPragma = true; 301 } 302 } 303 } 304 305 /// Return true if the loop can be software pipelined. The algorithm is 306 /// restricted to loops with a single basic block. Make sure that the 307 /// branch in the loop can be analyzed. 308 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 309 if (L.getNumBlocks() != 1) 310 return false; 311 312 if (disabledByPragma) 313 return false; 314 315 // Check if the branch can't be understood because we can't do pipelining 316 // if that's the case. 317 LI.TBB = nullptr; 318 LI.FBB = nullptr; 319 LI.BrCond.clear(); 320 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 321 LLVM_DEBUG( 322 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 323 NumFailBranch++; 324 return false; 325 } 326 327 LI.LoopInductionVar = nullptr; 328 LI.LoopCompare = nullptr; 329 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 330 LLVM_DEBUG( 331 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 332 NumFailLoop++; 333 return false; 334 } 335 336 if (!L.getLoopPreheader()) { 337 LLVM_DEBUG( 338 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 339 NumFailPreheader++; 340 return false; 341 } 342 343 // Remove any subregisters from inputs to phi nodes. 344 preprocessPhiNodes(*L.getHeader()); 345 return true; 346 } 347 348 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 349 MachineRegisterInfo &MRI = MF->getRegInfo(); 350 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 351 352 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 353 MachineOperand &DefOp = PI.getOperand(0); 354 assert(DefOp.getSubReg() == 0); 355 auto *RC = MRI.getRegClass(DefOp.getReg()); 356 357 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 358 MachineOperand &RegOp = PI.getOperand(i); 359 if (RegOp.getSubReg() == 0) 360 continue; 361 362 // If the operand uses a subregister, replace it with a new register 363 // without subregisters, and generate a copy to the new register. 364 Register NewReg = MRI.createVirtualRegister(RC); 365 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 366 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 367 const DebugLoc &DL = PredB.findDebugLoc(At); 368 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 369 .addReg(RegOp.getReg(), getRegState(RegOp), 370 RegOp.getSubReg()); 371 Slots.insertMachineInstrInMaps(*Copy); 372 RegOp.setReg(NewReg); 373 RegOp.setSubReg(0); 374 } 375 } 376 } 377 378 /// The SMS algorithm consists of the following main steps: 379 /// 1. Computation and analysis of the dependence graph. 380 /// 2. Ordering of the nodes (instructions). 381 /// 3. Attempt to Schedule the loop. 382 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 383 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 384 385 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 386 II_setByPragma); 387 388 MachineBasicBlock *MBB = L.getHeader(); 389 // The kernel should not include any terminator instructions. These 390 // will be added back later. 391 SMS.startBlock(MBB); 392 393 // Compute the number of 'real' instructions in the basic block by 394 // ignoring terminators. 395 unsigned size = MBB->size(); 396 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 397 E = MBB->instr_end(); 398 I != E; ++I, --size) 399 ; 400 401 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 402 SMS.schedule(); 403 SMS.exitRegion(); 404 405 SMS.finishBlock(); 406 return SMS.hasNewSchedule(); 407 } 408 409 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 410 if (II_setByPragma > 0) 411 MII = II_setByPragma; 412 else 413 MII = std::max(ResMII, RecMII); 414 } 415 416 void SwingSchedulerDAG::setMAX_II() { 417 if (II_setByPragma > 0) 418 MAX_II = II_setByPragma; 419 else 420 MAX_II = MII + 10; 421 } 422 423 /// We override the schedule function in ScheduleDAGInstrs to implement the 424 /// scheduling part of the Swing Modulo Scheduling algorithm. 425 void SwingSchedulerDAG::schedule() { 426 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 427 buildSchedGraph(AA); 428 addLoopCarriedDependences(AA); 429 updatePhiDependences(); 430 Topo.InitDAGTopologicalSorting(); 431 changeDependences(); 432 postprocessDAG(); 433 LLVM_DEBUG(dump()); 434 435 NodeSetType NodeSets; 436 findCircuits(NodeSets); 437 NodeSetType Circuits = NodeSets; 438 439 // Calculate the MII. 440 unsigned ResMII = calculateResMII(); 441 unsigned RecMII = calculateRecMII(NodeSets); 442 443 fuseRecs(NodeSets); 444 445 // This flag is used for testing and can cause correctness problems. 446 if (SwpIgnoreRecMII) 447 RecMII = 0; 448 449 setMII(ResMII, RecMII); 450 setMAX_II(); 451 452 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 453 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 454 455 // Can't schedule a loop without a valid MII. 456 if (MII == 0) { 457 LLVM_DEBUG( 458 dbgs() 459 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 460 NumFailZeroMII++; 461 return; 462 } 463 464 // Don't pipeline large loops. 465 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 466 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 467 << ", we don't pipleline large loops\n"); 468 NumFailLargeMaxMII++; 469 return; 470 } 471 472 computeNodeFunctions(NodeSets); 473 474 registerPressureFilter(NodeSets); 475 476 colocateNodeSets(NodeSets); 477 478 checkNodeSets(NodeSets); 479 480 LLVM_DEBUG({ 481 for (auto &I : NodeSets) { 482 dbgs() << " Rec NodeSet "; 483 I.dump(); 484 } 485 }); 486 487 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 488 489 groupRemainingNodes(NodeSets); 490 491 removeDuplicateNodes(NodeSets); 492 493 LLVM_DEBUG({ 494 for (auto &I : NodeSets) { 495 dbgs() << " NodeSet "; 496 I.dump(); 497 } 498 }); 499 500 computeNodeOrder(NodeSets); 501 502 // check for node order issues 503 checkValidNodeOrder(Circuits); 504 505 SMSchedule Schedule(Pass.MF); 506 Scheduled = schedulePipeline(Schedule); 507 508 if (!Scheduled){ 509 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 510 NumFailNoSchedule++; 511 return; 512 } 513 514 unsigned numStages = Schedule.getMaxStageCount(); 515 // No need to generate pipeline if there are no overlapped iterations. 516 if (numStages == 0) { 517 LLVM_DEBUG( 518 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 519 NumFailZeroStage++; 520 return; 521 } 522 // Check that the maximum stage count is less than user-defined limit. 523 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 524 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 525 << " : too many stages, abort\n"); 526 NumFailLargeMaxStage++; 527 return; 528 } 529 530 // Generate the schedule as a ModuloSchedule. 531 DenseMap<MachineInstr *, int> Cycles, Stages; 532 std::vector<MachineInstr *> OrderedInsts; 533 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 534 ++Cycle) { 535 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 536 OrderedInsts.push_back(SU->getInstr()); 537 Cycles[SU->getInstr()] = Cycle; 538 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 539 } 540 } 541 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 542 for (auto &KV : NewMIs) { 543 Cycles[KV.first] = Cycles[KV.second]; 544 Stages[KV.first] = Stages[KV.second]; 545 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 546 } 547 548 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 549 std::move(Stages)); 550 if (EmitTestAnnotations) { 551 assert(NewInstrChanges.empty() && 552 "Cannot serialize a schedule with InstrChanges!"); 553 ModuloScheduleTestAnnotater MSTI(MF, MS); 554 MSTI.annotate(); 555 return; 556 } 557 // The experimental code generator can't work if there are InstChanges. 558 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 559 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 560 MSE.expand(); 561 } else { 562 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 563 MSE.expand(); 564 MSE.cleanup(); 565 } 566 ++NumPipelined; 567 } 568 569 /// Clean up after the software pipeliner runs. 570 void SwingSchedulerDAG::finishBlock() { 571 for (auto &KV : NewMIs) 572 MF.DeleteMachineInstr(KV.second); 573 NewMIs.clear(); 574 575 // Call the superclass. 576 ScheduleDAGInstrs::finishBlock(); 577 } 578 579 /// Return the register values for the operands of a Phi instruction. 580 /// This function assume the instruction is a Phi. 581 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 582 unsigned &InitVal, unsigned &LoopVal) { 583 assert(Phi.isPHI() && "Expecting a Phi."); 584 585 InitVal = 0; 586 LoopVal = 0; 587 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 588 if (Phi.getOperand(i + 1).getMBB() != Loop) 589 InitVal = Phi.getOperand(i).getReg(); 590 else 591 LoopVal = Phi.getOperand(i).getReg(); 592 593 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 594 } 595 596 /// Return the Phi register value that comes the loop block. 597 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 598 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 599 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 600 return Phi.getOperand(i).getReg(); 601 return 0; 602 } 603 604 /// Return true if SUb can be reached from SUa following the chain edges. 605 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 606 SmallPtrSet<SUnit *, 8> Visited; 607 SmallVector<SUnit *, 8> Worklist; 608 Worklist.push_back(SUa); 609 while (!Worklist.empty()) { 610 const SUnit *SU = Worklist.pop_back_val(); 611 for (auto &SI : SU->Succs) { 612 SUnit *SuccSU = SI.getSUnit(); 613 if (SI.getKind() == SDep::Order) { 614 if (Visited.count(SuccSU)) 615 continue; 616 if (SuccSU == SUb) 617 return true; 618 Worklist.push_back(SuccSU); 619 Visited.insert(SuccSU); 620 } 621 } 622 } 623 return false; 624 } 625 626 /// Return true if the instruction causes a chain between memory 627 /// references before and after it. 628 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 629 return MI.isCall() || MI.mayRaiseFPException() || 630 MI.hasUnmodeledSideEffects() || 631 (MI.hasOrderedMemoryRef() && 632 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 633 } 634 635 /// Return the underlying objects for the memory references of an instruction. 636 /// This function calls the code in ValueTracking, but first checks that the 637 /// instruction has a memory operand. 638 static void getUnderlyingObjects(const MachineInstr *MI, 639 SmallVectorImpl<const Value *> &Objs, 640 const DataLayout &DL) { 641 if (!MI->hasOneMemOperand()) 642 return; 643 MachineMemOperand *MM = *MI->memoperands_begin(); 644 if (!MM->getValue()) 645 return; 646 GetUnderlyingObjects(MM->getValue(), Objs, DL); 647 for (const Value *V : Objs) { 648 if (!isIdentifiedObject(V)) { 649 Objs.clear(); 650 return; 651 } 652 Objs.push_back(V); 653 } 654 } 655 656 /// Add a chain edge between a load and store if the store can be an 657 /// alias of the load on a subsequent iteration, i.e., a loop carried 658 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 659 /// but that code doesn't create loop carried dependences. 660 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 661 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 662 Value *UnknownValue = 663 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 664 for (auto &SU : SUnits) { 665 MachineInstr &MI = *SU.getInstr(); 666 if (isDependenceBarrier(MI, AA)) 667 PendingLoads.clear(); 668 else if (MI.mayLoad()) { 669 SmallVector<const Value *, 4> Objs; 670 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 671 if (Objs.empty()) 672 Objs.push_back(UnknownValue); 673 for (auto V : Objs) { 674 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 675 SUs.push_back(&SU); 676 } 677 } else if (MI.mayStore()) { 678 SmallVector<const Value *, 4> Objs; 679 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 680 if (Objs.empty()) 681 Objs.push_back(UnknownValue); 682 for (auto V : Objs) { 683 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 684 PendingLoads.find(V); 685 if (I == PendingLoads.end()) 686 continue; 687 for (auto Load : I->second) { 688 if (isSuccOrder(Load, &SU)) 689 continue; 690 MachineInstr &LdMI = *Load->getInstr(); 691 // First, perform the cheaper check that compares the base register. 692 // If they are the same and the load offset is less than the store 693 // offset, then mark the dependence as loop carried potentially. 694 const MachineOperand *BaseOp1, *BaseOp2; 695 int64_t Offset1, Offset2; 696 bool Offset1IsScalable, Offset2IsScalable; 697 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 698 Offset1IsScalable, TRI) && 699 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 700 Offset2IsScalable, TRI)) { 701 if (BaseOp1->isIdenticalTo(*BaseOp2) && 702 Offset1IsScalable == Offset2IsScalable && 703 (int)Offset1 < (int)Offset2) { 704 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 705 "What happened to the chain edge?"); 706 SDep Dep(Load, SDep::Barrier); 707 Dep.setLatency(1); 708 SU.addPred(Dep); 709 continue; 710 } 711 } 712 // Second, the more expensive check that uses alias analysis on the 713 // base registers. If they alias, and the load offset is less than 714 // the store offset, the mark the dependence as loop carried. 715 if (!AA) { 716 SDep Dep(Load, SDep::Barrier); 717 Dep.setLatency(1); 718 SU.addPred(Dep); 719 continue; 720 } 721 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 722 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 723 if (!MMO1->getValue() || !MMO2->getValue()) { 724 SDep Dep(Load, SDep::Barrier); 725 Dep.setLatency(1); 726 SU.addPred(Dep); 727 continue; 728 } 729 if (MMO1->getValue() == MMO2->getValue() && 730 MMO1->getOffset() <= MMO2->getOffset()) { 731 SDep Dep(Load, SDep::Barrier); 732 Dep.setLatency(1); 733 SU.addPred(Dep); 734 continue; 735 } 736 AliasResult AAResult = AA->alias( 737 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 738 MMO1->getAAInfo()), 739 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 740 MMO2->getAAInfo())); 741 742 if (AAResult != NoAlias) { 743 SDep Dep(Load, SDep::Barrier); 744 Dep.setLatency(1); 745 SU.addPred(Dep); 746 } 747 } 748 } 749 } 750 } 751 } 752 753 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 754 /// processes dependences for PHIs. This function adds true dependences 755 /// from a PHI to a use, and a loop carried dependence from the use to the 756 /// PHI. The loop carried dependence is represented as an anti dependence 757 /// edge. This function also removes chain dependences between unrelated 758 /// PHIs. 759 void SwingSchedulerDAG::updatePhiDependences() { 760 SmallVector<SDep, 4> RemoveDeps; 761 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 762 763 // Iterate over each DAG node. 764 for (SUnit &I : SUnits) { 765 RemoveDeps.clear(); 766 // Set to true if the instruction has an operand defined by a Phi. 767 unsigned HasPhiUse = 0; 768 unsigned HasPhiDef = 0; 769 MachineInstr *MI = I.getInstr(); 770 // Iterate over each operand, and we process the definitions. 771 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 772 MOE = MI->operands_end(); 773 MOI != MOE; ++MOI) { 774 if (!MOI->isReg()) 775 continue; 776 Register Reg = MOI->getReg(); 777 if (MOI->isDef()) { 778 // If the register is used by a Phi, then create an anti dependence. 779 for (MachineRegisterInfo::use_instr_iterator 780 UI = MRI.use_instr_begin(Reg), 781 UE = MRI.use_instr_end(); 782 UI != UE; ++UI) { 783 MachineInstr *UseMI = &*UI; 784 SUnit *SU = getSUnit(UseMI); 785 if (SU != nullptr && UseMI->isPHI()) { 786 if (!MI->isPHI()) { 787 SDep Dep(SU, SDep::Anti, Reg); 788 Dep.setLatency(1); 789 I.addPred(Dep); 790 } else { 791 HasPhiDef = Reg; 792 // Add a chain edge to a dependent Phi that isn't an existing 793 // predecessor. 794 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 795 I.addPred(SDep(SU, SDep::Barrier)); 796 } 797 } 798 } 799 } else if (MOI->isUse()) { 800 // If the register is defined by a Phi, then create a true dependence. 801 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 802 if (DefMI == nullptr) 803 continue; 804 SUnit *SU = getSUnit(DefMI); 805 if (SU != nullptr && DefMI->isPHI()) { 806 if (!MI->isPHI()) { 807 SDep Dep(SU, SDep::Data, Reg); 808 Dep.setLatency(0); 809 ST.adjustSchedDependency(SU, &I, Dep); 810 I.addPred(Dep); 811 } else { 812 HasPhiUse = Reg; 813 // Add a chain edge to a dependent Phi that isn't an existing 814 // predecessor. 815 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 816 I.addPred(SDep(SU, SDep::Barrier)); 817 } 818 } 819 } 820 } 821 // Remove order dependences from an unrelated Phi. 822 if (!SwpPruneDeps) 823 continue; 824 for (auto &PI : I.Preds) { 825 MachineInstr *PMI = PI.getSUnit()->getInstr(); 826 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 827 if (I.getInstr()->isPHI()) { 828 if (PMI->getOperand(0).getReg() == HasPhiUse) 829 continue; 830 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 831 continue; 832 } 833 RemoveDeps.push_back(PI); 834 } 835 } 836 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 837 I.removePred(RemoveDeps[i]); 838 } 839 } 840 841 /// Iterate over each DAG node and see if we can change any dependences 842 /// in order to reduce the recurrence MII. 843 void SwingSchedulerDAG::changeDependences() { 844 // See if an instruction can use a value from the previous iteration. 845 // If so, we update the base and offset of the instruction and change 846 // the dependences. 847 for (SUnit &I : SUnits) { 848 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 849 int64_t NewOffset = 0; 850 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 851 NewOffset)) 852 continue; 853 854 // Get the MI and SUnit for the instruction that defines the original base. 855 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 856 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 857 if (!DefMI) 858 continue; 859 SUnit *DefSU = getSUnit(DefMI); 860 if (!DefSU) 861 continue; 862 // Get the MI and SUnit for the instruction that defins the new base. 863 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 864 if (!LastMI) 865 continue; 866 SUnit *LastSU = getSUnit(LastMI); 867 if (!LastSU) 868 continue; 869 870 if (Topo.IsReachable(&I, LastSU)) 871 continue; 872 873 // Remove the dependence. The value now depends on a prior iteration. 874 SmallVector<SDep, 4> Deps; 875 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 876 ++P) 877 if (P->getSUnit() == DefSU) 878 Deps.push_back(*P); 879 for (int i = 0, e = Deps.size(); i != e; i++) { 880 Topo.RemovePred(&I, Deps[i].getSUnit()); 881 I.removePred(Deps[i]); 882 } 883 // Remove the chain dependence between the instructions. 884 Deps.clear(); 885 for (auto &P : LastSU->Preds) 886 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 887 Deps.push_back(P); 888 for (int i = 0, e = Deps.size(); i != e; i++) { 889 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 890 LastSU->removePred(Deps[i]); 891 } 892 893 // Add a dependence between the new instruction and the instruction 894 // that defines the new base. 895 SDep Dep(&I, SDep::Anti, NewBase); 896 Topo.AddPred(LastSU, &I); 897 LastSU->addPred(Dep); 898 899 // Remember the base and offset information so that we can update the 900 // instruction during code generation. 901 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 902 } 903 } 904 905 namespace { 906 907 // FuncUnitSorter - Comparison operator used to sort instructions by 908 // the number of functional unit choices. 909 struct FuncUnitSorter { 910 const InstrItineraryData *InstrItins; 911 const MCSubtargetInfo *STI; 912 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 913 914 FuncUnitSorter(const TargetSubtargetInfo &TSI) 915 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 916 917 // Compute the number of functional unit alternatives needed 918 // at each stage, and take the minimum value. We prioritize the 919 // instructions by the least number of choices first. 920 unsigned minFuncUnits(const MachineInstr *Inst, 921 InstrStage::FuncUnits &F) const { 922 unsigned SchedClass = Inst->getDesc().getSchedClass(); 923 unsigned min = UINT_MAX; 924 if (InstrItins && !InstrItins->isEmpty()) { 925 for (const InstrStage &IS : 926 make_range(InstrItins->beginStage(SchedClass), 927 InstrItins->endStage(SchedClass))) { 928 InstrStage::FuncUnits funcUnits = IS.getUnits(); 929 unsigned numAlternatives = countPopulation(funcUnits); 930 if (numAlternatives < min) { 931 min = numAlternatives; 932 F = funcUnits; 933 } 934 } 935 return min; 936 } 937 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 938 const MCSchedClassDesc *SCDesc = 939 STI->getSchedModel().getSchedClassDesc(SchedClass); 940 if (!SCDesc->isValid()) 941 // No valid Schedule Class Desc for schedClass, should be 942 // Pseudo/PostRAPseudo 943 return min; 944 945 for (const MCWriteProcResEntry &PRE : 946 make_range(STI->getWriteProcResBegin(SCDesc), 947 STI->getWriteProcResEnd(SCDesc))) { 948 if (!PRE.Cycles) 949 continue; 950 const MCProcResourceDesc *ProcResource = 951 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 952 unsigned NumUnits = ProcResource->NumUnits; 953 if (NumUnits < min) { 954 min = NumUnits; 955 F = PRE.ProcResourceIdx; 956 } 957 } 958 return min; 959 } 960 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 961 } 962 963 // Compute the critical resources needed by the instruction. This 964 // function records the functional units needed by instructions that 965 // must use only one functional unit. We use this as a tie breaker 966 // for computing the resource MII. The instrutions that require 967 // the same, highly used, functional unit have high priority. 968 void calcCriticalResources(MachineInstr &MI) { 969 unsigned SchedClass = MI.getDesc().getSchedClass(); 970 if (InstrItins && !InstrItins->isEmpty()) { 971 for (const InstrStage &IS : 972 make_range(InstrItins->beginStage(SchedClass), 973 InstrItins->endStage(SchedClass))) { 974 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 975 if (countPopulation(FuncUnits) == 1) 976 Resources[FuncUnits]++; 977 } 978 return; 979 } 980 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 981 const MCSchedClassDesc *SCDesc = 982 STI->getSchedModel().getSchedClassDesc(SchedClass); 983 if (!SCDesc->isValid()) 984 // No valid Schedule Class Desc for schedClass, should be 985 // Pseudo/PostRAPseudo 986 return; 987 988 for (const MCWriteProcResEntry &PRE : 989 make_range(STI->getWriteProcResBegin(SCDesc), 990 STI->getWriteProcResEnd(SCDesc))) { 991 if (!PRE.Cycles) 992 continue; 993 Resources[PRE.ProcResourceIdx]++; 994 } 995 return; 996 } 997 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 998 } 999 1000 /// Return true if IS1 has less priority than IS2. 1001 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1002 InstrStage::FuncUnits F1 = 0, F2 = 0; 1003 unsigned MFUs1 = minFuncUnits(IS1, F1); 1004 unsigned MFUs2 = minFuncUnits(IS2, F2); 1005 if (MFUs1 == MFUs2) 1006 return Resources.lookup(F1) < Resources.lookup(F2); 1007 return MFUs1 > MFUs2; 1008 } 1009 }; 1010 1011 } // end anonymous namespace 1012 1013 /// Calculate the resource constrained minimum initiation interval for the 1014 /// specified loop. We use the DFA to model the resources needed for 1015 /// each instruction, and we ignore dependences. A different DFA is created 1016 /// for each cycle that is required. When adding a new instruction, we attempt 1017 /// to add it to each existing DFA, until a legal space is found. If the 1018 /// instruction cannot be reserved in an existing DFA, we create a new one. 1019 unsigned SwingSchedulerDAG::calculateResMII() { 1020 1021 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1022 SmallVector<ResourceManager*, 8> Resources; 1023 MachineBasicBlock *MBB = Loop.getHeader(); 1024 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1025 1026 // Sort the instructions by the number of available choices for scheduling, 1027 // least to most. Use the number of critical resources as the tie breaker. 1028 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1029 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1030 E = MBB->getFirstTerminator(); 1031 I != E; ++I) 1032 FUS.calcCriticalResources(*I); 1033 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1034 FuncUnitOrder(FUS); 1035 1036 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1037 E = MBB->getFirstTerminator(); 1038 I != E; ++I) 1039 FuncUnitOrder.push(&*I); 1040 1041 while (!FuncUnitOrder.empty()) { 1042 MachineInstr *MI = FuncUnitOrder.top(); 1043 FuncUnitOrder.pop(); 1044 if (TII->isZeroCost(MI->getOpcode())) 1045 continue; 1046 // Attempt to reserve the instruction in an existing DFA. At least one 1047 // DFA is needed for each cycle. 1048 unsigned NumCycles = getSUnit(MI)->Latency; 1049 unsigned ReservedCycles = 0; 1050 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1051 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1052 LLVM_DEBUG({ 1053 dbgs() << "Trying to reserve resource for " << NumCycles 1054 << " cycles for \n"; 1055 MI->dump(); 1056 }); 1057 for (unsigned C = 0; C < NumCycles; ++C) 1058 while (RI != RE) { 1059 if ((*RI)->canReserveResources(*MI)) { 1060 (*RI)->reserveResources(*MI); 1061 ++ReservedCycles; 1062 break; 1063 } 1064 RI++; 1065 } 1066 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1067 << ", NumCycles:" << NumCycles << "\n"); 1068 // Add new DFAs, if needed, to reserve resources. 1069 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1070 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1071 << "NewResource created to reserve resources" 1072 << "\n"); 1073 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1074 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1075 NewResource->reserveResources(*MI); 1076 Resources.push_back(NewResource); 1077 } 1078 } 1079 int Resmii = Resources.size(); 1080 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1081 // Delete the memory for each of the DFAs that were created earlier. 1082 for (ResourceManager *RI : Resources) { 1083 ResourceManager *D = RI; 1084 delete D; 1085 } 1086 Resources.clear(); 1087 return Resmii; 1088 } 1089 1090 /// Calculate the recurrence-constrainted minimum initiation interval. 1091 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1092 /// for each circuit. The II needs to satisfy the inequality 1093 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1094 /// II that satisfies the inequality, and the RecMII is the maximum 1095 /// of those values. 1096 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1097 unsigned RecMII = 0; 1098 1099 for (NodeSet &Nodes : NodeSets) { 1100 if (Nodes.empty()) 1101 continue; 1102 1103 unsigned Delay = Nodes.getLatency(); 1104 unsigned Distance = 1; 1105 1106 // ii = ceil(delay / distance) 1107 unsigned CurMII = (Delay + Distance - 1) / Distance; 1108 Nodes.setRecMII(CurMII); 1109 if (CurMII > RecMII) 1110 RecMII = CurMII; 1111 } 1112 1113 return RecMII; 1114 } 1115 1116 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1117 /// but we do this to find the circuits, and then change them back. 1118 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1119 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1120 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1121 SUnit *SU = &SUnits[i]; 1122 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1123 IP != EP; ++IP) { 1124 if (IP->getKind() != SDep::Anti) 1125 continue; 1126 DepsAdded.push_back(std::make_pair(SU, *IP)); 1127 } 1128 } 1129 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1130 E = DepsAdded.end(); 1131 I != E; ++I) { 1132 // Remove this anti dependency and add one in the reverse direction. 1133 SUnit *SU = I->first; 1134 SDep &D = I->second; 1135 SUnit *TargetSU = D.getSUnit(); 1136 unsigned Reg = D.getReg(); 1137 unsigned Lat = D.getLatency(); 1138 SU->removePred(D); 1139 SDep Dep(SU, SDep::Anti, Reg); 1140 Dep.setLatency(Lat); 1141 TargetSU->addPred(Dep); 1142 } 1143 } 1144 1145 /// Create the adjacency structure of the nodes in the graph. 1146 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1147 SwingSchedulerDAG *DAG) { 1148 BitVector Added(SUnits.size()); 1149 DenseMap<int, int> OutputDeps; 1150 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1151 Added.reset(); 1152 // Add any successor to the adjacency matrix and exclude duplicates. 1153 for (auto &SI : SUnits[i].Succs) { 1154 // Only create a back-edge on the first and last nodes of a dependence 1155 // chain. This records any chains and adds them later. 1156 if (SI.getKind() == SDep::Output) { 1157 int N = SI.getSUnit()->NodeNum; 1158 int BackEdge = i; 1159 auto Dep = OutputDeps.find(BackEdge); 1160 if (Dep != OutputDeps.end()) { 1161 BackEdge = Dep->second; 1162 OutputDeps.erase(Dep); 1163 } 1164 OutputDeps[N] = BackEdge; 1165 } 1166 // Do not process a boundary node, an artificial node. 1167 // A back-edge is processed only if it goes to a Phi. 1168 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1169 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1170 continue; 1171 int N = SI.getSUnit()->NodeNum; 1172 if (!Added.test(N)) { 1173 AdjK[i].push_back(N); 1174 Added.set(N); 1175 } 1176 } 1177 // A chain edge between a store and a load is treated as a back-edge in the 1178 // adjacency matrix. 1179 for (auto &PI : SUnits[i].Preds) { 1180 if (!SUnits[i].getInstr()->mayStore() || 1181 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1182 continue; 1183 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1184 int N = PI.getSUnit()->NodeNum; 1185 if (!Added.test(N)) { 1186 AdjK[i].push_back(N); 1187 Added.set(N); 1188 } 1189 } 1190 } 1191 } 1192 // Add back-edges in the adjacency matrix for the output dependences. 1193 for (auto &OD : OutputDeps) 1194 if (!Added.test(OD.second)) { 1195 AdjK[OD.first].push_back(OD.second); 1196 Added.set(OD.second); 1197 } 1198 } 1199 1200 /// Identify an elementary circuit in the dependence graph starting at the 1201 /// specified node. 1202 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1203 bool HasBackedge) { 1204 SUnit *SV = &SUnits[V]; 1205 bool F = false; 1206 Stack.insert(SV); 1207 Blocked.set(V); 1208 1209 for (auto W : AdjK[V]) { 1210 if (NumPaths > MaxPaths) 1211 break; 1212 if (W < S) 1213 continue; 1214 if (W == S) { 1215 if (!HasBackedge) 1216 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1217 F = true; 1218 ++NumPaths; 1219 break; 1220 } else if (!Blocked.test(W)) { 1221 if (circuit(W, S, NodeSets, 1222 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1223 F = true; 1224 } 1225 } 1226 1227 if (F) 1228 unblock(V); 1229 else { 1230 for (auto W : AdjK[V]) { 1231 if (W < S) 1232 continue; 1233 if (B[W].count(SV) == 0) 1234 B[W].insert(SV); 1235 } 1236 } 1237 Stack.pop_back(); 1238 return F; 1239 } 1240 1241 /// Unblock a node in the circuit finding algorithm. 1242 void SwingSchedulerDAG::Circuits::unblock(int U) { 1243 Blocked.reset(U); 1244 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1245 while (!BU.empty()) { 1246 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1247 assert(SI != BU.end() && "Invalid B set."); 1248 SUnit *W = *SI; 1249 BU.erase(W); 1250 if (Blocked.test(W->NodeNum)) 1251 unblock(W->NodeNum); 1252 } 1253 } 1254 1255 /// Identify all the elementary circuits in the dependence graph using 1256 /// Johnson's circuit algorithm. 1257 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1258 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1259 // but we do this to find the circuits, and then change them back. 1260 swapAntiDependences(SUnits); 1261 1262 Circuits Cir(SUnits, Topo); 1263 // Create the adjacency structure. 1264 Cir.createAdjacencyStructure(this); 1265 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1266 Cir.reset(); 1267 Cir.circuit(i, i, NodeSets); 1268 } 1269 1270 // Change the dependences back so that we've created a DAG again. 1271 swapAntiDependences(SUnits); 1272 } 1273 1274 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1275 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1276 // additional copies that are needed across iterations. An artificial dependence 1277 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1278 1279 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1280 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1281 // PHI-------True-Dep------> USEOfPhi 1282 1283 // The mutation creates 1284 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1285 1286 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1287 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1288 // late to avoid additional copies across iterations. The possible scheduling 1289 // order would be 1290 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1291 1292 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1293 for (SUnit &SU : DAG->SUnits) { 1294 // Find the COPY/REG_SEQUENCE instruction. 1295 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1296 continue; 1297 1298 // Record the loop carried PHIs. 1299 SmallVector<SUnit *, 4> PHISUs; 1300 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1301 SmallVector<SUnit *, 4> SrcSUs; 1302 1303 for (auto &Dep : SU.Preds) { 1304 SUnit *TmpSU = Dep.getSUnit(); 1305 MachineInstr *TmpMI = TmpSU->getInstr(); 1306 SDep::Kind DepKind = Dep.getKind(); 1307 // Save the loop carried PHI. 1308 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1309 PHISUs.push_back(TmpSU); 1310 // Save the source of COPY/REG_SEQUENCE. 1311 // If the source has no pre-decessors, we will end up creating cycles. 1312 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1313 SrcSUs.push_back(TmpSU); 1314 } 1315 1316 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1317 continue; 1318 1319 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1320 // SUnit to the container. 1321 SmallVector<SUnit *, 8> UseSUs; 1322 // Do not use iterator based loop here as we are updating the container. 1323 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1324 for (auto &Dep : PHISUs[Index]->Succs) { 1325 if (Dep.getKind() != SDep::Data) 1326 continue; 1327 1328 SUnit *TmpSU = Dep.getSUnit(); 1329 MachineInstr *TmpMI = TmpSU->getInstr(); 1330 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1331 PHISUs.push_back(TmpSU); 1332 continue; 1333 } 1334 UseSUs.push_back(TmpSU); 1335 } 1336 } 1337 1338 if (UseSUs.size() == 0) 1339 continue; 1340 1341 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1342 // Add the artificial dependencies if it does not form a cycle. 1343 for (auto I : UseSUs) { 1344 for (auto Src : SrcSUs) { 1345 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1346 Src->addPred(SDep(I, SDep::Artificial)); 1347 SDAG->Topo.AddPred(Src, I); 1348 } 1349 } 1350 } 1351 } 1352 } 1353 1354 /// Return true for DAG nodes that we ignore when computing the cost functions. 1355 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1356 /// in the calculation of the ASAP, ALAP, etc functions. 1357 static bool ignoreDependence(const SDep &D, bool isPred) { 1358 if (D.isArtificial()) 1359 return true; 1360 return D.getKind() == SDep::Anti && isPred; 1361 } 1362 1363 /// Compute several functions need to order the nodes for scheduling. 1364 /// ASAP - Earliest time to schedule a node. 1365 /// ALAP - Latest time to schedule a node. 1366 /// MOV - Mobility function, difference between ALAP and ASAP. 1367 /// D - Depth of each node. 1368 /// H - Height of each node. 1369 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1370 ScheduleInfo.resize(SUnits.size()); 1371 1372 LLVM_DEBUG({ 1373 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1374 E = Topo.end(); 1375 I != E; ++I) { 1376 const SUnit &SU = SUnits[*I]; 1377 dumpNode(SU); 1378 } 1379 }); 1380 1381 int maxASAP = 0; 1382 // Compute ASAP and ZeroLatencyDepth. 1383 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1384 E = Topo.end(); 1385 I != E; ++I) { 1386 int asap = 0; 1387 int zeroLatencyDepth = 0; 1388 SUnit *SU = &SUnits[*I]; 1389 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1390 EP = SU->Preds.end(); 1391 IP != EP; ++IP) { 1392 SUnit *pred = IP->getSUnit(); 1393 if (IP->getLatency() == 0) 1394 zeroLatencyDepth = 1395 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1396 if (ignoreDependence(*IP, true)) 1397 continue; 1398 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1399 getDistance(pred, SU, *IP) * MII)); 1400 } 1401 maxASAP = std::max(maxASAP, asap); 1402 ScheduleInfo[*I].ASAP = asap; 1403 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1404 } 1405 1406 // Compute ALAP, ZeroLatencyHeight, and MOV. 1407 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1408 E = Topo.rend(); 1409 I != E; ++I) { 1410 int alap = maxASAP; 1411 int zeroLatencyHeight = 0; 1412 SUnit *SU = &SUnits[*I]; 1413 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1414 ES = SU->Succs.end(); 1415 IS != ES; ++IS) { 1416 SUnit *succ = IS->getSUnit(); 1417 if (IS->getLatency() == 0) 1418 zeroLatencyHeight = 1419 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1420 if (ignoreDependence(*IS, true)) 1421 continue; 1422 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1423 getDistance(SU, succ, *IS) * MII)); 1424 } 1425 1426 ScheduleInfo[*I].ALAP = alap; 1427 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1428 } 1429 1430 // After computing the node functions, compute the summary for each node set. 1431 for (NodeSet &I : NodeSets) 1432 I.computeNodeSetInfo(this); 1433 1434 LLVM_DEBUG({ 1435 for (unsigned i = 0; i < SUnits.size(); i++) { 1436 dbgs() << "\tNode " << i << ":\n"; 1437 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1438 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1439 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1440 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1441 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1442 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1443 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1444 } 1445 }); 1446 } 1447 1448 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1449 /// as the predecessors of the elements of NodeOrder that are not also in 1450 /// NodeOrder. 1451 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1452 SmallSetVector<SUnit *, 8> &Preds, 1453 const NodeSet *S = nullptr) { 1454 Preds.clear(); 1455 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1456 I != E; ++I) { 1457 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1458 PI != PE; ++PI) { 1459 if (S && S->count(PI->getSUnit()) == 0) 1460 continue; 1461 if (ignoreDependence(*PI, true)) 1462 continue; 1463 if (NodeOrder.count(PI->getSUnit()) == 0) 1464 Preds.insert(PI->getSUnit()); 1465 } 1466 // Back-edges are predecessors with an anti-dependence. 1467 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1468 ES = (*I)->Succs.end(); 1469 IS != ES; ++IS) { 1470 if (IS->getKind() != SDep::Anti) 1471 continue; 1472 if (S && S->count(IS->getSUnit()) == 0) 1473 continue; 1474 if (NodeOrder.count(IS->getSUnit()) == 0) 1475 Preds.insert(IS->getSUnit()); 1476 } 1477 } 1478 return !Preds.empty(); 1479 } 1480 1481 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1482 /// as the successors of the elements of NodeOrder that are not also in 1483 /// NodeOrder. 1484 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1485 SmallSetVector<SUnit *, 8> &Succs, 1486 const NodeSet *S = nullptr) { 1487 Succs.clear(); 1488 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1489 I != E; ++I) { 1490 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1491 SI != SE; ++SI) { 1492 if (S && S->count(SI->getSUnit()) == 0) 1493 continue; 1494 if (ignoreDependence(*SI, false)) 1495 continue; 1496 if (NodeOrder.count(SI->getSUnit()) == 0) 1497 Succs.insert(SI->getSUnit()); 1498 } 1499 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1500 PE = (*I)->Preds.end(); 1501 PI != PE; ++PI) { 1502 if (PI->getKind() != SDep::Anti) 1503 continue; 1504 if (S && S->count(PI->getSUnit()) == 0) 1505 continue; 1506 if (NodeOrder.count(PI->getSUnit()) == 0) 1507 Succs.insert(PI->getSUnit()); 1508 } 1509 } 1510 return !Succs.empty(); 1511 } 1512 1513 /// Return true if there is a path from the specified node to any of the nodes 1514 /// in DestNodes. Keep track and return the nodes in any path. 1515 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1516 SetVector<SUnit *> &DestNodes, 1517 SetVector<SUnit *> &Exclude, 1518 SmallPtrSet<SUnit *, 8> &Visited) { 1519 if (Cur->isBoundaryNode()) 1520 return false; 1521 if (Exclude.count(Cur) != 0) 1522 return false; 1523 if (DestNodes.count(Cur) != 0) 1524 return true; 1525 if (!Visited.insert(Cur).second) 1526 return Path.count(Cur) != 0; 1527 bool FoundPath = false; 1528 for (auto &SI : Cur->Succs) 1529 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1530 for (auto &PI : Cur->Preds) 1531 if (PI.getKind() == SDep::Anti) 1532 FoundPath |= 1533 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1534 if (FoundPath) 1535 Path.insert(Cur); 1536 return FoundPath; 1537 } 1538 1539 /// Return true if Set1 is a subset of Set2. 1540 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1541 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1542 if (Set2.count(*I) == 0) 1543 return false; 1544 return true; 1545 } 1546 1547 /// Compute the live-out registers for the instructions in a node-set. 1548 /// The live-out registers are those that are defined in the node-set, 1549 /// but not used. Except for use operands of Phis. 1550 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1551 NodeSet &NS) { 1552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1553 MachineRegisterInfo &MRI = MF.getRegInfo(); 1554 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1555 SmallSet<unsigned, 4> Uses; 1556 for (SUnit *SU : NS) { 1557 const MachineInstr *MI = SU->getInstr(); 1558 if (MI->isPHI()) 1559 continue; 1560 for (const MachineOperand &MO : MI->operands()) 1561 if (MO.isReg() && MO.isUse()) { 1562 Register Reg = MO.getReg(); 1563 if (Register::isVirtualRegister(Reg)) 1564 Uses.insert(Reg); 1565 else if (MRI.isAllocatable(Reg)) 1566 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1567 Uses.insert(*Units); 1568 } 1569 } 1570 for (SUnit *SU : NS) 1571 for (const MachineOperand &MO : SU->getInstr()->operands()) 1572 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1573 Register Reg = MO.getReg(); 1574 if (Register::isVirtualRegister(Reg)) { 1575 if (!Uses.count(Reg)) 1576 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1577 LaneBitmask::getNone())); 1578 } else if (MRI.isAllocatable(Reg)) { 1579 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1580 if (!Uses.count(*Units)) 1581 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1582 LaneBitmask::getNone())); 1583 } 1584 } 1585 RPTracker.addLiveRegs(LiveOutRegs); 1586 } 1587 1588 /// A heuristic to filter nodes in recurrent node-sets if the register 1589 /// pressure of a set is too high. 1590 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1591 for (auto &NS : NodeSets) { 1592 // Skip small node-sets since they won't cause register pressure problems. 1593 if (NS.size() <= 2) 1594 continue; 1595 IntervalPressure RecRegPressure; 1596 RegPressureTracker RecRPTracker(RecRegPressure); 1597 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1598 computeLiveOuts(MF, RecRPTracker, NS); 1599 RecRPTracker.closeBottom(); 1600 1601 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1602 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1603 return A->NodeNum > B->NodeNum; 1604 }); 1605 1606 for (auto &SU : SUnits) { 1607 // Since we're computing the register pressure for a subset of the 1608 // instructions in a block, we need to set the tracker for each 1609 // instruction in the node-set. The tracker is set to the instruction 1610 // just after the one we're interested in. 1611 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1612 RecRPTracker.setPos(std::next(CurInstI)); 1613 1614 RegPressureDelta RPDelta; 1615 ArrayRef<PressureChange> CriticalPSets; 1616 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1617 CriticalPSets, 1618 RecRegPressure.MaxSetPressure); 1619 if (RPDelta.Excess.isValid()) { 1620 LLVM_DEBUG( 1621 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1622 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1623 << ":" << RPDelta.Excess.getUnitInc()); 1624 NS.setExceedPressure(SU); 1625 break; 1626 } 1627 RecRPTracker.recede(); 1628 } 1629 } 1630 } 1631 1632 /// A heuristic to colocate node sets that have the same set of 1633 /// successors. 1634 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1635 unsigned Colocate = 0; 1636 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1637 NodeSet &N1 = NodeSets[i]; 1638 SmallSetVector<SUnit *, 8> S1; 1639 if (N1.empty() || !succ_L(N1, S1)) 1640 continue; 1641 for (int j = i + 1; j < e; ++j) { 1642 NodeSet &N2 = NodeSets[j]; 1643 if (N1.compareRecMII(N2) != 0) 1644 continue; 1645 SmallSetVector<SUnit *, 8> S2; 1646 if (N2.empty() || !succ_L(N2, S2)) 1647 continue; 1648 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1649 N1.setColocate(++Colocate); 1650 N2.setColocate(Colocate); 1651 break; 1652 } 1653 } 1654 } 1655 } 1656 1657 /// Check if the existing node-sets are profitable. If not, then ignore the 1658 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1659 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1660 /// then it's best to try to schedule all instructions together instead of 1661 /// starting with the recurrent node-sets. 1662 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1663 // Look for loops with a large MII. 1664 if (MII < 17) 1665 return; 1666 // Check if the node-set contains only a simple add recurrence. 1667 for (auto &NS : NodeSets) { 1668 if (NS.getRecMII() > 2) 1669 return; 1670 if (NS.getMaxDepth() > MII) 1671 return; 1672 } 1673 NodeSets.clear(); 1674 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1675 return; 1676 } 1677 1678 /// Add the nodes that do not belong to a recurrence set into groups 1679 /// based upon connected componenets. 1680 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1681 SetVector<SUnit *> NodesAdded; 1682 SmallPtrSet<SUnit *, 8> Visited; 1683 // Add the nodes that are on a path between the previous node sets and 1684 // the current node set. 1685 for (NodeSet &I : NodeSets) { 1686 SmallSetVector<SUnit *, 8> N; 1687 // Add the nodes from the current node set to the previous node set. 1688 if (succ_L(I, N)) { 1689 SetVector<SUnit *> Path; 1690 for (SUnit *NI : N) { 1691 Visited.clear(); 1692 computePath(NI, Path, NodesAdded, I, Visited); 1693 } 1694 if (!Path.empty()) 1695 I.insert(Path.begin(), Path.end()); 1696 } 1697 // Add the nodes from the previous node set to the current node set. 1698 N.clear(); 1699 if (succ_L(NodesAdded, N)) { 1700 SetVector<SUnit *> Path; 1701 for (SUnit *NI : N) { 1702 Visited.clear(); 1703 computePath(NI, Path, I, NodesAdded, Visited); 1704 } 1705 if (!Path.empty()) 1706 I.insert(Path.begin(), Path.end()); 1707 } 1708 NodesAdded.insert(I.begin(), I.end()); 1709 } 1710 1711 // Create a new node set with the connected nodes of any successor of a node 1712 // in a recurrent set. 1713 NodeSet NewSet; 1714 SmallSetVector<SUnit *, 8> N; 1715 if (succ_L(NodesAdded, N)) 1716 for (SUnit *I : N) 1717 addConnectedNodes(I, NewSet, NodesAdded); 1718 if (!NewSet.empty()) 1719 NodeSets.push_back(NewSet); 1720 1721 // Create a new node set with the connected nodes of any predecessor of a node 1722 // in a recurrent set. 1723 NewSet.clear(); 1724 if (pred_L(NodesAdded, N)) 1725 for (SUnit *I : N) 1726 addConnectedNodes(I, NewSet, NodesAdded); 1727 if (!NewSet.empty()) 1728 NodeSets.push_back(NewSet); 1729 1730 // Create new nodes sets with the connected nodes any remaining node that 1731 // has no predecessor. 1732 for (unsigned i = 0; i < SUnits.size(); ++i) { 1733 SUnit *SU = &SUnits[i]; 1734 if (NodesAdded.count(SU) == 0) { 1735 NewSet.clear(); 1736 addConnectedNodes(SU, NewSet, NodesAdded); 1737 if (!NewSet.empty()) 1738 NodeSets.push_back(NewSet); 1739 } 1740 } 1741 } 1742 1743 /// Add the node to the set, and add all of its connected nodes to the set. 1744 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1745 SetVector<SUnit *> &NodesAdded) { 1746 NewSet.insert(SU); 1747 NodesAdded.insert(SU); 1748 for (auto &SI : SU->Succs) { 1749 SUnit *Successor = SI.getSUnit(); 1750 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1751 addConnectedNodes(Successor, NewSet, NodesAdded); 1752 } 1753 for (auto &PI : SU->Preds) { 1754 SUnit *Predecessor = PI.getSUnit(); 1755 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1756 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1757 } 1758 } 1759 1760 /// Return true if Set1 contains elements in Set2. The elements in common 1761 /// are returned in a different container. 1762 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1763 SmallSetVector<SUnit *, 8> &Result) { 1764 Result.clear(); 1765 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1766 SUnit *SU = Set1[i]; 1767 if (Set2.count(SU) != 0) 1768 Result.insert(SU); 1769 } 1770 return !Result.empty(); 1771 } 1772 1773 /// Merge the recurrence node sets that have the same initial node. 1774 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1775 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1776 ++I) { 1777 NodeSet &NI = *I; 1778 for (NodeSetType::iterator J = I + 1; J != E;) { 1779 NodeSet &NJ = *J; 1780 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1781 if (NJ.compareRecMII(NI) > 0) 1782 NI.setRecMII(NJ.getRecMII()); 1783 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1784 ++NII) 1785 I->insert(*NII); 1786 NodeSets.erase(J); 1787 E = NodeSets.end(); 1788 } else { 1789 ++J; 1790 } 1791 } 1792 } 1793 } 1794 1795 /// Remove nodes that have been scheduled in previous NodeSets. 1796 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1797 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1798 ++I) 1799 for (NodeSetType::iterator J = I + 1; J != E;) { 1800 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1801 1802 if (J->empty()) { 1803 NodeSets.erase(J); 1804 E = NodeSets.end(); 1805 } else { 1806 ++J; 1807 } 1808 } 1809 } 1810 1811 /// Compute an ordered list of the dependence graph nodes, which 1812 /// indicates the order that the nodes will be scheduled. This is a 1813 /// two-level algorithm. First, a partial order is created, which 1814 /// consists of a list of sets ordered from highest to lowest priority. 1815 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1816 SmallSetVector<SUnit *, 8> R; 1817 NodeOrder.clear(); 1818 1819 for (auto &Nodes : NodeSets) { 1820 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1821 OrderKind Order; 1822 SmallSetVector<SUnit *, 8> N; 1823 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1824 R.insert(N.begin(), N.end()); 1825 Order = BottomUp; 1826 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1827 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1828 R.insert(N.begin(), N.end()); 1829 Order = TopDown; 1830 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1831 } else if (isIntersect(N, Nodes, R)) { 1832 // If some of the successors are in the existing node-set, then use the 1833 // top-down ordering. 1834 Order = TopDown; 1835 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1836 } else if (NodeSets.size() == 1) { 1837 for (auto &N : Nodes) 1838 if (N->Succs.size() == 0) 1839 R.insert(N); 1840 Order = BottomUp; 1841 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1842 } else { 1843 // Find the node with the highest ASAP. 1844 SUnit *maxASAP = nullptr; 1845 for (SUnit *SU : Nodes) { 1846 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1847 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1848 maxASAP = SU; 1849 } 1850 R.insert(maxASAP); 1851 Order = BottomUp; 1852 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1853 } 1854 1855 while (!R.empty()) { 1856 if (Order == TopDown) { 1857 // Choose the node with the maximum height. If more than one, choose 1858 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1859 // choose the node with the lowest MOV. 1860 while (!R.empty()) { 1861 SUnit *maxHeight = nullptr; 1862 for (SUnit *I : R) { 1863 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1864 maxHeight = I; 1865 else if (getHeight(I) == getHeight(maxHeight) && 1866 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1867 maxHeight = I; 1868 else if (getHeight(I) == getHeight(maxHeight) && 1869 getZeroLatencyHeight(I) == 1870 getZeroLatencyHeight(maxHeight) && 1871 getMOV(I) < getMOV(maxHeight)) 1872 maxHeight = I; 1873 } 1874 NodeOrder.insert(maxHeight); 1875 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1876 R.remove(maxHeight); 1877 for (const auto &I : maxHeight->Succs) { 1878 if (Nodes.count(I.getSUnit()) == 0) 1879 continue; 1880 if (NodeOrder.count(I.getSUnit()) != 0) 1881 continue; 1882 if (ignoreDependence(I, false)) 1883 continue; 1884 R.insert(I.getSUnit()); 1885 } 1886 // Back-edges are predecessors with an anti-dependence. 1887 for (const auto &I : maxHeight->Preds) { 1888 if (I.getKind() != SDep::Anti) 1889 continue; 1890 if (Nodes.count(I.getSUnit()) == 0) 1891 continue; 1892 if (NodeOrder.count(I.getSUnit()) != 0) 1893 continue; 1894 R.insert(I.getSUnit()); 1895 } 1896 } 1897 Order = BottomUp; 1898 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1899 SmallSetVector<SUnit *, 8> N; 1900 if (pred_L(NodeOrder, N, &Nodes)) 1901 R.insert(N.begin(), N.end()); 1902 } else { 1903 // Choose the node with the maximum depth. If more than one, choose 1904 // the node with the maximum ZeroLatencyDepth. If still more than one, 1905 // choose the node with the lowest MOV. 1906 while (!R.empty()) { 1907 SUnit *maxDepth = nullptr; 1908 for (SUnit *I : R) { 1909 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1910 maxDepth = I; 1911 else if (getDepth(I) == getDepth(maxDepth) && 1912 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1913 maxDepth = I; 1914 else if (getDepth(I) == getDepth(maxDepth) && 1915 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1916 getMOV(I) < getMOV(maxDepth)) 1917 maxDepth = I; 1918 } 1919 NodeOrder.insert(maxDepth); 1920 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1921 R.remove(maxDepth); 1922 if (Nodes.isExceedSU(maxDepth)) { 1923 Order = TopDown; 1924 R.clear(); 1925 R.insert(Nodes.getNode(0)); 1926 break; 1927 } 1928 for (const auto &I : maxDepth->Preds) { 1929 if (Nodes.count(I.getSUnit()) == 0) 1930 continue; 1931 if (NodeOrder.count(I.getSUnit()) != 0) 1932 continue; 1933 R.insert(I.getSUnit()); 1934 } 1935 // Back-edges are predecessors with an anti-dependence. 1936 for (const auto &I : maxDepth->Succs) { 1937 if (I.getKind() != SDep::Anti) 1938 continue; 1939 if (Nodes.count(I.getSUnit()) == 0) 1940 continue; 1941 if (NodeOrder.count(I.getSUnit()) != 0) 1942 continue; 1943 R.insert(I.getSUnit()); 1944 } 1945 } 1946 Order = TopDown; 1947 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1948 SmallSetVector<SUnit *, 8> N; 1949 if (succ_L(NodeOrder, N, &Nodes)) 1950 R.insert(N.begin(), N.end()); 1951 } 1952 } 1953 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1954 } 1955 1956 LLVM_DEBUG({ 1957 dbgs() << "Node order: "; 1958 for (SUnit *I : NodeOrder) 1959 dbgs() << " " << I->NodeNum << " "; 1960 dbgs() << "\n"; 1961 }); 1962 } 1963 1964 /// Process the nodes in the computed order and create the pipelined schedule 1965 /// of the instructions, if possible. Return true if a schedule is found. 1966 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1967 1968 if (NodeOrder.empty()){ 1969 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1970 return false; 1971 } 1972 1973 bool scheduleFound = false; 1974 unsigned II = 0; 1975 // Keep increasing II until a valid schedule is found. 1976 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1977 Schedule.reset(); 1978 Schedule.setInitiationInterval(II); 1979 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1980 1981 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1982 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1983 do { 1984 SUnit *SU = *NI; 1985 1986 // Compute the schedule time for the instruction, which is based 1987 // upon the scheduled time for any predecessors/successors. 1988 int EarlyStart = INT_MIN; 1989 int LateStart = INT_MAX; 1990 // These values are set when the size of the schedule window is limited 1991 // due to chain dependences. 1992 int SchedEnd = INT_MAX; 1993 int SchedStart = INT_MIN; 1994 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1995 II, this); 1996 LLVM_DEBUG({ 1997 dbgs() << "\n"; 1998 dbgs() << "Inst (" << SU->NodeNum << ") "; 1999 SU->getInstr()->dump(); 2000 dbgs() << "\n"; 2001 }); 2002 LLVM_DEBUG({ 2003 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2004 LateStart, SchedEnd, SchedStart); 2005 }); 2006 2007 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2008 SchedStart > LateStart) 2009 scheduleFound = false; 2010 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2011 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2012 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2013 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2014 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2015 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2016 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2017 SchedEnd = 2018 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2019 // When scheduling a Phi it is better to start at the late cycle and go 2020 // backwards. The default order may insert the Phi too far away from 2021 // its first dependence. 2022 if (SU->getInstr()->isPHI()) 2023 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2024 else 2025 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2026 } else { 2027 int FirstCycle = Schedule.getFirstCycle(); 2028 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2029 FirstCycle + getASAP(SU) + II - 1, II); 2030 } 2031 // Even if we find a schedule, make sure the schedule doesn't exceed the 2032 // allowable number of stages. We keep trying if this happens. 2033 if (scheduleFound) 2034 if (SwpMaxStages > -1 && 2035 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2036 scheduleFound = false; 2037 2038 LLVM_DEBUG({ 2039 if (!scheduleFound) 2040 dbgs() << "\tCan't schedule\n"; 2041 }); 2042 } while (++NI != NE && scheduleFound); 2043 2044 // If a schedule is found, check if it is a valid schedule too. 2045 if (scheduleFound) 2046 scheduleFound = Schedule.isValidSchedule(this); 2047 } 2048 2049 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2050 << ")\n"); 2051 2052 if (scheduleFound) 2053 Schedule.finalizeSchedule(this); 2054 else 2055 Schedule.reset(); 2056 2057 return scheduleFound && Schedule.getMaxStageCount() > 0; 2058 } 2059 2060 /// Return true if we can compute the amount the instruction changes 2061 /// during each iteration. Set Delta to the amount of the change. 2062 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2063 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2064 const MachineOperand *BaseOp; 2065 int64_t Offset; 2066 bool OffsetIsScalable; 2067 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2068 return false; 2069 2070 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2071 if (OffsetIsScalable) 2072 return false; 2073 2074 if (!BaseOp->isReg()) 2075 return false; 2076 2077 Register BaseReg = BaseOp->getReg(); 2078 2079 MachineRegisterInfo &MRI = MF.getRegInfo(); 2080 // Check if there is a Phi. If so, get the definition in the loop. 2081 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2082 if (BaseDef && BaseDef->isPHI()) { 2083 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2084 BaseDef = MRI.getVRegDef(BaseReg); 2085 } 2086 if (!BaseDef) 2087 return false; 2088 2089 int D = 0; 2090 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2091 return false; 2092 2093 Delta = D; 2094 return true; 2095 } 2096 2097 /// Check if we can change the instruction to use an offset value from the 2098 /// previous iteration. If so, return true and set the base and offset values 2099 /// so that we can rewrite the load, if necessary. 2100 /// v1 = Phi(v0, v3) 2101 /// v2 = load v1, 0 2102 /// v3 = post_store v1, 4, x 2103 /// This function enables the load to be rewritten as v2 = load v3, 4. 2104 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2105 unsigned &BasePos, 2106 unsigned &OffsetPos, 2107 unsigned &NewBase, 2108 int64_t &Offset) { 2109 // Get the load instruction. 2110 if (TII->isPostIncrement(*MI)) 2111 return false; 2112 unsigned BasePosLd, OffsetPosLd; 2113 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2114 return false; 2115 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2116 2117 // Look for the Phi instruction. 2118 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2119 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2120 if (!Phi || !Phi->isPHI()) 2121 return false; 2122 // Get the register defined in the loop block. 2123 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2124 if (!PrevReg) 2125 return false; 2126 2127 // Check for the post-increment load/store instruction. 2128 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2129 if (!PrevDef || PrevDef == MI) 2130 return false; 2131 2132 if (!TII->isPostIncrement(*PrevDef)) 2133 return false; 2134 2135 unsigned BasePos1 = 0, OffsetPos1 = 0; 2136 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2137 return false; 2138 2139 // Make sure that the instructions do not access the same memory location in 2140 // the next iteration. 2141 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2142 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2143 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2144 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2145 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2146 MF.DeleteMachineInstr(NewMI); 2147 if (!Disjoint) 2148 return false; 2149 2150 // Set the return value once we determine that we return true. 2151 BasePos = BasePosLd; 2152 OffsetPos = OffsetPosLd; 2153 NewBase = PrevReg; 2154 Offset = StoreOffset; 2155 return true; 2156 } 2157 2158 /// Apply changes to the instruction if needed. The changes are need 2159 /// to improve the scheduling and depend up on the final schedule. 2160 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2161 SMSchedule &Schedule) { 2162 SUnit *SU = getSUnit(MI); 2163 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2164 InstrChanges.find(SU); 2165 if (It != InstrChanges.end()) { 2166 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2167 unsigned BasePos, OffsetPos; 2168 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2169 return; 2170 Register BaseReg = MI->getOperand(BasePos).getReg(); 2171 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2172 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2173 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2174 int BaseStageNum = Schedule.stageScheduled(SU); 2175 int BaseCycleNum = Schedule.cycleScheduled(SU); 2176 if (BaseStageNum < DefStageNum) { 2177 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2178 int OffsetDiff = DefStageNum - BaseStageNum; 2179 if (DefCycleNum < BaseCycleNum) { 2180 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2181 if (OffsetDiff > 0) 2182 --OffsetDiff; 2183 } 2184 int64_t NewOffset = 2185 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2186 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2187 SU->setInstr(NewMI); 2188 MISUnitMap[NewMI] = SU; 2189 NewMIs[MI] = NewMI; 2190 } 2191 } 2192 } 2193 2194 /// Return the instruction in the loop that defines the register. 2195 /// If the definition is a Phi, then follow the Phi operand to 2196 /// the instruction in the loop. 2197 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2198 SmallPtrSet<MachineInstr *, 8> Visited; 2199 MachineInstr *Def = MRI.getVRegDef(Reg); 2200 while (Def->isPHI()) { 2201 if (!Visited.insert(Def).second) 2202 break; 2203 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2204 if (Def->getOperand(i + 1).getMBB() == BB) { 2205 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2206 break; 2207 } 2208 } 2209 return Def; 2210 } 2211 2212 /// Return true for an order or output dependence that is loop carried 2213 /// potentially. A dependence is loop carried if the destination defines a valu 2214 /// that may be used or defined by the source in a subsequent iteration. 2215 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2216 bool isSucc) { 2217 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2218 Dep.isArtificial()) 2219 return false; 2220 2221 if (!SwpPruneLoopCarried) 2222 return true; 2223 2224 if (Dep.getKind() == SDep::Output) 2225 return true; 2226 2227 MachineInstr *SI = Source->getInstr(); 2228 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2229 if (!isSucc) 2230 std::swap(SI, DI); 2231 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2232 2233 // Assume ordered loads and stores may have a loop carried dependence. 2234 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2235 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2236 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2237 return true; 2238 2239 // Only chain dependences between a load and store can be loop carried. 2240 if (!DI->mayStore() || !SI->mayLoad()) 2241 return false; 2242 2243 unsigned DeltaS, DeltaD; 2244 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2245 return true; 2246 2247 const MachineOperand *BaseOpS, *BaseOpD; 2248 int64_t OffsetS, OffsetD; 2249 bool OffsetSIsScalable, OffsetDIsScalable; 2250 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2251 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2252 TRI) || 2253 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2254 TRI)) 2255 return true; 2256 2257 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2258 "Expected offsets to be byte offsets"); 2259 2260 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2261 return true; 2262 2263 // Check that the base register is incremented by a constant value for each 2264 // iteration. 2265 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2266 if (!Def || !Def->isPHI()) 2267 return true; 2268 unsigned InitVal = 0; 2269 unsigned LoopVal = 0; 2270 getPhiRegs(*Def, BB, InitVal, LoopVal); 2271 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2272 int D = 0; 2273 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2274 return true; 2275 2276 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2277 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2278 2279 // This is the main test, which checks the offset values and the loop 2280 // increment value to determine if the accesses may be loop carried. 2281 if (AccessSizeS == MemoryLocation::UnknownSize || 2282 AccessSizeD == MemoryLocation::UnknownSize) 2283 return true; 2284 2285 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2286 return true; 2287 2288 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2289 } 2290 2291 void SwingSchedulerDAG::postprocessDAG() { 2292 for (auto &M : Mutations) 2293 M->apply(this); 2294 } 2295 2296 /// Try to schedule the node at the specified StartCycle and continue 2297 /// until the node is schedule or the EndCycle is reached. This function 2298 /// returns true if the node is scheduled. This routine may search either 2299 /// forward or backward for a place to insert the instruction based upon 2300 /// the relative values of StartCycle and EndCycle. 2301 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2302 bool forward = true; 2303 LLVM_DEBUG({ 2304 dbgs() << "Trying to insert node between " << StartCycle << " and " 2305 << EndCycle << " II: " << II << "\n"; 2306 }); 2307 if (StartCycle > EndCycle) 2308 forward = false; 2309 2310 // The terminating condition depends on the direction. 2311 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2312 for (int curCycle = StartCycle; curCycle != termCycle; 2313 forward ? ++curCycle : --curCycle) { 2314 2315 // Add the already scheduled instructions at the specified cycle to the 2316 // DFA. 2317 ProcItinResources.clearResources(); 2318 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2319 checkCycle <= LastCycle; checkCycle += II) { 2320 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2321 2322 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 2323 E = cycleInstrs.end(); 2324 I != E; ++I) { 2325 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 2326 continue; 2327 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 2328 "These instructions have already been scheduled."); 2329 ProcItinResources.reserveResources(*(*I)->getInstr()); 2330 } 2331 } 2332 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2333 ProcItinResources.canReserveResources(*SU->getInstr())) { 2334 LLVM_DEBUG({ 2335 dbgs() << "\tinsert at cycle " << curCycle << " "; 2336 SU->getInstr()->dump(); 2337 }); 2338 2339 ScheduledInstrs[curCycle].push_back(SU); 2340 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2341 if (curCycle > LastCycle) 2342 LastCycle = curCycle; 2343 if (curCycle < FirstCycle) 2344 FirstCycle = curCycle; 2345 return true; 2346 } 2347 LLVM_DEBUG({ 2348 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2349 SU->getInstr()->dump(); 2350 }); 2351 } 2352 return false; 2353 } 2354 2355 // Return the cycle of the earliest scheduled instruction in the chain. 2356 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2357 SmallPtrSet<SUnit *, 8> Visited; 2358 SmallVector<SDep, 8> Worklist; 2359 Worklist.push_back(Dep); 2360 int EarlyCycle = INT_MAX; 2361 while (!Worklist.empty()) { 2362 const SDep &Cur = Worklist.pop_back_val(); 2363 SUnit *PrevSU = Cur.getSUnit(); 2364 if (Visited.count(PrevSU)) 2365 continue; 2366 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2367 if (it == InstrToCycle.end()) 2368 continue; 2369 EarlyCycle = std::min(EarlyCycle, it->second); 2370 for (const auto &PI : PrevSU->Preds) 2371 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 2372 Worklist.push_back(PI); 2373 Visited.insert(PrevSU); 2374 } 2375 return EarlyCycle; 2376 } 2377 2378 // Return the cycle of the latest scheduled instruction in the chain. 2379 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2380 SmallPtrSet<SUnit *, 8> Visited; 2381 SmallVector<SDep, 8> Worklist; 2382 Worklist.push_back(Dep); 2383 int LateCycle = INT_MIN; 2384 while (!Worklist.empty()) { 2385 const SDep &Cur = Worklist.pop_back_val(); 2386 SUnit *SuccSU = Cur.getSUnit(); 2387 if (Visited.count(SuccSU)) 2388 continue; 2389 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2390 if (it == InstrToCycle.end()) 2391 continue; 2392 LateCycle = std::max(LateCycle, it->second); 2393 for (const auto &SI : SuccSU->Succs) 2394 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 2395 Worklist.push_back(SI); 2396 Visited.insert(SuccSU); 2397 } 2398 return LateCycle; 2399 } 2400 2401 /// If an instruction has a use that spans multiple iterations, then 2402 /// return true. These instructions are characterized by having a back-ege 2403 /// to a Phi, which contains a reference to another Phi. 2404 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2405 for (auto &P : SU->Preds) 2406 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2407 for (auto &S : P.getSUnit()->Succs) 2408 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2409 return P.getSUnit(); 2410 return nullptr; 2411 } 2412 2413 /// Compute the scheduling start slot for the instruction. The start slot 2414 /// depends on any predecessor or successor nodes scheduled already. 2415 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2416 int *MinEnd, int *MaxStart, int II, 2417 SwingSchedulerDAG *DAG) { 2418 // Iterate over each instruction that has been scheduled already. The start 2419 // slot computation depends on whether the previously scheduled instruction 2420 // is a predecessor or successor of the specified instruction. 2421 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2422 2423 // Iterate over each instruction in the current cycle. 2424 for (SUnit *I : getInstructions(cycle)) { 2425 // Because we're processing a DAG for the dependences, we recognize 2426 // the back-edge in recurrences by anti dependences. 2427 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2428 const SDep &Dep = SU->Preds[i]; 2429 if (Dep.getSUnit() == I) { 2430 if (!DAG->isBackedge(SU, Dep)) { 2431 int EarlyStart = cycle + Dep.getLatency() - 2432 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2433 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2434 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2435 int End = earliestCycleInChain(Dep) + (II - 1); 2436 *MinEnd = std::min(*MinEnd, End); 2437 } 2438 } else { 2439 int LateStart = cycle - Dep.getLatency() + 2440 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2441 *MinLateStart = std::min(*MinLateStart, LateStart); 2442 } 2443 } 2444 // For instruction that requires multiple iterations, make sure that 2445 // the dependent instruction is not scheduled past the definition. 2446 SUnit *BE = multipleIterations(I, DAG); 2447 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2448 !SU->isPred(I)) 2449 *MinLateStart = std::min(*MinLateStart, cycle); 2450 } 2451 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2452 if (SU->Succs[i].getSUnit() == I) { 2453 const SDep &Dep = SU->Succs[i]; 2454 if (!DAG->isBackedge(SU, Dep)) { 2455 int LateStart = cycle - Dep.getLatency() + 2456 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2457 *MinLateStart = std::min(*MinLateStart, LateStart); 2458 if (DAG->isLoopCarriedDep(SU, Dep)) { 2459 int Start = latestCycleInChain(Dep) + 1 - II; 2460 *MaxStart = std::max(*MaxStart, Start); 2461 } 2462 } else { 2463 int EarlyStart = cycle + Dep.getLatency() - 2464 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2465 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2466 } 2467 } 2468 } 2469 } 2470 } 2471 } 2472 2473 /// Order the instructions within a cycle so that the definitions occur 2474 /// before the uses. Returns true if the instruction is added to the start 2475 /// of the list, or false if added to the end. 2476 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2477 std::deque<SUnit *> &Insts) { 2478 MachineInstr *MI = SU->getInstr(); 2479 bool OrderBeforeUse = false; 2480 bool OrderAfterDef = false; 2481 bool OrderBeforeDef = false; 2482 unsigned MoveDef = 0; 2483 unsigned MoveUse = 0; 2484 int StageInst1 = stageScheduled(SU); 2485 2486 unsigned Pos = 0; 2487 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2488 ++I, ++Pos) { 2489 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2490 MachineOperand &MO = MI->getOperand(i); 2491 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2492 continue; 2493 2494 Register Reg = MO.getReg(); 2495 unsigned BasePos, OffsetPos; 2496 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2497 if (MI->getOperand(BasePos).getReg() == Reg) 2498 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2499 Reg = NewReg; 2500 bool Reads, Writes; 2501 std::tie(Reads, Writes) = 2502 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2503 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2504 OrderBeforeUse = true; 2505 if (MoveUse == 0) 2506 MoveUse = Pos; 2507 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2508 // Add the instruction after the scheduled instruction. 2509 OrderAfterDef = true; 2510 MoveDef = Pos; 2511 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2512 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2513 OrderBeforeUse = true; 2514 if (MoveUse == 0) 2515 MoveUse = Pos; 2516 } else { 2517 OrderAfterDef = true; 2518 MoveDef = Pos; 2519 } 2520 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2521 OrderBeforeUse = true; 2522 if (MoveUse == 0) 2523 MoveUse = Pos; 2524 if (MoveUse != 0) { 2525 OrderAfterDef = true; 2526 MoveDef = Pos - 1; 2527 } 2528 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2529 // Add the instruction before the scheduled instruction. 2530 OrderBeforeUse = true; 2531 if (MoveUse == 0) 2532 MoveUse = Pos; 2533 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2534 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2535 if (MoveUse == 0) { 2536 OrderBeforeDef = true; 2537 MoveUse = Pos; 2538 } 2539 } 2540 } 2541 // Check for order dependences between instructions. Make sure the source 2542 // is ordered before the destination. 2543 for (auto &S : SU->Succs) { 2544 if (S.getSUnit() != *I) 2545 continue; 2546 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2547 OrderBeforeUse = true; 2548 if (Pos < MoveUse) 2549 MoveUse = Pos; 2550 } 2551 // We did not handle HW dependences in previous for loop, 2552 // and we normally set Latency = 0 for Anti deps, 2553 // so may have nodes in same cycle with Anti denpendent on HW regs. 2554 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2555 OrderBeforeUse = true; 2556 if ((MoveUse == 0) || (Pos < MoveUse)) 2557 MoveUse = Pos; 2558 } 2559 } 2560 for (auto &P : SU->Preds) { 2561 if (P.getSUnit() != *I) 2562 continue; 2563 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2564 OrderAfterDef = true; 2565 MoveDef = Pos; 2566 } 2567 } 2568 } 2569 2570 // A circular dependence. 2571 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2572 OrderBeforeUse = false; 2573 2574 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2575 // to a loop-carried dependence. 2576 if (OrderBeforeDef) 2577 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2578 2579 // The uncommon case when the instruction order needs to be updated because 2580 // there is both a use and def. 2581 if (OrderBeforeUse && OrderAfterDef) { 2582 SUnit *UseSU = Insts.at(MoveUse); 2583 SUnit *DefSU = Insts.at(MoveDef); 2584 if (MoveUse > MoveDef) { 2585 Insts.erase(Insts.begin() + MoveUse); 2586 Insts.erase(Insts.begin() + MoveDef); 2587 } else { 2588 Insts.erase(Insts.begin() + MoveDef); 2589 Insts.erase(Insts.begin() + MoveUse); 2590 } 2591 orderDependence(SSD, UseSU, Insts); 2592 orderDependence(SSD, SU, Insts); 2593 orderDependence(SSD, DefSU, Insts); 2594 return; 2595 } 2596 // Put the new instruction first if there is a use in the list. Otherwise, 2597 // put it at the end of the list. 2598 if (OrderBeforeUse) 2599 Insts.push_front(SU); 2600 else 2601 Insts.push_back(SU); 2602 } 2603 2604 /// Return true if the scheduled Phi has a loop carried operand. 2605 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2606 if (!Phi.isPHI()) 2607 return false; 2608 assert(Phi.isPHI() && "Expecting a Phi."); 2609 SUnit *DefSU = SSD->getSUnit(&Phi); 2610 unsigned DefCycle = cycleScheduled(DefSU); 2611 int DefStage = stageScheduled(DefSU); 2612 2613 unsigned InitVal = 0; 2614 unsigned LoopVal = 0; 2615 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2616 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2617 if (!UseSU) 2618 return true; 2619 if (UseSU->getInstr()->isPHI()) 2620 return true; 2621 unsigned LoopCycle = cycleScheduled(UseSU); 2622 int LoopStage = stageScheduled(UseSU); 2623 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2624 } 2625 2626 /// Return true if the instruction is a definition that is loop carried 2627 /// and defines the use on the next iteration. 2628 /// v1 = phi(v2, v3) 2629 /// (Def) v3 = op v1 2630 /// (MO) = v1 2631 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2632 /// register. 2633 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2634 MachineInstr *Def, MachineOperand &MO) { 2635 if (!MO.isReg()) 2636 return false; 2637 if (Def->isPHI()) 2638 return false; 2639 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2640 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2641 return false; 2642 if (!isLoopCarried(SSD, *Phi)) 2643 return false; 2644 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2645 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2646 MachineOperand &DMO = Def->getOperand(i); 2647 if (!DMO.isReg() || !DMO.isDef()) 2648 continue; 2649 if (DMO.getReg() == LoopReg) 2650 return true; 2651 } 2652 return false; 2653 } 2654 2655 // Check if the generated schedule is valid. This function checks if 2656 // an instruction that uses a physical register is scheduled in a 2657 // different stage than the definition. The pipeliner does not handle 2658 // physical register values that may cross a basic block boundary. 2659 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2660 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 2661 SUnit &SU = SSD->SUnits[i]; 2662 if (!SU.hasPhysRegDefs) 2663 continue; 2664 int StageDef = stageScheduled(&SU); 2665 assert(StageDef != -1 && "Instruction should have been scheduled."); 2666 for (auto &SI : SU.Succs) 2667 if (SI.isAssignedRegDep()) 2668 if (Register::isPhysicalRegister(SI.getReg())) 2669 if (stageScheduled(SI.getSUnit()) != StageDef) 2670 return false; 2671 } 2672 return true; 2673 } 2674 2675 /// A property of the node order in swing-modulo-scheduling is 2676 /// that for nodes outside circuits the following holds: 2677 /// none of them is scheduled after both a successor and a 2678 /// predecessor. 2679 /// The method below checks whether the property is met. 2680 /// If not, debug information is printed and statistics information updated. 2681 /// Note that we do not use an assert statement. 2682 /// The reason is that although an invalid node oder may prevent 2683 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2684 /// it does not lead to the generation of incorrect code. 2685 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2686 2687 // a sorted vector that maps each SUnit to its index in the NodeOrder 2688 typedef std::pair<SUnit *, unsigned> UnitIndex; 2689 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2690 2691 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2692 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2693 2694 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2695 return std::get<0>(i1) < std::get<0>(i2); 2696 }; 2697 2698 // sort, so that we can perform a binary search 2699 llvm::sort(Indices, CompareKey); 2700 2701 bool Valid = true; 2702 (void)Valid; 2703 // for each SUnit in the NodeOrder, check whether 2704 // it appears after both a successor and a predecessor 2705 // of the SUnit. If this is the case, and the SUnit 2706 // is not part of circuit, then the NodeOrder is not 2707 // valid. 2708 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2709 SUnit *SU = NodeOrder[i]; 2710 unsigned Index = i; 2711 2712 bool PredBefore = false; 2713 bool SuccBefore = false; 2714 2715 SUnit *Succ; 2716 SUnit *Pred; 2717 (void)Succ; 2718 (void)Pred; 2719 2720 for (SDep &PredEdge : SU->Preds) { 2721 SUnit *PredSU = PredEdge.getSUnit(); 2722 unsigned PredIndex = std::get<1>( 2723 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2724 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2725 PredBefore = true; 2726 Pred = PredSU; 2727 break; 2728 } 2729 } 2730 2731 for (SDep &SuccEdge : SU->Succs) { 2732 SUnit *SuccSU = SuccEdge.getSUnit(); 2733 // Do not process a boundary node, it was not included in NodeOrder, 2734 // hence not in Indices either, call to std::lower_bound() below will 2735 // return Indices.end(). 2736 if (SuccSU->isBoundaryNode()) 2737 continue; 2738 unsigned SuccIndex = std::get<1>( 2739 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2740 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2741 SuccBefore = true; 2742 Succ = SuccSU; 2743 break; 2744 } 2745 } 2746 2747 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2748 // instructions in circuits are allowed to be scheduled 2749 // after both a successor and predecessor. 2750 bool InCircuit = llvm::any_of( 2751 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2752 if (InCircuit) 2753 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2754 else { 2755 Valid = false; 2756 NumNodeOrderIssues++; 2757 LLVM_DEBUG(dbgs() << "Predecessor ";); 2758 } 2759 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2760 << " are scheduled before node " << SU->NodeNum 2761 << "\n";); 2762 } 2763 } 2764 2765 LLVM_DEBUG({ 2766 if (!Valid) 2767 dbgs() << "Invalid node order found!\n"; 2768 }); 2769 } 2770 2771 /// Attempt to fix the degenerate cases when the instruction serialization 2772 /// causes the register lifetimes to overlap. For example, 2773 /// p' = store_pi(p, b) 2774 /// = load p, offset 2775 /// In this case p and p' overlap, which means that two registers are needed. 2776 /// Instead, this function changes the load to use p' and updates the offset. 2777 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2778 unsigned OverlapReg = 0; 2779 unsigned NewBaseReg = 0; 2780 for (SUnit *SU : Instrs) { 2781 MachineInstr *MI = SU->getInstr(); 2782 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2783 const MachineOperand &MO = MI->getOperand(i); 2784 // Look for an instruction that uses p. The instruction occurs in the 2785 // same cycle but occurs later in the serialized order. 2786 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2787 // Check that the instruction appears in the InstrChanges structure, 2788 // which contains instructions that can have the offset updated. 2789 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2790 InstrChanges.find(SU); 2791 if (It != InstrChanges.end()) { 2792 unsigned BasePos, OffsetPos; 2793 // Update the base register and adjust the offset. 2794 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2795 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2796 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2797 int64_t NewOffset = 2798 MI->getOperand(OffsetPos).getImm() - It->second.second; 2799 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2800 SU->setInstr(NewMI); 2801 MISUnitMap[NewMI] = SU; 2802 NewMIs[MI] = NewMI; 2803 } 2804 } 2805 OverlapReg = 0; 2806 NewBaseReg = 0; 2807 break; 2808 } 2809 // Look for an instruction of the form p' = op(p), which uses and defines 2810 // two virtual registers that get allocated to the same physical register. 2811 unsigned TiedUseIdx = 0; 2812 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2813 // OverlapReg is p in the example above. 2814 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2815 // NewBaseReg is p' in the example above. 2816 NewBaseReg = MI->getOperand(i).getReg(); 2817 break; 2818 } 2819 } 2820 } 2821 } 2822 2823 /// After the schedule has been formed, call this function to combine 2824 /// the instructions from the different stages/cycles. That is, this 2825 /// function creates a schedule that represents a single iteration. 2826 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2827 // Move all instructions to the first stage from later stages. 2828 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2829 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2830 ++stage) { 2831 std::deque<SUnit *> &cycleInstrs = 2832 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2833 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2834 E = cycleInstrs.rend(); 2835 I != E; ++I) 2836 ScheduledInstrs[cycle].push_front(*I); 2837 } 2838 } 2839 2840 // Erase all the elements in the later stages. Only one iteration should 2841 // remain in the scheduled list, and it contains all the instructions. 2842 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2843 ScheduledInstrs.erase(cycle); 2844 2845 // Change the registers in instruction as specified in the InstrChanges 2846 // map. We need to use the new registers to create the correct order. 2847 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2848 SUnit *SU = &SSD->SUnits[i]; 2849 SSD->applyInstrChange(SU->getInstr(), *this); 2850 } 2851 2852 // Reorder the instructions in each cycle to fix and improve the 2853 // generated code. 2854 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2855 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2856 std::deque<SUnit *> newOrderPhi; 2857 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2858 SUnit *SU = cycleInstrs[i]; 2859 if (SU->getInstr()->isPHI()) 2860 newOrderPhi.push_back(SU); 2861 } 2862 std::deque<SUnit *> newOrderI; 2863 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 2864 SUnit *SU = cycleInstrs[i]; 2865 if (!SU->getInstr()->isPHI()) 2866 orderDependence(SSD, SU, newOrderI); 2867 } 2868 // Replace the old order with the new order. 2869 cycleInstrs.swap(newOrderPhi); 2870 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 2871 SSD->fixupRegisterOverlaps(cycleInstrs); 2872 } 2873 2874 LLVM_DEBUG(dump();); 2875 } 2876 2877 void NodeSet::print(raw_ostream &os) const { 2878 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2879 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2880 for (const auto &I : Nodes) 2881 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2882 os << "\n"; 2883 } 2884 2885 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2886 /// Print the schedule information to the given output. 2887 void SMSchedule::print(raw_ostream &os) const { 2888 // Iterate over each cycle. 2889 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2890 // Iterate over each instruction in the cycle. 2891 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2892 for (SUnit *CI : cycleInstrs->second) { 2893 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2894 os << "(" << CI->NodeNum << ") "; 2895 CI->getInstr()->print(os); 2896 os << "\n"; 2897 } 2898 } 2899 } 2900 2901 /// Utility function used for debugging to print the schedule. 2902 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2903 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2904 2905 #endif 2906 2907 void ResourceManager::initProcResourceVectors( 2908 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2909 unsigned ProcResourceID = 0; 2910 2911 // We currently limit the resource kinds to 64 and below so that we can use 2912 // uint64_t for Masks 2913 assert(SM.getNumProcResourceKinds() < 64 && 2914 "Too many kinds of resources, unsupported"); 2915 // Create a unique bitmask for every processor resource unit. 2916 // Skip resource at index 0, since it always references 'InvalidUnit'. 2917 Masks.resize(SM.getNumProcResourceKinds()); 2918 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2919 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2920 if (Desc.SubUnitsIdxBegin) 2921 continue; 2922 Masks[I] = 1ULL << ProcResourceID; 2923 ProcResourceID++; 2924 } 2925 // Create a unique bitmask for every processor resource group. 2926 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2927 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2928 if (!Desc.SubUnitsIdxBegin) 2929 continue; 2930 Masks[I] = 1ULL << ProcResourceID; 2931 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2932 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2933 ProcResourceID++; 2934 } 2935 LLVM_DEBUG({ 2936 if (SwpShowResMask) { 2937 dbgs() << "ProcResourceDesc:\n"; 2938 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2939 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2940 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 2941 ProcResource->Name, I, Masks[I], 2942 ProcResource->NumUnits); 2943 } 2944 dbgs() << " -----------------\n"; 2945 } 2946 }); 2947 } 2948 2949 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 2950 2951 LLVM_DEBUG({ 2952 if (SwpDebugResource) 2953 dbgs() << "canReserveResources:\n"; 2954 }); 2955 if (UseDFA) 2956 return DFAResources->canReserveResources(MID); 2957 2958 unsigned InsnClass = MID->getSchedClass(); 2959 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 2960 if (!SCDesc->isValid()) { 2961 LLVM_DEBUG({ 2962 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 2963 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 2964 }); 2965 return true; 2966 } 2967 2968 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 2969 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 2970 for (; I != E; ++I) { 2971 if (!I->Cycles) 2972 continue; 2973 const MCProcResourceDesc *ProcResource = 2974 SM.getProcResource(I->ProcResourceIdx); 2975 unsigned NumUnits = ProcResource->NumUnits; 2976 LLVM_DEBUG({ 2977 if (SwpDebugResource) 2978 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 2979 ProcResource->Name, I->ProcResourceIdx, 2980 ProcResourceCount[I->ProcResourceIdx], NumUnits, 2981 I->Cycles); 2982 }); 2983 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 2984 return false; 2985 } 2986 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 2987 return true; 2988 } 2989 2990 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 2991 LLVM_DEBUG({ 2992 if (SwpDebugResource) 2993 dbgs() << "reserveResources:\n"; 2994 }); 2995 if (UseDFA) 2996 return DFAResources->reserveResources(MID); 2997 2998 unsigned InsnClass = MID->getSchedClass(); 2999 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3000 if (!SCDesc->isValid()) { 3001 LLVM_DEBUG({ 3002 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3003 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3004 }); 3005 return; 3006 } 3007 for (const MCWriteProcResEntry &PRE : 3008 make_range(STI->getWriteProcResBegin(SCDesc), 3009 STI->getWriteProcResEnd(SCDesc))) { 3010 if (!PRE.Cycles) 3011 continue; 3012 ++ProcResourceCount[PRE.ProcResourceIdx]; 3013 LLVM_DEBUG({ 3014 if (SwpDebugResource) { 3015 const MCProcResourceDesc *ProcResource = 3016 SM.getProcResource(PRE.ProcResourceIdx); 3017 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3018 ProcResource->Name, PRE.ProcResourceIdx, 3019 ProcResourceCount[PRE.ProcResourceIdx], 3020 ProcResource->NumUnits, PRE.Cycles); 3021 } 3022 }); 3023 } 3024 LLVM_DEBUG({ 3025 if (SwpDebugResource) 3026 dbgs() << "reserveResources: done!\n\n"; 3027 }); 3028 } 3029 3030 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3031 return canReserveResources(&MI.getDesc()); 3032 } 3033 3034 void ResourceManager::reserveResources(const MachineInstr &MI) { 3035 return reserveResources(&MI.getDesc()); 3036 } 3037 3038 void ResourceManager::clearResources() { 3039 if (UseDFA) 3040 return DFAResources->clearResources(); 3041 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3042 } 3043