1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/Config/llvm-config.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/DebugLoc.h" 99 #include "llvm/IR/Function.h" 100 #include "llvm/MC/LaneBitmask.h" 101 #include "llvm/MC/MCInstrDesc.h" 102 #include "llvm/MC/MCInstrItineraries.h" 103 #include "llvm/MC/MCRegisterInfo.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <climits> 113 #include <cstdint> 114 #include <deque> 115 #include <functional> 116 #include <iterator> 117 #include <map> 118 #include <memory> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "pipeliner" 126 127 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 128 STATISTIC(NumPipelined, "Number of loops software pipelined"); 129 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 130 131 /// A command line option to turn software pipelining on or off. 132 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 133 cl::ZeroOrMore, 134 cl::desc("Enable Software Pipelining")); 135 136 /// A command line option to enable SWP at -Os. 137 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 138 cl::desc("Enable SWP at Os."), cl::Hidden, 139 cl::init(false)); 140 141 /// A command line argument to limit minimum initial interval for pipelining. 142 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 143 cl::desc("Size limit for the MII."), 144 cl::Hidden, cl::init(27)); 145 146 /// A command line argument to limit the number of stages in the pipeline. 147 static cl::opt<int> 148 SwpMaxStages("pipeliner-max-stages", 149 cl::desc("Maximum stages allowed in the generated scheduled."), 150 cl::Hidden, cl::init(3)); 151 152 /// A command line option to disable the pruning of chain dependences due to 153 /// an unrelated Phi. 154 static cl::opt<bool> 155 SwpPruneDeps("pipeliner-prune-deps", 156 cl::desc("Prune dependences between unrelated Phi nodes."), 157 cl::Hidden, cl::init(true)); 158 159 /// A command line option to disable the pruning of loop carried order 160 /// dependences. 161 static cl::opt<bool> 162 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 163 cl::desc("Prune loop carried order dependences."), 164 cl::Hidden, cl::init(true)); 165 166 #ifndef NDEBUG 167 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 168 #endif 169 170 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 171 cl::ReallyHidden, cl::init(false), 172 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 173 174 // A command line option to enable the CopyToPhi DAG mutation. 175 static cl::opt<bool> 176 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 177 cl::init(true), cl::ZeroOrMore, 178 cl::desc("Enable CopyToPhi DAG Mutation")); 179 180 namespace { 181 182 class NodeSet; 183 class SMSchedule; 184 185 /// The main class in the implementation of the target independent 186 /// software pipeliner pass. 187 class MachinePipeliner : public MachineFunctionPass { 188 public: 189 MachineFunction *MF = nullptr; 190 const MachineLoopInfo *MLI = nullptr; 191 const MachineDominatorTree *MDT = nullptr; 192 const InstrItineraryData *InstrItins; 193 const TargetInstrInfo *TII = nullptr; 194 RegisterClassInfo RegClassInfo; 195 196 #ifndef NDEBUG 197 static int NumTries; 198 #endif 199 200 /// Cache the target analysis information about the loop. 201 struct LoopInfo { 202 MachineBasicBlock *TBB = nullptr; 203 MachineBasicBlock *FBB = nullptr; 204 SmallVector<MachineOperand, 4> BrCond; 205 MachineInstr *LoopInductionVar = nullptr; 206 MachineInstr *LoopCompare = nullptr; 207 }; 208 LoopInfo LI; 209 210 static char ID; 211 212 MachinePipeliner() : MachineFunctionPass(ID) { 213 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 214 } 215 216 bool runOnMachineFunction(MachineFunction &MF) override; 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<AAResultsWrapperPass>(); 220 AU.addPreserved<AAResultsWrapperPass>(); 221 AU.addRequired<MachineLoopInfo>(); 222 AU.addRequired<MachineDominatorTree>(); 223 AU.addRequired<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 private: 228 void preprocessPhiNodes(MachineBasicBlock &B); 229 bool canPipelineLoop(MachineLoop &L); 230 bool scheduleLoop(MachineLoop &L); 231 bool swingModuloScheduler(MachineLoop &L); 232 }; 233 234 /// This class builds the dependence graph for the instructions in a loop, 235 /// and attempts to schedule the instructions using the SMS algorithm. 236 class SwingSchedulerDAG : public ScheduleDAGInstrs { 237 MachinePipeliner &Pass; 238 /// The minimum initiation interval between iterations for this schedule. 239 unsigned MII = 0; 240 /// Set to true if a valid pipelined schedule is found for the loop. 241 bool Scheduled = false; 242 MachineLoop &Loop; 243 LiveIntervals &LIS; 244 const RegisterClassInfo &RegClassInfo; 245 246 /// A toplogical ordering of the SUnits, which is needed for changing 247 /// dependences and iterating over the SUnits. 248 ScheduleDAGTopologicalSort Topo; 249 250 struct NodeInfo { 251 int ASAP = 0; 252 int ALAP = 0; 253 int ZeroLatencyDepth = 0; 254 int ZeroLatencyHeight = 0; 255 256 NodeInfo() = default; 257 }; 258 /// Computed properties for each node in the graph. 259 std::vector<NodeInfo> ScheduleInfo; 260 261 enum OrderKind { BottomUp = 0, TopDown = 1 }; 262 /// Computed node ordering for scheduling. 263 SetVector<SUnit *> NodeOrder; 264 265 using NodeSetType = SmallVector<NodeSet, 8>; 266 using ValueMapTy = DenseMap<unsigned, unsigned>; 267 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 268 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 269 270 /// Instructions to change when emitting the final schedule. 271 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 272 273 /// We may create a new instruction, so remember it because it 274 /// must be deleted when the pass is finished. 275 SmallPtrSet<MachineInstr *, 4> NewMIs; 276 277 /// Ordered list of DAG postprocessing steps. 278 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 279 280 /// Helper class to implement Johnson's circuit finding algorithm. 281 class Circuits { 282 std::vector<SUnit> &SUnits; 283 SetVector<SUnit *> Stack; 284 BitVector Blocked; 285 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 286 SmallVector<SmallVector<int, 4>, 16> AdjK; 287 // Node to Index from ScheduleDAGTopologicalSort 288 std::vector<int> *Node2Idx; 289 unsigned NumPaths; 290 static unsigned MaxPaths; 291 292 public: 293 Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo) 294 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) { 295 Node2Idx = new std::vector<int>(SUs.size()); 296 unsigned Idx = 0; 297 for (const auto &NodeNum : Topo) 298 Node2Idx->at(NodeNum) = Idx++; 299 } 300 301 ~Circuits() { delete Node2Idx; } 302 303 /// Reset the data structures used in the circuit algorithm. 304 void reset() { 305 Stack.clear(); 306 Blocked.reset(); 307 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 308 NumPaths = 0; 309 } 310 311 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 312 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 313 void unblock(int U); 314 }; 315 316 struct CopyToPhiMutation : public ScheduleDAGMutation { 317 void apply(ScheduleDAGInstrs *DAG) override; 318 }; 319 320 public: 321 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 322 const RegisterClassInfo &rci) 323 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 324 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 325 P.MF->getSubtarget().getSMSMutations(Mutations); 326 if (SwpEnableCopyToPhi) 327 Mutations.push_back(llvm::make_unique<CopyToPhiMutation>()); 328 } 329 330 void schedule() override; 331 void finishBlock() override; 332 333 /// Return true if the loop kernel has been scheduled. 334 bool hasNewSchedule() { return Scheduled; } 335 336 /// Return the earliest time an instruction may be scheduled. 337 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 338 339 /// Return the latest time an instruction my be scheduled. 340 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 341 342 /// The mobility function, which the number of slots in which 343 /// an instruction may be scheduled. 344 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 345 346 /// The depth, in the dependence graph, for a node. 347 unsigned getDepth(SUnit *Node) { return Node->getDepth(); } 348 349 /// The maximum unweighted length of a path from an arbitrary node to the 350 /// given node in which each edge has latency 0 351 int getZeroLatencyDepth(SUnit *Node) { 352 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 353 } 354 355 /// The height, in the dependence graph, for a node. 356 unsigned getHeight(SUnit *Node) { return Node->getHeight(); } 357 358 /// The maximum unweighted length of a path from the given node to an 359 /// arbitrary node in which each edge has latency 0 360 int getZeroLatencyHeight(SUnit *Node) { 361 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 362 } 363 364 /// Return true if the dependence is a back-edge in the data dependence graph. 365 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 366 /// using an anti dependence from a Phi to an instruction. 367 bool isBackedge(SUnit *Source, const SDep &Dep) { 368 if (Dep.getKind() != SDep::Anti) 369 return false; 370 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 371 } 372 373 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); 374 375 /// The distance function, which indicates that operation V of iteration I 376 /// depends on operations U of iteration I-distance. 377 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 378 // Instructions that feed a Phi have a distance of 1. Computing larger 379 // values for arrays requires data dependence information. 380 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 381 return 1; 382 return 0; 383 } 384 385 /// Set the Minimum Initiation Interval for this schedule attempt. 386 void setMII(unsigned mii) { MII = mii; } 387 388 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 389 390 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 391 392 /// Return the new base register that was stored away for the changed 393 /// instruction. 394 unsigned getInstrBaseReg(SUnit *SU) { 395 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 396 InstrChanges.find(SU); 397 if (It != InstrChanges.end()) 398 return It->second.first; 399 return 0; 400 } 401 402 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 403 Mutations.push_back(std::move(Mutation)); 404 } 405 406 static bool classof(const ScheduleDAGInstrs *DAG) { return true; } 407 408 private: 409 void addLoopCarriedDependences(AliasAnalysis *AA); 410 void updatePhiDependences(); 411 void changeDependences(); 412 unsigned calculateResMII(); 413 unsigned calculateRecMII(NodeSetType &RecNodeSets); 414 void findCircuits(NodeSetType &NodeSets); 415 void fuseRecs(NodeSetType &NodeSets); 416 void removeDuplicateNodes(NodeSetType &NodeSets); 417 void computeNodeFunctions(NodeSetType &NodeSets); 418 void registerPressureFilter(NodeSetType &NodeSets); 419 void colocateNodeSets(NodeSetType &NodeSets); 420 void checkNodeSets(NodeSetType &NodeSets); 421 void groupRemainingNodes(NodeSetType &NodeSets); 422 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 423 SetVector<SUnit *> &NodesAdded); 424 void computeNodeOrder(NodeSetType &NodeSets); 425 void checkValidNodeOrder(const NodeSetType &Circuits) const; 426 bool schedulePipeline(SMSchedule &Schedule); 427 void generatePipelinedLoop(SMSchedule &Schedule); 428 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 429 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 430 MBBVectorTy &PrologBBs); 431 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 432 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 433 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 434 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 435 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 436 SMSchedule &Schedule, ValueMapTy *VRMap, 437 InstrMapTy &InstrMap, unsigned LastStageNum, 438 unsigned CurStageNum, bool IsLast); 439 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 440 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 441 SMSchedule &Schedule, ValueMapTy *VRMap, 442 InstrMapTy &InstrMap, unsigned LastStageNum, 443 unsigned CurStageNum, bool IsLast); 444 void removeDeadInstructions(MachineBasicBlock *KernelBB, 445 MBBVectorTy &EpilogBBs); 446 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 447 SMSchedule &Schedule); 448 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 449 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 450 ValueMapTy *VRMap); 451 bool computeDelta(MachineInstr &MI, unsigned &Delta); 452 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 453 unsigned Num); 454 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 455 unsigned InstStageNum); 456 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 457 unsigned InstStageNum, 458 SMSchedule &Schedule); 459 void updateInstruction(MachineInstr *NewMI, bool LastDef, 460 unsigned CurStageNum, unsigned InstrStageNum, 461 SMSchedule &Schedule, ValueMapTy *VRMap); 462 MachineInstr *findDefInLoop(unsigned Reg); 463 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 464 unsigned LoopStage, ValueMapTy *VRMap, 465 MachineBasicBlock *BB); 466 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 467 SMSchedule &Schedule, ValueMapTy *VRMap, 468 InstrMapTy &InstrMap); 469 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 470 InstrMapTy &InstrMap, unsigned CurStageNum, 471 unsigned PhiNum, MachineInstr *Phi, 472 unsigned OldReg, unsigned NewReg, 473 unsigned PrevReg = 0); 474 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 475 unsigned &OffsetPos, unsigned &NewBase, 476 int64_t &NewOffset); 477 void postprocessDAG(); 478 }; 479 480 /// A NodeSet contains a set of SUnit DAG nodes with additional information 481 /// that assigns a priority to the set. 482 class NodeSet { 483 SetVector<SUnit *> Nodes; 484 bool HasRecurrence = false; 485 unsigned RecMII = 0; 486 int MaxMOV = 0; 487 unsigned MaxDepth = 0; 488 unsigned Colocate = 0; 489 SUnit *ExceedPressure = nullptr; 490 unsigned Latency = 0; 491 492 public: 493 using iterator = SetVector<SUnit *>::const_iterator; 494 495 NodeSet() = default; 496 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { 497 Latency = 0; 498 for (unsigned i = 0, e = Nodes.size(); i < e; ++i) 499 for (const SDep &Succ : Nodes[i]->Succs) 500 if (Nodes.count(Succ.getSUnit())) 501 Latency += Succ.getLatency(); 502 } 503 504 bool insert(SUnit *SU) { return Nodes.insert(SU); } 505 506 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 507 508 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 509 return Nodes.remove_if(P); 510 } 511 512 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 513 514 bool hasRecurrence() { return HasRecurrence; }; 515 516 unsigned size() const { return Nodes.size(); } 517 518 bool empty() const { return Nodes.empty(); } 519 520 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 521 522 void setRecMII(unsigned mii) { RecMII = mii; }; 523 524 void setColocate(unsigned c) { Colocate = c; }; 525 526 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 527 528 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 529 530 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 531 532 int getRecMII() { return RecMII; } 533 534 /// Summarize node functions for the entire node set. 535 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 536 for (SUnit *SU : *this) { 537 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 538 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 539 } 540 } 541 542 unsigned getLatency() { return Latency; } 543 544 unsigned getMaxDepth() { return MaxDepth; } 545 546 void clear() { 547 Nodes.clear(); 548 RecMII = 0; 549 HasRecurrence = false; 550 MaxMOV = 0; 551 MaxDepth = 0; 552 Colocate = 0; 553 ExceedPressure = nullptr; 554 } 555 556 operator SetVector<SUnit *> &() { return Nodes; } 557 558 /// Sort the node sets by importance. First, rank them by recurrence MII, 559 /// then by mobility (least mobile done first), and finally by depth. 560 /// Each node set may contain a colocate value which is used as the first 561 /// tie breaker, if it's set. 562 bool operator>(const NodeSet &RHS) const { 563 if (RecMII == RHS.RecMII) { 564 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 565 return Colocate < RHS.Colocate; 566 if (MaxMOV == RHS.MaxMOV) 567 return MaxDepth > RHS.MaxDepth; 568 return MaxMOV < RHS.MaxMOV; 569 } 570 return RecMII > RHS.RecMII; 571 } 572 573 bool operator==(const NodeSet &RHS) const { 574 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 575 MaxDepth == RHS.MaxDepth; 576 } 577 578 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 579 580 iterator begin() { return Nodes.begin(); } 581 iterator end() { return Nodes.end(); } 582 583 void print(raw_ostream &os) const { 584 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 585 << " depth " << MaxDepth << " col " << Colocate << "\n"; 586 for (const auto &I : Nodes) 587 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 588 os << "\n"; 589 } 590 591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 592 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 593 #endif 594 }; 595 596 /// This class represents the scheduled code. The main data structure is a 597 /// map from scheduled cycle to instructions. During scheduling, the 598 /// data structure explicitly represents all stages/iterations. When 599 /// the algorithm finshes, the schedule is collapsed into a single stage, 600 /// which represents instructions from different loop iterations. 601 /// 602 /// The SMS algorithm allows negative values for cycles, so the first cycle 603 /// in the schedule is the smallest cycle value. 604 class SMSchedule { 605 private: 606 /// Map from execution cycle to instructions. 607 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 608 609 /// Map from instruction to execution cycle. 610 std::map<SUnit *, int> InstrToCycle; 611 612 /// Map for each register and the max difference between its uses and def. 613 /// The first element in the pair is the max difference in stages. The 614 /// second is true if the register defines a Phi value and loop value is 615 /// scheduled before the Phi. 616 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 617 618 /// Keep track of the first cycle value in the schedule. It starts 619 /// as zero, but the algorithm allows negative values. 620 int FirstCycle = 0; 621 622 /// Keep track of the last cycle value in the schedule. 623 int LastCycle = 0; 624 625 /// The initiation interval (II) for the schedule. 626 int InitiationInterval = 0; 627 628 /// Target machine information. 629 const TargetSubtargetInfo &ST; 630 631 /// Virtual register information. 632 MachineRegisterInfo &MRI; 633 634 std::unique_ptr<DFAPacketizer> Resources; 635 636 public: 637 SMSchedule(MachineFunction *mf) 638 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 639 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 640 641 void reset() { 642 ScheduledInstrs.clear(); 643 InstrToCycle.clear(); 644 RegToStageDiff.clear(); 645 FirstCycle = 0; 646 LastCycle = 0; 647 InitiationInterval = 0; 648 } 649 650 /// Set the initiation interval for this schedule. 651 void setInitiationInterval(int ii) { InitiationInterval = ii; } 652 653 /// Return the first cycle in the completed schedule. This 654 /// can be a negative value. 655 int getFirstCycle() const { return FirstCycle; } 656 657 /// Return the last cycle in the finalized schedule. 658 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 659 660 /// Return the cycle of the earliest scheduled instruction in the dependence 661 /// chain. 662 int earliestCycleInChain(const SDep &Dep); 663 664 /// Return the cycle of the latest scheduled instruction in the dependence 665 /// chain. 666 int latestCycleInChain(const SDep &Dep); 667 668 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 669 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 670 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 671 672 /// Iterators for the cycle to instruction map. 673 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 674 using const_sched_iterator = 675 DenseMap<int, std::deque<SUnit *>>::const_iterator; 676 677 /// Return true if the instruction is scheduled at the specified stage. 678 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 679 return (stageScheduled(SU) == (int)StageNum); 680 } 681 682 /// Return the stage for a scheduled instruction. Return -1 if 683 /// the instruction has not been scheduled. 684 int stageScheduled(SUnit *SU) const { 685 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 686 if (it == InstrToCycle.end()) 687 return -1; 688 return (it->second - FirstCycle) / InitiationInterval; 689 } 690 691 /// Return the cycle for a scheduled instruction. This function normalizes 692 /// the first cycle to be 0. 693 unsigned cycleScheduled(SUnit *SU) const { 694 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 695 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 696 return (it->second - FirstCycle) % InitiationInterval; 697 } 698 699 /// Return the maximum stage count needed for this schedule. 700 unsigned getMaxStageCount() { 701 return (LastCycle - FirstCycle) / InitiationInterval; 702 } 703 704 /// Return the max. number of stages/iterations that can occur between a 705 /// register definition and its uses. 706 unsigned getStagesForReg(int Reg, unsigned CurStage) { 707 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 708 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 709 return 1; 710 return Stages.first; 711 } 712 713 /// The number of stages for a Phi is a little different than other 714 /// instructions. The minimum value computed in RegToStageDiff is 1 715 /// because we assume the Phi is needed for at least 1 iteration. 716 /// This is not the case if the loop value is scheduled prior to the 717 /// Phi in the same stage. This function returns the number of stages 718 /// or iterations needed between the Phi definition and any uses. 719 unsigned getStagesForPhi(int Reg) { 720 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 721 if (Stages.second) 722 return Stages.first; 723 return Stages.first - 1; 724 } 725 726 /// Return the instructions that are scheduled at the specified cycle. 727 std::deque<SUnit *> &getInstructions(int cycle) { 728 return ScheduledInstrs[cycle]; 729 } 730 731 bool isValidSchedule(SwingSchedulerDAG *SSD); 732 void finalizeSchedule(SwingSchedulerDAG *SSD); 733 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 734 std::deque<SUnit *> &Insts); 735 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 736 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, 737 MachineOperand &MO); 738 void print(raw_ostream &os) const; 739 void dump() const; 740 }; 741 742 } // end anonymous namespace 743 744 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 745 char MachinePipeliner::ID = 0; 746 #ifndef NDEBUG 747 int MachinePipeliner::NumTries = 0; 748 #endif 749 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 750 751 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 752 "Modulo Software Pipelining", false, false) 753 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 754 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 755 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 756 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 757 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 758 "Modulo Software Pipelining", false, false) 759 760 /// The "main" function for implementing Swing Modulo Scheduling. 761 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 762 if (skipFunction(mf.getFunction())) 763 return false; 764 765 if (!EnableSWP) 766 return false; 767 768 if (mf.getFunction().getAttributes().hasAttribute( 769 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 770 !EnableSWPOptSize.getPosition()) 771 return false; 772 773 MF = &mf; 774 MLI = &getAnalysis<MachineLoopInfo>(); 775 MDT = &getAnalysis<MachineDominatorTree>(); 776 TII = MF->getSubtarget().getInstrInfo(); 777 RegClassInfo.runOnMachineFunction(*MF); 778 779 for (auto &L : *MLI) 780 scheduleLoop(*L); 781 782 return false; 783 } 784 785 /// Attempt to perform the SMS algorithm on the specified loop. This function is 786 /// the main entry point for the algorithm. The function identifies candidate 787 /// loops, calculates the minimum initiation interval, and attempts to schedule 788 /// the loop. 789 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 790 bool Changed = false; 791 for (auto &InnerLoop : L) 792 Changed |= scheduleLoop(*InnerLoop); 793 794 #ifndef NDEBUG 795 // Stop trying after reaching the limit (if any). 796 int Limit = SwpLoopLimit; 797 if (Limit >= 0) { 798 if (NumTries >= SwpLoopLimit) 799 return Changed; 800 NumTries++; 801 } 802 #endif 803 804 if (!canPipelineLoop(L)) 805 return Changed; 806 807 ++NumTrytoPipeline; 808 809 Changed = swingModuloScheduler(L); 810 811 return Changed; 812 } 813 814 /// Return true if the loop can be software pipelined. The algorithm is 815 /// restricted to loops with a single basic block. Make sure that the 816 /// branch in the loop can be analyzed. 817 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 818 if (L.getNumBlocks() != 1) 819 return false; 820 821 // Check if the branch can't be understood because we can't do pipelining 822 // if that's the case. 823 LI.TBB = nullptr; 824 LI.FBB = nullptr; 825 LI.BrCond.clear(); 826 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 827 return false; 828 829 LI.LoopInductionVar = nullptr; 830 LI.LoopCompare = nullptr; 831 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 832 return false; 833 834 if (!L.getLoopPreheader()) 835 return false; 836 837 // Remove any subregisters from inputs to phi nodes. 838 preprocessPhiNodes(*L.getHeader()); 839 return true; 840 } 841 842 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 843 MachineRegisterInfo &MRI = MF->getRegInfo(); 844 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 845 846 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 847 MachineOperand &DefOp = PI.getOperand(0); 848 assert(DefOp.getSubReg() == 0); 849 auto *RC = MRI.getRegClass(DefOp.getReg()); 850 851 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 852 MachineOperand &RegOp = PI.getOperand(i); 853 if (RegOp.getSubReg() == 0) 854 continue; 855 856 // If the operand uses a subregister, replace it with a new register 857 // without subregisters, and generate a copy to the new register. 858 unsigned NewReg = MRI.createVirtualRegister(RC); 859 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 860 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 861 const DebugLoc &DL = PredB.findDebugLoc(At); 862 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 863 .addReg(RegOp.getReg(), getRegState(RegOp), 864 RegOp.getSubReg()); 865 Slots.insertMachineInstrInMaps(*Copy); 866 RegOp.setReg(NewReg); 867 RegOp.setSubReg(0); 868 } 869 } 870 } 871 872 /// The SMS algorithm consists of the following main steps: 873 /// 1. Computation and analysis of the dependence graph. 874 /// 2. Ordering of the nodes (instructions). 875 /// 3. Attempt to Schedule the loop. 876 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 877 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 878 879 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 880 881 MachineBasicBlock *MBB = L.getHeader(); 882 // The kernel should not include any terminator instructions. These 883 // will be added back later. 884 SMS.startBlock(MBB); 885 886 // Compute the number of 'real' instructions in the basic block by 887 // ignoring terminators. 888 unsigned size = MBB->size(); 889 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 890 E = MBB->instr_end(); 891 I != E; ++I, --size) 892 ; 893 894 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 895 SMS.schedule(); 896 SMS.exitRegion(); 897 898 SMS.finishBlock(); 899 return SMS.hasNewSchedule(); 900 } 901 902 /// We override the schedule function in ScheduleDAGInstrs to implement the 903 /// scheduling part of the Swing Modulo Scheduling algorithm. 904 void SwingSchedulerDAG::schedule() { 905 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 906 buildSchedGraph(AA); 907 addLoopCarriedDependences(AA); 908 updatePhiDependences(); 909 Topo.InitDAGTopologicalSorting(); 910 changeDependences(); 911 postprocessDAG(); 912 LLVM_DEBUG(dump()); 913 914 NodeSetType NodeSets; 915 findCircuits(NodeSets); 916 NodeSetType Circuits = NodeSets; 917 918 // Calculate the MII. 919 unsigned ResMII = calculateResMII(); 920 unsigned RecMII = calculateRecMII(NodeSets); 921 922 fuseRecs(NodeSets); 923 924 // This flag is used for testing and can cause correctness problems. 925 if (SwpIgnoreRecMII) 926 RecMII = 0; 927 928 MII = std::max(ResMII, RecMII); 929 LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII 930 << ", res=" << ResMII << ")\n"); 931 932 // Can't schedule a loop without a valid MII. 933 if (MII == 0) 934 return; 935 936 // Don't pipeline large loops. 937 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 938 return; 939 940 computeNodeFunctions(NodeSets); 941 942 registerPressureFilter(NodeSets); 943 944 colocateNodeSets(NodeSets); 945 946 checkNodeSets(NodeSets); 947 948 LLVM_DEBUG({ 949 for (auto &I : NodeSets) { 950 dbgs() << " Rec NodeSet "; 951 I.dump(); 952 } 953 }); 954 955 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 956 957 groupRemainingNodes(NodeSets); 958 959 removeDuplicateNodes(NodeSets); 960 961 LLVM_DEBUG({ 962 for (auto &I : NodeSets) { 963 dbgs() << " NodeSet "; 964 I.dump(); 965 } 966 }); 967 968 computeNodeOrder(NodeSets); 969 970 // check for node order issues 971 checkValidNodeOrder(Circuits); 972 973 SMSchedule Schedule(Pass.MF); 974 Scheduled = schedulePipeline(Schedule); 975 976 if (!Scheduled) 977 return; 978 979 unsigned numStages = Schedule.getMaxStageCount(); 980 // No need to generate pipeline if there are no overlapped iterations. 981 if (numStages == 0) 982 return; 983 984 // Check that the maximum stage count is less than user-defined limit. 985 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 986 return; 987 988 generatePipelinedLoop(Schedule); 989 ++NumPipelined; 990 } 991 992 /// Clean up after the software pipeliner runs. 993 void SwingSchedulerDAG::finishBlock() { 994 for (MachineInstr *I : NewMIs) 995 MF.DeleteMachineInstr(I); 996 NewMIs.clear(); 997 998 // Call the superclass. 999 ScheduleDAGInstrs::finishBlock(); 1000 } 1001 1002 /// Return the register values for the operands of a Phi instruction. 1003 /// This function assume the instruction is a Phi. 1004 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 1005 unsigned &InitVal, unsigned &LoopVal) { 1006 assert(Phi.isPHI() && "Expecting a Phi."); 1007 1008 InitVal = 0; 1009 LoopVal = 0; 1010 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1011 if (Phi.getOperand(i + 1).getMBB() != Loop) 1012 InitVal = Phi.getOperand(i).getReg(); 1013 else 1014 LoopVal = Phi.getOperand(i).getReg(); 1015 1016 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 1017 } 1018 1019 /// Return the Phi register value that comes from the incoming block. 1020 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1021 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1022 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 1023 return Phi.getOperand(i).getReg(); 1024 return 0; 1025 } 1026 1027 /// Return the Phi register value that comes the loop block. 1028 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1029 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1030 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 1031 return Phi.getOperand(i).getReg(); 1032 return 0; 1033 } 1034 1035 /// Return true if SUb can be reached from SUa following the chain edges. 1036 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1037 SmallPtrSet<SUnit *, 8> Visited; 1038 SmallVector<SUnit *, 8> Worklist; 1039 Worklist.push_back(SUa); 1040 while (!Worklist.empty()) { 1041 const SUnit *SU = Worklist.pop_back_val(); 1042 for (auto &SI : SU->Succs) { 1043 SUnit *SuccSU = SI.getSUnit(); 1044 if (SI.getKind() == SDep::Order) { 1045 if (Visited.count(SuccSU)) 1046 continue; 1047 if (SuccSU == SUb) 1048 return true; 1049 Worklist.push_back(SuccSU); 1050 Visited.insert(SuccSU); 1051 } 1052 } 1053 } 1054 return false; 1055 } 1056 1057 /// Return true if the instruction causes a chain between memory 1058 /// references before and after it. 1059 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1060 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1061 (MI.hasOrderedMemoryRef() && 1062 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1063 } 1064 1065 /// Return the underlying objects for the memory references of an instruction. 1066 /// This function calls the code in ValueTracking, but first checks that the 1067 /// instruction has a memory operand. 1068 static void getUnderlyingObjects(MachineInstr *MI, 1069 SmallVectorImpl<Value *> &Objs, 1070 const DataLayout &DL) { 1071 if (!MI->hasOneMemOperand()) 1072 return; 1073 MachineMemOperand *MM = *MI->memoperands_begin(); 1074 if (!MM->getValue()) 1075 return; 1076 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1077 for (Value *V : Objs) { 1078 if (!isIdentifiedObject(V)) { 1079 Objs.clear(); 1080 return; 1081 } 1082 Objs.push_back(V); 1083 } 1084 } 1085 1086 /// Add a chain edge between a load and store if the store can be an 1087 /// alias of the load on a subsequent iteration, i.e., a loop carried 1088 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1089 /// but that code doesn't create loop carried dependences. 1090 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1091 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1092 Value *UnknownValue = 1093 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 1094 for (auto &SU : SUnits) { 1095 MachineInstr &MI = *SU.getInstr(); 1096 if (isDependenceBarrier(MI, AA)) 1097 PendingLoads.clear(); 1098 else if (MI.mayLoad()) { 1099 SmallVector<Value *, 4> Objs; 1100 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1101 if (Objs.empty()) 1102 Objs.push_back(UnknownValue); 1103 for (auto V : Objs) { 1104 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1105 SUs.push_back(&SU); 1106 } 1107 } else if (MI.mayStore()) { 1108 SmallVector<Value *, 4> Objs; 1109 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1110 if (Objs.empty()) 1111 Objs.push_back(UnknownValue); 1112 for (auto V : Objs) { 1113 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1114 PendingLoads.find(V); 1115 if (I == PendingLoads.end()) 1116 continue; 1117 for (auto Load : I->second) { 1118 if (isSuccOrder(Load, &SU)) 1119 continue; 1120 MachineInstr &LdMI = *Load->getInstr(); 1121 // First, perform the cheaper check that compares the base register. 1122 // If they are the same and the load offset is less than the store 1123 // offset, then mark the dependence as loop carried potentially. 1124 unsigned BaseReg1, BaseReg2; 1125 int64_t Offset1, Offset2; 1126 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && 1127 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1128 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1129 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1130 "What happened to the chain edge?"); 1131 SDep Dep(Load, SDep::Barrier); 1132 Dep.setLatency(1); 1133 SU.addPred(Dep); 1134 continue; 1135 } 1136 } 1137 // Second, the more expensive check that uses alias analysis on the 1138 // base registers. If they alias, and the load offset is less than 1139 // the store offset, the mark the dependence as loop carried. 1140 if (!AA) { 1141 SDep Dep(Load, SDep::Barrier); 1142 Dep.setLatency(1); 1143 SU.addPred(Dep); 1144 continue; 1145 } 1146 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1147 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1148 if (!MMO1->getValue() || !MMO2->getValue()) { 1149 SDep Dep(Load, SDep::Barrier); 1150 Dep.setLatency(1); 1151 SU.addPred(Dep); 1152 continue; 1153 } 1154 if (MMO1->getValue() == MMO2->getValue() && 1155 MMO1->getOffset() <= MMO2->getOffset()) { 1156 SDep Dep(Load, SDep::Barrier); 1157 Dep.setLatency(1); 1158 SU.addPred(Dep); 1159 continue; 1160 } 1161 AliasResult AAResult = AA->alias( 1162 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 1163 MMO1->getAAInfo()), 1164 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 1165 MMO2->getAAInfo())); 1166 1167 if (AAResult != NoAlias) { 1168 SDep Dep(Load, SDep::Barrier); 1169 Dep.setLatency(1); 1170 SU.addPred(Dep); 1171 } 1172 } 1173 } 1174 } 1175 } 1176 } 1177 1178 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1179 /// processes dependences for PHIs. This function adds true dependences 1180 /// from a PHI to a use, and a loop carried dependence from the use to the 1181 /// PHI. The loop carried dependence is represented as an anti dependence 1182 /// edge. This function also removes chain dependences between unrelated 1183 /// PHIs. 1184 void SwingSchedulerDAG::updatePhiDependences() { 1185 SmallVector<SDep, 4> RemoveDeps; 1186 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1187 1188 // Iterate over each DAG node. 1189 for (SUnit &I : SUnits) { 1190 RemoveDeps.clear(); 1191 // Set to true if the instruction has an operand defined by a Phi. 1192 unsigned HasPhiUse = 0; 1193 unsigned HasPhiDef = 0; 1194 MachineInstr *MI = I.getInstr(); 1195 // Iterate over each operand, and we process the definitions. 1196 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1197 MOE = MI->operands_end(); 1198 MOI != MOE; ++MOI) { 1199 if (!MOI->isReg()) 1200 continue; 1201 unsigned Reg = MOI->getReg(); 1202 if (MOI->isDef()) { 1203 // If the register is used by a Phi, then create an anti dependence. 1204 for (MachineRegisterInfo::use_instr_iterator 1205 UI = MRI.use_instr_begin(Reg), 1206 UE = MRI.use_instr_end(); 1207 UI != UE; ++UI) { 1208 MachineInstr *UseMI = &*UI; 1209 SUnit *SU = getSUnit(UseMI); 1210 if (SU != nullptr && UseMI->isPHI()) { 1211 if (!MI->isPHI()) { 1212 SDep Dep(SU, SDep::Anti, Reg); 1213 Dep.setLatency(1); 1214 I.addPred(Dep); 1215 } else { 1216 HasPhiDef = Reg; 1217 // Add a chain edge to a dependent Phi that isn't an existing 1218 // predecessor. 1219 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1220 I.addPred(SDep(SU, SDep::Barrier)); 1221 } 1222 } 1223 } 1224 } else if (MOI->isUse()) { 1225 // If the register is defined by a Phi, then create a true dependence. 1226 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1227 if (DefMI == nullptr) 1228 continue; 1229 SUnit *SU = getSUnit(DefMI); 1230 if (SU != nullptr && DefMI->isPHI()) { 1231 if (!MI->isPHI()) { 1232 SDep Dep(SU, SDep::Data, Reg); 1233 Dep.setLatency(0); 1234 ST.adjustSchedDependency(SU, &I, Dep); 1235 I.addPred(Dep); 1236 } else { 1237 HasPhiUse = Reg; 1238 // Add a chain edge to a dependent Phi that isn't an existing 1239 // predecessor. 1240 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1241 I.addPred(SDep(SU, SDep::Barrier)); 1242 } 1243 } 1244 } 1245 } 1246 // Remove order dependences from an unrelated Phi. 1247 if (!SwpPruneDeps) 1248 continue; 1249 for (auto &PI : I.Preds) { 1250 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1251 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1252 if (I.getInstr()->isPHI()) { 1253 if (PMI->getOperand(0).getReg() == HasPhiUse) 1254 continue; 1255 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1256 continue; 1257 } 1258 RemoveDeps.push_back(PI); 1259 } 1260 } 1261 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1262 I.removePred(RemoveDeps[i]); 1263 } 1264 } 1265 1266 /// Iterate over each DAG node and see if we can change any dependences 1267 /// in order to reduce the recurrence MII. 1268 void SwingSchedulerDAG::changeDependences() { 1269 // See if an instruction can use a value from the previous iteration. 1270 // If so, we update the base and offset of the instruction and change 1271 // the dependences. 1272 for (SUnit &I : SUnits) { 1273 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1274 int64_t NewOffset = 0; 1275 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1276 NewOffset)) 1277 continue; 1278 1279 // Get the MI and SUnit for the instruction that defines the original base. 1280 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1281 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1282 if (!DefMI) 1283 continue; 1284 SUnit *DefSU = getSUnit(DefMI); 1285 if (!DefSU) 1286 continue; 1287 // Get the MI and SUnit for the instruction that defins the new base. 1288 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1289 if (!LastMI) 1290 continue; 1291 SUnit *LastSU = getSUnit(LastMI); 1292 if (!LastSU) 1293 continue; 1294 1295 if (Topo.IsReachable(&I, LastSU)) 1296 continue; 1297 1298 // Remove the dependence. The value now depends on a prior iteration. 1299 SmallVector<SDep, 4> Deps; 1300 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1301 ++P) 1302 if (P->getSUnit() == DefSU) 1303 Deps.push_back(*P); 1304 for (int i = 0, e = Deps.size(); i != e; i++) { 1305 Topo.RemovePred(&I, Deps[i].getSUnit()); 1306 I.removePred(Deps[i]); 1307 } 1308 // Remove the chain dependence between the instructions. 1309 Deps.clear(); 1310 for (auto &P : LastSU->Preds) 1311 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1312 Deps.push_back(P); 1313 for (int i = 0, e = Deps.size(); i != e; i++) { 1314 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1315 LastSU->removePred(Deps[i]); 1316 } 1317 1318 // Add a dependence between the new instruction and the instruction 1319 // that defines the new base. 1320 SDep Dep(&I, SDep::Anti, NewBase); 1321 Topo.AddPred(LastSU, &I); 1322 LastSU->addPred(Dep); 1323 1324 // Remember the base and offset information so that we can update the 1325 // instruction during code generation. 1326 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1327 } 1328 } 1329 1330 namespace { 1331 1332 // FuncUnitSorter - Comparison operator used to sort instructions by 1333 // the number of functional unit choices. 1334 struct FuncUnitSorter { 1335 const InstrItineraryData *InstrItins; 1336 DenseMap<unsigned, unsigned> Resources; 1337 1338 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1339 1340 // Compute the number of functional unit alternatives needed 1341 // at each stage, and take the minimum value. We prioritize the 1342 // instructions by the least number of choices first. 1343 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1344 unsigned schedClass = Inst->getDesc().getSchedClass(); 1345 unsigned min = UINT_MAX; 1346 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1347 *IE = InstrItins->endStage(schedClass); 1348 IS != IE; ++IS) { 1349 unsigned funcUnits = IS->getUnits(); 1350 unsigned numAlternatives = countPopulation(funcUnits); 1351 if (numAlternatives < min) { 1352 min = numAlternatives; 1353 F = funcUnits; 1354 } 1355 } 1356 return min; 1357 } 1358 1359 // Compute the critical resources needed by the instruction. This 1360 // function records the functional units needed by instructions that 1361 // must use only one functional unit. We use this as a tie breaker 1362 // for computing the resource MII. The instrutions that require 1363 // the same, highly used, functional unit have high priority. 1364 void calcCriticalResources(MachineInstr &MI) { 1365 unsigned SchedClass = MI.getDesc().getSchedClass(); 1366 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1367 *IE = InstrItins->endStage(SchedClass); 1368 IS != IE; ++IS) { 1369 unsigned FuncUnits = IS->getUnits(); 1370 if (countPopulation(FuncUnits) == 1) 1371 Resources[FuncUnits]++; 1372 } 1373 } 1374 1375 /// Return true if IS1 has less priority than IS2. 1376 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1377 unsigned F1 = 0, F2 = 0; 1378 unsigned MFUs1 = minFuncUnits(IS1, F1); 1379 unsigned MFUs2 = minFuncUnits(IS2, F2); 1380 if (MFUs1 == 1 && MFUs2 == 1) 1381 return Resources.lookup(F1) < Resources.lookup(F2); 1382 return MFUs1 > MFUs2; 1383 } 1384 }; 1385 1386 } // end anonymous namespace 1387 1388 /// Calculate the resource constrained minimum initiation interval for the 1389 /// specified loop. We use the DFA to model the resources needed for 1390 /// each instruction, and we ignore dependences. A different DFA is created 1391 /// for each cycle that is required. When adding a new instruction, we attempt 1392 /// to add it to each existing DFA, until a legal space is found. If the 1393 /// instruction cannot be reserved in an existing DFA, we create a new one. 1394 unsigned SwingSchedulerDAG::calculateResMII() { 1395 SmallVector<DFAPacketizer *, 8> Resources; 1396 MachineBasicBlock *MBB = Loop.getHeader(); 1397 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1398 1399 // Sort the instructions by the number of available choices for scheduling, 1400 // least to most. Use the number of critical resources as the tie breaker. 1401 FuncUnitSorter FUS = 1402 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1403 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1404 E = MBB->getFirstTerminator(); 1405 I != E; ++I) 1406 FUS.calcCriticalResources(*I); 1407 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1408 FuncUnitOrder(FUS); 1409 1410 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1411 E = MBB->getFirstTerminator(); 1412 I != E; ++I) 1413 FuncUnitOrder.push(&*I); 1414 1415 while (!FuncUnitOrder.empty()) { 1416 MachineInstr *MI = FuncUnitOrder.top(); 1417 FuncUnitOrder.pop(); 1418 if (TII->isZeroCost(MI->getOpcode())) 1419 continue; 1420 // Attempt to reserve the instruction in an existing DFA. At least one 1421 // DFA is needed for each cycle. 1422 unsigned NumCycles = getSUnit(MI)->Latency; 1423 unsigned ReservedCycles = 0; 1424 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1425 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1426 for (unsigned C = 0; C < NumCycles; ++C) 1427 while (RI != RE) { 1428 if ((*RI++)->canReserveResources(*MI)) { 1429 ++ReservedCycles; 1430 break; 1431 } 1432 } 1433 // Start reserving resources using existing DFAs. 1434 for (unsigned C = 0; C < ReservedCycles; ++C) { 1435 --RI; 1436 (*RI)->reserveResources(*MI); 1437 } 1438 // Add new DFAs, if needed, to reserve resources. 1439 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1440 DFAPacketizer *NewResource = 1441 TII->CreateTargetScheduleState(MF.getSubtarget()); 1442 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1443 NewResource->reserveResources(*MI); 1444 Resources.push_back(NewResource); 1445 } 1446 } 1447 int Resmii = Resources.size(); 1448 // Delete the memory for each of the DFAs that were created earlier. 1449 for (DFAPacketizer *RI : Resources) { 1450 DFAPacketizer *D = RI; 1451 delete D; 1452 } 1453 Resources.clear(); 1454 return Resmii; 1455 } 1456 1457 /// Calculate the recurrence-constrainted minimum initiation interval. 1458 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1459 /// for each circuit. The II needs to satisfy the inequality 1460 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1461 /// II that satisfies the inequality, and the RecMII is the maximum 1462 /// of those values. 1463 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1464 unsigned RecMII = 0; 1465 1466 for (NodeSet &Nodes : NodeSets) { 1467 if (Nodes.empty()) 1468 continue; 1469 1470 unsigned Delay = Nodes.getLatency(); 1471 unsigned Distance = 1; 1472 1473 // ii = ceil(delay / distance) 1474 unsigned CurMII = (Delay + Distance - 1) / Distance; 1475 Nodes.setRecMII(CurMII); 1476 if (CurMII > RecMII) 1477 RecMII = CurMII; 1478 } 1479 1480 return RecMII; 1481 } 1482 1483 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1484 /// but we do this to find the circuits, and then change them back. 1485 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1486 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1487 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1488 SUnit *SU = &SUnits[i]; 1489 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1490 IP != EP; ++IP) { 1491 if (IP->getKind() != SDep::Anti) 1492 continue; 1493 DepsAdded.push_back(std::make_pair(SU, *IP)); 1494 } 1495 } 1496 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1497 E = DepsAdded.end(); 1498 I != E; ++I) { 1499 // Remove this anti dependency and add one in the reverse direction. 1500 SUnit *SU = I->first; 1501 SDep &D = I->second; 1502 SUnit *TargetSU = D.getSUnit(); 1503 unsigned Reg = D.getReg(); 1504 unsigned Lat = D.getLatency(); 1505 SU->removePred(D); 1506 SDep Dep(SU, SDep::Anti, Reg); 1507 Dep.setLatency(Lat); 1508 TargetSU->addPred(Dep); 1509 } 1510 } 1511 1512 /// Create the adjacency structure of the nodes in the graph. 1513 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1514 SwingSchedulerDAG *DAG) { 1515 BitVector Added(SUnits.size()); 1516 DenseMap<int, int> OutputDeps; 1517 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1518 Added.reset(); 1519 // Add any successor to the adjacency matrix and exclude duplicates. 1520 for (auto &SI : SUnits[i].Succs) { 1521 // Only create a back-edge on the first and last nodes of a dependence 1522 // chain. This records any chains and adds them later. 1523 if (SI.getKind() == SDep::Output) { 1524 int N = SI.getSUnit()->NodeNum; 1525 int BackEdge = i; 1526 auto Dep = OutputDeps.find(BackEdge); 1527 if (Dep != OutputDeps.end()) { 1528 BackEdge = Dep->second; 1529 OutputDeps.erase(Dep); 1530 } 1531 OutputDeps[N] = BackEdge; 1532 } 1533 // Do not process a boundary node, an artificial node. 1534 // A back-edge is processed only if it goes to a Phi. 1535 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1536 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1537 continue; 1538 int N = SI.getSUnit()->NodeNum; 1539 if (!Added.test(N)) { 1540 AdjK[i].push_back(N); 1541 Added.set(N); 1542 } 1543 } 1544 // A chain edge between a store and a load is treated as a back-edge in the 1545 // adjacency matrix. 1546 for (auto &PI : SUnits[i].Preds) { 1547 if (!SUnits[i].getInstr()->mayStore() || 1548 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1549 continue; 1550 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1551 int N = PI.getSUnit()->NodeNum; 1552 if (!Added.test(N)) { 1553 AdjK[i].push_back(N); 1554 Added.set(N); 1555 } 1556 } 1557 } 1558 } 1559 // Add back-eges in the adjacency matrix for the output dependences. 1560 for (auto &OD : OutputDeps) 1561 if (!Added.test(OD.second)) { 1562 AdjK[OD.first].push_back(OD.second); 1563 Added.set(OD.second); 1564 } 1565 } 1566 1567 /// Identify an elementary circuit in the dependence graph starting at the 1568 /// specified node. 1569 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1570 bool HasBackedge) { 1571 SUnit *SV = &SUnits[V]; 1572 bool F = false; 1573 Stack.insert(SV); 1574 Blocked.set(V); 1575 1576 for (auto W : AdjK[V]) { 1577 if (NumPaths > MaxPaths) 1578 break; 1579 if (W < S) 1580 continue; 1581 if (W == S) { 1582 if (!HasBackedge) 1583 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1584 F = true; 1585 ++NumPaths; 1586 break; 1587 } else if (!Blocked.test(W)) { 1588 if (circuit(W, S, NodeSets, 1589 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1590 F = true; 1591 } 1592 } 1593 1594 if (F) 1595 unblock(V); 1596 else { 1597 for (auto W : AdjK[V]) { 1598 if (W < S) 1599 continue; 1600 if (B[W].count(SV) == 0) 1601 B[W].insert(SV); 1602 } 1603 } 1604 Stack.pop_back(); 1605 return F; 1606 } 1607 1608 /// Unblock a node in the circuit finding algorithm. 1609 void SwingSchedulerDAG::Circuits::unblock(int U) { 1610 Blocked.reset(U); 1611 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1612 while (!BU.empty()) { 1613 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1614 assert(SI != BU.end() && "Invalid B set."); 1615 SUnit *W = *SI; 1616 BU.erase(W); 1617 if (Blocked.test(W->NodeNum)) 1618 unblock(W->NodeNum); 1619 } 1620 } 1621 1622 /// Identify all the elementary circuits in the dependence graph using 1623 /// Johnson's circuit algorithm. 1624 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1625 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1626 // but we do this to find the circuits, and then change them back. 1627 swapAntiDependences(SUnits); 1628 1629 Circuits Cir(SUnits, Topo); 1630 // Create the adjacency structure. 1631 Cir.createAdjacencyStructure(this); 1632 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1633 Cir.reset(); 1634 Cir.circuit(i, i, NodeSets); 1635 } 1636 1637 // Change the dependences back so that we've created a DAG again. 1638 swapAntiDependences(SUnits); 1639 } 1640 1641 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1642 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1643 // additional copies that are needed across iterations. An artificial dependence 1644 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1645 1646 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1647 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1648 // PHI-------True-Dep------> USEOfPhi 1649 1650 // The mutation creates 1651 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1652 1653 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1654 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1655 // late to avoid additional copies across iterations. The possible scheduling 1656 // order would be 1657 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1658 1659 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1660 for (SUnit &SU : DAG->SUnits) { 1661 // Find the COPY/REG_SEQUENCE instruction. 1662 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1663 continue; 1664 1665 // Record the loop carried PHIs. 1666 SmallVector<SUnit *, 4> PHISUs; 1667 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1668 SmallVector<SUnit *, 4> SrcSUs; 1669 1670 for (auto &Dep : SU.Preds) { 1671 SUnit *TmpSU = Dep.getSUnit(); 1672 MachineInstr *TmpMI = TmpSU->getInstr(); 1673 SDep::Kind DepKind = Dep.getKind(); 1674 // Save the loop carried PHI. 1675 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1676 PHISUs.push_back(TmpSU); 1677 // Save the source of COPY/REG_SEQUENCE. 1678 // If the source has no pre-decessors, we will end up creating cycles. 1679 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1680 SrcSUs.push_back(TmpSU); 1681 } 1682 1683 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1684 continue; 1685 1686 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1687 // SUnit to the container. 1688 SmallVector<SUnit *, 8> UseSUs; 1689 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1690 for (auto &Dep : (*I)->Succs) { 1691 if (Dep.getKind() != SDep::Data) 1692 continue; 1693 1694 SUnit *TmpSU = Dep.getSUnit(); 1695 MachineInstr *TmpMI = TmpSU->getInstr(); 1696 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1697 PHISUs.push_back(TmpSU); 1698 continue; 1699 } 1700 UseSUs.push_back(TmpSU); 1701 } 1702 } 1703 1704 if (UseSUs.size() == 0) 1705 continue; 1706 1707 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1708 // Add the artificial dependencies if it does not form a cycle. 1709 for (auto I : UseSUs) { 1710 for (auto Src : SrcSUs) { 1711 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1712 Src->addPred(SDep(I, SDep::Artificial)); 1713 SDAG->Topo.AddPred(Src, I); 1714 } 1715 } 1716 } 1717 } 1718 } 1719 1720 /// Return true for DAG nodes that we ignore when computing the cost functions. 1721 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1722 /// in the calculation of the ASAP, ALAP, etc functions. 1723 static bool ignoreDependence(const SDep &D, bool isPred) { 1724 if (D.isArtificial()) 1725 return true; 1726 return D.getKind() == SDep::Anti && isPred; 1727 } 1728 1729 /// Compute several functions need to order the nodes for scheduling. 1730 /// ASAP - Earliest time to schedule a node. 1731 /// ALAP - Latest time to schedule a node. 1732 /// MOV - Mobility function, difference between ALAP and ASAP. 1733 /// D - Depth of each node. 1734 /// H - Height of each node. 1735 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1736 ScheduleInfo.resize(SUnits.size()); 1737 1738 LLVM_DEBUG({ 1739 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1740 E = Topo.end(); 1741 I != E; ++I) { 1742 const SUnit &SU = SUnits[*I]; 1743 dumpNode(SU); 1744 } 1745 }); 1746 1747 int maxASAP = 0; 1748 // Compute ASAP and ZeroLatencyDepth. 1749 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1750 E = Topo.end(); 1751 I != E; ++I) { 1752 int asap = 0; 1753 int zeroLatencyDepth = 0; 1754 SUnit *SU = &SUnits[*I]; 1755 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1756 EP = SU->Preds.end(); 1757 IP != EP; ++IP) { 1758 SUnit *pred = IP->getSUnit(); 1759 if (IP->getLatency() == 0) 1760 zeroLatencyDepth = 1761 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1762 if (ignoreDependence(*IP, true)) 1763 continue; 1764 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1765 getDistance(pred, SU, *IP) * MII)); 1766 } 1767 maxASAP = std::max(maxASAP, asap); 1768 ScheduleInfo[*I].ASAP = asap; 1769 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1770 } 1771 1772 // Compute ALAP, ZeroLatencyHeight, and MOV. 1773 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1774 E = Topo.rend(); 1775 I != E; ++I) { 1776 int alap = maxASAP; 1777 int zeroLatencyHeight = 0; 1778 SUnit *SU = &SUnits[*I]; 1779 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1780 ES = SU->Succs.end(); 1781 IS != ES; ++IS) { 1782 SUnit *succ = IS->getSUnit(); 1783 if (IS->getLatency() == 0) 1784 zeroLatencyHeight = 1785 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1786 if (ignoreDependence(*IS, true)) 1787 continue; 1788 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1789 getDistance(SU, succ, *IS) * MII)); 1790 } 1791 1792 ScheduleInfo[*I].ALAP = alap; 1793 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1794 } 1795 1796 // After computing the node functions, compute the summary for each node set. 1797 for (NodeSet &I : NodeSets) 1798 I.computeNodeSetInfo(this); 1799 1800 LLVM_DEBUG({ 1801 for (unsigned i = 0; i < SUnits.size(); i++) { 1802 dbgs() << "\tNode " << i << ":\n"; 1803 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1804 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1805 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1806 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1807 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1808 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1809 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1810 } 1811 }); 1812 } 1813 1814 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1815 /// as the predecessors of the elements of NodeOrder that are not also in 1816 /// NodeOrder. 1817 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1818 SmallSetVector<SUnit *, 8> &Preds, 1819 const NodeSet *S = nullptr) { 1820 Preds.clear(); 1821 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1822 I != E; ++I) { 1823 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1824 PI != PE; ++PI) { 1825 if (S && S->count(PI->getSUnit()) == 0) 1826 continue; 1827 if (ignoreDependence(*PI, true)) 1828 continue; 1829 if (NodeOrder.count(PI->getSUnit()) == 0) 1830 Preds.insert(PI->getSUnit()); 1831 } 1832 // Back-edges are predecessors with an anti-dependence. 1833 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1834 ES = (*I)->Succs.end(); 1835 IS != ES; ++IS) { 1836 if (IS->getKind() != SDep::Anti) 1837 continue; 1838 if (S && S->count(IS->getSUnit()) == 0) 1839 continue; 1840 if (NodeOrder.count(IS->getSUnit()) == 0) 1841 Preds.insert(IS->getSUnit()); 1842 } 1843 } 1844 return !Preds.empty(); 1845 } 1846 1847 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1848 /// as the successors of the elements of NodeOrder that are not also in 1849 /// NodeOrder. 1850 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1851 SmallSetVector<SUnit *, 8> &Succs, 1852 const NodeSet *S = nullptr) { 1853 Succs.clear(); 1854 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1855 I != E; ++I) { 1856 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1857 SI != SE; ++SI) { 1858 if (S && S->count(SI->getSUnit()) == 0) 1859 continue; 1860 if (ignoreDependence(*SI, false)) 1861 continue; 1862 if (NodeOrder.count(SI->getSUnit()) == 0) 1863 Succs.insert(SI->getSUnit()); 1864 } 1865 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1866 PE = (*I)->Preds.end(); 1867 PI != PE; ++PI) { 1868 if (PI->getKind() != SDep::Anti) 1869 continue; 1870 if (S && S->count(PI->getSUnit()) == 0) 1871 continue; 1872 if (NodeOrder.count(PI->getSUnit()) == 0) 1873 Succs.insert(PI->getSUnit()); 1874 } 1875 } 1876 return !Succs.empty(); 1877 } 1878 1879 /// Return true if there is a path from the specified node to any of the nodes 1880 /// in DestNodes. Keep track and return the nodes in any path. 1881 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1882 SetVector<SUnit *> &DestNodes, 1883 SetVector<SUnit *> &Exclude, 1884 SmallPtrSet<SUnit *, 8> &Visited) { 1885 if (Cur->isBoundaryNode()) 1886 return false; 1887 if (Exclude.count(Cur) != 0) 1888 return false; 1889 if (DestNodes.count(Cur) != 0) 1890 return true; 1891 if (!Visited.insert(Cur).second) 1892 return Path.count(Cur) != 0; 1893 bool FoundPath = false; 1894 for (auto &SI : Cur->Succs) 1895 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1896 for (auto &PI : Cur->Preds) 1897 if (PI.getKind() == SDep::Anti) 1898 FoundPath |= 1899 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1900 if (FoundPath) 1901 Path.insert(Cur); 1902 return FoundPath; 1903 } 1904 1905 /// Return true if Set1 is a subset of Set2. 1906 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1907 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1908 if (Set2.count(*I) == 0) 1909 return false; 1910 return true; 1911 } 1912 1913 /// Compute the live-out registers for the instructions in a node-set. 1914 /// The live-out registers are those that are defined in the node-set, 1915 /// but not used. Except for use operands of Phis. 1916 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1917 NodeSet &NS) { 1918 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1919 MachineRegisterInfo &MRI = MF.getRegInfo(); 1920 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1921 SmallSet<unsigned, 4> Uses; 1922 for (SUnit *SU : NS) { 1923 const MachineInstr *MI = SU->getInstr(); 1924 if (MI->isPHI()) 1925 continue; 1926 for (const MachineOperand &MO : MI->operands()) 1927 if (MO.isReg() && MO.isUse()) { 1928 unsigned Reg = MO.getReg(); 1929 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1930 Uses.insert(Reg); 1931 else if (MRI.isAllocatable(Reg)) 1932 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1933 Uses.insert(*Units); 1934 } 1935 } 1936 for (SUnit *SU : NS) 1937 for (const MachineOperand &MO : SU->getInstr()->operands()) 1938 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1939 unsigned Reg = MO.getReg(); 1940 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1941 if (!Uses.count(Reg)) 1942 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1943 LaneBitmask::getNone())); 1944 } else if (MRI.isAllocatable(Reg)) { 1945 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1946 if (!Uses.count(*Units)) 1947 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1948 LaneBitmask::getNone())); 1949 } 1950 } 1951 RPTracker.addLiveRegs(LiveOutRegs); 1952 } 1953 1954 /// A heuristic to filter nodes in recurrent node-sets if the register 1955 /// pressure of a set is too high. 1956 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1957 for (auto &NS : NodeSets) { 1958 // Skip small node-sets since they won't cause register pressure problems. 1959 if (NS.size() <= 2) 1960 continue; 1961 IntervalPressure RecRegPressure; 1962 RegPressureTracker RecRPTracker(RecRegPressure); 1963 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1964 computeLiveOuts(MF, RecRPTracker, NS); 1965 RecRPTracker.closeBottom(); 1966 1967 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1968 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1969 return A->NodeNum > B->NodeNum; 1970 }); 1971 1972 for (auto &SU : SUnits) { 1973 // Since we're computing the register pressure for a subset of the 1974 // instructions in a block, we need to set the tracker for each 1975 // instruction in the node-set. The tracker is set to the instruction 1976 // just after the one we're interested in. 1977 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1978 RecRPTracker.setPos(std::next(CurInstI)); 1979 1980 RegPressureDelta RPDelta; 1981 ArrayRef<PressureChange> CriticalPSets; 1982 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1983 CriticalPSets, 1984 RecRegPressure.MaxSetPressure); 1985 if (RPDelta.Excess.isValid()) { 1986 LLVM_DEBUG( 1987 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1988 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1989 << ":" << RPDelta.Excess.getUnitInc()); 1990 NS.setExceedPressure(SU); 1991 break; 1992 } 1993 RecRPTracker.recede(); 1994 } 1995 } 1996 } 1997 1998 /// A heuristic to colocate node sets that have the same set of 1999 /// successors. 2000 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2001 unsigned Colocate = 0; 2002 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2003 NodeSet &N1 = NodeSets[i]; 2004 SmallSetVector<SUnit *, 8> S1; 2005 if (N1.empty() || !succ_L(N1, S1)) 2006 continue; 2007 for (int j = i + 1; j < e; ++j) { 2008 NodeSet &N2 = NodeSets[j]; 2009 if (N1.compareRecMII(N2) != 0) 2010 continue; 2011 SmallSetVector<SUnit *, 8> S2; 2012 if (N2.empty() || !succ_L(N2, S2)) 2013 continue; 2014 if (isSubset(S1, S2) && S1.size() == S2.size()) { 2015 N1.setColocate(++Colocate); 2016 N2.setColocate(Colocate); 2017 break; 2018 } 2019 } 2020 } 2021 } 2022 2023 /// Check if the existing node-sets are profitable. If not, then ignore the 2024 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2025 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2026 /// then it's best to try to schedule all instructions together instead of 2027 /// starting with the recurrent node-sets. 2028 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2029 // Look for loops with a large MII. 2030 if (MII < 17) 2031 return; 2032 // Check if the node-set contains only a simple add recurrence. 2033 for (auto &NS : NodeSets) { 2034 if (NS.getRecMII() > 2) 2035 return; 2036 if (NS.getMaxDepth() > MII) 2037 return; 2038 } 2039 NodeSets.clear(); 2040 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2041 return; 2042 } 2043 2044 /// Add the nodes that do not belong to a recurrence set into groups 2045 /// based upon connected componenets. 2046 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2047 SetVector<SUnit *> NodesAdded; 2048 SmallPtrSet<SUnit *, 8> Visited; 2049 // Add the nodes that are on a path between the previous node sets and 2050 // the current node set. 2051 for (NodeSet &I : NodeSets) { 2052 SmallSetVector<SUnit *, 8> N; 2053 // Add the nodes from the current node set to the previous node set. 2054 if (succ_L(I, N)) { 2055 SetVector<SUnit *> Path; 2056 for (SUnit *NI : N) { 2057 Visited.clear(); 2058 computePath(NI, Path, NodesAdded, I, Visited); 2059 } 2060 if (!Path.empty()) 2061 I.insert(Path.begin(), Path.end()); 2062 } 2063 // Add the nodes from the previous node set to the current node set. 2064 N.clear(); 2065 if (succ_L(NodesAdded, N)) { 2066 SetVector<SUnit *> Path; 2067 for (SUnit *NI : N) { 2068 Visited.clear(); 2069 computePath(NI, Path, I, NodesAdded, Visited); 2070 } 2071 if (!Path.empty()) 2072 I.insert(Path.begin(), Path.end()); 2073 } 2074 NodesAdded.insert(I.begin(), I.end()); 2075 } 2076 2077 // Create a new node set with the connected nodes of any successor of a node 2078 // in a recurrent set. 2079 NodeSet NewSet; 2080 SmallSetVector<SUnit *, 8> N; 2081 if (succ_L(NodesAdded, N)) 2082 for (SUnit *I : N) 2083 addConnectedNodes(I, NewSet, NodesAdded); 2084 if (!NewSet.empty()) 2085 NodeSets.push_back(NewSet); 2086 2087 // Create a new node set with the connected nodes of any predecessor of a node 2088 // in a recurrent set. 2089 NewSet.clear(); 2090 if (pred_L(NodesAdded, N)) 2091 for (SUnit *I : N) 2092 addConnectedNodes(I, NewSet, NodesAdded); 2093 if (!NewSet.empty()) 2094 NodeSets.push_back(NewSet); 2095 2096 // Create new nodes sets with the connected nodes any remaining node that 2097 // has no predecessor. 2098 for (unsigned i = 0; i < SUnits.size(); ++i) { 2099 SUnit *SU = &SUnits[i]; 2100 if (NodesAdded.count(SU) == 0) { 2101 NewSet.clear(); 2102 addConnectedNodes(SU, NewSet, NodesAdded); 2103 if (!NewSet.empty()) 2104 NodeSets.push_back(NewSet); 2105 } 2106 } 2107 } 2108 2109 /// Add the node to the set, and add all is its connected nodes to the set. 2110 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2111 SetVector<SUnit *> &NodesAdded) { 2112 NewSet.insert(SU); 2113 NodesAdded.insert(SU); 2114 for (auto &SI : SU->Succs) { 2115 SUnit *Successor = SI.getSUnit(); 2116 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 2117 addConnectedNodes(Successor, NewSet, NodesAdded); 2118 } 2119 for (auto &PI : SU->Preds) { 2120 SUnit *Predecessor = PI.getSUnit(); 2121 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2122 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2123 } 2124 } 2125 2126 /// Return true if Set1 contains elements in Set2. The elements in common 2127 /// are returned in a different container. 2128 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2129 SmallSetVector<SUnit *, 8> &Result) { 2130 Result.clear(); 2131 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 2132 SUnit *SU = Set1[i]; 2133 if (Set2.count(SU) != 0) 2134 Result.insert(SU); 2135 } 2136 return !Result.empty(); 2137 } 2138 2139 /// Merge the recurrence node sets that have the same initial node. 2140 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2141 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2142 ++I) { 2143 NodeSet &NI = *I; 2144 for (NodeSetType::iterator J = I + 1; J != E;) { 2145 NodeSet &NJ = *J; 2146 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2147 if (NJ.compareRecMII(NI) > 0) 2148 NI.setRecMII(NJ.getRecMII()); 2149 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 2150 ++NII) 2151 I->insert(*NII); 2152 NodeSets.erase(J); 2153 E = NodeSets.end(); 2154 } else { 2155 ++J; 2156 } 2157 } 2158 } 2159 } 2160 2161 /// Remove nodes that have been scheduled in previous NodeSets. 2162 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2163 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2164 ++I) 2165 for (NodeSetType::iterator J = I + 1; J != E;) { 2166 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2167 2168 if (J->empty()) { 2169 NodeSets.erase(J); 2170 E = NodeSets.end(); 2171 } else { 2172 ++J; 2173 } 2174 } 2175 } 2176 2177 /// Compute an ordered list of the dependence graph nodes, which 2178 /// indicates the order that the nodes will be scheduled. This is a 2179 /// two-level algorithm. First, a partial order is created, which 2180 /// consists of a list of sets ordered from highest to lowest priority. 2181 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2182 SmallSetVector<SUnit *, 8> R; 2183 NodeOrder.clear(); 2184 2185 for (auto &Nodes : NodeSets) { 2186 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2187 OrderKind Order; 2188 SmallSetVector<SUnit *, 8> N; 2189 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2190 R.insert(N.begin(), N.end()); 2191 Order = BottomUp; 2192 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2193 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2194 R.insert(N.begin(), N.end()); 2195 Order = TopDown; 2196 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2197 } else if (isIntersect(N, Nodes, R)) { 2198 // If some of the successors are in the existing node-set, then use the 2199 // top-down ordering. 2200 Order = TopDown; 2201 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2202 } else if (NodeSets.size() == 1) { 2203 for (auto &N : Nodes) 2204 if (N->Succs.size() == 0) 2205 R.insert(N); 2206 Order = BottomUp; 2207 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2208 } else { 2209 // Find the node with the highest ASAP. 2210 SUnit *maxASAP = nullptr; 2211 for (SUnit *SU : Nodes) { 2212 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2213 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2214 maxASAP = SU; 2215 } 2216 R.insert(maxASAP); 2217 Order = BottomUp; 2218 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2219 } 2220 2221 while (!R.empty()) { 2222 if (Order == TopDown) { 2223 // Choose the node with the maximum height. If more than one, choose 2224 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2225 // choose the node with the lowest MOV. 2226 while (!R.empty()) { 2227 SUnit *maxHeight = nullptr; 2228 for (SUnit *I : R) { 2229 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2230 maxHeight = I; 2231 else if (getHeight(I) == getHeight(maxHeight) && 2232 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2233 maxHeight = I; 2234 else if (getHeight(I) == getHeight(maxHeight) && 2235 getZeroLatencyHeight(I) == 2236 getZeroLatencyHeight(maxHeight) && 2237 getMOV(I) < getMOV(maxHeight)) 2238 maxHeight = I; 2239 } 2240 NodeOrder.insert(maxHeight); 2241 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2242 R.remove(maxHeight); 2243 for (const auto &I : maxHeight->Succs) { 2244 if (Nodes.count(I.getSUnit()) == 0) 2245 continue; 2246 if (NodeOrder.count(I.getSUnit()) != 0) 2247 continue; 2248 if (ignoreDependence(I, false)) 2249 continue; 2250 R.insert(I.getSUnit()); 2251 } 2252 // Back-edges are predecessors with an anti-dependence. 2253 for (const auto &I : maxHeight->Preds) { 2254 if (I.getKind() != SDep::Anti) 2255 continue; 2256 if (Nodes.count(I.getSUnit()) == 0) 2257 continue; 2258 if (NodeOrder.count(I.getSUnit()) != 0) 2259 continue; 2260 R.insert(I.getSUnit()); 2261 } 2262 } 2263 Order = BottomUp; 2264 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2265 SmallSetVector<SUnit *, 8> N; 2266 if (pred_L(NodeOrder, N, &Nodes)) 2267 R.insert(N.begin(), N.end()); 2268 } else { 2269 // Choose the node with the maximum depth. If more than one, choose 2270 // the node with the maximum ZeroLatencyDepth. If still more than one, 2271 // choose the node with the lowest MOV. 2272 while (!R.empty()) { 2273 SUnit *maxDepth = nullptr; 2274 for (SUnit *I : R) { 2275 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2276 maxDepth = I; 2277 else if (getDepth(I) == getDepth(maxDepth) && 2278 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2279 maxDepth = I; 2280 else if (getDepth(I) == getDepth(maxDepth) && 2281 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2282 getMOV(I) < getMOV(maxDepth)) 2283 maxDepth = I; 2284 } 2285 NodeOrder.insert(maxDepth); 2286 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2287 R.remove(maxDepth); 2288 if (Nodes.isExceedSU(maxDepth)) { 2289 Order = TopDown; 2290 R.clear(); 2291 R.insert(Nodes.getNode(0)); 2292 break; 2293 } 2294 for (const auto &I : maxDepth->Preds) { 2295 if (Nodes.count(I.getSUnit()) == 0) 2296 continue; 2297 if (NodeOrder.count(I.getSUnit()) != 0) 2298 continue; 2299 R.insert(I.getSUnit()); 2300 } 2301 // Back-edges are predecessors with an anti-dependence. 2302 for (const auto &I : maxDepth->Succs) { 2303 if (I.getKind() != SDep::Anti) 2304 continue; 2305 if (Nodes.count(I.getSUnit()) == 0) 2306 continue; 2307 if (NodeOrder.count(I.getSUnit()) != 0) 2308 continue; 2309 R.insert(I.getSUnit()); 2310 } 2311 } 2312 Order = TopDown; 2313 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2314 SmallSetVector<SUnit *, 8> N; 2315 if (succ_L(NodeOrder, N, &Nodes)) 2316 R.insert(N.begin(), N.end()); 2317 } 2318 } 2319 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2320 } 2321 2322 LLVM_DEBUG({ 2323 dbgs() << "Node order: "; 2324 for (SUnit *I : NodeOrder) 2325 dbgs() << " " << I->NodeNum << " "; 2326 dbgs() << "\n"; 2327 }); 2328 } 2329 2330 /// Process the nodes in the computed order and create the pipelined schedule 2331 /// of the instructions, if possible. Return true if a schedule is found. 2332 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2333 if (NodeOrder.empty()) 2334 return false; 2335 2336 bool scheduleFound = false; 2337 // Keep increasing II until a valid schedule is found. 2338 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2339 Schedule.reset(); 2340 Schedule.setInitiationInterval(II); 2341 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2342 2343 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2344 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2345 do { 2346 SUnit *SU = *NI; 2347 2348 // Compute the schedule time for the instruction, which is based 2349 // upon the scheduled time for any predecessors/successors. 2350 int EarlyStart = INT_MIN; 2351 int LateStart = INT_MAX; 2352 // These values are set when the size of the schedule window is limited 2353 // due to chain dependences. 2354 int SchedEnd = INT_MAX; 2355 int SchedStart = INT_MIN; 2356 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2357 II, this); 2358 LLVM_DEBUG({ 2359 dbgs() << "Inst (" << SU->NodeNum << ") "; 2360 SU->getInstr()->dump(); 2361 dbgs() << "\n"; 2362 }); 2363 LLVM_DEBUG({ 2364 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2365 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2366 }); 2367 2368 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2369 SchedStart > LateStart) 2370 scheduleFound = false; 2371 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2372 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2373 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2374 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2375 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2376 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2377 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2378 SchedEnd = 2379 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2380 // When scheduling a Phi it is better to start at the late cycle and go 2381 // backwards. The default order may insert the Phi too far away from 2382 // its first dependence. 2383 if (SU->getInstr()->isPHI()) 2384 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2385 else 2386 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2387 } else { 2388 int FirstCycle = Schedule.getFirstCycle(); 2389 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2390 FirstCycle + getASAP(SU) + II - 1, II); 2391 } 2392 // Even if we find a schedule, make sure the schedule doesn't exceed the 2393 // allowable number of stages. We keep trying if this happens. 2394 if (scheduleFound) 2395 if (SwpMaxStages > -1 && 2396 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2397 scheduleFound = false; 2398 2399 LLVM_DEBUG({ 2400 if (!scheduleFound) 2401 dbgs() << "\tCan't schedule\n"; 2402 }); 2403 } while (++NI != NE && scheduleFound); 2404 2405 // If a schedule is found, check if it is a valid schedule too. 2406 if (scheduleFound) 2407 scheduleFound = Schedule.isValidSchedule(this); 2408 } 2409 2410 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2411 2412 if (scheduleFound) 2413 Schedule.finalizeSchedule(this); 2414 else 2415 Schedule.reset(); 2416 2417 return scheduleFound && Schedule.getMaxStageCount() > 0; 2418 } 2419 2420 /// Given a schedule for the loop, generate a new version of the loop, 2421 /// and replace the old version. This function generates a prolog 2422 /// that contains the initial iterations in the pipeline, and kernel 2423 /// loop, and the epilogue that contains the code for the final 2424 /// iterations. 2425 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2426 // Create a new basic block for the kernel and add it to the CFG. 2427 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2428 2429 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2430 2431 // Remember the registers that are used in different stages. The index is 2432 // the iteration, or stage, that the instruction is scheduled in. This is 2433 // a map between register names in the original block and the names created 2434 // in each stage of the pipelined loop. 2435 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2436 InstrMapTy InstrMap; 2437 2438 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2439 // Generate the prolog instructions that set up the pipeline. 2440 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2441 MF.insert(BB->getIterator(), KernelBB); 2442 2443 // Rearrange the instructions to generate the new, pipelined loop, 2444 // and update register names as needed. 2445 for (int Cycle = Schedule.getFirstCycle(), 2446 LastCycle = Schedule.getFinalCycle(); 2447 Cycle <= LastCycle; ++Cycle) { 2448 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2449 // This inner loop schedules each instruction in the cycle. 2450 for (SUnit *CI : CycleInstrs) { 2451 if (CI->getInstr()->isPHI()) 2452 continue; 2453 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2454 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2455 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2456 KernelBB->push_back(NewMI); 2457 InstrMap[NewMI] = CI->getInstr(); 2458 } 2459 } 2460 2461 // Copy any terminator instructions to the new kernel, and update 2462 // names as needed. 2463 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2464 E = BB->instr_end(); 2465 I != E; ++I) { 2466 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2467 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2468 KernelBB->push_back(NewMI); 2469 InstrMap[NewMI] = &*I; 2470 } 2471 2472 KernelBB->transferSuccessors(BB); 2473 KernelBB->replaceSuccessor(BB, KernelBB); 2474 2475 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2476 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2477 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2478 InstrMap, MaxStageCount, MaxStageCount, false); 2479 2480 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2481 2482 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2483 // Generate the epilog instructions to complete the pipeline. 2484 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2485 PrologBBs); 2486 2487 // We need this step because the register allocation doesn't handle some 2488 // situations well, so we insert copies to help out. 2489 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2490 2491 // Remove dead instructions due to loop induction variables. 2492 removeDeadInstructions(KernelBB, EpilogBBs); 2493 2494 // Add branches between prolog and epilog blocks. 2495 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2496 2497 // Remove the original loop since it's no longer referenced. 2498 for (auto &I : *BB) 2499 LIS.RemoveMachineInstrFromMaps(I); 2500 BB->clear(); 2501 BB->eraseFromParent(); 2502 2503 delete[] VRMap; 2504 } 2505 2506 /// Generate the pipeline prolog code. 2507 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2508 MachineBasicBlock *KernelBB, 2509 ValueMapTy *VRMap, 2510 MBBVectorTy &PrologBBs) { 2511 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2512 assert(PreheaderBB != nullptr && 2513 "Need to add code to handle loops w/o preheader"); 2514 MachineBasicBlock *PredBB = PreheaderBB; 2515 InstrMapTy InstrMap; 2516 2517 // Generate a basic block for each stage, not including the last stage, 2518 // which will be generated in the kernel. Each basic block may contain 2519 // instructions from multiple stages/iterations. 2520 for (unsigned i = 0; i < LastStage; ++i) { 2521 // Create and insert the prolog basic block prior to the original loop 2522 // basic block. The original loop is removed later. 2523 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2524 PrologBBs.push_back(NewBB); 2525 MF.insert(BB->getIterator(), NewBB); 2526 NewBB->transferSuccessors(PredBB); 2527 PredBB->addSuccessor(NewBB); 2528 PredBB = NewBB; 2529 2530 // Generate instructions for each appropriate stage. Process instructions 2531 // in original program order. 2532 for (int StageNum = i; StageNum >= 0; --StageNum) { 2533 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2534 BBE = BB->getFirstTerminator(); 2535 BBI != BBE; ++BBI) { 2536 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2537 if (BBI->isPHI()) 2538 continue; 2539 MachineInstr *NewMI = 2540 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2541 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2542 VRMap); 2543 NewBB->push_back(NewMI); 2544 InstrMap[NewMI] = &*BBI; 2545 } 2546 } 2547 } 2548 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2549 LLVM_DEBUG({ 2550 dbgs() << "prolog:\n"; 2551 NewBB->dump(); 2552 }); 2553 } 2554 2555 PredBB->replaceSuccessor(BB, KernelBB); 2556 2557 // Check if we need to remove the branch from the preheader to the original 2558 // loop, and replace it with a branch to the new loop. 2559 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2560 if (numBranches) { 2561 SmallVector<MachineOperand, 0> Cond; 2562 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2563 } 2564 } 2565 2566 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2567 /// that were started in either the prolog or the kernel. We create a basic 2568 /// block for each stage that needs to complete. 2569 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2570 MachineBasicBlock *KernelBB, 2571 ValueMapTy *VRMap, 2572 MBBVectorTy &EpilogBBs, 2573 MBBVectorTy &PrologBBs) { 2574 // We need to change the branch from the kernel to the first epilog block, so 2575 // this call to analyze branch uses the kernel rather than the original BB. 2576 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2577 SmallVector<MachineOperand, 4> Cond; 2578 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2579 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2580 if (checkBranch) 2581 return; 2582 2583 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2584 if (*LoopExitI == KernelBB) 2585 ++LoopExitI; 2586 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2587 MachineBasicBlock *LoopExitBB = *LoopExitI; 2588 2589 MachineBasicBlock *PredBB = KernelBB; 2590 MachineBasicBlock *EpilogStart = LoopExitBB; 2591 InstrMapTy InstrMap; 2592 2593 // Generate a basic block for each stage, not including the last stage, 2594 // which was generated for the kernel. Each basic block may contain 2595 // instructions from multiple stages/iterations. 2596 int EpilogStage = LastStage + 1; 2597 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2598 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2599 EpilogBBs.push_back(NewBB); 2600 MF.insert(BB->getIterator(), NewBB); 2601 2602 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2603 NewBB->addSuccessor(LoopExitBB); 2604 2605 if (EpilogStart == LoopExitBB) 2606 EpilogStart = NewBB; 2607 2608 // Add instructions to the epilog depending on the current block. 2609 // Process instructions in original program order. 2610 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2611 for (auto &BBI : *BB) { 2612 if (BBI.isPHI()) 2613 continue; 2614 MachineInstr *In = &BBI; 2615 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2616 // Instructions with memoperands in the epilog are updated with 2617 // conservative values. 2618 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2619 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2620 NewBB->push_back(NewMI); 2621 InstrMap[NewMI] = In; 2622 } 2623 } 2624 } 2625 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2626 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2627 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2628 InstrMap, LastStage, EpilogStage, i == 1); 2629 PredBB = NewBB; 2630 2631 LLVM_DEBUG({ 2632 dbgs() << "epilog:\n"; 2633 NewBB->dump(); 2634 }); 2635 } 2636 2637 // Fix any Phi nodes in the loop exit block. 2638 for (MachineInstr &MI : *LoopExitBB) { 2639 if (!MI.isPHI()) 2640 break; 2641 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2642 MachineOperand &MO = MI.getOperand(i); 2643 if (MO.getMBB() == BB) 2644 MO.setMBB(PredBB); 2645 } 2646 } 2647 2648 // Create a branch to the new epilog from the kernel. 2649 // Remove the original branch and add a new branch to the epilog. 2650 TII->removeBranch(*KernelBB); 2651 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2652 // Add a branch to the loop exit. 2653 if (EpilogBBs.size() > 0) { 2654 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2655 SmallVector<MachineOperand, 4> Cond1; 2656 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2657 } 2658 } 2659 2660 /// Replace all uses of FromReg that appear outside the specified 2661 /// basic block with ToReg. 2662 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2663 MachineBasicBlock *MBB, 2664 MachineRegisterInfo &MRI, 2665 LiveIntervals &LIS) { 2666 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2667 E = MRI.use_end(); 2668 I != E;) { 2669 MachineOperand &O = *I; 2670 ++I; 2671 if (O.getParent()->getParent() != MBB) 2672 O.setReg(ToReg); 2673 } 2674 if (!LIS.hasInterval(ToReg)) 2675 LIS.createEmptyInterval(ToReg); 2676 } 2677 2678 /// Return true if the register has a use that occurs outside the 2679 /// specified loop. 2680 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2681 MachineRegisterInfo &MRI) { 2682 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2683 E = MRI.use_end(); 2684 I != E; ++I) 2685 if (I->getParent()->getParent() != BB) 2686 return true; 2687 return false; 2688 } 2689 2690 /// Generate Phis for the specific block in the generated pipelined code. 2691 /// This function looks at the Phis from the original code to guide the 2692 /// creation of new Phis. 2693 void SwingSchedulerDAG::generateExistingPhis( 2694 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2695 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2696 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2697 bool IsLast) { 2698 // Compute the stage number for the initial value of the Phi, which 2699 // comes from the prolog. The prolog to use depends on to which kernel/ 2700 // epilog that we're adding the Phi. 2701 unsigned PrologStage = 0; 2702 unsigned PrevStage = 0; 2703 bool InKernel = (LastStageNum == CurStageNum); 2704 if (InKernel) { 2705 PrologStage = LastStageNum - 1; 2706 PrevStage = CurStageNum; 2707 } else { 2708 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2709 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2710 } 2711 2712 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2713 BBE = BB->getFirstNonPHI(); 2714 BBI != BBE; ++BBI) { 2715 unsigned Def = BBI->getOperand(0).getReg(); 2716 2717 unsigned InitVal = 0; 2718 unsigned LoopVal = 0; 2719 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2720 2721 unsigned PhiOp1 = 0; 2722 // The Phi value from the loop body typically is defined in the loop, but 2723 // not always. So, we need to check if the value is defined in the loop. 2724 unsigned PhiOp2 = LoopVal; 2725 if (VRMap[LastStageNum].count(LoopVal)) 2726 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2727 2728 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2729 int LoopValStage = 2730 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2731 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2732 if (NumStages == 0) { 2733 // We don't need to generate a Phi anymore, but we need to rename any uses 2734 // of the Phi value. 2735 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2736 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2737 Def, InitVal, NewReg); 2738 if (VRMap[CurStageNum].count(LoopVal)) 2739 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2740 } 2741 // Adjust the number of Phis needed depending on the number of prologs left, 2742 // and the distance from where the Phi is first scheduled. The number of 2743 // Phis cannot exceed the number of prolog stages. Each stage can 2744 // potentially define two values. 2745 unsigned MaxPhis = PrologStage + 2; 2746 if (!InKernel && (int)PrologStage <= LoopValStage) 2747 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2748 unsigned NumPhis = std::min(NumStages, MaxPhis); 2749 2750 unsigned NewReg = 0; 2751 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2752 // In the epilog, we may need to look back one stage to get the correct 2753 // Phi name because the epilog and prolog blocks execute the same stage. 2754 // The correct name is from the previous block only when the Phi has 2755 // been completely scheduled prior to the epilog, and Phi value is not 2756 // needed in multiple stages. 2757 int StageDiff = 0; 2758 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2759 NumPhis == 1) 2760 StageDiff = 1; 2761 // Adjust the computations below when the phi and the loop definition 2762 // are scheduled in different stages. 2763 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2764 StageDiff = StageScheduled - LoopValStage; 2765 for (unsigned np = 0; np < NumPhis; ++np) { 2766 // If the Phi hasn't been scheduled, then use the initial Phi operand 2767 // value. Otherwise, use the scheduled version of the instruction. This 2768 // is a little complicated when a Phi references another Phi. 2769 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2770 PhiOp1 = InitVal; 2771 // Check if the Phi has already been scheduled in a prolog stage. 2772 else if (PrologStage >= AccessStage + StageDiff + np && 2773 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2774 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2775 // Check if the Phi has already been scheduled, but the loop intruction 2776 // is either another Phi, or doesn't occur in the loop. 2777 else if (PrologStage >= AccessStage + StageDiff + np) { 2778 // If the Phi references another Phi, we need to examine the other 2779 // Phi to get the correct value. 2780 PhiOp1 = LoopVal; 2781 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2782 int Indirects = 1; 2783 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2784 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2785 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2786 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2787 else 2788 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2789 InstOp1 = MRI.getVRegDef(PhiOp1); 2790 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2791 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2792 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2793 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2794 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2795 break; 2796 } 2797 ++Indirects; 2798 } 2799 } else 2800 PhiOp1 = InitVal; 2801 // If this references a generated Phi in the kernel, get the Phi operand 2802 // from the incoming block. 2803 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2804 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2805 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2806 2807 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2808 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2809 // In the epilog, a map lookup is needed to get the value from the kernel, 2810 // or previous epilog block. How is does this depends on if the 2811 // instruction is scheduled in the previous block. 2812 if (!InKernel) { 2813 int StageDiffAdj = 0; 2814 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2815 StageDiffAdj = StageScheduled - LoopValStage; 2816 // Use the loop value defined in the kernel, unless the kernel 2817 // contains the last definition of the Phi. 2818 if (np == 0 && PrevStage == LastStageNum && 2819 (StageScheduled != 0 || LoopValStage != 0) && 2820 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2821 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2822 // Use the value defined by the Phi. We add one because we switch 2823 // from looking at the loop value to the Phi definition. 2824 else if (np > 0 && PrevStage == LastStageNum && 2825 VRMap[PrevStage - np + 1].count(Def)) 2826 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2827 // Use the loop value defined in the kernel. 2828 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2829 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2830 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2831 // Use the value defined by the Phi, unless we're generating the first 2832 // epilog and the Phi refers to a Phi in a different stage. 2833 else if (VRMap[PrevStage - np].count(Def) && 2834 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2835 PhiOp2 = VRMap[PrevStage - np][Def]; 2836 } 2837 2838 // Check if we can reuse an existing Phi. This occurs when a Phi 2839 // references another Phi, and the other Phi is scheduled in an 2840 // earlier stage. We can try to reuse an existing Phi up until the last 2841 // stage of the current Phi. 2842 if (LoopDefIsPhi) { 2843 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2844 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2845 int StageDiff = (StageScheduled - LoopValStage); 2846 LVNumStages -= StageDiff; 2847 // Make sure the loop value Phi has been processed already. 2848 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2849 NewReg = PhiOp2; 2850 unsigned ReuseStage = CurStageNum; 2851 if (Schedule.isLoopCarried(this, *PhiInst)) 2852 ReuseStage -= LVNumStages; 2853 // Check if the Phi to reuse has been generated yet. If not, then 2854 // there is nothing to reuse. 2855 if (VRMap[ReuseStage - np].count(LoopVal)) { 2856 NewReg = VRMap[ReuseStage - np][LoopVal]; 2857 2858 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2859 &*BBI, Def, NewReg); 2860 // Update the map with the new Phi name. 2861 VRMap[CurStageNum - np][Def] = NewReg; 2862 PhiOp2 = NewReg; 2863 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2864 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2865 2866 if (IsLast && np == NumPhis - 1) 2867 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2868 continue; 2869 } 2870 } 2871 } 2872 if (InKernel && StageDiff > 0 && 2873 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2874 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2875 } 2876 2877 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2878 NewReg = MRI.createVirtualRegister(RC); 2879 2880 MachineInstrBuilder NewPhi = 2881 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2882 TII->get(TargetOpcode::PHI), NewReg); 2883 NewPhi.addReg(PhiOp1).addMBB(BB1); 2884 NewPhi.addReg(PhiOp2).addMBB(BB2); 2885 if (np == 0) 2886 InstrMap[NewPhi] = &*BBI; 2887 2888 // We define the Phis after creating the new pipelined code, so 2889 // we need to rename the Phi values in scheduled instructions. 2890 2891 unsigned PrevReg = 0; 2892 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2893 PrevReg = VRMap[PrevStage - np][LoopVal]; 2894 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2895 Def, NewReg, PrevReg); 2896 // If the Phi has been scheduled, use the new name for rewriting. 2897 if (VRMap[CurStageNum - np].count(Def)) { 2898 unsigned R = VRMap[CurStageNum - np][Def]; 2899 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2900 R, NewReg); 2901 } 2902 2903 // Check if we need to rename any uses that occurs after the loop. The 2904 // register to replace depends on whether the Phi is scheduled in the 2905 // epilog. 2906 if (IsLast && np == NumPhis - 1) 2907 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2908 2909 // In the kernel, a dependent Phi uses the value from this Phi. 2910 if (InKernel) 2911 PhiOp2 = NewReg; 2912 2913 // Update the map with the new Phi name. 2914 VRMap[CurStageNum - np][Def] = NewReg; 2915 } 2916 2917 while (NumPhis++ < NumStages) { 2918 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2919 &*BBI, Def, NewReg, 0); 2920 } 2921 2922 // Check if we need to rename a Phi that has been eliminated due to 2923 // scheduling. 2924 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2925 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2926 } 2927 } 2928 2929 /// Generate Phis for the specified block in the generated pipelined code. 2930 /// These are new Phis needed because the definition is scheduled after the 2931 /// use in the pipelined sequence. 2932 void SwingSchedulerDAG::generatePhis( 2933 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2934 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2935 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2936 bool IsLast) { 2937 // Compute the stage number that contains the initial Phi value, and 2938 // the Phi from the previous stage. 2939 unsigned PrologStage = 0; 2940 unsigned PrevStage = 0; 2941 unsigned StageDiff = CurStageNum - LastStageNum; 2942 bool InKernel = (StageDiff == 0); 2943 if (InKernel) { 2944 PrologStage = LastStageNum - 1; 2945 PrevStage = CurStageNum; 2946 } else { 2947 PrologStage = LastStageNum - StageDiff; 2948 PrevStage = LastStageNum + StageDiff - 1; 2949 } 2950 2951 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2952 BBE = BB->instr_end(); 2953 BBI != BBE; ++BBI) { 2954 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2955 MachineOperand &MO = BBI->getOperand(i); 2956 if (!MO.isReg() || !MO.isDef() || 2957 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2958 continue; 2959 2960 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2961 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2962 unsigned Def = MO.getReg(); 2963 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2964 // An instruction scheduled in stage 0 and is used after the loop 2965 // requires a phi in the epilog for the last definition from either 2966 // the kernel or prolog. 2967 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2968 hasUseAfterLoop(Def, BB, MRI)) 2969 NumPhis = 1; 2970 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2971 continue; 2972 2973 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2974 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2975 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2976 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2977 // The number of Phis can't exceed the number of prolog stages. The 2978 // prolog stage number is zero based. 2979 if (NumPhis > PrologStage + 1 - StageScheduled) 2980 NumPhis = PrologStage + 1 - StageScheduled; 2981 for (unsigned np = 0; np < NumPhis; ++np) { 2982 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2983 if (np <= PrologStage) 2984 PhiOp1 = VRMap[PrologStage - np][Def]; 2985 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2986 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2987 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2988 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2989 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2990 } 2991 if (!InKernel) 2992 PhiOp2 = VRMap[PrevStage - np][Def]; 2993 2994 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2995 unsigned NewReg = MRI.createVirtualRegister(RC); 2996 2997 MachineInstrBuilder NewPhi = 2998 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2999 TII->get(TargetOpcode::PHI), NewReg); 3000 NewPhi.addReg(PhiOp1).addMBB(BB1); 3001 NewPhi.addReg(PhiOp2).addMBB(BB2); 3002 if (np == 0) 3003 InstrMap[NewPhi] = &*BBI; 3004 3005 // Rewrite uses and update the map. The actions depend upon whether 3006 // we generating code for the kernel or epilog blocks. 3007 if (InKernel) { 3008 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3009 &*BBI, PhiOp1, NewReg); 3010 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3011 &*BBI, PhiOp2, NewReg); 3012 3013 PhiOp2 = NewReg; 3014 VRMap[PrevStage - np - 1][Def] = NewReg; 3015 } else { 3016 VRMap[CurStageNum - np][Def] = NewReg; 3017 if (np == NumPhis - 1) 3018 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 3019 &*BBI, Def, NewReg); 3020 } 3021 if (IsLast && np == NumPhis - 1) 3022 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 3023 } 3024 } 3025 } 3026 } 3027 3028 /// Remove instructions that generate values with no uses. 3029 /// Typically, these are induction variable operations that generate values 3030 /// used in the loop itself. A dead instruction has a definition with 3031 /// no uses, or uses that occur in the original loop only. 3032 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 3033 MBBVectorTy &EpilogBBs) { 3034 // For each epilog block, check that the value defined by each instruction 3035 // is used. If not, delete it. 3036 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 3037 MBE = EpilogBBs.rend(); 3038 MBB != MBE; ++MBB) 3039 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 3040 ME = (*MBB)->instr_rend(); 3041 MI != ME;) { 3042 // From DeadMachineInstructionElem. Don't delete inline assembly. 3043 if (MI->isInlineAsm()) { 3044 ++MI; 3045 continue; 3046 } 3047 bool SawStore = false; 3048 // Check if it's safe to remove the instruction due to side effects. 3049 // We can, and want to, remove Phis here. 3050 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 3051 ++MI; 3052 continue; 3053 } 3054 bool used = true; 3055 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 3056 MOE = MI->operands_end(); 3057 MOI != MOE; ++MOI) { 3058 if (!MOI->isReg() || !MOI->isDef()) 3059 continue; 3060 unsigned reg = MOI->getReg(); 3061 // Assume physical registers are used, unless they are marked dead. 3062 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 3063 used = !MOI->isDead(); 3064 if (used) 3065 break; 3066 continue; 3067 } 3068 unsigned realUses = 0; 3069 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 3070 EI = MRI.use_end(); 3071 UI != EI; ++UI) { 3072 // Check if there are any uses that occur only in the original 3073 // loop. If so, that's not a real use. 3074 if (UI->getParent()->getParent() != BB) { 3075 realUses++; 3076 used = true; 3077 break; 3078 } 3079 } 3080 if (realUses > 0) 3081 break; 3082 used = false; 3083 } 3084 if (!used) { 3085 LIS.RemoveMachineInstrFromMaps(*MI); 3086 MI++->eraseFromParent(); 3087 continue; 3088 } 3089 ++MI; 3090 } 3091 // In the kernel block, check if we can remove a Phi that generates a value 3092 // used in an instruction removed in the epilog block. 3093 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 3094 BBE = KernelBB->getFirstNonPHI(); 3095 BBI != BBE;) { 3096 MachineInstr *MI = &*BBI; 3097 ++BBI; 3098 unsigned reg = MI->getOperand(0).getReg(); 3099 if (MRI.use_begin(reg) == MRI.use_end()) { 3100 LIS.RemoveMachineInstrFromMaps(*MI); 3101 MI->eraseFromParent(); 3102 } 3103 } 3104 } 3105 3106 /// For loop carried definitions, we split the lifetime of a virtual register 3107 /// that has uses past the definition in the next iteration. A copy with a new 3108 /// virtual register is inserted before the definition, which helps with 3109 /// generating a better register assignment. 3110 /// 3111 /// v1 = phi(a, v2) v1 = phi(a, v2) 3112 /// v2 = phi(b, v3) v2 = phi(b, v3) 3113 /// v3 = .. v4 = copy v1 3114 /// .. = V1 v3 = .. 3115 /// .. = v4 3116 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 3117 MBBVectorTy &EpilogBBs, 3118 SMSchedule &Schedule) { 3119 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3120 for (auto &PHI : KernelBB->phis()) { 3121 unsigned Def = PHI.getOperand(0).getReg(); 3122 // Check for any Phi definition that used as an operand of another Phi 3123 // in the same block. 3124 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 3125 E = MRI.use_instr_end(); 3126 I != E; ++I) { 3127 if (I->isPHI() && I->getParent() == KernelBB) { 3128 // Get the loop carried definition. 3129 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 3130 if (!LCDef) 3131 continue; 3132 MachineInstr *MI = MRI.getVRegDef(LCDef); 3133 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 3134 continue; 3135 // Search through the rest of the block looking for uses of the Phi 3136 // definition. If one occurs, then split the lifetime. 3137 unsigned SplitReg = 0; 3138 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 3139 KernelBB->instr_end())) 3140 if (BBJ.readsRegister(Def)) { 3141 // We split the lifetime when we find the first use. 3142 if (SplitReg == 0) { 3143 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 3144 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 3145 TII->get(TargetOpcode::COPY), SplitReg) 3146 .addReg(Def); 3147 } 3148 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 3149 } 3150 if (!SplitReg) 3151 continue; 3152 // Search through each of the epilog blocks for any uses to be renamed. 3153 for (auto &Epilog : EpilogBBs) 3154 for (auto &I : *Epilog) 3155 if (I.readsRegister(Def)) 3156 I.substituteRegister(Def, SplitReg, 0, *TRI); 3157 break; 3158 } 3159 } 3160 } 3161 } 3162 3163 /// Remove the incoming block from the Phis in a basic block. 3164 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 3165 for (MachineInstr &MI : *BB) { 3166 if (!MI.isPHI()) 3167 break; 3168 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3169 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3170 MI.RemoveOperand(i + 1); 3171 MI.RemoveOperand(i); 3172 break; 3173 } 3174 } 3175 } 3176 3177 /// Create branches from each prolog basic block to the appropriate epilog 3178 /// block. These edges are needed if the loop ends before reaching the 3179 /// kernel. 3180 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3181 MachineBasicBlock *KernelBB, 3182 MBBVectorTy &EpilogBBs, 3183 SMSchedule &Schedule, ValueMapTy *VRMap) { 3184 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3185 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3186 MachineInstr *Cmp = Pass.LI.LoopCompare; 3187 MachineBasicBlock *LastPro = KernelBB; 3188 MachineBasicBlock *LastEpi = KernelBB; 3189 3190 // Start from the blocks connected to the kernel and work "out" 3191 // to the first prolog and the last epilog blocks. 3192 SmallVector<MachineInstr *, 4> PrevInsts; 3193 unsigned MaxIter = PrologBBs.size() - 1; 3194 unsigned LC = UINT_MAX; 3195 unsigned LCMin = UINT_MAX; 3196 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3197 // Add branches to the prolog that go to the corresponding 3198 // epilog, and the fall-thru prolog/kernel block. 3199 MachineBasicBlock *Prolog = PrologBBs[j]; 3200 MachineBasicBlock *Epilog = EpilogBBs[i]; 3201 // We've executed one iteration, so decrement the loop count and check for 3202 // the loop end. 3203 SmallVector<MachineOperand, 4> Cond; 3204 // Check if the LOOP0 has already been removed. If so, then there is no need 3205 // to reduce the trip count. 3206 if (LC != 0) 3207 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3208 MaxIter); 3209 3210 // Record the value of the first trip count, which is used to determine if 3211 // branches and blocks can be removed for constant trip counts. 3212 if (LCMin == UINT_MAX) 3213 LCMin = LC; 3214 3215 unsigned numAdded = 0; 3216 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3217 Prolog->addSuccessor(Epilog); 3218 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3219 } else if (j >= LCMin) { 3220 Prolog->addSuccessor(Epilog); 3221 Prolog->removeSuccessor(LastPro); 3222 LastEpi->removeSuccessor(Epilog); 3223 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3224 removePhis(Epilog, LastEpi); 3225 // Remove the blocks that are no longer referenced. 3226 if (LastPro != LastEpi) { 3227 LastEpi->clear(); 3228 LastEpi->eraseFromParent(); 3229 } 3230 LastPro->clear(); 3231 LastPro->eraseFromParent(); 3232 } else { 3233 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3234 removePhis(Epilog, Prolog); 3235 } 3236 LastPro = Prolog; 3237 LastEpi = Epilog; 3238 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3239 E = Prolog->instr_rend(); 3240 I != E && numAdded > 0; ++I, --numAdded) 3241 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3242 } 3243 } 3244 3245 /// Return true if we can compute the amount the instruction changes 3246 /// during each iteration. Set Delta to the amount of the change. 3247 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3248 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3249 unsigned BaseReg; 3250 int64_t Offset; 3251 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3252 return false; 3253 3254 MachineRegisterInfo &MRI = MF.getRegInfo(); 3255 // Check if there is a Phi. If so, get the definition in the loop. 3256 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3257 if (BaseDef && BaseDef->isPHI()) { 3258 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3259 BaseDef = MRI.getVRegDef(BaseReg); 3260 } 3261 if (!BaseDef) 3262 return false; 3263 3264 int D = 0; 3265 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3266 return false; 3267 3268 Delta = D; 3269 return true; 3270 } 3271 3272 /// Update the memory operand with a new offset when the pipeliner 3273 /// generates a new copy of the instruction that refers to a 3274 /// different memory location. 3275 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3276 MachineInstr &OldMI, unsigned Num) { 3277 if (Num == 0) 3278 return; 3279 // If the instruction has memory operands, then adjust the offset 3280 // when the instruction appears in different stages. 3281 if (NewMI.memoperands_empty()) 3282 return; 3283 SmallVector<MachineMemOperand *, 2> NewMMOs; 3284 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3285 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3286 (!MMO->getValue())) { 3287 NewMMOs.push_back(MMO); 3288 continue; 3289 } 3290 unsigned Delta; 3291 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 3292 int64_t AdjOffset = Delta * Num; 3293 NewMMOs.push_back( 3294 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 3295 } else { 3296 NewMMOs.push_back( 3297 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 3298 } 3299 } 3300 NewMI.setMemRefs(MF, NewMMOs); 3301 } 3302 3303 /// Clone the instruction for the new pipelined loop and update the 3304 /// memory operands, if needed. 3305 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3306 unsigned CurStageNum, 3307 unsigned InstStageNum) { 3308 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3309 // Check for tied operands in inline asm instructions. This should be handled 3310 // elsewhere, but I'm not sure of the best solution. 3311 if (OldMI->isInlineAsm()) 3312 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3313 const auto &MO = OldMI->getOperand(i); 3314 if (MO.isReg() && MO.isUse()) 3315 break; 3316 unsigned UseIdx; 3317 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3318 NewMI->tieOperands(i, UseIdx); 3319 } 3320 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3321 return NewMI; 3322 } 3323 3324 /// Clone the instruction for the new pipelined loop. If needed, this 3325 /// function updates the instruction using the values saved in the 3326 /// InstrChanges structure. 3327 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3328 unsigned CurStageNum, 3329 unsigned InstStageNum, 3330 SMSchedule &Schedule) { 3331 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3332 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3333 InstrChanges.find(getSUnit(OldMI)); 3334 if (It != InstrChanges.end()) { 3335 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3336 unsigned BasePos, OffsetPos; 3337 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3338 return nullptr; 3339 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3340 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3341 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3342 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3343 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3344 } 3345 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3346 return NewMI; 3347 } 3348 3349 /// Update the machine instruction with new virtual registers. This 3350 /// function may change the defintions and/or uses. 3351 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3352 unsigned CurStageNum, 3353 unsigned InstrStageNum, 3354 SMSchedule &Schedule, 3355 ValueMapTy *VRMap) { 3356 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3357 MachineOperand &MO = NewMI->getOperand(i); 3358 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3359 continue; 3360 unsigned reg = MO.getReg(); 3361 if (MO.isDef()) { 3362 // Create a new virtual register for the definition. 3363 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3364 unsigned NewReg = MRI.createVirtualRegister(RC); 3365 MO.setReg(NewReg); 3366 VRMap[CurStageNum][reg] = NewReg; 3367 if (LastDef) 3368 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3369 } else if (MO.isUse()) { 3370 MachineInstr *Def = MRI.getVRegDef(reg); 3371 // Compute the stage that contains the last definition for instruction. 3372 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3373 unsigned StageNum = CurStageNum; 3374 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3375 // Compute the difference in stages between the defintion and the use. 3376 unsigned StageDiff = (InstrStageNum - DefStageNum); 3377 // Make an adjustment to get the last definition. 3378 StageNum -= StageDiff; 3379 } 3380 if (VRMap[StageNum].count(reg)) 3381 MO.setReg(VRMap[StageNum][reg]); 3382 } 3383 } 3384 } 3385 3386 /// Return the instruction in the loop that defines the register. 3387 /// If the definition is a Phi, then follow the Phi operand to 3388 /// the instruction in the loop. 3389 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3390 SmallPtrSet<MachineInstr *, 8> Visited; 3391 MachineInstr *Def = MRI.getVRegDef(Reg); 3392 while (Def->isPHI()) { 3393 if (!Visited.insert(Def).second) 3394 break; 3395 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3396 if (Def->getOperand(i + 1).getMBB() == BB) { 3397 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3398 break; 3399 } 3400 } 3401 return Def; 3402 } 3403 3404 /// Return the new name for the value from the previous stage. 3405 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3406 unsigned LoopVal, unsigned LoopStage, 3407 ValueMapTy *VRMap, 3408 MachineBasicBlock *BB) { 3409 unsigned PrevVal = 0; 3410 if (StageNum > PhiStage) { 3411 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3412 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3413 // The name is defined in the previous stage. 3414 PrevVal = VRMap[StageNum - 1][LoopVal]; 3415 else if (VRMap[StageNum].count(LoopVal)) 3416 // The previous name is defined in the current stage when the instruction 3417 // order is swapped. 3418 PrevVal = VRMap[StageNum][LoopVal]; 3419 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3420 // The loop value hasn't yet been scheduled. 3421 PrevVal = LoopVal; 3422 else if (StageNum == PhiStage + 1) 3423 // The loop value is another phi, which has not been scheduled. 3424 PrevVal = getInitPhiReg(*LoopInst, BB); 3425 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3426 // The loop value is another phi, which has been scheduled. 3427 PrevVal = 3428 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3429 LoopStage, VRMap, BB); 3430 } 3431 return PrevVal; 3432 } 3433 3434 /// Rewrite the Phi values in the specified block to use the mappings 3435 /// from the initial operand. Once the Phi is scheduled, we switch 3436 /// to using the loop value instead of the Phi value, so those names 3437 /// do not need to be rewritten. 3438 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3439 unsigned StageNum, 3440 SMSchedule &Schedule, 3441 ValueMapTy *VRMap, 3442 InstrMapTy &InstrMap) { 3443 for (auto &PHI : BB->phis()) { 3444 unsigned InitVal = 0; 3445 unsigned LoopVal = 0; 3446 getPhiRegs(PHI, BB, InitVal, LoopVal); 3447 unsigned PhiDef = PHI.getOperand(0).getReg(); 3448 3449 unsigned PhiStage = 3450 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3451 unsigned LoopStage = 3452 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3453 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3454 if (NumPhis > StageNum) 3455 NumPhis = StageNum; 3456 for (unsigned np = 0; np <= NumPhis; ++np) { 3457 unsigned NewVal = 3458 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3459 if (!NewVal) 3460 NewVal = InitVal; 3461 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3462 PhiDef, NewVal); 3463 } 3464 } 3465 } 3466 3467 /// Rewrite a previously scheduled instruction to use the register value 3468 /// from the new instruction. Make sure the instruction occurs in the 3469 /// basic block, and we don't change the uses in the new instruction. 3470 void SwingSchedulerDAG::rewriteScheduledInstr( 3471 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3472 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3473 unsigned NewReg, unsigned PrevReg) { 3474 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3475 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3476 // Rewrite uses that have been scheduled already to use the new 3477 // Phi register. 3478 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3479 EI = MRI.use_end(); 3480 UI != EI;) { 3481 MachineOperand &UseOp = *UI; 3482 MachineInstr *UseMI = UseOp.getParent(); 3483 ++UI; 3484 if (UseMI->getParent() != BB) 3485 continue; 3486 if (UseMI->isPHI()) { 3487 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3488 continue; 3489 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3490 continue; 3491 } 3492 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3493 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3494 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3495 int StageSched = Schedule.stageScheduled(OrigMISU); 3496 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3497 unsigned ReplaceReg = 0; 3498 // This is the stage for the scheduled instruction. 3499 if (StagePhi == StageSched && Phi->isPHI()) { 3500 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3501 if (PrevReg && InProlog) 3502 ReplaceReg = PrevReg; 3503 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3504 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3505 ReplaceReg = PrevReg; 3506 else 3507 ReplaceReg = NewReg; 3508 } 3509 // The scheduled instruction occurs before the scheduled Phi, and the 3510 // Phi is not loop carried. 3511 if (!InProlog && StagePhi + 1 == StageSched && 3512 !Schedule.isLoopCarried(this, *Phi)) 3513 ReplaceReg = NewReg; 3514 if (StagePhi > StageSched && Phi->isPHI()) 3515 ReplaceReg = NewReg; 3516 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3517 ReplaceReg = NewReg; 3518 if (ReplaceReg) { 3519 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3520 UseOp.setReg(ReplaceReg); 3521 } 3522 } 3523 } 3524 3525 /// Check if we can change the instruction to use an offset value from the 3526 /// previous iteration. If so, return true and set the base and offset values 3527 /// so that we can rewrite the load, if necessary. 3528 /// v1 = Phi(v0, v3) 3529 /// v2 = load v1, 0 3530 /// v3 = post_store v1, 4, x 3531 /// This function enables the load to be rewritten as v2 = load v3, 4. 3532 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3533 unsigned &BasePos, 3534 unsigned &OffsetPos, 3535 unsigned &NewBase, 3536 int64_t &Offset) { 3537 // Get the load instruction. 3538 if (TII->isPostIncrement(*MI)) 3539 return false; 3540 unsigned BasePosLd, OffsetPosLd; 3541 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3542 return false; 3543 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3544 3545 // Look for the Phi instruction. 3546 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3547 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3548 if (!Phi || !Phi->isPHI()) 3549 return false; 3550 // Get the register defined in the loop block. 3551 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3552 if (!PrevReg) 3553 return false; 3554 3555 // Check for the post-increment load/store instruction. 3556 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3557 if (!PrevDef || PrevDef == MI) 3558 return false; 3559 3560 if (!TII->isPostIncrement(*PrevDef)) 3561 return false; 3562 3563 unsigned BasePos1 = 0, OffsetPos1 = 0; 3564 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3565 return false; 3566 3567 // Make sure that the instructions do not access the same memory location in 3568 // the next iteration. 3569 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3570 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3571 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3572 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3573 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3574 MF.DeleteMachineInstr(NewMI); 3575 if (!Disjoint) 3576 return false; 3577 3578 // Set the return value once we determine that we return true. 3579 BasePos = BasePosLd; 3580 OffsetPos = OffsetPosLd; 3581 NewBase = PrevReg; 3582 Offset = StoreOffset; 3583 return true; 3584 } 3585 3586 /// Apply changes to the instruction if needed. The changes are need 3587 /// to improve the scheduling and depend up on the final schedule. 3588 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3589 SMSchedule &Schedule) { 3590 SUnit *SU = getSUnit(MI); 3591 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3592 InstrChanges.find(SU); 3593 if (It != InstrChanges.end()) { 3594 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3595 unsigned BasePos, OffsetPos; 3596 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3597 return; 3598 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3599 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3600 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3601 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3602 int BaseStageNum = Schedule.stageScheduled(SU); 3603 int BaseCycleNum = Schedule.cycleScheduled(SU); 3604 if (BaseStageNum < DefStageNum) { 3605 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3606 int OffsetDiff = DefStageNum - BaseStageNum; 3607 if (DefCycleNum < BaseCycleNum) { 3608 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3609 if (OffsetDiff > 0) 3610 --OffsetDiff; 3611 } 3612 int64_t NewOffset = 3613 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3614 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3615 SU->setInstr(NewMI); 3616 MISUnitMap[NewMI] = SU; 3617 NewMIs.insert(NewMI); 3618 } 3619 } 3620 } 3621 3622 /// Return true for an order or output dependence that is loop carried 3623 /// potentially. A dependence is loop carried if the destination defines a valu 3624 /// that may be used or defined by the source in a subsequent iteration. 3625 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3626 bool isSucc) { 3627 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3628 Dep.isArtificial()) 3629 return false; 3630 3631 if (!SwpPruneLoopCarried) 3632 return true; 3633 3634 if (Dep.getKind() == SDep::Output) 3635 return true; 3636 3637 MachineInstr *SI = Source->getInstr(); 3638 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3639 if (!isSucc) 3640 std::swap(SI, DI); 3641 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3642 3643 // Assume ordered loads and stores may have a loop carried dependence. 3644 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3645 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3646 return true; 3647 3648 // Only chain dependences between a load and store can be loop carried. 3649 if (!DI->mayStore() || !SI->mayLoad()) 3650 return false; 3651 3652 unsigned DeltaS, DeltaD; 3653 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3654 return true; 3655 3656 unsigned BaseRegS, BaseRegD; 3657 int64_t OffsetS, OffsetD; 3658 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3659 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3660 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3661 return true; 3662 3663 if (BaseRegS != BaseRegD) 3664 return true; 3665 3666 // Check that the base register is incremented by a constant value for each 3667 // iteration. 3668 MachineInstr *Def = MRI.getVRegDef(BaseRegS); 3669 if (!Def || !Def->isPHI()) 3670 return true; 3671 unsigned InitVal = 0; 3672 unsigned LoopVal = 0; 3673 getPhiRegs(*Def, BB, InitVal, LoopVal); 3674 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3675 int D = 0; 3676 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3677 return true; 3678 3679 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3680 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3681 3682 // This is the main test, which checks the offset values and the loop 3683 // increment value to determine if the accesses may be loop carried. 3684 if (OffsetS >= OffsetD) 3685 return OffsetS + AccessSizeS > DeltaS; 3686 else 3687 return OffsetD + AccessSizeD > DeltaD; 3688 3689 return true; 3690 } 3691 3692 void SwingSchedulerDAG::postprocessDAG() { 3693 for (auto &M : Mutations) 3694 M->apply(this); 3695 } 3696 3697 /// Try to schedule the node at the specified StartCycle and continue 3698 /// until the node is schedule or the EndCycle is reached. This function 3699 /// returns true if the node is scheduled. This routine may search either 3700 /// forward or backward for a place to insert the instruction based upon 3701 /// the relative values of StartCycle and EndCycle. 3702 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3703 bool forward = true; 3704 if (StartCycle > EndCycle) 3705 forward = false; 3706 3707 // The terminating condition depends on the direction. 3708 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3709 for (int curCycle = StartCycle; curCycle != termCycle; 3710 forward ? ++curCycle : --curCycle) { 3711 3712 // Add the already scheduled instructions at the specified cycle to the DFA. 3713 Resources->clearResources(); 3714 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3715 checkCycle <= LastCycle; checkCycle += II) { 3716 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3717 3718 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3719 E = cycleInstrs.end(); 3720 I != E; ++I) { 3721 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3722 continue; 3723 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3724 "These instructions have already been scheduled."); 3725 Resources->reserveResources(*(*I)->getInstr()); 3726 } 3727 } 3728 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3729 Resources->canReserveResources(*SU->getInstr())) { 3730 LLVM_DEBUG({ 3731 dbgs() << "\tinsert at cycle " << curCycle << " "; 3732 SU->getInstr()->dump(); 3733 }); 3734 3735 ScheduledInstrs[curCycle].push_back(SU); 3736 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3737 if (curCycle > LastCycle) 3738 LastCycle = curCycle; 3739 if (curCycle < FirstCycle) 3740 FirstCycle = curCycle; 3741 return true; 3742 } 3743 LLVM_DEBUG({ 3744 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3745 SU->getInstr()->dump(); 3746 }); 3747 } 3748 return false; 3749 } 3750 3751 // Return the cycle of the earliest scheduled instruction in the chain. 3752 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3753 SmallPtrSet<SUnit *, 8> Visited; 3754 SmallVector<SDep, 8> Worklist; 3755 Worklist.push_back(Dep); 3756 int EarlyCycle = INT_MAX; 3757 while (!Worklist.empty()) { 3758 const SDep &Cur = Worklist.pop_back_val(); 3759 SUnit *PrevSU = Cur.getSUnit(); 3760 if (Visited.count(PrevSU)) 3761 continue; 3762 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3763 if (it == InstrToCycle.end()) 3764 continue; 3765 EarlyCycle = std::min(EarlyCycle, it->second); 3766 for (const auto &PI : PrevSU->Preds) 3767 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3768 Worklist.push_back(PI); 3769 Visited.insert(PrevSU); 3770 } 3771 return EarlyCycle; 3772 } 3773 3774 // Return the cycle of the latest scheduled instruction in the chain. 3775 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3776 SmallPtrSet<SUnit *, 8> Visited; 3777 SmallVector<SDep, 8> Worklist; 3778 Worklist.push_back(Dep); 3779 int LateCycle = INT_MIN; 3780 while (!Worklist.empty()) { 3781 const SDep &Cur = Worklist.pop_back_val(); 3782 SUnit *SuccSU = Cur.getSUnit(); 3783 if (Visited.count(SuccSU)) 3784 continue; 3785 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3786 if (it == InstrToCycle.end()) 3787 continue; 3788 LateCycle = std::max(LateCycle, it->second); 3789 for (const auto &SI : SuccSU->Succs) 3790 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3791 Worklist.push_back(SI); 3792 Visited.insert(SuccSU); 3793 } 3794 return LateCycle; 3795 } 3796 3797 /// If an instruction has a use that spans multiple iterations, then 3798 /// return true. These instructions are characterized by having a back-ege 3799 /// to a Phi, which contains a reference to another Phi. 3800 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3801 for (auto &P : SU->Preds) 3802 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3803 for (auto &S : P.getSUnit()->Succs) 3804 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3805 return P.getSUnit(); 3806 return nullptr; 3807 } 3808 3809 /// Compute the scheduling start slot for the instruction. The start slot 3810 /// depends on any predecessor or successor nodes scheduled already. 3811 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3812 int *MinEnd, int *MaxStart, int II, 3813 SwingSchedulerDAG *DAG) { 3814 // Iterate over each instruction that has been scheduled already. The start 3815 // slot computation depends on whether the previously scheduled instruction 3816 // is a predecessor or successor of the specified instruction. 3817 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3818 3819 // Iterate over each instruction in the current cycle. 3820 for (SUnit *I : getInstructions(cycle)) { 3821 // Because we're processing a DAG for the dependences, we recognize 3822 // the back-edge in recurrences by anti dependences. 3823 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3824 const SDep &Dep = SU->Preds[i]; 3825 if (Dep.getSUnit() == I) { 3826 if (!DAG->isBackedge(SU, Dep)) { 3827 int EarlyStart = cycle + Dep.getLatency() - 3828 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3829 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3830 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3831 int End = earliestCycleInChain(Dep) + (II - 1); 3832 *MinEnd = std::min(*MinEnd, End); 3833 } 3834 } else { 3835 int LateStart = cycle - Dep.getLatency() + 3836 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3837 *MinLateStart = std::min(*MinLateStart, LateStart); 3838 } 3839 } 3840 // For instruction that requires multiple iterations, make sure that 3841 // the dependent instruction is not scheduled past the definition. 3842 SUnit *BE = multipleIterations(I, DAG); 3843 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3844 !SU->isPred(I)) 3845 *MinLateStart = std::min(*MinLateStart, cycle); 3846 } 3847 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3848 if (SU->Succs[i].getSUnit() == I) { 3849 const SDep &Dep = SU->Succs[i]; 3850 if (!DAG->isBackedge(SU, Dep)) { 3851 int LateStart = cycle - Dep.getLatency() + 3852 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3853 *MinLateStart = std::min(*MinLateStart, LateStart); 3854 if (DAG->isLoopCarriedDep(SU, Dep)) { 3855 int Start = latestCycleInChain(Dep) + 1 - II; 3856 *MaxStart = std::max(*MaxStart, Start); 3857 } 3858 } else { 3859 int EarlyStart = cycle + Dep.getLatency() - 3860 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3861 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3862 } 3863 } 3864 } 3865 } 3866 } 3867 } 3868 3869 /// Order the instructions within a cycle so that the definitions occur 3870 /// before the uses. Returns true if the instruction is added to the start 3871 /// of the list, or false if added to the end. 3872 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3873 std::deque<SUnit *> &Insts) { 3874 MachineInstr *MI = SU->getInstr(); 3875 bool OrderBeforeUse = false; 3876 bool OrderAfterDef = false; 3877 bool OrderBeforeDef = false; 3878 unsigned MoveDef = 0; 3879 unsigned MoveUse = 0; 3880 int StageInst1 = stageScheduled(SU); 3881 3882 unsigned Pos = 0; 3883 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3884 ++I, ++Pos) { 3885 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3886 MachineOperand &MO = MI->getOperand(i); 3887 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3888 continue; 3889 3890 unsigned Reg = MO.getReg(); 3891 unsigned BasePos, OffsetPos; 3892 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3893 if (MI->getOperand(BasePos).getReg() == Reg) 3894 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3895 Reg = NewReg; 3896 bool Reads, Writes; 3897 std::tie(Reads, Writes) = 3898 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3899 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3900 OrderBeforeUse = true; 3901 if (MoveUse == 0) 3902 MoveUse = Pos; 3903 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3904 // Add the instruction after the scheduled instruction. 3905 OrderAfterDef = true; 3906 MoveDef = Pos; 3907 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3908 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3909 OrderBeforeUse = true; 3910 if (MoveUse == 0) 3911 MoveUse = Pos; 3912 } else { 3913 OrderAfterDef = true; 3914 MoveDef = Pos; 3915 } 3916 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3917 OrderBeforeUse = true; 3918 if (MoveUse == 0) 3919 MoveUse = Pos; 3920 if (MoveUse != 0) { 3921 OrderAfterDef = true; 3922 MoveDef = Pos - 1; 3923 } 3924 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3925 // Add the instruction before the scheduled instruction. 3926 OrderBeforeUse = true; 3927 if (MoveUse == 0) 3928 MoveUse = Pos; 3929 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3930 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3931 if (MoveUse == 0) { 3932 OrderBeforeDef = true; 3933 MoveUse = Pos; 3934 } 3935 } 3936 } 3937 // Check for order dependences between instructions. Make sure the source 3938 // is ordered before the destination. 3939 for (auto &S : SU->Succs) { 3940 if (S.getSUnit() != *I) 3941 continue; 3942 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3943 OrderBeforeUse = true; 3944 if (Pos < MoveUse) 3945 MoveUse = Pos; 3946 } 3947 } 3948 for (auto &P : SU->Preds) { 3949 if (P.getSUnit() != *I) 3950 continue; 3951 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3952 OrderAfterDef = true; 3953 MoveDef = Pos; 3954 } 3955 } 3956 } 3957 3958 // A circular dependence. 3959 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3960 OrderBeforeUse = false; 3961 3962 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3963 // to a loop-carried dependence. 3964 if (OrderBeforeDef) 3965 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3966 3967 // The uncommon case when the instruction order needs to be updated because 3968 // there is both a use and def. 3969 if (OrderBeforeUse && OrderAfterDef) { 3970 SUnit *UseSU = Insts.at(MoveUse); 3971 SUnit *DefSU = Insts.at(MoveDef); 3972 if (MoveUse > MoveDef) { 3973 Insts.erase(Insts.begin() + MoveUse); 3974 Insts.erase(Insts.begin() + MoveDef); 3975 } else { 3976 Insts.erase(Insts.begin() + MoveDef); 3977 Insts.erase(Insts.begin() + MoveUse); 3978 } 3979 orderDependence(SSD, UseSU, Insts); 3980 orderDependence(SSD, SU, Insts); 3981 orderDependence(SSD, DefSU, Insts); 3982 return; 3983 } 3984 // Put the new instruction first if there is a use in the list. Otherwise, 3985 // put it at the end of the list. 3986 if (OrderBeforeUse) 3987 Insts.push_front(SU); 3988 else 3989 Insts.push_back(SU); 3990 } 3991 3992 /// Return true if the scheduled Phi has a loop carried operand. 3993 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3994 if (!Phi.isPHI()) 3995 return false; 3996 assert(Phi.isPHI() && "Expecting a Phi."); 3997 SUnit *DefSU = SSD->getSUnit(&Phi); 3998 unsigned DefCycle = cycleScheduled(DefSU); 3999 int DefStage = stageScheduled(DefSU); 4000 4001 unsigned InitVal = 0; 4002 unsigned LoopVal = 0; 4003 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 4004 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 4005 if (!UseSU) 4006 return true; 4007 if (UseSU->getInstr()->isPHI()) 4008 return true; 4009 unsigned LoopCycle = cycleScheduled(UseSU); 4010 int LoopStage = stageScheduled(UseSU); 4011 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 4012 } 4013 4014 /// Return true if the instruction is a definition that is loop carried 4015 /// and defines the use on the next iteration. 4016 /// v1 = phi(v2, v3) 4017 /// (Def) v3 = op v1 4018 /// (MO) = v1 4019 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 4020 /// register. 4021 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 4022 MachineInstr *Def, MachineOperand &MO) { 4023 if (!MO.isReg()) 4024 return false; 4025 if (Def->isPHI()) 4026 return false; 4027 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 4028 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 4029 return false; 4030 if (!isLoopCarried(SSD, *Phi)) 4031 return false; 4032 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 4033 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 4034 MachineOperand &DMO = Def->getOperand(i); 4035 if (!DMO.isReg() || !DMO.isDef()) 4036 continue; 4037 if (DMO.getReg() == LoopReg) 4038 return true; 4039 } 4040 return false; 4041 } 4042 4043 // Check if the generated schedule is valid. This function checks if 4044 // an instruction that uses a physical register is scheduled in a 4045 // different stage than the definition. The pipeliner does not handle 4046 // physical register values that may cross a basic block boundary. 4047 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 4048 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 4049 SUnit &SU = SSD->SUnits[i]; 4050 if (!SU.hasPhysRegDefs) 4051 continue; 4052 int StageDef = stageScheduled(&SU); 4053 assert(StageDef != -1 && "Instruction should have been scheduled."); 4054 for (auto &SI : SU.Succs) 4055 if (SI.isAssignedRegDep()) 4056 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 4057 if (stageScheduled(SI.getSUnit()) != StageDef) 4058 return false; 4059 } 4060 return true; 4061 } 4062 4063 /// A property of the node order in swing-modulo-scheduling is 4064 /// that for nodes outside circuits the following holds: 4065 /// none of them is scheduled after both a successor and a 4066 /// predecessor. 4067 /// The method below checks whether the property is met. 4068 /// If not, debug information is printed and statistics information updated. 4069 /// Note that we do not use an assert statement. 4070 /// The reason is that although an invalid node oder may prevent 4071 /// the pipeliner from finding a pipelined schedule for arbitrary II, 4072 /// it does not lead to the generation of incorrect code. 4073 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 4074 4075 // a sorted vector that maps each SUnit to its index in the NodeOrder 4076 typedef std::pair<SUnit *, unsigned> UnitIndex; 4077 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 4078 4079 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 4080 Indices.push_back(std::make_pair(NodeOrder[i], i)); 4081 4082 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 4083 return std::get<0>(i1) < std::get<0>(i2); 4084 }; 4085 4086 // sort, so that we can perform a binary search 4087 llvm::sort(Indices, CompareKey); 4088 4089 bool Valid = true; 4090 (void)Valid; 4091 // for each SUnit in the NodeOrder, check whether 4092 // it appears after both a successor and a predecessor 4093 // of the SUnit. If this is the case, and the SUnit 4094 // is not part of circuit, then the NodeOrder is not 4095 // valid. 4096 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 4097 SUnit *SU = NodeOrder[i]; 4098 unsigned Index = i; 4099 4100 bool PredBefore = false; 4101 bool SuccBefore = false; 4102 4103 SUnit *Succ; 4104 SUnit *Pred; 4105 (void)Succ; 4106 (void)Pred; 4107 4108 for (SDep &PredEdge : SU->Preds) { 4109 SUnit *PredSU = PredEdge.getSUnit(); 4110 unsigned PredIndex = 4111 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4112 std::make_pair(PredSU, 0), CompareKey)); 4113 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 4114 PredBefore = true; 4115 Pred = PredSU; 4116 break; 4117 } 4118 } 4119 4120 for (SDep &SuccEdge : SU->Succs) { 4121 SUnit *SuccSU = SuccEdge.getSUnit(); 4122 unsigned SuccIndex = 4123 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4124 std::make_pair(SuccSU, 0), CompareKey)); 4125 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 4126 SuccBefore = true; 4127 Succ = SuccSU; 4128 break; 4129 } 4130 } 4131 4132 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 4133 // instructions in circuits are allowed to be scheduled 4134 // after both a successor and predecessor. 4135 bool InCircuit = std::any_of( 4136 Circuits.begin(), Circuits.end(), 4137 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 4138 if (InCircuit) 4139 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 4140 else { 4141 Valid = false; 4142 NumNodeOrderIssues++; 4143 LLVM_DEBUG(dbgs() << "Predecessor ";); 4144 } 4145 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 4146 << " are scheduled before node " << SU->NodeNum 4147 << "\n";); 4148 } 4149 } 4150 4151 LLVM_DEBUG({ 4152 if (!Valid) 4153 dbgs() << "Invalid node order found!\n"; 4154 }); 4155 } 4156 4157 /// Attempt to fix the degenerate cases when the instruction serialization 4158 /// causes the register lifetimes to overlap. For example, 4159 /// p' = store_pi(p, b) 4160 /// = load p, offset 4161 /// In this case p and p' overlap, which means that two registers are needed. 4162 /// Instead, this function changes the load to use p' and updates the offset. 4163 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 4164 unsigned OverlapReg = 0; 4165 unsigned NewBaseReg = 0; 4166 for (SUnit *SU : Instrs) { 4167 MachineInstr *MI = SU->getInstr(); 4168 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4169 const MachineOperand &MO = MI->getOperand(i); 4170 // Look for an instruction that uses p. The instruction occurs in the 4171 // same cycle but occurs later in the serialized order. 4172 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4173 // Check that the instruction appears in the InstrChanges structure, 4174 // which contains instructions that can have the offset updated. 4175 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4176 InstrChanges.find(SU); 4177 if (It != InstrChanges.end()) { 4178 unsigned BasePos, OffsetPos; 4179 // Update the base register and adjust the offset. 4180 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4181 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4182 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4183 int64_t NewOffset = 4184 MI->getOperand(OffsetPos).getImm() - It->second.second; 4185 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4186 SU->setInstr(NewMI); 4187 MISUnitMap[NewMI] = SU; 4188 NewMIs.insert(NewMI); 4189 } 4190 } 4191 OverlapReg = 0; 4192 NewBaseReg = 0; 4193 break; 4194 } 4195 // Look for an instruction of the form p' = op(p), which uses and defines 4196 // two virtual registers that get allocated to the same physical register. 4197 unsigned TiedUseIdx = 0; 4198 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4199 // OverlapReg is p in the example above. 4200 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4201 // NewBaseReg is p' in the example above. 4202 NewBaseReg = MI->getOperand(i).getReg(); 4203 break; 4204 } 4205 } 4206 } 4207 } 4208 4209 /// After the schedule has been formed, call this function to combine 4210 /// the instructions from the different stages/cycles. That is, this 4211 /// function creates a schedule that represents a single iteration. 4212 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4213 // Move all instructions to the first stage from later stages. 4214 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4215 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4216 ++stage) { 4217 std::deque<SUnit *> &cycleInstrs = 4218 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4219 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4220 E = cycleInstrs.rend(); 4221 I != E; ++I) 4222 ScheduledInstrs[cycle].push_front(*I); 4223 } 4224 } 4225 // Iterate over the definitions in each instruction, and compute the 4226 // stage difference for each use. Keep the maximum value. 4227 for (auto &I : InstrToCycle) { 4228 int DefStage = stageScheduled(I.first); 4229 MachineInstr *MI = I.first->getInstr(); 4230 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4231 MachineOperand &Op = MI->getOperand(i); 4232 if (!Op.isReg() || !Op.isDef()) 4233 continue; 4234 4235 unsigned Reg = Op.getReg(); 4236 unsigned MaxDiff = 0; 4237 bool PhiIsSwapped = false; 4238 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4239 EI = MRI.use_end(); 4240 UI != EI; ++UI) { 4241 MachineOperand &UseOp = *UI; 4242 MachineInstr *UseMI = UseOp.getParent(); 4243 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4244 int UseStage = stageScheduled(SUnitUse); 4245 unsigned Diff = 0; 4246 if (UseStage != -1 && UseStage >= DefStage) 4247 Diff = UseStage - DefStage; 4248 if (MI->isPHI()) { 4249 if (isLoopCarried(SSD, *MI)) 4250 ++Diff; 4251 else 4252 PhiIsSwapped = true; 4253 } 4254 MaxDiff = std::max(Diff, MaxDiff); 4255 } 4256 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4257 } 4258 } 4259 4260 // Erase all the elements in the later stages. Only one iteration should 4261 // remain in the scheduled list, and it contains all the instructions. 4262 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4263 ScheduledInstrs.erase(cycle); 4264 4265 // Change the registers in instruction as specified in the InstrChanges 4266 // map. We need to use the new registers to create the correct order. 4267 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4268 SUnit *SU = &SSD->SUnits[i]; 4269 SSD->applyInstrChange(SU->getInstr(), *this); 4270 } 4271 4272 // Reorder the instructions in each cycle to fix and improve the 4273 // generated code. 4274 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4275 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4276 std::deque<SUnit *> newOrderPhi; 4277 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4278 SUnit *SU = cycleInstrs[i]; 4279 if (SU->getInstr()->isPHI()) 4280 newOrderPhi.push_back(SU); 4281 } 4282 std::deque<SUnit *> newOrderI; 4283 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4284 SUnit *SU = cycleInstrs[i]; 4285 if (!SU->getInstr()->isPHI()) 4286 orderDependence(SSD, SU, newOrderI); 4287 } 4288 // Replace the old order with the new order. 4289 cycleInstrs.swap(newOrderPhi); 4290 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4291 SSD->fixupRegisterOverlaps(cycleInstrs); 4292 } 4293 4294 LLVM_DEBUG(dump();); 4295 } 4296 4297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4298 /// Print the schedule information to the given output. 4299 void SMSchedule::print(raw_ostream &os) const { 4300 // Iterate over each cycle. 4301 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4302 // Iterate over each instruction in the cycle. 4303 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4304 for (SUnit *CI : cycleInstrs->second) { 4305 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4306 os << "(" << CI->NodeNum << ") "; 4307 CI->getInstr()->print(os); 4308 os << "\n"; 4309 } 4310 } 4311 } 4312 4313 /// Utility function used for debugging to print the schedule. 4314 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4315 #endif 4316